WO2024090759A1 - Quantum dot ink composition, device using same, and display device comprising same - Google Patents

Quantum dot ink composition, device using same, and display device comprising same Download PDF

Info

Publication number
WO2024090759A1
WO2024090759A1 PCT/KR2023/012368 KR2023012368W WO2024090759A1 WO 2024090759 A1 WO2024090759 A1 WO 2024090759A1 KR 2023012368 W KR2023012368 W KR 2023012368W WO 2024090759 A1 WO2024090759 A1 WO 2024090759A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
ink composition
resin
phosphor
light
Prior art date
Application number
PCT/KR2023/012368
Other languages
French (fr)
Korean (ko)
Inventor
최재균
안시홍
권오관
이봉재
이상훈
Original Assignee
(주)이노큐디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이노큐디 filed Critical (주)이노큐디
Publication of WO2024090759A1 publication Critical patent/WO2024090759A1/en

Links

Images

Definitions

  • the present invention relates to a quantum dot ink composition, and more specifically, to a quantum dot ink composition that improves color reproduction and has excellent light efficiency, a device using the same, and a display device containing the same.
  • Quantum dots are ultrafine semiconductor particles with a size of several nanometers. When the quantum dot is exposed to light, electrons in an unstable state descend from the conduction band to the valence band and emit light of a specific wavelength.
  • the smaller the quantum dot particle the shorter the wavelength of light it emits, and the larger the particle, the longer the wavelength of light it emits. Therefore, by adjusting the size of the quantum dots, visible light of the desired wavelength can be expressed, and various colors can be realized simultaneously using quantum dots of various sizes. Therefore, the desired natural color can be achieved by controlling the size of the quantum dots, and the color reproduction rate is good and the brightness is also good, so it is attracting attention as a next-generation light source.
  • a quantum dot display (QD display), a self-luminous display, is largely divided into three layers, in the order of stacking: substrate; It is composed of a light emitting source layer and a quantum dot light emitting layer.
  • substrate is composed of a light emitting source layer and a quantum dot light emitting layer.
  • it may be composed of a TFT layer that is an electronic circuit, a light emitting source layer that emits blue light, and a quantum dot light emitting layer that converts blue light, which is a light emitting source, into red and green to emit light.
  • the quantum dot display uses a blue light source, which has a higher energy wavelength compared to other colors, as a light emitting source.
  • the blue light generated from the light emitting source reaches the quantum dot emitting layer, which is a self-emitting layer, and the quantum dot element changes color on its own by receiving energy from the blue light source. It emits red and green light.
  • the quantum dots absorb and emit all of the blue light in the quantum dot emitting layer, the theoretical color gamut is 100%, but in reality, the quantum dots do not completely absorb blue light, so some blue light may leak, and in this case, the color gamut may be lowered. It falls.
  • One way to reduce blue light leakage is to increase the concentration of quantum dots. However, if the concentration of quantum dots becomes too high, agglomeration occurs between them, which reduces luminous efficiency and reduces the lifespan of the display.
  • the present invention is to provide a quantum dot ink composition that improves color reproduction and has excellent light efficiency.
  • the present invention is to provide a device formed using the ink composition.
  • the present invention is to provide a display device formed using the ink composition.
  • the present invention includes a binder resin; Quantum dots encapsulated in an encapsulating resin; and a phosphor, providing a quantum dot ink composition.
  • the phosphor may be included in the quantum dots encapsulated with the encapsulation resin.
  • the phosphor may be dispersed in the binder resin.
  • the phosphor may include one or more types selected from inorganic phosphors and organic phosphors.
  • the phosphor may be included in an amount of 0.1 to 20 parts by weight based on a total content of 100 parts by weight of the quantum dot ink composition.
  • the binder resin may be one or more selected from the group consisting of acrylic resin, styrene-acrylic copolymer resin, styrene resin, styrene-acrylonitrile resin, polycarbonate resin, cyclic olefin resin, and polynorbornene resin. there is.
  • the binder resin may be included in an amount of 5 to 90 parts by weight based on a total content of 100 parts by weight of the quantum dot ink composition.
  • the encapsulation resin may include at least one selected from crosslinked acrylic resin and crosslinked silicone resin.
  • the encapsulating resin may be a photo-curable or thermo-curable resin.
  • the quantum dot ink composition may further include a light diffuser.
  • the light diffuser may include inorganic particles including silica, talc, titania, calcium oxide, zinc oxide, and alumina; Poly(meth)acrylic, polystyrene, silicone, polyurethane, and epoxy resins are crosslinked or uncrosslinked organic particles; and it may include one or more selected from the group consisting of combinations thereof.
  • the present invention relates to a substrate; A light emitting source layer disposed on a substrate; and a quantum dot light emitting layer disposed in a path of the light emitting source emitted from the light emitting source layer, wherein at least one region of the quantum dot light emitting layer is formed using the quantum dot ink composition.
  • the light emitting source is an organic light emitting diode (OLED) or a light emitting diode (LED), and can emit blue light with a maximum emission wavelength of 400 nm to 490 nm.
  • OLED organic light emitting diode
  • LED light emitting diode
  • At least one region of the quantum dot light emitting layer is formed using the quantum dot ink composition, and the region may absorb blue light emitted from the light emitting source layer and emit visible light other than blue.
  • the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers are formed using the quantum dot ink composition.
  • a device formed using the ink composition can be provided.
  • a display device formed using the ink composition can be provided.
  • Figure 1 is a cross-sectional view showing a phosphor included in a quantum dot encapsulated with an encapsulating resin in the quantum dot ink composition according to the present invention.
  • Figure 2 is a cross-sectional view showing the phosphor dispersed in the binder resin together with the quantum dots encapsulated in the encapsulating resin in the quantum dot ink composition according to the present invention.
  • a binder resin Quantum dots encapsulated in an encapsulating resin; and a phosphor, wherein the phosphor is included in the quantum dot encapsulated with the encapsulation resin, the phosphor is included in an amount of 0.1 to 20 parts by weight based on a total content of 100 parts by weight of the quantum dot ink composition, and the average particle diameter of the quantum dot is 1 nm to 1 nm. 20nm, and the particle size of the phosphor is 1nm to 20nm, providing a quantum dot ink composition.
  • 'comprise' is to specify a specific characteristic, area, integer, step, operation, element and/or component, and to specify another specific property, area, integer, step, operation, element, component and/or group. It does not exclude the existence or addition of .
  • a binder resin Quantum dots encapsulated in an encapsulating resin; And a quantum dot ink composition comprising a phosphor is provided.
  • the quantum dots encapsulated by the encapsulating resin are not in the form of a “simple coating or coating layer such as a coating film” as defined by the conventional “capsule”, but are in a state in which a plurality of quantum dots are dispersed inside the crosslinked encapsulating resin. It means to exist.
  • the quantum dot display utilizes a blue light source as a light emitting source, and a quantum dot light emitting layer is located on top of the light emitting source layer, and the quantum dot light emitting layer consists of a plurality of spatial regions partitioned by partitions. At this time, at least one region of the plurality of spatial regions contains a predetermined ink composition and emits red and green light, and the remaining region does not contain the ink composition and emits blue light as is.
  • the formed area absorbs the energy of the blue light source by receiving the energy of the blue light source and emits visible light (red and green) other than blue.
  • the quantum dots included in the ink composition it is most desirable for the quantum dots included in the ink composition to absorb all of the energy of the blue light source and emit red or green light.
  • the quantum dots cannot absorb part of the energy of the blue light source, so some blue light may leak, In this case, the color reproduction rate decreases.
  • the present inventors studied a new method to minimize blue light leakage, and when adding a predetermined phosphor to an ink composition containing quantum dots encapsulated with a binder resin and an encapsulating resin, the phosphor additionally emits light in the blue wavelength range.
  • the present invention was completed after confirming that excellent color reproduction can be realized by absorbing and reducing blue light leakage.
  • the phosphor is included in the quantum dot ink composition and serves to additionally absorb light in the blue wavelength range without affecting the quantum dots encapsulated with the encapsulation resin, so it may be included in the encapsulated quantum dots, and may be included in the encapsulated quantum dots. It may be dispersed and included in a binder resin along with quantum dots.
  • Figure 1 is a cross-sectional view showing a phosphor included in a quantum dot encapsulated with an encapsulating resin in the quantum dot ink composition according to the present invention.
  • Figure 2 is a cross-sectional view showing the phosphor dispersed in the binder resin together with the quantum dots encapsulated in the encapsulating resin in the quantum dot ink composition according to the present invention.
  • the phosphor is included in the quantum dot ink composition and can absorb light in the blue wavelength range, it does not matter whether it is included in the encapsulated quantum dots or dispersed in the binder resin together with the encapsulation resin. However, in terms of light efficiency, it may be more desirable for the phosphor to be included in the quantum dots encapsulated with an encapsulation resin.
  • the method of manufacturing quantum dots encapsulated with encapsulation resin will be described in detail later, but for example, after preparing a composition by adding precursors for encapsulation resin, quantum dots, etc. to a polar solvent and a non-polar solution, the composition is irradiated with light or heat. It can be manufactured by encapsulating quantum dots by performing crosslinking.
  • the concentration of the quantum dots contained in the capsule is adjusted to produce the maximum efficiency.
  • the remainder is filled with solvents and other additives to produce encapsulated quantum dots.
  • the encapsulated quantum dots can be manufactured by additionally adding the phosphor while maintaining the concentration of the quantum dots in the capsule to achieve maximum efficiency.
  • the concentration of the quantum dots is maintained without being reduced, and additional blue light is absorbed by adding the phosphor, thereby improving color reproduction and maximizing light efficiency.
  • the phosphor may be dispersed and included in the binder resin within the quantum dot ink composition.
  • the phosphor may be included in the quantum dots encapsulated with an encapsulation resin, but the particle size of the phosphor is not small enough to be included in the encapsulated quantum dots.
  • a quantum dot ink composition may be prepared by dispersing the phosphor in a binder resin together with quantum dots encapsulated in an encapsulation resin.
  • the quantum dot ink composition includes a phosphor, blue light leakage is reduced, and when a display is manufactured using the ink composition, a color reproduction rate superior to that of the prior art can be realized.
  • the particle size of the phosphor is not limited, and can be included in the quantum dot ink composition of the present application not only at the nanometer level but also at the micrometer level.
  • the particle size of the phosphor is preferably 1 nm to 20 nm.
  • the above phosphors may be used individually, or two or more types may be mixed.
  • the phosphor may be a conventional phosphor such as a green phosphor or a red phosphor, and the green phosphor or red phosphor may be used without particular limitation as long as it is commonly used in a light emitting diode.
  • the phosphor may be a green phosphor with a maximum emission wavelength of 500 to 580 nm.
  • the phosphor may be a red phosphor with a maximum emission wavelength of 600 to 660 nm.
  • the phosphor may include one or more types selected from inorganic phosphors and organic phosphors.
  • the inorganic phosphor includes oxide-based phosphor, silicate-based phosphor, phosphate-based phosphor, borate-based phosphor, aluminate-based phosphor, gallate-based phosphor, molybdate-based phosphor, tungstate-based phosphor, fluoride-based phosphor, It may include one or more types selected from the group consisting of sulfide-based phosphors, nitride-based and oxynitride-based phosphors, and sulphoselenide-based phosphors.
  • the oxide-based phosphor is (Y, Gd, La) 2 O 3 :(Eu, Sm, Ce, Bi); (Y, Gd, La)O 2 S:(Eu, Sm, Ce, Bi); (Y, Gd, La)VO 4 (Eu, Sm, Ce, Bi); 2SrO ⁇ 0.84P 2 O 5 ⁇ 0.16B 2 O 3 :Eu; SrLa 2 BeO 5 :Ce; 0.82BaO ⁇ 6Al 2 O 3 :Eu; 1.29BaO ⁇ 6Al 2 O 3 :Eu; (Ca, Zn) 2 GeO 4 :Mn; and (Tb (1-XY) (Y, La , Gd , Sm) , In) 2 O 12 may be included.
  • the silicate-based phosphor is (Mg, Ba, Sr, Ca, Zn) 2 SiO 4 : (Eu, Ce, Mn, Ti, Pb, Sn, Li, Pr); (Mg, Ba, Sr, Ca)SiO 4 :Eu, Ce, Mn, Ti, Pb, Sn, Li, Pr; (Mg, Ba, Sr, Ca)SiO 5 :Eu, Ce, Mn, Ti, Pb, Sn, Li, Pr; ZrSiO 4 :Pr; Ca 3 Sc 2 Si 3 O 12 :Ce; Y 2 SiO 5 :Tb; Y 2 Si 2 O 7 :Tb; CaMgSiO:Ce; Ca 2 MgSi 2 O 7 :Ce; (Ca, Sr) 2 Al 2 SiO 7 :Ce; SrAl 2 Si 2 O 8 :Eu; CaMgSi 2 O 6 :Eu; SrAl 10 SiO 20 :Eu; S
  • the phosphate-based phosphor is Zn 2 (PO 4 ) 2 :Mn; (Mg, Ba, Ca, Sr) 5 (PO 4 ) 3 Cl:(Eu, Sm, Ce); and (Sr, Ca, Eu) 10 (PO 4 ) 6 Cl 2 ⁇ 0.24B 2 O 3 .
  • the borate-based phosphor is (Y, Gd, La, Lu)BO 3 :Eu, Sm, Ce, Bi; Y(Mg, Ba, Ca, Sr) 3 (Al, Ga, In) 3 B 4 O 15 :Eu; and YCa 3 Ga 3 B 4 O 15 :Eu.
  • the aluminate-based phosphor is (Y, Gd) 3 Al 5 O 12 :(Eu, Ce, Pr); (Mg, Ba, Ca, Sr)MgAl 10 O 17 :(Eu, Mn); (Ca, Mg, Ba, Zn)Al 2 O 4 :(Mn, Eu, Dy); (Ba, Mg, Ca, Sr)MgAl 14 O 23 :Mn, Eu; (Mg, Ba, Ca, Sr)Al 12 O 19 :Mn; and BaMg 2 Al 16 O 27 :Eu,Mn.
  • the gallate-based phosphor is (Y, Gd) 3 Ga 5 O 12 :(Eu, Ce, Pr); (Ca, Mg, Ba, Zn)Ga 2 O 4 :(Mn, Eu, Dy); ZnGa 2 O 4 :Mn; and (Li 0.5 Ga 0.5 ) 0.5 Zn 0.5 Ga 2 O 4 .
  • the molybdate-based phosphor is (Li, K, Na , Ag ) Eu (1 - X) (Y, La, Gd ) (Y, La, Gd) X Mo 2 O 8 :Sm.
  • the tungstate - based phosphor is (Li, K, Na, Ag)Eu (1-X) ( Y , La, Gd ) (Li, K, Na, Ag)Eu ( 1 - X) ( Y , La, Gd) and CaWO 4 :Tb, Pb.
  • the fluoride-based phosphor is (KF, MgF 2 ):Mn, MgF 2 :Mn, (Zn, Mg)F 2 :Mn; 3.5MgO ⁇ 0.5MgF 2 ⁇ GeO 2 :Mn; and Mg 4 (F)(Ge, Sn)O 6 :Mn.
  • the sulfide-based phosphor is (Be, Mg, Ca, Sr, Ba, Zn)S:(Eu, Ce, Cu, Ag, Al, Au, Tb, Cl, Pr, Mn, Bi); (Be, Mg, Ca, Sr, Ba, Zn)(Al, Ga, In, Y, La, Gd) 2 S 4 :(Eu, Ce, Cu, Ag, Al, Tb, Cl, Pr, Mn); (Mg, Ca, Sr, Ba) 2 (Zn, Si, Ge, Sn)S 3 :Eu; and (Mg, Ca, Sr, Ba) 2 (Al, Ga, In, Y, La, Ga) 2 S 3 :Eu.
  • the nitride-based and oxynitride-based phosphors include Ca 2 Si 5 N 8 :Eu; SrSi 2 O 2 N 2 :Eu; CaAlSiN 3 :Eu; Si 6 AlON 8 ; Si 3 N 4 -M 2 O 3 -CaO-AlN-Al 2 O 3 ; LaSi 3 N 5 :Ce; and (Li, Ca, Mg, Y) Si 12 AlON 16 : (Ce, P, Eu, Tb, Yb, Er, Dy).
  • the sulphoselenide - based phosphor is (Be, Mg, Ca, Sr , Ba, Zn)Se Mg, Ca, Sr , Ba, Zn ) (Al, Ga, In, Y, La, Gd ) 2 (Se , Mn).
  • the organic phosphor includes tetraphenylnaphthacene (Rubrene), tris(1-phenylisoquinoline)iridium(III) (Ir(piq) 3 ), and bis(2-benzo[b]thiophene.
  • Rubrene tetraphenylnaphthacene
  • Ir(piq) 3 tris(1-phenylisoquinoline)iridium(III)
  • bis(2-benzo[b]thiophene bis(2-benzo[b]thiophene.
  • the organic phosphor may be a phenylene-based compound, a phenylene vinylene-based compound, a thiophene-based compound, a fluorene-based compound, and a spiro-fluorene-based compound. It may include polymers such as compounds and aromatic compounds containing nitrogen, but is not particularly limited thereto.
  • the phosphor may be included in an amount of 0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, based on a total of 100 parts by weight of the quantum dot ink composition.
  • the size of the phosphor is not limited, and can be calculated based on the total content of the quantum dot ink composition, regardless of whether the phosphor is included in quantum dots encapsulated with an encapsulation resin or dispersed in the binder resin.
  • the content of the phosphor is less than 0.1 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition, the absorption effect of blue light may be minimal and there may be little effect of improving color reproduction due to a decrease in luminescence characteristics, and the content of the phosphor may be If it is included in more than 20 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition, problems such as increased viscosity of the quantum dot ink composition and decreased light efficiency may occur.
  • the quantum dot ink composition according to the present invention includes a binder resin as a compound that can act as a binder material when cured.
  • the binder resin is one selected from the group consisting of acrylic resin, styrene-acrylic copolymer resin, styrene resin, styrene-acrylonitrile resin, polycarbonate resin, cyclic olefin resin, and polynorbornene resin. It could be more than that.
  • the acrylic resin may be a polymerization of one or more compositions consisting of acrylic oligomers, acrylic monomers, and combinations thereof.
  • the acrylic oligomer may be an epoxy acrylate resin.
  • Epoxy acrylate resin is a resin in which the epoxide group of the epoxy resin is replaced with an acrylic group.
  • the epoxy acrylate resin is bisphenol A glycerolate diacrylate, bisphenol A Consisting of bisphenol A ethoxylate diacrylate, bisphenol A glycerolate dimethacrylate, bisphenol A ethoxylate dimethacrylate, and combinations thereof. It can be any one selected from the group.
  • Epoxy acrylate resin like epoxy resin, has low moisture permeability and air permeability due to its main chain characteristics.
  • the acrylic monomer that can be used is not particularly limited in the present invention, and any known monomer can be used.
  • the acrylic monomer may be one or more homopolymers or copolymers selected from the group consisting of an unsaturated group-containing acrylic monomer, an amino group-containing acrylic monomer, an epoxy group-containing acrylic monomer, and a carboxylic acid group-containing acrylic monomer.
  • Acrylic monomers containing unsaturated groups include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, i-propyl acrylate, and i-propyl methacrylate.
  • Acrylic monomers containing amino groups include 2-aminoethyl acrylate, 2-aminoethyl methacrylate, 2-dimethylaminoethyl acrylate, 2-dimethylaminoethyl methacrylate, 2-aminopropyl acrylate, and 2-aminopropyl methacrylate.
  • Crylate, 2-dimethylaminopropyl acrylate, 2-dimethylaminopropyl methacrylate, 3-aminopropyl acrylate, 3-aminopropyl methacrylate, 3-dimethylaminopropyl acrylate, 3-dimethylaminopropyl methacrylate Rates, etc. are possible.
  • Acrylic monomers containing epoxy groups include glycidyl acrylate, glycidyl methacrylate, glycidyloxyethyl acrylate, glycidyloxyethyl methacrylate, glycidyloxypropyl acrylate, and glycidyloxypropyl meta.
  • Acrylate, glycidyloxybutyl acrylate, glycidyloxybutyl methacrylate, etc. are possible.
  • Acrylic monomers containing carboxylic acid groups include acrylic acid, methacrylic acid, acryloyloxyacetic acid, methacryloyloxyacetic acid, acryloyloxypropionic acid, methacryloyloxypropionic acid, acryloyloxybutyric acid, and methacryloyloxybutyric acid. etc. is possible.
  • the styrene-acrylic copolymer resin is one or more selected from alkyl methacrylate, alkyl acrylate, cycloalkyl methacrylate, cycloalkyl acrylate, aryl methacrylate, aryl acrylate, styrene, ⁇ -methyl It is preferably one or more copolymers selected from styrene, m-methylstyrene, p-methylstyrene, and p-methoxystyrene.
  • the styrene-based resin is preferably a homopolymer selected from styrene, ⁇ -methylstyrene, m-methylstyrene, p-methylstyrene, and p-methoxystyrene, or a copolymer thereof.
  • the styrene-acrylonitrile-based copolymer resin is preferably a copolymer of at least one selected from styrene, ⁇ -methylstyrene, m-methylstyrene, p-methylstyrene, and p-methoxystyrene and an acrylonitrile monomer. .
  • the polycarbonate resin is a linear and branched aromatic polycarbonate homopolymer prepared by reacting dihydroxyphenol and phosgene or by reacting dihydroxyphenol with a carbonate precursor, a polyester copolymer, or a mixture of one or more of these. It is preferable to be selected from the group.
  • the content of the binder resin may be 5 to 90 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition.
  • the content of the binder resin is less than 5 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition, it may be difficult to form a thin film due to reduced dispersibility in the quantum dot encapsulating resin, and there may be a problem of reduced curing degree. If the content exceeds 90 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition, there may be a problem in that optical characteristics and color gamut characteristics are lowered due to a decrease in the concentration of the quantum dot encapsulating resin.
  • the quantum dot ink composition according to the present invention includes quantum dots encapsulated with an encapsulation resin, and the encapsulation resin may include one or more types selected from crosslinked acrylic resin and crosslinked silicone resin.
  • the crosslinking is in a state of curing by light or heat.
  • the crosslinked acrylic resin refers to a resin crosslinked by an acrylic monomer having a functional group in the molecular structure that can be polymerized or cured by light irradiation or heat.
  • Acrylic monomers that can be used are as follows, and in this case, the term '(meth)acrylate' refers to methacrylate or acrylate.
  • the acrylic monomer may be a monofunctional acrylic monomer with one functional group in the molecular structure, or a polyfunctional acrylic monomer/oligomer with two or more functional groups.
  • the monofunctional acrylic monomers include isobornyl (meth)acrylate, isooctyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, benzyl (meth)acrylate, and norbornyl (meth)acrylate.
  • Acrylate isodecyl (meth)acrylate, cyclohexyl (meth)acrylate, n-hexyl (meth)acrylate, adamantyl acrylate, acryloylmorpholine, tetrahydrofuryl (meth)acrylate, 2- It may contain one or more monomers selected from the group consisting of phenoxyethyl (meth)acrylate, caprolactone (meth)acrylate, and cyclopentyl acrylate.
  • multifunctional acrylic monomers include tripropylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, and pentaerythritol tri(meth)acrylate.
  • multifunctional acrylic oligomers include urethane (meth)acrylate, epoxy (meth)acrylate, polyester (meth)acrylate, acrylic (meth)acrylate, polybutadiene (meth)acrylate, and silicone (meth)acrylate. It may contain one or more oligomers selected from the group consisting of methylamine (meth)acrylate and melamine (meth)acrylate. At this time, the oligomer may have a weight average molecular weight in the range of 100 to 1000.
  • the acrylic monomer when it contains two or more functional groups, it can be crosslinked by light irradiation, and if necessary, a known photocrosslinking agent can be further used.
  • Photocuring is performed by emitting active energy from a light source and irradiating it to the coating film.
  • rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, electromagnetic waves such as Curing by ultraviolet irradiation is advantageous in terms of cost, etc.
  • high-pressure mercury lamps As light sources for ultraviolet irradiation, high-pressure mercury lamps, electrodeless lamps, ultra-high pressure mercury lamps, carbon arc lamps, xenon lamps, LED lamps, metal halide lamps, chemical lamps, black lights, etc. are used.
  • the high-pressure mercury lamp for example, it is performed under conditions of about 5 mJ/cm2 to about 3000 mJ/cm2, specifically about 400 mJ/cm2 to about 1500 mJ/cm2.
  • the irradiation time varies depending on the type of light source, the distance between the light source and the coating film, the thickness of the coating film, and other conditions, but is usually performed for tens of seconds to several minutes, or more than 1 hour depending on the amount of light.
  • crosslinked silicone-based resin refers to a resin in which a liquid siloxane polymer is crosslinked by a crosslinking agent.
  • the liquid siloxane polymer may be a linear silicone resin or a modified silicone resin.
  • Representative linear silicone resins include dimethyl silicone in which all organic groups are methyl groups, methylphenyl silicone with phenyl groups introduced, methylphenyl silicone, diphenyl silicone, copolymers of polysiloxane and diphenylsiloxane, and methylhydrogen silicone.
  • the modified silicone resin refers to a silicone resin into which an organic group other than a methyl or phenyl group has been introduced, and includes methylhydroxy silicone, fluorosilicone, polyoxyether copolymer, alkyl-modified silicone, higher fatty acid-modified silicone, amino-modified silicone, and epoxy. Modified silicon, etc.
  • Silicone-based resin can be cured by photocuring or thermal curing, and a known photocuring agent or thermal curing agent can also be used.
  • the temperature and time for thermal curing may vary depending on the type of thermosetting resin.
  • thermosetting resin for example, in the case of silicone resin, it is performed at 100°C to 125°C for 1 hour to 5 hours.
  • the use of curing agent compared to silicone resin may vary depending on the curing mechanism.
  • curing is possible through an addition reaction in the presence of a platinum catalyst, or through a free radical reaction by applying organic peroxide and heat.
  • organic peroxides include 2,4-dichlorobenzoyl peroxide, benzoyl peroxide, dicumyl peroxide, di-tert-butylperbenzoate, and 2,5-bis(tert-butylperoxy)benzoate.
  • the organic peroxide is used at a concentration of 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the silicone resin.
  • the quantum dots are encapsulated by the above-mentioned encapsulation resin.
  • Quantum dots absorb light injected from a light source through the quantum confinement effect, then convert the wavelength of light to a wavelength corresponding to the band gap of the quantum dot and emit it.
  • the quantum dot may include a semiconductor selected from the group consisting of group II-VI, group III-V, group IV-VI, group IV semiconductors, and mixtures thereof. More specifically, the quantum dots include, for example, CdS, CdO, CdSe, CdTe, Cd 3 P 2 , Cd 3 As 2 , ZnS, ZnO, ZnSe, ZnTe, MnS, MnO, MnSe, MnTe, MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTE, HgO, HgS, HgSe, HgTe, HgI 2 , AgI, AgBr, Al 2 O 3 , Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3
  • the quantum dots include group II-VI compound semiconductor nanocrystals such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, and HgTe, and group III-V compound semiconductors such as GaN, GaP, GaAs, InP, and InAs. Nanocrystals or mixtures thereof may be mentioned.
  • the central particle may have a core/shell structure, and each of the core and shell of the central particle may include the compounds exemplified above. The compounds exemplified above may be included in the core or shell individually or in combination of two or more.
  • the central particle may have a CdSe/ZnS (core/shell) structure with a core containing CdSe and a shell containing ZnS.
  • the quantum dot particles may have a core/shell structure or an alloy structure.
  • Quantum dots with a core/shell structure can grow the shell layer in various shapes by adding other ingredients to grow the crystal structure of the seed.
  • Forming a core/shell structure has the advantage of satisfying characteristics such as high luminous efficiency and high luminous clarity while also satisfying other characteristics such as thermal stability or insulation.
  • Quantum dot particles having such a core/shell structure or alloy structure include CdSe/ZnS, CdSe/ZnSe/ZnS, CdSe/CdSx(Zn1-yCdy)S/ZnS, CdSe/CdS/ZnCdS/ZnS, InP/ZnS, InP/ It may be Ga/ZnS, InP/ZnSe/ZnS, PbSe/PbS, CdSe/CdS, CdSe/CdS/ZnS, CdTe/CdS, CdTe/ZnS, CuInS 2 /ZnS, Cu 2 SnS 3 /ZnS.
  • the quantum dots may be perovskite nanocrystal particles.
  • Perovskite includes a structure of ABX 3 , A 2 BX 4 , ABX 4 or A n-1 B n , B may be a metal material, and X may be a halogen element.
  • the organic ammonium is an amidinium-based organic ion, (CH 3 NH 3 ) n , ((C x H 2x+1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n+1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 or (C n F 2n+1 NH 3 ) 2 ) (n is an integer greater than or equal to 1, and the alkali metal material is Na, K, Rb, Cs or It may be Fr.
  • B is an ion of a divalent transition metal, rare earth metal, alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof, and X is an ion of Cl, Br, I Or it may be a combination thereof.
  • the quantum dots may be doped perovskite nanocrystal particles.
  • the doped perovskite includes a structure of ABX 3 , A 2 BX 4 , ABX 4 or A n-1 B n ', or part of B is substituted with B', or part of X is substituted with X', wherein A and A' are organic ammoniums, and B and B' are metal materials , X and X' may be halogen elements.
  • the A and A' are amidinium-based organic ions, (CH 3 NH 3 ) n , ((C x H 2x+1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n+1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , (C x F 2x+1 ) n NH 3 ) 2 or (C n F 2n+1 NH 3 ) 2 (n is an integer of 1 or more, , rare earth metal, alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi or Po, and X and X' may be Cl, Br or I.
  • the quantum dots may be spheres, ellipses, rods, wires, pyramids, cubes, or other geometric or non-geometric shapes. Typically, they are spherical or oval-shaped nanoparticles and have an average particle diameter of 1 to 20 nm, preferably 1 to 10 nm. Since the emission wavelength varies depending on the size, the desired color of light can be obtained by selecting a quantum dot of an appropriate size. . Quantum dots with larger particle sizes typically emit light of lower energy when compared to quantum dots made from the same material but with smaller particle sizes.
  • the quantum dots may include, for example, one or more types selected from the group consisting of quantum dots that convert blue light into red light, quantum dots that convert blue light into green light, and quantum dots that convert green light into red light.
  • the quantum dots are supplied in a colloidal (or dispersion) state dispersed in a solvent (eg, toluene) and with a ligand attached to stabilize the surface.
  • a solvent eg, toluene
  • the ligand is a hydrophobic organic ligand that increases the dispersibility of quantum dots and prevents them from aggregating with each other.
  • the ligand can prevent adjacent quantum dots from easily aggregating and quenching.
  • the ligand binds to the quantum dots, causing the quantum dots to have hydrophobicity. Accordingly, when quantum dots containing quantum dots and the ligand are dispersed in resin, dispersibility in the resin may be improved compared to quantum dots without a ligand.
  • R 3 OH, CO 2 H, NH 2 , SH, or PO.
  • 6 ⁇ p ⁇ 30, and the alkyl group represented by CH 2 may be linear or branched.
  • the ligands include hexadecylamine, octadecyl amine, octylamine, trioctylphosphine, triphenolphosphine, and t-butylphosphine ( It may be t-butylphosphine, trioctylphosphine oxide, pyridine, or thiophene, and preferably octadecylamine.
  • quantum dots encapsulated by an encapsulating resin is not particularly limited in the present invention, and various methods known in the field may be used.
  • the encapsulated quantum dots according to the present invention are crosslinked at a content of 1 to 30% by weight of quantum dots, 50 to 90% by weight of encapsulating resin, and 0.5 to 10% by weight of curing agent, including steps a) to c) below. It is manufactured through the following process:
  • step a) When the polar and non-polar solvents of step a) are mixed, they exist in a state where they do not mix with each other. Accordingly, the regions where they exist are separated depending on the polarity and non-polarity of the composition added in step b).
  • Polarity and non-polarity are relative, and there is a relative greater or lesser polarity depending on the type of solvent.
  • Known polar solvents include water, methanol, ethanol, propanol, isopropanol, butanol, acetone, and dimethylformamide
  • nonpolar solvents include hexane, toluene, benzene, octane, chloroform, chlorobenzene, and tetrahydrofuran. .
  • These include pentane, heptane, decane, methylene chloride, 1,4-dioxane, diethyl ether, cyclohexane, dichlorobenzene, and isobornyl acrylate.
  • the solvent used in step a) may be a combination of ethanol/isobornyl acrylate or toluene/isobornyl acrylate.
  • the nonpolar solvent exists as a dispersed phase within the polar solvent as a continuous phase. This is similar to the droplet form of an emulsion.
  • the precursor, quantum dots, and curing agent for the encapsulating resin in step b) are added, the composition exists on the non-polar solvent side.
  • the encapsulated quantum dots can be manufactured through a crosslinking process including steps a') to c') below.
  • the content of the phosphor may be 0.1 to 20 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition, as described above.
  • the size of the encapsulated quantum dots according to the present invention may range from 0.1 ⁇ m to 200 ⁇ m, 0.5 ⁇ m to 180 ⁇ m, 1 ⁇ m to 150 ⁇ m, and 5 ⁇ m to 100 ⁇ m. This size can be adjusted by the content of quantum dots and encapsulation resin, and when it has the above range, various physical properties including quantum efficiency of quantum dots are excellent.
  • Encapsulated quantum dots may be mixed red and green, and may be encapsulated separately.
  • the quantum dot ink composition may further include a light diffuser.
  • the light diffuser may be used alone or in combination with an organic or inorganic diffuser.
  • inorganic particles such as silica, talc, titania, calcium oxide, zinc oxide, and alumina may be used, and crosslinked or uncrosslinked organic particles such as poly(meth)acrylic, polystyrene, silicone, polyurethane, and epoxy particles may be used. can be used These are used alone or in combination of two or more types.
  • the particle size of the light diffuser is 10nm to 50 ⁇ m, and if necessary, two or more types can be mixed to have different particle sizes. If the particle size of the light diffuser is less than the above range, agglomeration occurs and light scattering property is lowered, and conversely, if it exceeds the above range, luminance is lowered.
  • two or more types of light diffusers may be mixed and used to have different particle sizes.
  • Rayleigh scattering refers to scattering that occurs when the size of the particle causing scattering is very small and smaller than the wavelength of light.
  • blue light scatters more effectively than red light, which has a long wavelength, and scatters light both forward and backward.
  • Misscattering occurs when the size of a particle is similar to the wavelength of light, and it responds to the density, size, and shape of the particle rather than the wavelength of light. Mi-scattering has significant forward scattering and relatively little backward scattering.
  • the first light diffuser that is greater than 460 nm and less than 30 ⁇ m is used to induce Mie scattering
  • the second light diffuser that is 10 nm to 460 nm is used to induce Rayleigh scattering.
  • Rayleigh scattering and Mie scattering can be generated simultaneously, which has the advantage of improving luminance and luminance uniformity by diffusing light as much as possible without extinction.
  • the content of the light diffuser is used in a maximum of 20 parts by weight or less, preferably in the range of 0.001 to 20 parts by weight, based on 100 parts by weight of the binder resin. If the content of the light diffuser exceeds the above range, not only does the light transmittance of the resin molded body decrease, but also the dispersibility decreases, making it impossible to exhibit brightness.
  • the encapsulated quantum dots containing the phosphor may be uniformly dispersed within the binder resin, or the phosphor may be uniformly dispersed within the binder resin together with the encapsulated quantum dots.
  • the encapsulated quantum dots containing the phosphor may be uniformly dispersed within the binder resin, or the phosphor may be uniformly dispersed within the binder resin together with the encapsulated quantum dots.
  • the quantum dot ink composition of the present invention may additionally include a solvent.
  • the quantum dot ink composition of the present invention may further include one or more additives selected from the group consisting of surfactants, dispersants, adhesion promoters, and antioxidants, if necessary.
  • the solvents and additives may be used without particular limitation as long as they are commonly used in ink compositions.
  • a substrate A light emitting source layer disposed on a substrate; and a quantum dot light emitting layer disposed in a path of the light emitting source emitted from the light emitting source layer, wherein at least one region of the quantum dot light emitting layer is formed using the quantum dot ink composition.
  • That the quantum dot light-emitting layer is formed using the above-described quantum dot ink composition may mean, for example, that the quantum dot light-emitting layer includes a photocured or thermocured product of the above-described quantum dot ink composition.
  • the light emitting source may be an organic light emitting diode (OLED) or a light emitting diode (LED).
  • OLED organic light emitting diode
  • LED light emitting diode
  • the light emitting source may emit blue light having a maximum emission wavelength of 400 nm to 490 nm.
  • the light emitting source may be an organic light emitting diode (OLED) that emits blue light with a maximum emission wavelength of 400 nm to 490 nm.
  • OLED organic light emitting diode
  • At least one region of the quantum dot light-emitting layer when at least one region of the quantum dot light-emitting layer is formed using the quantum dot ink composition, at least one region of the quantum dot light-emitting layer may absorb blue light emitted from the light emitting source layer and emit visible light other than blue.
  • At least one region of the quantum dot light-emitting layer may absorb blue light emitted from the light source and emit green light having a maximum emission wavelength of 500 to 580 nm.
  • At least one region of the quantum dot emission layer may absorb blue light emitted from the light source and emit red light having a maximum emission wavelength of 600 to 660 nm.
  • a first electrode a second electrode provided opposite to the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers are formed using the quantum dot ink composition.
  • That the organic material layer is formed using the above-described quantum dot ink composition may mean, for example, that the organic material layer includes a photocured or thermally cured product of the above-described quantum dot ink composition.
  • the display device may be an organic light emitting diode (OLED), specifically an organic light emitting diode (OLED) including a blue light source.
  • OLED organic light emitting diode
  • OLED organic light emitting diode
  • the display device according to the present invention can be manufactured using materials and methods known in the art, except that at least one of the organic layers includes the quantum dot ink composition. Additionally, when the display device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the quantum dots are CdSe-based quantum dots with octadecylamine as a capping layer. (Product name: Nanodot-HE, Fine Lab, Korea) was used as a dispersion in isobornyl acrylate at a concentration of 20 mg/ml. The obtained composition was irradiated with UV light of 1000 mJ/cm 2 to prepare a quantum dot complex.
  • IBOA isobornyl acrylate
  • AA acrylic acid
  • the quantum dots were CdSe-based quantum dots (Product name: Nanodot-HE, Fine Labs, Inc.) with octadecylamine as a capping layer. Korea) was used as a dispersion in isobornyl acrylate at a concentration of 20 mg/ml.
  • the obtained composition was irradiated with UV light of 1000 mJ/cm 2 to prepare a quantum dot complex.
  • IBOA isobornyl acrylate
  • AA acrylic acid
  • a quantum dot ink composition was prepared by adding 30 g of encapsulated quantum dots containing the phosphor prepared in Preparation Example 1 and 2 g of photoinitiator to 100 g of acrylic binder resin. Based on a total content of 100 parts by weight of the ink composition, 0.2 parts by weight of phosphor was included.
  • a quantum dot ink composition was prepared by adding 30 g of the encapsulated quantum dots prepared in Preparation Example 2, 5 g of phosphor (ALONBRIGHT, Denka), and 2 g of photoinitiator to 100 g of acrylic binder resin. Based on a total content of 100 parts by weight of the ink composition, 3.65 parts by weight of phosphor was included.
  • a quantum dot ink composition was prepared by adding 30 g of the encapsulated quantum dots prepared in Preparation Example 2 and 2 g of the photoinitiator to 100 g of acrylic binder resin.
  • the quantum dot ink compositions prepared in Examples 1, 2, and Comparative Example 1 were applied to a thickness of about 15 ⁇ m on a glass substrate using a spin coater (Mikasa, Opticoat MS-A150, 800 rpm, 5 seconds), respectively. It was exposed to 1,500 mJ using a 395 nm UV exposure device under a nitrogen atmosphere. Afterwards, a 2cm The obtained coating film was dried (post-baked) in a nitrogen atmosphere drying furnace at 120°C for 30 minutes, and then the light absorption rate and light conversion rate were measured.
  • a spin coater Moikasa, Opticoat MS-A150, 800 rpm, 5 seconds
  • the optical conversion rate was measured with a HAMAMATSU integrating sphere film type measuring device. After loading the coating film coated with the quantum dot composition, blue light of 450 nm was applied to the coating film, and all green light emitted in the upward omnidirectional direction was absorbed and calculated as an integral value. Light conversion rate (Green/Blue) was measured by the increase in the green light absorption peak compared to the decrease in the blue light absorption peak.
  • the cured film containing the quantum dot ink compositions of Examples 1 and 2 was confirmed to have excellent optical properties with a light absorption rate of 98% or more and a light conversion rate of 97% or more. Meanwhile, the quantum dot ink composition according to Comparative Example 1 showed a light absorption rate of 81.4% and a light conversion rate of 85%.
  • the present invention relates to a quantum dot ink composition, and can be applied to a quantum dot ink composition that improves color reproduction and has excellent light efficiency, devices using the same, and display elements containing the same.

