WO2024090739A1 - Anode active material for lithium secondary battery, method of producing same, and lithium secondary battery comprising same - Google Patents

Anode active material for lithium secondary battery, method of producing same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2024090739A1
WO2024090739A1 PCT/KR2023/011052 KR2023011052W WO2024090739A1 WO 2024090739 A1 WO2024090739 A1 WO 2024090739A1 KR 2023011052 W KR2023011052 W KR 2023011052W WO 2024090739 A1 WO2024090739 A1 WO 2024090739A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
lithium secondary
secondary battery
Prior art date
Application number
PCT/KR2023/011052
Other languages
French (fr)
Korean (ko)
Inventor
김향연
손현택
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230092642A external-priority patent/KR20240059527A/en
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2024090739A1 publication Critical patent/WO2024090739A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/18Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys

Definitions

  • the present invention relates to a method of manufacturing a negative electrode active material for a lithium secondary battery, a negative electrode active material for a lithium secondary battery, a negative electrode for a lithium secondary battery, and a lithium secondary battery containing the same. More specifically, active metals with a diameter of 100 nm or less uniformly dispersed and precipitated in an inert metal crystalline matrix phase containing silicon (Si), additive metal (M), iron (Fe), and manganese (Mn).
  • It relates to a method of manufacturing a negative electrode active material for lithium secondary batteries having a microstructure in which a crystalline silicon phase, which is a metal, is uniformly dispersed and precipitated, a negative electrode active material for lithium secondary batteries manufactured therefrom, a negative electrode for lithium secondary batteries, and a lithium secondary battery containing the same.
  • wireless charging technology that can charge the battery anytime, anywhere without being connected to power by a cable is being combined with IT. Accordingly, wireless charging technology is expected to be widely applied not only to home appliances such as televisions and refrigerators and electric vehicles, but also to wearable devices that can be worn or attached to the body.
  • lithium secondary batteries According to this industrial environment, the scope of application of lithium secondary batteries is gradually expanding as an energy storage medium applied to portable information devices such as smartphones, laptops, and digital cameras, small home appliances and medical devices, electric vehicles, and large-capacity power storage systems. , performance improvements such as high capacity, high output, long life, and high safety are required.
  • Lithium secondary batteries are manufactured by using materials capable of intercalation and deintercalation of lithium ions as the cathode and anode, installing a porous separator between the electrodes, and then injecting an electrolyte solution.
  • electricity is generated or consumed through redox reactions caused by insertion and desorption of lithium ions in the cathode and anode.
  • the improvement in the performance of lithium secondary batteries can be said to be due to the technological development of four core materials: anode, cathode, electrolyte, and separator, which have a decisive influence on various characteristics such as capacity and output.
  • the capacity of the positive electrode and negative electrode active materials currently used in lithium secondary batteries is already close to the theoretical capacity. Accordingly, the need for new anode active materials is increasing to implement high-capacity and high-output batteries suitable for wireless charging energy storage.
  • graphite a negative electrode active material widely used in lithium secondary batteries
  • graphite has a layered structure and is very useful for insertion and desorption of lithium ions.
  • the theoretical capacity of graphite is 372 mAh/g, and as demand for high-capacity lithium batteries has recently increased, new electrodes that can replace graphite are required. Accordingly, research is actively underway to commercialize high-capacity negative electrode active materials that form electrochemical alloys with lithium ions, such as silicon (Si), tin (Sn), antimony (Sb), and aluminum (Al). It is becoming.
  • One embodiment of the present invention to solve the problems of the prior art described above is an inert metal crystalline matrix phase containing silicon (Si), aluminum (Al), copper (Cu), iron (Fe), and manganese (Mn).
  • the problem to be solved is to provide a negative electrode and a lithium secondary battery including the negative electrode.
  • the technical problem to be achieved by the present invention is to improve the decline in life characteristics due to volume change when using conventional Si as a negative electrode active material, while ensuring uniform size of the Si precipitate phase and reproducibility of charge/discharge capacity and cycle life.
  • Another purpose is to provide a secured manufacturing method of a negative electrode active material for a lithium secondary battery, a negative electrode active material for a lithium secondary battery manufactured by the manufacturing method, a negative electrode for a lithium secondary battery containing the negative electrode active material, and a lithium secondary battery containing the negative electrode.
  • One embodiment of the present invention for achieving the above-described object of the present invention provides a negative electrode active material for a lithium secondary battery.
  • the negative electrode active material for lithium secondary batteries according to an embodiment of the present invention is,
  • the total 100 at% includes 45 at% to less than 60 at% of Si, 25 at% or more of added metal M, 1 at% to 20 at% of Fe, and 20 at% or less of Mn, and the above additions Metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb.
  • the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less.
  • the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix is heated by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • a negative electrode active material for a lithium secondary battery was formed by heat treatment of a Si-based amorphous alloy with an exothermic peak due to Cu clustering in the temperature range of 300°C to 450°C. There may be.
  • the inactive matrix phase of the negative electrode active material is any one selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  • a negative electrode active material for a lithium secondary battery characterized by containing the above phases.
  • another embodiment of the present invention provides a negative electrode for a lithium secondary battery.
  • It includes a negative electrode current collector and a negative electrode active material layer formed on at least one side of the negative electrode current collector, wherein the negative electrode active material layer contains 75 wt% to 92 wt% of the negative electrode active material and 1 wt% to 10 wt of the conductive material, based on 100 wt%. %, and a binder of 7 wt% to 15 wt%, wherein the negative electrode active material includes 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, and 1 at% based on 100 at% of the negative electrode active material.
  • the added metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. It may further include an element, and the negative electrode active material may be a negative electrode for a lithium secondary battery, characterized in that it includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix.
  • the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less.
  • the negative electrode for a lithium secondary battery There may be a negative electrode for a lithium secondary battery.
  • the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix is heated by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the inactive matrix phase of the negative electrode active material is any one selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  • the negative electrode for a lithium secondary battery characterized by containing the above phases.
  • another embodiment of the present invention provides a lithium secondary battery.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector, and the negative electrode active material layer is 100 wt%. , containing 75 wt% to 92 wt% of a negative electrode active material, 1 wt% to 10 wt% of a conductive material, and 7 wt% to 15 wt% of a binder, and the negative electrode active material is 45 at% based on 100 at% of the negative electrode active material.
  • the added metal M includes Al and Cu. ; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. It may further include an element, and the negative electrode active material may be a lithium secondary battery characterized in that it includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix.
  • the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less.
  • the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix is heated by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • thermal analysis was performed at a rate of 10°C/min, there may be a lithium secondary battery formed by heat treatment of a Si-based amorphous alloy with an exothermic peak due to Cu clustering in the temperature range of 300°C to 450°C. there is.
  • the inactive matrix phase of the negative electrode active material is any one selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  • another embodiment of the present invention provides a method for manufacturing a negative electrode active material for a lithium secondary battery.
  • the negative electrode active material is 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, 1 at% or more and 20 at% or less of Fe, and 20 at% or less, based on 100 at% of the negative electrode active material.
  • Mn and the added metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. It may be a method of manufacturing a negative electrode active material for a lithium secondary battery, characterized in that it further contains an element.
  • the negative electrode active material for a lithium secondary battery contains 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, and 1 at%, based on 100 at% of the negative electrode active material.
  • a method of manufacturing a negative electrode active material for a lithium secondary battery which is characterized by containing 20 at% or less of Fe and 20 at% or less of Mn.
  • the step of manufacturing a Si-based amorphous alloy having the Si-M-Fe-Mn composition is mixing the prepared metals or alloys of Si, additive metal M, Fe, and Mn. producing molten metal by melting it and then melting it; And there may be a method of manufacturing a negative electrode active material for a lithium secondary battery, which includes the step of solidifying the molten metal by liquid rapid solidification to produce a Si-based amorphous alloy having the Si-M-Fe-Mn composition.
  • the step of manufacturing the Si-based amorphous alloy having the Si-M-Fe-Mn composition includes ball milling, mechanical alloying, and gas atomizer method.
  • a method of manufacturing a negative electrode active material for a lithium secondary battery which is characterized in that it is performed by one or more methods selected from the group consisting of gas atomization and chemical vapor deposition.
  • a method of manufacturing a negative electrode active material for a lithium secondary battery wherein the heat treatment is performed in a temperature range of 400°C to 650°C.
  • the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less.
  • the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix is heated by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • anode active material for lithium secondary batteries which is formed by heat treatment of a Si-based amorphous alloy that exhibits an exothermic peak due to Cu clustering in the temperature range of 300°C to 450°C when thermal analysis is performed at a rate of 10°C/min. There may be a way.
  • the inactive matrix phase of the negative electrode active material is any one selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  • the negative electrode active material including a crystalline Si phase which is an active metal uniformly dispersed and precipitated on the inactive metal crystalline matrix including Si, additive metals M, Fe, and Mn, is formed on the inactive metal crystalline matrix.
  • Copper clustering (Cu clustering) phenomenon may occur due to the tendency of iron (Fe) and copper (Cu) within the material to separate.
  • a Cu-rich region is formed in the amorphous alloy by the Cu clustering phenomenon, and nuclei of an inactive matrix phase due to the Cu are generated and precipitated, and accordingly, the crystallization temperature A low silicon (Si-rich) region is formed, so that a crystalline Si phase, which is an active metal, may be finely precipitated within the inactive metal crystalline matrix phase during heat treatment.
  • the inactive metal crystalline matrix phase in the negative electrode active material may play a role in suppressing the volume expansion of the negative electrode active material while forming a structure that does not react with lithium ions, and the crystalline Si phase, which is the active metal, may form a structure that does not react with lithium ions. Since it can react reversibly, it is directly related to the capacity of the negative electrode active material, showing improved capacity characteristics of the negative electrode active material.
  • the inert metal crystalline matrix phase has a yield strength that can withstand the expansion stress of silicon particles due to intercalation of lithium ions, so that the volume of the negative electrode active material increases during charging and discharging. Particle micronization due to expansion and contraction can be suppressed.
  • the initial coulombic efficiency is excellent at 85% or more, and 50 cycles are achieved. It can have lifespan characteristics that maintain more than 83% of its capacity even after use.
  • Figure 1 is a flowchart of a method for manufacturing a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention.
  • Figure 2 is a graph showing the results of thermal analysis of a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention using differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min.
  • DSC differential scanning calorimetry
  • Figure 3 is a graph confirming the diffraction pattern showing the crystallinity of the negative electrode active material for a lithium secondary battery of Example 1 manufactured according to an embodiment of the present invention.
  • Figure 4 is a graph confirming the diffraction pattern showing the crystallinity of the negative electrode active material for a lithium secondary battery of Comparative Example 1 manufactured according to an embodiment of the present invention.
  • Figure 5 is a graph showing the capacity maintenance rate according to cycle of Example 1 and Comparative Example 1 manufactured according to an embodiment of the present invention.
  • the present invention seeks to manufacture a high-capacity, high-output silicon alloy-based anode active material suitable for wireless charging energy storage by using rapid solidification process and alloy design technology.
  • a matrix phase with a yield strength that can withstand the expansion stress of silicon particles due to intercalation of lithium ions during charge/discharge cycles is formed, with a diameter of 100 nm or less.
  • an embodiment of the present invention provides a negative electrode active material for lithium secondary batteries.
  • the added metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb.
  • a negative electrode active material for a lithium secondary battery that further contains an element and is characterized by comprising a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix.
  • the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less. This can be.
  • the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inert metal crystalline matrix was measured by differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min.
  • DSC differential scanning calorimetry
  • the inert matrix phase of the negative electrode active material is,
  • a negative electrode active material for a lithium secondary battery which is characterized in that it contains one or more phases selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  • another embodiment of the present invention provides a negative electrode for a lithium secondary battery.
  • the above embodiment includes a negative electrode current collector and a negative electrode active material layer formed on at least one side of the negative electrode current collector, wherein the negative electrode active material layer includes 75 wt% to 92 wt% of the negative electrode active material and a conductive material for 100 wt%. It contains 1 wt% to 10 wt%, and 7 wt% to 15 wt% of a binder, and the negative electrode active material includes 45 at% or more and less than 60 at% of Si, and 25 at% or more of Si, based on 100 at% of the negative electrode active material.
  • the added metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb.
  • the negative electrode active material includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix. There may be a negative electrode for a lithium secondary battery. .
  • the negative electrode for a lithium secondary battery is characterized in that the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less, with respect to 100 at% of the negative electrode active material. There may be.
  • the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inert metal crystalline matrix was measured by differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min.
  • DSC differential scanning calorimetry
  • the inert matrix phase of the negative electrode active material includes one or more phases selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  • Another embodiment of the present invention provides a lithium secondary battery.
  • the negative electrode in a lithium secondary battery including a positive electrode, a negative electrode, an electrolyte, and a separator, the negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector, and the negative electrode active material layer It includes 75 wt% to 92 wt% of a negative electrode active material, 1 wt% to 10 wt% of a conductive material, and 7 wt% to 15 wt% of a binder, based on 100 wt% of silver, and the negative electrode active material is 100 at% of the negative electrode active material.
  • the negative electrode active material includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix.
  • the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%
  • the Cu is contained in an amount of 0.1 at% or more and 5 at% or less, with respect to 100 at% of the negative electrode active material.
  • the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inert metal crystalline matrix was measured by differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min.
  • DSC differential scanning calorimetry
  • the inert matrix phase of the negative electrode active material is,
  • lithium secondary battery characterized in that it contains one or more phases selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  • another embodiment of the present invention provides a method for manufacturing a negative electrode active material for a lithium secondary battery.
  • preparing metals or alloys of Si, additive metal M, Fe, and Mn respectively; Preparing a Si-based amorphous alloy having a Si-M-Fe-Mn composition using the prepared metals or alloys of Si, additive metals M, Fe, and Mn; And heat-treating the Si-based amorphous alloy to produce a negative electrode active material for a lithium secondary battery comprising a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inert metal crystalline matrix.
  • the negative electrode active material is 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, 1 at% or more and 20 at% or less of Fe, and 20 at% or less, based on 100 at% of the negative electrode active material.
  • Mn and the added metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb.
  • the negative electrode active material for a lithium secondary battery contains 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, and 1 at% or more and 20 at% or less, based on 100 at% of the negative electrode active material.
  • the step of manufacturing a Si-based amorphous alloy having the Si-M-Fe-Mn composition includes mixing the prepared metals or alloys of Si, additive metals M, Fe, and Mn, and then melting them. manufacturing metal; And there may be a method of manufacturing a negative electrode active material for a lithium secondary battery, which includes the step of solidifying the molten metal by liquid rapid solidification to produce a Si-based amorphous alloy having the Si-M-Fe-Mn composition.
  • the step of manufacturing the Si-based amorphous alloy having the Si-M-Fe-Mn composition includes ball milling, mechanical alloying, gas atomization,
  • a method of manufacturing a negative electrode active material for a lithium secondary battery which is characterized in that it is performed by one or more methods selected from the group consisting of chemical vapor deposition.
  • a method of manufacturing a negative electrode active material for a lithium secondary battery wherein the heat treatment is performed in a temperature range of 400°C to 700°C.
  • the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less.
  • the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inert metal crystalline matrix was measured by differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min.
  • DSC differential scanning calorimetry
  • thermal analysis there may be a method of manufacturing a negative electrode active material for a lithium secondary battery, which is characterized in that it is formed by heat treatment of a Si-based amorphous alloy that has an exothermic peak due to Cu clustering in the temperature range of 300 °C to 450 °C. .
  • the inert matrix phase of the negative electrode active material includes one or more phases selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  • a method for manufacturing a negative electrode active material for a lithium secondary battery which is characterized in that:
  • melt spinning which is a liquid rapid solidification method
  • an amorphous alloy in melt spinning, which is a liquid rapid solidification method, can be manufactured reproducibly at a rotational speed of the copper wheel in the range of 30 m/s to 60 m/s, more preferably 40 m/s.
  • Amorphous alloys can be manufactured reproducibly at high speeds.
  • the crystalline Si phase which is an active metal
  • the crystalline Si phase is a Si system in which Cu is forcibly dissolved, produced by a liquid quenching and solidification method in which molten metal is sprayed onto a copper wheel rotating at a speed in the range of 30 m/s to 60 m/s. It is uniformly dispersed and precipitated on an inert metal crystalline matrix by Cu clustering through heat treatment of amorphous alloy.
  • amorphous alloy After manufacturing the amorphous alloy, heat treatment is performed at a constant temperature (400°C to 700°C) to produce a negative electrode active material in which reproducible active silicon particles are uniformly dispersed and precipitated in nano size within an inert matrix. It can be judged that it can have excellent lifespan characteristics with capacity maintained even after 50 cycles.
  • Figure 1 is a flowchart of a method for manufacturing a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention.
  • the present invention includes the step of preparing metals or alloys of Si, additive metals M, Fe, and Mn (S10), liquid quenching solidification method, ball milling method, and mechanical alloying method. ), performing one or more processes of gas atomization, and chemical vapor deposition (S20), manufacturing a Si-based amorphous alloy having a Si-M-Fe-Mn composition ( S30); and heat-treating the Si-based amorphous alloy to produce a negative electrode active material for a lithium secondary battery having a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inert metal crystalline matrix (S40). It can be confirmed that it contains .
  • the added metal M includes Al and Cu; or,
  • a method for manufacturing a negative electrode active material for a lithium secondary battery is provided, further comprising:
  • the negative electrode active material for the lithium secondary battery is 45 at% to less than 60 at% of Si, 25 at% or more of added metal M, 1 at% to 20 at% of Fe, and 20 at% based on 100 at% of the negative electrode active material. It may contain less than % Mn.
  • the crystalline Si phase which is the active metal, can react reversibly with lithium ions and is therefore directly related to the capacity of the negative electrode active material, and the inactive metal crystalline matrix phase forms a structure that does not react with lithium ions and serves to suppress the volume expansion of the negative electrode active material. can do.
  • the crystalline Si phase which is the active metal, may be uniformly dispersed and precipitated within the inactive metal crystalline matrix phase.
  • the structure of the matrix phase that does not react with lithium ions may be one or more phases selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  • the negative electrode active material may include a crystalline Si phase, which is a microstructured active metal with a diameter of 100 nm or less, uniformly dispersed and precipitated on an inert metal crystalline matrix.
  • the particle size of the Si phase, which is the active metal, uniformly dispersed and precipitated on the inactive metal crystalline matrix may be 1 nm to 100 nm.
  • the amount of Si contained in the negative electrode active material for lithium secondary batteries is related to the capacity and lifespan characteristics of the negative electrode active material. Specifically, as more Si is included in the alloy, the capacity of the negative electrode active material may be improved, but the lifespan characteristics may be somewhat reduced. Therefore, in order to improve the lifespan characteristics of the negative electrode active material of the present invention rather than improving capacity, the Si content in the negative electrode active material is preferably at a level of 45 at% or more and less than 60 at%.
  • the Si content is less than 45 at%, it is undesirable because it may exhibit excessively low capacity to realize capacity as a negative electrode active material for lithium secondary batteries, and if the Si content is more than 60 at%, it becomes crystalline and Si Amorphous. This is undesirable because an alloy is not produced or the content of components other than Si constituting the inert metal crystalline matrix phase is low, making it difficult to improve the lifespan of the negative electrode active material for lithium secondary batteries.
  • Cu is difficult to dissolve in Fe when it is in a solid state at room temperature, but by using a liquid rapid solidification method such as melt spinning, Cu can be forcibly dissolved in Fe. Cu that is forcibly dissolved tends to separate from Fe, and this tendency causes the copper clustering phenomenon.
  • the inactive metal matrix phase may first precipitate in areas where Cu clustering occurs, and due to this phenomenon, the anode active material of the present invention has a crystalline Si phase, which is an active metal, uniformly dispersed and precipitated on the inactive metal crystalline matrix. It may include dispersed and precipitated microstructure.
  • the Cu content is preferably 0.1 at% or more and 5 at% or less when the Fe content is 1 at% or more and 20 at% or less. This is because, when the Cu content is less than 0.1 at%, the above-mentioned Cu clustering phenomenon is so small that dispersion and precipitation of active silicon nanoparticles may not occur, which is not desirable. In addition, if the Cu content exceeds 5 at%, it is undesirable because Cu may act as an impurity. Therefore, the Cu content is preferably 0.1 at% or more and 5 at% or less.
  • Fe included in the inert metal crystalline matrix can play a role in inducing Cu clustering, capacity characteristics can be improved.
  • the inert metal crystalline matrix phase includes a Si-based alloy containing Si, an added metal M, Fe, and Mn, where the added metal M includes Al and Cu; or,
  • the added metal M essentially includes Al and Cu, and additionally Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and It may further include one or more elements selected from the group consisting of Nb.
  • one or more elements selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb are present in an amount of 0.1 at% to It can be included at 5 at% and can be used as an ingredient to improve capacity characteristics or lifespan characteristics.
  • Figure 2 is a graph showing the results of thermal analysis of a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention using differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min.
  • DSC differential scanning calorimetry
  • the negative electrode for a lithium secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material layer formed on at least one side of the negative electrode current collector, and the negative electrode active material layer contains 75 wt% to 92 wt% of the negative electrode active material and 1 wt% to 1 wt% of the conductive material. It contains 10 wt% and 7 wt% to 15 wt% of binder, and the negative electrode active material is characterized in that it includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inert metal crystalline matrix. do.
  • the negative electrode current collector may include a conductive material, and specifically, may be a thin conductive foil or foam.
  • the negative electrode current collector may include copper, gold, nickel, stainless steel, or titanium, but is not limited thereto.
  • the conductive material is used to provide conductivity, and in the lithium secondary battery being constructed, any electronically conductive material can be used as long as it does not cause chemical change.
  • any electronically conductive material can be used as long as it does not cause chemical change.
  • the content of the conductive material When the content of the conductive material is less than 1 wt%, the effect of improving conductivity and the resulting lifespan characteristics due to the use of the conductive material is minimal, and when the content of the conductive material is more than 5 wt%, the specific surface area of the conductive material increases due to the conductive material. This is undesirable because the reaction between the electrolyte and the electrolyte may increase and the lifespan characteristics may deteriorate. More specifically, the content of the conductive material may preferably be 1 wt% to 3 wt%.
  • the binder serves to adhere the negative electrode active material particles to each other and the negative electrode active material to the negative electrode current collector, and specifically, polyimide, polyamidoimide, polybenzimidazole, poly Vinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene. Any one or more of fluoride, polyethylene, polypropylene, styrene-butadiene, acrylated styrene-butadiene, and epoxy resin may be used, but is not limited thereto.
  • the binder content is less than 7 wt%, it is undesirable because it is difficult to exhibit sufficient adhesion within the negative electrode, and if the binder content is more than 15 wt%, it is undesirable because there is a risk of deterioration in the capacity characteristics of the lithium secondary battery. More specifically, the binder content may preferably be 7 wt% to 10 wt%.
  • the content of the conductive material is preferably 1 wt% to 10 wt% and the content of the binder is preferably 7 wt% to 15 wt%
  • the content of the negative electrode active material in the negative electrode active material layer is 75 wt% to 92 wt%. is a desirable level.
  • the solvent for mixing the negative electrode active material, conductive material, and binder may be N-methylpyrrolidone or n-hexane, but is not limited thereto.
  • lithium secondary batteries will be described.
  • the lithium secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolyte, and a separator, and the negative electrode may include a negative electrode current collector and a negative electrode active material layer formed on at least one side of the negative electrode current collector.
  • the cathode includes a cathode current collector and a cathode active material layer formed on the cathode current collector, and the cathode active material layer is formed by mixing the cathode active material, a binder, and a conductive material in a solvent. After preparing the composition, the composition may be applied on the positive electrode current collector. Since this method of manufacturing an anode is widely known in the art, detailed description will be omitted in this specification.
  • the positive electrode active material may include a material capable of reversibly inserting and deintercalating lithium ions.
  • the positive electrode active material may include lithium-containing transition metal oxide, lithium-containing transition metal sulfide, etc.
  • the binder serves to adhere the positive electrode active material particles to each other and to the positive electrode current collector, and specifically, polyimide, polyamidoimide, polybenzimidazole, polyvinyl alcohol, carboxymethyl cellulose, and hydride.
  • the conductive material is used to provide conductivity, and in the lithium secondary battery being constructed, any electronically conductive material can be used as long as it does not cause chemical change.
  • any electronically conductive material can be used as long as it does not cause chemical change.
  • the solvent may be N-methylpyrrolidone or n-hexane, but is not limited thereto.
  • the positive electrode current collector may include a conductive material, and may specifically be a thin conductive foil or foam.
  • the positive electrode current collector may include aluminum, nickel, or an alloy thereof, but is not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent may be one or more of carbonate-based, ester-based, ether-based, ketone-based, alcohol-based and aprotic solvents.
  • the non-aqueous organic solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), n-methyl acetate, and dibutyl ether. , cyclohexanone, isopropyl alcohol, and sulfolane solvents. These non-aqueous organic solvents can be used individually or in combination of two or more types.
  • the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 C 2 F 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiN(SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ) (x and y are natural numbers), LiCl, LiI and It may include one or two or more selected from the group consisting of LiB(C 2 O 4 ) 2 .
  • These electrolyte salts can be used individually or in combination of two or more types.
  • the separator may be a single-layer membrane made of polyethylene, polypropylene, or polyvinylidene fluoride, or a multilayer membrane of two or more layers thereof may be used.
  • the amorphous alloy of the present invention was manufactured under the conditions shown in Table 1 below.
  • a single-roll liquid rapid solidification method in which an alloy containing Si, Al, Cu, Fe, and Mn is melted by arc melting to prepare a molten liquid, and then the molten liquid is sprayed on a copper wheel rotating at 40 m/s, Si 53 Al 29 Cu.
  • a Si-based amorphous alloy with a composition of 1 Fe 15 Mn 2 and Cu in which Cu was forcibly dissolved was manufactured.
  • the Si-based amorphous alloy is heat-treated at 650°C for 1 hour in a furnace under inert gas conditions to form a crystalline crystalline phase with a microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inert metal crystalline matrix.
  • a negative electrode active material for lithium secondary batteries was prepared.
  • Negative active material powder having a crystal phase formed by mixing 200 g of zirconium balls (Zr-balls), 5 g of the heat-treated Si-based alloy, and n-hexane and then pulverizing them for 15 minutes using a paint shaker. After manufacturing a raw coin-shaped electrode plate, a mixture of negative electrode active material powder, Ketjen Black as a conductive material, and PAI as a binder in a weight ratio of 87:3:10 was applied to the electrode plate, and then incubated at 400°C under Ar gas conditions. The anode of Example 1 was manufactured by heat treatment for 1 hour.
  • Figure 3 is a graph confirming the diffraction pattern showing the crystallinity of the negative electrode active material for a lithium secondary battery in Example 1 manufactured according to an embodiment of the present invention. As can be seen in Figure 3, it was confirmed that the inert matrix phase of the negative electrode active material of the present invention contains FeSi 2 , Fe 2 Al 3 Si 3 , and Al 2.7 Fe 1 Si 2.3 .
  • Comparative Example 1 was prepared in the same manner as Example 1, except that the amorphous alloy was left without heat treatment to prepare a Si-based alloy containing a mixture of crystalline and amorphous Si 60 Al 26 Fe 14 composition. Additionally, a negative electrode was manufactured in the same manner as Example 1.
  • Figure 4 is a graph confirming the diffraction pattern showing the crystallinity of the negative electrode active material for a lithium secondary battery of Comparative Example 1 manufactured according to an embodiment of the present invention. As can be seen in FIG. 4, it was confirmed that Fe 2 Al 3 Si 3 was included in the inactive matrix of the negative electrode active material of Comparative Example 1, and in addition, amorphous materials were confirmed.
  • the charging capacity, discharge capacity, and initial coulombic efficiency (ICE) of the negative electrode active material when charging and discharging were performed once were measured.
  • the value divided by the initial charge capacity) and the capacity retention rate according to 50 repetitions of charge/discharge are listed in Table 2 below.
  • Example 1 of the present invention which has a crystalline crystal structure
  • the initial coulombic efficiency was confirmed to be 85.66.
  • the capacity maintenance rate after 50 cycles was also high at 83.53%.
  • Comparative Example 1 a rapidly solidified alloy manufactured without heat treatment, the initial coulombic efficiency was high at 90.20%, while the capacity retention rate after 50 cycles was confirmed to be significantly lower at 66.89%. Comparative Example 1 has a mixed crystalline phase and amorphous phase. It was manufactured without heat treatment on a Si-based alloy with a composition of Si 60 Al 26 Fe 14 , and the capacity maintenance rate was judged to be significantly lower than the high initial coulombic efficiency. It has been done.
  • Figure 5 is a graph comparing capacity maintenance rates according to charge and discharge cycles. It was confirmed that the capacity maintenance rate of Comparative Example 1 significantly decreased as the charge/discharge cycle increased.
  • An embodiment of the present invention can manufacture an amorphous alloy reproducibly at a rotational speed of a copper wheel in the range of 30 m/s to 60 m/s in melt spinning, which is a liquid rapid solidification method, and more preferably 40 m/s.
  • Amorphous alloys can be manufactured reproducibly at high speeds.
  • amorphous alloy After manufacturing the amorphous alloy, heat treatment is performed at a constant temperature (400°C to 700°C) to produce a negative electrode active material in which reproducible active silicon particles are uniformly dispersed and precipitated in nano size within an inert matrix. It can be judged that it can have excellent lifespan characteristics with capacity maintained even after 50 cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a method for producing an anode active material for a lithium secondary battery, an anode active material for a lithium secondary battery produced by the method, an anode comprising the anode active material for a lithium secondary battery, and a lithium secondary battery comprising the anode, wherein according to the method, a Si-based amorphous alloy with a Si-M-Fe-Mn composition is subjected to heat treatment, thereby allowing the anode active material to have a microstructure in which a crystalline Si phase, an active metal with a diameter of 100 nm or less, is uniformly dispersed and deposited in an inert metal crystalline matrix.

