WO2024092656A1 - Methods, devices and medium for communication - Google Patents

Methods, devices and medium for communication Download PDF

Info

Publication number
WO2024092656A1
WO2024092656A1 PCT/CN2022/129663 CN2022129663W WO2024092656A1 WO 2024092656 A1 WO2024092656 A1 WO 2024092656A1 CN 2022129663 W CN2022129663 W CN 2022129663W WO 2024092656 A1 WO2024092656 A1 WO 2024092656A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
type
measurement
relay terminal
rsrp
Prior art date
Application number
PCT/CN2022/129663
Other languages
French (fr)
Inventor
You Li
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2022/129663 priority Critical patent/WO2024092656A1/en
Publication of WO2024092656A1 publication Critical patent/WO2024092656A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer storage media for path switching.
  • a terminal device may communicate with the network device via a direct path or an indirect path. Specifically, in case of the direct path, the terminal device may communicate with the network device directly, while in case of the indirect path, the terminal device may communicate with the network device via at least one relay terminal device. Further, the location of the terminal device and the communication condition may change over time. In order to maintain a continuous communication with the network, the terminal device may be switched to a new path or connected to a new network device sometimes, i.e., performing a path switch.
  • the terminal device may perform measurements on the currently serving relay terminal device and at least one candidate relay terminal device.
  • the above measurements may be performed on different signals. That is, there may be more than one measurement type. In view of this, it is needed to handle the differences between different measurement types, such that the proper candidate relay terminal device may be selected.
  • embodiments of the present disclosure provide methods, devices and computer storage medium for path switching.
  • a communication method comprises: obtaining, at a remote terminal device connecting with a network device via a first relay terminal device, a path switching measurement configuration indicating a plurality of offsets, an offset of the plurality of offsets being corresponding to a type-pair of a first measurement type and a second measurement type; performing measurements on the first relay terminal device and at least one candidate relay terminal device; and transmitting, according to the path switching measurement configuration, a measurement report comprising at least one of the following: information indicating one or more of the at least one candidate relay terminal device, or one or more measurement results of the one or more candidate relay terminal devices.
  • a remote terminal device comprising at least one processor; and at least one memory coupled to the at least one processor and storing instructions thereon, the instructions, when executed by the at least one processor, causing the remote terminal device to perform the method according to the first aspect.
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to the first aspect.
  • FIG. 1A illustrates an example communication environment in which example embodiments of the present disclosure can be implemented
  • FIG. 1B illustrates an example communication environment in which example embodiments of the present disclosure can be implemented
  • FIG. 2 illustrates a signaling flow of communication in accordance with some embodiments of the present disclosure
  • FIG. 3 illustrates a flowchart of a method implemented at a remote terminal device according to some example embodiments of the present disclosure.
  • FIG. 4 illustrates a simplified block diagram of an apparatus that is suitable for implementing example embodiments of the present disclosure.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, devices on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV)
  • UE user equipment
  • the ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporate one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM.
  • SIM Subscriber Identity Module
  • the term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
  • network device refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB next generation NodeB
  • TRP transmission reception point
  • RRU remote radio unit
  • RH radio head
  • RRH remote radio head
  • IAB node a low power node such as a fe
  • the terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • AI Artificial intelligence
  • Machine learning capability it generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • the terminal or the network device may work on several frequency ranges, e.g., FR1 (e.g., 450 MHz to 6000 MHz) , FR2 (e.g., 24.25GHz to 52.6GHz) , frequency band larger than 100 GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum.
  • FR1 e.g., 450 MHz to 6000 MHz
  • FR2 e.g., 24.25GHz to 52.6GHz
  • THz Tera Hertz
  • the terminal device may have more than one connection with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario.
  • MR-DC Multi-Radio Dual Connectivity
  • the terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
  • the embodiments of the present disclosure may be performed in test equipment, e.g., signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
  • the terminal device may be connected with a first network device and a second network device.
  • One of the first network device and the second network device may be a master node and the other one may be a secondary node.
  • the first network device and the second network device may use different radio access technologies (RATs) .
  • the first network device may be a first RAT device and the second network device may be a second RAT device.
  • the first RAT device is eNB and the second RAT device is gNB.
  • Information related with different RATs may be transmitted to the terminal device from at least one of the first network device or the second network device.
  • first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device.
  • information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device.
  • Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
  • the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’
  • the term ‘based on’ is to be read as ‘at least in part based on. ’
  • the term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’
  • the term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’
  • the terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
  • values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • the term “resource, ” “transmission resource, ” “uplink resource, ” or “downlink resource” may refer to any resource for performing a communication, such as a resource in time domain, a resource in frequency domain, a resource in space domain, a resource in code domain, or any other resource enabling a communication, and the like.
  • a resource in both frequency domain and time domain will be used as an example of a transmission resource for describing some example embodiments of the present disclosure. It is noted that example embodiments of the present disclosure are equally applicable to other resources in other domains.
  • a terminal device may communicate with the network via a direct network connection or an indirect network connection. Further, in case of path switching, the communication path of the terminal device may be switched from a source network device to a target network device.
  • the source network device and the target network device are located in a same physical device (referred to as intra-gNB) . Alternatively, in some other embodiments, the source network device and the target network device are located in different physical devices (referred to as inter-gNB) .
  • a path switching maybe associated with any of: indirect-to-direct (I2D) path switching for intra-gNB, indirect-to-indirect (I2I) path switching for intra-gNB, direct-to-direct (D2D) path switching for intra-gNB, direct-to-indirect (D2I) path switching for intra-gNB, I2D for inter-gNB, I2I for inter-gNB, D2D for inter-gNB and D2I for inter-gNB.
  • I2D indirect-to-direct
  • I2I indirect-to-indirect
  • D2D direct-to-direct
  • D2I direct-to-indirect
  • the terminal device may perform measurements on the currently serving relay terminal device and at least one candidate relay terminal device.
  • the layer 2 (L2) user to network (U2N) remote terminal device reports one or multiple candidate L2 U2N relay terminal device and Uu measurements, after it measures/discovers the candidate L2 U2N relay terminal device. With the measurements results, the gNB may decide to switch the L2 U2N remote terminal device to a target L2 U2N relay terminal device. Then the gNB sends a radio resource control (RRC) reconfiguration message to the target L2 U2N relay terminal device, which includes at least L2 U2N remote terminal device 's local identity (ID) and L2 ID, Uu and PC5 relay radio link control (RLC) channel configuration for relaying, and bearer mapping configuration.
  • RRC radio resource control
  • new measurement events based on individual thresholds may be introduced, for example,
  • Event Z1 currently serving L2 U2N relay terminal device becomes worse than a first threshold and candidate L2 U2N relay terminal device becomes better than a second threshold.
  • Event Z2 candidate L2 U2N relay terminal device becomes an offset better than currently serving L2 U2N relay terminal device.
  • the remote terminal device may trigger to report the measurement result (including the information of the candidate relay terminal device and/or the related measurement results) .
  • the measured signals for different devices may be different. That is, there may be more than one measurement type. In view of this, it is needed to handle the differences between different measurement types, such that the proper candidate relay terminal device may be selected.
  • the terminal device may obtain a path switching measurement configuration indicating a plurality of offsets, where an offset of the plurality of offsets is corresponding to a type-pair of a first measurement type and a second measurement type. Then, as for the scenario of I2I path switching, the remote terminal device may perform measurements on the first relay terminal device and at least one candidate relay terminal device, and transmits a measurement report according to the path switching measurement.
  • a direct network connection refers to one mode of network connection, where there is no relay terminal device/relay UE between a terminal device and the network device; also referred to as a direct path sometime.
  • An indirect network connection refers to one mode of network connection, where there is a relay terminal device/relay UE between a terminal device and the network device; also referred to as a relaying path or indirect path sometimes.
  • discovery reference message and “discovery message” may be reused changeably sometimes.
  • type-pair refers to a correspondence/combination of the first measurement type and the second measurement type. That is, any “type-pair” may be interpreted to be a type pair of ⁇ the first measurement type, the second measurement type > or the type pair of ⁇ the second measurement type, the first measurement type>. In other words, the order of the first measurement type and the second measurement type may be changed in the other embodiments. The present disclosure is not limited in this regard.
  • Event Z2 is used as example of path switching event in some embodiments, it should not be considered as any limitations of the present disclosure. In other words, as for the other path switching events, they also may be impacted by the problem of different measured signals/types, and the key concept taught by this present disclosure also may be adaptable for the other path switching events. The present disclosure is not limited in this regard.
  • SL-RSRP and SD-RSRP are used as examples of measurement results performed on different signals, it should not be considered as any limitations of the present disclosure.
  • the SL-RSRP and SD-RSRP may be replaced by any suitable channel quality parameters., such as, received signal strength indicator (RSSI) , signal to noise plus interference ratio (SNIR) and so on.
  • RSSI received signal strength indicator
  • SNIR signal to noise plus interference ratio
  • FIG. 1A shows an example communication environment 100 in which example embodiments of the present disclosure can be implemented.
  • the communication environment 100 comprises a plurality of terminal devices and network devices.
  • the communication environment 100 comprises a network device 140-1, and an optional network device 140-2.
  • the network devices 140-1 and 140-2 are collectively referred to as network device 140, or individually refers to as the first network device 140-1 and the second network device 140-2, respectively.
  • both inter-gNB network structure and intra-gNB network structure are supported in the communication environment 100.
  • the communication environment 100 further comprises terminal devices 110, 120, and optional terminal devices 130-1 and 130-2.
  • the terminal device 110 is connecting with the first network device 140-1 via the terminal device 120. Further, in order to ensure a continuous communication, the terminal device 110 may perform measurements on the terminal device 120 and the terminal devices 130-1 and 130-2.
  • the terminal device 110 is referred to as the remote terminal device 110
  • the terminal device 120 is referred to as the first relay terminal device 120
  • the terminal devices 130-1 and 130-2 are referred to as the candidate relay terminal devices 130-1 and 130-2.
  • the candidate relay terminal devices 130-1 and 130-2 are collectively referred to as the candidate relay terminal devices 130.
  • the remote terminal device 110 may trigger a measurement report and a path switching may be triggered by the first network device 140-1 thereby.
  • FIG. 1B illustrates another example communication environment 150.
  • a path switching may be performed between the direct and indirect paths, i.e., I2D and D2I, and also may be performed between the indirect and indirect paths, i.e. I2I.
  • the remote terminal device 110 may measure the physical sidelink shared channel (PSSCH) and/or the physical sidelink control channel (PSCCH) to obtain the measurement results.
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • the PSSCH may carry a data transmission and/or the PSCCH may carry information scheduling the data transmission.
  • the measurement result may be sidelink reference signal received power (SL-RSRP) .
  • the SL-RSRP is a sidelink RSRP which corresponds to a PSCCH-RSRP and/or PSSCH-RSRP.
  • the SL-RSRP may be obtained based on demodulation reference signal (DMRS) of above mentioned channels (such as, PSCCH and PSSCH) .
  • DMRS demodulation reference signal
  • the PSSCH may carry a discovery message and/or the PSCCH may carry information scheduling the transmission of the discovery message.
  • the measurement result may be sidelink discovery reference signal received power (SD-RSRP) .
  • the SD-RSRP is a PSSCH-RSRP where the PSSCH carries a discovery message
  • the SD-RSRP is a PSCCH-RSRP where the PSCCH schedules the transmission of a discovery message.
  • the SD-RSRP is obtained based on Demodulation Reference Signal (DMRS) of above mentioned channels (such as, PSCCH and PSSCH) .
  • DMRS Demodulation Reference Signal
  • the remote terminal device 110 is connecting with the first network device 140-1 via the terminal device 120, which means that the remote terminal device 110 may receive both of a data transmission and discovery message from the first relay terminal device 120.
  • the measurement result of the first relay terminal device 120 may be SL-RSRP and SD-RSRP.