Abstract

The present invention relates to a quantum dot ink composition that improves color gamut and has excellent light efficiency, a device using same, and a display device comprising same.

Description

양자점 잉크 조성물, 이를 이용한 장치 및 이를 포함하는 디스플레이 소자Quantum dot ink composition, device using the same, and display device containing the same
관련 출원(들)과의 상호 인용Cross-Citation with Related Application(s)
본 출원은 2022년 10월 27일자 한국특허출원 제10-2022-0139970호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2022-0139970, dated October 27, 2022, and all contents disclosed in the document of the Korean Patent Application are included as part of this specification.
본 발명은 양자점 잉크 조성물에 관한 것으로서, 보다 상세하게는 색 재현율을 향상시키고 우수한 광효율을 가지는 양자점 잉크 조성물, 이를 이용한 장치 및 이를 포함하는 디스플레이 소자에 관한 것이다.The present invention relates to a quantum dot ink composition, and more specifically, to a quantum dot ink composition that improves color reproduction and has excellent light efficiency, a device using the same, and a display device containing the same.
양자점(QD: Quantum Dot)은 수 나노미터 크기를 갖는 초미세 반도체 입자를 말한다. 상기 양자점은 빛에 노출되면 불안정한 상태의 전자가 전도대에서 가전자대로 내려오면서 특정 파장의 빛을 방출한다. Quantum dots (QDs) are ultrafine semiconductor particles with a size of several nanometers. When the quantum dot is exposed to light, electrons in an unstable state descend from the conduction band to the valence band and emit light of a specific wavelength.
통상 양자점은 입자가 작을수록 짧은 파장의 빛이 발생하고, 입자가 클수록 긴 파장의 빛을 방출한다. 따라서 양자점의 크기를 조절하면 원하는 파장의 가시광선을 표현하고, 여러 크기의 양자점을 이용하여 다양한 색을 동시에 구현할 수도 있다. 따라서, 양자점의 크기를 제어하여 원하는 천연색을 구현할 수 있으며, 색 재현율이 좋고 휘도 또한 양호하여 차세대 광원으로 주목받고 있다.Typically, the smaller the quantum dot particle, the shorter the wavelength of light it emits, and the larger the particle, the longer the wavelength of light it emits. Therefore, by adjusting the size of the quantum dots, visible light of the desired wavelength can be expressed, and various colors can be realized simultaneously using quantum dots of various sizes. Therefore, the desired natural color can be achieved by controlling the size of the quantum dots, and the color reproduction rate is good and the brightness is also good, so it is attracting attention as a next-generation light source.
한편, 자발광 디스플레이인 양자점 디스플레이(QD Display)는 크게 세가지 층으로 나뉘는데, 적층 순서대로 기판; 발광원층 및 양자점 발광층으로 구성되며, 예를 들어, 전자회로인 TFT층, 청색 빛을 내는 발광원층 및 발광원인 청색 빛을 적색 및 녹색으로 전환해 빛을 내는 양자점 발광층으로 구성될 수 있다.Meanwhile, a quantum dot display (QD display), a self-luminous display, is largely divided into three layers, in the order of stacking: substrate; It is composed of a light emitting source layer and a quantum dot light emitting layer. For example, it may be composed of a TFT layer that is an electronic circuit, a light emitting source layer that emits blue light, and a quantum dot light emitting layer that converts blue light, which is a light emitting source, into red and green to emit light.
상기 양자점 디스플레이는 다른 컬러에 비해 고 에너지 파장대인 청색 광원을 발광원으로 활용하며, 발광원에서 발생한 청색 빛이 자발광층인 양자점 발광층에 도달하여 청색 광원의 에너지를 받아 양자점 소자가 스스로 색을 전환해 적색 및 녹색의 빛으로 발광하게 된다.The quantum dot display uses a blue light source, which has a higher energy wavelength compared to other colors, as a light emitting source. The blue light generated from the light emitting source reaches the quantum dot emitting layer, which is a self-emitting layer, and the quantum dot element changes color on its own by receiving energy from the blue light source. It emits red and green light.
이때, 양자점 발광층에서 청색의 빛을 양자점이 모두 흡수하여 발광하는 경우 이론상 색 재현율이 100%이나, 실제로는 양자점이 청색 빛을 완벽하게 흡수하지 않아 일부 청색광이 누출될 수 있으며, 이 경우 색 재현율이 떨어지게 된다.At this time, if the quantum dots absorb and emit all of the blue light in the quantum dot emitting layer, the theoretical color gamut is 100%, but in reality, the quantum dots do not completely absorb blue light, so some blue light may leak, and in this case, the color gamut may be lowered. It falls.
이러한 청색광 누출을 줄이는 한가지 방법으로 양자점의 농도를 증가시키는 방법이 있으나, 양자점의 농도가 지나치게 높아지면 서로 간의 뭉침 현상 등이 발생하여 광효율이 저하되고, 디스플레이의 수명이 저하되는 문제가 있을 수 있다.One way to reduce blue light leakage is to increase the concentration of quantum dots. However, if the concentration of quantum dots becomes too high, agglomeration occurs between them, which reduces luminous efficiency and reduces the lifespan of the display.
따라서, 청색광 누출을 최소화하여 색 재현율을 향상시키기 위해 양자점 디스플레이에 적용하기 위한 새로운 잉크 조성물의 개발이 요구되고 있다.Therefore, there is a need to develop new ink compositions for application to quantum dot displays in order to improve color reproduction by minimizing blue light leakage.
본 발명은 색 재현율을 향상시키고 우수한 광효율을 가지는 양자점 잉크 조성물을 제공하기 위한 것이다.The present invention is to provide a quantum dot ink composition that improves color reproduction and has excellent light efficiency.
또한, 본 발명은 상기 잉크 조성물을 이용하여 형성된 장치를 제공하기 위한 것이다.Additionally, the present invention is to provide a device formed using the ink composition.
또한, 본 발명은 상기 잉크 조성물을 이용하여 형성된 디스플레이 소자를 제공하기 위한 것이다.Additionally, the present invention is to provide a display device formed using the ink composition.
상기 목적을 달성하기 위하여, 본 발명은 바인더 수지; 캡슐화 수지로 캡슐화된 양자점; 및 형광체를 포함하는, 양자점 잉크 조성물을 제공한다.In order to achieve the above object, the present invention includes a binder resin; Quantum dots encapsulated in an encapsulating resin; and a phosphor, providing a quantum dot ink composition.
이때, 상기 형광체는 상기 캡슐화 수지로 캡슐화된 양자점 내에 포함될 수 있다. At this time, the phosphor may be included in the quantum dots encapsulated with the encapsulation resin.
또는, 상기 형광체는 상기 바인더 수지에 분산될 수 있다.Alternatively, the phosphor may be dispersed in the binder resin.
상기 형광체는 무기형광체 및 유기형광체 중에서 선택된 1종 이상을 포함할 수 있다.The phosphor may include one or more types selected from inorganic phosphors and organic phosphors.
상기 형광체는 상기 양자점 잉크 조성물 총 100 중량부 함량 기준으로 0.1 내지 20 중량부로 포함될 수 있다. The phosphor may be included in an amount of 0.1 to 20 parts by weight based on a total content of 100 parts by weight of the quantum dot ink composition.
상기 바인더 수지는 아크릴계 수지, 스티렌-아크릴계 공중합 수지, 스티렌계 수지, 스티렌-아크릴로니트릴계 수지, 폴리카보네이트 수지, 사이클릭올레핀계 수지, 및 폴리노르보르넨 수지로 이루어진 군에서 선택된 1종 이상일 수 있다.The binder resin may be one or more selected from the group consisting of acrylic resin, styrene-acrylic copolymer resin, styrene resin, styrene-acrylonitrile resin, polycarbonate resin, cyclic olefin resin, and polynorbornene resin. there is.
상기 바인더 수지는 상기 양자점 잉크 조성물 총 100 중량부 함량 기준으로 5 내지 90 중량부로 포함될 수 있다.The binder resin may be included in an amount of 5 to 90 parts by weight based on a total content of 100 parts by weight of the quantum dot ink composition.
상기 캡슐화 수지는 가교화된 아크릴계 수지, 및 가교화된 실리콘계 수지 중에서 선택된 1종 이상을 포함할 수 있다.The encapsulation resin may include at least one selected from crosslinked acrylic resin and crosslinked silicone resin.
상기 캡슐화 수지는 광경화형 또는 열경화형 수지일 수 있다.The encapsulating resin may be a photo-curable or thermo-curable resin.
상기 양자점 잉크 조성물은 광확산제를 더 포함할 수 있다.The quantum dot ink composition may further include a light diffuser.
상기 광확산제는 실리카, 탈크, 티타니아, 산화칼슘, 산화아연, 및 알루미나를 포함하는 무기계 입자; 폴리(메타)아크릴계, 폴리스티렌계, 실리콘계, 폴리우레탄계, 에폭시계 수지가 가교 또는 미가교 유기계 입자; 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.The light diffuser may include inorganic particles including silica, talc, titania, calcium oxide, zinc oxide, and alumina; Poly(meth)acrylic, polystyrene, silicone, polyurethane, and epoxy resins are crosslinked or uncrosslinked organic particles; and it may include one or more selected from the group consisting of combinations thereof.
또한, 본 발명은 기판; 기판 상에 배치된 발광원층; 및 상기 발광원층으로부터 방출된 발광원의 경로에 배치된 양자점 발광층;을 포함하고, 상기 양자점 발광층의 적어도 일 영역이 상기 양자점 잉크 조성물을 이용하여 형성된 장치를 제공한다.In addition, the present invention relates to a substrate; A light emitting source layer disposed on a substrate; and a quantum dot light emitting layer disposed in a path of the light emitting source emitted from the light emitting source layer, wherein at least one region of the quantum dot light emitting layer is formed using the quantum dot ink composition.
상기 발광원은 유기 발광 다이오드(OLED) 또는 발광 다이오드(LED)이고, 최대 발광 파장이 400 nm 내지 490 nm인 청색광을 방출할 수 있다.The light emitting source is an organic light emitting diode (OLED) or a light emitting diode (LED), and can emit blue light with a maximum emission wavelength of 400 nm to 490 nm.
상기 양자점 발광층의 적어도 일 영역이 상기 양자점 잉크 조성물을 이용하여 형성되고, 상기 영역이 상기 발광원층으로부터 방출된 청색광을 흡수하고 청색 이외의 가시광을 방출할 수 있다.At least one region of the quantum dot light emitting layer is formed using the quantum dot ink composition, and the region may absorb blue light emitted from the light emitting source layer and emit visible light other than blue.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 양자점 잉크 조성물을 이용하여 형성된 디스플레이 소자를 제공한다.In addition, the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers are formed using the quantum dot ink composition.
본 발명에 따르면 색 재현율을 향상시키고 우수한 광효율을 가지는 양자점 잉크 조성물을 제공할 수 있다.According to the present invention, it is possible to provide a quantum dot ink composition that improves color reproduction and has excellent light efficiency.
또한, 본 발명에 따르면 상기 잉크 조성물을 이용하여 형성된 장치를 제공할 수 있다.Additionally, according to the present invention, a device formed using the ink composition can be provided.
또한, 본 발명에 따르면 상기 잉크 조성물을 이용하여 형성된 디스플레이 소자를 제공할 수 있다.Additionally, according to the present invention, a display device formed using the ink composition can be provided.
도 1은 본 발명에 따른 양자점 잉크 조성물에서 형광체가 캡슐화 수지로 캡슐화된 양자점 내에 포함된 모습을 도시한 단면도이다.Figure 1 is a cross-sectional view showing a phosphor included in a quantum dot encapsulated with an encapsulating resin in the quantum dot ink composition according to the present invention.
도 2는 본 발명에 따른 양자점 잉크 조성물에서 형광체가 캡슐화 수지로 캡슐화된 양자점과 함께 바인더 수지에 분산된 모습을 도시한 단면도이다.Figure 2 is a cross-sectional view showing the phosphor dispersed in the binder resin together with the quantum dots encapsulated in the encapsulating resin in the quantum dot ink composition according to the present invention.
본 발명의 일 구현 예에 따르면, 바인더 수지; 캡슐화 수지로 캡슐화된 양자점; 및 형광체를 포함하고, 상기 형광체는 상기 캡슐화 수지로 캡슐화된 양자점 내에 포함되고, 상기 형광체는 상기 양자점 잉크 조성물 총 100 중량부 함량 기준으로 0.1 내지 20 중량부로 포함되며, 상기 양자점의 평균 입경은 1nm 내지 20nm이고, 상기 형광체의 입자 크기는 1nm 내지 20nm인, 양자점 잉크 조성물을 제공한다.According to one embodiment of the present invention, a binder resin; Quantum dots encapsulated in an encapsulating resin; and a phosphor, wherein the phosphor is included in the quantum dot encapsulated with the encapsulation resin, the phosphor is included in an amount of 0.1 to 20 parts by weight based on a total content of 100 parts by weight of the quantum dot ink composition, and the average particle diameter of the quantum dot is 1 nm to 1 nm. 20nm, and the particle size of the phosphor is 1nm to 20nm, providing a quantum dot ink composition.
이하, 본 발명의 구현 예에 따른 양자점 잉크 조성물, 이를 이용한 장치 및 이를 포함하는 디스플레이 소자에 대해 설명하기로 한다.Hereinafter, a quantum dot ink composition according to an embodiment of the present invention, a device using the same, and a display device including the same will be described.
본 명세서에서 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 통상의 기술자들에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 발명에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.Unless otherwise defined in this specification, all technical and scientific terms have the same meaning as commonly understood by those skilled in the art to which the present invention pertains. The terminology used in the description herein is merely to effectively describe specific embodiments and is not intended to limit the invention.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.As used herein, singular forms include plural forms unless phrases clearly indicate the contrary.
본 명세서에서 사용되는 '포함'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.As used herein, the meaning of 'comprise' is to specify a specific characteristic, area, integer, step, operation, element and/or component, and to specify another specific property, area, integer, step, operation, element, component and/or group. It does not exclude the existence or addition of .
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 상기 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can make various changes and take various forms, specific embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope above.
본 명세서에서, 예를 들어 '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.In this specification, for example, when the positional relationship between two parts is described as 'on top', 'on top', 'on the bottom', 'next to', etc., it is called 'immediately' or 'directly'. One or more other parts may be placed between the two parts unless an expression is used.
본 명세서에서, 예를 들어 '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.In this specification, for example, when a temporal relationship is described as 'after', 'successfully', 'next to', 'before', etc., the expressions 'immediately' or 'directly' are not used. Cases that are not consecutive may also be included.
본 명세서에서 '적어도 하나'의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다.In this specification, the term 'at least one' should be understood to include all possible combinations from one or more related items.
발명의 일 구현 예에 따르면, 바인더 수지; 캡슐화 수지로 캡슐화된 양자점; 및 형광체를 포함하는, 양자점 잉크 조성물이 제공된다. 이를 통해, 상기 잉크 조성물을 이용하여 형성된 장치 및 디스플레이 소자에서 청색광 누출 문제를 최소화할 수 있으며, 이에 따라 색 재현율 및 광효율이 향상될 수 있다.According to one embodiment of the invention, a binder resin; Quantum dots encapsulated in an encapsulating resin; And a quantum dot ink composition comprising a phosphor is provided. Through this, blue light leakage problems can be minimized in devices and display elements formed using the ink composition, and color reproduction rate and light efficiency can be improved accordingly.
본 발명에서 캡슐화 수지에 의해 캡슐화된 양자점이라 함은, 종래 "캡슐"이 의미하는 "단순 코팅 또는 도막과 같은 코팅층"의 형태는 아니며, 복수개의 양자점이 가교화된 캡슐화 수지 내부에 분산된 상태로 존재하는 것을 의미한다.In the present invention, the quantum dots encapsulated by the encapsulating resin are not in the form of a “simple coating or coating layer such as a coating film” as defined by the conventional “capsule”, but are in a state in which a plurality of quantum dots are dispersed inside the crosslinked encapsulating resin. It means to exist.
상술한 바와 같이 양자점 디스플레이는 청색 광원을 발광원으로 활용하며, 발광원층 상부에 양자점 발광층이 위치하고, 상기 양자점 발광층은 격벽에 의해 구획된 복수의 공간 영역으로 이루어진다. 이때, 상기 복수의 공간 영역의 적어도 일 영역은 소정의 잉크 조성물을 포함하여 적색 및 녹색의 빛으로 발광하고, 나머지 영역은 잉크 조성물을 포함하지 않아 청색 빛이 그대로 발광하게 되는데, 잉크 조성물을 포함하여 형성된 영역은 상기 잉크 조성물 내에 포함된 양자점이 청색 광원의 에너지를 받아 스스로 색을 전환해 흡수하고 청색 이외의 가시광(적색 및 녹색)으로 발광하게 된다. As described above, the quantum dot display utilizes a blue light source as a light emitting source, and a quantum dot light emitting layer is located on top of the light emitting source layer, and the quantum dot light emitting layer consists of a plurality of spatial regions partitioned by partitions. At this time, at least one region of the plurality of spatial regions contains a predetermined ink composition and emits red and green light, and the remaining region does not contain the ink composition and emits blue light as is. The formed area absorbs the energy of the blue light source by receiving the energy of the blue light source and emits visible light (red and green) other than blue.
이때, 상기 잉크 조성물 내에 포함된 양자점이 청색 광원의 에너지를 모두 흡수하여 적색 또는 녹색으로 발광하는 것이 가장 바람직하나, 실제로는 양자점이 청색 광원 에너지의 일부를 흡수하지 못해 일부 청색광이 누출될 수 있으며, 이 경우 색 재현율이 떨어지게 된다.At this time, it is most desirable for the quantum dots included in the ink composition to absorb all of the energy of the blue light source and emit red or green light. However, in reality, the quantum dots cannot absorb part of the energy of the blue light source, so some blue light may leak, In this case, the color reproduction rate decreases.
이에, 본 발명자들은 청색광 누출을 최소화할 수 있는 새로운 방법을 연구하여, 바인더 수지 및 캡슐화 수지로 캡슐화된 양자점을 포함하는 잉크 조성물에 소정의 형광체를 첨가하는 경우, 상기 형광체가 청색 파장대의 빛을 추가적으로 흡수하여 청색광 누출을 감소시켜 우수한 색 재현율을 구현할 수 있다는 것을 확인하고 본 발명을 완성하였다.Accordingly, the present inventors studied a new method to minimize blue light leakage, and when adding a predetermined phosphor to an ink composition containing quantum dots encapsulated with a binder resin and an encapsulating resin, the phosphor additionally emits light in the blue wavelength range. The present invention was completed after confirming that excellent color reproduction can be realized by absorbing and reducing blue light leakage.
