WO2024090483A1 - Structure, method for producing structure, oil-resistant paper, gas barrier paper, flavor barrier paper and packaging material - Google Patents

Structure, method for producing structure, oil-resistant paper, gas barrier paper, flavor barrier paper and packaging material Download PDF

Info

Publication number
WO2024090483A1
WO2024090483A1 PCT/JP2023/038537 JP2023038537W WO2024090483A1 WO 2024090483 A1 WO2024090483 A1 WO 2024090483A1 JP 2023038537 W JP2023038537 W JP 2023038537W WO 2024090483 A1 WO2024090483 A1 WO 2024090483A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polymer
mass
paper
structure according
Prior art date
Application number
PCT/JP2023/038537
Other languages
French (fr)
Japanese (ja)
Inventor
歩 山本
悠太 田岡
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2024090483A1 publication Critical patent/WO2024090483A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a structure, a method for manufacturing a structure, grease-resistant paper, gas barrier paper, flavor barrier paper, and packaging materials.
  • Patent documents 1 and 2 describe packaging materials in which a water vapor barrier layer, a gas barrier layer, and a heat seal layer are provided in that order on a paper base material. Patent documents 1 and 2 also describe packaging materials such as the above in which a vinyl alcohol-based polymer is used for the gas barrier layer.
  • each layer is generally provided on a paper base material by coating.
  • a heat seal layer is provided on the surface of a gas barrier layer containing a vinyl alcohol polymer, cracks may occur in the formed coating, making it difficult to obtain uniform heat sealability.
  • the inventors have also found that cracks in the heat seal layer can cause a decrease in water vapor barrier properties.
  • the present invention aims to provide a structure that has little cracking in the heat-sealable layer and has excellent water vapor barrier properties, heat-sealability and oxygen barrier properties, a method for manufacturing such a structure, and grease-resistant paper, gas barrier paper, flavor barrier paper and packaging materials that use such a structure.
  • [3] The structure according to [1] or [2], wherein the layer A contains the olefin-based polymer, and the olefin-based polymer contains an olefin-unsaturated carboxylic acid-based polymer; [4] The structure of [1], [2] or [3], wherein the layer A further contains talc; [5] The structure according to [4], wherein the content of the talc in the layer A is 1% by mass or more and 80% by mass or less; [6] The structure according to any one of [1] to [5], wherein the vinyl alcohol polymer is an ethylene-modified vinyl alcohol polymer; [7] The structure according to any one of [1] to [6], wherein the polymer having a glass transition temperature of ⁇ 100° C.
  • styrene-acrylic copolymer [8] The structure according to any one of [1] to [7], wherein the C layer further contains a wax; [9] The structure according to [8], wherein the content of the wax in the layer C is 0.1% by mass or more and 30% by mass or less; [10] The structure of [8] or [9], wherein the wax comprises paraffin wax; [11] The structure according to [10], wherein the content of the paraffin wax in the layer C is 1% by mass or more and 30% by mass or less; [12] The structure according to any one of [1] to [11], wherein the vinyl alcohol polymer comprises two or more kinds of vinyl alcohol polymers having different degrees of polymerization; [13] The structure according to any one of [1] to [12], wherein the layer A contains at least two polymers selected from the group consisting of the olefin-based polymer, the styrene-based polymer, and the polyester-based polymer
  • the present invention provides a structure that has little cracking in the heat-sealable layer and has excellent water vapor barrier properties, heat-sealability, and oxygen barrier properties, a method for manufacturing such a structure, and grease-resistant paper, gas barrier paper, flavor barrier paper, and packaging materials that use such a structure.
  • FIG. 1 is a schematic cross-sectional view showing a structure according to one embodiment of the present invention.
  • a structure according to one embodiment of the present invention is a structure in which an A layer, a B layer, and a C layer are laminated in this order on at least one surface of a paper base material, the A layer comprising at least one polymer selected from the group consisting of an olefin-based polymer, a styrene-based polymer, and a polyester-based polymer, the B layer comprising a vinyl alcohol-based polymer, and the C layer comprising a polymer having a glass transition temperature of ⁇ 100° C. or more and 5° C. or less.
  • the structure has few cracks in the layer having heat sealability, and has excellent water vapor barrier properties, heat sealability, and oxygen barrier properties. The reason why the structure has such effects is unclear, but the following reasons are speculated.
  • a vinyl alcohol resin with excellent oxygen barrier properties in layer B the oxygen barrier properties can be improved.
  • vinyl alcohol polymers are resins that undergo relatively large changes in swelling and shrinkage, when layer C is provided on layer B containing a vinyl alcohol polymer, layer C cannot follow the swelling and shrinkage of layer B, and cracks may occur in layer C.
  • layer C can adequately follow the swelling and shrinkage of layer B. As a result, in the structure, cracks in layer C are suppressed, and water vapor barrier properties can be improved.
  • a structure 10 comprises a paper base material 11, an A layer 12, a B layer 13, and a C layer 14.
  • the structure 10 is a laminate in which the A layer 12, the B layer 13, and the C layer 14 are laminated in this order on one side of the paper base material 11.
  • the paper base material 11 and the A layer 12, the A layer 12 and the B layer 13, and the B layer 13 and the C layer 14 are directly laminated, respectively.
  • the C layer 14 is the outermost layer.
  • the structure 10 may be a coated paper.
  • layers A, B, and C may be laminated in this order on both sides of the paper substrate.
  • Layers A, B, and C may be laminated in this order on one side of the paper substrate, and one or more of layers A, B, C, or other layers may be laminated on the other side of the paper substrate.
  • Other layers may be present between the paper substrate and layer A, between layers A and B, between layers B and C, and on one or more of the surface of layer C.
  • the paper base material can be a general paper mainly composed of plant-derived pulp.
  • the term "main component" refers to the component with the highest content by mass.
  • the paper base material may contain sizing agents, fillers, paper strength agents, retention improvers, pH adjusters, drainage improvers, water-resistant agents, softeners, antistatic agents, defoamers, slime control agents, dyes, pigments, etc.
  • paper substrates include kraft paper, fine paper, medium-quality paper, alkaline paper, paperboard, glassine paper, semi-glassine paper, parchment paper, etc., with fine paper being preferred.
  • the basis weight (mass per unit area) of the paper base material is preferably from 20 g/ m2 to 500 g/ m2 , more preferably from 30 g/ m2 to 300 g/ m2 , even more preferably from 40 g/ m2 to 200 g/ m2 , and even more preferably from 50 g/ m2 to 100 g/ m2 .
  • the density of the paper base material is preferably from 0.5 g/cm 3 to 1.2 g/cm 3 , and more preferably from 0.6 g/cm 3 to 1.0 g/cm 3 .
  • the paper base material can be manufactured by a known method. In addition, commercially available paper base materials can be used.
  • Layer A is a layer that exists between the paper substrate and layer B. Layer A may be laminated directly onto the paper substrate.
  • the A layer contains at least one selected from the group consisting of an olefin-based polymer, a styrene-based polymer, and a polyester-based polymer (hereinafter also referred to as "polymer (a)").
  • polymer (a) By containing such a relatively highly hydrophobic polymer (a) in the A layer, the A layer can exhibit good water vapor barrier properties and the like.
  • the polymer (a) is preferably the main component of the A layer. One or more types of polymer (a) can be used.
  • the olefin-based polymer is a polymer containing an olefin as a monomer.
  • the olefin-based polymer may be a polyolefin, which is a polymer of one or more olefins, or a copolymer of one or more olefins and one or more other monomers other than olefins.
  • Olefins include ⁇ -olefins such as ethylene, propylene, n-butene, and isobutylene.
  • olefin-based polymers include unsaturated carboxylic acid compounds, diene compounds, vinyl ethers, vinyl halides, vinylidene halides, allyl compounds, etc., with unsaturated carboxylic acid compounds being preferred.
  • Unsaturated carboxylic acid compounds refer to unsaturated carboxylic acids and compounds in which the hydrogen atom of the carboxy group constituting the unsaturated carboxylic acid has been replaced with another atom or another group.
  • unsaturated carboxylic acid compounds include unsaturated carboxylic acid, unsaturated carboxylic acid esters, unsaturated carboxylate salts, etc.
  • the unsaturated carboxylic acid compounds are preferably monomers having a carboxy group or salts thereof.
  • unsaturated carboxylic acid compounds include unsaturated carboxylic acids such as (meth)acrylic acid, crotonic acid, cinnamic acid, itaconic acid, fumaric acid, maleic acid, and butene tricarboxylic acid; unsaturated carboxylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, itaconic acid monoethyl ester, and fumaric acid monobutyl ester; and unsaturated carboxylates such as sodium (meth)acrylate.
  • unsaturated carboxylic acids such as (meth)acrylic acid, crotonic acid, cinnamic acid, itaconic acid, fumaric acid, maleic acid, and butene tricarboxylic acid
  • unsaturated carboxylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, itaconic acid monoethyl ester, and fumaric acid mono
  • polyolefins and olefin-unsaturated carboxylic acid-based copolymers are preferred, and olefin-unsaturated carboxylic acid-based copolymers are more preferred.
  • An olefin-unsaturated carboxylic acid-based copolymer refers to a copolymer of one or more olefins and one or more unsaturated carboxylic acid-based compounds.
  • olefin-unsaturated carboxylic acid-based copolymers which are copolymers of one or more olefins and one or more unsaturated carboxylic acids, are preferred.
  • olefin-unsaturated carboxylic acid copolymers examples include ethylene-(meth)acrylic acid copolymer, ethylene-methyl (meth)acrylate copolymer, ethylene-ethyl (meth)acrylate copolymer, and ethylene-butyl (meth)acrylate copolymer. Among these, ethylene-(meth)acrylic acid copolymer is preferred. Copolymers of ethylene and unsaturated carboxylic acid compounds are also preferred. These copolymers may further be copolymerized with other monomers that are copolymerizable with the olefin and the unsaturated carboxylic acid compound.
  • styrene polymer A styrene-based polymer is a polymer containing a styrene-based compound as a monomer.
  • the styrene-based compound refers to styrene and a compound in which the hydrogen atoms of styrene are substituted with other atoms or other groups.
  • examples of the styrene-based compound include styrene, ⁇ -methylstyrene, vinyltoluene, and chlorostyrene, with styrene being preferred.
  • styrene copolymers examples include polystyrene, styrene-acrylic copolymers, and styrene-butadiene copolymers.
  • Styrene-acrylic copolymers are copolymers of the above-mentioned styrene compounds and acrylic compounds.
  • Acrylic compounds refer to (meth)acrylic acid and compounds in which the hydrogen atoms of the carboxy groups constituting (meth)acrylic acid are replaced with other atoms or other groups.
  • acrylic compounds include (meth)acrylic acid, (meth)acrylic acid esters, and (meth)acrylic acid salts.
  • (meth)acrylic acid esters include (meth)acrylic acid alkyl esters such as methyl (meth)acrylate and ethyl (meth)acrylate.
  • Examples of (meth)acrylic acid salts include sodium (meth)acrylate.
  • styrene-acrylic copolymers examples include styrene-(meth)acrylic acid copolymers, styrene-(meth)acrylic acid ester copolymers, and styrene-(meth)acrylate copolymers. Other monomers may be further copolymerized in the styrene-acrylic copolymers.
  • Styrene-butadiene copolymers are copolymers of the above-mentioned styrene compounds and butadiene compounds.
  • Butadiene compounds refer to butadiene and compounds in which the hydrogen atoms of butadiene are replaced with other atoms or groups.
  • Butadiene compounds include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, etc., with 1,3-butadiene being preferred.
  • styrene-butadiene copolymer a styrene-butadiene copolymer is preferable.
  • the styrene-butadiene copolymer may further be copolymerized with other monomers.
  • styrene-based polymers styrene-based polymers
  • styrene-acrylic copolymers and styrene-butadiene copolymers are preferred.
  • polyester Polymer is a polymer in which one or more types of monomers are polymerized through ester bonds.
  • examples of the polyester polymer include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polyglycolic acid, and aromatic liquid crystal polyester.
  • polymers (a) from the viewpoint of water vapor barrier properties, etc., olefin-based polymers and styrene-based polymers are preferred, and olefin-based polymers are more preferred.
  • the lower limit of the content of polymer (a) in layer A is preferably 20% by mass, more preferably 40% by mass, and may be 60%, 70%, 80% or 90% by mass.
  • the upper limit of this content may be 100% by mass, or may be 99%, 90%, 80% or 60% by mass.
  • the layer A preferably contains a layered inorganic compound.
  • the layer A contains a layered inorganic compound, the water vapor barrier properties and the like of the structure can be further improved.
  • layered inorganic compounds examples include micas, talc, montmorillonite, kaolinite, vermiculite, smectite, hectorite, taeniolite, and acid clay.