  • the measurement result of the first relay terminal device 120 is referred to as the first measurement result, and the measurement type of first measurement result is referred to as the first measurement type.
  • the terminal device 110 also performs measurements on the candidate relay terminal devices 130-1 and 130-2.
  • the remote terminal device 110 may only obtain a measurement result on discovery message, and thus the measurement results of the candidate relay terminal devices 130 may be SD-RSRP only.
  • the measurement result of the candidate relay terminal device 130 is referred to as the second measurement result
  • the measurement type of second measurement result is referred to as the second measurement type.
  • the possible type-pairs of a first measurement type and a second measurement type may be as below table 1.
  • the SL-RSRP and SD-RSRP may be reused changeably.
  • this embodiment does not consider the difference among the different types.
  • the SL-RSRP when selecting the measurement result of the first relay terminal device 120, if SL-RSRP is unavailable, SD-RSRP is used as the measurement quantity, which means that if both SL-RSRP and SD-RSRP are obtained by the first relay terminal device 120, the SL-RSRP may be selected as the measurement result.
  • the candidate relay terminal device 130 do not functions as relay terminal device for the remote terminal device 110, there still may be a non-relay PC5 data transmission (also may be referred to as a relay UE local traffic/data/transmission at the candidate relay terminal device 130) between the remote terminal device 110 and the candidate relay terminal device 130.
  • a non-relay PC5 data transmission also may be referred to as a relay UE local traffic/data/transmission at the candidate relay terminal device 130
  • the remote terminal device 110 also may obtain a measurement result of SL-RSRP for the candidate relay terminal device 130.
  • the possible type-pairs of a first measurement type and a second measurement type may be as below table 2.
  • the SL-RSRP when selecting the measurement result of the first relay terminal device 120/candidate relay terminal device 130, if SL-RSRP is unavailable, SD-RSRP is used as the measurement quantity, which means that if both SL-RSRP and SD-RSRP are obtained, the SL-RSRP may be selected as the measurement result.
  • Event Z2 i.e., candidate L2 U2N relay terminal device becomes an offset better than currently serving L2 U2N relay terminal device
  • Event Z2 may be defined to trigger the measurement report.
  • the measurement results of candidate relay terminal devices 130 may be different, for example, the measurement result of the candidate relay terminal device 130-1 may be SL-RSRP and the measurement result of the candidate relay terminal device 130-2 may be SD-RSRP.
  • the measurement result of the candidate relay terminal device 130-1 may be SL-RSRP and the measurement result of the candidate relay terminal device 130-2 may be SD-RSRP.
  • the communication network may include any suitable number of network devices and/or terminal devices adapted for implementing implementations of the present disclosure.
  • the communications in the communication environments 100 and 150 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , New Radio (NR) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like.
  • GSM Global System for Mobile Communications
  • LTE Long Term Evolution
  • LTE-Evolution LTE-Advanced
  • NR New Radio
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GERAN GSM EDGE Radio Access Network
  • MTC Machine Type Communication
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
  • some interactions are performed among the remote terminal device 110 and the first network device 140-1 (such as, exchanging configuration (s) and so on) .
  • the interactions may be implemented either in one single signaling/message or multiple signaling/messages, including system information, radio resource control (RRC) message, downlink control information (DCI) message, uplink control information (UCI) message, media access control (MAC) control element (CE) , sidelink relay adaptation protocol (SRAP) and so on.
  • RRC radio resource control
  • DCI downlink control information
  • UCI uplink control information
  • CE media access control
  • SRAP sidelink relay adaptation protocol
  • FIG. 2 shows a signaling chart illustrating a process 200 of communication according to some example embodiments of the present disclosure.
  • the process 200 will be described with reference to FIGS. 1A and 1B.
  • the process 200 may involve the first network device 140-1, the remote terminal device 110, the first relay terminal device 120 and the candidate relay terminal device (s) 130.
  • the remote terminal device 110 is originally connected with the first network device 140-1 via the first relay terminal 120. Further, the remote terminal device 110 may obtain the first measurement result of the first relay terminal device 120, and the second measurement results of the candidate relay terminal devices 130-1 and 130-2.
  • the remote terminal device 110 obtains 210 a path switching measurement configuration, where the path switching measurement configuration indicates a plurality of offsets.
  • an offset of the plurality of offsets is corresponding to a type-pair of a first measurement type and a second measurement type.
  • the path switching measurement configuration is pre-defined.
  • the path switching measurement configuration is pre-defined by the communication organization (such as 3GPP) , or pre-defined by the network operator or service provider. In this way, the path switching measurement configuration may be applied as a default configuration and no additional signaling is needed.
  • the path switching measurement configuration is dynamically configured.
  • the remote terminal device 110 may receive 215 the path switching measurement configuration from the first network device 140-1.
  • the signalling used for configuring the path switching measurement configuration may be RRC signalling, MAC CE, DCI, SI and so on.
  • the path switching measurement configuration is a common configuration shared among a plurality of cells.
  • the path switching configuration is specific to a cell or a cell group.
  • the path switching configuration is specific to a candidate relay terminal device 130, or a candidate relay terminal device group. That is, different path switching measurement configurations may be configured for different cells/cell groups/candidate relay terminal devices/candidate relay terminal device groups. In this way, the path switching policy may be more flexible.
  • the remote terminal device 110 may derive information from discovery message or dedicate signalling transmitted by the first/candidate relay terminal device, and then determines corresponding path switching measurement configuration based one the derived information.
  • the plurality of offsets may be configured to be adaptable for any of the multiple possible scenarios related with different types of measurement result of the I2I path switching measurement.
  • the remote terminal device 110 is configured with plurality of offsets for event Z2.
  • the plurality of offsets comprise a first offset to be used by the remote terminal device 110 in case that the second measurement type is the same with the first measurement type.
  • Offset #1 is configured of the type-pair of ⁇ first type, first type> / ⁇ second type, second type> (such as, ⁇ SD-RSRP, SD-RSRP> / ⁇ SL-RSRP, SL-RSRP> ) .
  • the plurality of offsets comprises a second offset to be used by the remote terminal device in case that the second measurement type is different from the first measurement type.
  • offset #2 is configured of the type-pair of ⁇ first type, second type> / ⁇ second type, first type> (such as, ⁇ SD-RSRP, SL-RSRP> / ⁇ SL-RSRP, SD-RSRP> ) .
  • an offset value of one of the two type-pairs may be determined as an opposite value relative to an offset value of the other one of the two type-pairs.
  • the plurality of offsets may be indicated by the path switching measurement configuration in any suitable manners.
  • the path switching measurement configuration indicates the plurality of offsets by comprising values of the plurality of offsets.
  • the path switching measurement configuration indicates the plurality of offsets by comprising a reference offset and at least one delta offset relative to the reference offset.
  • the path switching measurement configuration indicates the plurality of offsets by indicating/comprising at least one compensation value specific to a specific measurement type.
  • a first compensation value is configured for SD-RSRP.
  • a second compensation value is configured for SL-RSRP.
  • the path switching measurement configuration further indicates/comprises: respective type-pair indications for the plurality of offsets, each respective type-pair indication indicating a specific first type and a specific second type for a specific type-pair.
  • the respective type-pair indication is an index of type-pair.
  • the path switching measurement configuration indicates the type-pair and its corresponding offset explicitly or implicitly.
  • the first offset is configured for the type-pair of ⁇ SD-RSRP, SL-RSRP>
  • the second offset is configured for the type-pair of ⁇ SL-RSRP, SL-RSRP>
  • the plurality of offsets may be represented as a format of list or table.
  • the plurality of offsets may be indicated or configured by the item/item index of the lists or tables.
  • Table 3 may be used in the scenarios where the SL-RSRP is available for the candidate relay terminal device 130.
  • the type-pairs of ⁇ SL-RSRP, SL-RSRP> and ⁇ SD-RSRP, SD-RSRP> may share a same offset. In this way, the number of offsets is reduced.
  • the remote terminal device 110 may reuse the Offset #2 for the type-pair of ⁇ SD-RSRP, SD-RSRP> by default.
  • a same offset i.e. Offset#2 is applicable to type-pairs of which the second measurement type is the same with the first measurement type.
  • the remote terminal device 110 may reuse the Offset #2 for the type-pair of ⁇ SL-RSRP, SL-RSRP> by default.
  • Table 4 may be used in the scenarios where the SL-RSRP is not available/allowed/configured for the candidate relay terminal device 130.
  • the plurality of offsets may be represented as a reference offset and at least one delta offset relative to the reference offset as below table 5, where the SL-RSRP is available for the candidate relay terminal device 130.
  • one offset is configured to any of the above one type-pair and this offset may be treated as the reference offset, and thus three delta offsets may be configured for the other type-pairs.
  • one reference offset may be configured and four delta offsets may be configured for each type-pair. In other words, one reference offset is not configured to any type-pairs.
  • one offset is configured to one type-pair and this offset may be treated as the reference offset, and four delta offsets may be configured for each type-pair.
  • the remote terminal device 110 may determines the offset based on reference offset and optional delta offset, for example, the respective offset equals to the reference offset +/-respective delta offset.
  • the configuration indicated in the above table 5 may be optimized as illustrated in below tables 5-1 to 5-3, where more than one type-pair (such as, type-pairs with the same measurement type) may share the same delta offset.
  • the type-pairs of ⁇ SL-RSRP, SL-RSRP> and ⁇ SD-RSRP, SD-RSRP> may share a same delta offset. In this way, the number of delta offset is reduced.
  • one offset is configured to any of the above one type-pair and this offset may be treated as the reference offset, and two different delta offsets are needed.
  • one reference offset may be configured and three delta offsets may be configured for each type-pair.
  • one offset is configured to one type-pair and this offset may be treated as the reference offset, and three delta offsets may be configured for each type-pair.
  • the remote terminal device 110 may reuse the Delta Offset #2 for the type-pair of ⁇ SD-RSRP, SD-RSRP> by default.
  • a same delta offset i.e. Delta Offset#2 is applicable to type-pairs of which the second measurement type is the same with the first measurement type.
  • the remote terminal device 110 may reuse the Delta Offset #2 for the type-pair of ⁇ SL-RSRP, SL-RSRP> by default.
  • table 5-4 Another optimized manner of table 5 is illustrated in below table 5-4, where more than one type-pair (such as, type-pairs with the different measurement type) may share the same delta offset.
  • more than one type-pair such as, type-pairs with the different measurement type
  • one offset is configured to any of the above one type-pair and this offset may be treated as the reference offset, and further three delta offsets for each of the other type-pairs (or two delta offsets for type-pairs #2 and #3, and type pair #4 reuse the reference offset, where the type pair #4 may be indicated explicitly or implicitly) .
  • one reference offset may be configured, and further three delta offsets for each of the other type-pair.
  • a further rule of using the Delta Offset#1 may be defined.
  • it may define that the offset of type of ⁇ SD-RSRP, SL-RSRP>may be Reference Offset + Delta Offset#1, and the offset of type of ⁇ SL-RSRP, SD-RSRP > may be reference Offset -Delta Offset#1.
  • the offset of type of ⁇ SD-RSRP, SL-RSRP> may be Reference Offset -Delta Offset#1
  • the offset of type of ⁇ SL-RSRP, SD-RSRP > may be reference Offset + Delta Offset#1.
  • table 5-5 A further optimized manner of table 5 is illustrated in below table 5-5, where more than one type-pair (such as, type-pairs with the different/same measurement type) may share the same delta offset.
  • more than one type-pair such as, type-pairs with the different/same measurement type
  • one offset is configured to any of the above one type-pair and this offset may be treated as the reference offset, and further two delta offsets for each of the other type-pair.
  • one reference offset may be configured, and further two delta offsets for each of the other type-pair.
  • the SL-RSRP may be not available for the candidate relay terminal device 130.