본 발명에 따르면, 상기 형광체는 양자점 잉크 조성물 내에 포함되어 캡슐화 수지로 캡슐화된 양자점에 영향을 미치지 않은 채 청색 파장대의 빛을 추가적으로 흡수하는 역할을 하는 것이므로, 상기 캡슐화된 양자점 내에 포함될 수도 있고, 캡슐화된 양자점과 함께 바인더 수지에 분산되어 포함될 수도 있다.According to the present invention, the phosphor is included in the quantum dot ink composition and serves to additionally absorb light in the blue wavelength range without affecting the quantum dots encapsulated with the encapsulation resin, so it may be included in the encapsulated quantum dots, and may be included in the encapsulated quantum dots. It may be dispersed and included in a binder resin along with quantum dots.
도 1은 본 발명에 따른 양자점 잉크 조성물에서 형광체가 캡슐화 수지로 캡슐화된 양자점 내에 포함된 모습을 도시한 단면도이다.Figure 1 is a cross-sectional view showing a phosphor included in a quantum dot encapsulated with an encapsulating resin in the quantum dot ink composition according to the present invention.
도 2는 본 발명에 따른 양자점 잉크 조성물에서 형광체가 캡슐화 수지로 캡슐화된 양자점과 함께 바인더 수지에 분산된 모습을 도시한 단면도이다.Figure 2 is a cross-sectional view showing the phosphor dispersed in the binder resin together with the quantum dots encapsulated in the encapsulating resin in the quantum dot ink composition according to the present invention.
즉, 상기 형광체는 양자점 잉크 조성물 내부에 포함됨으로써 청색 파장대의 빛을 흡수할 수 있으면 캡슐화된 양자점 내에 포함되던, 캡슐화 수지와 함께 바인더 수지에 분산되어 포함되던 상관없다. 다만, 광효율 측면에서 형광체가 캡슐화 수지로 캡슐화된 양자점 내에 포함되는 것이 보다 바람직 할 수 있다. That is, as long as the phosphor is included in the quantum dot ink composition and can absorb light in the blue wavelength range, it does not matter whether it is included in the encapsulated quantum dots or dispersed in the binder resin together with the encapsulation resin. However, in terms of light efficiency, it may be more desirable for the phosphor to be included in the quantum dots encapsulated with an encapsulation resin.
캡슐화 수지로 캡슐화된 양자점을 제조하는 방법은 추후 상세히 설명하겠지만, 예를 들어, 극성 용매 및 비극성 용액에 캡슐화 수지용 전구체, 양자점 등을 첨가하여 조성물을 제조 후, 상기 조성물에 광 또는 열을 조사하여 가교를 수행하여 양자점을 캡슐화하여 제조할 수 있다.The method of manufacturing quantum dots encapsulated with encapsulation resin will be described in detail later, but for example, after preparing a composition by adding precursors for encapsulation resin, quantum dots, etc. to a polar solvent and a non-polar solution, the composition is irradiated with light or heat. It can be manufactured by encapsulating quantum dots by performing crosslinking.
이때, 캡슐 내에 양자점을 과도하게 넣을 경우, 양자점 입자 사이에 거리가 서로 지나치게 가까워져서 양자점끼리 뭉치는 현상이 발생할 수 있으므로, 캡슐 내에 포함되는 양자점의 농도를 조절하여 최대 효율을 내는 양자점을 투입하고, 나머지는 용매, 기타 첨가물 등으로 채워 캡슐화된 양자점을 제조하게 된다. At this time, if the quantum dots are excessively placed in the capsule, the distance between the quantum dot particles becomes too close to each other, which may cause the quantum dots to agglomerate. Therefore, the concentration of the quantum dots contained in the capsule is adjusted to produce the maximum efficiency. The remainder is filled with solvents and other additives to produce encapsulated quantum dots.
한편, 형광체를 캡슐화 수지로 캡슐화된 양자점 내에 포함되도록 하기 위해서는 캡슐화된 양자점이 최대 효율을 내도록 캡슐 내에 투입되는 양자점의 농도는 그대로 유지한 채, 형광체를 추가 투입함으로써 제조할 수 있다.Meanwhile, in order to include the phosphor in the quantum dots encapsulated with an encapsulation resin, the encapsulated quantum dots can be manufactured by additionally adding the phosphor while maintaining the concentration of the quantum dots in the capsule to achieve maximum efficiency.
이와 같이 형광체가 캡슐화 수지로 캡슐화된 양자점 내에 포함되는 경우, 양자점의 농도는 줄어들지 않고 유지한 채로 형광체가 추가 첨가되어 청색광이 추가 흡수되기 때문에 색 재현율이 향상됨과 동시에 광효율도 극대화시킬 수 있다.In this way, when the phosphor is included in the quantum dots encapsulated with the encapsulation resin, the concentration of the quantum dots is maintained without being reduced, and additional blue light is absorbed by adding the phosphor, thereby improving color reproduction and maximizing light efficiency.
상기 캡슐화 수지로 캡슐화된 양자점의 제조방법은 추후 보다 상세하게 설명하기로 한다. The method for manufacturing quantum dots encapsulated with the encapsulation resin will be described in more detail later.
한편, 상기 형광체는 양자점 잉크 조성물 내에서 상기 바인더 수지에 분산되어 포함될 수도 있다.Meanwhile, the phosphor may be dispersed and included in the binder resin within the quantum dot ink composition.
예를 들어, 상기 형광체의 입경이 캡슐화된 양자점 내에 포함될 수 있을 정도로 작은 경우에는, 캡슐화 수지로 캡슐화된 양자점 내에 형광체를 포함시킬 수 있으나, 상기 형광체의 입경이 캡슐화된 양자점 내에 포함될 수 있을 정도로 작지 않은 경우에는, 상기 형광체를 바인더 수지에 캡슐화 수지로 캡슐화된 양자점과 함께 분산시켜 양자점 잉크 조성물을 제조할 수도 있다.For example, if the particle size of the phosphor is small enough to be included in the encapsulated quantum dots, the phosphor may be included in the quantum dots encapsulated with an encapsulation resin, but the particle size of the phosphor is not small enough to be included in the encapsulated quantum dots. In this case, a quantum dot ink composition may be prepared by dispersing the phosphor in a binder resin together with quantum dots encapsulated in an encapsulation resin.
이 경우에도 상기 양자점 잉크 조성물이 형광체를 포함함으로써, 청색광 누출을 감소시켜 상기 잉크 조성물을 이용하여 디스플레이를 제조하는 경우, 종래보다 우수한 색 재현율을 구현할 수 있다.In this case as well, since the quantum dot ink composition includes a phosphor, blue light leakage is reduced, and when a display is manufactured using the ink composition, a color reproduction rate superior to that of the prior art can be realized.
따라서, 상기 형광체의 입경 크기는 제한이 없으며, 나노미터 수준인 경우뿐만 아니라, 마이크로미터 수준인 경우에도 본원의 양자점 잉크 조성물에 포함될 수 있다.Therefore, the particle size of the phosphor is not limited, and can be included in the quantum dot ink composition of the present application not only at the nanometer level but also at the micrometer level.
한편, 상기 형광체가 상기 캡슐화 수지로 캡슐화된 양자점 내에 포함되는 경우에는 상기 형광체의 입자 크기는 1nm 내지 20 nm 인 것이 바람직하다.Meanwhile, when the phosphor is included in quantum dots encapsulated with the encapsulation resin, the particle size of the phosphor is preferably 1 nm to 20 nm.
상기 형광체는 단독으로 사용될 수도 있고, 또는 2종 이상이 혼합하여 사용될 수도 있다. The above phosphors may be used individually, or two or more types may be mixed.
상기 형광체는 녹색 형광체, 적색 형광체 등 통상의 형광체가 사용될 수 있으며, 상기 녹색 형광체 또는 적색 형광체는 통상 발광 다이오드에서 사용되는 것이라면 특별한 제한없이 사용될 수 있다.The phosphor may be a conventional phosphor such as a green phosphor or a red phosphor, and the green phosphor or red phosphor may be used without particular limitation as long as it is commonly used in a light emitting diode.
구체적으로, 상기 형광체는 500 내지 580 nm에서 최대 발광 파장을 가지는 녹색 형광체일 수 있다.Specifically, the phosphor may be a green phosphor with a maximum emission wavelength of 500 to 580 nm.
또는, 상기 형광체는 600 내지 660 nm에서 최대 발광 파장을 가지는 적색 형광체일 수 있다.Alternatively, the phosphor may be a red phosphor with a maximum emission wavelength of 600 to 660 nm.
한편, 상기 형광체는 무기형광체 및 유기형광체 중에서 선택된 1종 이상을 포함할 수 있다. Meanwhile, the phosphor may include one or more types selected from inorganic phosphors and organic phosphors.
예를 들어, 상기 무기형광체는 산화물 기반 형광체, 실리케이트 기반 형광체, 포스페이트 기반 형광체, 보레이트 기반 형광체, 알루미네이트 기반 형광체, 갈레이트 기반 형광체, 몰리브데이트 기반 형광체, 텅스테이트 기반 형광체, 플루오라이드 기반 형광체, 설파이드 기반 형광체, 니트라이드 기반 및 옥시니트라이드 기반 형광체 및 설포셀레나이드 기반 형광체로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. For example, the inorganic phosphor includes oxide-based phosphor, silicate-based phosphor, phosphate-based phosphor, borate-based phosphor, aluminate-based phosphor, gallate-based phosphor, molybdate-based phosphor, tungstate-based phosphor, fluoride-based phosphor, It may include one or more types selected from the group consisting of sulfide-based phosphors, nitride-based and oxynitride-based phosphors, and sulphoselenide-based phosphors.
상기 산화물 기반 형광체는 (Y, Gd, La)2O3:(Eu, Sm, Ce, Bi); (Y, Gd, La)O2S:(Eu, Sm, Ce, Bi); (Y, Gd, La)VO4(Eu, Sm, Ce, Bi); 2SrO·0.84P2O5·0.16B2O3:Eu; SrLa2BeO5:Ce; 0.82BaO·6Al2O3:Eu; 1.29BaO·6Al2O3:Eu; (Ca, Zn)2GeO4:Mn; 및 (Tb(1-X-Y)(Y, La, Gd, Sm)X(Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu)Y)3(Al, Ga, In)2 O12를 포함할 수 있다.The oxide-based phosphor is (Y, Gd, La) 2 O 3 :(Eu, Sm, Ce, Bi); (Y, Gd, La)O 2 S:(Eu, Sm, Ce, Bi); (Y, Gd, La)VO 4 (Eu, Sm, Ce, Bi); 2SrO·0.84P 2 O 5 ·0.16B 2 O 3 :Eu; SrLa 2 BeO 5 :Ce; 0.82BaO·6Al 2 O 3 :Eu; 1.29BaO·6Al 2 O 3 :Eu; (Ca, Zn) 2 GeO 4 :Mn; and (Tb (1-XY) (Y, La , Gd , Sm) , In) 2 O 12 may be included.
상기 실리케이트 기반 형광체는 (Mg, Ba, Sr, Ca, Zn)2SiO4:(Eu, Ce, Mn, Ti, Pb, Sn, Li, Pr); (Mg, Ba, Sr, Ca)SiO4:Eu, Ce, Mn, Ti, Pb, Sn, Li, Pr; (Mg, Ba, Sr, Ca)SiO5:Eu, Ce, Mn, Ti, Pb, Sn, Li, Pr; ZrSiO4:Pr; Ca3Sc2Si3O12:Ce; Y2SiO5:Tb; Y2Si2O7:Tb; CaMgSiO:Ce; Ca2MgSi2O7:Ce; (Ca, Sr)2Al2SiO7:Ce; SrAl2Si2O8:Eu; CaMgSi2O6:Eu; SrAl10SiO20:Eu; Sr3MgSi2O8:Eu; Sr1.3Mg0.7SiO4:Eu; (Ba, Sr, Ca)3MgSi2O8:Eu; Y2SiO5:Ce; Sr2Si3O8·2SrCl2:Eu; BaSi2O5:Eu; 및 Sr3MgSi2O7:Eu를 포함할 수 있다.The silicate-based phosphor is (Mg, Ba, Sr, Ca, Zn) 2 SiO 4 : (Eu, Ce, Mn, Ti, Pb, Sn, Li, Pr); (Mg, Ba, Sr, Ca)SiO 4 :Eu, Ce, Mn, Ti, Pb, Sn, Li, Pr; (Mg, Ba, Sr, Ca)SiO 5 :Eu, Ce, Mn, Ti, Pb, Sn, Li, Pr; ZrSiO 4 :Pr; Ca 3 Sc 2 Si 3 O 12 :Ce; Y 2 SiO 5 :Tb; Y 2 Si 2 O 7 :Tb; CaMgSiO:Ce; Ca 2 MgSi 2 O 7 :Ce; (Ca, Sr) 2 Al 2 SiO 7 :Ce; SrAl 2 Si 2 O 8 :Eu; CaMgSi 2 O 6 :Eu; SrAl 10 SiO 20 :Eu; Sr 3 MgSi 2 O 8 :Eu; Sr 1.3 Mg 0.7 SiO 4 :Eu; (Ba, Sr, Ca) 3 MgSi 2 O 8 :Eu; Y 2 SiO 5 :Ce; Sr 2 Si 3 O 8 ·2SrCl 2 :Eu; BaSi 2 O 5 :Eu; and Sr 3 MgSi 2 O 7 :Eu.
상기 포스페이트 기반 형광체는 Zn2(PO4)2:Mn; (Mg, Ba, Ca, Sr)5(PO4)3Cl:(Eu, Sm, Ce); 및 (Sr, Ca, Eu)10(PO4)6Cl2·0.24B2O3을 포함할 수 있다. The phosphate-based phosphor is Zn 2 (PO 4 ) 2 :Mn; (Mg, Ba, Ca, Sr) 5 (PO 4 ) 3 Cl:(Eu, Sm, Ce); and (Sr, Ca, Eu) 10 (PO 4 ) 6 Cl 2 ·0.24B 2 O 3 .
상기 보레이트 기반 형광체는 (Y, Gd, La, Lu)BO3:Eu, Sm, Ce, Bi; Y(Mg, Ba, Ca, Sr)3(Al, Ga, In)3B4O15:Eu; 및 YCa3Ga3B4O15:Eu를 포함할 수 있다. The borate-based phosphor is (Y, Gd, La, Lu)BO 3 :Eu, Sm, Ce, Bi; Y(Mg, Ba, Ca, Sr) 3 (Al, Ga, In) 3 B 4 O 15 :Eu; and YCa 3 Ga 3 B 4 O 15 :Eu.
상기 알루미네이트 기반 형광체는 (Y, Gd)3Al5O12:(Eu, Ce, Pr); (Mg, Ba, Ca, Sr)MgAl10O17:(Eu, Mn); (Ca, Mg, Ba, Zn)Al2O4:(Mn, Eu, Dy); (Ba, Mg, Ca, Sr)MgAl14O23:Mn, Eu; (Mg, Ba, Ca, Sr)Al12O19:Mn; 및 BaMg2Al16O27:Eu,Mn을 포함할 수 있다. The aluminate-based phosphor is (Y, Gd) 3 Al 5 O 12 :(Eu, Ce, Pr); (Mg, Ba, Ca, Sr)MgAl 10 O 17 :(Eu, Mn); (Ca, Mg, Ba, Zn)Al 2 O 4 :(Mn, Eu, Dy); (Ba, Mg, Ca, Sr)MgAl 14 O 23 :Mn, Eu; (Mg, Ba, Ca, Sr)Al 12 O 19 :Mn; and BaMg 2 Al 16 O 27 :Eu,Mn.
상기 갈레이트 기반 형광체는 (Y, Gd)3Ga5O12:(Eu, Ce, Pr); (Ca, Mg, Ba, Zn)Ga2O4:(Mn, Eu, Dy); ZnGa2O4:Mn; 및 (Li0.5Ga0.5)0.5Zn0.5Ga2O4를 포함할 수 있다.The gallate-based phosphor is (Y, Gd) 3 Ga 5 O 12 :(Eu, Ce, Pr); (Ca, Mg, Ba, Zn)Ga 2 O 4 :(Mn, Eu, Dy); ZnGa 2 O 4 :Mn; and (Li 0.5 Ga 0.5 ) 0.5 Zn 0.5 Ga 2 O 4 .
상기 몰리브데이트 기반 형광체는 (Li, K, Na, Ag)Eu(1-X)(Y, La, Gd)XMo2O8 및 (Li, K, Na, Ag)Eu(1-X)(Y, La, Gd)XMo2O8:Sm을 포함할 수 있다. The molybdate-based phosphor is (Li, K, Na , Ag ) Eu (1 - X) (Y, La, Gd ) (Y, La, Gd) X Mo 2 O 8 :Sm.
상기 텅스테이트 기반 형광체는 (Li, K, Na, Ag)Eu(1-X)(Y, La, Gd)XW2O8; (Li, K, Na, Ag)Eu(1-X)(Y, La, Gd)XW2O8:Sm; 및 CaWO4:Tb,Pb를 포함할 수 있다. The tungstate - based phosphor is (Li, K, Na, Ag)Eu (1-X) ( Y , La, Gd ) (Li, K, Na, Ag)Eu ( 1 - X) ( Y , La, Gd) and CaWO 4 :Tb, Pb.
상기 플루오라이드 기반 형광체는 (KF, MgF2):Mn, MgF2:Mn, (Zn, Mg)F2:Mn; 3.5MgO·0.5MgF2·GeO2:Mn; 및 Mg4(F)(Ge, Sn)O6:Mn을 포함할 수 있다.The fluoride-based phosphor is (KF, MgF 2 ):Mn, MgF 2 :Mn, (Zn, Mg)F 2 :Mn; 3.5MgO·0.5MgF 2 ·GeO 2 :Mn; and Mg 4 (F)(Ge, Sn)O 6 :Mn.
상기 설파이드 기반 형광체는 (Be, Mg, Ca, Sr, Ba, Zn)S:(Eu, Ce, Cu, Ag, Al, Au, Tb, Cl, Pr, Mn, Bi); (Be, Mg, Ca, Sr, Ba, Zn)(Al, Ga, In, Y, La, Gd)2S4:(Eu, Ce, Cu, Ag, Al, Tb, Cl, Pr, Mn); (Mg, Ca, Sr, Ba)2(Zn, Si, Ge, Sn)S3:Eu; 및 (Mg, Ca, Sr, Ba)2(Al, Ga, In, Y, La, Ga)2S3:Eu를 포함할 수 있다.The sulfide-based phosphor is (Be, Mg, Ca, Sr, Ba, Zn)S:(Eu, Ce, Cu, Ag, Al, Au, Tb, Cl, Pr, Mn, Bi); (Be, Mg, Ca, Sr, Ba, Zn)(Al, Ga, In, Y, La, Gd) 2 S 4 :(Eu, Ce, Cu, Ag, Al, Tb, Cl, Pr, Mn); (Mg, Ca, Sr, Ba) 2 (Zn, Si, Ge, Sn)S 3 :Eu; and (Mg, Ca, Sr, Ba) 2 (Al, Ga, In, Y, La, Ga) 2 S 3 :Eu.
상기 니트라이드 기반 및 옥시니트라이드 기반 형광체는 Ca2Si5N8:Eu; SrSi2O2N2:Eu; CaAlSiN3:Eu; Si6AlON8 ; Si3N4-M2O3-CaO-AlN-Al2O3; LaSi3N5:Ce; 및 (Li,Ca,Mg,Y)Si12AlON16 : (Ce,P,Eu,Tb,Yb, Er, Dy)를 포함할 수 있다. The nitride-based and oxynitride-based phosphors include Ca 2 Si 5 N 8 :Eu; SrSi 2 O 2 N 2 :Eu; CaAlSiN 3 :Eu; Si 6 AlON 8 ; Si 3 N 4 -M 2 O 3 -CaO-AlN-Al 2 O 3 ; LaSi 3 N 5 :Ce; and (Li, Ca, Mg, Y) Si 12 AlON 16 : (Ce, P, Eu, Tb, Yb, Er, Dy).
상기 설포셀레나이드 기반 형광체는 (Be, Mg, Ca, Sr, Ba, Zn)SeXS1-X:(Eu, Ce, Cu, Ag, Al, Tb, Cl, Pr, Mn) 및 (Be, Mg, Ca, Sr, Ba, Zn)(Al, Ga, In, Y, La, Gd)2(SeXS1-X)4:(Eu, Ce, Cu, Ag, Al, Tb, Cl, Pr, Mn)을 포함할 수 있다.The sulphoselenide - based phosphor is (Be, Mg, Ca, Sr , Ba, Zn)Se Mg, Ca, Sr , Ba, Zn ) (Al, Ga, In, Y, La, Gd ) 2 (Se , Mn).
한편, 상기 유기형광체는 테트라페닐나프타센 (Tetraphenylnaphthacene) (루브린: Rubrene), 트리스(1-페닐이소퀴놀린)이리듐(III) (Ir(piq)3), 비스(2-벤조[b]티오펜-2-일-피리딘) (아세틸아세 토네이트)이리듐(III)(Ir(btp)2(acac)), 트리스(디벤조일메탄)펜안트롤린 유로퓸(III) (Eu(dbm)3(phen)), 트리스[4,4'-디-tert-부틸-(2,2')-비피리딘]루테늄(III)착물(Ru(dtb-bpy)3*2(PF6)), DCM1, DCM2, Eu (삼불화테노일 아세톤:thenoyltrifluoroacetone)3 (Eu(TTA)3, 부틸-6-(1,1,7,7-테트라메틸 줄로리딜-9-에닐)-4H-피란) (butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran: DCJTB) 및 (1,10-페난트롤린)-트리스-(4,4,4-트리플 루오로-1-(2-티에닐)-부탄-1,3-디오네이트)유로퓸(III) (1,10-Phenanthroline)tris[4,4,4-trifluoro-1-(2- thienyl)-1,3-butanedionato]europium(III) : Eu(TTA)3Phen)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. Meanwhile, the organic phosphor includes tetraphenylnaphthacene (Rubrene), tris(1-phenylisoquinoline)iridium(III) (Ir(piq) 3 ), and bis(2-benzo[b]thiophene. -2-yl-pyridine) (acetylacetonate) iridium (III) (Ir (btp) 2 (acac)), tris (dibenzoylmethane) phenanthroline europium (III) (Eu (dbm) 3 (phen) ), tris[4,4'-di-tert-butyl-(2,2')-bipyridine]ruthenium(III) complex (Ru(dtb-bpy)3*2(PF6)), DCM1, DCM2, Eu (thenoyltrifluoroacetone) 3 (Eu(TTA) 3 , butyl-6-(1,1,7,7-tetramethyl zuloridyl-9-enyl)-4H-pyran) (butyl-6- (1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran: DCJTB) and (1,10-phenanthroline)-tris-(4,4,4-trifluoro-1-(2 -thienyl)-butane-1,3-ionate)europium(III) (1,10-Phenanthroline)tris[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato]europium (III): It may contain one or more species selected from the group consisting of Eu(TTA) 3 Phen).
또는, 상기 유기형광체는 페닐렌(phenylene)계 화합물, 페닐렌 비닐렌(phenylene vinylene)계 화합물, 티오펜(thiophene)계 화합물, 플루오렌(fluorene)계 화합물 및 스피로플루오렌(spiro-fluorene)계 화합물과 같은 고분자와 질소를 포함하는 방향족 화합물 등을 포함할 수 있으나, 특별히 이에 제한되는 것은 아니다. Alternatively, the organic phosphor may be a phenylene-based compound, a phenylene vinylene-based compound, a thiophene-based compound, a fluorene-based compound, and a spiro-fluorene-based compound. It may include polymers such as compounds and aromatic compounds containing nitrogen, but is not particularly limited thereto.
한편, 상기 형광체는 상기 양자점 잉크 조성물 총 100 중량부 함량 기준으로 0.1 내지 20 중량부, 바람직하게는 0.2 내지 10 중량부로 포함될 수 있다.Meanwhile, the phosphor may be included in an amount of 0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, based on a total of 100 parts by weight of the quantum dot ink composition.
상술한 바와 같이 상기 형광체의 크기는 제한이 없으며, 상기 형광체가 캡슐화 수지로 캡슐화된 양자점 내에 포함되건 상기 바인더 수지에 분산되건 관계없이 양자점 잉크 조성물 총 함량을 기준으로 계산될 수 있다.As described above, the size of the phosphor is not limited, and can be calculated based on the total content of the quantum dot ink composition, regardless of whether the phosphor is included in quantum dots encapsulated with an encapsulation resin or dispersed in the binder resin.
상기 형광체의 함량이 상기 양자점 잉크 조성물 총 100 중량부 기준으로 0.1 중량부 미만으로 포함되는 경우 청색광의 흡수 효과가 미미하여 발광특성 저하로 인해 색 재현율 향상 효과가 거의 없을 수 있고, 상기 형광체의 함량이 상기 양자점 잉크 조성물 총 100 중량부 기준으로 20 중량부를 초과하여 포함되는 경우 양자점 잉크 조성물의 점도가 증가하고 광효율이 저하되는 문제점이 발생할 수 있다. If the content of the phosphor is less than 0.1 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition, the absorption effect of blue light may be minimal and there may be little effect of improving color reproduction due to a decrease in luminescence characteristics, and the content of the phosphor may be If it is included in more than 20 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition, problems such as increased viscosity of the quantum dot ink composition and decreased light efficiency may occur.
한편, 본 발명에 따른 양자점 잉크 조성물은 경화시 바인더 물질로 작용가능한 화합물로 바인더 수지를 포함한다.Meanwhile, the quantum dot ink composition according to the present invention includes a binder resin as a compound that can act as a binder material when cured.