Description

리튬이차전지용 음극활물질, 이의 제조방법, 및 이를 포함하는 리튬이차전지Negative active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery containing the same
본 발명은 리튬이차전지용 음극활물질 제조방법, 리튬이차전지용 음극활물질, 리튬이차전지용 음극 및 이를 포함하는 리튬이차전지에 관한 것이다. 더욱 상세하게는, 실리콘(Si), 첨가금속(M), 철(Fe), 및 망간(Mn)을 포함하는 비활성 금속 결정질 매트릭스 상(matrix phase)에 균일하게 분산 석출된 100 nm 이하 직경의 활성금속인 결정질 실리콘 상이 균일 분산 석출된 미세조직이 구현된 리튬이차전지용 음극활물질의 제조방법과 이로부터 제조된 리튬이차전지용 음극활물질, 리튬이차전지용 음극 및 이를 포함하는 리튬이차전지에 관한 것이다.The present invention relates to a method of manufacturing a negative electrode active material for a lithium secondary battery, a negative electrode active material for a lithium secondary battery, a negative electrode for a lithium secondary battery, and a lithium secondary battery containing the same. More specifically, active metals with a diameter of 100 nm or less uniformly dispersed and precipitated in an inert metal crystalline matrix phase containing silicon (Si), additive metal (M), iron (Fe), and manganese (Mn). It relates to a method of manufacturing a negative electrode active material for lithium secondary batteries having a microstructure in which a crystalline silicon phase, which is a metal, is uniformly dispersed and precipitated, a negative electrode active material for lithium secondary batteries manufactured therefrom, a negative electrode for lithium secondary batteries, and a lithium secondary battery containing the same.
최근 전 세계적으로 무선전력전송기술을 이용한 무선충전 기능이 스마트폰에 적용되기 시작하면서, 케이블에 의한 전원 연결 없이 언제 어디에서나 배터리를 충전할 수 있는 무선충전 기술이 IT와 접목되고 있다. 이에 따라, 텔레비전, 냉장고와 같은 가전기기나 전기 자동차뿐만 아니라 신체에 착용 또는 부착이 가능한 웨어러블 디바이스 분야까지 무선충전 기술이 확대 적용될 것으로 예상되고 있다.Recently, as the wireless charging function using wireless power transmission technology has begun to be applied to smartphones around the world, wireless charging technology that can charge the battery anytime, anywhere without being connected to power by a cable is being combined with IT. Accordingly, wireless charging technology is expected to be widely applied not only to home appliances such as televisions and refrigerators and electric vehicles, but also to wearable devices that can be worn or attached to the body.
이러한 산업 환경에 따라, 리튬이차전지는 스마트폰, 노트북, 디지털 카메라와 같은 휴대용 정보기기, 소형가전·의료기기, 전기자동차 및 대용량 전력저장 시스템에 적용되는 에너지저장 매체로서 그 적용범위가 점차 확대되어, 고용량, 고출력, 장수명, 고안전성과 같은 성능 향상이 요구되고 있다.According to this industrial environment, the scope of application of lithium secondary batteries is gradually expanding as an energy storage medium applied to portable information devices such as smartphones, laptops, and digital cameras, small home appliances and medical devices, electric vehicles, and large-capacity power storage systems. , performance improvements such as high capacity, high output, long life, and high safety are required.
리튬이차전지는 리튬 이온의 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)가 가능한 물질을 음극 및 양극으로 사용하고, 상기 전극들 사이에 다공성 분리막을 설치한 후 전해액을 주입시켜 제조되는 것이 일반적이며, 상기 음극 및 양극에서 리튬 이온의 삽입 및 탈리에 의한 산화 환원 반응에 의하여 전기가 생성되거나 소비된다.Lithium secondary batteries are manufactured by using materials capable of intercalation and deintercalation of lithium ions as the cathode and anode, installing a porous separator between the electrodes, and then injecting an electrolyte solution. In general, electricity is generated or consumed through redox reactions caused by insertion and desorption of lithium ions in the cathode and anode.
리튬이차전지의 성능 향상은 용량, 출력 등의 제반 특성에 결정적인 영향을 미치는 양극, 음극, 전해질, 분리막의 4가지 핵심 소재의 기술 개발에 의한 것이라고 할 수 있다. 현재 리튬이차전지에 사용되고 있는 양극활물질 및 음극활물질의 용량은 이미 이론 용량에 근접하였다. 이에 따라, 무선충전 에너지저장에 적합한 고용량 및 고출력의 전지 구현을 위해서 신규 음극활물질에 대한 필요성이 증대되고 있다.The improvement in the performance of lithium secondary batteries can be said to be due to the technological development of four core materials: anode, cathode, electrolyte, and separator, which have a decisive influence on various characteristics such as capacity and output. The capacity of the positive electrode and negative electrode active materials currently used in lithium secondary batteries is already close to the theoretical capacity. Accordingly, the need for new anode active materials is increasing to implement high-capacity and high-output batteries suitable for wireless charging energy storage.
통상적으로, 리튬이차전지에 널리 사용되고 있는 음극활물질인 흑연(graphite)은 층상 구조를 가지고 있어 리튬 이온의 삽입 및 탈리에 매우 유용하다. 흑연의 이론적 용량은 372 mAh/g이며, 최근 고용량의 리튬 전지에 대한 수요가 증가함에 따라 흑연을 대체할 수 있는 새로운 전극이 요구되고 있다. 이에 따라, 고용량의 음극활물질로 실리콘(Si), 주석(Sn), 안티몬(Sb), 알루미늄(Al) 등과 같이 리튬 이온과 전기화학적인 합금을 형성하는 전극 활물질에 대하여 상용화를 위한 연구가 활발히 진행되고 있다.Typically, graphite, a negative electrode active material widely used in lithium secondary batteries, has a layered structure and is very useful for insertion and desorption of lithium ions. The theoretical capacity of graphite is 372 mAh/g, and as demand for high-capacity lithium batteries has recently increased, new electrodes that can replace graphite are required. Accordingly, research is actively underway to commercialize high-capacity negative electrode active materials that form electrochemical alloys with lithium ions, such as silicon (Si), tin (Sn), antimony (Sb), and aluminum (Al). It is becoming.
한편 실리콘(Si)을 음극활물질로 사용할 경우, 반복적인 충·방전에 의해 리튬 이온이 삽입 및 탈리되는 과정에서 체적 변화로 인한 실리콘 입자의 균열이나 깨짐이 발생하는 문제점이 있었다. 이에 따라 음극활물질 입자의 표면적이 증가하고, 비수전해질의 분해 생성물로 이루어지는 피막층이 음극활물질 표면에 두껍게 형성되어, 음극활물질과 비수전해질 사이의 계면 저항 증가에 따른 충·방전 수명 특성 저하 문제가 있었다. 이러한 문제를 해결하기 위해, 실리콘(Si) 재료의 형상과 입자 크기를 제어하거나, 합금화, 산화물화 및 탄소 재료와의 복합화 등 다양한 방법이 시도되고 있으나 아직까지 근본적인 문제는 해결되지 못하였다.Meanwhile, when silicon (Si) is used as a negative electrode active material, there is a problem in that cracks or breaks in silicon particles occur due to volume changes during the process of insertion and desorption of lithium ions through repeated charging and discharging. Accordingly, the surface area of the negative electrode active material particles increases, and the film layer made of decomposition products of the non-aqueous electrolyte is formed thickly on the surface of the negative electrode active material, resulting in an increase in interfacial resistance between the negative electrode active material and the non-aqueous electrolyte, leading to a problem of deterioration of charge and discharge life characteristics. To solve this problem, various methods have been attempted, such as controlling the shape and particle size of the silicon (Si) material, alloying, oxidizing, and complexing with carbon materials, but the fundamental problem has not yet been solved.
최근 연구는 이러한 부피 변화를 억제하기 위한 화학조성, 형태학(morphology)적 제어, 제조 공정, 바인더를 포함하는 전극 구조 등에 집중되어 왔다. 그러나 일반적으로 대량생산이 가능한 합금의 제조공정인 급속 응고법의 경우, 롤접촉면과 반대면의 냉각속도 차이가 미세조직에 미치는 영향에 따라 심각한 산포가 존재하며, 스케일업에 의한 산포 역시 현저하므로 소재 실용화에는 미치지 못하였다. 이에, 공정을 고려한 합금조성의 설계가 요구되며, 대량생산 스케일이 반영된 공정 설계가 요구된다.Recent research has focused on chemical composition, morphology control, manufacturing process, and electrode structure including binder to suppress this volume change. However, in the case of the rapid solidification method, which is generally a manufacturing process for alloys capable of mass production, there is serious dispersion depending on the effect on the microstructure of the difference in cooling rate between the roll contact surface and the opposite surface, and the dispersion due to scale-up is also significant, making the material practical. It did not reach . Accordingly, design of alloy composition considering the process is required, and process design that reflects the mass production scale is required.
<선행기술문헌><Prior art literature>
(등록특허1) KR 10-1385602 B1(Registered Patent 1) KR 10-1385602 B1
상술한 종래기술의 문제점을 해결하기 위한 본 발명의 일 실시예는, 실리콘(Si), 알루미늄(Al), 구리(Cu), 철(Fe) 및 망간(Mn)을 포함하는 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 실리콘 상이 균일하게 분산 석출된 미세조직을 갖는 리튬이차전지 음극활물질 제조방법, 상기 제조방법으로 제조된 리튬이차전지용 음극활물질, 상기 음극활물질을 포함하는 리튬이차전지용 음극 및 상기 음극을 포함하는 리튬이차전지를 제공하는 것을 해결하고자 하는 과제로 한다.One embodiment of the present invention to solve the problems of the prior art described above is an inert metal crystalline matrix phase containing silicon (Si), aluminum (Al), copper (Cu), iron (Fe), and manganese (Mn). A method of manufacturing a negative electrode active material for a lithium secondary battery having a microstructure in which a crystalline silicon phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated, a negative electrode active material for a lithium secondary battery produced by the manufacturing method, and a negative electrode active material for a lithium secondary battery containing the negative electrode active material. The problem to be solved is to provide a negative electrode and a lithium secondary battery including the negative electrode.
또한 본 발명이 이루고자 하는 기술적 과제는, 종래의 Si을 음극활물질로 사용하였을 때의 체적 변화로 인한 수명 특성 저하를 개선하면서도, Si 석출상의 균일한 크기 확보, 충방전 용량, 사이클 수명 등의 재현성이 확보된 리튬이차전지 음극활물질 제조방법, 상기 제조방법으로 제조된 리튬이차전지용 음극활물질, 상기 음극활물질을 포함하는 리튬이차전지용 음극 및 상기 음극을 포함하는 리튬이차전지를 제공하는 것을 다른 목적으로 한다.In addition, the technical problem to be achieved by the present invention is to improve the decline in life characteristics due to volume change when using conventional Si as a negative electrode active material, while ensuring uniform size of the Si precipitate phase and reproducibility of charge/discharge capacity and cycle life. Another purpose is to provide a secured manufacturing method of a negative electrode active material for a lithium secondary battery, a negative electrode active material for a lithium secondary battery manufactured by the manufacturing method, a negative electrode for a lithium secondary battery containing the negative electrode active material, and a lithium secondary battery containing the negative electrode.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description below. There will be.
상술한 본 발명의 과제를 달성하기 위한 본 발명의 일 실시예는 리튬이차전지용 음극활물질을 제공한다.One embodiment of the present invention for achieving the above-described object of the present invention provides a negative electrode active material for a lithium secondary battery.
본 발명의 일 실시 예에 따른 상기 리튬이차전지용 음극활물질은,The negative electrode active material for lithium secondary batteries according to an embodiment of the present invention is,
전체 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며, 상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는, Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하는 것이고, 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질일 수 있다.For the total 100 at%, it includes 45 at% to less than 60 at% of Si, 25 at% or more of added metal M, 1 at% to 20 at% of Fe, and 20 at% or less of Mn, and the above additions Metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. It may be a negative electrode active material for a lithium secondary battery that further contains an element and is characterized by comprising a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix.
또한, 본 발명의 일 실시 예에 따르면, 상기 음극활물질 100 at%에 대해, 상기 Al은 24.9 at% 이상 49.8 at% 미만, 상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지용 음극활물질이 있을 수 있다.In addition, according to an embodiment of the present invention, with respect to 100 at% of the negative electrode active material, the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less. There may be negative electrode active material for lithium secondary batteries.
또한, 본 발명의 일 실시 예에 따르면, 상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은, 시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지용 음극활물질이 있을 수 있다.In addition, according to one embodiment of the present invention, the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix is heated by differential scanning calorimetry (DSC). When thermal analysis was performed at a rate of 10°C/min, a negative electrode active material for a lithium secondary battery was formed by heat treatment of a Si-based amorphous alloy with an exothermic peak due to Cu clustering in the temperature range of 300°C to 450°C. There may be.
또한, 본 발명의 일 실시 예에 따르면, 상기 음극활물질의 비활성 매트릭스 상은, FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질이 있을 수 있다.In addition, according to one embodiment of the present invention, the inactive matrix phase of the negative electrode active material is any one selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases. There may be a negative electrode active material for a lithium secondary battery characterized by containing the above phases.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 실시예는 리튬이차전지용 음극을 제공한다.In order to achieve the above technical problem, another embodiment of the present invention provides a negative electrode for a lithium secondary battery.
본 발명의 일 실시 예에 따른 상기 리튬이차전지용 음극은,The negative electrode for a lithium secondary battery according to an embodiment of the present invention,
음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하고, 상기 음극활물질층은 100 wt%에 대해, 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt%, 및 바인더 7 wt% 내지 15 wt%를 포함하며, 상기 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며, 상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는, Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하며, 상기 음극활물질은, 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 것을 특징으로 하는 리튬이차전지용 음극일 수 있다.It includes a negative electrode current collector and a negative electrode active material layer formed on at least one side of the negative electrode current collector, wherein the negative electrode active material layer contains 75 wt% to 92 wt% of the negative electrode active material and 1 wt% to 10 wt of the conductive material, based on 100 wt%. %, and a binder of 7 wt% to 15 wt%, wherein the negative electrode active material includes 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, and 1 at% based on 100 at% of the negative electrode active material. Containing % or more and 20 at% or less of Fe, and 20 at% or less of Mn, wherein the added metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. It may further include an element, and the negative electrode active material may be a negative electrode for a lithium secondary battery, characterized in that it includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix.
또한, 본 발명의 일 실시 예에 따르면, 상기 음극활물질 100 at%에 대해, 상기 Al은 24.9 at% 이상 49.8 at% 미만, 상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지용 음극이 있을 수 있다.In addition, according to an embodiment of the present invention, with respect to 100 at% of the negative electrode active material, the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less. There may be a negative electrode for a lithium secondary battery.
또한, 본 발명의 일 실시 예에 따르면, 상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은, 시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지용 음극이 있을 수 있다.In addition, according to one embodiment of the present invention, the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix is heated by differential scanning calorimetry (DSC). When thermal analysis was performed at a rate of 10°C/min, there was a negative electrode for a lithium secondary battery, which was formed by heat treatment of a Si-based amorphous alloy with an exothermic peak due to Cu clustering in the temperature range of 300°C to 450°C. You can.
또한, 본 발명의 일 실시 예에 따르면, 상기 음극활물질의 비활성 매트릭스 상은, FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지용 음극이 있을 수 있다.In addition, according to one embodiment of the present invention, the inactive matrix phase of the negative electrode active material is any one selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases. There may be a negative electrode for a lithium secondary battery characterized by containing the above phases.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 실시예는 리튬이차전지를 제공한다.In order to achieve the above technical problem, another embodiment of the present invention provides a lithium secondary battery.
본 발명의 일 실시 예에 따른 상기 리튬이차전지는,The lithium secondary battery according to an embodiment of the present invention,