  • Table 6 are further examples of the plurality of offsets.
  • one offset is configured to any of the above one type-pair and this offset may be treated as the reference offset.
  • one reference offset may be configured and one delta offset may be configured for the other type-pair.
  • one offset is configured to one type-pair, and two delta offsets may be configured for each type-pair.
  • the remote terminal device 110 performs 220-1 measurement on the first relay terminal device 120 and also performs 220-2 measurement (s) on the candidate relay terminal device (s) 130.
  • the remote terminal device 110 transmits 250 a measurement report according to the path switching measurement configuration. Further, information used for path switching may be comprised in the measurement report. One example information may be information indicating one or more of the at least one candidate relay terminal device 130 (which meet the Event Z2) . Another example information may be one or more measurement results of the one or more candidate relay terminal devices.
  • the first measurement type may be an SD-RSRP or SL-RSRP
  • the second measurement type also may be an SD-RSRP or an SL-RSRP accordingly.
  • the SD-RSRP is determined by measuring a (PC5) discovery message (such as, the discovery message carried in the PSSCH transmission) .
  • the SL-RSRP is determined by measuring a PC5 data transmission (such as, the data transmission carried in the PSSCH transmission, where the data transmission may be either a relay transmission or non-relay transmission) .
  • the plurality of offsets may be defined for event Z2. In the following, details about how to apply the plurality of offsets will be discussed.
  • the plurality of offsets discussed herein may be used as the threshold (s) of Event Z2. That is, the plurality of offsets discussed herein may be used as the comparation criterion between the first measurement result and the second measurement result directly. In other words, if the difference between the second measurement result and the first measurement result is higher than the offset, the corresponding candidate relay terminal device 130 may be reported.
  • the plurality of offsets discussed herein may be used for adjusting the measurement results and/or calculating equivalent channel quality parameters.
  • the Event Z2 may be defined by an individual threshold, and the plurality of offsets discussed herein may be used for adjusting the measurement results.
  • the remote terminal device 110 may adjust the measurement results first to obtain equivalent channel quality parameter first, and then compare the measurement results (for example, comparing the adjusted first measurement result and the second measurement result, comparing the first measurement result and the adjusted second measurement result, comparing the adjusted first measurement results, or comparing the adjusted second measurement results) . In case that the comparation result meets the requirement of the threshold of Event Z2, a related measurement report is triggered.
  • one equivalent channel quality may be calculated when comparing the first measurement results and the second measurement results or comparing among the second measurement results.
  • the remote terminal device 110 determines a first measurement type for a first measurement result of the first relay terminal device 120 and determines at least one second measurement type for at least one second measurement result of the at least one candidate relay terminal device 130.
  • the remote terminal device 110 determines 230 based on the first measurement type and the at least one second measurement type, at least one offset according to the path switching measurement configuration.
  • the respective offset is determined.
  • the first offset is configured for type-pair of ⁇ SL-RSRP, SD-RSRP>
  • the first offset is determined.
  • type-pair of ⁇ SL-RSRP, SD-RSRP> refers to the first measurement result is SL-RSRP and the second measurement result is SD-RSRP.
  • the first offset is configured for type-pair of ⁇ SL-RSRP, SD-RSRP>
  • the remote terminal device 110 may adjust the first measurement result/or the second measurement result (s) and determine 240 the one or more candidate relay terminal devices to be reported accordingly.
  • the remote terminal device 110 determines at least one adjusted first measurement result by applying each of the at least one offset to the first measurement result respectively, and determines the one or more candidate relay terminal devices based on the at least one adjusted first measurement result.
  • the remote terminal device 110 determines at least one adjusted second measurement result by applying each of the at least one offset to the at least one second measurement result, and determines the one or more candidate relay terminal devices based on the at least one adjusted second measurement result.
  • the first measurement result i.e., the first relay terminal device 120
  • the second measurement result for the candidate relay terminal device 130-1 is SL-RSRP (be represented as SL-RSRP_relay 130-1)
  • the second measurement result for the candidate relay terminal device 130-2 is SD-RSRP (be represented as SD-RSRP_relay 130-2) .
  • SD-RSRP_relay 130-2 -Offset #1 As for the second measurement result for the candidate relay terminal device 130-2, SD-RSRP_relay 130-2 -Offset #1.
  • SD-RSRP_relay 120 +Offset #1 When comparing with the relay terminal device 130-2, SD-RSRP_relay 120 +Offset #1.
  • SL-RSRP_relay 130-1 - (Reference Offset #1 + Delta Offset#2) ;
  • SD-RSRP_relay 130-2 - (Reference Offset #1 + Delta Offset#1) .
  • the remote terminal device 110 may decide one or more candidate relay terminal device (s) 130 that meets the Event Z2, and generate a measurement report accordingly.
  • the first network device 140-1 may make a decision for the path switching. In this way, the differences caused by the different measured signals may be considered, and thus the reported candidate relay terminal device (s) 130 would be more proper.
  • FIG. 3 illustrates a flowchart of a communication method 300 implemented at a remote terminal device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 300 will be described from the perspective of the remote terminal device 110 in FIG. 1A.
  • the remote terminal device 110 obtains, a path switching measurement configuration indicating a plurality of offsets, an offset of the plurality of offsets being corresponding to a type-pair of a first measurement type and a second measurement type.
  • the remote terminal device 110 is connecting with a network device via a first relay terminal device 120.
  • the remote terminal device 110 performs measurements on the first relay terminal device 120 and at least one candidate relay terminal device 130.
  • the remote terminal device 110 transmits, according to the path switching measurement configuration, a measurement report comprising at least one of the following: information indicating one or more of the at least one candidate relay terminal device 130, or one or more measurement results of the one or more candidate relay terminal devices 130.
  • the first measurement type is a sidelink discovery reference signal received power (SD-RSRP) or sidelink reference signal received power (SL-RSRP)
  • the second measurement type is an SD-RSRP or an SL-RSRP.
  • the first measurement type is a sidelink discovery reference signal received power (SD-RSRP) or sidelink reference signal received power (SL-RSRP)
  • the second measurement type is an SD-RSRP or an SL-RSRP.
  • a measurement result for a candidate relay terminal device 130 of at least one candidate relay terminal device 130 is a sidelink discovery reference signal received power (SD-RSRP)
  • the SD-RSRP is determined by measuring a PC5 discovery message
  • a measurement result for a candidate relay terminal device 130 of at least one candidate relay terminal device 130 is a sidelink reference signal received power (SL-RSRP)
  • the SL-RSRP is determined by measuring a PC5 data transmission.
  • the path switching measurement configuration is pre-defined or dynamically configured.
  • the path switching measurement configuration is a common configuration shared among a plurality of cells, or the path switching configuration is specific to one of the following: a cell, a cell group, a candidate relay terminal device 130, or a candidate relay terminal device 130 group.
  • the plurality of offsets comprise at least one of the following: a first offset to be used by the remote terminal device 110 in case that a second measurement type is the same with the first measurement type, or a second offset to be used by the remote terminal device 110 in case that a second measurement type is different from the first measurement type.
  • the path switching measurement configuration indicates the plurality of offsets by comprising at least one of the following: values of the plurality of offsets, or a reference offset and at least one delta offset relative to the reference offset, or at least one compensation value specific to a specific measurement type.
  • the path switching measurement configuration further comprises: respective type-pair indications for the plurality of offsets, each respective type-pair indication indicating a specific first type and a specific second type for a specific type-pair.
  • the respective type-pair indication is an index of type-pair.
  • the method further comprises: determining a first measurement type for a first measurement result of the first relay terminal device 120; determining at least one second measurement type for at least one second measurement result of the at least one candidate relay terminal device 130; and determining, based on the first measurement type and the at least one second measurement type, at least one offset according to the path switching configuration.
  • the method further comprises: determining at least one adjusted first measurement result by applying each of the at least one offset to the first measurement result respectively; and determining the one or more candidate relay terminal devices 130 based on the at least one adjusted first measurement result.
  • the method further comprises: determining at least one adjusted second measurement result by applying each of the at least one offset to the at least one second measurement result; and determining the one or more candidate relay terminal devices 130 based on the at least one adjusted second measurement result.
  • each of the plurality of offsets is used as a respective threshold for Event Z2 of path switching, or each of the plurality of offsets is used for determining an equivalent channel quality of the first measurement result or a second measurement result.
  • FIG. 4 is a simplified block diagram of a device 400 that is suitable for implementing embodiments of the present disclosure.
  • the device 400 can be considered as a further example implementation of the remote terminal device 110 as shown in FIG. 1A. Accordingly, the device 400 can be implemented at or as at least a part of the remote terminal device 110.
  • the device 400 includes a processor 410, a memory 420 coupled to the processor 410, a suitable transmitter (TX) /receiver (RX) 440 coupled to the processor 410, and a communication interface coupled to the TX/RX 440.
  • the memory 410 stores at least a part of a program 430.
  • the TX/RX 440 is for bidirectional communications.
  • the TX/RX 440 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2/Xn interface for bidirectional communications between eNBs/gNBs, S1/NG interface for communication between a Mobility Management Entity (MME) /Access and Mobility Management Function (AMF) /SGW/UPF and the eNB/gNB, Un interface for communication between the eNB/gNB and a relay node (RN) , or Uu interface for communication between the eNB/gNB and a terminal device.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • RN relay node
  • Uu interface for communication between the eNB/gNB and a terminal device.
  • the program 430 is assumed to include program instructions that, when executed by the associated processor 410, enable the device 400 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 1A to 3.
  • the embodiments herein may be implemented by computer software executable by the processor 410 of the device 400, or by hardware, or by a combination of software and hardware.
  • the processor 410 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 410 and memory 420 may form processing means 450 adapted to implement various embodiments of the present disclosure.
  • the memory 420 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 420 is shown in the device 400, there may be several physically distinct memory modules in the device 400.
  • the processor 410 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 400 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • a remote terminal device comprises a circuitry configured to:obtain, at a remote terminal device connecting with a network device via a first relay terminal device, a path switching measurement configuration indicating a plurality of offsets, an offset of the plurality of offsets being corresponding to a type-pair of a first measurement type and a second measurement type; perform measurements on the first relay terminal device and at least one candidate relay terminal device; and transmit, according to the path switching measurement configuration, a measurement report comprising at least one of the following: information indicating one or more of the at least one candidate relay terminal device, or one or more measurement results of the one or more candidate relay terminal devices.
  • the first measurement type is a sidelink discovery reference signal received power (SD-RSRP) or sidelink reference signal received power (SL-RSRP)
  • the second measurement type is an SD-RSRP or an SL-RSRP.
  • a measurement result for a candidate relay terminal device of at least one candidate relay terminal device is a sidelink discovery reference signal received power (SD-RSRP)
  • the SD-RSRP is determined by measuring a PC5 discovery message
  • a measurement result for a candidate relay terminal device of at least one candidate relay terminal device is a sidelink reference signal received power (SL-RSRP)
  • the SL-RSRP is determined by measuring a PC5 data transmission.
  • the path switching measurement configuration is pre-defined or dynamically configured.
  • the path switching measurement configuration is a common configuration shared among a plurality of cells, or the path switching configuration is specific to one of the following: a cell, a cell group, a candidate relay terminal device, or a candidate relay terminal device group.
  • the plurality of offsets comprise at least one of the following: a first offset to be used by the remote terminal device in case that a second measurement type is the same with the first measurement type, or a second offset to be used by the remote terminal device in case that a second measurement type is different from the first measurement type.
  • the path switching measurement configuration indicates the plurality of offsets by comprising at least one of the following: values of the plurality of offsets, or a reference offset and at least one delta offset relative to the reference offset, or at least one compensation value specific to a specific measurement type.
  • the path switching measurement configuration further comprises: respective type-pair indications for the plurality of offsets, each respective type-pair indication indicating a specific first type and a specific second type for a specific type-pair.