  • Talc is preferred as the layered inorganic compound used in layer A from the viewpoint of water vapor barrier properties, etc.
  • One or more types of layered inorganic compounds can be used.
  • the lower limit of the content of the layered inorganic compound in layer A is preferably 1 mass%, more preferably 5 mass%, and even more preferably 10 mass%, 20 mass%, or 30 mass%.
  • the upper limit of this content is preferably 80 mass%, more preferably 70 mass%, and even more preferably 60 mass%, 50 mass%, or 40 mass%.
  • the A layer may further contain other components in addition to the polymer (a) and the layered inorganic compound.
  • other components include resins other than the polymer (a), dispersants, surfactants, defoamers, dyes, thickeners, etc.
  • the total content of the polymer (a) and any layered inorganic compound in the A layer is preferably 90% by mass or more, more preferably 95% by mass or more or 99% by mass or more.
  • the content of the cationic resin may be preferably 10% by mass or less, and may be more preferably 5% by mass or less, 1% by mass or less, or 0.5% by mass or less.
  • the mass per unit area of one A layer is preferably 1 g/m 2 or more and 100 g/m 2 or less, more preferably 3 g/m 2 or more and 50 g/m 2 or less, even more preferably 5 g/m 2 or more and 30 g/m 2 or less, even more preferably 7 g/m 2 or more and 20 g/m 2 or less, and particularly preferably 9 g/m 2 or more and 15 g/m 2 or less.
  • the mass per unit area of one A layer is equal to or more than the lower limit, the water vapor barrier property and the like can be further improved.
  • the mass per unit area of one A layer is equal to or less than the upper limit, the structure can be made thinner.
  • the layer B is a layer that is present between the layer A and the layer C.
  • the layer B may be a layer that is directly laminated onto the layer A.
  • the B layer contains a vinyl alcohol polymer (hereinafter also referred to as "polymer (b)").
  • polymer (b) is preferably the main component of the B layer.
  • the polymer (b) is a polymer having a vinyl alcohol unit (-CH 2 -CHOH-).
  • the polymer (b) is usually obtained by saponification of a vinyl ester polymer.
  • One or more types of polymer (b) can be used.
  • the lower limit of the saponification degree of polymer (b) is preferably 80 mol%, more preferably 90 mol%, and in some cases 95 mol%, 97 mol%, 98 mol% or 99 mol% are even more preferable.
  • the upper limit of the saponification degree may be 100 mol% or 99.9 mol%.
  • the saponification degree of polymer (b) is measured in accordance with JIS K 6726:1994.
  • the viscosity average degree of polymerization of polymer (b) is preferably 200 or more and 3,000 or less.
  • the lower limit of the viscosity average degree of polymerization may be 300, 500, or 800.
  • the upper limit of the viscosity average degree of polymerization may be 2,500, 2,000, 1,200, or 800.
  • the viscosity average degree of polymerization of the polymer (b) is measured in accordance with JIS K 6726:1994. Specifically, the intrinsic viscosity [ ⁇ ] (liters/g) of the polymer (b) is measured in water at 30° C., and the viscosity average degree of polymerization P is calculated by the following formula using the intrinsic viscosity [ ⁇ ] value.
  • the degree of saponification of the polymer (b) is less than 99.5 mol%, the polymer is saponified to a degree of saponification of 99.5 mol% or more, and then the intrinsic viscosity [ ⁇ ] is measured.
  • P ([ ⁇ ] ⁇ 10 4 / 8.29) (1/0.62)
  • Polymer (b) may have monomer units derived from other monomers than vinyl alcohol units and vinyl ester units.
  • other monomers include ⁇ -olefins such as ethylene, propylene, n-butene, and isobutylene; (meth)acrylic acid and its salts; (meth)acrylic acid esters; (meth)acrylamide; (meth)acrylamide derivatives such as N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, diacetone(meth)acrylamide, (meth)acrylamidopropanesulfonic acid and its salts, (meth)acrylamidopropyldimethylamine and its salts or its quaternary salts, and N-methylol(meth)acrylamide and its derivatives; methyl vinyl ether, ethyl vinyl ether, Examples include vinyl ethers such as n-propyl vinyl ether, i-propyl vinyl
  • polymer (b) is preferably an ⁇ -olefin modified vinyl alcohol polymer, and more preferably an ethylene modified vinyl alcohol polymer.
  • the lower limit of the content of ⁇ -olefin units relative to all monomer units in the ⁇ -olefin modified vinyl alcohol polymer is preferably 0.1 mol%, more preferably 1 mol%, and may be 2 mol%, 5 mol%, or 7 mol%. On the other hand, the upper limit of this content may be 30 mol%, or may be 20 mol%, 15 mol%, or 12 mol%.
  • the content of ⁇ -olefin units relative to all monomer units is also referred to as the ⁇ -olefin modification amount.
  • the content of ethylene units relative to all monomer units is also referred to as the ethylene modification amount.
  • the total content of vinyl alcohol units, vinyl ester units, and any ⁇ -olefin units relative to the total monomer units of polymer (b) is preferably 95 mol% or more, more preferably 99 mol% or more, and may be 100 mol%.
  • Polymer (b) may be used in a mixture of two or more kinds.
  • polymer (b) may be made of two or more kinds of vinyl alcohol-based polymers with different degrees of polymerization.
  • a vinyl alcohol-based polymer with a low degree of polymerization has low viscosity and is excellent in coatability.
  • a vinyl alcohol-based polymer with a high degree of polymerization has excellent strength, etc. Therefore, by mixing two or more kinds of vinyl alcohol-based polymers with different degrees of polymerization, it is possible to achieve a balance between these properties.
  • a vinyl alcohol-based polymer made of two or more kinds with different degrees of polymerization may have two or more peaks in a molecular weight distribution curve obtained by GPC (gel permeation chromatography) analysis.
  • the lower limit of the content of polymer (b) in layer B is preferably 70% by mass, more preferably 80% by mass, and even more preferably 90% by mass.
  • the content of polymer (b) in layer B is preferably 70% by mass, more preferably 80% by mass, and even more preferably 90% by mass.
  • the upper limit of this content may be 100% by mass, 99% by mass, or 97% by mass.
  • Layer B preferably contains a layered inorganic compound.
  • layer B contains a layered inorganic compound, the oxygen barrier properties and the like of the structure can be further improved.
  • the layered inorganic compound may be the same as those exemplified in the description of the A layer.
  • the layered inorganic compound used in the B layer mica is preferred from the viewpoint of oxygen barrier properties, etc.
  • One or more types of layered inorganic compounds may be used.
  • the lower limit of the amount of the layered inorganic compound in layer B is preferably 1 mass%, and more preferably 3 mass%.
  • the upper limit of this amount is preferably 30 mass%, more preferably 20 mass%, and even more preferably 10 mass%.
  • Layer B may further contain other components in addition to the polymer (b) and the layered inorganic compound.
  • other components include resins other than the polymer (b), dispersants, surfactants, defoamers, dyes, thickeners, etc.
  • the total content of the polymer (b) and any layered inorganic compound in layer B is preferably 90% by mass or more, more preferably 95% by mass or more or 99% by mass or more.
  • the mass per unit area of one B layer is preferably 0.3 g/m 2 or more and 20 g/m 2 or less, more preferably 0.5 g/m 2 or more and 10 g/m 2 or less, even more preferably 1 g/m 2 or more and 7 g/m 2 or less, and even more preferably 2 g/m 2 or more and 5 g/m 2 or less.
  • the mass per unit area of one B layer is equal to or more than the above lower limit, the oxygen barrier property can be further improved.
  • the mass per unit area of one B layer is equal to or less than the above upper limit, the structure can be made thinner.
  • the layer C is a layer present on the opposite side of the layer B from the layer A.
  • the layer C may be a layer directly laminated on the layer B.
  • the layer C may also be the outermost layer.
  • the C layer contains a polymer having a glass transition temperature of ⁇ 100° C. or more and 5° C. or less (hereinafter, also referred to as “polymer (c)”).
  • the polymer (c) is preferably the main component of the C layer.
  • the polymer (c) can be used alone or in combination of two or more kinds.
  • the upper limit of the glass transition temperature of polymer (c) is 5°C, preferably 3°C, more preferably 2°C, and even more preferably 1°C, 0°C, -1°C, -3°C, -5°C or -10°C.
  • the glass transition temperature of polymer (c) is -100°C, and may be -80°C, -60°C, -50°C or -40°C.
  • the upper limit of the melting point of polymer (c) may be 120°C, but is preferably 100°C, more preferably 85°C, even more preferably 80°C, and even more preferably 75°C, 70°C or 65°C. By having the melting point of polymer (c) below the above upper limit, the heat sealability can be improved.
  • the melting point of polymer (c) may be less than 80°C.
  • the lower limit of this melting point is preferably 30°C, more preferably 40°C, and even more preferably 50°C.
  • the glass transition temperature and melting point of polymer (c) are measured by differential scanning calorimetry (DSC). Specifically, they can be measured by the method described in the Examples.
  • the polymer (c) is not particularly limited as long as it is a polymer having a glass transition temperature of -100°C or more and 5°C or less.
  • the polymer (c) may be any of the olefin-based polymers, styrene-based polymers, and polyester-based polymers described as polymer (a) that have a glass transition temperature of -100°C or more and 5°C or less.
  • polystyrene-based polymers As the polymer (c), olefin-based polymers and styrene-based polymers are preferred, styrene-based polymers are more preferred, styrene-acrylic copolymers and styrene-butadiene copolymers are even more preferred, styrene-acrylic copolymers are even more preferred, and styrene-(meth)acrylic acid ester copolymers are particularly preferred.
  • olefin-based polymers olefin-unsaturated carboxylic acid copolymers are preferred, olefin-unsaturated carboxylic acid copolymers are more preferred, and ethylene-(meth)acrylic acid copolymers are even more preferred.
  • the polymer (c) a copolymer of a hydrocarbon-based monomer and an acrylic compound is also preferred.
  • the hydrocarbon-based monomer include the above-mentioned olefins and styrene-based compounds.
  • the specific forms of the olefin-based polymers and styrene-based polymers as the polymer (c) are the same as those described above for the olefin-based polymers and styrene-based polymers in the polymer (a).
  • polymer (a) and polymer (c) may be the same type of polymer or different types of polymer.
  • different types of polymers may be used for polymer (a) and polymer (c).
  • the lower limit of the content of polymer (c) in layer C is preferably 50% by mass, more preferably 60% by mass, even more preferably 70% by mass, and even more preferably 80% by mass, 85% by mass, or 90% by mass.
  • the upper limit of this content is preferably 100% by mass, more preferably 99% by mass, and even more preferably 95% by mass.
  • the layer C preferably contains a wax.
  • the layer C contains a wax, the water vapor barrier property can be further improved, etc. Also, when the layer C contains a wax, the oil resistance, etc. tends to be improved.
  • the wax preferably contains paraffin wax.
  • paraffin wax containing normal paraffin as the main component, which has a carbon number of 20 to 40 and a molecular weight of 300 to 500, can be used.
  • Commercially available paraffin wax can be used.
  • the lower limit of the wax content in the C layer may be, for example, 0.1% by mass, but is preferably 1% by mass, more preferably 3% by mass, and even more preferably 5% by mass.
  • the upper limit of this content may be, for example, 30% by mass, but is preferably 20% by mass, more preferably 15% by mass, and even more preferably 12% by mass.
  • the lower limit of the paraffin wax content in the C layer may be, for example, 0.1% by mass, but is preferably 1% by mass, more preferably 3% by mass, and even more preferably 5% by mass.
  • the upper limit of this content may be, for example, 30% by mass, but is preferably 20% by mass, more preferably 15% by mass, and even more preferably 12% by mass.
  • the C layer may further contain other components in addition to the polymer (c) and the wax.
  • other components include resins other than the polymer (c), dispersants, surfactants, defoamers, dyes, thickeners, etc.
  • the C layer may contain two or more polymers.
  • the two or more polymers that may be contained in the C layer may be a combination of the polymer (c) and another polymer, or may be two or more polymers (c).
  • the total content of the polymer (c) and any wax in the C layer is preferably 90% by mass or more, more preferably 95% by mass or more or 99% by mass or more.
  • the C layer does not substantially contain a vinyl alcohol-based polymer.
  • the content of the vinyl alcohol-based polymer in the C layer is preferably 10 mass % or less, more preferably 3 mass % or less, even more preferably 1 mass % or less, and even more preferably 0.1 mass % or less.
  • the C layer preferably has a melting point of 120°C or less.
  • the upper limit of the melting point of the C layer is preferably 100°C, more preferably 85°C, even more preferably 80°C, and even more preferably 75°C, 70°C, or 65°C.
  • the C layer may have a melting point less than 80°C.