양극, 음극, 전해질 및 분리막을 포함하는 리튬이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하며, 상기 음극활물질층은 100 wt%에 대해, 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt% 및 바인더 7 wt% 내지 15 wt%를 포함하고, 상기 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며, 상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는, Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하며, 상기 음극활물질은, 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 것을 특징으로 하는 리튬이차전지일 수 있다.In the lithium secondary battery including a positive electrode, a negative electrode, an electrolyte, and a separator, the negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector, and the negative electrode active material layer is 100 wt%. , containing 75 wt% to 92 wt% of a negative electrode active material, 1 wt% to 10 wt% of a conductive material, and 7 wt% to 15 wt% of a binder, and the negative electrode active material is 45 at% based on 100 at% of the negative electrode active material. It contains more than 60 at% of Si, more than 25 at% of added metal M, more than 1 at% but less than 20 at% of Fe, and less than 20 at% of Mn, and the added metal M includes Al and Cu. ; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. It may further include an element, and the negative electrode active material may be a lithium secondary battery characterized in that it includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix.
또한, 본 발명의 일 실시 예에 따르면, 상기 음극활물질 100 at%에 대해, 상기 Al은 24.9 at% 이상 49.8 at% 미만, 상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지가 있을 수 있다.In addition, according to an embodiment of the present invention, with respect to 100 at% of the negative electrode active material, the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less. There may be a lithium secondary battery.
또한, 본 발명의 일 실시 예에 따르면, 상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은, 시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지가 있을 수 있다.In addition, according to one embodiment of the present invention, the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix is heated by differential scanning calorimetry (DSC). When thermal analysis was performed at a rate of 10°C/min, there may be a lithium secondary battery formed by heat treatment of a Si-based amorphous alloy with an exothermic peak due to Cu clustering in the temperature range of 300°C to 450°C. there is.
또한, 본 발명의 일 실시 예에 따르면, 상기 음극활물질의 비활성 매트릭스 상은, FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지가 있을 수 있다.In addition, according to one embodiment of the present invention, the inactive matrix phase of the negative electrode active material is any one selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases. There may be a lithium secondary battery characterized by containing the above phases.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 실시예는 리튬이차전지용 음극활물질 제조방법을 제공한다.In order to achieve the above technical problem, another embodiment of the present invention provides a method for manufacturing a negative electrode active material for a lithium secondary battery.
본 발명의 일 실시 예에 따른 상기 리튬이차전지용 음극활물질 제조방법은,The method for manufacturing an anode active material for a lithium secondary battery according to an embodiment of the present invention,
Si, 첨가금속 M, Fe, 및 Mn 각각의 금속 또는 합금을 준비하는 단계; 상기 준비한 Si, 첨가금속 M, Fe, 및 Mn 각각의 금속 또는 합금으로 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계; 및 상기 Si계 Amorphous 합금을 열처리하여, 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 리튬이차전지용 음극활물질을 제조하는 단계;를 포함하고, 상기 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며, 상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는, Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법일 수 있다.Preparing metals or alloys of Si, additive metal M, Fe, and Mn; Preparing a Si-based amorphous alloy having a Si-M-Fe-Mn composition using the prepared metals or alloys of Si, additive metals M, Fe, and Mn; And heat-treating the Si-based amorphous alloy to produce a negative electrode active material for a lithium secondary battery comprising a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inert metal crystalline matrix. , the negative electrode active material is 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, 1 at% or more and 20 at% or less of Fe, and 20 at% or less, based on 100 at% of the negative electrode active material. of Mn, and the added metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. It may be a method of manufacturing a negative electrode active material for a lithium secondary battery, characterized in that it further contains an element.
또한, 본 발명의 일 실시 예에 따르면, 상기 리튬이차전지용 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하는 것틀 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.In addition, according to an embodiment of the present invention, the negative electrode active material for a lithium secondary battery contains 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, and 1 at%, based on 100 at% of the negative electrode active material. There may be a method of manufacturing a negative electrode active material for a lithium secondary battery, which is characterized by containing 20 at% or less of Fe and 20 at% or less of Mn.
또한, 본 발명의 일 실시 예에 따르면, 상기 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계는, 상기 준비한 Si, 첨가금속 M, Fe, 및 Mn 각각의 금속 또는 합금을 혼합한 후 용융하여 용융금속을 제조하는 단계; 및 상기 용융금속을 액체급냉응고법으로 고체화하여 상기 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계를 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.In addition, according to an embodiment of the present invention, the step of manufacturing a Si-based amorphous alloy having the Si-M-Fe-Mn composition is mixing the prepared metals or alloys of Si, additive metal M, Fe, and Mn. producing molten metal by melting it and then melting it; And there may be a method of manufacturing a negative electrode active material for a lithium secondary battery, which includes the step of solidifying the molten metal by liquid rapid solidification to produce a Si-based amorphous alloy having the Si-M-Fe-Mn composition.
또한, 본 발명의 일 실시 예에 따르면, 상기 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계는, 볼밀법(ball milling), 기계적 합금화법(Mechanical Alloyiing), 가스 아토마이져법(gas atomization), 및 기상증착법(chemical vapor deposition)으로 이루어진 군에서 선택되는 어느 하나 이상의 방법으로 수행되는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.In addition, according to an embodiment of the present invention, the step of manufacturing the Si-based amorphous alloy having the Si-M-Fe-Mn composition includes ball milling, mechanical alloying, and gas atomizer method. There may be a method of manufacturing a negative electrode active material for a lithium secondary battery, which is characterized in that it is performed by one or more methods selected from the group consisting of gas atomization and chemical vapor deposition.
또한, 본 발명의 일 실시 예에 따르면, 상기 열처리는 400℃ 내지 650℃의 온도범위에서 진행되는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.Additionally, according to an embodiment of the present invention, there may be a method of manufacturing a negative electrode active material for a lithium secondary battery, wherein the heat treatment is performed in a temperature range of 400°C to 650°C.
또한, 본 발명의 일 실시 예에 따르면, 상기 음극활물질 100 at%에 대해, 상기 Al은 24.9 at% 이상 49.8 at% 미만, 상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.In addition, according to an embodiment of the present invention, with respect to 100 at% of the negative electrode active material, the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less. There may be a method of manufacturing anode active material for lithium secondary batteries.
또한, 본 발명의 일 실시 예에 따르면, 상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은, 시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.In addition, according to one embodiment of the present invention, the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix is heated by differential scanning calorimetry (DSC). Manufacture of anode active material for lithium secondary batteries, which is formed by heat treatment of a Si-based amorphous alloy that exhibits an exothermic peak due to Cu clustering in the temperature range of 300℃ to 450℃ when thermal analysis is performed at a rate of 10℃/min. There may be a way.
또한, 본 발명의 일 실시 예에 따르면, 상기 음극활물질의 비활성 매트릭스 상은, FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.In addition, according to one embodiment of the present invention, the inactive matrix phase of the negative electrode active material is any one selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases. There may be a method for manufacturing a negative electrode active material for a lithium secondary battery, which is characterized by comprising the above phases.
본 발명의 일 효과로서, Si, 첨가금속 M, Fe, 및 Mn을 포함하는 상기 비활성 금속 결정질 매트릭스 상에 균일하게 분산 석출된 활성금속인 결정질 Si 상을 포함하는 음극활물질은 상기 비활성 금속 결정질 매트릭스 상 내의 철(Fe)과 구리(Cu)가 분리되는 경향에 의해 구리 클러스터링(Cu clustering) 현상이 발생할 수 있다.As an effect of the present invention, the negative electrode active material including a crystalline Si phase, which is an active metal uniformly dispersed and precipitated on the inactive metal crystalline matrix including Si, additive metals M, Fe, and Mn, is formed on the inactive metal crystalline matrix. Copper clustering (Cu clustering) phenomenon may occur due to the tendency of iron (Fe) and copper (Cu) within the material to separate.
이에 따라, 상기 구리 클러스터링(Cu clustering) 현상에 의해 amorphous 합금에서의 Cu-rich 영역이 형성되고, 상기 Cu에 의한 불활성 매트릭스상(inactive matrix phase)의 핵이 생성 및 석출되고, 이에 따라, 결정화 온도가 낮은 과실리콘(Si-rich) 영역이 형성되어 열처리 시 상기 비활성 금속 결정질 매트릭스 상 내에 활성 금속인 결정질 Si 상이 미세하게 석출될 수 있다.Accordingly, a Cu-rich region is formed in the amorphous alloy by the Cu clustering phenomenon, and nuclei of an inactive matrix phase due to the Cu are generated and precipitated, and accordingly, the crystallization temperature A low silicon (Si-rich) region is formed, so that a crystalline Si phase, which is an active metal, may be finely precipitated within the inactive metal crystalline matrix phase during heat treatment.
본 발명의 다른 효과로서, 음극활물질 내의 상기 비활성 금속 결정질 매트릭스 상은 리튬 이온과 반응하지 않는 구조를 형성하면서 음극활물질의 부피 팽창을 억제하는 역할을 할 수 있고, 상기 활성금속인 결정질 Si 상은 리튬 이온과 가역 반응할 수 있으므로 음극활물질의 용량과 직접적인 관련이 있어, 향상된 음극활물질의 용량 특성을 나타낼 수 있다.As another effect of the present invention, the inactive metal crystalline matrix phase in the negative electrode active material may play a role in suppressing the volume expansion of the negative electrode active material while forming a structure that does not react with lithium ions, and the crystalline Si phase, which is the active metal, may form a structure that does not react with lithium ions. Since it can react reversibly, it is directly related to the capacity of the negative electrode active material, showing improved capacity characteristics of the negative electrode active material.
따라서 상기 음극활물질의 충·방전 진행 시 상기 비활성 금속 결정질 매트릭스 상이 리튬 이온의 인터칼레이션(intercalation)에 의한 실리콘 입자의 팽창응력을 견딜 수 있는 항복강도를 가져서, 충·방전 진행 시 음극활물질의 부피 팽창 및 수축에 의한 입자 미분화가 억제될 수 있다.Therefore, when charging and discharging the negative electrode active material, the inert metal crystalline matrix phase has a yield strength that can withstand the expansion stress of silicon particles due to intercalation of lithium ions, so that the volume of the negative electrode active material increases during charging and discharging. Particle micronization due to expansion and contraction can be suppressed.
따라서 상기 비활성 금속 결정질 매트릭스 상에 균일하게 분산 석출된 활성금속인 결정질 Si 상을 포함하는 리튬이차전지용 음극활물질을 이용하여 리튬이차전지를 제조하면, 초기 쿨롱 효율이 85 % 이상으로 우수하며, 50 사이클 후에도 용량이 83% 이상 유지되는 수명 특성을 가질 수 있다.Therefore, when a lithium secondary battery is manufactured using a negative electrode active material for a lithium secondary battery containing a crystalline Si phase, which is an active metal uniformly dispersed and precipitated on the inert metal crystalline matrix, the initial coulombic efficiency is excellent at 85% or more, and 50 cycles are achieved. It can have lifespan characteristics that maintain more than 83% of its capacity even after use.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the effects described above, and should be understood to include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일 실시예에 따른 리튬이차전지용 음극활물질 제조방법의 순서도이다.Figure 1 is a flowchart of a method for manufacturing a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 리튬이차전지용 음극활물질을 시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석한 결과를 나타낸 그래프이다.Figure 2 is a graph showing the results of thermal analysis of a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention using differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min.
도 3은 본 발명의 일 실시예에 따라 제조된 실시예 1의 리튬이차전지용 음극활물질의 결정성을 나타낸 회절패턴을 확인한 그래프이다.Figure 3 is a graph confirming the diffraction pattern showing the crystallinity of the negative electrode active material for a lithium secondary battery of Example 1 manufactured according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따라 제조된 비교예 1의 리튬이차전지용 음극활물질의 결정성을 나타낸 회절패턴을 확인한 그래프이다.Figure 4 is a graph confirming the diffraction pattern showing the crystallinity of the negative electrode active material for a lithium secondary battery of Comparative Example 1 manufactured according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따라 제조된 실시예 1과 비교예 1의 사이클에 따른 용량 유지율을 나타낸 그래프이다.Figure 5 is a graph showing the capacity maintenance rate according to cycle of Example 1 and Comparative Example 1 manufactured according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참고하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the attached drawings. However, the present invention may be implemented in various different forms and, therefore, is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts unrelated to the description are omitted, and similar parts are given similar reference numerals throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, combined)" with another part, this means not only "directly connected" but also "indirectly connected" with another member in between. "Includes cases where it is. Additionally, when a part is said to “include” a certain component, this does not mean that other components are excluded, but that other components can be added, unless specifically stated to the contrary.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this specification are merely used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
본 발명에서는 액체급냉응고법(Rapidly Solidification Process)과 합금설계 기술을 이용하여, 무선충전 에너지 저장에 적합한 고용량, 고출력의 실리콘 합금계 음극활물질을 제조하고자 한다.The present invention seeks to manufacture a high-capacity, high-output silicon alloy-based anode active material suitable for wireless charging energy storage by using rapid solidification process and alloy design technology.
현재까지 기계적 합금화법인 볼밀링(Ball Milling)이나 액체급냉응고법(Rapidly Solidification Process)을 이용하여 실리콘 합금계 음극활물질 제조에 대한 연구는 계속 진행되고 있으나, 제조공정변수(볼밀링 시간, 분말 입자의 크기, 용탕의 냉각속도) 제어의 어려움으로 활성금속인 실리콘 상(Si phase)만의 직경을 100nm 이하 급으로 균일하고 재현성 있게 비활성금속인 매트릭스 상(matrix phase)에 분산 석출시켜, 실리콘 재료의 부피팽창 문제를 해결한 실리콘 합금계 음극활물질에 대한 연구보고는 없으며, 본 발명에서는 다음의 세 가지 방법 순으로 이러한 문제를 해결하고자 한다.To date, research on the manufacture of silicon alloy-based anode active materials is ongoing using mechanical alloying methods such as ball milling or liquid rapid solidification process, but manufacturing process variables (ball milling time, powder particle size) Due to the difficulty in controlling the cooling rate of the molten metal, the diameter of the silicon phase (Si phase), which is an active metal, is dispersed and deposited uniformly and reproducibly in the matrix phase (an inactive metal) with a diameter of less than 100 nm, thereby solving the problem of volume expansion of the silicon material. There is no research report on a silicon alloy-based negative electrode active material that solves the problem, and the present invention seeks to solve this problem in the following three ways.
첫째, 열처리 후 Cu 클러스터링(Cu Clustering) 효과의 미세조직을 고려한 실리콘계 Amorphous 합금 설계.First, design of silicon-based amorphous alloy considering the microstructure of Cu clustering effect after heat treatment.
둘째, 액체급냉응고법(Rapidly Solidification Process)을 이용한 실리콘계 Amorphous 합금 제조.Second, manufacturing silicon-based amorphous alloy using rapid solidification process.