  • the respective type-pair indication is an index of type-pair.
  • the circuitry is further configured to: determine a first measurement type for a first measurement result of the first relay terminal device; determine at least one second measurement type for at least one second measurement result of the at least one candidate relay terminal device; and determine, based on the first measurement type and the at least one second measurement type, at least one offset according to the path switching configuration.
  • the circuitry is further configured to: determine at least one adjusted first measurement result by applying each of the at least one offset to the first measurement result respectively; and determine the one or more candidate relay terminal devices based on the at least one adjusted first measurement result.
  • the circuitry is further configured to: determine at least one adjusted second measurement result by applying each of the at least one offset to the at least one second measurement result; and determine the one or more candidate relay terminal devices based on the at least one adjusted second measurement result.
  • each of the plurality of offsets is used as a respective threshold for Event Z2 of path switching, or each of the plurality of offsets is used for determining an equivalent channel quality of the first measurement result or a second measurement result.
  • circuitry used herein may refer to hardware circuits and/or combinations of hardware circuits and software.
  • the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware.
  • the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions.
  • the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation.
  • the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
  • embodiments of the present disclosure provide the following aspects.
  • a method of communication comprising: obtaining, at a remote terminal device connecting with a network device via a first relay terminal device, a path switching measurement configuration indicating a plurality of offsets, an offset of the plurality of offsets being corresponding to a type-pair of a first measurement type and a second measurement type; performing measurements on the first relay terminal device and at least one candidate relay terminal device; and transmitting, according to the path switching measurement configuration, a measurement report comprising at least one of the following: information indicating one or more of the at least one candidate relay terminal device, or one or more measurement results of the one or more candidate relay terminal devices.
  • the first measurement type is a sidelink discovery reference signal received power (SD-RSRP) or sidelink reference signal received power (SL-RSRP)
  • the second measurement type is an SD-RSRP or an SL-RSRP.
  • the first measurement type is a sidelink discovery reference signal received power (SD-RSRP) or sidelink reference signal received power (SL-RSRP)
  • the second measurement type is an SD-RSRP or an SL-RSRP.
  • a measurement result for a candidate relay terminal device of at least one candidate relay terminal device is a sidelink discovery reference signal received power (SD-RSRP)
  • the SD-RSRP is determined by measuring a PC5 discovery message
  • a measurement result for a candidate relay terminal device of at least one candidate relay terminal device is a sidelink reference signal received power (SL-RSRP)
  • the SL-RSRP is determined by measuring a PC5 data transmission.
  • the path switching measurement configuration is pre-defined or dynamically configured.
  • the path switching measurement configuration is a common configuration shared among a plurality of cells, or the path switching configuration is specific to one of the following: a cell, a cell group, a candidate relay terminal device, or a candidate relay terminal device group.
  • the plurality of offsets comprise at least one of the following: a first offset to be used by the remote terminal device in case that a second measurement type is the same with the first measurement type, or a second offset to be used by the remote terminal device in case that a second measurement type is different from the first measurement type.
  • the path switching measurement configuration indicates the plurality of offsets by comprising at least one of the following: values of the plurality of offsets, or a reference offset and at least one delta offset relative to the reference offset, or at least one compensation value specific to a specific measurement type.
  • the path switching measurement configuration further comprises: respective type-pair indications for the plurality of offsets, each respective type-pair indication indicating a specific first type and a specific second type for a specific type-pair.
  • the respective type-pair indication is an index of type-pair.
  • the method further comprises: determining a first measurement type for a first measurement result of the first relay terminal device; determining at least one second measurement type for at least one second measurement result of the at least one candidate relay terminal device; and determining, based on the first measurement type and the at least one second measurement type, at least one offset according to the path switching configuration.
  • the method further comprises: determining at least one adjusted first measurement result by applying each of the at least one offset to the first measurement result respectively; and determining the one or more candidate relay terminal devices based on the at least one adjusted first measurement result.
  • the method further comprises: determining at least one adjusted second measurement result by applying each of the at least one offset to the at least one second measurement result; and determining the one or more candidate relay terminal devices based on the at least one adjusted second measurement result.
  • each of the plurality of offsets is used as a respective threshold for Event Z2 of path switching, or each of the plurality of offsets is used for determining an equivalent channel quality of the first measurement result or a second measurement result.
  • a remote terminal device comprises: at least one processor; and at least one memory coupled to the at least one processor and storing instructions thereon, the instructions, when executed by the at least one processor, causing the device to perform the method implemented by the remote terminal device discussed above.
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method implemented by the remote terminal device discussed above.
  • a computer program comprising instructions, the instructions, when executed on at least one processor, causing the at least one processor to perform the method implemented by the remote terminal device discussed above.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIGS. 1 to 3.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Example embodiments of the present disclosure relate to a method of communication, comprising: obtaining, at a remote terminal device connecting with a network device via a first relay terminal device, a path switching measurement configuration indicating a plurality of off-sets, an offset of the plurality of offsets being corresponding to a type-pair of a first measure-ment type and a second measurement type; performing measurements on the first relay terminal device and at least one candidate relay terminal device; and transmitting, according to the path switching measurement configuration, a measurement report comprising at least one of the fol-lowing: information indicating one or more of the at least one candidate relay terminal device, or one or more measurement results of the one or more candidate relay terminal devices.

Description

METHODS, DEVICES AND MEDIUM FOR COMMUNICATION
FIELDS
Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer storage media for path switching.
BACKGROUND
In wireless communication network device, a terminal device may communicate with the network device via a direct path or an indirect path. Specifically, in case of the direct path, the terminal device may communicate with the network device directly, while in case of the indirect path, the terminal device may communicate with the network device via at least one relay terminal device. Further, the location of the terminal device and the communication condition may change over time. In order to maintain a continuous communication with the network, the terminal device may be switched to a new path or connected to a new network device sometimes, i.e., performing a path switch.
Generally speaking, if the terminal device is currently served via a relay terminal device and is going to be switched to an indirect path, the terminal device may perform measurements on the currently serving relay terminal device and at least one candidate relay terminal device. However, the above measurements may be performed on different signals. That is, there may be more than one measurement type. In view of this, it is needed to handle the differences between different measurement types, such that the proper candidate relay terminal device may be selected.
SUMMARY
In general, embodiments of the present disclosure provide methods, devices and computer storage medium for path switching.
In a first aspect, there is provided a communication method. The method comprises: obtaining, at a remote terminal device connecting with a network device via a  first relay terminal device, a path switching measurement configuration indicating a plurality of offsets, an offset of the plurality of offsets being corresponding to a type-pair of a first measurement type and a second measurement type; performing measurements on the first relay terminal device and at least one candidate relay terminal device; and transmitting, according to the path switching measurement configuration, a measurement report comprising at least one of the following: information indicating one or more of the at least one candidate relay terminal device, or one or more measurement results of the one or more candidate relay terminal devices.
In a second aspect, there is provided a remote terminal device. The remote terminal device comprises at least one processor; and at least one memory coupled to the at least one processor and storing instructions thereon, the instructions, when executed by the at least one processor, causing the remote terminal device to perform the method according to the first aspect.
In a third aspect, there is provided a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to the first aspect.
Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some example embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
FIG. 1A illustrates an example communication environment in which example embodiments of the present disclosure can be implemented;
FIG. 1B illustrates an example communication environment in which example embodiments of the present disclosure can be implemented;
FIG. 2 illustrates a signaling flow of communication in accordance with some embodiments of the present disclosure;
FIG. 3 illustrates a flowchart of a method implemented at a remote terminal  device according to some example embodiments of the present disclosure; and
FIG. 4 illustrates a simplified block diagram of an apparatus that is suitable for implementing example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. Embodiments described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term ‘terminal device’ refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, devices on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly known as a drone which is an aircraft without any human pilot, devices on high speed train (HST) , or image capture devices such as digital cameras, sensors, gaming devices, music storage and playback appliances,  or Internet appliances enabling wireless or wired Internet access and browsing and the like. The ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporate one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
The term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
The terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
The terminal or the network device may work on several frequency ranges, e.g., FR1 (e.g., 450 MHz to 6000 MHz) , FR2 (e.g., 24.25GHz to 52.6GHz) , frequency band larger than 100 GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum. The terminal device may have more than one connection with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario. The terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
The embodiments of the present disclosure may be performed in test equipment, e.g., signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator. In some embodiments, the terminal device may be connected with a first network device and a second network device. One of the first network device and the second network device may be a master node and the other one may be a secondary node. The first network device and the second network device may use different radio access technologies (RATs) . In some embodiments, the first network device may be a first RAT  device and the second network device may be a second RAT device. In some embodiments, the first RAT device is eNB and the second RAT device is gNB. Information related with different RATs may be transmitted to the terminal device from at least one of the first network device or the second network device. In some embodiments, first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device. In some embodiments, information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device. Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
As used herein, the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’ The term ‘based on’ is to be read as ‘at least in part based on. ’ The term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’ The term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’ The terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
As used herein, the term “resource, ” “transmission resource, ” “uplink resource, ” or “downlink resource” may refer to any resource for performing a communication, such as a resource in time domain, a resource in frequency domain, a resource in space domain, a resource in code domain, or any other resource enabling a communication, and the like. In the following, unless explicitly stated, a resource in both frequency domain and time domain will be used as an example of a transmission resource for describing some example embodiments of the present disclosure. It is noted that example embodiments of the present disclosure are equally applicable to other resources in other domains.
In the wireless communication network, a terminal device may communicate with the network via a direct network connection or an indirect network connection.  Further, in case of path switching, the communication path of the terminal device may be switched from a source network device to a target network device. In some embodiments, the source network device and the target network device are located in a same physical device (referred to as intra-gNB) . Alternatively, in some other embodiments, the source network device and the target network device are located in different physical devices (referred to as inter-gNB) .
In view of the above, a path switching maybe associated with any of: indirect-to-direct (I2D) path switching for intra-gNB, indirect-to-indirect (I2I) path switching for intra-gNB, direct-to-direct (D2D) path switching for intra-gNB, direct-to-indirect (D2I) path switching for intra-gNB, I2D for inter-gNB, I2I for inter-gNB, D2D for inter-gNB and D2I for inter-gNB.
Generally speaking, if the terminal device is currently served via a relay terminal device and is going to switch to an indirect path, the terminal device may perform measurements on the currently serving relay terminal device and at least one candidate relay terminal device.
As for the D2I path switching for intra-gNB, the layer 2 (L2) user to network (U2N) remote terminal device reports one or multiple candidate L2 U2N relay terminal device and Uu measurements, after it measures/discovers the candidate L2 U2N relay terminal device. With the measurements results, the gNB may decide to switch the L2 U2N remote terminal device to a target L2 U2N relay terminal device. Then the gNB sends a radio resource control (RRC) reconfiguration message to the target L2 U2N relay terminal device, which includes at least L2 U2N remote terminal device 's local identity (ID) and L2 ID, Uu and PC5 relay radio link control (RLC) channel configuration for relaying, and bearer mapping configuration. The processed for I2I path switching for intra-gNB, D2I path switching for inter-gNB and I2I path switching for inter-gNB are similar.
In some embodiments, as for I2I path switching on triggering event, new measurement events based on individual thresholds may be introduced, for example,
Figure PCTCN2022129663-appb-000001
Event Z1: currently serving L2 U2N relay terminal device becomes worse than a first threshold and candidate L2 U2N relay terminal device becomes better than a second  threshold.
Figure PCTCN2022129663-appb-000002
Event Z2: candidate L2 U2N relay terminal device becomes an offset better than currently serving L2 U2N relay terminal device.
When the above pre-defined events are detected, the remote terminal device may trigger to report the measurement result (including the information of the candidate relay terminal device and/or the related measurement results) .
However, when performing measurements on the currently serving relay terminal device and at least one candidate relay terminal device, the measured signals for different devices may be different. That is, there may be more than one measurement type. In view of this, it is needed to handle the differences between different measurement types, such that the proper candidate relay terminal device may be selected.