구체적으로, 상기 바인더 수지는 아크릴계 수지, 스티렌-아크릴계 공중합 수지, 스티렌계 수지, 스티렌-아크릴로니트릴계 수지, 폴리카보네이트 수지, 사이클릭올레핀계 수지 및 폴리노르보르넨 수지로 이루어진 군에서 선택된 1종 이상일 수 있다. Specifically, the binder resin is one selected from the group consisting of acrylic resin, styrene-acrylic copolymer resin, styrene resin, styrene-acrylonitrile resin, polycarbonate resin, cyclic olefin resin, and polynorbornene resin. It could be more than that.
상기 아크릴계 수지는 아크릴계 올리고머, 아크릴계 단량체 및 이들의 조합으로 이루어진 1종 이상의 조성의 중합일 수 있다.The acrylic resin may be a polymerization of one or more compositions consisting of acrylic oligomers, acrylic monomers, and combinations thereof.
아크릴계 올리고머는 에폭시 아크릴레이트 수지일 수 있다.The acrylic oligomer may be an epoxy acrylate resin.
에폭시 아크릴레이트 수지는 에폭시 수지의 에폭사이드(epoxide)기가 아크릴기로 치환된 수지로, 예를 들면, 상기 에폭시 아크릴레이트 수지는 비스페놀-A 글리세롤레이트 디아크릴레이트(bisphenol A glycerolate diacrylate), 비스페놀-A 에톡실레이트 디아크릴레이트(bisphenol A ethoxylate diacrylate), 비스페놀-A 글리세롤레이트 디메타크릴레이트(bisphenol A glycerolate dimethacrylate), 비스페놀-A 에톡실레이트 디메타크릴레이트(bisphenol A ethoxylate dimethacrylate) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 일 수 있다. 에폭시 아크릴레이트 수지는 에폭시 수지와 마찬가지로 주쇄 특성으로 인해 낮은 투습율 과 투기율을 갖는다. Epoxy acrylate resin is a resin in which the epoxide group of the epoxy resin is replaced with an acrylic group. For example, the epoxy acrylate resin is bisphenol A glycerolate diacrylate, bisphenol A Consisting of bisphenol A ethoxylate diacrylate, bisphenol A glycerolate dimethacrylate, bisphenol A ethoxylate dimethacrylate, and combinations thereof. It can be any one selected from the group. Epoxy acrylate resin, like epoxy resin, has low moisture permeability and air permeability due to its main chain characteristics.
사용 가능한 아크릴계 단량체는 본 발명에서 특별히 한정하지 않으며, 공지된 바의 것이면 어느 것이든 사용할 수 있다. 대표적으로, 상기 아크릴계 단량체는 불포화기 함유 아크릴계 단량체, 아미노기 함유 아크릴계 단량체, 에폭시기 함유 아크릴계 단량체, 및 카르복실산기 함유 아크릴계 단량체로 이루어진 군에서 선택된 1종 이상의 단일 중합체 또는 공중합체가 사용될 수 있다.The acrylic monomer that can be used is not particularly limited in the present invention, and any known monomer can be used. Typically, the acrylic monomer may be one or more homopolymers or copolymers selected from the group consisting of an unsaturated group-containing acrylic monomer, an amino group-containing acrylic monomer, an epoxy group-containing acrylic monomer, and a carboxylic acid group-containing acrylic monomer.
불포화기 함유 아크릴계 단량체로는 메틸아크릴레이트, 메틸메타크릴레이트, 에틸아크릴레이트, 에틸메타크릴레이트, n-프로필아크릴레이트, n-프로필메타크릴레이트, i-프로필아크릴레이트, i-프로필메타크릴레이트, n-부틸아크릴레이트, n-부틸메타크릴레이트, i-부틸아크릴레이트, i-부틸메타크릴레이트, sec-부틸아크릴레이트, sec-부틸메타크릴레이트, t-부틸아크릴레이트, t-부틸메타크릴레이트, 2-히드록시에틸아크릴레이트, 2-히드록시에틸메타크릴레이트, 2-히드록시프로필아크릴레이트, 2-히드록시프로필메타크릴레이트, 3-히드록시프로필아크릴레이트, 3-히드록시프로필메타크릴레이트, 2-히드록시부틸아크릴레이트, 2-히드록시부틸메타크릴레이트, 3-히드록시부틸아크릴레이트, 3-히드록시부틸메타크릴레이트, 4-히드록시부틸아크릴레이트, 4-히드록시부틸메타크릴레이트, 알릴아크릴레이트, 알릴메타크릴레이트, 벤질아크릴레이트, 벤질메타크릴레이트, 시클로헥실아크릴레이트, 시클로헥실메타크릴레이트, 페닐아크릴레이트, 페닐메타크릴레이트, 2-메톡시에틸아크릴레이트, 2-메톡시에틸메타크릴레이트, 2-페녹시에틸아크릴레이트, 2-페녹시에틸메타크릴레이트, 메톡시디에틸렌글리콜아크릴레이트, 메톡시디에틸렌글리콜메타크릴레이트, 메톡시트리에틸렌글리콜아크릴레이트, 메톡시트리에틸렌글리콜메타크릴레이트, 메톡시프로필렌글리콜아크릴레이트, 메톡시프로필렌글리콜메타크릴레이트, 메톡시디프로필렌글리콜아크릴레이트, 메톡시디프로필렌글리콜메타크릴레이트, 이소보르닐아크릴레이트, 이소보르닐메타크릴레이트, 디시클로펜타디에틸아크릴레이트, 디시클로펜타디에틸메타크릴레이트, 2-히드록시-3-페녹시프로필아크릴레이트, 2-히드록시-3-페녹시프로필메타크릴레이트, 글리세롤모노아크릴레이트, 글리세롤모노메타크릴레이트 등이 가능하다.Acrylic monomers containing unsaturated groups include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, i-propyl acrylate, and i-propyl methacrylate. , n-butyl acrylate, n-butyl methacrylate, i-butyl acrylate, i-butyl methacrylate, sec-butyl acrylate, sec-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate Crylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl Methacrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 3-hydroxybutyl acrylate, 3-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxy Butyl methacrylate, allyl acrylate, allyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, phenyl acrylate, phenyl methacrylate, 2-methoxyethyl acrylate , 2-methoxyethyl methacrylate, 2-phenoxyethyl acrylate, 2-phenoxyethyl methacrylate, methoxydiethylene glycol acrylate, methoxydiethylene glycol methacrylate, methoxytriethylene glycol acrylate, Methoxytriethylene glycol methacrylate, methoxypropylene glycol acrylate, methoxypropylene glycol methacrylate, methoxydipropylene glycol acrylate, methoxydipropylene glycol methacrylate, isobornyl acrylate, isobornyl methacrylate Latex, dicyclopentadiethyl acrylate, dicyclopentadiethyl methacrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-hydroxy-3-phenoxypropyl methacrylate, glycerol monoacrylate , glycerol monomethacrylate, etc. are possible.
아미노기 함유 아크릴계 단량체로는 2-아미노에틸아크릴레이트, 2-아미노에틸메타크릴레이트, 2-디메틸아미노에틸아크릴레이트, 2-디메틸아미노에틸메타크릴레이트, 2-아미노프로필아크릴레이트, 2-아미노프로필메타크릴레이트, 2-디메틸아미노프로필아크릴레이트, 2-디메틸아미노프로필메타크릴레이트, 3-아미노프로필아크릴레이트, 3-아미노프로필메타크릴레이트, 3-디메틸아미노프로필아크릴레이트, 3-디메틸아미노프로필메타크릴레이트 등이 가능하다.Acrylic monomers containing amino groups include 2-aminoethyl acrylate, 2-aminoethyl methacrylate, 2-dimethylaminoethyl acrylate, 2-dimethylaminoethyl methacrylate, 2-aminopropyl acrylate, and 2-aminopropyl methacrylate. Crylate, 2-dimethylaminopropyl acrylate, 2-dimethylaminopropyl methacrylate, 3-aminopropyl acrylate, 3-aminopropyl methacrylate, 3-dimethylaminopropyl acrylate, 3-dimethylaminopropyl methacrylate Rates, etc. are possible.
에폭시기 함유 아크릴계 단량체로는 글리시딜 아크릴레이트, 글리시딜 메타아크릴레이트, 글리시딜옥시에틸 아크릴레이트, 글리시딜옥시에틸 메타아크릴레이트, 글리시딜옥시프로필 아크릴레이트, 글리시딜옥시프로필 메타아크릴레이트, 글리시딜옥시부틸 아크릴레이트, 글리시딜옥시부틸 메타아크릴레이트 등이 가능하다.Acrylic monomers containing epoxy groups include glycidyl acrylate, glycidyl methacrylate, glycidyloxyethyl acrylate, glycidyloxyethyl methacrylate, glycidyloxypropyl acrylate, and glycidyloxypropyl meta. Acrylate, glycidyloxybutyl acrylate, glycidyloxybutyl methacrylate, etc. are possible.
카르복실산기 함유 아크릴계 단량체는 아크릴산, 메타아크릴산, 아크릴로일옥시아세트산, 메타아크릴로일옥시아세트산, 아크릴로일옥시프로피온산, 메타아크릴로일옥시프로피온산, 아크릴로일옥시부티르산, 메타아크릴로일옥시부티르산 등이 가능하다.Acrylic monomers containing carboxylic acid groups include acrylic acid, methacrylic acid, acryloyloxyacetic acid, methacryloyloxyacetic acid, acryloyloxypropionic acid, methacryloyloxypropionic acid, acryloyloxybutyric acid, and methacryloyloxybutyric acid. etc. is possible.
상기 스티렌-아크릴계 공중합체 수지는 메타크릴산알킬에스테르, 아크릴산알킬에스테르, 메타크릴산시클로알킬에스테르, 아크릴산시클로알킬에스테르, 메타크릴산아릴에스테르, 아크릴산아릴에스테르 중에서 선택되는 하나 이상과 스티렌, α-메틸스티렌, m-메틸스티렌, p-메틸스티렌, p-메톡시스티렌 중에서 선택되는 하나 이상의 공중합체인 것이 바람직하다. The styrene-acrylic copolymer resin is one or more selected from alkyl methacrylate, alkyl acrylate, cycloalkyl methacrylate, cycloalkyl acrylate, aryl methacrylate, aryl acrylate, styrene, α-methyl It is preferably one or more copolymers selected from styrene, m-methylstyrene, p-methylstyrene, and p-methoxystyrene.
상기 스티렌계 수지는 스티렌, α-메틸스티렌, m-메틸스티렌, p-메틸스티렌, p-메톡시스티렌 중에서 선택되는 어느 하나의 단독 중합체 또는 이들의 공중합체인 것이 바람직하다.The styrene-based resin is preferably a homopolymer selected from styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, and p-methoxystyrene, or a copolymer thereof.
상기 스티렌-아크릴로니트릴계 공중합체 수지는 스티렌, α-메틸스티렌, m-메틸스티렌, p-메틸스티렌, p-메톡시스티렌 중에서 선택되는 하나 이상과 아크릴로니트릴모노머와의 공중합체가 바람직하다.The styrene-acrylonitrile-based copolymer resin is preferably a copolymer of at least one selected from styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, and p-methoxystyrene and an acrylonitrile monomer. .
상기 폴리카보네이트 수지는 디히드록시페놀과 포스겐을 반응시키거나 디히드록시페놀과 카보네이트 전구체의 반응에 의하여 제조된 선형 및 가지 달린 방향족 폴리카보네이트 단일 중합체, 폴리에스터 공중합체 또는 이들 1종 이상의 혼합물로 이루어진 군에서 선택되는 것이 바람직하다.The polycarbonate resin is a linear and branched aromatic polycarbonate homopolymer prepared by reacting dihydroxyphenol and phosgene or by reacting dihydroxyphenol with a carbonate precursor, a polyester copolymer, or a mixture of one or more of these. It is preferable to be selected from the group.
한편, 상기 바인더 수지의 함량은 상기 양자점 잉크 조성물 총 100 중량부 함량 기준으로 5 내지 90 중량부로 포함될 수 있다.Meanwhile, the content of the binder resin may be 5 to 90 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition.
상기 바인더 수지의 함량이 상기 양자점 잉크 조성물 총 100 중량부 기준으로 5 중량부 미만으로 포함되는 경우 양자점 캡슐화 수지에 분산성 저하로 인한 박막 형성이 어렵고 경화도 저하 문제점이 있을 수 있으며, 상기 바인더 수지의 함량이 상기 양자점 잉크 조성물 총 100 중량부 기준으로 90 중량부를 초과하여 포함되는 경우 양자점 캡슐화 수지 농도 저하에 따른 광특성 및 색 재현율 특성이 낮아지는 문제점이 있을 수 있다. If the content of the binder resin is less than 5 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition, it may be difficult to form a thin film due to reduced dispersibility in the quantum dot encapsulating resin, and there may be a problem of reduced curing degree. If the content exceeds 90 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition, there may be a problem in that optical characteristics and color gamut characteristics are lowered due to a decrease in the concentration of the quantum dot encapsulating resin.
한편, 본 발명에 따른 양자점 잉크 조성물은 캡슐화 수지로 캡슐화된 양자점을 포함하며, 상기 캡슐화 수지는 가교화된 아크릴계 수지, 및 가교화된 실리콘계 수지 중에서 선택된 1종 이상을 포함할 수 있다. 상기 가교화는 광 또는 열에 의해 경화된 상태이다. Meanwhile, the quantum dot ink composition according to the present invention includes quantum dots encapsulated with an encapsulation resin, and the encapsulation resin may include one or more types selected from crosslinked acrylic resin and crosslinked silicone resin. The crosslinking is in a state of curing by light or heat.
상기 가교화된 아크릴계 수지는 분자 구조 내에 광조사 또는 열에 의해 중합 또는 경화 가능한 관능기를 갖는 아크릴계 단량체에 의해 가교화된 수지를 의미한다. The crosslinked acrylic resin refers to a resin crosslinked by an acrylic monomer having a functional group in the molecular structure that can be polymerized or cured by light irradiation or heat.
사용 가능한 아크릴계 단량체로는 하기와 같으며, 이때 용어 '(메트)아크릴레이트'는 메타크릴레이트 또는 아크릴레이트를 지칭한다.Acrylic monomers that can be used are as follows, and in this case, the term '(meth)acrylate' refers to methacrylate or acrylate.
상기 아크릴계 단량체는 분자 구조 내 관능기가 1개인 단관능성 아크릴계 단량체, 또는 2개 이상인 다관능성 아크릴계 단량체/올리고머일 수 있다.The acrylic monomer may be a monofunctional acrylic monomer with one functional group in the molecular structure, or a polyfunctional acrylic monomer/oligomer with two or more functional groups.
상기 단관능성 아크릴계 단량체는 이소보닐 (메트)아크릴레이트, 이소옥틸 (메트)아크릴레이트, 라우릴 (메트)아크릴레이트, 스테아릴 (메트)아크릴레이트, 벤질 (메트)아크릴레이트, 노보닐 (메트)아크릴레이트, 이소데실(메트)아크릴레이트, 사이클로헥실 (메트)아크릴레이트, n-헥실(메트)아크릴레이트, 아다만틸 아크릴레이트, 아크릴로일모폴린, 테트라히드로퓨릴 (메트)아크릴레이트, 2-페녹시에틸 (메트)아크릴레이트, 카프로락톤 (메트)아크릴레이트 및 사이클로펜틸 아크릴레이트로 이루어진 그룹에서 선택된 하나 이상의 단량체를 포함할 수 있다.The monofunctional acrylic monomers include isobornyl (meth)acrylate, isooctyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, benzyl (meth)acrylate, and norbornyl (meth)acrylate. Acrylate, isodecyl (meth)acrylate, cyclohexyl (meth)acrylate, n-hexyl (meth)acrylate, adamantyl acrylate, acryloylmorpholine, tetrahydrofuryl (meth)acrylate, 2- It may contain one or more monomers selected from the group consisting of phenoxyethyl (meth)acrylate, caprolactone (meth)acrylate, and cyclopentyl acrylate.
또한, 다관능성 아크릴계 단량체로는 트리프로필렌글리콜 디(메트)아크릴레이트, 1,6-헥산디올 디(메트)아크릴레이트, 트리메틸올프로판 트리(메트)아크릴레이트, 펜타에리트리톨 트리(메트)아크릴레이트, 사이클릭 트리메틸올프로판 (메트)아크릴레이트, 트리메틸사이클로헥실 (메트)아크릴레이트, 트리사이클로디케인 디메탄올 디(메트)아크릴레이트, 트리메틸올프로판 트리(메트)아크릴레이트, 에톡실레이티드 트리메틸올프로판 트리(메트)아크릴레이트(3EO-TMPTA; ethoxylated trimethylolpropane tri(metha)acrylate), 에톡실레이티드 펜타에리트리톨 트리(메트)아크릴레이트(4EO-PETA; ethoxylated pentaerythritol triacrylate), 펜타에리쓰리톨 트리(메트)아크릴레이트, 및 디펜타에리쓰리톨 헥사(메트)아크릴레이트로 이루어진 그룹에서 선택된 하나 이상의 단량체를 포함할 수 있다.In addition, multifunctional acrylic monomers include tripropylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, and pentaerythritol tri(meth)acrylate. , Cyclic trimethylolpropane (meth)acrylate, trimethylcyclohexyl (meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, ethoxylated trimethylol Propane tri(meth)acrylate (3EO-TMPTA; ethoxylated trimethylolpropane tri(metha)acrylate), ethoxylated pentaerythritol tri(meth)acrylate (4EO-PETA; ethoxylated pentaerythritol triacrylate), pentaerythritol tri( It may contain one or more monomers selected from the group consisting of meth)acrylate and dipentaerythritol hexa(meth)acrylate.
그리고, 다관능성 아크릴계 올리고머로는 우레탄 (메트)아크릴레이트, 에폭시 (메트)아크릴레이트, 폴리에스테르 (메트)아크릴레이트, 아크릴(메트)아크릴레이트, 폴리부타디엔 (메트)아크릴레이트, 실리콘 (메트)아크릴레이트 및 멜라민 (메트)아크릴레이트로 이루어진 그룹에서 선택된 하나 이상의 올리고머를 포함할 수 있다. 이때 올리고머는 중량평균분자량이 100 내지 1000의 범위를 갖는 것이 가능하다.And, multifunctional acrylic oligomers include urethane (meth)acrylate, epoxy (meth)acrylate, polyester (meth)acrylate, acrylic (meth)acrylate, polybutadiene (meth)acrylate, and silicone (meth)acrylate. It may contain one or more oligomers selected from the group consisting of methylamine (meth)acrylate and melamine (meth)acrylate. At this time, the oligomer may have a weight average molecular weight in the range of 100 to 1000.
바람직하기로, 상기 아크릴계 단량체 중 2개 이상의 관능기를 포함하는 경우 광조사에 의해 가교될 수 있으며, 필요한 경우 공지의 광가교제를 더욱 사용할 수 있다.Preferably, when the acrylic monomer contains two or more functional groups, it can be crosslinked by light irradiation, and if necessary, a known photocrosslinking agent can be further used.
광경화는 광원으로부터 활성 에너지를 방출하여 도막에 조사하는 방식으로 수행한다.Photocuring is performed by emitting active energy from a light source and irradiating it to the coating film.
상기 광원으로는 원자외선, 자외선, 근자외선, 적외선 등의 광선, X선, γ선 등의 전자파외에, 전자선, 프로톤선, 중성자선 등을 이용할 수 있으나, 경화 속도, 조사 장치의 입수의 용이성, 가격 등으로부터 자외선 조사에 의한 경화가 유리하다.As the light source, rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, infrared rays, electromagnetic waves such as Curing by ultraviolet irradiation is advantageous in terms of cost, etc.
자외선 조사를 행할 때의 광원으로서는, 고압 수은등, 무전극 램프, 초고압 수은등, 카본 아크등, 제논등, LED 램프, 메탈할라이드 램프, 케미컬 램프, 블랙라이트 등이 이용된다. 상기 고압 수은 램프의 경우에는, 예컨대, 약 5 mJ/㎠ 내지 약 3000 mJ/㎠, 구체적으로는 약 400 mJ/㎠ 내지 약 1500 mJ/㎠의 조건에서 행해진다.As light sources for ultraviolet irradiation, high-pressure mercury lamps, electrodeless lamps, ultra-high pressure mercury lamps, carbon arc lamps, xenon lamps, LED lamps, metal halide lamps, chemical lamps, black lights, etc. are used. In the case of the high-pressure mercury lamp, for example, it is performed under conditions of about 5 mJ/cm2 to about 3000 mJ/cm2, specifically about 400 mJ/cm2 to about 1500 mJ/cm2.
그리고, 조사 시간은, 광원의 종류, 광원과 도막과의 거리, 도막 두께, 그 외의 조건에 따라서도 다르지만, 통상은, 수십초 내지 수분, 광량에 따라서 1시간 이상 수행된다.The irradiation time varies depending on the type of light source, the distance between the light source and the coating film, the thickness of the coating film, and other conditions, but is usually performed for tens of seconds to several minutes, or more than 1 hour depending on the amount of light.
한편, 캡슐화 수지로서, 가교화된 실리콘계 수지는 액상 실록산 폴리머가 가교제에 의해 가교화된 수지를 의미한다. Meanwhile, as an encapsulation resin, crosslinked silicone-based resin refers to a resin in which a liquid siloxane polymer is crosslinked by a crosslinking agent.
상기 액상 실록산 폴리머는 직쇄상 실리콘 수지와 변성 실리콘 수지일 수 있다. 대표적인 직쇄상 실리콘 수지는 유기기가 모두 메틸기인 디메틸 실리콘이 있으며, 페닐기를 도입한 메틸페닐 실리콘과, 메틸페닐 실리콘, 디페닐실리콘, 폴리실록산과 디페닐실록산의 공중합체, 메틸하이드로겐 실리콘 등이 있다. 상기 변성 실리콘 수지는 메틸기 또는 페닐기 이외의 유기기를 도입한 실리콘 수지를 의미하며, 메틸히드록시 실리콘, 플루오로 실리콘, 폴리옥시에테르 공중합체, 알킬변성 실리콘, 고급지방산변성 실리콘, 아미 노변성 실리콘, 에폭시변성 실리콘 등이 있다.The liquid siloxane polymer may be a linear silicone resin or a modified silicone resin. Representative linear silicone resins include dimethyl silicone in which all organic groups are methyl groups, methylphenyl silicone with phenyl groups introduced, methylphenyl silicone, diphenyl silicone, copolymers of polysiloxane and diphenylsiloxane, and methylhydrogen silicone. The modified silicone resin refers to a silicone resin into which an organic group other than a methyl or phenyl group has been introduced, and includes methylhydroxy silicone, fluorosilicone, polyoxyether copolymer, alkyl-modified silicone, higher fatty acid-modified silicone, amino-modified silicone, and epoxy. Modified silicon, etc.
실리콘계 수지의 경화는 광경화 또는 열경화가 가능하며, 이 또한 공지된 바의 광경화제 또는 열경화제가 사용될 수 있다. Silicone-based resin can be cured by photocuring or thermal curing, and a known photocuring agent or thermal curing agent can also be used.
일례로, 열경화시 온도 및 시간은 열경화성 수지의 종류에 따라 달라질 수 있으며, 일례로 실리콘계 수지의 경우 100℃ 내지 125℃에서 1시간 내지 5시간 동안 수행한다. For example, the temperature and time for thermal curing may vary depending on the type of thermosetting resin. For example, in the case of silicone resin, it is performed at 100°C to 125°C for 1 hour to 5 hours.