셋째, 실리콘계 Amorphous 합금의 열처리를 통한 활성금속이 매트릭스에 균일 분산 석출된 미세조직 구현.Third, realization of a microstructure in which active metal is uniformly dispersed and precipitated in the matrix through heat treatment of silicon-based amorphous alloy.
상기 과정을 통해 최종적으로, 충·방전 사이클 진행 시 리튬 이온의 인터칼레이션(intercalation)에 의한 실리콘 입자의 팽창응력을 견뎌낼 수 있는 항복강도를 갖는 매트릭스 상(matrix phase)에, 100nm급 직경 이하의 실리콘 상이 균일 분산 석출된 미세조직을 구현하여, 리튬이온의 삽입·탈리 반응으로 발생하는 실리콘 입자의 부피 팽창·수축에 의한 입자 미분화를 억제하고자 한다.Through the above process, a matrix phase with a yield strength that can withstand the expansion stress of silicon particles due to intercalation of lithium ions during charge/discharge cycles is formed, with a diameter of 100 nm or less. By implementing a microstructure in which the silicon phase is uniformly dispersed and precipitated, we aim to suppress particle micronization caused by volume expansion and contraction of silicon particles caused by insertion and desorption reactions of lithium ions.
구체적으로, 본 발명의 일 실시예는 리튬이차전지용 음극활물질을 제공한다.Specifically, an embodiment of the present invention provides a negative electrode active material for lithium secondary batteries.
상기 실시예의 일 예로, 전체 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며, 상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는, Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하는 것이고, 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질이 있을 수 있다.As an example of the above embodiment, for the total 100 at%, 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, 1 at% or more and 20 at% or less of Fe, and 20 at% or less of Mn It includes, wherein the added metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. There may be a negative electrode active material for a lithium secondary battery that further contains an element and is characterized by comprising a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix.
상기 실시예의 일 예로, 상기 음극활물질 100 at%에 대해, 상기 Al은 24.9 at% 이상 49.8 at% 미만, 상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지용 음극활물질이 있을 수 있다.As an example of the above embodiment, with respect to 100 at% of the negative electrode active material, the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less. This can be.
상기 실시예의 일 예로, 상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은, 시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지용 음극활물질이 있을 수 있다.As an example of the above embodiment, the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inert metal crystalline matrix was measured by differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min. When thermal analysis is performed, there may be a negative electrode active material for a lithium secondary battery, which is formed by heat treatment of a Si-based amorphous alloy that exhibits an exothermic peak due to Cu clustering in the temperature range of 300°C to 450°C.
상기 실시예의 일 예로, 상기 음극활물질의 비활성 매트릭스 상은, As an example of the above embodiment, the inert matrix phase of the negative electrode active material is,
FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질이 있을 수 있다.There may be a negative electrode active material for a lithium secondary battery, which is characterized in that it contains one or more phases selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
또한, 본 발명의 다른 실시예는, 리튬이차전지용 음극을 제공한다.Additionally, another embodiment of the present invention provides a negative electrode for a lithium secondary battery.
상기 실시예의 일 예로, 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하고, 상기 음극활물질층은 100 wt%에 대해, 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt%, 및 바인더 7 wt% 내지 15 wt%를 포함하며, 상기 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며, 상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는, Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하며, 상기 음극활물질은, 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 것을 특징으로 하는 리튬이차전지용 음극이 있을 수 있다.As an example of the above embodiment, it includes a negative electrode current collector and a negative electrode active material layer formed on at least one side of the negative electrode current collector, wherein the negative electrode active material layer includes 75 wt% to 92 wt% of the negative electrode active material and a conductive material for 100 wt%. It contains 1 wt% to 10 wt%, and 7 wt% to 15 wt% of a binder, and the negative electrode active material includes 45 at% or more and less than 60 at% of Si, and 25 at% or more of Si, based on 100 at% of the negative electrode active material. Containing an added metal M, 1 at% or more and 20 at% or less of Fe, and 20 at% or less of Mn, wherein the added metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. It further includes an element, and the negative electrode active material includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix. There may be a negative electrode for a lithium secondary battery. .
상기 실시예의 일 예로, 상기 음극활물질 100 at%에 대해, 상기 Al은 24.9 at% 이상 49.8 at% 미만, 상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지용 음극이 있을 수 있다.As an example of the above embodiment, the negative electrode for a lithium secondary battery is characterized in that the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less, with respect to 100 at% of the negative electrode active material. There may be.
상기 실시예의 일 예로, 상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은, 시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지용 음극이 있을 수 있다.As an example of the above embodiment, the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inert metal crystalline matrix was measured by differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min. When thermal analysis is performed, there may be a negative electrode for a lithium secondary battery that is formed by heat treatment of a Si-based amorphous alloy that exhibits an exothermic peak due to Cu clustering in the temperature range of 300°C to 450°C.
상기 실시예의 일 예로, 상기 음극활물질의 비활성 매트릭스 상은, FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지용 음극이 있을 수 있다.As an example of the above embodiment, the inert matrix phase of the negative electrode active material includes one or more phases selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases. There may be a negative electrode for a lithium secondary battery characterized by this.
또한, 본 발명의 다른 실시예는, 리튬이차전지를 제공한다.Additionally, another embodiment of the present invention provides a lithium secondary battery.
상기 실시예의 일 예로, 양극, 음극, 전해질 및 분리막을 포함하는 리튬이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하며, 상기 음극활물질층은 100 wt%에 대해, 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt% 및 바인더 7 wt% 내지 15 wt%를 포함하고, 상기 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며, 상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는, Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하며, 상기 음극활물질은, 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 것을 특징으로 하는 리튬이차전지가 있을 수 있다.As an example of the above embodiment, in a lithium secondary battery including a positive electrode, a negative electrode, an electrolyte, and a separator, the negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector, and the negative electrode active material layer It includes 75 wt% to 92 wt% of a negative electrode active material, 1 wt% to 10 wt% of a conductive material, and 7 wt% to 15 wt% of a binder, based on 100 wt% of silver, and the negative electrode active material is 100 at% of the negative electrode active material. For, it includes 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, 1 at% or more and 20 at% or less of Fe, and 20 at% or less of Mn, wherein the added metal M is Al. and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. There may be a lithium secondary battery that further includes an element, and the negative electrode active material includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix.
상기 실시예의 일 예로, 상기 음극활물질 100 at%에 대해, 상기 Al은 24.9 at% 이상 49.8 at% 미만, 상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지가 있을 수 있다.As an example of the above embodiment, there is a lithium secondary battery characterized in that the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less, with respect to 100 at% of the negative electrode active material. You can.
상기 실시예의 일 예로, 상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은, 시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지가 있을 수 있다.As an example of the above embodiment, the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inert metal crystalline matrix was measured by differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min. When thermal analysis is performed, there may be a lithium secondary battery that is formed by heat treatment of a Si-based amorphous alloy that exhibits an exothermic peak due to Cu clustering in the temperature range of 300°C to 450°C.
상기 실시예의 일 예로, 상기 음극활물질의 비활성 매트릭스 상은,As an example of the above embodiment, the inert matrix phase of the negative electrode active material is,
FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지가 있을 수 있다.There may be a lithium secondary battery characterized in that it contains one or more phases selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
또한, 본 발명의 다른 실시예는, 리튬이차전지용 음극활물질 제조방법을 제공한다.Additionally, another embodiment of the present invention provides a method for manufacturing a negative electrode active material for a lithium secondary battery.
상기 실시예의 일 예로, Si, 첨가금속 M, Fe, 및 Mn 각각의 금속 또는 합금을 준비하는 단계; 상기 준비한 Si, 첨가금속 M, Fe, 및 Mn 각각의 금속 또는 합금으로 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계; 및 상기 Si계 Amorphous 합금을 열처리하여, 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 리튬이차전지용 음극활물질을 제조하는 단계;를 포함하고, 상기 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며, 상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는, Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.As an example of the above embodiment, preparing metals or alloys of Si, additive metal M, Fe, and Mn, respectively; Preparing a Si-based amorphous alloy having a Si-M-Fe-Mn composition using the prepared metals or alloys of Si, additive metals M, Fe, and Mn; And heat-treating the Si-based amorphous alloy to produce a negative electrode active material for a lithium secondary battery comprising a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inert metal crystalline matrix. , the negative electrode active material is 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, 1 at% or more and 20 at% or less of Fe, and 20 at% or less, based on 100 at% of the negative electrode active material. of Mn, and the added metal M includes Al and Cu; Or, including Al and Cu, but at least one selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. There may be a method of manufacturing a negative electrode active material for a lithium secondary battery, characterized in that it further contains an element.
상기 실시예의 일 예로, 상기 리튬이차전지용 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하는 것틀 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.As an example of the above embodiment, the negative electrode active material for a lithium secondary battery contains 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, and 1 at% or more and 20 at% or less, based on 100 at% of the negative electrode active material. There may be a method of manufacturing a negative electrode active material for a lithium secondary battery, which is characterized by containing Fe and 20 at% or less of Mn.
상기 실시예의 일 예로, 상기 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계는, 상기 준비한 Si, 첨가금속 M, Fe, 및 Mn 각각의 금속 또는 합금을 혼합한 후 용융하여 용융금속을 제조하는 단계; 및 상기 용융금속을 액체급냉응고법으로 고체화하여 상기 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계를 포함하는 것틀 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.As an example of the above embodiment, the step of manufacturing a Si-based amorphous alloy having the Si-M-Fe-Mn composition includes mixing the prepared metals or alloys of Si, additive metals M, Fe, and Mn, and then melting them. manufacturing metal; And there may be a method of manufacturing a negative electrode active material for a lithium secondary battery, which includes the step of solidifying the molten metal by liquid rapid solidification to produce a Si-based amorphous alloy having the Si-M-Fe-Mn composition.
상기 실시예의 일 예로, 상기 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계는, 볼밀법(ball milling), 기계적 합금화법(Mechanical Alloyiing), 가스 아토마이져법(gas atomization), 및 기상증착법(chemical vapor deposition)으로 이루어진 군에서 선택되는 어느 하나 이상의 방법으로 수행되는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.As an example of the above embodiment, the step of manufacturing the Si-based amorphous alloy having the Si-M-Fe-Mn composition includes ball milling, mechanical alloying, gas atomization, There may be a method of manufacturing a negative electrode active material for a lithium secondary battery, which is characterized in that it is performed by one or more methods selected from the group consisting of chemical vapor deposition.
상기 실시예의 일 예로, 상기 열처리는 400℃ 내지 700℃의 온도범위에서 진행되는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.As an example of the above embodiment, there may be a method of manufacturing a negative electrode active material for a lithium secondary battery, wherein the heat treatment is performed in a temperature range of 400°C to 700°C.
상기 실시예의 일 예로, 상기 음극활물질 100 at%에 대해, 상기 Al은 24.9 at% 이상 49.8 at% 미만, 상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.As an example of the above embodiment, with respect to 100 at% of the negative electrode active material, the Al is contained in an amount of 24.9 at% or more and less than 49.8 at%, and the Cu is contained in an amount of 0.1 at% or more and 5 at% or less. There may be a manufacturing method.
상기 실시예의 일 예로, 상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은, 시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.As an example of the above embodiment, the microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inert metal crystalline matrix was measured by differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min. When thermal analysis is performed, there may be a method of manufacturing a negative electrode active material for a lithium secondary battery, which is characterized in that it is formed by heat treatment of a Si-based amorphous alloy that has an exothermic peak due to Cu clustering in the temperature range of 300 ℃ to 450 ℃. .
상기 실시예의 일 예로, 상기 음극활물질의 비활성 매트릭스 상은, FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법이 있을 수 있다.As an example of the above embodiment, the inert matrix phase of the negative electrode active material includes one or more phases selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases. There may be a method for manufacturing a negative electrode active material for a lithium secondary battery, which is characterized in that:
본 발명에 있어서, 상기 액체급냉응고법인 멜트 스피닝에 있어 구리휠의 회전 선속도를 30 m/s 내지 60 m/s 범위에서 재현성 있게 비정질 합금을 제조할 수 있으며, 더욱 바람직하게는 40 m/s 속도에서 재현성 있게 비정질 합금을 제조할 수 있다.In the present invention, in melt spinning, which is a liquid rapid solidification method, an amorphous alloy can be manufactured reproducibly at a rotational speed of the copper wheel in the range of 30 m/s to 60 m/s, more preferably 40 m/s. Amorphous alloys can be manufactured reproducibly at high speeds.
본 발명에 있어서, 활성금속인 결정질 Si 상은, 용융금속을 30 m/s 내지 60 m/s 범위의 속도로 회전하는 구리휠에 분사시키는 액체급냉응고법에 의해 제조된, Cu가 강제 고용된 Si계 Amorphous 합금의 열처리를 통한 구리 클러스터링(Cu clustering)에 의해 비활성 금속 결정질 매트릭스 상에 균일하게 분산 석출되는 것이다.In the present invention, the crystalline Si phase, which is an active metal, is a Si system in which Cu is forcibly dissolved, produced by a liquid quenching and solidification method in which molten metal is sprayed onto a copper wheel rotating at a speed in the range of 30 m/s to 60 m/s. It is uniformly dispersed and precipitated on an inert metal crystalline matrix by Cu clustering through heat treatment of amorphous alloy.
비정질 합금 제조 후 일정한 온도(400℃ 내지 700℃)에서 열처리를 진행하면 재현성 있는 활성 실리콘 입자가 비활성 매트릭스 내에 나노 크기로 균일하게 분산 석출된 형태의 음극활물질을 제조할 수 있으며, 상기 재현성 있는 음극활물질은 50 사이클 후에도 용량이 유지되는 우수한 수명 특성을 가질 수 있는 것으로 판단할 수 있다.After manufacturing the amorphous alloy, heat treatment is performed at a constant temperature (400°C to 700°C) to produce a negative electrode active material in which reproducible active silicon particles are uniformly dispersed and precipitated in nano size within an inert matrix. It can be judged that it can have excellent lifespan characteristics with capacity maintained even after 50 cycles.