Embodiments of the present disclosure provide a solution for path switch. In the present disclosure, the terminal device may obtain a path switching measurement configuration indicating a plurality of offsets, where an offset of the plurality of offsets is corresponding to a type-pair of a first measurement type and a second measurement type. Then, as for the scenario of I2I path switching, the remote terminal device may perform measurements on the first relay terminal device and at least one candidate relay terminal device, and transmits a measurement report according to the path switching measurement.
In this way, the difference between different measurement types may be well considered, and more proper candidate relay terminal device (s) may be selected and reported thereby.
For ease of discussion, some terms used in the following description are listed as below:
● A direct network connection: refers to one mode of network connection, where there is no relay terminal device/relay UE between a terminal device and the network device; also referred to as a direct path sometime.
● An indirect network connection: refers to one mode of network connection, where there is a relay terminal device/relay UE between a terminal device and the network device; also  referred to as a relaying path or indirect path sometimes.
In the present disclosure, the terms of “discovery reference message” and “discovery message” may be reused changeably sometimes.
In the present disclosure, “type-pair” refers to a correspondence/combination of the first measurement type and the second measurement type. That is, any “type-pair” may be interpreted to be a type pair of <the first measurement type, the second measurement type > or the type pair of <the second measurement type, the first measurement type>. In other words, the order of the first measurement type and the second measurement type may be changed in the other embodiments. The present disclosure is not limited in this regard.
It is to be understood that although Event Z2 is used as example of path switching event in some embodiments, it should not be considered as any limitations of the present disclosure. In other words, as for the other path switching events, they also may be impacted by the problem of different measured signals/types, and the key concept taught by this present disclosure also may be adaptable for the other path switching events. The present disclosure is not limited in this regard.
Further, in some of the below embodiments, although SL-RSRP and SD-RSRP are used as examples of measurement results performed on different signals, it should not be considered as any limitations of the present disclosure. In other words, the SL-RSRP and SD-RSRP may be replaced by any suitable channel quality parameters., such as, received signal strength indicator (RSSI) , signal to noise plus interference ratio (SNIR) and so on. The present disclosure is not limited in this regard.
Principles and implementations of the present disclosure will be described in detail below with reference to the figures.
EXAMPLE OF COMMUNICATION NETWORK
FIG. 1A shows an example communication environment 100 in which example embodiments of the present disclosure can be implemented. The communication environment 100 comprises a plurality of terminal devices and network devices. As shown in the FIG. 1A, the communication environment 100 comprises a network device 140-1, and an optional network device 140-2. For purpose of discussion, the network  devices 140-1 and 140-2 are collectively referred to as network device 140, or individually refers to as the first network device 140-1 and the second network device 140-2, respectively.
In the specific example embodiment of FIG. 1A, both inter-gNB network structure and intra-gNB network structure are supported in the communication environment 100.
The communication environment 100 further comprises  terminal devices  110, 120, and optional terminal devices 130-1 and 130-2. As illustrated in FIG. 1A, the terminal device 110 is connecting with the first network device 140-1 via the terminal device 120. Further, in order to ensure a continuous communication, the terminal device 110 may perform measurements on the terminal device 120 and the terminal devices 130-1 and 130-2. In view of this, the terminal device 110 is referred to as the remote terminal device 110, the terminal device 120 is referred to as the first relay terminal device 120, and the terminal devices 130-1 and 130-2 are referred to as the candidate relay terminal devices 130-1 and 130-2. For purpose of discussion, the candidate relay terminal devices 130-1 and 130-2 are collectively referred to as the candidate relay terminal devices 130.
Based on the measurement results, the remote terminal device 110 may trigger a measurement report and a path switching may be triggered by the first network device 140-1 thereby. Reference is now made to FIG. 1B, which illustrates another example communication environment 150. As illustrated in FIG. 1B, a path switching may be performed between the direct and indirect paths, i.e., I2D and D2I, and also may be performed between the indirect and indirect paths, i.e. I2I.
In some embodiments, the remote terminal device 110 may measure the physical sidelink shared channel (PSSCH) and/or the physical sidelink control channel (PSCCH) to obtain the measurement results.
In some embodiments, the PSSCH may carry a data transmission and/or the PSCCH may carry information scheduling the data transmission. In this event, the measurement result may be sidelink reference signal received power (SL-RSRP) . In other words, the SL-RSRP is a sidelink RSRP which corresponds to a PSCCH-RSRP and/or PSSCH-RSRP. Additionally, the SL-RSRP may be obtained based on demodulation reference signal (DMRS) of above mentioned channels (such as, PSCCH and PSSCH) .
Alternatively, in some embodiments, the PSSCH may carry a discovery message and/or the PSCCH may carry information scheduling the transmission of the discovery message. In this event, the measurement result may be sidelink discovery reference signal received power (SD-RSRP) . In other words, the SD-RSRP is a PSSCH-RSRP where the PSSCH carries a discovery message, and/or , the SD-RSRP is a PSCCH-RSRP where the PSCCH schedules the transmission of a discovery message. Additionally, the SD-RSRP is obtained based on Demodulation Reference Signal (DMRS) of above mentioned channels (such as, PSCCH and PSSCH) .
In the specific example of FIG. 1A, the remote terminal device 110 is connecting with the first network device 140-1 via the terminal device 120, which means that the remote terminal device 110 may receive both of a data transmission and discovery message from the first relay terminal device 120. As a result, the measurement result of the first relay terminal device 120 may be SL-RSRP and SD-RSRP. In the following, the measurement result of the first relay terminal device 120 is referred to as the first measurement result, and the measurement type of first measurement result is referred to as the first measurement type.
Further, in the specific example of FIG. 1A, the terminal device 110 also performs measurements on the candidate relay terminal devices 130-1 and 130-2. However, when performing measurements on the candidate relay terminal devices 130-1 and 130-2, the remote terminal device 110 may only obtain a measurement result on discovery message, and thus the measurement results of the candidate relay terminal devices 130 may be SD-RSRP only. In the following, the measurement result of the candidate relay terminal device 130 is referred to as the second measurement result, and the measurement type of second measurement result is referred to as the second measurement type.
In view of the above, the possible type-pairs of a first measurement type and a second measurement type may be as below table 1.
Table 1 possible type-pairs
Figure PCTCN2022129663-appb-000003
Figure PCTCN2022129663-appb-000004
In view of the above table 1, it is expected to handle the scenario where the first measurement result is SL-RSRP and the second measurement result is SD-RSRP.
In some embodiment, as for I2I path switching, the SL-RSRP and SD-RSRP may be reused changeably. However, this embodiment does not consider the difference among the different types.
In some embodiment, as for I2I path switching, when selecting the measurement result of the first relay terminal device 120, if SL-RSRP is unavailable, SD-RSRP is used as the measurement quantity, which means that if both SL-RSRP and SD-RSRP are obtained by the first relay terminal device 120, the SL-RSRP may be selected as the measurement result.
Further, although the candidate relay terminal device 130 do not functions as relay terminal device for the remote terminal device 110, there still may be a non-relay PC5 data transmission (also may be referred to as a relay UE local traffic/data/transmission at the candidate relay terminal device 130) between the remote terminal device 110 and the candidate relay terminal device 130. Thus, in case that it is allowed that same L2 ID of the candidate relay terminal device 130 may be shared by both relay traffic (such as, during a U2N relay communication) and non-relay traffic (such as, during a PC5 communication) , the remote terminal device 110 also may obtain a measurement result of SL-RSRP for the candidate relay terminal device 130. In this event, the possible type-pairs of a first measurement type and a second measurement type may be as below table 2.
Table 2 possible type-pairs
Figure PCTCN2022129663-appb-000005
In some embodiment, as for I2I path switching, when selecting the measurement result of the first relay terminal device 120/candidate relay terminal device 130, if SL-RSRP is unavailable, SD-RSRP is used as the measurement quantity, which means that if both SL-RSRP and SD-RSRP are obtained, the SL-RSRP may be selected as the measurement result.
As discussed above, Event Z2 (i.e., candidate L2 U2N relay terminal device becomes an offset better than currently serving L2 U2N relay terminal device) may be defined to trigger the measurement report. In view of the above table 1 and table 2, there may be different type-pairs, and thus it seems that only one offset may be not sufficient to adaptable for the complicated I2I scenarios. Further, there may be more than one candidate relay terminal device 130, and the measurement results of candidate relay terminal devices 130 may be different, for example, the measurement result of the candidate relay terminal device 130-1 may be SL-RSRP and the measurement result of the candidate relay terminal device 130-2 may be SD-RSRP. In this event, how to handle the different measurement results of the candidate relay terminal devices 130-1 and 130-2 is still needed to be further discussed. According to some embodiments of the present disclosures, at least part of these problems may be well addressed.
It is to be understood that the number of devices and their connections in FIG. 1A to FIG. 1B are given for the purpose of illustration without suggesting any limitations  to the present disclosure. The communication network may include any suitable number of network devices and/or terminal devices adapted for implementing implementations of the present disclosure.
The communications in the  communication environments  100 and 150 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , New Radio (NR) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like. The embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
EXAMPLE PROCESSED FOR PATH SWITCH
It should be understood that although feature (s) /operation (s) are discussed in specific example embodiments separately, unless clearly indicated to the contrary, these feature (s) /operation (s) described in different example embodiments may be used in any suitable combination.
In addition, in the following description, some interactions are performed among the remote terminal device 110 and the first network device 140-1 (such as, exchanging configuration (s) and so on) . It is to be understood that the interactions may be implemented either in one single signaling/message or multiple signaling/messages, including system information, radio resource control (RRC) message, downlink control information (DCI) message, uplink control information (UCI) message, media access control (MAC) control element (CE) , sidelink relay adaptation protocol (SRAP) and so on. The present disclosure is not limited in this regard.
Principle and implementations of the present disclosure will be described in detail below with reference to FIG. 2, which shows a signaling chart illustrating a process 200 of communication according to some example embodiments of the present disclosure. For the purpose of discussion, the process 200 will be described with reference to FIGS.  1A and 1B.
The process 200 may involve the first network device 140-1, the remote terminal device 110, the first relay terminal device 120 and the candidate relay terminal device (s) 130.
In the specific embodiment of FIG. 2, the remote terminal device 110 is originally connected with the first network device 140-1 via the first relay terminal 120. Further, the remote terminal device 110 may obtain the first measurement result of the first relay terminal device 120, and the second measurement results of the candidate relay terminal devices 130-1 and 130-2.
In operation, the remote terminal device 110 obtains 210 a path switching measurement configuration, where the path switching measurement configuration indicates a plurality of offsets. In some embodiments, an offset of the plurality of offsets is corresponding to a type-pair of a first measurement type and a second measurement type.
In some embodiments, the path switching measurement configuration is pre-defined. As one example, the path switching measurement configuration is pre-defined by the communication organization (such as 3GPP) , or pre-defined by the network operator or service provider. In this way, the path switching measurement configuration may be applied as a default configuration and no additional signaling is needed.
Alternatively, the path switching measurement configuration is dynamically configured. As illustrated in FIG. 2, the remote terminal device 110 may receive 215 the path switching measurement configuration from the first network device 140-1. The signalling used for configuring the path switching measurement configuration may be RRC signalling, MAC CE, DCI, SI and so on.
In some embodiments, the path switching measurement configuration is a common configuration shared among a plurality of cells. Alternatively, in some embodiments, the path switching configuration is specific to a cell or a cell group. Alternatively, in some embodiments, the path switching configuration is specific to a candidate relay terminal device 130, or a candidate relay terminal device group. That is, different path switching measurement configurations may be configured for different cells/cell groups/candidate relay terminal devices/candidate relay terminal device groups.  In this way, the path switching policy may be more flexible.