  • the lower limit of the melting point is preferably 30°C, more preferably 40°C, and even more preferably 50°C.
  • the melting point of the C layer is measured by differential scanning calorimetry (DSC). Note that, when one of the components (polymer (c) and other optional components) contained in the C layer has a specified melting point T, the C layer usually also has the same specified melting point T.
  • the mass per unit area of one C layer is preferably 1 g/m 2 or more and 100 g/m 2 or less, more preferably 3 g/m 2 or more and 50 g/m 2 or less, even more preferably 5 g/m 2 or more and 30 g/m 2 or less, even more preferably 7 g/m 2 or more and 20 g/m 2 or less, and particularly preferably 9 g/m 2 or more and 15 g/m 2 or less.
  • the mass per unit area of one C layer is equal to or more than the lower limit, the water vapor barrier property can be further improved.
  • the mass per unit area of one C layer is equal to or less than the upper limit, the structure can be made thinner.
  • the structure can be suitably used as grease-resistant paper, gas barrier paper, flavor barrier paper, packaging material, etc.
  • the structure can also be used in a state where it is formed into a predetermined shape (e.g., a bag shape) by heat sealing the C layers together.
  • a predetermined shape e.g., a bag shape
  • heat sealing method can be performed using a hot plate heat sealer, impulse sealer, ultrasonic sealer, frictional heat sealer, dielectric heating sealer, etc.
  • the method for producing the structure according to one embodiment of the present invention is not particularly limited, but typically, the structure can be produced by providing an A layer, a B layer, and a C layer in this order on a paper substrate by coating. Specifically, for example, an A layer forming coating liquid is applied to the surface of the paper substrate and dried to provide an A layer. Next, a B layer forming coating liquid is applied to the surface of the A layer and dried to provide a B layer. Next, a C layer forming coating liquid is applied to the surface of the B layer and dried to provide a C layer, thereby obtaining a structure. Drying is not required after each coating of the coating liquid, and a simultaneous multi-layer coating method may be adopted.
  • Each coating liquid can be applied by a conventional method.
  • coating can be performed using a blade coater, bar coater, air knife coater, slit die coater, gravure coater, microgravure coater, gate roll coater, curtain coater, etc.
  • a curtain coater it is preferable to use a curtain coater.
  • the method for manufacturing a structure according to one embodiment of the present invention includes a step of forming at least one of the layers A, B, and C using a curtain coater. In this manufacturing method, it is preferable to form all of the layers A, B, and C using a curtain coater.
  • the method for drying the applied coating liquid is not particularly limited, and can be done using, for example, a hot air dryer, an infrared dryer, a gas burner, a hot plate, etc.
  • the solvent or dispersion medium for the coating liquid used to form each layer is not particularly limited, and water or an organic solvent (ethanol, isopropyl alcohol, methyl ethyl ketone, toluene, etc.) can be used, with water being preferred.
  • water or an organic solvent ethanol, isopropyl alcohol, methyl ethyl ketone, toluene, etc.
  • the solid content (solid content concentration) of the coating liquid for forming each layer is not particularly limited, but can be, for example, 3% by mass or more and 70% by mass or less, 5% by mass or more and 60% by mass or less, or 10% by mass or more and 50% by mass or less.
  • the grease-resistant paper according to one embodiment of the present invention includes the structure according to one embodiment of the present invention.
  • the grease-resistant paper according to one embodiment of the present invention may be made of the structure according to one embodiment of the present invention.
  • This grease-resistant paper has excellent water vapor barrier properties and oxygen barrier properties, and when there are heat-sealed parts, the adhesion is also good.
  • This grease-resistant paper is ideally used as a packaging material for serving oily foods such as French fries and fried chicken, a packaging material for wrapping butter, and cooking paper for baking bread, cakes, etc.
  • the oil resistance (KIT value) of the oil-resistant paper is preferably grade 5 or higher, and more preferably grade 6 or 7 or higher. This oil resistance is the value measured on the surface of layer C using the TAPPI UM-557 method (KIT method).
  • the gas barrier paper according to one embodiment of the present invention includes the structure according to one embodiment of the present invention.
  • the gas barrier paper according to one embodiment of the present invention may be made of the structure according to one embodiment of the present invention.
  • This gas barrier paper has excellent oxygen and water vapor barrier properties, and when there are heat-sealed parts, the adhesion is also good.
  • This gas barrier paper is suitable for use as a packaging material for food, pesticides, medicines, cosmetics, medical products, electronic parts, clothing, etc.
  • the oxygen permeability of the gas barrier paper is preferably 10 cc/ m2 ⁇ 24h or less, more preferably 5 cc/ m2 ⁇ 24h or less, and even more preferably 3 cc/ m2 ⁇ 24h or less.
  • the oxygen permeability is a value measured under conditions of 23°C and 65% RH.
  • the flavour barrier paper according to an embodiment of the present invention comprises a structure according to an embodiment of the present invention.
  • the flavour barrier paper according to an embodiment of the present invention may consist of a structure according to an embodiment of the present invention.
  • This flavor barrier paper has excellent oxygen and water vapor barrier properties, and when there are heat-sealed sections, the adhesion is also good.
  • This flavor barrier paper is suitable for use as a packaging material for items that have a scent, such as confectionery, tea leaves, coffee, spices, tobacco, cosmetics, fragrances, etc.
  • This flavor barrier paper is also useful as a packaging material for other foods, pesticides, medicines, clothing, etc.
  • the oxygen permeability of the flavor barrier paper is preferably 10 cc/ m2 ⁇ 24 h or less, more preferably 5 cc/ m2 ⁇ 24 h or less, and even more preferably 3 cc/ m2 ⁇ 24 h or less.
  • the packaging material according to one embodiment of the present invention includes at least one selected from the group consisting of the greaseproof paper according to one embodiment of the present invention, the gas barrier paper according to one embodiment of the present invention, and the flavor barrier paper according to one embodiment of the present invention.
  • the packaging material according to one embodiment of the present invention may include the structure according to one embodiment of the present invention.
  • the packaging material has excellent water vapor barrier properties and oxygen barrier properties, and when there are heat-sealed parts, the adhesion is also good.
  • the packaging material is suitable for use as packaging for, for example, food, pesticides, medicines, cosmetics, medical products, electronic parts, clothing, etc.
  • Production Example 3-5 Production of PVA-3 to PVA-5 Each ethylene-modified vinyl alcohol polymer (PVA-3 to PVA-5) was produced in the same manner as in Production Example 2, except that the polymerization conditions and saponification conditions shown in Table 1 were changed to those shown in Table 1.
  • Polymer (a) Polymer (a) Polymer a1: "MFP1883” (manufactured by Michelman, Inc.), olefin-acrylic acid copolymer emulsion, solid content 27% by mass Polymer a2: "OP-671” (manufactured by Lion Corporation), styrene-acrylic acid ester copolymer emulsion, solid content 48% by mass Polymer a3: "Chemipearl S-100” (manufactured by Mitsui Chemicals, Inc.), ethylene-methacrylic acid copolymer emulsion, solid content 27% by mass Polymer a4: "Tykote 1004" (Mallard Creek Polymers, Inc.) Styrene-butadiene copolymer emulsion
  • Polymer (b)) PU-1 "Takelac WPB-341" (manufactured by Mitsui Chemicals, Inc.), polyurethane emulsion, solid content 30% by mass
  • Polymer (c) Polymer (c) Polymer c1: "VAPCT2200" (manufactured by Michelman, Inc.), styrene-acrylic acid ester copolymer emulsion, solid content 48% by mass, glass transition temperature -32.3°C, melting point 60.4°C Polymer c2: “498340R” (manufactured by Michelman, Inc.), ethylene-acrylic acid copolymer emulsion, solid content 40% by mass, glass transition temperature -0.5°C, melting point 78.7°C Polymer c3: "OP-671” (manufactured by Lion Corporation), styrene-butadiene copolymer emulsion, solid content 48% by mass, glass transition temperature 2.8°C, melting point 47.0°C Polymer c4: "Chemipearl S-100” (manufactured by Mitsui Chemicals, Inc.), ethylene-methacrylic acid copolymer emulsion
  • the glass transition temperature and melting point of the polymer (C) were measured by the following method. Approximately 3 mg of the measurement sample was filled into a sample pan, and the glass transition point and melting point were measured using a DSC Q2000 (manufactured by TA Instruments, Inc.). The sample was heated from 30° C. to 200° C., then cooled to ⁇ 90° C., held at that temperature for 5 minutes, and then heated to 200° C. The temperature was increased and decreased at a rate of 10° C./min.
  • Example 1 Preparation of structure A fine paper with a basis weight of 70.5 g/m 2 was prepared as a paper substrate. On one side of this paper substrate, "MFP1883", an emulsion of polymer a1, was applied as a coating liquid for forming an A layer in a coating amount of 10.0 g/m 2 in dry mass, and dried to provide an A layer. Next, on the surface of the A layer, an aqueous solution of PVA-1 (solid content 10% by mass) was applied as a coating liquid for forming a B layer in a coating amount of 3.0 g/m 2 in dry mass, and dried to provide a B layer.
  • PVA-1 solid content 10% by mass
  • Example 1 On the surface of the B layer, "VAPCT2200", an emulsion of polymer c1, was applied as a coating liquid for forming a C layer in a coating amount of 10.0 g/m 2 in dry mass, and dried to provide a C layer.
  • VAPCT2200 an emulsion of polymer c1
  • Coating of the A layer, B layer, and C layer was all performed using a wire bar.
  • the obtained structure and the coating solution for forming the C layer used were subjected to the following evaluations. The evaluation results are shown in Table 3.
  • Viscosity of Coating Liquid for Forming C Layer After adjusting the temperature of the coating liquid for forming C layer in a room of 20° C., the viscosity of the coating liquid for forming C layer was measured at 60 rpm using a Brookfield viscometer.
  • Oxygen permeability gas barrier properties
  • Water vapor permeability (water vapor barrier property) The water vapor permeability of the structure was measured by the cup method based on JIS Z 2080 under conditions of a temperature of 40 ⁇ 0.5° C. and a relative humidity difference of 90 ⁇ 2%.
  • Example 2 The structure of Example 2 was obtained in the same manner as in Example 1, except that PVA-2 was used instead of PVA-1 in the coating liquid for forming the B layer, and "498340R", an emulsion of polymer c2, was used as the coating liquid for forming the C layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 3 The structure of Example 3 was obtained in the same manner as in Example 2, except that "OP-671", an emulsion of polymer c3, was used as the coating liquid for forming the C layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 4 A paraffin wax emulsion "Haricoat RT" (manufactured by Harima Chemical Group Co., Ltd.) was added to an emulsion of polymer c1 "VAPACT 2200" to prepare a mixed solution in which the solid content of "Haricoat RT" per polymer c1 (100 parts by mass) was 0.5 parts by mass. The same operation as in Example 2 was carried out except that this mixed solution was used as the coating liquid for forming the C layer, to obtain the structure of Example 4. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 5 The same operation as in Example 4 was performed except that the content of "Haricoat RT" in terms of solid content relative to the polymer c1 (100 parts by mass) in the coating liquid for forming the C layer was 10 parts by mass, to obtain a structure of Example 5. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 6 The same operation as in Example 4 was performed except that the content of "Haricoat RT" in terms of solid content relative to the polymer c1 (100 parts by mass) in the coating liquid for forming the C layer was 22 parts by mass, to obtain a structure of Example 6. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 7 The structure of Example 7 was obtained in the same manner as in Example 5, except that "OP-671", an emulsion of polymer a2, was used as the coating liquid for forming layer A. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 8 The structure of Example 8 was obtained in the same manner as in Example 5, except that "Chemipearl S-100", an emulsion of polymer a3, was used as the coating liquid for forming layer A. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 9 The structure of Example 9 was obtained in the same manner as in Example 5, except that "Tykote 1004", an emulsion of polymer a4, was used as the coating liquid for forming the A layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 10 A talc dispersion "Finntalc C10B" (manufactured by Elementis) was added to an emulsion of polymer a1, "MFP1883,” to prepare a mixed solution in which the talc content was 50 parts by mass relative to polymer a1 (100 parts by mass). The same operation as in Example 5 was carried out except that this mixed solution was used as the coating solution for forming layer A, to obtain a structure of Example 10. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 11 A mica dispersion "ME-100" (manufactured by Katakura Co-op Agri Co., Ltd.) was added to an aqueous solution of PVA-2 (solid content 10% by mass) to prepare a mixed solution in which the mica content was 5 parts by mass relative to PVA-2 (100 parts by mass). The same operation as in Example 5 was carried out except that this mixed solution was used as the coating solution for forming B layer, to obtain a structure of Example 11. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 12 The same procedure as in Example 5 was carried out except that PVA-3 was used instead of PVA-2 in the coating liquid for forming the B layer, to obtain a structure of Example 12. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 13 The same procedure as in Example 5 was carried out except that PVA-4 was used instead of PVA-2 in the coating liquid for forming the B layer, to obtain a structure of Example 13. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 14 A mica dispersion "ME-100" (manufactured by Katakura Co-op Agri Co., Ltd.) was added to an aqueous solution of PVA-2 (solid content 10% by mass) to prepare a mixed solution in which the mica content was 5 parts by mass relative to PVA-2 (100 parts by mass). The same operation as in Example 10 was carried out except that this mixed solution was used as the coating solution for forming B layer, to obtain the structure of Example 14. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Comparative Example 1 A structure of Comparative Example 1 was obtained in the same manner as in Example 5, except that "Chemipearl S-100", an emulsion of polymer c4, was used as the coating liquid for forming the C layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Comparative Example 2 A structure of Comparative Example 2 was obtained in the same manner as in Example 2, except that "Chemipearl S-100", an emulsion of polymer c4, was used as the coating liquid for forming the C layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Comparative Example 4 A structure of Comparative Example 4 was obtained in the same manner as in Comparative Example 2, except that "Takelac WPB-341", an emulsion of PU-1, was used as the coating liquid for forming the B layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Examples 1 to 14 in which Layer B contains vinyl alcohol polymers (PVA-1 to PVA-4) and Layer C contains polymers (Polymers c1 to c3) with glass transition temperatures of -100°C or higher and 5°C or lower, showed little cracking in Layer C and excellent water vapor barrier properties, heat sealability, and oxygen barrier properties.