또한, 열 경화의 경우 실리콘 수지 대비 경화제의 사용은 경화 메커니즘에 따라 달라질 수 있다. 일례로, 백금 촉매 존재하에 부가 반응이 일어나거나, 유기 과산화물 및 열을 인가하여 유리 라디칼 반응을 통해 경화가 가능하다. 이때 유기 과산화물의 예로는 2,4-디클로로벤조일 퍼옥사이드, 벤조일 퍼옥사이드, 디큐밀 퍼옥사이드, 디-3급-부틸퍼벤조에이트 및 2,5-비스(3급-부틸퍼옥시)벤조에이트가 있다. 유기 과산화물은 실리콘계 수지 100 중량부 대비 0.1 내지 10 중량부, 바람직하게는 0.2 내지 5 중량부의 농도로 사용된다.Additionally, in the case of thermal curing, the use of curing agent compared to silicone resin may vary depending on the curing mechanism. For example, curing is possible through an addition reaction in the presence of a platinum catalyst, or through a free radical reaction by applying organic peroxide and heat. At this time, examples of organic peroxides include 2,4-dichlorobenzoyl peroxide, benzoyl peroxide, dicumyl peroxide, di-tert-butylperbenzoate, and 2,5-bis(tert-butylperoxy)benzoate. there is. The organic peroxide is used at a concentration of 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the silicone resin.
한편, 상기 언급한 바의 캡슐화 수지에 의해 양자점이 캡슐화된다.Meanwhile, the quantum dots are encapsulated by the above-mentioned encapsulation resin.
양자점은 양자 구속 효과(quantum confinement effect)를 통해, 광원으로부터 주입되는 광을 흡수한 다음 양자점이 갖는 밴드갭에 대응하는 파장을 갖는 광의 파장을 변환시켜 출사한다. Quantum dots absorb light injected from a light source through the quantum confinement effect, then convert the wavelength of light to a wavelength corresponding to the band gap of the quantum dot and emit it.
상기 양자점은 II-VI족, III-V족, IV-VI족, IV족 반도체 및 이들의 혼합물로 이루어진 군으로부터 선택된 반도체를 포함할 수 있다. 보다 구체적으로, 상기 양자점은, 예를 들면, CdS, CdO, CdSe, CdTe, Cd3P2, Cd3As2, ZnS, ZnO, ZnSe, ZnTe, MnS, MnO, MnSe, MnTe, MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTE, HgO, HgS, HgSe, HgTe, HgI2, AgI, AgBr, Al2O3, Al2S3, Al2Se3, Al2Te3, Ga2O3, Ga2S3, Ga2Se3, Ga2Te3, In2O3, In2S3, In2Se3, In2Te3, SiO2, GeO2, SnO2, SnS, SnSe, SnTe, PbO, PbO2, PbS, PbSe, PbTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, GaInP2, InN, InP, InAs, InSb, In2S3, In2Se3, TiO2, BP, Si, Ge, 및 이들의 조합들로 이루어진 군으로부터 선택되는 1종 이상의 반도체 결정을 포함하는 단일층 또는 다중층 구조의 입자일 수 있다.The quantum dot may include a semiconductor selected from the group consisting of group II-VI, group III-V, group IV-VI, group IV semiconductors, and mixtures thereof. More specifically, the quantum dots include, for example, CdS, CdO, CdSe, CdTe, Cd 3 P 2 , Cd 3 As 2 , ZnS, ZnO, ZnSe, ZnTe, MnS, MnO, MnSe, MnTe, MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS, BaSe, BaTE, HgO, HgS, HgSe, HgTe, HgI 2 , AgI, AgBr, Al 2 O 3 , Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 , In 2 Te 3 , SiO 2 , GeO 2 , SnO 2 , SnS, SnSe, SnTe, PbO, PbO 2 , PbS, PbSe, PbTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, GaInP 2 , InN, A single-layer or multi-layer structure comprising one or more semiconductor crystals selected from the group consisting of InP, InAs, InSb, In 2 S 3 , In 2 Se 3 , TiO 2 , BP, Si, Ge, and combinations thereof It may be a particle of
또한, 상기 양자점은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe과 같은 II-VI족 화합물 반도체 나노결정, GaN, GaP, GaAs, InP, InAs와 같은 III-V족 화합물 반도체 나노결정 또는 이들의 혼합물 등을 들 수 있다. 상기 중심 입자는 코어/쉘 구조를 가질 수 있고, 상기 중심 입자의 코어 및 쉘(Shell) 각각은 상기 예시한 화합물들을 포함할 수 있다. 상기 예시한 화합물들은 각각 단독으로 또는 2 이상이 조합되어 상기 코어나 쉘에 포함될 수 있다. 예를 들어, 상기 중심 입자는 CdSe를 포함하는 코어 및 ZnS를 포함하는 쉘을 갖는 CdSe/ZnS(코어/쉘) 구조를 가질 수 있다.In addition, the quantum dots include group II-VI compound semiconductor nanocrystals such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, and HgTe, and group III-V compound semiconductors such as GaN, GaP, GaAs, InP, and InAs. Nanocrystals or mixtures thereof may be mentioned. The central particle may have a core/shell structure, and each of the core and shell of the central particle may include the compounds exemplified above. The compounds exemplified above may be included in the core or shell individually or in combination of two or more. For example, the central particle may have a CdSe/ZnS (core/shell) structure with a core containing CdSe and a shell containing ZnS.
또한, 상기 양자점의 입자는 코어/쉘 구조 또는 얼로이 구조를 가질 수 있다. 코어/쉘 구조를 갖는 양자점은 씨드의 결정 구조를 성장시킴에 있어 다른 성분을 넣어 다양한 모습으로 쉘 층을 성장시킬 수 있다. 코어/쉘 구조를 형성시키는 경우 고발광효율, 고발광 선명도 등의 특성을 만족시키면서 열적 안정성 또는 절연성과 같은 다른 특성도 동시에 만족시킬 수 있는 장점이 있다. 이러한 코어/쉘 구조 또는 얼로이 구조를 갖는 양자점 입자는 CdSe/ZnS, CdSe/ZnSe/ZnS, CdSe/CdSx(Zn1-yCdy)S/ZnS, CdSe/CdS/ZnCdS/ZnS, InP/ZnS, InP/Ga/ZnS, InP/ZnSe/ZnS, PbSe/PbS, CdSe/CdS, CdSe/CdS/ZnS, CdTe/CdS, CdTe/ZnS, CuInS2/ZnS, Cu2SnS3/ZnS 일 수 있다.Additionally, the quantum dot particles may have a core/shell structure or an alloy structure. Quantum dots with a core/shell structure can grow the shell layer in various shapes by adding other ingredients to grow the crystal structure of the seed. Forming a core/shell structure has the advantage of satisfying characteristics such as high luminous efficiency and high luminous clarity while also satisfying other characteristics such as thermal stability or insulation. Quantum dot particles having such a core/shell structure or alloy structure include CdSe/ZnS, CdSe/ZnSe/ZnS, CdSe/CdSx(Zn1-yCdy)S/ZnS, CdSe/CdS/ZnCdS/ZnS, InP/ZnS, InP/ It may be Ga/ZnS, InP/ZnSe/ZnS, PbSe/PbS, CdSe/CdS, CdSe/CdS/ZnS, CdTe/CdS, CdTe/ZnS, CuInS 2 /ZnS, Cu 2 SnS 3 /ZnS.
또한, 상기 양자점은 페로브스카이트 나노결정 입자일 수 있다. 페로브스카이트는 ABX3, A2BX4, ABX4 또는 An-1BnX3n+1(n은 2 내지 6사이의 정수)의 구조를 포함하고, 상기 A는 유기암모늄 또는 알칼리금속 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소일 수 있다.Additionally, the quantum dots may be perovskite nanocrystal particles. Perovskite includes a structure of ABX 3 , A 2 BX 4 , ABX 4 or A n-1 B n , B may be a metal material, and X may be a halogen element.
상기 유기암모늄은 아미디늄계 유기이온, (CH3NH3)n, ((CxH2x+1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n+1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x+1)nNH3)2 또는 (CnF2n+1NH3)2)이고(n은 1이상인 정수, x는 1이상인 정수), 상기 알칼리금속 물질은 Na, K, Rb, Cs 또는 Fr일 수 있다. 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, 또는 이들의 조합의 이온이고, 상기 X는 Cl, Br, I 이온 또는 이들의 조합일 수 있다.The organic ammonium is an amidinium-based organic ion, (CH 3 NH 3 ) n , ((C x H 2x+1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n+1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 or (C n F 2n+1 NH 3 ) 2 ) (n is an integer greater than or equal to 1, x is an integer greater than or equal to 1), and the alkali metal material is Na, K, Rb, Cs or It may be Fr. B is an ion of a divalent transition metal, rare earth metal, alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof, and X is an ion of Cl, Br, I Or it may be a combination thereof.
또한, 상기 양자점은 도핑된 페로브스카이트 나노결정 입자일 수 있다. 상기 도핑된 페로브스카이트는 ABX3, A2BX4, ABX4 또는 An-1BnX3n+1(n은 2 내지 6사이의 정수)의 구조를 포함하고, 상기 A의 일부가 A'로 치환되거나, 상기 B의 일부가 B'로 치환되거나, 상기 X의 일부가 X'로 치환된 것을 특징으로 하고, 상기 A 및 A'는 유기암모늄이고, 상기 B 및 B'는 금속물질이고, 상기 X 및 X'는 할로겐 원소일 수 있다.Additionally, the quantum dots may be doped perovskite nanocrystal particles. The doped perovskite includes a structure of ABX 3 , A 2 BX 4 , ABX 4 or A n-1 B n ', or part of B is substituted with B', or part of X is substituted with X', wherein A and A' are organic ammoniums, and B and B' are metal materials , X and X' may be halogen elements.
이때, 상기 A 및 A'는 아미디늄계 유기이온, (CH3NH3)n, ((CxH2x+1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n+1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x+1)nNH3)2 또는 (CnF2n+1NH3)2이고 (n은 1이상인 정수, x는 1이상인 정수), 상기 B 및 B'는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi 또는 Po이고, 상기 X 및 X'는 Cl, Br 또는 I일 수 있다.At this time, the A and A' are amidinium-based organic ions, (CH 3 NH 3 ) n , ((C x H 2x+1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n+1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x+1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ( (C x F 2x+1 ) n NH 3 ) 2 or (C n F 2n+1 NH 3 ) 2 (n is an integer of 1 or more, , rare earth metal, alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi or Po, and X and X' may be Cl, Br or I.
상기 양자점은 구형, 타원형, 로드형, 와이어, 피라미드, 입방체 또는 다른 기하학적 또는 비기하학적 형상일 수 있다. 통상 구형 또는 타원형의 나노 입자로, 평균 입경이 1 내지 20nm, 바람직하기로 1 내지 10nm를 가지며, 그 크기에 따라 발광 파장이 달라지므로, 적절한 크기의 양자점을 선택하여 원하는 색깔의 광을 얻을 수 있다. 통상 입도가 더 큰 양자점은, 동일한 재료로부터 제조되었지만 입도가 더 작은 양자점과 비교하였을 때, 더 낮은 에너지의 광을 방출한다. 본 발명에서는 상기 양자점으로, 예를 들면, 청색광을 적색광으로 변환시키는 양자점, 청색광을 녹색광으로 변환시키는 양자점 및 녹색광을 적색광으로 변환시키는 양자점으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. The quantum dots may be spheres, ellipses, rods, wires, pyramids, cubes, or other geometric or non-geometric shapes. Typically, they are spherical or oval-shaped nanoparticles and have an average particle diameter of 1 to 20 nm, preferably 1 to 10 nm. Since the emission wavelength varies depending on the size, the desired color of light can be obtained by selecting a quantum dot of an appropriate size. . Quantum dots with larger particle sizes typically emit light of lower energy when compared to quantum dots made from the same material but with smaller particle sizes. In the present invention, the quantum dots may include, for example, one or more types selected from the group consisting of quantum dots that convert blue light into red light, quantum dots that convert blue light into green light, and quantum dots that convert green light into red light.
특히 상기 양자점은 용매(예, 톨루엔)에 분산된 콜로이드(또는 분산액) 상태로 공급되며 표면 안정화를 위해 리간드가 부착된 형태로 공급된다. 이때 리간드는 소수성의 유기 리간드로서 양자점의 분산성을 높이고 이들끼리 서로 뭉치는 현상을 막아준다. 상기 리간드는 서로 인접한 양자점이 쉽게 서로 응집되어 소광(quenching)되는 것을 방지할 수 있다. 또한, 상기 리간드는 양자점과 결합하여, 양자점이 소수성을 갖도록 한다. 이에 따라, 양자점 및 상기 리간드를 포함하는 양자점을 수지(resin)에 분산시키는 경우, 리간드가 없는 양자점에 비해 수지에 대한 분산성이 향상될 수 있다. In particular, the quantum dots are supplied in a colloidal (or dispersion) state dispersed in a solvent (eg, toluene) and with a ligand attached to stabilize the surface. At this time, the ligand is a hydrophobic organic ligand that increases the dispersibility of quantum dots and prevents them from aggregating with each other. The ligand can prevent adjacent quantum dots from easily aggregating and quenching. Additionally, the ligand binds to the quantum dots, causing the quantum dots to have hydrophobicity. Accordingly, when quantum dots containing quantum dots and the ligand are dispersed in resin, dispersibility in the resin may be improved compared to quantum dots without a ligand.
상기 리간드는 화학식 -(CH2)p-R3 (1≤p≤40, R3=OH, CO2H, NH2, SH, 또는 PO)로 표시될 수 있다. 바람직하기로, 6≤p≤30이고, CH2로 표시되는 알킬기는 선형 또는 분지형일 수 있다.The ligand may be represented by the formula -(CH 2 ) p -R 3 (1≤p≤40, R 3 =OH, CO 2 H, NH 2 , SH, or PO). Preferably, 6≤p≤30, and the alkyl group represented by CH 2 may be linear or branched.
구체적인 예로, 상기 리간드로는 헥사데실아민(hexadecylamine), 옥타데실아민(octadecyl amine), 옥틸아민(octylamine), 트리옥틸포스핀(trioctylphosphine), 트리페놀포스핀(triphenolphosphine), t-부틸포스핀(t-butylphosphine), 트라이옥틸포스핀 산화물(trioctylphosphine oxide), 피리딘(pyridine) 또는 싸이오펜(thiophene)일 수 있으며, 바람직하기로는 옥타데실아민일 수 있다.As specific examples, the ligands include hexadecylamine, octadecyl amine, octylamine, trioctylphosphine, triphenolphosphine, and t-butylphosphine ( It may be t-butylphosphine, trioctylphosphine oxide, pyridine, or thiophene, and preferably octadecylamine.
한편, 캡슐화 수지에 의해 캡슐화된 양자점의 제조는 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바의 다양한 방법이 사용될 수 있다.Meanwhile, the production of quantum dots encapsulated by an encapsulating resin is not particularly limited in the present invention, and various methods known in the field may be used.
일 구현예에 따르면, 본 발명에 따른 캡슐화된 양자점은 하기 a) 내지 c) 단계를 포함하여, 양자점 1 내지 30 중량%, 캡슐화 수지 50 내지 90 중량%, 경화제 0.5 내지 10 중량%의 함량으로 가교 공정을 통해 제조된다: According to one embodiment, the encapsulated quantum dots according to the present invention are crosslinked at a content of 1 to 30% by weight of quantum dots, 50 to 90% by weight of encapsulating resin, and 0.5 to 10% by weight of curing agent, including steps a) to c) below. It is manufactured through the following process:
a) 극성 용매 및 비극성 용액을 준비하는 단계;a) preparing a polar solvent and a non-polar solution;
b) 얻어진 용액에 캡슐화 수지용 전구체, 양자점 및 경화제를 첨가하여 조성물을 제조하는 단계; 및b) preparing a composition by adding a precursor for encapsulation resin, quantum dots, and a curing agent to the obtained solution; and
c) 상기 조성물에 광 또는 열을 조사하여 가교를 수행하여 양자점을 캡슐화하는 단계;c) encapsulating the quantum dots by crosslinking the composition by irradiating light or heat;
단계 a)의 극성 및 비극성 용매를 혼합하게 되면, 서로 섞이지 않는 상태로 존재한다. 이에 단계 b)에서 추가되는 조성의 극성 및 비극성에 따라 이들이 존재하는 영역이 분리된다.When the polar and non-polar solvents of step a) are mixed, they exist in a state where they do not mix with each other. Accordingly, the regions where they exist are separated depending on the polarity and non-polarity of the composition added in step b).
극성 비극성은 상대적인 것으로, 용매의 종류에 따라 상대적으로 극성의 크고 작음이 존재한다. 공지된 바의 극성 용매로는 물, 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 아세톤, 및 디메틸포름아마이드 등이 있고, 비극성 용매로는 헥산, 톨루엔, 벤젠, 옥탄, 클로로포름, 클로로벤젠, 테트라히드로푸란. 펜탄, 헵탄, 데칸, 염화메틸렌, 1,4-디옥산, 디에틸에테르, 사이클로헥산, 다이클로로벤젠, 및 이소보닐아크릴레이트 등이 있다. 이들 중 2종의 용매를 선정할 경우 상대적인 극성의 차이를 통해 극성 및 비극성이 결정된다. 바람직하기로, 단계 a)에서 사용하는 용매는 에탄올/이소보닐아크릴레이트, 톨루엔/이소보닐아크릴레이트 조합이 사용될 수 있다.Polarity and non-polarity are relative, and there is a relative greater or lesser polarity depending on the type of solvent. Known polar solvents include water, methanol, ethanol, propanol, isopropanol, butanol, acetone, and dimethylformamide, and nonpolar solvents include hexane, toluene, benzene, octane, chloroform, chlorobenzene, and tetrahydrofuran. . These include pentane, heptane, decane, methylene chloride, 1,4-dioxane, diethyl ether, cyclohexane, dichlorobenzene, and isobornyl acrylate. When two types of solvents are selected, polarity and non-polarity are determined through the difference in relative polarity. Preferably, the solvent used in step a) may be a combination of ethanol/isobornyl acrylate or toluene/isobornyl acrylate.
극성 용매와 상대적으로 적은 함량의 비극성 용매를 혼합하면, 연속상인 극성 용매 내에 분산상으로 비극성 용매가 존재한다. 이는 에멀젼의 액적 형태와 유사하다. 이에 단계 b)의 캡슐화 수지용 전구체, 양자점 및 경화제를 첨가할 경우 상기 조성은 비극성 용매 측에 존재한다.When a polar solvent and a relatively small amount of nonpolar solvent are mixed, the nonpolar solvent exists as a dispersed phase within the polar solvent as a continuous phase. This is similar to the droplet form of an emulsion. When the precursor, quantum dots, and curing agent for the encapsulating resin in step b) are added, the composition exists on the non-polar solvent side.
이어, 광 또는 열을 조사하게 되면, 액적 내에서 가교화 반응이 일어나 캡슐화된 양자점이 제조될 수 있다.Then, when light or heat is irradiated, a crosslinking reaction occurs within the droplet, thereby producing encapsulated quantum dots.
한편, 형광체를 캡슐화 수지로 캡슐화된 양자점 내에 포함되도록 하는 경우, 하기 a') 내지 c') 단계를 포함하여 가교 공정을 통해 캡슐화된 양자점을 제조할 수 있다.Meanwhile, when the phosphor is included in quantum dots encapsulated with an encapsulation resin, the encapsulated quantum dots can be manufactured through a crosslinking process including steps a') to c') below.
a') 극성 용매 및 비극성 용액을 준비하는 단계;a') preparing a polar solvent and a non-polar solution;
b') 얻어진 용액에 캡슐화 수지용 전구체, 양자점, 경화제 및 형광체를 첨가하여 조성물을 제조하는 단계; 및b') preparing a composition by adding a precursor for encapsulating resin, quantum dots, a curing agent, and a phosphor to the obtained solution; and
c') 상기 조성물에 광 또는 열을 조사하여 가교를 수행하여 양자점을 캡슐화하는 단계;c') encapsulating the quantum dots by crosslinking the composition by irradiating light or heat;
이때, 상기 형광체의 함량은 상술한 바와 같이 상기 양자점 잉크 조성물 총 100 중량부를 기준으로 0.1 내지 20 중량부로 포함될 수 있다.At this time, the content of the phosphor may be 0.1 to 20 parts by weight based on a total of 100 parts by weight of the quantum dot ink composition, as described above.
한편, 본 발명에 따른 캡슐화된 양자점은 크기가 0.1 ㎛ 내지 200 ㎛, 0.5 ㎛ 내지 180 ㎛, 1 ㎛ 내지 150 ㎛, 5 ㎛ 내지 100 ㎛의 범위일 수 있다. 이러한 크기는 양자점, 캡슐화 수지의 함량에 의해 조절이 가능하며, 상기 범위를 가질 경우 양자점의 양자 효율을 비롯한 각종 물성이 우수하다.Meanwhile, the size of the encapsulated quantum dots according to the present invention may range from 0.1 ㎛ to 200 ㎛, 0.5 ㎛ to 180 ㎛, 1 ㎛ to 150 ㎛, and 5 ㎛ to 100 ㎛. This size can be adjusted by the content of quantum dots and encapsulation resin, and when it has the above range, various physical properties including quantum efficiency of quantum dots are excellent.
캡슐화된 양자점은 적색 및 녹색을 혼합할 수도 있고, 각각 캡슐화할 수 있다.Encapsulated quantum dots may be mixed red and green, and may be encapsulated separately.
한편, 필요한 경우, 상기 양자점 잉크 조성물은 광확산제를 더 포함할 수 있다. Meanwhile, if necessary, the quantum dot ink composition may further include a light diffuser.