In some embodiments, if the path switching measurement configuration is not a common configuration, the remote terminal device 110 may derive information from discovery message or dedicate signalling transmitted by the first/candidate relay terminal device, and then determines corresponding path switching measurement configuration based one the derived information.
According to some embodiments of the present disclosure, the plurality of offsets may be configured to be adaptable for any of the multiple possible scenarios related with different types of measurement result of the I2I path switching measurement. In some embodiments, the remote terminal device 110 is configured with plurality of offsets for event Z2.
In some embodiments, the plurality of offsets comprise a first offset to be used by the remote terminal device 110 in case that the second measurement type is the same with the first measurement type. For example, Offset #1 is configured of the type-pair of <first type, first type> / <second type, second type> (such as, <SD-RSRP, SD-RSRP> / <SL-RSRP, SL-RSRP> ) .
Alternatively, in some embodiment, the plurality of offsets comprises a second offset to be used by the remote terminal device in case that the second measurement type is different from the first measurement type. For example, offset #2 is configured of the type-pair of <first type, second type> / <second type, first type> (such as, <SD-RSRP, SL-RSRP> / <SL-RSRP, SD-RSRP> ) .
Additionally, in case of a same offset is configured for two type-pairs where the second measurement type is different from the first measurement type (such as, <first type, second type> and <second type, first type> ) , an offset value of one of the two type-pairs may be determined as an opposite value relative to an offset value of the other one of the two type-pairs.
According to some embodiments of the present disclosure, the plurality of offsets may be indicated by the path switching measurement configuration in any suitable manners.
In some embodiments, the path switching measurement configuration indicates the plurality of offsets by comprising values of the plurality of offsets.
Alternatively, or in addition, in some embodiments, the path switching measurement configuration indicates the plurality of offsets by comprising a reference offset and at least one delta offset relative to the reference offset.
Alternatively, in some embodiments, the path switching measurement configuration indicates the plurality of offsets by indicating/comprising at least one compensation value specific to a specific measurement type. As one example, a first compensation value is configured for SD-RSRP. As anther example, a second compensation value is configured for SL-RSRP.
Additionally, in some embodiments, the path switching measurement configuration further indicates/comprises: respective type-pair indications for the plurality of offsets, each respective type-pair indication indicating a specific first type and a specific second type for a specific type-pair. In some embodiments, the respective type-pair indication is an index of type-pair.
In one specific embodiment, the path switching measurement configuration indicates the type-pair and its corresponding offset explicitly or implicitly. For example, the first offset is configured for the type-pair of <SD-RSRP, SL-RSRP> , the second offset is configured for the type-pair of <SL-RSRP, SL-RSRP> , and so on. Alternatively, the plurality of offsets may be represented as a format of list or table. Thus, the plurality of offsets may be indicated or configured by the item/item index of the lists or tables.
Below are some examples of the plurality of offsets. It is to be understood that the below examples are illustrated only for the purpose of illustration without suggesting any limitations. In other example embodiments, the plurality of offsets may be represented and defined in other manners. The present disclosure is not limited in this regard.
Table 3 example of the plurality of offsets
Figure PCTCN2022129663-appb-000006
Figure PCTCN2022129663-appb-000007
In the above table 3, four different offsets are configured for four different type-pairs. Table 3 may be used in the scenarios where the SL-RSRP is available for the candidate relay terminal device 130.
Additionally, the configuration indicated in the above table 3 may be optimized as illustrated in below table 3-1 to 3-3.
Table 3-1 example of the plurality of offsets
Figure PCTCN2022129663-appb-000008
In the above table 3-1, the type-pairs of <SL-RSRP, SL-RSRP> and <SD-RSRP, SD-RSRP> may share a same offset. In this way, the number of offsets is reduced.
Table 3-2 example of the plurality of offsets
Figure PCTCN2022129663-appb-000009
Figure PCTCN2022129663-appb-000010
In the above table 3-2, the type-pair of <SD-RSRP, SD-RSRP> is omitted. In this event, the remote terminal device 110 may reuse the Offset #2 for the type-pair of <SD-RSRP, SD-RSRP> by default. In other words, a same offset (i.e. Offset#2) is applicable to type-pairs of which the second measurement type is the same with the first measurement type.
Table 3-3 example of the plurality of offsets
Figure PCTCN2022129663-appb-000011
In the above table 3-3, the type-pair of <SL-RSRP, SL-RSRP> is omitted. In this event, the remote terminal device 110 may reuse the Offset #2 for the type-pair of <SL-RSRP, SL-RSRP> by default.
Table 4 example of the plurality of offsets
Figure PCTCN2022129663-appb-000012
In the above table 4, two different offsets are configured for two different type-pairs. Table 4 may be used in the scenarios where the SL-RSRP is not available/allowed/configured for the candidate relay terminal device 130.
Further, the plurality of offsets may be represented as a reference offset and at least one delta offset relative to the reference offset as below table 5, where the SL-RSRP is available for the candidate relay terminal device 130.
Table 5 example of the plurality of offsets
Figure PCTCN2022129663-appb-000013
It is to be understood that the above table 5 may be changed into other manners. As one specific example, one offset is configured to any of the above one type-pair and this offset may be treated as the reference offset, and thus three delta offsets may be configured for the other type-pairs. Alternatively, one reference offset may be configured and four delta offsets may be configured for each type-pair. In other words, one reference offset is not configured to any type-pairs.
Alternatively, one offset is configured to one type-pair and this offset may be treated as the reference offset, and four delta offsets may be configured for each type-pair.
The remote terminal device 110 may determines the offset based on reference offset and optional delta offset, for example, the respective offset equals to the reference  offset +/-respective delta offset.
Additionally, the configuration indicated in the above table 5 may be optimized as illustrated in below tables 5-1 to 5-3, where more than one type-pair (such as, type-pairs with the same measurement type) may share the same delta offset.
Table 5-1 example of the plurality of offsets
Figure PCTCN2022129663-appb-000014
In the above table 5-1, the type-pairs of <SL-RSRP, SL-RSRP> and <SD-RSRP, SD-RSRP> may share a same delta offset. In this way, the number of delta offset is reduced. As one specific example, one offset is configured to any of the above one type-pair and this offset may be treated as the reference offset, and two different delta offsets are needed. Alternatively, one reference offset may be configured and three delta offsets may be configured for each type-pair. Alternatively, one offset is configured to one type-pair and this offset may be treated as the reference offset, and three delta offsets may be configured for each type-pair.
Table 5-2 example of the plurality of offsets
Figure PCTCN2022129663-appb-000015
In the above table 5-2, the type-pair of <SD-RSRP, SD-RSRP> is omitted. In this event, the remote terminal device 110 may reuse the Delta Offset #2 for the type-pair of <SD-RSRP, SD-RSRP> by default. In other words, a same delta offset (i.e. Delta Offset#2) is applicable to type-pairs of which the second measurement type is the same with the first measurement type.
Table 5-3 example of the plurality of offsets
Figure PCTCN2022129663-appb-000016
In the above table 5-3, the type-pair of <SL-RSRP, SL-RSRP> is omitted. In  this event, the remote terminal device 110 may reuse the Delta Offset #2 for the type-pair of <SL-RSRP, SL-RSRP> by default.
Another optimized manner of table 5 is illustrated in below table 5-4, where more than one type-pair (such as, type-pairs with the different measurement type) may share the same delta offset.
Table 5-4 example of the plurality of offsets
Figure PCTCN2022129663-appb-000017
It is to be understood that the above table 5-4 may be changed into other manners. As one specific example, one offset is configured to any of the above one type-pair and this offset may be treated as the reference offset, and further three delta offsets for each of the other type-pairs (or two delta offsets for type-pairs #2 and #3, and type pair #4 reuse the reference offset, where the type pair #4 may be indicated explicitly or implicitly) . Alternatively, one reference offset may be configured, and further three delta offsets for each of the other type-pair.
In some embodiments, a further rule of using the Delta Offset#1 may be defined. In one specific embodiment, it may define that the offset of type of <SD-RSRP, SL-RSRP>may be Reference Offset + Delta Offset#1, and the offset of type of < SL-RSRP, SD-RSRP > may be reference Offset -Delta Offset#1. Alternatively, it may define that the  offset of type of <SD-RSRP, SL-RSRP> may be Reference Offset -Delta Offset#1, and the offset of type of < SL-RSRP, SD-RSRP > may be reference Offset + Delta Offset#1.
A further optimized manner of table 5 is illustrated in below table 5-5, where more than one type-pair (such as, type-pairs with the different/same measurement type) may share the same delta offset.
Table 5-5 example of the plurality of offsets
Figure PCTCN2022129663-appb-000018
It is to be understood that the above table 5-5 may be changed into other manners. As one specific example, one offset is configured to any of the above one type-pair and this offset may be treated as the reference offset, and further two delta offsets for each of the other type-pair. Alternatively, one reference offset may be configured, and further two delta offsets for each of the other type-pair.
Further, as discussed above, the SL-RSRP may be not available for the candidate relay terminal device 130. Below table 6 are further examples of the plurality of offsets.
Table 6 example of the plurality of offsets
Figure PCTCN2022129663-appb-000019
It is to be understood that the above table 6 may be changed into other manners. As one specific example, one offset is configured to any of the above one type-pair and this offset may be treated as the reference offset. Alternatively, one reference offset may be configured and one delta offset may be configured for the other type-pair. Alternatively, one offset is configured to one type-pair, and two delta offsets may be configured for each type-pair.
In some embodiments, the remote terminal device 110 performs 220-1 measurement on the first relay terminal device 120 and also performs 220-2 measurement (s) on the candidate relay terminal device (s) 130.
In some embodiments, the remote terminal device 110 transmits 250 a measurement report according to the path switching measurement configuration. Further, information used for path switching may be comprised in the measurement report. One example information may be information indicating one or more of the at least one candidate relay terminal device 130 (which meet the Event Z2) . Another example information may be one or more measurement results of the one or more candidate relay terminal devices.
In some embodiments, the first measurement type may be an SD-RSRP or SL-RSRP, and the second measurement type also may be an SD-RSRP or an SL-RSRP accordingly.
In some embodiments, if a measurement result for the first relay terminal device 120/the candidate relay terminal device 130 is an SD-RSRP, the SD-RSRP is determined  by measuring a (PC5) discovery message (such as, the discovery message carried in the PSSCH transmission) .
Alternatively, in some embodiments, if a measurement result for the first relay terminal device 120/the candidate relay terminal device 130 is an SL-RSRP, the SL-RSRP is determined by measuring a PC5 data transmission (such as, the data transmission carried in the PSSCH transmission, where the data transmission may be either a relay transmission or non-relay transmission) .
As discussed above, the plurality of offsets may be defined for event Z2. In the following, details about how to apply the plurality of offsets will be discussed.
In some embodiments, the plurality of offsets discussed herein may be used as the threshold (s) of Event Z2. That is, the plurality of offsets discussed herein may be used as the comparation criterion between the first measurement result and the second measurement result directly. In other words, if the difference between the second measurement result and the first measurement result is higher than the offset, the corresponding candidate relay terminal device 130 may be reported.
Alternatively, the plurality of offsets discussed herein may be used for adjusting the measurement results and/or calculating equivalent channel quality parameters. In this event, the Event Z2 may be defined by an individual threshold, and the plurality of offsets discussed herein may be used for adjusting the measurement results. The remote terminal device 110 may adjust the measurement results first to obtain equivalent channel quality parameter first, and then compare the measurement results (for example, comparing the adjusted first measurement result and the second measurement result, comparing the first measurement result and the adjusted second measurement result, comparing the adjusted first measurement results, or comparing the adjusted second measurement results) . In case that the comparation result meets the requirement of the threshold of Event Z2, a related measurement report is triggered.
As one general rule, one equivalent channel quality may be calculated when comparing the first measurement results and the second measurement results or comparing among the second measurement results.