  • Examples 2 and 3 which differ only in the type of polymer (c)
  • Comparative Example 2 which differ only in the type of polymer (c)
  • the glass transition temperature of the polymer (c) that constitutes Layer C has a significant effect on the occurrence of cracking and water vapor barrier properties of Layer C.
  • a vinyl alcohol-based polymer with particularly high oxygen barrier property is used in layer B, and a polymer that is unlikely to crack is used in layer C, making it possible to achieve both excellent oxygen barrier property and water vapor barrier property.
  • the coating liquid for forming the C layer contains a vinyl alcohol polymer, as in Comparative Example 3, the viscosity becomes high and the viscosity stability becomes low, resulting in poor coatability.
  • the structure of the present invention can be suitably used as packaging materials such as grease-resistant paper, gas barrier paper, and flavor barrier paper.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides: a structure which is suppressed in cracking of a layer that has heat sealing properties, while having excellent water vapor barrier properties, heat sealing properties and oxygen barrier properties; a method for producing this structure; and oil-resistant paper, gas barrier paper, flavor barrier paper and a packaging material, each of which uses this structure. This structure is obtained by sequentially superposing a layer A, a layer B and a layer C in this order on at least one surface of a paper base material; the layer A contains at least one polymer that is selected from the group consisting of an olefin polymer, a styrene polymer and a polyester polymer; the layer B contains a vinyl alcohol polymer; and the layer C contains a polymer that has a glass transition temperature of -100°C to 5°C.

Description

構造体、構造体の製造方法、耐油紙、ガスバリア紙、フレーバーバリア紙及び包材Structure, method for manufacturing structure, greaseproof paper, gas barrier paper, flavor barrier paper, and packaging material
 本発明は、構造体、構造体の製造方法、耐油紙、ガスバリア紙、フレーバーバリア紙及び包材に関する。 The present invention relates to a structure, a method for manufacturing a structure, grease-resistant paper, gas barrier paper, flavor barrier paper, and packaging materials.
 食品、医療品、電子部品等の包装において、紙基材に水蒸気バリア性及びガスバリア性(特に、酸素バリア性)を付与した包材が、従来から用いられている。特許文献1、2には、紙基材上に水蒸気バリア層、ガスバリア層及びヒートシール層がこの順で設けられた包材が記載されている。特許文献1、2には、上記のような包材として、ガスバリア層にビニルアルコール系重合体が用いられた包材も記載されている。 In packaging food, medical products, electronic components, etc., packaging materials in which water vapor barrier properties and gas barrier properties (particularly oxygen barrier properties) have been imparted to a paper base material have been used for some time. Patent documents 1 and 2 describe packaging materials in which a water vapor barrier layer, a gas barrier layer, and a heat seal layer are provided in that order on a paper base material. Patent documents 1 and 2 also describe packaging materials such as the above in which a vinyl alcohol-based polymer is used for the gas barrier layer.
特開2020-163675号公報JP 2020-163675 A 特開2021-20398号公報JP 2021-20398 A
 特許文献1、2に記載されたような包材においては、紙基材に対して各層を塗工により設けることが一般的である。しかし、ビニルアルコール系重合体を含むガスバリア層の表面にヒートシール層を設ける場合、形成した塗膜にひび割れが発生する等して、均一なヒートシール性が得られない場合がある。また、ヒートシール層のひび割れが水蒸気バリア性の低下を引き起こすことも発明者らは知見している。 In packaging materials such as those described in Patent Documents 1 and 2, each layer is generally provided on a paper base material by coating. However, when a heat seal layer is provided on the surface of a gas barrier layer containing a vinyl alcohol polymer, cracks may occur in the formed coating, making it difficult to obtain uniform heat sealability. The inventors have also found that cracks in the heat seal layer can cause a decrease in water vapor barrier properties.
 本発明は、ヒートシール性を有する層のひび割れが少なく、水蒸気バリア性、ヒートシール性及び酸素バリア性に優れる構造体、このような構造体の製造方法、並びにこのような構造体を用いた耐油紙、ガスバリア紙、フレーバーバリア紙及び包材を提供することを目的とする。 The present invention aims to provide a structure that has little cracking in the heat-sealable layer and has excellent water vapor barrier properties, heat-sealability and oxygen barrier properties, a method for manufacturing such a structure, and grease-resistant paper, gas barrier paper, flavor barrier paper and packaging materials that use such a structure.
 上記課題は、
[1]紙基材の少なくとも片面に、A層、B層及びC層がこの順で積層された構造体であり、上記A層が、オレフィン系重合体、スチレン系重合体及びポリエステル系重合体からなる群より選ばれる少なくとも1種を含み、上記B層が、ビニルアルコール系重合体を含み、上記C層が、ガラス転移温度が-100℃以上5℃以下である重合体を含む、構造体;
[2]上記C層が、120℃以下の融点を有する、[1]の構造体。
[3]上記A層が、上記オレフィン系重合体を含み、上記オレフィン系重合体が、オレフィン-不飽和カルボン酸系重合体を含む、[1]又は[2]の構造体;
[4]上記A層が、タルクをさらに含む、[1]、[2]又は[3]の構造体;
[5]上記A層における上記タルクの含有量が、1質量%以上80質量%以下である、[4]の構造体;
[6]上記ビニルアルコール系重合体が、エチレン変性ビニルアルコール系重合体である、[1]~[5]のいずれかの構造体;
[7]上記ガラス転移温度が-100℃以上5℃以下である重合体が、スチレン-アクリル系共重合体である、[1]~[6]のいずれかの構造体;
[8]上記C層が、ワックスをさらに含む、[1]~[7]のいずれかの構造体;
[9]上記C層における上記ワックスの含有量が0.1質量%以上30質量%以下である、[8]の構造体;
[10]上記ワックスが、パラフィンワックスを含む、[8]又は[9]の構造体;
[11]上記C層における上記パラフィンワックスの含有量が、1質量%以上30質量%以下である、[10]の構造体;
[12]上記ビニルアルコール系重合体が、重合度の異なる2種類以上のビニルアルコール系重合体からなる、[1]~[11]のいずれかの構造体;
[13]上記A層が、上記オレフィン系重合体、スチレン系重合体及びポリエステル系重合体からなる群より選ばれる少なくとも2種を含む、[1]~[12]のいずれかの構造体;
[14]上記C層が、2種以上の重合体を含む、[1]~[13]のいずれかの構造体;
[15][1]~[14]のいずれかの構造体の製造方法であり、上記A層、B層及びC層のうちの少なくとも一つを、カーテンコーターを用いて設ける工程を備える、構造体の製造方法;
[16][1]~[14]のいずれかの構造体を含む、耐油紙;
[17][1]~[14]のいずれかの構造体を含む、ガスバリア紙;
[18][1]~[14]のいずれかの構造体を含む、フレーバーバリア紙;
[19][16]の耐油紙、[17]のガスバリア紙、及び[18]のフレーバーバリア紙からなる群より選ばれる少なくとも1種を含む、包材;
のいずれかを提供することにより解決される。
The above issues are:
[1] A structure in which an A layer, a B layer and a C layer are laminated in this order on at least one surface of a paper base material, the A layer containing at least one polymer selected from the group consisting of an olefin-based polymer, a styrene-based polymer and a polyester-based polymer, the B layer containing a vinyl alcohol-based polymer, and the C layer containing a polymer having a glass transition temperature of -100°C or more and 5°C or less;
[2] The structure according to [1], wherein the C layer has a melting point of 120° C. or less.
[3] The structure according to [1] or [2], wherein the layer A contains the olefin-based polymer, and the olefin-based polymer contains an olefin-unsaturated carboxylic acid-based polymer;
[4] The structure of [1], [2] or [3], wherein the layer A further contains talc;
[5] The structure according to [4], wherein the content of the talc in the layer A is 1% by mass or more and 80% by mass or less;
[6] The structure according to any one of [1] to [5], wherein the vinyl alcohol polymer is an ethylene-modified vinyl alcohol polymer;
[7] The structure according to any one of [1] to [6], wherein the polymer having a glass transition temperature of −100° C. or more and 5° C. or less is a styrene-acrylic copolymer;
[8] The structure according to any one of [1] to [7], wherein the C layer further contains a wax;
[9] The structure according to [8], wherein the content of the wax in the layer C is 0.1% by mass or more and 30% by mass or less;
[10] The structure of [8] or [9], wherein the wax comprises paraffin wax;
[11] The structure according to [10], wherein the content of the paraffin wax in the layer C is 1% by mass or more and 30% by mass or less;
[12] The structure according to any one of [1] to [11], wherein the vinyl alcohol polymer comprises two or more kinds of vinyl alcohol polymers having different degrees of polymerization;
[13] The structure according to any one of [1] to [12], wherein the layer A contains at least two polymers selected from the group consisting of the olefin-based polymer, the styrene-based polymer, and the polyester-based polymer;
[14] The structure according to any one of [1] to [13], wherein the C layer contains two or more types of polymers;
[15] A method for producing a structure according to any one of [1] to [14], comprising providing at least one of the A layer, the B layer, and the C layer using a curtain coater;
[16] Greaseproof paper comprising any one of the structures according to [1] to [14];
[17] A gas barrier paper comprising any one of the structures according to [1] to [14];
[18] A flavor barrier paper comprising any one of the structures according to [1] to [14];
[19] A packaging material comprising at least one selected from the group consisting of the greaseproof paper of [16], the gas barrier paper of [17], and the flavor barrier paper of [18];
The problem is solved by providing either
 本発明によれば、ヒートシール性を有する層のひび割れが少なく、水蒸気バリア性、ヒートシール性及び酸素バリア性に優れる構造体、このような構造体の製造方法、並びにこのような構造体を用いた耐油紙、ガスバリア紙、フレーバーバリア紙及び包材を提供することができる。 The present invention provides a structure that has little cracking in the heat-sealable layer and has excellent water vapor barrier properties, heat-sealability, and oxygen barrier properties, a method for manufacturing such a structure, and grease-resistant paper, gas barrier paper, flavor barrier paper, and packaging materials that use such a structure.
図1は、本発明の一実施形態に係る構造体を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing a structure according to one embodiment of the present invention.
<構造体>
 本発明の一実施形態に係る構造体は、紙基材の少なくとも片面に、A層、B層及びC層がこの順で積層された構造体であり、上記A層が、オレフィン系重合体、スチレン系重合体及びポリエステル系重合体からなる群より選ばれる少なくとも1種を含み、上記B層が、ビニルアルコール系重合体を含み、上記C層が、ガラス転移温度が-100℃以上5℃以下である重合体を含む。
<Structure>
A structure according to one embodiment of the present invention is a structure in which an A layer, a B layer, and a C layer are laminated in this order on at least one surface of a paper base material, the A layer comprising at least one polymer selected from the group consisting of an olefin-based polymer, a styrene-based polymer, and a polyester-based polymer, the B layer comprising a vinyl alcohol-based polymer, and the C layer comprising a polymer having a glass transition temperature of −100° C. or more and 5° C. or less.