본 발명에 있어서, 비정질 합금 열처리 시, 400℃ 미만으로 열처리할 경우에는 충방전 시 리튬이온과 반응하는 활성 실리콘 상이 석출되지 않아 용량 발현이 불가능하며, 700℃ 초과로 열처리할 경우에는 석출된 활성 실리콘 상이 성장하여 조대해짐에 따른 급격한 용량저하 문제가 발생할 수 있다.In the present invention, when heat treating an amorphous alloy at a temperature below 400°C, capacity development is not possible because the active silicon phase that reacts with lithium ions does not precipitate during charge and discharge, and when heat treatment is performed above 700°C, the precipitated active silicon As the phase grows and becomes coarse, a rapid decrease in capacity may occur.
이하, 첨부 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 리튬이차전지용 음극활물질 제조방법의 순서도이다.Figure 1 is a flowchart of a method for manufacturing a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention.
도 1을 참조하면, 본 발명은, Si, 첨가금속 M, Fe, 및 Mn 각각의 금속 또는 합금을 준비하는 단계 (S10), 액체급냉응고법, 볼밀법(ball milling), 기계적 합금화법(Mechanical Alloyiing), 가스 아토마이져법(gas atomization), 및 기상증착법(chemical vapor deposition) 중 어느 하나 이상의 공정을 수행하는 단계 (S20), Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계(S30); 및 상기 Si계 Amorphous 합금을 열처리하여, 비활성 금속 결정질 매트릭스 상에 100 nm 이하의 직경을 갖는 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 갖는 리튬이차전지용 음극활물질을 제조하는 단계(S40)를 포함하는 것을 확인할 수 있다.Referring to Figure 1, the present invention includes the step of preparing metals or alloys of Si, additive metals M, Fe, and Mn (S10), liquid quenching solidification method, ball milling method, and mechanical alloying method. ), performing one or more processes of gas atomization, and chemical vapor deposition (S20), manufacturing a Si-based amorphous alloy having a Si-M-Fe-Mn composition ( S30); and heat-treating the Si-based amorphous alloy to produce a negative electrode active material for a lithium secondary battery having a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inert metal crystalline matrix (S40). It can be confirmed that it contains .
이때, 상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는,At this time, the added metal M includes Al and Cu; or,
Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질의 제조방법을 제공한다.Al and Cu, but any one or more elements selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. A method for manufacturing a negative electrode active material for a lithium secondary battery is provided, further comprising:
상기 리튬이차전지용 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함할 수 있다.The negative electrode active material for the lithium secondary battery is 45 at% to less than 60 at% of Si, 25 at% or more of added metal M, 1 at% to 20 at% of Fe, and 20 at% based on 100 at% of the negative electrode active material. It may contain less than % Mn.
상기 활성금속인 결정질 Si 상은 리튬 이온과 가역 반응할 수 있으므로 음극활물질의 용량과 직접적인 관련이 있고, 상기 비활성 금속 결정질 매트릭스 상은 리튬 이온과 반응하지 않는 구조를 형성하면서 음극활물질의 부피 팽창을 억제하는 역할을 할 수 있다.The crystalline Si phase, which is the active metal, can react reversibly with lithium ions and is therefore directly related to the capacity of the negative electrode active material, and the inactive metal crystalline matrix phase forms a structure that does not react with lithium ions and serves to suppress the volume expansion of the negative electrode active material. can do.
상기 활성금속인 결정질 Si 상은 상기 비활성 금속 결정질 매트릭스 상 내에 균일하게 분산 석출될 수 있다. 상기 리튬 이온과 반응하지 않는 매트릭스 상의 구조는 일 예로, FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상일 수 있다.The crystalline Si phase, which is the active metal, may be uniformly dispersed and precipitated within the inactive metal crystalline matrix phase. For example, the structure of the matrix phase that does not react with lithium ions may be one or more phases selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
상기 음극활물질은 비활성 금속 결정질 매트릭스 상에 균일하게 분산 석출된 100 nm 이하 직경의 미세조직 활성금속인 결정질 Si 상을 포함할 수 있다. 상기 비활성 금속 결정질 매트릭스 상에 균일하게 분산 석출된 상기 활성금속인 Si 상의 입경은 1 nm 내지 100 nm일 수 있다.The negative electrode active material may include a crystalline Si phase, which is a microstructured active metal with a diameter of 100 nm or less, uniformly dispersed and precipitated on an inert metal crystalline matrix. The particle size of the Si phase, which is the active metal, uniformly dispersed and precipitated on the inactive metal crystalline matrix may be 1 nm to 100 nm.
상기 리튬이차전지용 음극활물질에서 Si는 음극활물질이 리튬이차전지의 음극으로서 이용될 때에 리튬 이온의 흡장 및 방출에 관여할 수 있다. 따라서 Si가 리튬이차전지용 음극활물질에 포함되는 양은 상기 음극활물질의 용량 및 수명 특성과 관계가 있다. 구체적으로, Si가 합금에 더 많이 포함될수록, 음극활물질의 용량이 향상될 수 있으나, 수명 특성은 다소 저하될 수 있다. 따라서 본 발명의 음극활물질은 용량을 향상시키기 보다는 수명 특성을 향상시키기 위해 상기 음극활물질 내의 Si의 함량은 45 at% 이상 60 at % 미만 수준이 바람직하다. 상기 Si의 함량이 45 at% 미만일 경우, 리튬이차전지용 음극활물질로서 용량을 구현하기에 과도하게 적은 용량을 나타낼 수 있어 바람직하지 않고, 상기 Si의 함량이 60 at% 이상일 경우, 결정질로 되어 Si Amorphous 합금이 생성되지 않거나, 상기 비활성 금속 결정질 매트릭스 상을 구성하는 Si 이외의 성분의 함량이 적어 리튬이차전지용 음극활물질의 수명 개선 효과가 나타나기 어려울 수 있어 바람직하지 않다.In the negative electrode active material for a lithium secondary battery, Si may be involved in the insertion and release of lithium ions when the negative electrode active material is used as a negative electrode of a lithium secondary battery. Therefore, the amount of Si contained in the negative electrode active material for lithium secondary batteries is related to the capacity and lifespan characteristics of the negative electrode active material. Specifically, as more Si is included in the alloy, the capacity of the negative electrode active material may be improved, but the lifespan characteristics may be somewhat reduced. Therefore, in order to improve the lifespan characteristics of the negative electrode active material of the present invention rather than improving capacity, the Si content in the negative electrode active material is preferably at a level of 45 at% or more and less than 60 at%. If the Si content is less than 45 at%, it is undesirable because it may exhibit excessively low capacity to realize capacity as a negative electrode active material for lithium secondary batteries, and if the Si content is more than 60 at%, it becomes crystalline and Si Amorphous. This is undesirable because an alloy is not produced or the content of components other than Si constituting the inert metal crystalline matrix phase is low, making it difficult to improve the lifespan of the negative electrode active material for lithium secondary batteries.
일반적으로, Cu는 상온에서 고체 상태일 때 Fe에 고용되기 어려우나, 멜트 스피닝 등의 액체급냉응고법을 이용하면, Cu를 Fe에 강제로 고용시킬 수 있다. 강제로 고용된 Cu는 Fe과 분리되려는 경향이 있는데, 이러한 경향으로 인해 구리 클러스터링(Cu clustering) 현상이 발생하게 된다. 구리 클러스터링(Cu clustering) 현상이 나타나는 부분에 비활성 금속 매트릭스 상이 우선 석출될 수 있으며, 이러한 현상으로 인해 본 발명의 음극활물질은 비활성 금속 결정질 매트릭스 상에 균일하게 분산 석출된 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함할 수 있다.In general, Cu is difficult to dissolve in Fe when it is in a solid state at room temperature, but by using a liquid rapid solidification method such as melt spinning, Cu can be forcibly dissolved in Fe. Cu that is forcibly dissolved tends to separate from Fe, and this tendency causes the copper clustering phenomenon. The inactive metal matrix phase may first precipitate in areas where Cu clustering occurs, and due to this phenomenon, the anode active material of the present invention has a crystalline Si phase, which is an active metal, uniformly dispersed and precipitated on the inactive metal crystalline matrix. It may include dispersed and precipitated microstructure.
상기 Cu의 함량은 상기 Fe의 함량이 1 at% 이상 20 at % 이하일 때, 0.1 at% 이상 5 at% 이하인 것이 바람직하다. 이는 상기 Cu의 함량이 0.1 at% 미만일 경우, 전술한 구리 클러스터링(Cu clustering) 현상이 미미하여 활성 실리콘 나노입자의 분산 석출이 일어나지 않을 수 있어 바람직하지 않기 때문이다. 또한, 상기 Cu의 함량이 5 at% 초과일 경우, 오히려 Cu가 불순물로 작용할 수 있어 바람직하지 않기 때문에, 상기 Cu의 함량은 0.1 at% 이상 5 at% 이하가 바람직한 수준이다.The Cu content is preferably 0.1 at% or more and 5 at% or less when the Fe content is 1 at% or more and 20 at% or less. This is because, when the Cu content is less than 0.1 at%, the above-mentioned Cu clustering phenomenon is so small that dispersion and precipitation of active silicon nanoparticles may not occur, which is not desirable. In addition, if the Cu content exceeds 5 at%, it is undesirable because Cu may act as an impurity. Therefore, the Cu content is preferably 0.1 at% or more and 5 at% or less.
본 발명에서는 비활성 금속 결정질 매트릭스 상에 포함되는 Fe이 구리 클러스터링(Cu clustering)을 유도하는 역할을 할 수 있기 때문에, 용량 특성을 개선할 수 있다.In the present invention, since Fe included in the inert metal crystalline matrix can play a role in inducing Cu clustering, capacity characteristics can be improved.
상기 비활성 금속 결정질 매트릭스 상 은 전술한 바와 같이, Si, 첨가금속 M, Fe 및 Mn을 포함하는 Si계 합금을 포함하고, 이때 상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는,As described above, the inert metal crystalline matrix phase includes a Si-based alloy containing Si, an added metal M, Fe, and Mn, where the added metal M includes Al and Cu; or,
Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함할 수 있다. 즉, 상기 첨가금속 M에는 상기 Al 및 Cu는 필수적으로 포함되어 있고, 추가적으로 Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함할 수 있다.Al and Cu, but any one or more elements selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. More may be included. That is, the added metal M essentially includes Al and Cu, and additionally Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and It may further include one or more elements selected from the group consisting of Nb.
이때, 상기 Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소는 0.1 at% 내지 5 at%로 포함될 수 있으며, 용량 특성 또는 수명 특성을 개선시키기 위한 성분으로 사용될 수 있다.At this time, one or more elements selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb are present in an amount of 0.1 at% to It can be included at 5 at% and can be used as an ingredient to improve capacity characteristics or lifespan characteristics.
도2는 본 발명의 일 실시예에 따른 리튬이차전지용 음극활물질을 시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석한 결과를 나타낸 그래프이다.Figure 2 is a graph showing the results of thermal analysis of a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention using differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min.
도2를 참조하면, 본 발명의 일 실시예에 따른 리튬이차전지용 음극활물질 및 이를 포함하는 리튬이차전지의 경우, 상술한 바와 같이, Cu와 Fe 를 반드시 포함하고 있는데, Si-M-Fe-Mn 조성에서 액체급랭응고법(melt spinning)으로 아몰퍼스 합금을 제조하여 시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때 비활성 매트릭스 상의 제 1결정화온도(Tx1) 이전인 300℃ 내지 450℃ 부근에서 Cu clustering에 의한 발열 피크가 존재하고, 450℃이상의 온도에서 열처리 진행 시 비활성 매트릭스 상이 먼저 석출되고, 그 후 활성 실리콘상이 석출되는 것을 확인할 수 있다.Referring to Figure 2, in the case of a negative electrode active material for a lithium secondary battery and a lithium secondary battery containing the same according to an embodiment of the present invention, Cu and Fe are necessarily included as described above, Si-M-Fe-Mn The first crystallization temperature ( T It can be seen that there is an exothermic peak due to Cu clustering around 300°C to 450°C, and that when heat treatment is performed at a temperature above 450°C, the inactive matrix phase precipitates first, and then the active silicon phase precipitates.
이하, 리튬이차전지용 음극에 대하여 설명한다.Hereinafter, a negative electrode for a lithium secondary battery will be described.
본 발명의 리튬이차전지용 음극은 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하고, 상기 음극활물질층은 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt% 및 바인더 7 wt% 내지 15 wt%를 포함하며, 상기 음극활물질은 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 것을 특징으로 한다.The negative electrode for a lithium secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material layer formed on at least one side of the negative electrode current collector, and the negative electrode active material layer contains 75 wt% to 92 wt% of the negative electrode active material and 1 wt% to 1 wt% of the conductive material. It contains 10 wt% and 7 wt% to 15 wt% of binder, and the negative electrode active material is characterized in that it includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inert metal crystalline matrix. do.
본 발명의 실시예에 있어서, 상기 음극 집전체로는 전도성 물질을 포함할 수 있고, 구체적으로, 얇은 전도성 호일(foil) 또는 발포체(foam)일 수 있다. 예를 들어, 상기 음극 집전체는 구리, 금, 니켈, 스테인레스 또는 티타늄을 포함할 수 있으나, 이에 제한되는 것은 아님을 명시한다.In an embodiment of the present invention, the negative electrode current collector may include a conductive material, and specifically, may be a thin conductive foil or foam. For example, the negative electrode current collector may include copper, gold, nickel, stainless steel, or titanium, but is not limited thereto.
본 발명의 실시예에 있어서, 상기 도전재는 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 리튬이차전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 구체적으로, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유 및 폴리페닐렌 유도체 등의 전도성 폴리머 물질 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.In an embodiment of the present invention, the conductive material is used to provide conductivity, and in the lithium secondary battery being constructed, any electronically conductive material can be used as long as it does not cause chemical change. Specifically, at least one of natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, and silver, metal fiber, and conductive polymer materials such as polyphenylene derivatives. It can be used, but is not limited to this.
상기 도전재의 함량이 1 wt% 미만일 경우, 도전재 사용에 따른 전도성 개선 및 그에 따른 수명 특성 개선 효과가 미미하고, 상기 도전재 함량이 5 wt% 초과일 경우, 도전재의 비표면적 증가로 인해 도전재 및 전해액 간의 반응이 증가하여 수명 특성이 저하될 수 있어 바람직하지 않다. 보다 구체적으로, 상기 도전재의 함량은 1 wt% 내지 3 wt%가 바람직할 수 있다.When the content of the conductive material is less than 1 wt%, the effect of improving conductivity and the resulting lifespan characteristics due to the use of the conductive material is minimal, and when the content of the conductive material is more than 5 wt%, the specific surface area of the conductive material increases due to the conductive material. This is undesirable because the reaction between the electrolyte and the electrolyte may increase and the lifespan characteristics may deteriorate. More specifically, the content of the conductive material may preferably be 1 wt% to 3 wt%.
본 발명의 실시예에 있어서, 상기 바인더는 음극활물질 입자들을 서로 잘 부착시키고, 음극활물질을 음극 집전체에 잘 부착시키는 역할을 하며, 구체적으로, 폴리이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔, 아크릴레이티드 스티렌-부타디엔 및 에폭시 수지 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.In an embodiment of the present invention, the binder serves to adhere the negative electrode active material particles to each other and the negative electrode active material to the negative electrode current collector, and specifically, polyimide, polyamidoimide, polybenzimidazole, poly Vinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene. Any one or more of fluoride, polyethylene, polypropylene, styrene-butadiene, acrylated styrene-butadiene, and epoxy resin may be used, but is not limited thereto.
상기 바인더의 함량이 7 wt% 미만일 경우, 음극 내에 충분한 접착력을 나타내기 어려워 바람직하지 않고, 상기 바인더의 함량이 15 wt% 초과일 경우, 리튬이차전지의 용량 특성 저하의 우려가 있어서 바람직하지 않다. 보다 구체적으로, 상기 바인더의 함량은 7 wt% 내지 10 wt%가 바람직할 수 있다.If the binder content is less than 7 wt%, it is undesirable because it is difficult to exhibit sufficient adhesion within the negative electrode, and if the binder content is more than 15 wt%, it is undesirable because there is a risk of deterioration in the capacity characteristics of the lithium secondary battery. More specifically, the binder content may preferably be 7 wt% to 10 wt%.
상기 도전재의 함량이 1 wt% 내지 10 wt%가 바람직하고, 상기 바인더의 함량이 7 wt% 내지 15 wt%가 바람직하기 때문에, 상기 음극활물질 층에서 음극활물질의 함량은 75 wt% 내지 92 wt%가 바람직한 수준이다.Since the content of the conductive material is preferably 1 wt% to 10 wt% and the content of the binder is preferably 7 wt% to 15 wt%, the content of the negative electrode active material in the negative electrode active material layer is 75 wt% to 92 wt%. is a desirable level.
상기 음극활물질, 도전재 및 바인더를 혼합시키기 위한 용매로는 N-메틸피롤리돈 또는 n-헥산 등을 사용할 수 있으나 이에 한정되는 것은 아니다.The solvent for mixing the negative electrode active material, conductive material, and binder may be N-methylpyrrolidone or n-hexane, but is not limited thereto.
이하, 리튬이차전지에 대하여 설명한다.Hereinafter, lithium secondary batteries will be described.