In some embodiments, the remote terminal device 110 determines a first measurement type for a first measurement result of the first relay terminal device 120 and  determines at least one second measurement type for at least one second measurement result of the at least one candidate relay terminal device 130.
Next, the remote terminal device 110 determines 230 based on the first measurement type and the at least one second measurement type, at least one offset according to the path switching measurement configuration.
In some embodiment, when perform the evaluation of event Z2, the respective offset is determined. As one specific embodiment, if the first offset is configured for type-pair of <SL-RSRP, SD-RSRP> , when one of the first measurement result and the second measurement result is SL-RSRP, and the other one of the first measurement result and the second measurement result is SD-RSRP, the first offset is determined.
Further, the type-pair may be associated with a more specific scenario. For example, type-pair of <SL-RSRP, SD-RSRP> refers to the first measurement result is SL-RSRP and the second measurement result is SD-RSRP. In this event, if the first offset is configured for type-pair of <SL-RSRP, SD-RSRP> , when the first measurement result (i.e., measurement result of the first relay terminal device 120) is SL-RSRP, and the second measurement result (i.e., measurement result of the candidate relay terminal device 130) is SD-RSRP, the first offset is determined. Then, the remote terminal device 110 may adjust the first measurement result/or the second measurement result (s) and determine 240 the one or more candidate relay terminal devices to be reported accordingly.
In some embodiments, the remote terminal device 110 determines at least one adjusted first measurement result by applying each of the at least one offset to the first measurement result respectively, and determines the one or more candidate relay terminal devices based on the at least one adjusted first measurement result.
Alternatively, in some embodiments, the remote terminal device 110 determines at least one adjusted second measurement result by applying each of the at least one offset to the at least one second measurement result, and determines the one or more candidate relay terminal devices based on the at least one adjusted second measurement result.
For better understanding, some specific example embodiments are discussed as below. In these specific example embodiments, the first measurement result (i.e., the first relay terminal device 120) is SL-RSRP (be represented as SL-RSRP_relay 120) , the second measurement result for the candidate relay terminal device 130-1 is SL-RSRP (be  represented as SL-RSRP_relay 130-1) , and the second measurement result for the candidate relay terminal device 130-2 is SD-RSRP (be represented as SD-RSRP_relay 130-2) .
In case of the above table 3, the equivalent channel qualities are calculated as below:
Figure PCTCN2022129663-appb-000020
As for the second measurement result for the candidate relay terminal device 130-1, SL-RSRP_relay 130-1 -Offset #2; and
Figure PCTCN2022129663-appb-000021
As for the second measurement result for the candidate relay terminal device 130-2, SD-RSRP_relay 130-2 -Offset #1.
Alternatively, the equivalent channel qualities of the first measurement result are calculated as below:
Figure PCTCN2022129663-appb-000022
When comparing with the relay terminal device 130-1, SL-RSRP_relay 120 +Offset #2; and
Figure PCTCN2022129663-appb-000023
When comparing with the relay terminal device 130-2, SD-RSRP_relay 120 +Offset #1.
In case of the above table 5, the equivalent channel qualities are calculated as below:
Figure PCTCN2022129663-appb-000024
As for the second measurement result for the candidate relay terminal device 130-1, SL-RSRP_relay 130-1 - (Reference Offset #1 + Delta Offset#2) ; and
Figure PCTCN2022129663-appb-000025
As for the second measurement result for the candidate relay terminal device 130-2, SD-RSRP_relay 130-2 - (Reference Offset #1 + Delta Offset#1) .
Alternatively, the equivalent channel qualities of the first measurement result  are calculated as below:
Figure PCTCN2022129663-appb-000026
When comparing with the relay terminal device 130-1, SL-RSRP_relay 120 + Reference Offset #1 + Delta Offset#2; and
Figure PCTCN2022129663-appb-000027
When comparing with the relay terminal device 130-2, SD-RSRP_relay 120 + Reference Offset #1 + Delta Offset#1.
With the above equivalent channel qualities, the remote terminal device 110 may decide one or more candidate relay terminal device (s) 130 that meets the Event Z2, and generate a measurement report accordingly. With the above measurement report, the first network device 140-1 may make a decision for the path switching. In this way, the differences caused by the different measured signals may be considered, and thus the reported candidate relay terminal device (s) 130 would be more proper.
EXAMPLE OF METHODS
FIG. 3 illustrates a flowchart of a communication method 300 implemented at a remote terminal device in accordance with some embodiments of the present disclosure. For the purpose of discussion, the method 300 will be described from the perspective of the remote terminal device 110 in FIG. 1A.
At block 310, the remote terminal device 110 obtains, a path switching measurement configuration indicating a plurality of offsets, an offset of the plurality of offsets being corresponding to a type-pair of a first measurement type and a second measurement type. The remote terminal device 110 is connecting with a network device via a first relay terminal device 120.
At block 320, the remote terminal device 110 performs measurements on the first relay terminal device 120 and at least one candidate relay terminal device 130.
At block 330, the remote terminal device 110 transmits, according to the path switching measurement configuration, a measurement report comprising at least one of the following: information indicating one or more of the at least one candidate relay terminal device 130, or one or more measurement results of the one or more candidate  relay terminal devices 130.
In some example embodiments, the first measurement type is a sidelink discovery reference signal received power (SD-RSRP) or sidelink reference signal received power (SL-RSRP) , and the second measurement type is an SD-RSRP or an SL-RSRP.
In some example embodiments, the first measurement type is a sidelink discovery reference signal received power (SD-RSRP) or sidelink reference signal received power (SL-RSRP) , and the second measurement type is an SD-RSRP or an SL-RSRP.
In some example embodiments, if a measurement result for a candidate relay terminal device 130 of at least one candidate relay terminal device 130 is a sidelink discovery reference signal received power (SD-RSRP) , the SD-RSRP is determined by measuring a PC5 discovery message, and wherein if a measurement result for a candidate relay terminal device 130 of at least one candidate relay terminal device 130 is a sidelink reference signal received power (SL-RSRP) , the SL-RSRP is determined by measuring a PC5 data transmission.
In some example embodiments, the path switching measurement configuration is pre-defined or dynamically configured.
In some example embodiments, the path switching measurement configuration is a common configuration shared among a plurality of cells, or the path switching configuration is specific to one of the following: a cell, a cell group, a candidate relay terminal device 130, or a candidate relay terminal device 130 group.
In some example embodiments, the plurality of offsets comprise at least one of the following: a first offset to be used by the remote terminal device 110 in case that a second measurement type is the same with the first measurement type, or a second offset to be used by the remote terminal device 110 in case that a second measurement type is different from the first measurement type.
In some example embodiments, the path switching measurement configuration indicates the plurality of offsets by comprising at least one of the following: values of the plurality of offsets, or a reference offset and at least one delta offset relative to the reference offset, or at least one compensation value specific to a specific measurement  type.
In some example embodiments, the path switching measurement configuration further comprises: respective type-pair indications for the plurality of offsets, each respective type-pair indication indicating a specific first type and a specific second type for a specific type-pair.
In some example embodiments, the respective type-pair indication is an index of type-pair.
In some example embodiments, the method further comprises: determining a first measurement type for a first measurement result of the first relay terminal device 120; determining at least one second measurement type for at least one second measurement result of the at least one candidate relay terminal device 130; and determining, based on the first measurement type and the at least one second measurement type, at least one offset according to the path switching configuration.
In some example embodiments, the method further comprises: determining at least one adjusted first measurement result by applying each of the at least one offset to the first measurement result respectively; and determining the one or more candidate relay terminal devices 130 based on the at least one adjusted first measurement result.
In some example embodiments, the method further comprises: determining at least one adjusted second measurement result by applying each of the at least one offset to the at least one second measurement result; and determining the one or more candidate relay terminal devices 130 based on the at least one adjusted second measurement result.
In some example embodiments, each of the plurality of offsets is used as a respective threshold for Event Z2 of path switching, or each of the plurality of offsets is used for determining an equivalent channel quality of the first measurement result or a second measurement result.
EXAMPLE OF APPARATUSES AND DEVICES
FIG. 4 is a simplified block diagram of a device 400 that is suitable for implementing embodiments of the present disclosure. The device 400 can be considered as a further example implementation of the remote terminal device 110 as shown in FIG.  1A. Accordingly, the device 400 can be implemented at or as at least a part of the remote terminal device 110.
As shown, the device 400 includes a processor 410, a memory 420 coupled to the processor 410, a suitable transmitter (TX) /receiver (RX) 440 coupled to the processor 410, and a communication interface coupled to the TX/RX 440. The memory 410 stores at least a part of a program 430. The TX/RX 440 is for bidirectional communications. The TX/RX 440 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2/Xn interface for bidirectional communications between eNBs/gNBs, S1/NG interface for communication between a Mobility Management Entity (MME) /Access and Mobility Management Function (AMF) /SGW/UPF and the eNB/gNB, Un interface for communication between the eNB/gNB and a relay node (RN) , or Uu interface for communication between the eNB/gNB and a terminal device.
The program 430 is assumed to include program instructions that, when executed by the associated processor 410, enable the device 400 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 1A to 3. The embodiments herein may be implemented by computer software executable by the processor 410 of the device 400, or by hardware, or by a combination of software and hardware. The processor 410 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 410 and memory 420 may form processing means 450 adapted to implement various embodiments of the present disclosure.
The memory 420 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 420 is shown in the device 400, there may be several physically distinct memory modules in the device 400. The processor 410 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 400 may have multiple  processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
In some embodiments, a remote terminal device comprises a circuitry configured to:obtain, at a remote terminal device connecting with a network device via a first relay terminal device, a path switching measurement configuration indicating a plurality of offsets, an offset of the plurality of offsets being corresponding to a type-pair of a first measurement type and a second measurement type; perform measurements on the first relay terminal device and at least one candidate relay terminal device; and transmit, according to the path switching measurement configuration, a measurement report comprising at least one of the following: information indicating one or more of the at least one candidate relay terminal device, or one or more measurement results of the one or more candidate relay terminal devices.
In some embodiments, the first measurement type is a sidelink discovery reference signal received power (SD-RSRP) or sidelink reference signal received power (SL-RSRP) , and the second measurement type is an SD-RSRP or an SL-RSRP.
In some embodiments, if a measurement result for a candidate relay terminal device of at least one candidate relay terminal device is a sidelink discovery reference signal received power (SD-RSRP) , the SD-RSRP is determined by measuring a PC5 discovery message, and if a measurement result for a candidate relay terminal device of at least one candidate relay terminal device is a sidelink reference signal received power (SL-RSRP) , the SL-RSRP is determined by measuring a PC5 data transmission.
In some embodiments, the path switching measurement configuration is pre-defined or dynamically configured.
In some embodiments, the path switching measurement configuration is a common configuration shared among a plurality of cells, or the path switching configuration is specific to one of the following: a cell, a cell group, a candidate relay terminal device, or a candidate relay terminal device group.
In some embodiments, the plurality of offsets comprise at least one of the following: a first offset to be used by the remote terminal device in case that a second measurement type is the same with the first measurement type, or a second offset to be used by the remote terminal device in case that a second measurement type is different  from the first measurement type.
In some embodiments, the path switching measurement configuration indicates the plurality of offsets by comprising at least one of the following: values of the plurality of offsets, or a reference offset and at least one delta offset relative to the reference offset, or at least one compensation value specific to a specific measurement type.
In some embodiments, the path switching measurement configuration further comprises: respective type-pair indications for the plurality of offsets, each respective type-pair indication indicating a specific first type and a specific second type for a specific type-pair.
In some embodiments, the respective type-pair indication is an index of type-pair.
In some embodiments, the circuitry is further configured to: determine a first measurement type for a first measurement result of the first relay terminal device; determine at least one second measurement type for at least one second measurement result of the at least one candidate relay terminal device; and determine, based on the first measurement type and the at least one second measurement type, at least one offset according to the path switching configuration.