 当該構造体は、ヒートシール性を有する層のひび割れが少なく、水蒸気バリア性、ヒートシール性及び酸素バリア性に優れる。当該構造体がこのような効果を奏する理由は定かではないが、以下の理由が推測される。酸素バリア性に優れるビニルアルコール系樹脂をB層に用いることで、酸素バリア性を高めることができる。しかし、ビニルアルコール系重合体は、膨潤及び収縮の変化が比較的大きい樹脂であるため、ビニルアルコール系重合体を含むB層上にC層を設けた場合、B層の膨潤及び収縮に追従できず、C層にひび割れが生じることがある。そこで、C層にガラス転移温度が-100℃以上5℃以下である重合体、すなわちガラス転移温度が低い重合体を用いることで、C層がB層の膨潤及び収縮に十分追従することができる。この結果、当該構造体においては、C層のひび割れが抑制され、水蒸気バリア性を高めることができる。 The structure has few cracks in the layer having heat sealability, and has excellent water vapor barrier properties, heat sealability, and oxygen barrier properties. The reason why the structure has such effects is unclear, but the following reasons are speculated. By using a vinyl alcohol resin with excellent oxygen barrier properties in layer B, the oxygen barrier properties can be improved. However, since vinyl alcohol polymers are resins that undergo relatively large changes in swelling and shrinkage, when layer C is provided on layer B containing a vinyl alcohol polymer, layer C cannot follow the swelling and shrinkage of layer B, and cracks may occur in layer C. Therefore, by using a polymer with a glass transition temperature of -100°C or higher and 5°C or lower inclusive for layer C, i.e., a polymer with a low glass transition temperature, layer C can adequately follow the swelling and shrinkage of layer B. As a result, in the structure, cracks in layer C are suppressed, and water vapor barrier properties can be improved.
 図1に示すように、本発明の一実施形態に係る構造体10は、紙基材11、A層12、B層13及びC層14を備える。構造体10は、紙基材11の片面に、A層12、B層13及びC層14がこの順に積層された積層体である。構造体10においては、紙基材11とA層12、A層12とB層13、B層13とC層14とは、それぞれ直接積層されている。また、構造体10においては、C層14が最表層となっている。構造体10は、塗工紙であってよい。 As shown in FIG. 1, a structure 10 according to one embodiment of the present invention comprises a paper base material 11, an A layer 12, a B layer 13, and a C layer 14. The structure 10 is a laminate in which the A layer 12, the B layer 13, and the C layer 14 are laminated in this order on one side of the paper base material 11. In the structure 10, the paper base material 11 and the A layer 12, the A layer 12 and the B layer 13, and the B layer 13 and the C layer 14 are directly laminated, respectively. In the structure 10, the C layer 14 is the outermost layer. The structure 10 may be a coated paper.
 図1の構造体10とは異なる実施形態において、紙基材の両面にそれぞれ、A層、B層及びC層がこの順で積層されていてもよい。紙基材の一方の面に、A層、B層及びC層がこの順で積層されており、紙基材の他方の面に、A層、B層、C層又はその他の層のうちの一つ以上が積層されていてもよい。紙基材とA層との間、A層とB層との間、B層とC層との間、及びC層の表面のいずれか一つ以上に他の層が存在していてもよい。以下、構造体の各構成部材について詳説する。 In an embodiment different from the structure 10 in FIG. 1, layers A, B, and C may be laminated in this order on both sides of the paper substrate. Layers A, B, and C may be laminated in this order on one side of the paper substrate, and one or more of layers A, B, C, or other layers may be laminated on the other side of the paper substrate. Other layers may be present between the paper substrate and layer A, between layers A and B, between layers B and C, and on one or more of the surface of layer C. Each component of the structure will be described in detail below.
(紙基材)
 紙基材は、植物由来のパルプを主成分とする一般的な紙を用いることができる。なお、本明細書において、「主成分」とは質量基準で最も含有量が多い成分をいう。紙基材は、パルプの他、サイズ剤、填料、紙力増強剤、歩留り向上剤、pH調整剤、濾水性向上剤、耐水化剤、柔軟剤、帯電防止剤、消泡剤、スライムコントロール剤、染料、顔料等が含有されていてもよい。
(Paper base material)
The paper base material can be a general paper mainly composed of plant-derived pulp. In this specification, the term "main component" refers to the component with the highest content by mass. In addition to pulp, the paper base material may contain sizing agents, fillers, paper strength agents, retention improvers, pH adjusters, drainage improvers, water-resistant agents, softeners, antistatic agents, defoamers, slime control agents, dyes, pigments, etc.
 紙基材としては、例えばクラフト紙、上質紙、中質紙、アルカリ性紙、板紙、グラシン紙、セミグラシン紙、パーチメント紙等が挙げられ、上質紙が好ましい。 Examples of paper substrates include kraft paper, fine paper, medium-quality paper, alkaline paper, paperboard, glassine paper, semi-glassine paper, parchment paper, etc., with fine paper being preferred.
 紙基材の坪量(単位面積当たりの質量)としては、20g/m以上500g/m以下が好ましく、30g/m以上300g/m以下がより好ましく、40g/m以上200g/m以下がさらに好ましく、50g/m以上100g/m以下がよりさらに好ましい。 The basis weight (mass per unit area) of the paper base material is preferably from 20 g/ m2 to 500 g/ m2 , more preferably from 30 g/ m2 to 300 g/ m2 , even more preferably from 40 g/ m2 to 200 g/ m2 , and even more preferably from 50 g/ m2 to 100 g/ m2 .
 紙基材の密度としては、0.5g/cm以上1.2g/cm以下が好ましく、0.6g/cm以上1.0g/cm以下がより好ましい。 The density of the paper base material is preferably from 0.5 g/cm 3 to 1.2 g/cm 3 , and more preferably from 0.6 g/cm 3 to 1.0 g/cm 3 .
 紙基材は、公知の方法により製造することができる。また、紙基材は、市販品を用いることができる。 The paper base material can be manufactured by a known method. In addition, commercially available paper base materials can be used.
(A層)
 A層は、紙基材とB層との間に存在する層である。A層は、紙基材に直接積層されていてもよい。
(A layer)
Layer A is a layer that exists between the paper substrate and layer B. Layer A may be laminated directly onto the paper substrate.
(重合体(a))
 A層は、オレフィン系重合体、スチレン系重合体及びポリエステル系重合体からなる群より選ばれる少なくとも1種(以下、「重合体(a)」ともいう。)を含む。A層がこのような比較的疎水性の高い重合体(a)を含むことにより、A層は良好な水蒸気バリア性等を発揮することができる。重合体(a)は、A層の主成分であることが好ましい。重合体(a)は、1種又は2種以上を用いることができる。
(Polymer (a))
The A layer contains at least one selected from the group consisting of an olefin-based polymer, a styrene-based polymer, and a polyester-based polymer (hereinafter also referred to as "polymer (a)"). By containing such a relatively highly hydrophobic polymer (a) in the A layer, the A layer can exhibit good water vapor barrier properties and the like. The polymer (a) is preferably the main component of the A layer. One or more types of polymer (a) can be used.
(オレフィン系重合体)
 オレフィン系重合体は、オレフィンを単量体として含む重合体である。オレフィン系重合体としては、1種又は2種以上のオレフィンの重合体であるポリオレフィンであってもよく、1種又は2種以上のオレフィンと、オレフィン以外の1種又は2種以上の他の単量体との共重合体であってもよい。
(Olefin Polymer)
The olefin-based polymer is a polymer containing an olefin as a monomer. The olefin-based polymer may be a polyolefin, which is a polymer of one or more olefins, or a copolymer of one or more olefins and one or more other monomers other than olefins.
 オレフィンとしては、エチレン、プロピレン、n-ブテン、イソブチレン等のα-オレフィンが挙げられる。 Olefins include α-olefins such as ethylene, propylene, n-butene, and isobutylene.
 オレフィン系重合体を構成するオレフィン以外の他の単量体としては、不飽和カルボン酸系化合物、ジエン系化合物、ビニルエーテル、ハロゲン化ビニル、ハロゲン化ビニリデン、アリル化合物等が挙げられ、不飽和カルボン酸系化合物が好ましい。 Other monomers than olefins that constitute olefin-based polymers include unsaturated carboxylic acid compounds, diene compounds, vinyl ethers, vinyl halides, vinylidene halides, allyl compounds, etc., with unsaturated carboxylic acid compounds being preferred.
 不飽和カルボン酸系化合物は、不飽和カルボン酸及び不飽和カルボン酸を構成するカルボキシ基の水素原子が他の原子又は他の基に置換された化合物をいう。すなわち、不飽和カルボン酸系化合物には、不飽和カルボン酸の他、不飽和カルボン酸エステル、不飽和カルボン酸塩等も含まれる。不飽和カルボン酸系化合物は、カルボキシ基を有する単量体又はその塩であることが好ましい。 Unsaturated carboxylic acid compounds refer to unsaturated carboxylic acids and compounds in which the hydrogen atom of the carboxy group constituting the unsaturated carboxylic acid has been replaced with another atom or another group. In other words, unsaturated carboxylic acid compounds include unsaturated carboxylic acid, unsaturated carboxylic acid esters, unsaturated carboxylate salts, etc. The unsaturated carboxylic acid compounds are preferably monomers having a carboxy group or salts thereof.
 不飽和カルボン酸系化合物としては、(メタ)アクリル酸、クロトン酸、ケイ皮酸、イタコン酸、フマル酸、マレイン酸、ブテントリカルボン酸等の不飽和カルボン酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、イタコン酸モノエチルエステル、フマル酸モノブチルエステル等の不飽和カルボン酸エステル;(メタ)アクリル酸ナトリウム等の不飽和カルボン酸塩等が挙げられる。なお、「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸を意味する。 Examples of unsaturated carboxylic acid compounds include unsaturated carboxylic acids such as (meth)acrylic acid, crotonic acid, cinnamic acid, itaconic acid, fumaric acid, maleic acid, and butene tricarboxylic acid; unsaturated carboxylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, itaconic acid monoethyl ester, and fumaric acid monobutyl ester; and unsaturated carboxylates such as sodium (meth)acrylate. Note that "(meth)acrylic acid" means acrylic acid and methacrylic acid.
 オレフィン系重合体としては、ポリオレフィン及びオレフィン-不飽和カルボン酸系共重合体が好ましく、オレフィン-不飽和カルボン酸系共重合体がより好ましい。オレフィン-不飽和カルボン酸系共重合体とは、1種又は2種以上のオレフィンと、1種又は2種以上の不飽和カルボン酸系化合物との共重合体をいう。オレフィン-不飽和カルボン酸系共重合体の中でも、1種又は2種以上のオレフィンと、1種又は2種以上の不飽和カルボン酸との共重合体であるオレフィン-不飽和カルボン酸共重合体が好ましい。 As the olefin-based polymer, polyolefins and olefin-unsaturated carboxylic acid-based copolymers are preferred, and olefin-unsaturated carboxylic acid-based copolymers are more preferred. An olefin-unsaturated carboxylic acid-based copolymer refers to a copolymer of one or more olefins and one or more unsaturated carboxylic acid-based compounds. Among olefin-unsaturated carboxylic acid-based copolymers, olefin-unsaturated carboxylic acid copolymers, which are copolymers of one or more olefins and one or more unsaturated carboxylic acids, are preferred.
 オレフィン-不飽和カルボン酸系共重合体としては、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸メチル共重合体、エチレン-(メタ)アクリル酸エチル共重合体、エチレン-(メタ)アクリル酸ブチル共重合体等が挙げられ、これらの中でも、エチレン-(メタ)アクリル酸共重合体が好ましい。また、エチレンと不飽和カルボン酸系化合物との共重合体であることも好ましい。これらの共重合体には、オレフィン及び不飽和カルボン酸系化合物と共重合可能なその他の単量体がさらに共重合されていてもよい。 Examples of olefin-unsaturated carboxylic acid copolymers include ethylene-(meth)acrylic acid copolymer, ethylene-methyl (meth)acrylate copolymer, ethylene-ethyl (meth)acrylate copolymer, and ethylene-butyl (meth)acrylate copolymer. Among these, ethylene-(meth)acrylic acid copolymer is preferred. Copolymers of ethylene and unsaturated carboxylic acid compounds are also preferred. These copolymers may further be copolymerized with other monomers that are copolymerizable with the olefin and the unsaturated carboxylic acid compound.
(スチレン系重合体)
 スチレン系重合体は、スチレン系化合物を単量体として含む重合体である。スチレン系化合物とは、スチレン及びスチレンが有する水素原子が他の原子又は他の基に置換された化合物をいう。スチレン系化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、クロロスチレン等が挙げられ、スチレンが好ましい。
(styrene polymer)
A styrene-based polymer is a polymer containing a styrene-based compound as a monomer. The styrene-based compound refers to styrene and a compound in which the hydrogen atoms of styrene are substituted with other atoms or other groups. Examples of the styrene-based compound include styrene, α-methylstyrene, vinyltoluene, and chlorostyrene, with styrene being preferred.