광확산제는 유기 또는 무기 확산제를 단독 또는 조합하여 사용될 수 있다. 일례로, 실리카, 탈크, 티타니아, 산화칼슘, 산화아연, 알루미나 등의 무기계 입자가 사용될 수 있고, 폴리(메타)아크릴계, 폴리스티렌계, 실리콘계, 폴리우레탄계, 에폭시계 등의 가교 또는 미가교 유기계 입자가 사용될 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용한다.The light diffuser may be used alone or in combination with an organic or inorganic diffuser. For example, inorganic particles such as silica, talc, titania, calcium oxide, zinc oxide, and alumina may be used, and crosslinked or uncrosslinked organic particles such as poly(meth)acrylic, polystyrene, silicone, polyurethane, and epoxy particles may be used. can be used These are used alone or in combination of two or more types.
이때 광확산제의 입자 크기는 10nm 내지 50㎛인 것을 사용하고, 필요에 따라 서로 다른 입경을 갖도록 2종 이상 혼합하여 사용이 가능하다. 상기 광확산제의 입자 크기가 상기 범위 미만이면 응집이 발생하고 광산란성이 저하되며, 반대로 상기 범위를 초과하면 오히려 휘도가 저하되는 문제가 발생한다.At this time, the particle size of the light diffuser is 10nm to 50㎛, and if necessary, two or more types can be mixed to have different particle sizes. If the particle size of the light diffuser is less than the above range, agglomeration occurs and light scattering property is lowered, and conversely, if it exceeds the above range, luminance is lowered.
필요한 경우, 상기 광확산제는 서로 다른 입경을 갖도록 2종 이상을 혼합 사용할 수 있다.If necessary, two or more types of light diffusers may be mixed and used to have different particle sizes.
레일리 산란(Rayleigh scattering)과 미 산란(Mie scattering)이 동시에 일어날 수 있도록 한다. It allows Rayleigh scattering and Mie scattering to occur simultaneously.
레일리 산란은 산란을 유발하는 입자의 크기가 매우 작아 빛의 파장보다도 작을 때 일어나는 산란을 의미하고, 특히 푸른빛은 긴 파장인 붉은 빛보다 더 효과적으로 산란하고, 전방과 후방 양쪽으로 빛을 산란시킨다.Rayleigh scattering refers to scattering that occurs when the size of the particle causing scattering is very small and smaller than the wavelength of light. In particular, blue light scatters more effectively than red light, which has a long wavelength, and scatters light both forward and backward.
미 산란은 입자의 크기가 빛의 파장이 비슷할 경우에 일어나며, 빛의 파장보다는 입자의 밀도, 크기, 모양 등에 반응한다. 미 산란은 전방 산란이 현저하고 상대적으로 적게 후방으로 산란한다.Misscattering occurs when the size of a particle is similar to the wavelength of light, and it responds to the density, size, and shape of the particle rather than the wavelength of light. Mi-scattering has significant forward scattering and relatively little backward scattering.
이에 제1광확산제로 460nm 초과, 30㎛ 이하인 것을 사용하여 미 산란을 유도하고, 제2광확산제로 10nm 내지 460nm인 것을 사용하여 레일리 산란을 유도한다. 이와 같이 레일리 산란과 미 산란을 동시에 발생시킬 수 있어, 빛을 최대한 소멸없이 확산시켜 휘도 및 휘도 균일도를 향상시킬 수 있다는 이점이 있다.Accordingly, the first light diffuser that is greater than 460 nm and less than 30 μm is used to induce Mie scattering, and the second light diffuser that is 10 nm to 460 nm is used to induce Rayleigh scattering. In this way, Rayleigh scattering and Mie scattering can be generated simultaneously, which has the advantage of improving luminance and luminance uniformity by diffusing light as much as possible without extinction.
광확산제의 함량은 바인더 수지 100 중량부에 대해 최대 20 중량부 이하, 바람직하기로 0.001 내지 20 중량부의 범위로 사용한다. 만약, 광확산제의 함량이 상기 범위를 초과할 경우 수지 성형체의 빛 투과율이 저하될 뿐만 아니라 분산성이 저하되어 휘도를 발휘할 수 없다.The content of the light diffuser is used in a maximum of 20 parts by weight or less, preferably in the range of 0.001 to 20 parts by weight, based on 100 parts by weight of the binder resin. If the content of the light diffuser exceeds the above range, not only does the light transmittance of the resin molded body decrease, but also the dispersibility decreases, making it impossible to exhibit brightness.
한편, 상기 형광체가 캡슐화 수지로 캡슐화된 양자점에 포함되는 경우 형광체가 포함된 캡슐화된 양자점은 바인더 수지 내에 균일하게 분산될 수 있고, 또는 상기 형광체가 캡슐화된 양자점과 함께 바인더 수지 내에 균일하게 분산될 수도 있다. 이에 따라, 양자점의 응집이나 양자 효율의 감소 없이 양자점이 갖는 휘도 및 휘도 균일도 향상 및 색재현성 증가 효과를 갖는 수지 성형품의 제작을 가능케 한다.Meanwhile, when the phosphor is included in quantum dots encapsulated with an encapsulation resin, the encapsulated quantum dots containing the phosphor may be uniformly dispersed within the binder resin, or the phosphor may be uniformly dispersed within the binder resin together with the encapsulated quantum dots. there is. Accordingly, it is possible to manufacture a resin molded product that has the effect of improving the luminance and luminance uniformity of quantum dots and increasing color reproducibility without agglomeration of quantum dots or reduction of quantum efficiency.
한편, 본 발명의 양자점 잉크 조성물은 용매를 추가로 포함할 수 있다.Meanwhile, the quantum dot ink composition of the present invention may additionally include a solvent.
또한, 본 발명의 양자점 잉크 조성물은 필요에 따라 계면활성제, 분산제, 밀착촉진제 및 산화방지제로 이루어지는 군으로부터 선택되는 1 종 이상의 첨가제를 추가로 포함할 수 있다.In addition, the quantum dot ink composition of the present invention may further include one or more additives selected from the group consisting of surfactants, dispersants, adhesion promoters, and antioxidants, if necessary.
상기 용매 및 첨가제는 통상 잉크 조성물에서 사용되는 것이라면 특별한 제한없이 사용될 수 있다.The solvents and additives may be used without particular limitation as long as they are commonly used in ink compositions.
한편, 발명의 다른 일 구현예에 따르면, 기판; 기판 상에 배치된 발광원층; 및 상기 발광원층으로부터 방출된 발광원의 경로에 배치된 양자점 발광층;을 포함하고, 상기 양자점 발광층의 적어도 일 영역이 상기 양자점 잉크 조성물을 이용하여 형성된 장치가 제공될 수 있다.Meanwhile, according to another embodiment of the invention, a substrate; A light emitting source layer disposed on a substrate; and a quantum dot light emitting layer disposed in a path of the light emitting source emitted from the light emitting source layer, wherein at least one region of the quantum dot light emitting layer is formed using the quantum dot ink composition.
상기 양자점 발광층이 상술한 양자점 잉크 조성물을 이용하여 형성되었다는 것은, 예를 들어 상기 양자점 발광층이 상술한 양자점 잉크 조성물의 광경화물 또는 열경화물을 포함하는 것을 의미할 수 있다.That the quantum dot light-emitting layer is formed using the above-described quantum dot ink composition may mean, for example, that the quantum dot light-emitting layer includes a photocured or thermocured product of the above-described quantum dot ink composition.
한편, 상기 발광원은 유기 발광 다이오드(OLED) 또는 발광 다이오드(LED)일 수 있다. Meanwhile, the light emitting source may be an organic light emitting diode (OLED) or a light emitting diode (LED).
또한, 상기 발광원은 최대 발광 파장이 400 nm 내지 490 nm인 청색광을 방출할 수 있다.Additionally, the light emitting source may emit blue light having a maximum emission wavelength of 400 nm to 490 nm.
바람직하게는 상기 발광원은 최대 발광 파장이 400 nm 내지 490 nm인 청색광을 방출하는 유기 발광 다이오드(OLED)일 수 있다.Preferably, the light emitting source may be an organic light emitting diode (OLED) that emits blue light with a maximum emission wavelength of 400 nm to 490 nm.
한편, 상기 양자점 발광층의 적어도 일 영역이 상기 양자점 잉크 조성물을 이용하여 형성되는 경우, 상기 양자점 발광층의 적어도 일 영역은 상기 발광원층으로부터 방출된 청색광을 흡수하고 청색 이외의 가시광을 방출할 수 있다.Meanwhile, when at least one region of the quantum dot light-emitting layer is formed using the quantum dot ink composition, at least one region of the quantum dot light-emitting layer may absorb blue light emitted from the light emitting source layer and emit visible light other than blue.
예를 들어, 상기 양자점 발광층의 적어도 일 영역이 상기 광원으로부터 방출된 청색광을 흡수하고 500 내지 580 nm에서 최대 발광 파장을 가지는 녹색광을 방출할 수 있다.For example, at least one region of the quantum dot light-emitting layer may absorb blue light emitted from the light source and emit green light having a maximum emission wavelength of 500 to 580 nm.
또는, 상기 양자점 발광층의 적어도 일 영역이 상기 광원으로부터 방출된 청색광을 흡수하고 600 내지 660 nm에서 최대 발광 파장을 가지는 적색광을 방출할 수 있다.Alternatively, at least one region of the quantum dot emission layer may absorb blue light emitted from the light source and emit red light having a maximum emission wavelength of 600 to 660 nm.
한편, 발명의 다른 일 구현예에 따르면, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 양자점 잉크 조성물을 이용하여 형성된, 디스플레이 소자가 제공될 수 있다.Meanwhile, according to another embodiment of the invention, a first electrode; a second electrode provided opposite to the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers are formed using the quantum dot ink composition.
상기 유기물층이 상술한 양자점 잉크 조성물을 이용하여 형성되었다는 것은, 예를 들어 상기 유기물층이 상술한 양자점 잉크 조성물의 광경화물 또는 열경화물을 포함하는 것을 의미할 수 있다.That the organic material layer is formed using the above-described quantum dot ink composition may mean, for example, that the organic material layer includes a photocured or thermally cured product of the above-described quantum dot ink composition.
상기 디스플레이 소자는 유기 발광 다이오드(OLED), 구체적으로 청색 광원을 포함하는 유기 발광 다이오드(OLED)일 수 있다.The display device may be an organic light emitting diode (OLED), specifically an organic light emitting diode (OLED) including a blue light source.
본 발명에 따른 디스플레이 소자는 상기 유기물 층 중 1층 이상이 상기 양자점 잉크 조성물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 디스플레이 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.The display device according to the present invention can be manufactured using materials and methods known in the art, except that at least one of the organic layers includes the quantum dot ink composition. Additionally, when the display device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.Below, preferred embodiments are presented to aid understanding of the invention. However, the following examples are only for illustrating the present invention and do not limit the present invention to these only.
<제조예><Manufacturing example>
제조예 1: 형광체가 포함된 캡슐화된 양자점의 제조 Preparation Example 1: Preparation of encapsulated quantum dots containing phosphor
교반 장치가 구비된 반응기에 에탄올 500 ml를 주입하고, 계면활성제로 폴리옥시에틸렌 라우릴에테르(CONION 275-90, New Japan Chemical Co 사 제품) 0.1g을 첨가하였다. 500 ml of ethanol was injected into a reactor equipped with a stirring device, and 0.1 g of polyoxyethylene lauryl ether (CONION 275-90, manufactured by New Japan Chemical Co.) was added as a surfactant.
여기에 단량체 20g, 양자점 분산액 6ml, 형광체(ALONBRIGHT, Denka 사, 0.02g) 및 광개시제(irgacure 184, 1g)를 혼합한 용액을 투입하였다, 상기 양자점은 옥타데실아민을 캡핑층으로 구비하는 CdSe계 양자점(상품명: Nanodot-HE, 파인랩사, 한국)을 20mg/ml의 농도로 이소보닐 아크릴레이트에 분산시킨 분산액을 사용하였다. 얻어진 조성물에 UV 1000mJ/cm2의 광량으로 조사하여 양자점 복합체를 제조하였다.A solution of 20 g of monomer, 6 ml of quantum dot dispersion, phosphor (ALONBRIGHT, Denka, 0.02 g), and photoinitiator (irgacure 184, 1 g) was added. The quantum dots are CdSe-based quantum dots with octadecylamine as a capping layer. (Product name: Nanodot-HE, Fine Lab, Korea) was used as a dispersion in isobornyl acrylate at a concentration of 20 mg/ml. The obtained composition was irradiated with UV light of 1000 mJ/cm 2 to prepare a quantum dot complex.
이때 단량체로 비극성 아크릴계 단량체로 이소보닐아크릴레이트(IBOA)를, 극성 아크릴계 단량체로 아크릴산(AA)을 각각 사용하였다. 상기 분산액을 필터링 후 건조하여 형광체가 포함된 캡슐화된 양자점을 회수하였다.At this time, isobornyl acrylate (IBOA) was used as a non-polar acrylic monomer, and acrylic acid (AA) was used as a polar acrylic monomer. The dispersion was filtered and dried to recover the encapsulated quantum dots containing the phosphor.
제조예 2: 캡슐화된 양자점의 제조 Preparation Example 2: Preparation of encapsulated quantum dots
교반 장치가 구비된 반응기에 에탄올 500 ml를 주입하고, 계면활성제로 폴리옥시에틸렌 라우릴에테르(CONION 275-90, New Japan Chemical Co 사 제품) 0.1g을 첨가하였다. 500 ml of ethanol was injected into a reactor equipped with a stirring device, and 0.1 g of polyoxyethylene lauryl ether (CONION 275-90, manufactured by New Japan Chemical Co.) was added as a surfactant.
여기에 단량체 20g, 양자점 분산액 6ml, 및 광개시제(irgacure 184, 1g)를 혼합한 용액을 투입하였다, 상기 양자점은 옥타데실아민을 캡핑층으로 구비하는 CdSe계 양자점(상품명: Nanodot-HE, 파인랩사, 한국)을 20mg/ml의 농도로 이소보닐 아크릴레이트에 분산시킨 분산액을 사용하였다. 얻어진 조성물에 UV 1000mJ/cm2의 광량으로 조사하여 양자점 복합체를 제조하였다.A solution of 20 g of monomer, 6 ml of quantum dot dispersion, and a photoinitiator (irgacure 184, 1 g) was added. The quantum dots were CdSe-based quantum dots (Product name: Nanodot-HE, Fine Labs, Inc.) with octadecylamine as a capping layer. Korea) was used as a dispersion in isobornyl acrylate at a concentration of 20 mg/ml. The obtained composition was irradiated with UV light of 1000 mJ/cm 2 to prepare a quantum dot complex.
이때 단량체로 비극성 아크릴계 단량체로 이소보닐아크릴레이트(IBOA)를, 극성 아크릴계 단량체로 아크릴산(AA)을 각각 사용하였다. 상기 분산액을 필터링 후 건조하여 캡슐화된 양자점을 회수하였다.At this time, isobornyl acrylate (IBOA) was used as a non-polar acrylic monomer, and acrylic acid (AA) was used as a polar acrylic monomer. The dispersion was filtered and dried to recover the encapsulated quantum dots.
<실시예 및 비교예: 양자점 잉크 조성물의 제조><Examples and Comparative Examples: Preparation of quantum dot ink composition>
실시예 1 Example 1
아크릴계 바인더 수지 100g에 상기 제조예 1에서 제조한 형광체가 포함된 캡슐화된 양자점 30g, 광개시제 2g을 첨가하여 양자점 잉크 조성물을 제조하였다. 잉크 조성물 총 100 중량부 함량 기준으로 형광체는 0.2 중량부로 포함되었다.A quantum dot ink composition was prepared by adding 30 g of encapsulated quantum dots containing the phosphor prepared in Preparation Example 1 and 2 g of photoinitiator to 100 g of acrylic binder resin. Based on a total content of 100 parts by weight of the ink composition, 0.2 parts by weight of phosphor was included.
실시예 2 Example 2
아크릴계 바인더 수지 100g에 상기 제조예 2에서 제조한 캡슐화된 양자점 30g 및 형광체(ALONBRIGHT, Denka 사) 5g, 광개시제 2g을 첨가하여 양자점 잉크 조성물을 제조하였다. 잉크 조성물 총 100 중량부 함량 기준으로 형광체는 3.65 중량부로 포함되었다.A quantum dot ink composition was prepared by adding 30 g of the encapsulated quantum dots prepared in Preparation Example 2, 5 g of phosphor (ALONBRIGHT, Denka), and 2 g of photoinitiator to 100 g of acrylic binder resin. Based on a total content of 100 parts by weight of the ink composition, 3.65 parts by weight of phosphor was included.
비교예 1 Comparative Example 1
아크릴계 바인더 수지 100g에 상기 제조예 2에서 제조한 캡슐화된 양자점 30g 및 광개시제 2g을 첨가하여 양자점 잉크 조성물을 제조하였다.A quantum dot ink composition was prepared by adding 30 g of the encapsulated quantum dots prepared in Preparation Example 2 and 2 g of the photoinitiator to 100 g of acrylic binder resin.
<시험예: 광특성 평가><Test example: Evaluation of optical properties>
실시예 1 및 실시예 2, 비교예 1에서 제조된 양자점 잉크 조성물을 각각 유리 기판 위에 스핀 코팅기(Mikasa 社, Opticoat MS-A150, 800rpm, 5초)를 사용하여 약 15㎛의 두께로 도포하고, 질소 분위기 하 395nm UV 노광기로 1,500mJ로 노광하였다. 이 후, 적분구 장비(Quantaurus QY, HAMAMATSU)에 2cm x 2cm 단막 시편을 로딩하여, 초기 광흡수율 및 광변환율을 측정하였다. 상기 수득된 도막을 120℃ 질소 분위기 건조로 안에서 30분 동안 건조(post bake)한 후, 광흡수율 및 광변환율을 측정하였다.The quantum dot ink compositions prepared in Examples 1, 2, and Comparative Example 1 were applied to a thickness of about 15 μm on a glass substrate using a spin coater (Mikasa, Opticoat MS-A150, 800 rpm, 5 seconds), respectively. It was exposed to 1,500 mJ using a 395 nm UV exposure device under a nitrogen atmosphere. Afterwards, a 2cm The obtained coating film was dried (post-baked) in a nitrogen atmosphere drying furnace at 120°C for 30 minutes, and then the light absorption rate and light conversion rate were measured.
광변환율은 HAMAMATSU 적분구 필름 타입 측정 장비로 측정하였다. 양자점 조성물이 코팅된 도막을 로딩한 후 450nm의 청색광을 도막에 인가시키고 상향 전방위로 방출된 녹색광을 모두 흡수하여 적분값으로 계산하였다. 광 변환율(Green/Blue)은 청색광 흡수 피크의 감소량 대비 녹색으로 변환된 피크의 증가량을 통해 측정하였다. The optical conversion rate was measured with a HAMAMATSU integrating sphere film type measuring device. After loading the coating film coated with the quantum dot composition, blue light of 450 nm was applied to the coating film, and all green light emitted in the upward omnidirectional direction was absorbed and calculated as an integral value. Light conversion rate (Green/Blue) was measured by the increase in the green light absorption peak compared to the decrease in the blue light absorption peak.
광흡수율(%)Light absorption rate (%) 광변환율(%)Optical conversion rate (%)
실시예 1Example 1 99.899.8 99.299.2
실시예 2Example 2 98.398.3 97.597.5
비교예 1Comparative Example 1 81.481.4 85.085.0
상기 표 1에 나타난 바와 같이 실시예 1 및 2의 양자점 잉크 조성물을 포함하는 경화막은 광흡수율이 98% 이상이고, 광변환율이 97% 이상으로 우수한 광특성을 나타내는 것으로 확인되었다. 한편, 비교예 1에 따른 양자점 잉크 조성물은 81.4%의 광흡수율 및 85%의 광변환율을 나타내었다.As shown in Table 1, the cured film containing the quantum dot ink compositions of Examples 1 and 2 was confirmed to have excellent optical properties with a light absorption rate of 98% or more and a light conversion rate of 97% or more. Meanwhile, the quantum dot ink composition according to Comparative Example 1 showed a light absorption rate of 81.4% and a light conversion rate of 85%.
본 발명은 양자점 잉크 조성물에 관한 것으로서, 색 재현율을 향상시키고 우수한 광효율을 가지는 양자점 잉크 조성물, 이를 이용한 장치 및 이를 포함하는 디스플레이 소자 등에 적용될 수 있다.The present invention relates to a quantum dot ink composition, and can be applied to a quantum dot ink composition that improves color reproduction and has excellent light efficiency, devices using the same, and display elements containing the same.