본 발명의 리튬이차전지는 양극, 음극, 전해질 및 분리막을 포함하고, 상기 음극은 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함할 수 있다. The lithium secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolyte, and a separator, and the negative electrode may include a negative electrode current collector and a negative electrode active material layer formed on at least one side of the negative electrode current collector.
본 발명의 실시예에 있어서, 상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성된 양극활물질층을 포함하며, 상기 양극활물질층은 양극활물질, 바인더 및 도전재를 용매 중에서 혼합하여 양극활물질층 형성용 조성물을 제조한 후 상기 조성물이 양극 집전체 상에 도포된 형태일 수 있다. 이와 같은 양극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서는 상세한 설명을 생략하기로 한다.In an embodiment of the present invention, the cathode includes a cathode current collector and a cathode active material layer formed on the cathode current collector, and the cathode active material layer is formed by mixing the cathode active material, a binder, and a conductive material in a solvent. After preparing the composition, the composition may be applied on the positive electrode current collector. Since this method of manufacturing an anode is widely known in the art, detailed description will be omitted in this specification.
상기 양극활물질은 리튬 이온을 가역적으로 삽입 및 탈리할 수 있는 물질을 포함할 수 있다. 구체적으로, 상기 양극활물질은 리튬 함유 전이금속 산화물, 리튬 함유 전이금속 황화물 등을 포함할 수 있다. 예를 들어, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2 (0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2 (0<y<1), LiCo1-yMnyO2 (0<y<1), LiNi1-yMnyO2 (0<y<1), Li(NiaCobMnc)O4 (0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4 (0<Z<2), LiMn2-zCozO4 (0<Z<2), LiCoPO4 및 LiFePO4 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.The positive electrode active material may include a material capable of reversibly inserting and deintercalating lithium ions. Specifically, the positive electrode active material may include lithium-containing transition metal oxide, lithium-containing transition metal sulfide, etc. For example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li(Ni a Co b Mn c )O 2 (0<a<1, 0<b<1, 0<c<1, a+ b+c=1), LiNi 1-y Co y O 2 (0<y<1), LiCo 1-y Mn y O 2 (0<y<1), LiNi 1-y Mn y O 2 (0<y<1), Li(Ni a Co b Mn c )O 4 (0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn 2-z Ni z One or more of O4 (0<Z<2), LiMn 2-z Co z O 4 (0<Z<2), LiCoPO 4 , and LiFePO 4 may be used, but are not limited thereto.
상기 바인더는 양극활물질 입자들을 서로 잘 부착시키고, 양극활물질을 양극 집전체에 잘 부착시키는 역할을 하며, 구체적으로, 폴리이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔, 아크릴레이티드 스티렌-부타디엔 및 에폭시 수지 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.The binder serves to adhere the positive electrode active material particles to each other and to the positive electrode current collector, and specifically, polyimide, polyamidoimide, polybenzimidazole, polyvinyl alcohol, carboxymethyl cellulose, and hydride. Roxypropylcellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, Any one or more of styrene-butadiene, acrylated styrene-butadiene, and epoxy resin may be used, but is not limited thereto.
상기 도전재는 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 리튬이차전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 구체적으로, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유 및 폴리페닐렌 유도체 등의 전도성 폴리머 물질 중 어느 하나 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다.The conductive material is used to provide conductivity, and in the lithium secondary battery being constructed, any electronically conductive material can be used as long as it does not cause chemical change. Specifically, at least one of natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, and silver, metal fiber, and conductive polymer materials such as polyphenylene derivatives. It can be used, but is not limited to this.
상기 용매로는 N-메틸피롤리돈 또는 n-헥산 등을 사용할 수 있으나 이에 한정되는 것은 아니다.The solvent may be N-methylpyrrolidone or n-hexane, but is not limited thereto.
상기 양극 집전체로는 전도성 물질을 포함할 수 있고, 구체적으로 얇은 전도성 호일(foil) 또는 발포체(foam)일 수 있다. 예를 들어, 상기 양극 집전체는 알루미늄, 니켈 또는 이들의 합금을 포함할 수 있으나, 이에 제한되는 것은 아님을 명시한다.The positive electrode current collector may include a conductive material, and may specifically be a thin conductive foil or foam. For example, the positive electrode current collector may include aluminum, nickel, or an alloy thereof, but is not limited thereto.
본 발명의 실시예에 있어서, 상기 전해질은 비수성 유기용매 및 리튬염을 포함할 수 있다. 구체적으로, 상기 비수성 유기용매는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 및 비양성자성 용매 중 어느 하나 이상을 사용할 수 있다. 예를 들어, 상기 비수성 유기용매는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 에틸메틸카보네이트(EMC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), n-메틸 아세테이트, 디부틸 에테르, 시클로헥사논, 이소프로필알코올 및 설포란(sulfolane)류 용매로 이루어진 군에서 선택되는 하나 또는 둘 이상을 포함할 수 있다. 이러한 비수성 유기용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.In an embodiment of the present invention, the electrolyte may include a non-aqueous organic solvent and a lithium salt. Specifically, the non-aqueous organic solvent may be one or more of carbonate-based, ester-based, ether-based, ketone-based, alcohol-based and aprotic solvents. For example, the non-aqueous organic solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), n-methyl acetate, and dibutyl ether. , cyclohexanone, isopropyl alcohol, and sulfolane solvents. These non-aqueous organic solvents can be used individually or in combination of two or more types.
또한, 상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2) (x및 y는 자연수임), LiCl, LiI 및 LiB(C2O4)2로 이루어진 군에서 선택되는 하나 또는 둘 이상을 포함할 수 있다. 이러한 전해질 염은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.In addition, the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 C 2 F 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiN(SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ) (x and y are natural numbers), LiCl, LiI and It may include one or two or more selected from the group consisting of LiB(C 2 O 4 ) 2 . These electrolyte salts can be used individually or in combination of two or more types.
본 발명의 실시예에 있어서, 상기 분리막은 단층막으로 폴리에틸렌, 폴리프로필렌 또는 폴리비닐리덴 플루오라이드를 사용하거나, 이들의 2층 이상의 다층막이 사용될 수 있다.In an embodiment of the present invention, the separator may be a single-layer membrane made of polyethylene, polypropylene, or polyvinylidene fluoride, or a multilayer membrane of two or more layers thereof may be used.
이하 첨부된 도면을 참고하여 본 발명의 실시예 또는 실험예를 상세히 설명하기로 한다. 본 발명의 실시예 또는 실험예는 본 발명의 구성 및 효과를 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 한정되는 것은 아님을 명시한다.Hereinafter, embodiments or experimental examples of the present invention will be described in detail with reference to the attached drawings. The examples or experimental examples of the present invention are intended to explain the configuration and effects of the present invention in more detail, and it is clear that the scope of the present invention is not limited thereto.
<실시예 1> Amorphous 합금의 제조<Example 1> Preparation of Amorphous alloy
하기 표 1의 조건으로 본 발명의 amorphous 합금을 제조하였다.The amorphous alloy of the present invention was manufactured under the conditions shown in Table 1 below.
합금 조성alloy composition 결정구조crystal structure 열처리 조건Heat treatment conditions 전극특성평가 결과Electrode characteristics evaluation results
Si
(at%)
Si
(at%)
Al
(at%)
Al
(at%)
Cu
(at%)
Cu
(at%)
Fe
(at%)
Fe
(at%)
Mn
(at%)
Mn
(at%)
XRD 결정상XRD crystal phase 온도, 시간temperature, time 초기 충전 용량
(mAh/g)
initial charge capacity
(mAh/g)
초기 방전 용량
(mAh/g)
initial discharge capacity
(mAh/g)
초기
충/방전 효율(%)
Early
Charge/discharge efficiency (%)
용량 유지율
(50cycles, %)
Capacity maintenance rate
(50 cycles, %)
실시예1Example 1 5353 2929 1One 1515 22 Si + Fe2Al3Si3 +FeSi2 + Al2.7Fe1Si2.3 Si + Fe 2 Al 3 Si 3 +FeSi 2 + Al 2.7 Fe 1 Si 2.3 Amorphous → 650℃, 1hrAmorphous → 650℃, 1hr 1279.081279.08 1095.601095.60 85.6685.66 83.5383.53
비교예1Comparative Example 1 6060 2626 -- 1414 -- Si + Fe2Al3Si3 + amorphous phaseSi + Fe 2 Al 3 Si 3 + amorphous phase As-quenchedAs-quenched 1629.001629.00 1470.501470.50 90.2090.20 66.8966.89
Si, Al, Cu, Fe, Mn을 포함한 합금을 아크 용해법 등으로 용융시켜 용융액을 제조한 다음, 상기 용융액을 40m/s로 회전하는 구리휠에 분사시키는 단롤 액체급냉 응고법으로, Si53Al29Cu1Fe15Mn2 조성을 가지며 Cu가 강제 고용된 Si계 Amorphous 합금을 제조하였다. A single-roll liquid rapid solidification method in which an alloy containing Si, Al, Cu, Fe, and Mn is melted by arc melting to prepare a molten liquid, and then the molten liquid is sprayed on a copper wheel rotating at 40 m/s, Si 53 Al 29 Cu. A Si-based amorphous alloy with a composition of 1 Fe 15 Mn 2 and Cu in which Cu was forcibly dissolved was manufactured.
상기 Si계 Amorphous 합금을 650℃ 온도에서 불활성 가스 조건의 로에서 1시간 열처리를 수행하여 비활성 금속 결정질 매트릭스 상에 100nm이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 가지며 결정질 결정상을 갖는 리튬이차전지용 음극활물질을 제조하였다.The Si-based amorphous alloy is heat-treated at 650°C for 1 hour in a furnace under inert gas conditions to form a crystalline crystalline phase with a microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inert metal crystalline matrix. A negative electrode active material for lithium secondary batteries was prepared.
지르코늄 볼(Zr-ball) 200g, 상기 열처리된 Si계 합금 5g, n-헥산(n-Hexane)을 혼합한 후 페인트 셰이커(paint shaker)를 이용하여 15분 동안 분쇄하여 형성된 결정상을 갖는 음극활물질 분말로 코인 형상의 극판을 제조한 후, 음극활물질 분말, 도전재로서 Ketjen Black 및 바인더로서 PAI를 87:3:10의 중량 비율로 혼합한 혼합물을 상기 극판에 도포한 후, 400℃, Ar 기체 조건에서 1시간 열처리하여 실시예 1의 음극을 제조하였다.Negative active material powder having a crystal phase formed by mixing 200 g of zirconium balls (Zr-balls), 5 g of the heat-treated Si-based alloy, and n-hexane and then pulverizing them for 15 minutes using a paint shaker. After manufacturing a raw coin-shaped electrode plate, a mixture of negative electrode active material powder, Ketjen Black as a conductive material, and PAI as a binder in a weight ratio of 87:3:10 was applied to the electrode plate, and then incubated at 400°C under Ar gas conditions. The anode of Example 1 was manufactured by heat treatment for 1 hour.
도 3은 본 발명의 일 실시예에 따라 제조된 실시예 1 리튬이차전지용 음극활물질의 결정성을 나타낸 회절패턴을 확인한 그래프이다. 도 3에서 확인할 수 있듯이, 본 발명의 음극활물질의 비활성 매트릭스 상에는 FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3이 포함되어 있음을 확인하였다. Figure 3 is a graph confirming the diffraction pattern showing the crystallinity of the negative electrode active material for a lithium secondary battery in Example 1 manufactured according to an embodiment of the present invention. As can be seen in Figure 3, it was confirmed that the inert matrix phase of the negative electrode active material of the present invention contains FeSi 2 , Fe 2 Al 3 Si 3 , and Al 2.7 Fe 1 Si 2.3 .
한편, 비교예 1은 실시예 1과 동일한 방법으로 제조하되, 비정질 합금 열처리 없이 방치하여 Si60Al26Fe14 조성을 가지는 결정질과 비정질이 혼합된 Si계 합금을 제조하였다. 또한 상기 실시예 1과 동일한 방법으로 음극을 제조하였다.Meanwhile, Comparative Example 1 was prepared in the same manner as Example 1, except that the amorphous alloy was left without heat treatment to prepare a Si-based alloy containing a mixture of crystalline and amorphous Si 60 Al 26 Fe 14 composition. Additionally, a negative electrode was manufactured in the same manner as Example 1.
도 4는 본 발명의 일 실시예에 따라 제조된 비교예 1 리튬이차전지용 음극활물질의 결정성을 나타낸 회절패턴을 확인한 그래프이다. 도 4에서 확인할 수 있듯이, 비교예 1의 음극활물질의 비활성 매트릭스 상에는 Fe2Al3Si3이 포함되어 있음을 확인하였으며, 이외에도 비정질 물질이 확인되었다.Figure 4 is a graph confirming the diffraction pattern showing the crystallinity of the negative electrode active material for a lithium secondary battery of Comparative Example 1 manufactured according to an embodiment of the present invention. As can be seen in FIG. 4, it was confirmed that Fe 2 Al 3 Si 3 was included in the inactive matrix of the negative electrode active material of Comparative Example 1, and in addition, amorphous materials were confirmed.
<실험예 1 > 전극특성평가<Experimental Example 1> Electrode characteristic evaluation
상기 실시예 1에서 제조한 음극을 이용하여 리튬이차전지를 제조한 후 충방전을 1회 실시하였을 때의 음극활물질의 충전 용량, 방전 용량 및 초기 쿨롱 효율(ICE, Initial Coulombic Efficiency, 초기 방전 용량을 초기 충전용량으로 나눈 값)과 충/방전 50회 반복에 따른 용량 유지율(retention rate)을 하기 표 2에 기재하였다.After manufacturing a lithium secondary battery using the negative electrode prepared in Example 1, the charging capacity, discharge capacity, and initial coulombic efficiency (ICE) of the negative electrode active material when charging and discharging were performed once were measured. The value divided by the initial charge capacity) and the capacity retention rate according to 50 repetitions of charge/discharge are listed in Table 2 below.
전극특성평가 결과Electrode characteristics evaluation results
초기 충전
(mAh/g)
initial charge
(mAh/g)
초기 방전
(mAh/g)
initial discharge
(mAh/g)
초기 쿨롱 효율
(%)
Initial Coulombic Efficiency
(%)
용량 유지율
(50cycles, %)
Capacity maintenance rate
(50 cycles, %)
실시예1Example 1 1279.081279.08 1095.601095.60 85.6685.66 83.5383.53
비교예1Comparative Example 1 1629.001629.00 1470.501470.50 90.2090.20 66.8966.89
액체급냉응고법에 의해 제조된 Cu가 강제 고용된 Si계 Amorphous 합금을 650℃ 에서 열처리하여 결정질의 결정구조를 가지는 본 발명의 실시예 1의 음극활물질로 제조된 음극의 경우 초기 쿨롱 효율이 85.66으로 확인되었으며, 50 사이클 이후의 용량 유지율 또한 83.53%로 높게 나타났다.In the case of the anode manufactured with the anode active material of Example 1 of the present invention, which has a crystalline crystal structure, by heat-treating a Si-based amorphous alloy in which Cu was forcibly dissolved and produced by liquid quenching and solidification at 650°C, the initial coulombic efficiency was confirmed to be 85.66. The capacity maintenance rate after 50 cycles was also high at 83.53%.
반면, 열처리 없이 제조된 급랭응고 합금 비교예 1의 경우에는 초기 쿨롱 효율이 90.20%로 높은 반면, 50 사이클 이후의 용량유지율은 66.89%로 대폭 낮아짐을 확인하였다. 비교예 1은 결정질과 비정질이 혼합된 결정상을 가지는데, Si60Al26Fe14 조성을 가지는 Si계 합금에 열처리를 수행하지 않고 제조되어, 높은 초기 쿨롱 효율에 비해 용량 유지율이 현저하게 저하된 것으로 판단되었다.On the other hand, in the case of Comparative Example 1, a rapidly solidified alloy manufactured without heat treatment, the initial coulombic efficiency was high at 90.20%, while the capacity retention rate after 50 cycles was confirmed to be significantly lower at 66.89%. Comparative Example 1 has a mixed crystalline phase and amorphous phase. It was manufactured without heat treatment on a Si-based alloy with a composition of Si 60 Al 26 Fe 14 , and the capacity maintenance rate was judged to be significantly lower than the high initial coulombic efficiency. It has been done.
도 5는 충방전 사이클에 따른 용량 유지율을 비교한 그래프이다. 충방전 사이클이 증가할수록 비교예 1의 용량 유지율이 현저하게 낮아짐을 확인하였다.Figure 5 is a graph comparing capacity maintenance rates according to charge and discharge cycles. It was confirmed that the capacity maintenance rate of Comparative Example 1 significantly decreased as the charge/discharge cycle increased.
본 발명의 실시예는 액체급냉응고법인 멜트 스피닝에 있어 구리휠의 회전 선속도를 30 m/s 내지 60 m/s 범위에서 재현성 있게 비정질 합금을 제조할 수 있으며, 더 바람직하게는 40 m/s 속도에서 재현성 있게 비정질 합금을 제조할 수 있다.An embodiment of the present invention can manufacture an amorphous alloy reproducibly at a rotational speed of a copper wheel in the range of 30 m/s to 60 m/s in melt spinning, which is a liquid rapid solidification method, and more preferably 40 m/s. Amorphous alloys can be manufactured reproducibly at high speeds.
비정질 합금 제조 후 일정한 온도(400℃ 내지 700℃)에서 열처리를 진행하면 재현성 있는 활성 실리콘 입자가 비활성 매트릭스 내에 나노 크기로 균일하게 분산 석출된 형태의 음극활물질을 제조할 수 있으며, 상기 재현성 있는 음극활물질은 50 사이클 후에도 용량이 유지되는 우수한 수명 특성을 가질 수 있는 것으로 판단할 수 있다.After manufacturing the amorphous alloy, heat treatment is performed at a constant temperature (400°C to 700°C) to produce a negative electrode active material in which reproducible active silicon particles are uniformly dispersed and precipitated in nano size within an inert matrix. It can be judged that it can have excellent lifespan characteristics with capacity maintained even after 50 cycles.
상기에서 설명한 본 발명의 기술적 사상은 바람직한 실시예에서 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술적 분야의 통상의 지식을 가진 자라면 본 발명의 기술적 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.Although the technical idea of the present invention described above has been described in detail in preferred embodiments, it should be noted that the above-described embodiments are for illustrative purposes only and are not intended for limitation. Additionally, those of ordinary skill in the technical field of the present invention will understand that various embodiments are possible within the scope of the technical idea of the present invention. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the attached claims.