 スチレン系共重合体としては、ポリスチレン、スチレン-アクリル系共重合体、スチレン-ブタジエン系共重合体等が挙げられる。 Examples of styrene copolymers include polystyrene, styrene-acrylic copolymers, and styrene-butadiene copolymers.
 スチレン-アクリル系共重合体は、上記したスチレン系化合物と、アクリル系化合物との共重合体である。アクリル系化合物とは、(メタ)アクリル酸及び(メタ)アクリル酸を構成するカルボキシ基の水素原子が他の原子又は他の基に置換された化合物をいう。アクリル系化合物としては、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリル酸塩等が挙げられる。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸アルキルエステルが挙げられる。(メタ)アクリル酸塩としては、(メタ)アクリル酸ナトリウム等が挙げられる。 Styrene-acrylic copolymers are copolymers of the above-mentioned styrene compounds and acrylic compounds. Acrylic compounds refer to (meth)acrylic acid and compounds in which the hydrogen atoms of the carboxy groups constituting (meth)acrylic acid are replaced with other atoms or other groups. Examples of acrylic compounds include (meth)acrylic acid, (meth)acrylic acid esters, and (meth)acrylic acid salts. Examples of (meth)acrylic acid esters include (meth)acrylic acid alkyl esters such as methyl (meth)acrylate and ethyl (meth)acrylate. Examples of (meth)acrylic acid salts include sodium (meth)acrylate.
 スチレン-アクリル系共重合体としては、スチレン-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸エステル共重合体、スチレン-(メタ)アクリル酸塩共重合体等が挙げられる。スチレン-アクリル系共重合体には、他の単量体がさらに共重合されていてもよい。 Examples of styrene-acrylic copolymers include styrene-(meth)acrylic acid copolymers, styrene-(meth)acrylic acid ester copolymers, and styrene-(meth)acrylate copolymers. Other monomers may be further copolymerized in the styrene-acrylic copolymers.
 スチレン-ブタジエン系共重合体は、上記したスチレン系化合物と、ブタジエン系化合物との共重合体である。ブタジエン系化合物とは、ブタジエン及びブタジエンが有する水素原子が他の原子又は他の基に置換された化合物をいう。ブタジエン系化合物としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等が挙げられ、1,3-ブタジエンが好ましい。 Styrene-butadiene copolymers are copolymers of the above-mentioned styrene compounds and butadiene compounds. Butadiene compounds refer to butadiene and compounds in which the hydrogen atoms of butadiene are replaced with other atoms or groups. Butadiene compounds include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, etc., with 1,3-butadiene being preferred.
 スチレン-ブタジエン系共重合体としては、スチレン-ブタジエン共重合体が好ましい。スチレン-ブタジエン系共重合体には、他の単量体がさらに共重合されていてもよい。 As the styrene-butadiene copolymer, a styrene-butadiene copolymer is preferable. The styrene-butadiene copolymer may further be copolymerized with other monomers.
 スチレン系重合体としては、スチレン-アクリル系共重合体及びスチレン-ブタンジエン系共重合体が好ましい。 As styrene-based polymers, styrene-acrylic copolymers and styrene-butadiene copolymers are preferred.
(ポリエステル系重合体)
 ポリエステル系重合体は、1種又は2種以上の単量体がエステル結合により重合した重合体である。ポリエステル系重合体としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリグリコール酸、芳香族系液晶ポリエステル等が挙げられる。
(Polyester Polymer)
A polyester polymer is a polymer in which one or more types of monomers are polymerized through ester bonds. Examples of the polyester polymer include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polyglycolic acid, and aromatic liquid crystal polyester.
 重合体(a)の中でも、水蒸気バリア性等の観点から、オレフィン系重合体及びスチレン系重合体が好ましく、オレフィン系重合体がさらに好ましい。 Among the polymers (a), from the viewpoint of water vapor barrier properties, etc., olefin-based polymers and styrene-based polymers are preferred, and olefin-based polymers are more preferred.
 A層における重合体(a)の含有量の下限としては、20質量%が好ましく、40質量%がより好ましく、60質量%、70質量%、80質量%又は90質量%であってもよい。一方、この含有量の上限としては、100質量%であってもよく、99質量%、90質量%、80質量%又は60質量%であってもよい。 The lower limit of the content of polymer (a) in layer A is preferably 20% by mass, more preferably 40% by mass, and may be 60%, 70%, 80% or 90% by mass. On the other hand, the upper limit of this content may be 100% by mass, or may be 99%, 90%, 80% or 60% by mass.
(A層における他の成分等)
 A層は、層状無機化合物を含むことが好ましい。A層が層状無機化合物を含有することにより、構造体の水蒸気バリア性等をより高めることができる。
(Other components in layer A)
The layer A preferably contains a layered inorganic compound. When the layer A contains a layered inorganic compound, the water vapor barrier properties and the like of the structure can be further improved.
 層状無機化合物としては、雲母類、マイカ、タルク、モンモリロナイト、カオリナイト、バーミキュライト、スメクタイト、ヘクトライト、テニオライト、酸性白土等が挙げられる。A層に用いられる層状無機化合物としては、水蒸気バリア性等の観点から、タルクが好ましい。層状無機化合物は、1種又は2種以上を用いることができる。 Examples of layered inorganic compounds include micas, talc, montmorillonite, kaolinite, vermiculite, smectite, hectorite, taeniolite, and acid clay. Talc is preferred as the layered inorganic compound used in layer A from the viewpoint of water vapor barrier properties, etc. One or more types of layered inorganic compounds can be used.
 A層がタルク等の層状無機化合物を含有する場合、A層における層状無機化合物の含有量の下限としては、1質量%が好ましく、5質量%がより好ましく、10質量%、20質量%又は30質量%がさらに好ましい。一方、この含有量の上限としては、80質量%が好ましく、70質量%がより好ましく、60質量%、50質量%又は40質量%がさらに好ましい。A層における層状無機化合物の含有量を上記範囲とすることで、水蒸気バリア性等をより高めることができる。 When layer A contains a layered inorganic compound such as talc, the lower limit of the content of the layered inorganic compound in layer A is preferably 1 mass%, more preferably 5 mass%, and even more preferably 10 mass%, 20 mass%, or 30 mass%. On the other hand, the upper limit of this content is preferably 80 mass%, more preferably 70 mass%, and even more preferably 60 mass%, 50 mass%, or 40 mass%. By setting the content of the layered inorganic compound in layer A within the above range, the water vapor barrier properties, etc. can be further improved.
 A層は、重合体(a)及び層状無機化合物以外の他の成分をさらに含有していてもよい。他の成分としては、例えば、重合体(a)以外の樹脂、分散剤、界面活性剤、消泡剤、染料、増粘剤等が挙げられる。但し、A層における重合体(a)及び任意の層状無機化合物の合計含有量は、90質量%以上が好ましく、95質量%以上又は99質量%以上がより好ましい。また、A層においては、カチオン性樹脂の含有量が10質量%以下であることが好ましい場合があり、5質量%以下、1質量%以下又は0.5質量%以下がより好ましい場合がある。 The A layer may further contain other components in addition to the polymer (a) and the layered inorganic compound. Examples of other components include resins other than the polymer (a), dispersants, surfactants, defoamers, dyes, thickeners, etc. However, the total content of the polymer (a) and any layered inorganic compound in the A layer is preferably 90% by mass or more, more preferably 95% by mass or more or 99% by mass or more. In addition, in the A layer, the content of the cationic resin may be preferably 10% by mass or less, and may be more preferably 5% by mass or less, 1% by mass or less, or 0.5% by mass or less.
 A層1層の単位面積当たりの質量としては、1g/m以上100g/m以下が好ましく、3g/m以上50g/m以下がより好ましく、5g/m以上30g/m以下がさらに好ましく、7g/m以上20g/m以下がよりさらに好ましく、9g/m以上15g/m以下が特に好ましい。A層1層の単位面積当たりの質量が上記下限以上であることにより、水蒸気バリア性等をより高めることができる。一方、A層1層の単位面積当たりの質量が上記上限以下であることにより、構造体の薄型化を図ること等ができる。 The mass per unit area of one A layer is preferably 1 g/m 2 or more and 100 g/m 2 or less, more preferably 3 g/m 2 or more and 50 g/m 2 or less, even more preferably 5 g/m 2 or more and 30 g/m 2 or less, even more preferably 7 g/m 2 or more and 20 g/m 2 or less, and particularly preferably 9 g/m 2 or more and 15 g/m 2 or less. When the mass per unit area of one A layer is equal to or more than the lower limit, the water vapor barrier property and the like can be further improved. On the other hand, when the mass per unit area of one A layer is equal to or less than the upper limit, the structure can be made thinner.
(B層)
 B層は、A層とC層との間に存在する層である。B層は、A層に直接積層されている層であってよい。
(B layer)
The layer B is a layer that is present between the layer A and the layer C. The layer B may be a layer that is directly laminated onto the layer A.
(重合体(b))
 B層は、ビニルアルコール系重合体(以下、「重合体(b)」ともいう。)を含む。当該構造体が、重合体(b)を含むB層を有することで、優れた酸素バリア性を発揮することができる。重合体(b)は、B層の主成分であることが好ましい。重合体(b)は、ビニルアルコール単位(-CH-CHOH-)を有する重合体である。重合体(b)は、通常、ビニルエステル系重合体のけん化により得られる。重合体(b)は、1種又は2種以上を用いることができる。
(Polymer (b))
The B layer contains a vinyl alcohol polymer (hereinafter also referred to as "polymer (b)"). When the structure has a B layer containing polymer (b), it can exhibit excellent oxygen barrier properties. The polymer (b) is preferably the main component of the B layer. The polymer (b) is a polymer having a vinyl alcohol unit (-CH 2 -CHOH-). The polymer (b) is usually obtained by saponification of a vinyl ester polymer. One or more types of polymer (b) can be used.
 重合体(b)のけん化度の下限としては、80モル%が好ましく、90モル%がより好ましく、95モル%、97モル%、98モル%又は99モル%がさらに好ましい場合もある。けん化度が上記下限以上であることで、酸素バリア性等をより高めることができる。一方、上記けん化度の上限は、100モル%であってもよく、99.9モル%であってもよい。重合体(b)のけん化度は、JIS K 6726:1994に準じて測定される。 The lower limit of the saponification degree of polymer (b) is preferably 80 mol%, more preferably 90 mol%, and in some cases 95 mol%, 97 mol%, 98 mol% or 99 mol% are even more preferable. By having a saponification degree equal to or higher than the above lower limit, the oxygen barrier properties and the like can be further improved. On the other hand, the upper limit of the saponification degree may be 100 mol% or 99.9 mol%. The saponification degree of polymer (b) is measured in accordance with JIS K 6726:1994.
 重合体(b)の粘度平均重合度は、200以上3,000以下であることが好ましい。上記粘度平均重合度の下限は、300であってもよく、500であってもよく、800であってもよい。一方、上記粘度平均重合度の上限は、2,500であってもよく、2,000であってもよく、1,200であってもよく、800であってもよい。重合体(b)の粘度平均重合度が上記範囲内であることで、酸素バリア性等をより高めることができ、B層を塗工により設けるときの塗工性、B層の強度等も好適化する。 The viscosity average degree of polymerization of polymer (b) is preferably 200 or more and 3,000 or less. The lower limit of the viscosity average degree of polymerization may be 300, 500, or 800. On the other hand, the upper limit of the viscosity average degree of polymerization may be 2,500, 2,000, 1,200, or 800. By having the viscosity average degree of polymerization of polymer (b) within the above range, the oxygen barrier properties and the like can be further improved, and the coatability when layer B is provided by coating, the strength of layer B, and the like are also optimized.
 重合体(b)の粘度平均重合度は、JIS K 6726:1994に準じて測定される。具体的には、重合体(b)の極限粘度[η](リットル/g)を30℃の水中で測定し、当該極限粘度[η]の値を用いて、下記式により粘度平均重合度Pを算出する。なお、重合体(b)のけん化度が99.5モル%未満の場合には、けん化度99.5モル%以上になるまでけん化してから極限粘度[η]を測定する。
  P=([η]×10/8.29)(1/0.62)
The viscosity average degree of polymerization of the polymer (b) is measured in accordance with JIS K 6726:1994. Specifically, the intrinsic viscosity [η] (liters/g) of the polymer (b) is measured in water at 30° C., and the viscosity average degree of polymerization P is calculated by the following formula using the intrinsic viscosity [η] value. When the degree of saponification of the polymer (b) is less than 99.5 mol%, the polymer is saponified to a degree of saponification of 99.5 mol% or more, and then the intrinsic viscosity [η] is measured.