Claims (15)

  1. 바인더 수지;binder resin;
    캡슐화 수지로 캡슐화된 양자점; 및Quantum dots encapsulated in an encapsulating resin; and
    형광체를 포함하는, 양자점 잉크 조성물.A quantum dot ink composition comprising a phosphor.
  2. 제1항에 있어서,According to paragraph 1,
    상기 형광체는 상기 캡슐화 수지로 캡슐화된 양자점 내에 포함된, 양자점 잉크 조성물.A quantum dot ink composition, wherein the phosphor is contained in quantum dots encapsulated with the encapsulation resin.
  3. 제1항에 있어서,According to paragraph 1,
    상기 형광체는 상기 바인더 수지에 분산된, 양자점 잉크 조성물.A quantum dot ink composition wherein the phosphor is dispersed in the binder resin.
  4. 제1항에 있어서,According to paragraph 1,
    상기 형광체는 무기형광체 및 유기형광체 중에서 선택된 1종 이상을 포함하는, 양자점 잉크 조성물.A quantum dot ink composition wherein the phosphor includes at least one selected from an inorganic phosphor and an organic phosphor.
  5. 제1항에 있어서,According to paragraph 1,
    상기 형광체는 상기 양자점 잉크 조성물 총 100 중량부 함량 기준으로 0.1 내지 20 중량부로 포함되는, 양자점 잉크 조성물.The quantum dot ink composition includes the phosphor in an amount of 0.1 to 20 parts by weight based on a total content of 100 parts by weight of the quantum dot ink composition.
  6. 제1항에 있어서,According to paragraph 1,
    상기 바인더 수지는 아크릴계 수지, 스티렌-아크릴계 공중합 수지, 스티렌계 수지, 스티렌-아크릴로니트릴계 수지, 폴리카보네이트 수지, 사이클릭올레핀계 수지 및 폴리노르보르넨 수지로 이루어진 군에서 선택된 1종 이상인, 양자점 잉크 조성물.The binder resin is one or more selected from the group consisting of acrylic resin, styrene-acrylic copolymer resin, styrene resin, styrene-acrylonitrile resin, polycarbonate resin, cyclic olefin resin, and polynorbornene resin, quantum dots Ink composition.
  7. 제1항에 있어서,According to paragraph 1,
    상기 바인더 수지는 상기 양자점 잉크 조성물 총 100 중량부 함량 기준으로 5 내지 90 중량부로 포함되는, 양자점 잉크 조성물.The binder resin is included in an amount of 5 to 90 parts by weight based on a total content of 100 parts by weight of the quantum dot ink composition.
  8. 제1항에 있어서,According to paragraph 1,
    상기 캡슐화 수지는 가교화된 아크릴계 수지, 및 가교화된 실리콘계 수지 중에서 선택된 1종 이상을 포함하는, 양자점 잉크 조성물.A quantum dot ink composition wherein the encapsulation resin includes at least one selected from a crosslinked acrylic resin and a crosslinked silicone resin.
  9. 제1항에 있어서,According to paragraph 1,
    상기 캡슐화 수지는 광경화형 또는 열경화형 수지인, 양자점 잉크 조성물.The quantum dot ink composition wherein the encapsulating resin is a photocurable or thermocurable resin.
  10. 제1항에 있어서,According to paragraph 1,
    상기 양자점 잉크 조성물은 광확산제를 더 포함하는, 양자점 잉크 조성물.The quantum dot ink composition further includes a light diffuser.
  11. 제10항에 있어서,According to clause 10,
    상기 광확산제는 실리카, 탈크, 티타니아, 산화칼슘, 산화아연, 및 알루미나를 포함하는 무기계 입자; 폴리(메타)아크릴계, 폴리스티렌계, 실리콘계, 폴리우레탄계, 에폭시계 수지가 가교 또는 미가교 유기계 입자; 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는, 양자점 잉크 조성물.The light diffuser may include inorganic particles including silica, talc, titania, calcium oxide, zinc oxide, and alumina; Poly(meth)acrylic, polystyrene, silicone, polyurethane, and epoxy resins are crosslinked or uncrosslinked organic particles; And a quantum dot ink composition comprising at least one selected from the group consisting of combinations thereof.
  12. 기판;Board;
    기판 상에 배치된 발광원층; 및 A light emitting source layer disposed on a substrate; and
    상기 발광원층으로부터 방출된 발광원의 경로에 배치된 양자점 발광층;을 포함하고, It includes a quantum dot light emitting layer disposed in the path of the light emitting source emitted from the light emitting source layer,
    상기 양자점 발광층의 적어도 일 영역이 제1항 내지 제11항 중 어느 한 항에 따른 양자점 잉크 조성물을 이용하여 형성된, 장치.A device in which at least one region of the quantum dot light-emitting layer is formed using the quantum dot ink composition according to any one of claims 1 to 11.
  13. 제12항에 있어서,According to clause 12,
    상기 발광원은 유기 발광 다이오드(OLED) 또는 발광 다이오드(LED)이고,The light emitting source is an organic light emitting diode (OLED) or a light emitting diode (LED),
    최대 발광 파장이 400 nm 내지 490 nm인 청색광을 방출하는, 장치.A device that emits blue light with a maximum emission wavelength between 400 nm and 490 nm.
  14. 제12항에 있어서,According to clause 12,
    상기 양자점 발광층의 적어도 일 영역이 상기 양자점 잉크 조성물을 이용하여 형성되고, At least one region of the quantum dot light-emitting layer is formed using the quantum dot ink composition,
    상기 영역이 상기 발광원층으로부터 방출된 청색광을 흡수하고 청색 이외의 가시광을 방출하는, 장치.The device wherein the region absorbs blue light emitted from the light emitting source layer and emits visible light other than blue.
  15. 제1 전극; first electrode;
    상기 제1 전극과 대향하여 구비된 제2 전극; 및 a second electrode provided opposite to the first electrode; and
    상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고, Comprising one or more organic layers provided between the first electrode and the second electrode,
    상기 유기물층 중 1층 이상은 제1항 내지 제11항 중 어느 한 항의 양자점 잉크 조성물을 이용하여 형성된, 디스플레이 소자.A display device wherein at least one of the organic layers is formed using the quantum dot ink composition of any one of claims 1 to 11.
PCT/KR2023/012368 2022-10-27 2023-08-22 Quantum dot ink composition, device using same, and display device comprising same WO2024090759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0139970 2022-10-27
KR1020220139970A KR102571123B1 (en) 2022-10-27 2022-10-27 Quantum dot ink composition, device using same, and display device comprising same