Claims (20)

  1. 전체 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며,For the total 100 at%, it includes 45 at% to 60 at% of Si, 25 at% to 25 at% of added metal M, 1 at% to 20 at% of Fe, and 20 at% to 20 at% of Mn,
    상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는,The added metal M includes Al and Cu; or,
    Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하는 것이고,Al and Cu, but any one or more elements selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. It includes more,
    비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질.A negative electrode active material for a lithium secondary battery, characterized in that it includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inert metal crystalline matrix.
  2. 제1항에 있어서,According to paragraph 1,
    상기 음극활물질 100 at%에 대해,For 100 at% of the negative electrode active material,
    상기 Al은 24.9 at% 이상 49.8 at% 미만,The Al is 24.9 at% or more and less than 49.8 at%,
    상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지용 음극활물질.A negative electrode active material for a lithium secondary battery, characterized in that the Cu is contained in an amount of 0.1 at% or more and 5 at% or less.
  3. 제1항에 있어서,According to paragraph 1,
    상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은,The microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix,
    시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지용 음극활물질.When thermal analysis was performed using differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min, a Si-based amorphous alloy with an exothermic peak due to Cu clustering was heat treated in the temperature range of 300°C to 450°C. A negative electrode active material for a lithium secondary battery, characterized in that formed.
  4. 제1항에 있어서,According to paragraph 1,
    상기 음극활물질의 비활성 매트릭스 상은, The inert matrix phase of the negative electrode active material is,
    FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질.A negative electrode active material for a lithium secondary battery, characterized in that it contains at least one phase selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  5. 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하고,It includes a negative electrode current collector and a negative electrode active material layer formed on at least one side of the negative electrode current collector,
    상기 음극활물질층은 100 wt%에 대해, 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt%, 및 바인더 7 wt% 내지 15 wt%를 포함하며,The negative electrode active material layer includes 75 wt% to 92 wt% of the negative electrode active material, 1 wt% to 10 wt% of the conductive material, and 7 wt% to 15 wt% of the binder, based on 100 wt%,
    상기 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며,The negative electrode active material is 45 at% to less than 60 at% of Si, 25 at% or more of added metal M, 1 at% to 20 at% of Fe, and 20 at% or less of the negative electrode active material, based on 100 at% of the negative electrode active material. Contains Mn,
    상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는,The added metal M includes Al and Cu; or,
    Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하며,Al and Cu, but any one or more elements selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. Contains more,
    상기 음극활물질은, 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 것을 특징으로 하는 리튬이차전지용 음극.The negative electrode active material is a negative electrode for a lithium secondary battery, characterized in that it includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix.
  6. 제5항에 있어서,According to clause 5,
    상기 음극활물질 100 at%에 대해,For 100 at% of the negative electrode active material,
    상기 Al은 24.9 at% 이상 49.8 at% 미만,The Al is 24.9 at% or more and less than 49.8 at%,
    상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지용 음극.A negative electrode for a lithium secondary battery, characterized in that the Cu is contained in an amount of 0.1 at% or more and 5 at% or less.
  7. 제5항에 있어서,According to clause 5,
    상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은,The microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix,
    시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지용 음극.When thermal analysis was performed using differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min, a Si-based amorphous alloy with an exothermic peak due to Cu clustering was heat treated in the temperature range of 300°C to 450°C. A negative electrode for a lithium secondary battery, characterized in that formed.
  8. 제5항에 있어서,According to clause 5,
    상기 음극활물질의 비활성 매트릭스 상은, The inert matrix phase of the negative electrode active material is,
    FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지용 음극.A negative electrode for a lithium secondary battery, characterized in that it contains at least one phase selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  9. 양극, 음극, 전해질 및 분리막을 포함하는 리튬이차전지에 있어서,In a lithium secondary battery including an anode, a cathode, an electrolyte, and a separator,
    상기 음극은 음극 집전체 및 상기 음극 집전체의 적어도 일면 이상에 형성된 음극활물질층을 포함하며,The negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on at least one surface of the negative electrode current collector,
    상기 음극활물질층은 100 wt%에 대해, 음극활물질 75 wt% 내지 92 wt%, 도전재 1 wt% 내지 10 wt% 및 바인더 7 wt% 내지 15 wt%를 포함하고,The negative electrode active material layer includes 75 wt% to 92 wt% of the negative electrode active material, 1 wt% to 10 wt% of the conductive material, and 7 wt% to 15 wt% of the binder, based on 100 wt%,
    상기 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며,The negative electrode active material is 45 at% to less than 60 at% of Si, 25 at% or more of added metal M, 1 at% to 20 at% of Fe, and 20 at% or less of the negative electrode active material, based on 100 at% of the negative electrode active material. Contains Mn,
    상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는,The added metal M includes Al and Cu; or,
    Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하며,Al and Cu, but any one or more elements selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. Contains more,
    상기 음극활물질은, 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 것을 특징으로 하는 리튬이차전지.The negative electrode active material is a lithium secondary battery characterized in that it includes a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inactive metal crystalline matrix.
  10. 제9항에 있어서,According to clause 9,
    상기 음극활물질 100 at%에 대해,For 100 at% of the negative electrode active material,
    상기 Al은 24.9 at% 이상 49.8 at% 미만,The Al is 24.9 at% or more and less than 49.8 at%,
    상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지.A lithium secondary battery, characterized in that the Cu is contained in an amount of 0.1 at% or more and 5 at% or less.
  11. 제9항에 있어서,According to clause 9,
    상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은,The microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix,
    시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지.When thermal analysis was performed using differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min, a Si-based amorphous alloy with an exothermic peak due to Cu clustering was heat treated in the temperature range of 300°C to 450°C. A lithium secondary battery characterized in that it is formed.
  12. 제9항에 있어서,According to clause 9,
    상기 음극활물질의 비활성 매트릭스 상은, The inert matrix phase of the negative electrode active material is,
    FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지.A lithium secondary battery comprising at least one phase selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
  13. Si, 첨가금속 M, Fe, 및 Mn 각각의 금속 또는 합금을 준비하는 단계;Preparing metals or alloys of Si, additive metal M, Fe, and Mn;
    상기 준비한 Si, 첨가금속 M, Fe, 및 Mn 각각의 금속 또는 합금으로 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계; 및Preparing a Si-based amorphous alloy having a Si-M-Fe-Mn composition using the prepared metals or alloys of Si, additive metals M, Fe, and Mn; and
    상기 Si계 Amorphous 합금을 열처리하여, 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직을 포함하는 리튬이차전지용 음극활물질을 제조하는 단계;를 포함하고,A step of heat treating the Si-based amorphous alloy to produce a negative electrode active material for a lithium secondary battery comprising a microstructure in which a crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on an inert metal crystalline matrix.
    상기 음극활물질은, 상기 음극활물질 100 at%에 대해, 45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하며,The negative electrode active material is 45 at% to less than 60 at% of Si, 25 at% or more of added metal M, 1 at% to 20 at% of Fe, and 20 at% or less of the negative electrode active material, based on 100 at% of the negative electrode active material. Contains Mn,
    상기 첨가금속 M은 Al 및 Cu를 포함하는 것; 또는,The added metal M includes Al and Cu; or,
    Al 및 Cu를 포함하되, Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, 및 Nb로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 더 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법.Al and Cu, but any one or more elements selected from the group consisting of Ni, Ti, W, Co, Cr, Mo, Zr, Ge, Ca, Ag, Bi, Sb, Sn, Zn, B, and Nb. A method for manufacturing a negative electrode active material for a lithium secondary battery, further comprising:
  14. 제13항에 있어서,According to clause 13,
    상기 리튬이차전지용 음극활물질은, 상기 음극활물질 100 at%에 대해,The negative electrode active material for the lithium secondary battery is, with respect to 100 at% of the negative electrode active material,
    45 at% 이상 60 at% 미만의 Si, 25 at% 이상의 첨가금속 M, 1 at% 이상 20 at% 이하의 Fe, 및 20 at% 이하의 Mn을 포함하는 것틀 특징으로 하는 리튬이차전지용 음극활물질 제조방법.Manufacture of anode active material for lithium secondary batteries characterized by containing 45 at% or more and less than 60 at% of Si, 25 at% or more of added metal M, 1 at% or more and 20 at% or less of Fe, and 20 at% or less of Mn. method.
  15. 제13항에 있어서, 상기 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계는,The method of claim 13, wherein the step of manufacturing the Si-based amorphous alloy having the Si-M-Fe-Mn composition,
    상기 준비한 Si, 첨가금속 M, Fe, 및 Mn 각각의 금속 또는 합금을 혼합한 후 용융하여 용융금속을 제조하는 단계; 및Mixing the prepared Si, additive metals M, Fe, and Mn metals or alloys and then melting them to produce molten metal; and
    상기 용융금속을 액체급냉응고법으로 고체화하여 상기 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계를 포함하는 것틀 특징으로 하는 리튬이차전지용 음극활물질 제조방법.A method for producing a negative electrode active material for a lithium secondary battery, comprising the step of solidifying the molten metal by liquid rapid solidification to produce a Si-based amorphous alloy having the Si-M-Fe-Mn composition.
  16. 제13항에 있어서, 상기 Si-M-Fe-Mn 조성을 가지는 Si계 Amorphous 합금을 제조하는 단계는,The method of claim 13, wherein the step of manufacturing the Si-based amorphous alloy having the Si-M-Fe-Mn composition,
    볼밀법(ball milling), 기계적 합금화법(Mechanical Alloyiing), 가스 아토마이져법(gas atomization), 및 기상증착법(chemical vapor deposition)으로 이루어진 군에서 선택되는 어느 하나 이상의 방법으로 수행되는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법.Lithium, characterized in that it is performed by one or more methods selected from the group consisting of ball milling, mechanical alloying, gas atomization, and chemical vapor deposition. Method for manufacturing anode active material for secondary batteries.
  17. 제13항에 있어서,According to clause 13,
    상기 열처리는 400℃ 내지 700℃의 온도범위에서 진행되는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법.A method of manufacturing a negative electrode active material for a lithium secondary battery, characterized in that the heat treatment is carried out in a temperature range of 400 ℃ to 700 ℃.
  18. 제13항에 있어서,According to clause 13,
    상기 음극활물질 100 at%에 대해,For 100 at% of the negative electrode active material,
    상기 Al은 24.9 at% 이상 49.8 at% 미만,The Al is 24.9 at% or more and less than 49.8 at%,
    상기 Cu는 0.1 at% 이상 5 at% 이하로 함유된 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법.A method of manufacturing a negative electrode active material for a lithium secondary battery, characterized in that the Cu is contained in an amount of 0.1 at% or more and 5 at% or less.
  19. 제13항에 있어서,According to clause 13,
    상기 비활성 금속 결정질 매트릭스 상에 100 nm 이하 직경의 활성금속인 결정질 Si 상이 균일하게 분산 석출된 미세조직은,The microstructure in which the crystalline Si phase, which is an active metal with a diameter of 100 nm or less, is uniformly dispersed and precipitated on the inactive metal crystalline matrix,
    시차주사열량계(DSC, Differential Scanning Calorimetry)로 승온속도 10℃/min으로 열분석을 진행하였을 때, 300℃ 내지 450℃의 온도 범위에서 Cu clustering에 의한 발열 피크가 존재하는 Si계 amorphous 합금을 열처리하여 형성한 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법.When thermal analysis was performed using differential scanning calorimetry (DSC) at a temperature increase rate of 10°C/min, a Si-based amorphous alloy with an exothermic peak due to Cu clustering was heat treated in the temperature range of 300°C to 450°C. A method of manufacturing a negative electrode active material for a lithium secondary battery, characterized in that it is formed.
  20. 제13항에 있어서,According to clause 13,
    상기 음극활물질의 비활성 매트릭스 상은,The inert matrix phase of the negative electrode active material is,
    FeSi2, Fe2Al3Si3, Al2.7Fe1Si2.3, 및 Fe5Si3 상으로 이루어진 군에서 선택되는 어느 하나 이상의 상을 포함하는 것을 특징으로 하는 리튬이차전지용 음극활물질 제조방법.A method for producing a negative electrode active material for a lithium secondary battery, comprising at least one phase selected from the group consisting of FeSi 2 , Fe 2 Al 3 Si 3 , Al 2.7 Fe 1 Si 2.3 , and Fe 5 Si 3 phases.
PCT/KR2023/011052 2022-10-27 2023-07-28 Anode active material for lithium secondary battery, method of producing same, and lithium secondary battery comprising same WO2024090739A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0139948 2022-10-27
KR20220139948 2022-10-27
KR1020230092642A KR20240059527A (en) 2022-10-27 2023-07-17 Negative active material for lithium secondary battery, manufacturing method of the same, and lithium secondary battery including the same
KR10-2023-0092642 2023-07-17