P = ([η] × 10 4 / 8.29) (1/0.62)
 重合体(b)は、ビニルアルコール単位及びビニルエステル単位以外の他の単量体に由来する単量体単位を有していてもよい。他の単量体としては、エチレン、プロピレン、n-ブテン、イソブチレン等のα-オレフィン;(メタ)アクリル酸及びその塩;(メタ)アクリル酸エステル;(メタ)アクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリルアミドプロパンスルホン酸及びその塩、(メタ)アクリルアミドプロピルジメチルアミン及びその塩またはその4級塩、N-メチロール(メタ)アクリルアミド及びその誘導体等の(メタ)アクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;アクリロニトリル、メタクリロニトリル等のニトリル;塩化ビニル、フッ化ビニル等のハロゲン化ビニル;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸及びその塩またはそのエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル等が挙げられる。 Polymer (b) may have monomer units derived from other monomers than vinyl alcohol units and vinyl ester units. Examples of other monomers include α-olefins such as ethylene, propylene, n-butene, and isobutylene; (meth)acrylic acid and its salts; (meth)acrylic acid esters; (meth)acrylamide; (meth)acrylamide derivatives such as N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N,N-dimethyl(meth)acrylamide, diacetone(meth)acrylamide, (meth)acrylamidopropanesulfonic acid and its salts, (meth)acrylamidopropyldimethylamine and its salts or its quaternary salts, and N-methylol(meth)acrylamide and its derivatives; methyl vinyl ether, ethyl vinyl ether, Examples include vinyl ethers such as n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, and stearyl vinyl ether; nitriles such as acrylonitrile and methacrylonitrile; vinyl halides such as vinyl chloride and vinyl fluoride; vinylidene halides such as vinylidene chloride and vinylidene fluoride; allyl compounds such as allyl acetate and allyl chloride; unsaturated dicarboxylic acids and their salts or esters such as maleic acid, itaconic acid, and fumaric acid; vinyl silyl compounds such as vinyltrimethoxysilane; and isopropenyl acetate.
 他の単量体としては、α-オレフィンが好ましく、エチレンがより好ましい。すなわち、重合体(b)は、α-オレフィン変性ビニルアルコール系重合体であることが好ましく、エチレン変性ビニルアルコール系重合体であることがより好ましい。このような変性ビニルアルコール系重合体を用いることで、酸素バリア性等をより高めることができる。 As the other monomer, an α-olefin is preferable, and ethylene is more preferable. That is, polymer (b) is preferably an α-olefin modified vinyl alcohol polymer, and more preferably an ethylene modified vinyl alcohol polymer. By using such a modified vinyl alcohol polymer, the oxygen barrier properties, etc. can be further improved.
 α-オレフィン変性ビニルアルコール系重合体における全単量体単位に対するα-オレフィン単位の含有率の下限としては、0.1モル%が好ましく、1モル%がより好ましく、2モル%、5モル%又は7モル%であってもよい。一方、この含有率の上限としては、30モル%であってもよく、20モル%、15モル%又は12モル%であってもよい。なお、全単量体単位に対するα-オレフィン単位の含有率をα-オレフィン変性量ともいう。例えば、全単量体単位に対するエチレン単位の含有率をエチレン変性量ともいう。 The lower limit of the content of α-olefin units relative to all monomer units in the α-olefin modified vinyl alcohol polymer is preferably 0.1 mol%, more preferably 1 mol%, and may be 2 mol%, 5 mol%, or 7 mol%. On the other hand, the upper limit of this content may be 30 mol%, or may be 20 mol%, 15 mol%, or 12 mol%. The content of α-olefin units relative to all monomer units is also referred to as the α-olefin modification amount. For example, the content of ethylene units relative to all monomer units is also referred to as the ethylene modification amount.
 重合体(b)の全単量体単位に対するビニルアルコール単位とビニルエステル単位と任意のα-オレフィン単位との合計含有率は、95モル%以上であることが好ましく、99モル%以上であることがより好ましく、100モル%であってもよい。 The total content of vinyl alcohol units, vinyl ester units, and any α-olefin units relative to the total monomer units of polymer (b) is preferably 95 mol% or more, more preferably 99 mol% or more, and may be 100 mol%.
 重合体(b)は、2種以上を混合して用いることができる。例えば、重合体(b)は、重合度の異なる2種類以上のビニルアルコール系重合体からなるものであってもよい。重合度の低いビニルアルコール系重合体は、低粘度であり、塗工性に優れる。一方、重合度の高いビニルアルコール系重合度は、強度等に優れる。従って、重合度の異なる2種以上のビニルアルコール系重合体を混合して用いることで、これらのバランスをとることができる。なお、重合度の異なる2種以上からなるビニルアルコール系重合体は、GPC(ゲル浸透クロマトグラフィー)分析によって得られる分子量分布曲線において2つ以上のピークを有するものであってもよい。 Polymer (b) may be used in a mixture of two or more kinds. For example, polymer (b) may be made of two or more kinds of vinyl alcohol-based polymers with different degrees of polymerization. A vinyl alcohol-based polymer with a low degree of polymerization has low viscosity and is excellent in coatability. On the other hand, a vinyl alcohol-based polymer with a high degree of polymerization has excellent strength, etc. Therefore, by mixing two or more kinds of vinyl alcohol-based polymers with different degrees of polymerization, it is possible to achieve a balance between these properties. Note that a vinyl alcohol-based polymer made of two or more kinds with different degrees of polymerization may have two or more peaks in a molecular weight distribution curve obtained by GPC (gel permeation chromatography) analysis.
 B層における重合体(b)の含有量の下限としては、70質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。B層における重合体(b)の含有量を上記下限以上とすることで、酸素バリア性等をより高めることができる。一方、この含有量の上限としては、100質量%であってもよく、99質量%であってもよく、97質量%であってもよい。 The lower limit of the content of polymer (b) in layer B is preferably 70% by mass, more preferably 80% by mass, and even more preferably 90% by mass. By making the content of polymer (b) in layer B equal to or greater than the above lower limit, the oxygen barrier properties and the like can be further improved. On the other hand, the upper limit of this content may be 100% by mass, 99% by mass, or 97% by mass.
(B層における他の成分等)
 B層は、層状無機化合物を含むことが好ましい。B層が層状無機化合物を含有することにより、構造体の酸素バリア性等をより高めることができる。
(Other components in layer B)
Layer B preferably contains a layered inorganic compound. When layer B contains a layered inorganic compound, the oxygen barrier properties and the like of the structure can be further improved.
 層状無機化合物としては、A層の説明において例示したものと同様のものが挙げられる。B層に用いられる層状無機化合物としては、酸素バリア性等の観点から、マイカが好ましい。層状無機化合物は、1種又は2種以上を用いることができる。 The layered inorganic compound may be the same as those exemplified in the description of the A layer. As the layered inorganic compound used in the B layer, mica is preferred from the viewpoint of oxygen barrier properties, etc. One or more types of layered inorganic compounds may be used.
 B層がマイカ等の層状無機化合物を含有する場合、B層における層状無機化合物の含有量の下限としては、1質量%が好ましく、3質量%がより好ましい。一方、この含有量の上限としては、30質量%が好ましく、20質量%がより好ましく、10質量%がさらに好ましい。B層における層状無機化合物の含有量を上記範囲とすることで、酸素バリア性等をより高めることができる。 When layer B contains a layered inorganic compound such as mica, the lower limit of the amount of the layered inorganic compound in layer B is preferably 1 mass%, and more preferably 3 mass%. On the other hand, the upper limit of this amount is preferably 30 mass%, more preferably 20 mass%, and even more preferably 10 mass%. By setting the amount of the layered inorganic compound in layer B within the above range, the oxygen barrier properties, etc. can be further improved.
 B層は、重合体(b)及び層状無機化合物以外の他の成分をさらに含有していてもよい。他の成分としては、例えば、重合体(b)以外の樹脂、分散剤、界面活性剤、消泡剤、染料、増粘剤等が挙げられる。但し、B層における重合体(b)及び任意の層状無機化合物の合計含有量は、90質量%以上が好ましく、95質量%以上又は99質量%以上がより好ましい。 Layer B may further contain other components in addition to the polymer (b) and the layered inorganic compound. Examples of other components include resins other than the polymer (b), dispersants, surfactants, defoamers, dyes, thickeners, etc. However, the total content of the polymer (b) and any layered inorganic compound in layer B is preferably 90% by mass or more, more preferably 95% by mass or more or 99% by mass or more.
 B層1層の単位面積当たりの質量としては、0.3g/m以上20g/m以下が好ましく、0.5g/m以上10g/m以下がより好ましく、1g/m以上7g/m以下がさらに好ましく、2g/m以上5g/m以下がよりさらに好ましい。B層1層の単位面積当たりの質量が上記下限以上であることにより、酸素バリア性等をより高めることができる。一方、B層1層の単位面積当たりの質量が上記上限以下であることにより、構造体の薄型化を図ること等ができる。 The mass per unit area of one B layer is preferably 0.3 g/m 2 or more and 20 g/m 2 or less, more preferably 0.5 g/m 2 or more and 10 g/m 2 or less, even more preferably 1 g/m 2 or more and 7 g/m 2 or less, and even more preferably 2 g/m 2 or more and 5 g/m 2 or less. When the mass per unit area of one B layer is equal to or more than the above lower limit, the oxygen barrier property can be further improved. On the other hand, when the mass per unit area of one B layer is equal to or less than the above upper limit, the structure can be made thinner.
(C層)
 C層は、B層におけるA層とは反対側に存在する層である。C層は、B層に直接積層されている層であってよい。また、C層は、最表層であってよい。
(C layer)
The layer C is a layer present on the opposite side of the layer B from the layer A. The layer C may be a layer directly laminated on the layer B. The layer C may also be the outermost layer.
(重合体(c))
 C層は、ガラス転移温度が-100℃以上5℃以下である重合体(以下、「重合体(c)」ともいう。)を含む。重合体(c)は、C層の主成分であることが好ましい。重合体(c)は、1種又は2種以上を用いることができる。
(Polymer (c))
The C layer contains a polymer having a glass transition temperature of −100° C. or more and 5° C. or less (hereinafter, also referred to as “polymer (c)”). The polymer (c) is preferably the main component of the C layer. The polymer (c) can be used alone or in combination of two or more kinds.
 重合体(c)のガラス転移温度の上限は、5℃であり、3℃が好ましく、2℃がより好ましく、1℃、0℃、-1℃、-3℃、-5℃又は-10℃がさらに好ましい。重合体(c)のガラス転移温度が上記上限以下であることにより、C層のひび割れが抑制され、水蒸気バリア性を高めることができる。一方、このガラス転移温度の下限は、-100℃であり、-80℃であってもよく、-60℃、-50℃又は-40℃であってもよい。 The upper limit of the glass transition temperature of polymer (c) is 5°C, preferably 3°C, more preferably 2°C, and even more preferably 1°C, 0°C, -1°C, -3°C, -5°C or -10°C. By having the glass transition temperature of polymer (c) equal to or lower than the above upper limit, cracking of layer C is suppressed and the water vapor barrier properties can be improved. On the other hand, the lower limit of this glass transition temperature is -100°C, and may be -80°C, -60°C, -50°C or -40°C.
 重合体(c)の融点の上限は、120℃であってもよいが、100℃が好ましく、85℃がより好ましく、80℃がさらに好ましく、75℃、70℃又は65℃がよりさらに好ましい。重合体(c)の融点が上記上限以下であることにより、ヒートシール性を高めることができる。重合体(c)の融点は、80℃未満であってもよい。一方、この融点の下限は、30℃が好ましく、40℃がより好ましく、50℃がさらに好ましい。 The upper limit of the melting point of polymer (c) may be 120°C, but is preferably 100°C, more preferably 85°C, even more preferably 80°C, and even more preferably 75°C, 70°C or 65°C. By having the melting point of polymer (c) below the above upper limit, the heat sealability can be improved. The melting point of polymer (c) may be less than 80°C. On the other hand, the lower limit of this melting point is preferably 30°C, more preferably 40°C, and even more preferably 50°C.
 重合体(c)のガラス転移温度及び融点は、示差走査熱量測定(DSC)により測定される。具体的には、実施例に記載の方法により測定することができる。 The glass transition temperature and melting point of polymer (c) are measured by differential scanning calorimetry (DSC). Specifically, they can be measured by the method described in the Examples.
 重合体(c)としては、ガラス転移温度が-100℃以上5℃以下である重合体である限り特に限定されない。重合体(c)としては、例えば重合体(a)として記載した、オレフィン系重合体、スチレン系重合体及びポリエステル系重合体のうち、ガラス転移温度が-100℃以上5℃以下である重合体等を用いることができる。 The polymer (c) is not particularly limited as long as it is a polymer having a glass transition temperature of -100°C or more and 5°C or less. For example, the polymer (c) may be any of the olefin-based polymers, styrene-based polymers, and polyester-based polymers described as polymer (a) that have a glass transition temperature of -100°C or more and 5°C or less.