In some embodiments, the circuitry is further configured to: determine at least one adjusted first measurement result by applying each of the at least one offset to the first measurement result respectively; and determine the one or more candidate relay terminal devices based on the at least one adjusted first measurement result.
In some embodiments, the circuitry is further configured to: determine at least one adjusted second measurement result by applying each of the at least one offset to the at least one second measurement result; and determine the one or more candidate relay terminal devices based on the at least one adjusted second measurement result.
In some example embodiments, each of the plurality of offsets is used as a respective threshold for Event Z2 of path switching, or each of the plurality of offsets is used for determining an equivalent channel quality of the first measurement result or a second measurement result.
The term “circuitry” used herein may refer to hardware circuits and/or combinations of hardware circuits and software. For example, the circuitry may be a  combination of analog and/or digital hardware circuits with software/firmware. As a further example, the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions. In a still further example, the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation. As used herein, the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
In summary, embodiments of the present disclosure provide the following aspects.
In an aspect, a method of communication, comprising: obtaining, at a remote terminal device connecting with a network device via a first relay terminal device, a path switching measurement configuration indicating a plurality of offsets, an offset of the plurality of offsets being corresponding to a type-pair of a first measurement type and a second measurement type; performing measurements on the first relay terminal device and at least one candidate relay terminal device; and transmitting, according to the path switching measurement configuration, a measurement report comprising at least one of the following: information indicating one or more of the at least one candidate relay terminal device, or one or more measurement results of the one or more candidate relay terminal devices.
In some embodiments, the first measurement type is a sidelink discovery reference signal received power (SD-RSRP) or sidelink reference signal received power (SL-RSRP) , and the second measurement type is an SD-RSRP or an SL-RSRP.
In some embodiments, the first measurement type is a sidelink discovery reference signal received power (SD-RSRP) or sidelink reference signal received power (SL-RSRP) , and the second measurement type is an SD-RSRP or an SL-RSRP.
In some embodiments, if a measurement result for a candidate relay terminal device of at least one candidate relay terminal device is a sidelink discovery reference signal received power (SD-RSRP) , the SD-RSRP is determined by measuring a PC5 discovery message, and wherein if a measurement result for a candidate relay terminal  device of at least one candidate relay terminal device is a sidelink reference signal received power (SL-RSRP) , the SL-RSRP is determined by measuring a PC5 data transmission.
In some embodiments, the path switching measurement configuration is pre-defined or dynamically configured.
In some embodiments, the path switching measurement configuration is a common configuration shared among a plurality of cells, or the path switching configuration is specific to one of the following: a cell, a cell group, a candidate relay terminal device, or a candidate relay terminal device group.
In some embodiments, the plurality of offsets comprise at least one of the following: a first offset to be used by the remote terminal device in case that a second measurement type is the same with the first measurement type, or a second offset to be used by the remote terminal device in case that a second measurement type is different from the first measurement type.
In some embodiments, the path switching measurement configuration indicates the plurality of offsets by comprising at least one of the following: values of the plurality of offsets, or a reference offset and at least one delta offset relative to the reference offset, or at least one compensation value specific to a specific measurement type.
In some embodiments, the path switching measurement configuration further comprises: respective type-pair indications for the plurality of offsets, each respective type-pair indication indicating a specific first type and a specific second type for a specific type-pair.
In some embodiments, the respective type-pair indication is an index of type-pair.
In some embodiments, the method further comprises: determining a first measurement type for a first measurement result of the first relay terminal device; determining at least one second measurement type for at least one second measurement result of the at least one candidate relay terminal device; and determining, based on the first measurement type and the at least one second measurement type, at least one offset according to the path switching configuration.
In some embodiments, the method further comprises: determining at least one  adjusted first measurement result by applying each of the at least one offset to the first measurement result respectively; and determining the one or more candidate relay terminal devices based on the at least one adjusted first measurement result.
In some embodiments, the method further comprises: determining at least one adjusted second measurement result by applying each of the at least one offset to the at least one second measurement result; and determining the one or more candidate relay terminal devices based on the at least one adjusted second measurement result.
In some example embodiments, each of the plurality of offsets is used as a respective threshold for Event Z2 of path switching, or each of the plurality of offsets is used for determining an equivalent channel quality of the first measurement result or a second measurement result.
In an aspect, a remote terminal device comprises: at least one processor; and at least one memory coupled to the at least one processor and storing instructions thereon, the instructions, when executed by the at least one processor, causing the device to perform the method implemented by the remote terminal device discussed above.
In an aspect, a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method implemented by the remote terminal device discussed above.
In an aspect, a computer program comprising instructions, the instructions, when executed on at least one processor, causing the at least one processor to perform the method implemented by the remote terminal device discussed above.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or  controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIGS. 1 to 3. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (15)

  1. A method of communication, comprising:
    obtaining, at a remote terminal device connecting with a network device via a first relay terminal device, a path switching measurement configuration indicating a plurality of offsets, an offset of the plurality of offsets being corresponding to a type-pair of a first measurement type and a second measurement type;
    performing measurements on the first relay terminal device and at least one candidate relay terminal device; and
    transmitting, according to the path switching measurement configuration, a measure-ment report comprising at least one of the following:
    information indicating one or more of the at least one candidate relay terminal device, or
    one or more measurement results of the one or more candidate relay terminal devices.
  2. The method of claim 1, wherein the first measurement type is a sidelink discovery reference signal received power (SD-RSRP) or sidelink reference signal received power (SL-RSRP) , and the second measurement type is an SD-RSRP or an SL-RSRP.
  3. The method of claim 1, wherein if a measurement result for a candidate relay terminal device of at least one candidate relay terminal device is a sidelink discovery reference signal received power (SD-RSRP) , the SD-RSRP is determined by measuring a PC5 discovery mes-sage, and
    wherein if a measurement result for a candidate relay terminal device of at least one candidate relay terminal device is a sidelink reference signal received power (SL-RSRP) , the SL-RSRP is determined by measuring a PC5 data transmission.
  4. The method of claim 1, wherein the path switching measurement configuration is pre-defined or dynamically configured.
  5. The method of claim 1, wherein the path switching measurement configuration is a common configuration shared among a plurality of cells, or
    the path switching configuration is specific to one of the following:
    a cell,
    a cell group,
    a candidate relay terminal device, or
    a candidate relay terminal device group.
  6. The method of claim 1, wherein the plurality of offsets comprise at least one of the following:
    a first offset to be used by the remote terminal device in case that the second measure-ment type is the same with the first measurement type, or
    a second offset to be used by the remote terminal device in case that the second meas-urement type is different from the first measurement type.
  7. The method of claim 1, wherein the path switching measurement configuration indi-cates the plurality of offsets by comprising at least one of the following:
    values of the plurality of offsets, or
    a reference offset and at least one delta offset relative to the reference offset, or
    at least one compensation value specific to a specific measurement type.
  8. The method of claim 7, wherein the path switching measurement configuration fur-ther comprises:
    respective type-pair indications for the plurality of offsets, each respective type-pair in-dication indicating a specific first type and a specific second type for a specific type-pair.
  9. The method of claim 8, wherein the respective type-pair indication is an index of type-pair.
  10. The method of claim 1, further comprising:
    determining the first measurement type for a first measurement result of the first relay terminal device;
    determining at least one second measurement type for at least one second measurement result of the at least one candidate relay terminal device; and
    determining, based on the first measurement type and the at least one second measure-ment type, at least one offset according to the path switching configuration.
  11. The method of claim 10, further comprising:
    determining at least one adjusted first measurement result by applying each of the at least one offset to the first measurement result respectively; and
    determining the one or more candidate relay terminal devices based on the at least one adjusted first measurement result.
  12. The method of claim 10, further comprising:
    determining at least one adjusted second measurement result by applying each of the at least one offset to the at least one second measurement result; and
    determining the one or more candidate relay terminal devices based on the at least one adjusted second measurement result.
  13. The method of claim 1, wherein each of the plurality of offsets is used as a respective threshold for Event Z2 of path switching, or each of the plurality of offsets is used for deter-mining an equivalent channel quality of the first measurement result or a second measurement result.
  14. A remote terminal device comprising:
    at least one processor; and
    at least one memory coupled to the at least one processor and storing instructions thereon, the instructions, when executed by the at least one processor, causing the remote terminal device to perform the method according to any of claims 1-13.
  15. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any of claims 1-13.
PCT/CN2022/129663 2022-11-03 2022-11-03 Methods, devices and medium for communication WO2024092656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129663 WO2024092656A1 (en) 2022-11-03 2022-11-03 Methods, devices and medium for communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129663 WO2024092656A1 (en) 2022-11-03 2022-11-03 Methods, devices and medium for communication

Publications (1)

Publication Number Publication Date
WO2024092656A1 true WO2024092656A1 (en) 2024-05-10

Family

ID=90929253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129663 WO2024092656A1 (en) 2022-11-03 2022-11-03 Methods, devices and medium for communication

Country Status (1)

Country Link
WO (1) WO2024092656A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190442A1 (en) * 2020-03-25 2021-09-30 维沃移动通信有限公司 Switching method and device in sidelink relay architecture
US20220053418A1 (en) * 2020-08-17 2022-02-17 Lg Electronics Inc. Method of operating a ue related to a sidelink measurement report in a wireless communication system
CN114501570A (en) * 2020-11-13 2022-05-13 维沃移动通信有限公司 Switching method, device and equipment based on side link relay and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190442A1 (en) * 2020-03-25 2021-09-30 维沃移动通信有限公司 Switching method and device in sidelink relay architecture
US20220053418A1 (en) * 2020-08-17 2022-02-17 Lg Electronics Inc. Method of operating a ue related to a sidelink measurement report in a wireless communication system
CN114501570A (en) * 2020-11-13 2022-05-13 维沃移动通信有限公司 Switching method, device and equipment based on side link relay and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "SL-RSRP/SD-RSRP comparison and additional criterion for relay (re- )selection", 3GPP DRAFT; R2-2009588, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20201101, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942523 *

Similar Documents

Publication Publication Date Title
CN111095975B (en) Method and apparatus for cell measurement in a communication system
US10944449B2 (en) Apparatus and method in wireless communication system, and computer readable storage medium
WO2022067847A1 (en) Multiple-input, multiple-output (mimo) enhancements for high speed travel
US20200344776A1 (en) Parallel scheduler architecture
CN110506432A (en) A kind of cooperation cell determines method and the network equipment
CN105992246A (en) Communication device and communication method
WO2024092656A1 (en) Methods, devices and medium for communication
WO2024087233A1 (en) Method, device and computer storage medium of communication
WO2023197324A1 (en) Methods, devices, and computer readable medium for communication
WO2024060255A1 (en) Methods, devices, and medium for communication
WO2023087175A1 (en) Method, device and computer readable medium for communications
WO2024007176A1 (en) Methods, devices, and medium for communication
US11973705B2 (en) Improving network multiple-input, multiple-output (MIMO) performance with high doppler shift
WO2023115268A1 (en) Method, device and computer storage medium of communication
WO2023245428A1 (en) Method, device and computer storage medium of communication
WO2023240639A1 (en) Method, device and computer readable medium for communications
WO2023168610A1 (en) Method, device and computer readable medium for manangement of cross link interference
WO2023097657A1 (en) Method, device and computer storage medium of communication
WO2024065232A1 (en) Method, device and computer storage medium of communication
WO2024011636A1 (en) Methods, devices, and medium for communication
CN109314874A (en) Electronic equipment and method for network-control end and network node
WO2024020787A1 (en) Method, device and computer readable medium for communication
WO2024026641A1 (en) Methods, terminal devices and computer readable medium for communication
WO2023178695A1 (en) Method, device and computer readable medium for communications
WO2023115567A1 (en) Methods, devices, and computer readable medium for communication