Publications (1)

Publication Number Publication Date
WO2024090739A1 true WO2024090739A1 (en) 2024-05-02

Family

ID=90831283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011052 WO2024090739A1 (en) 2022-10-27 2023-07-28 Anode active material for lithium secondary battery, method of producing same, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2024090739A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180133786A (en) * 2017-06-07 2018-12-17 한국생산기술연구원 Negative active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery including the same
KR20200063424A (en) * 2018-11-27 2020-06-05 한국생산기술연구원 Negative active material manufacturing method and negative active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery including the same
KR20200110279A (en) * 2018-08-06 2020-09-23 충남대학교산학협력단 Negative electrode active material for rechargeable lithium battery and preparation method of the same
KR102166559B1 (en) * 2018-08-06 2020-10-16 충남대학교산학협력단 Negative electrode active material for rechargeable lithium battery and preparation method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180133786A (en) * 2017-06-07 2018-12-17 한국생산기술연구원 Negative active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery including the same
KR20200110279A (en) * 2018-08-06 2020-09-23 충남대학교산학협력단 Negative electrode active material for rechargeable lithium battery and preparation method of the same
KR102166559B1 (en) * 2018-08-06 2020-10-16 충남대학교산학협력단 Negative electrode active material for rechargeable lithium battery and preparation method of the same
KR20200063424A (en) * 2018-11-27 2020-06-05 한국생산기술연구원 Negative active material manufacturing method and negative active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEOK-HO SEO: "Crystallization Behavior and Electrochemical Properties of Si50Al30Fe20 Amorphous Alloys as Anode for Lithium Secondary Batteries Prepared by Rapidly Solidification Process", JOURNAL OF THE KOREAN INSTITUTE OF ELECTRICAL AND ELECTRONIC MATERIAL ENGINEERS, KOREA, vol. 32, no. 4, 1 July 2019 (2019-07-01), Korea , pages 341 - 348, XP093166203, ISSN: 1226-7945, DOI: 10.4313/JKEM.2019.32.4.341 *

Similar Documents

Publication Publication Date Title
WO2021132761A1 (en) Cathode active material, method for manufacturing same, and lithium secondary battery comprising cathode containing same
WO2019103363A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2018143753A1 (en) Positive electrode active material for secondary battery, method for preparing same and lithium secondary battery comprising same
WO2019143047A1 (en) Cathode active material for lithium secondary battery, production method therefor, cathode for lithium secondary battery comprising same, and lithium secondary battery comprising same
WO2018135889A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020080831A1 (en) Three-dimensional structure electrode and electrochemical element including same
WO2019083221A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2021221480A1 (en) Cathode active material for lithium secondary battery, production method thereof, and lithium secondary battery comprising same
WO2021177647A1 (en) Cathode, all-solid secondary battery including cathode, and method of preparing all-solid secondary battery
WO2019117531A1 (en) Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery cathode and lithium secondary battery which comprise same
WO2013137509A1 (en) Method for manufacturing anode active material for lithium secondary battery, anode active material for lithium secondary battery, and lithium secondary battery
WO2021132763A1 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising positive electrode comprising same
WO2022211589A1 (en) Composite cathode active material, cathode and lithium battery employing same, and preparation method for same
WO2020235909A1 (en) Cathode active material for calcium-doped sodium secondary battery, and sodium secondary battery including same
WO2022055308A1 (en) Negative electrode material, and negative electrode and secondary battery comprising same
WO2021141463A1 (en) Method for preparing cathode active material for lithium secondary battery, cathode for lithium secondary battery, comprising cathode active material prepared by preparation method, and lithium secondary battery
WO2013100692A1 (en) Preparation method of cathode active material for lithium secondary battery, and cathode active material
WO2019151724A1 (en) Lithium secondary battery having improved high-temperature storage characteristics
WO2019151725A1 (en) Lithium secondary battery having improved high-temperature storage characteristics
WO2019078685A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2021112323A1 (en) Positive active material, preparation method therefor, and lithium secondary battery having positive electrode comprising same
WO2024085297A1 (en) Anode active material, and anode and lithium secondary battery comprising same
WO2024090739A1 (en) Anode active material for lithium secondary battery, method of producing same, and lithium secondary battery comprising same
WO2021241995A1 (en) Positive electrode active material precursor, and method for producing positive electrode active material precursor
WO2018225971A1 (en) Anode active material for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising same anode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882846

Country of ref document: EP

Kind code of ref document: A1