Publications (1)

Publication Number Publication Date
WO2024090759A1 true WO2024090759A1 (en) 2024-05-02

Family

ID=87806338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012368 WO2024090759A1 (en) 2022-10-27 2023-08-22 Quantum dot ink composition, device using same, and display device comprising same

Country Status (2)

Country Link
KR (1) KR102571123B1 (en)
WO (1) WO2024090759A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100090570A (en) * 2009-02-06 2010-08-16 삼성전자주식회사 Liquid crystal display and method of manufacturing the same
KR20170036821A (en) * 2007-07-18 2017-04-03 삼성전자주식회사 Quantum dot-based light sheets useful for solid-state lighting
KR102270495B1 (en) * 2018-02-27 2021-06-29 삼성에스디아이 주식회사 Curable composition including quantum dot, manufacturing method of the quantum dot and color filter
KR20220106047A (en) * 2021-01-21 2022-07-28 동우 화인켐 주식회사 A quantum dot, a quantum dot dispersion, a light converting curable composition, electronic device, color filter, a light converting laminating unit and a display device
KR20220141230A (en) * 2021-04-12 2022-10-19 (주)이노큐디 Resin molded article containing quantum dot and fabrication method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036821A (en) * 2007-07-18 2017-04-03 삼성전자주식회사 Quantum dot-based light sheets useful for solid-state lighting
KR20100090570A (en) * 2009-02-06 2010-08-16 삼성전자주식회사 Liquid crystal display and method of manufacturing the same
KR102270495B1 (en) * 2018-02-27 2021-06-29 삼성에스디아이 주식회사 Curable composition including quantum dot, manufacturing method of the quantum dot and color filter
KR20220106047A (en) * 2021-01-21 2022-07-28 동우 화인켐 주식회사 A quantum dot, a quantum dot dispersion, a light converting curable composition, electronic device, color filter, a light converting laminating unit and a display device
KR20220141230A (en) * 2021-04-12 2022-10-19 (주)이노큐디 Resin molded article containing quantum dot and fabrication method thereof

Also Published As

Publication number Publication date
KR102571123B1 (en) 2023-08-28

Similar Documents

Publication Publication Date Title
WO2020004927A1 (en) Method for preparing quantum dot film, quantum dot film prepared thereby, and wavelength conversion sheet and display comprising same
WO2021034104A1 (en) Quantum dot film comprising quantum dot composite, and wavelength conversion sheet for display
WO2019098601A1 (en) Method for manufacturing quantum dot film, quantum dot film manufactured thereby and wavelength conversion sheet and display comprising same
KR101983426B1 (en) Photosensitive resin composition and display device
WO2017065349A1 (en) Quantum dot, polymer resin, quantum dot sheet, and backlight unit including same
WO2017161610A1 (en) Quantum dot composite fluorescent particle and led module
WO2016167448A2 (en) Method for quantum dot-polymer composite, quantum dot-polymer composite, light conversion film comprising same, backlight unit, and display device
WO2010002221A2 (en) A wavelength-converting light emitting diode (led) chip and led device equipped with chip
WO2012002780A2 (en) Composition for light-emitting particle-polymer composite, light-emitting particle-polymer composite, and device including the light-emitting particle-polymer composite
WO2018093028A1 (en) Self-luminescent photosensitive resin composition, color filter prepared by using same, and image display device
WO2018151457A1 (en) Color filter and image display device
WO2018097464A1 (en) Spontaneous emission photosensitive resin composition, color filter manufactured using same, and image display apparatus
WO2018143628A1 (en) Quantum dot dispersion, self-emission type photosensitive resin composition, color filter, and image display device
WO2021020695A2 (en) Hybrid wavelength converter, method for manufacturing same, and light emitting diode comprising same
WO2024090759A1 (en) Quantum dot ink composition, device using same, and display device comprising same
KR20220141230A (en) Resin molded article containing quantum dot and fabrication method thereof
WO2018093021A1 (en) Yellow curable resin composition, and color filter and image display device comprising same
WO2022108351A1 (en) Semiconductor nanoparticle-ligand composite, photosensitive resin composition, optical film, electrical light-emitting diode, and electronic device
WO2017111401A1 (en) Photo-conversion member, and display device and light emitting element package comprising same
WO2018110808A1 (en) Yellow curable resin composition, color filter manufactured using same and image display device
WO2018093090A1 (en) Photosensitive resin composition, color filter, and image display device
WO2015030433A1 (en) Patterned retarder and image display apparatus including same
WO2023068664A1 (en) Quantum dot film comprising quantum dot composite, and wavelength conversion sheet for display
WO2022163950A1 (en) Solventless quantum dot composition, preparation method therefor, and cured film, color filter and display device which comprise same
KR20220106047A (en) A quantum dot, a quantum dot dispersion, a light converting curable composition, electronic device, color filter, a light converting laminating unit and a display device