 重合体(c)としては、オレフィン系重合体及びスチレン系重合体が好ましく、スチレン系重合体がより好ましく、スチレン-アクリル系共重合体及びスチレン-ブタジエン系共重合体がさらに好ましく、スチレン-アクリル系共重合体がよりさらに好ましく、スチレン-(メタ)アクリル酸エステル共重合体が特に好ましい。また、オレフィン系重合体の中では、オレフィン-不飽和カルボン酸系共重合体が好ましく、オレフィン-不飽和カルボン酸共重合体がより好ましく、エチレン-(メタ)アクリル酸共重合体がさらに好ましい。重合体(c)としては、炭化水素系単量体とアクリル系化合物との共重合体であることも好ましい。炭化水素系単量体としては、上記したオレフィン、スチレン系化合物等が挙げられる。重合体(c)としてこのような重合体を用いることで、水蒸気バリア性、ヒートシール性等をより高めることができる。これらの重合体(c)としてのオレフィン系重合体及びスチレン系重合体の具体的形態は、重合体(a)におけるオレフィン系重合体及びスチレン系重合体として上記したものと同様である。 As the polymer (c), olefin-based polymers and styrene-based polymers are preferred, styrene-based polymers are more preferred, styrene-acrylic copolymers and styrene-butadiene copolymers are even more preferred, styrene-acrylic copolymers are even more preferred, and styrene-(meth)acrylic acid ester copolymers are particularly preferred. Among the olefin-based polymers, olefin-unsaturated carboxylic acid copolymers are preferred, olefin-unsaturated carboxylic acid copolymers are more preferred, and ethylene-(meth)acrylic acid copolymers are even more preferred. As the polymer (c), a copolymer of a hydrocarbon-based monomer and an acrylic compound is also preferred. Examples of the hydrocarbon-based monomer include the above-mentioned olefins and styrene-based compounds. By using such a polymer as the polymer (c), the water vapor barrier properties, heat sealability, and the like can be further improved. The specific forms of the olefin-based polymers and styrene-based polymers as the polymer (c) are the same as those described above for the olefin-based polymers and styrene-based polymers in the polymer (a).
 本発明の一実施形態において、重合体(a)と重合体(c)とは、同じ種類の重合体であってもよく、異なる種類の重合体であってよい。例えばA層及びC層の機能の好適化を図るために、重合体(a)と重合体(c)とで異なる種類の重合体を用いることができる。 In one embodiment of the present invention, polymer (a) and polymer (c) may be the same type of polymer or different types of polymer. For example, in order to optimize the functions of layers A and C, different types of polymers may be used for polymer (a) and polymer (c).
 C層における重合体(c)の含有量の下限としては、50質量%が好ましく、60質量%がより好ましく、70質量%がさらに好ましく、80質量%、85質量%又は90質量%がよりさらに好ましい。一方、この含有量の上限としては、100質量%が好ましく、99質量%がより好ましく、95質量%がさらに好ましい。 The lower limit of the content of polymer (c) in layer C is preferably 50% by mass, more preferably 60% by mass, even more preferably 70% by mass, and even more preferably 80% by mass, 85% by mass, or 90% by mass. On the other hand, the upper limit of this content is preferably 100% by mass, more preferably 99% by mass, and even more preferably 95% by mass.
(C層における他の成分等)
 C層は、ワックスを含むことが好ましい。C層がワックスを含むことにより、水蒸気バリア性をより高めること等ができる。また、C層がワックスを含むことで、耐油性等が高まる傾向にある。
(Other components in layer C)
The layer C preferably contains a wax. When the layer C contains a wax, the water vapor barrier property can be further improved, etc. Also, when the layer C contains a wax, the oil resistance, etc. tends to be improved.
 ワックスは、パラフィンワックスを含むことが好ましい。パラフィンワックスとしては、例えば炭素数が20以上40以下、分子量が300以上500以下のノルマルパラフィンを主成分とするパラフィンワックスを用いることができる。パラフィンワックスは、市販品を用いることができる。 The wax preferably contains paraffin wax. For example, paraffin wax containing normal paraffin as the main component, which has a carbon number of 20 to 40 and a molecular weight of 300 to 500, can be used. Commercially available paraffin wax can be used.
 C層がワックスを含む場合、C層におけるワックスの含有量の下限としては、例えば0.1質量%であってもよいが、1質量%が好ましく、3質量%がより好ましく、5質量%がさらに好ましい。一方、この含有量の上限としては、例えば30質量%であってもよいが、20質量%が好ましく、15質量%がより好ましく、12質量%がさらに好ましい。C層におけるワックスの含有量を上記範囲とすることで、水蒸気バリア性等をより高めることができる。また、C層がパラフィンワックスを含む場合、C層におけるパラフィンワックスの含有量の下限としては、例えば0.1質量%であってもよいが、1質量%が好ましく、3質量%がより好ましく、5質量%がさらに好ましい。一方、この含有量の上限としては、例えば30質量%であってもよいが、20質量%が好ましく、15質量%がより好ましく、12質量%がさらに好ましい。C層におけるパラフィンワックスの含有量を上記範囲とすることで、水蒸気バリア性等をより高めることができる。 When the C layer contains wax, the lower limit of the wax content in the C layer may be, for example, 0.1% by mass, but is preferably 1% by mass, more preferably 3% by mass, and even more preferably 5% by mass. On the other hand, the upper limit of this content may be, for example, 30% by mass, but is preferably 20% by mass, more preferably 15% by mass, and even more preferably 12% by mass. By setting the wax content in the C layer within the above range, the water vapor barrier property and the like can be further improved. Furthermore, when the C layer contains paraffin wax, the lower limit of the paraffin wax content in the C layer may be, for example, 0.1% by mass, but is preferably 1% by mass, more preferably 3% by mass, and even more preferably 5% by mass. On the other hand, the upper limit of this content may be, for example, 30% by mass, but is preferably 20% by mass, more preferably 15% by mass, and even more preferably 12% by mass. By setting the paraffin wax content in the C layer within the above range, the water vapor barrier property and the like can be further improved.
 C層は、重合体(c)及びワックス以外の他の成分をさらに含有していてもよい。他の成分としては、例えば、重合体(c)以外の樹脂、分散剤、界面活性剤、消泡剤、染料、増粘剤等が挙げられる。C層は、2種以上の重合体を含んでいてもよい。C層に含まれていてもよい2種以上の重合体は、重合体(c)と他の重合体との組み合わせであってもよく、2種以上の重合体(c)であってもよい。但し、C層における重合体(c)及び任意のワックスの合計含有量は、90質量%以上が好ましく、95質量%以上又は99質量%以上がより好ましい。 The C layer may further contain other components in addition to the polymer (c) and the wax. Examples of other components include resins other than the polymer (c), dispersants, surfactants, defoamers, dyes, thickeners, etc. The C layer may contain two or more polymers. The two or more polymers that may be contained in the C layer may be a combination of the polymer (c) and another polymer, or may be two or more polymers (c). However, the total content of the polymer (c) and any wax in the C layer is preferably 90% by mass or more, more preferably 95% by mass or more or 99% by mass or more.
 特に、C層は、ビニルアルコール系重合体を実質的に含有しないことが好ましい。C層におけるビニルアルコール系重合体の含有量は、10質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下がさらに好ましく、0.1質量%以下がよりさらに好ましい。このようにC層におけるビニルアルコール系重合体の含有量を少なくすることで、C層を塗工により設ける際に、C層形成用塗工液の粘度上昇を抑えることができ、効率的にC層を形成することができる。 In particular, it is preferable that the C layer does not substantially contain a vinyl alcohol-based polymer. The content of the vinyl alcohol-based polymer in the C layer is preferably 10 mass % or less, more preferably 3 mass % or less, even more preferably 1 mass % or less, and even more preferably 0.1 mass % or less. By reducing the content of the vinyl alcohol-based polymer in the C layer in this way, it is possible to suppress an increase in the viscosity of the coating liquid for forming the C layer when the C layer is provided by coating, and it is possible to form the C layer efficiently.
 C層は、120℃以下の融点を有することが好ましい。C層の融点の上限は、100℃が好ましく、85℃がより好ましく、80℃がさらに好ましく、75℃、70℃又は65℃がよりさらに好ましい。C層の融点が上記上限以下であることにより、ヒートシール性を高めることができる。C層の融点は、80℃未満であってもよい。一方、この融点の下限は、30℃が好ましく、40℃がより好ましく、50℃がさらに好ましい。C層の融点は、示差走査熱量測定(DSC)により測定される。なお、C層に含まれる成分(重合体(c)及びその他の任意成分)のうちの一つが、所定の融点Tを有する場合、通常、C層もその所定の融点Tを有する。 The C layer preferably has a melting point of 120°C or less. The upper limit of the melting point of the C layer is preferably 100°C, more preferably 85°C, even more preferably 80°C, and even more preferably 75°C, 70°C, or 65°C. By having the melting point of the C layer be equal to or less than the above upper limit, the heat sealability can be improved. The C layer may have a melting point less than 80°C. On the other hand, the lower limit of the melting point is preferably 30°C, more preferably 40°C, and even more preferably 50°C. The melting point of the C layer is measured by differential scanning calorimetry (DSC). Note that, when one of the components (polymer (c) and other optional components) contained in the C layer has a specified melting point T, the C layer usually also has the same specified melting point T.
 C層1層の単位面積当たりの質量としては、1g/m以上100g/m以下が好ましく、3g/m以上50g/m以下がより好ましく、5g/m以上30g/m以下がさらに好ましく、7g/m以上20g/m以下がよりさらに好ましく、9g/m以上15g/m以下が特に好ましい。C層1層の単位面積当たりの質量が上記下限以上であることにより、水蒸気バリア性等をより高めることができる。一方、C層1層の単位面積当たりの質量が上記上限以下であることにより、構造体の薄型化を図ること等ができる。 The mass per unit area of one C layer is preferably 1 g/m 2 or more and 100 g/m 2 or less, more preferably 3 g/m 2 or more and 50 g/m 2 or less, even more preferably 5 g/m 2 or more and 30 g/m 2 or less, even more preferably 7 g/m 2 or more and 20 g/m 2 or less, and particularly preferably 9 g/m 2 or more and 15 g/m 2 or less. When the mass per unit area of one C layer is equal to or more than the lower limit, the water vapor barrier property can be further improved. On the other hand, when the mass per unit area of one C layer is equal to or less than the upper limit, the structure can be made thinner.
 当該構造体は、耐油紙、ガスバリア紙、フレーバーバリア紙、包材等として好適に用いることができる。当該構造体は、C層同士をヒートシールすることによって所定の形状(例えば袋状)に成形された状態で用いることもできる。ヒートシールする方法としては特に限定されず、公知の方法を用いることができ、例えば熱板式ヒートシーラー、インパルスシーラー、超音波シーラー、摩擦熱シーラー、誘電加熱シーラー等によりヒートシールすることができる。 The structure can be suitably used as grease-resistant paper, gas barrier paper, flavor barrier paper, packaging material, etc. The structure can also be used in a state where it is formed into a predetermined shape (e.g., a bag shape) by heat sealing the C layers together. There are no particular limitations on the heat sealing method, and any known method can be used, for example, heat sealing can be performed using a hot plate heat sealer, impulse sealer, ultrasonic sealer, frictional heat sealer, dielectric heating sealer, etc.
<構造体の製造方法>
 本発明の一実施形態に係る構造体を製造する方法は特に限定されないが、典型的には、紙基材に対して、A層、B層及びC層をこの順に塗工により設けることにより製造することができる。具体的には、例えば、紙基材の表面にA層形成用塗工液を塗工し、乾燥させることによりA層を設ける。次いで、A層の表面にB層形成用塗工液を塗工し、乾燥させることによりB層を設ける。次いで、B層の表面にC層形成用塗工液を塗工し、乾燥させることによりC層を設けることで、構造体を得ることができる。各塗工液の塗工毎に乾燥を行わなくてもよく、同時多層塗工法を採用してもよい。
<Method of Manufacturing Structure>
The method for producing the structure according to one embodiment of the present invention is not particularly limited, but typically, the structure can be produced by providing an A layer, a B layer, and a C layer in this order on a paper substrate by coating. Specifically, for example, an A layer forming coating liquid is applied to the surface of the paper substrate and dried to provide an A layer. Next, a B layer forming coating liquid is applied to the surface of the A layer and dried to provide a B layer. Next, a C layer forming coating liquid is applied to the surface of the B layer and dried to provide a C layer, thereby obtaining a structure. Drying is not required after each coating of the coating liquid, and a simultaneous multi-layer coating method may be adopted.
 各塗工液の塗工は、従来公知の方法により行うことができる。塗工は、例えばブレードコーター、バーコーター、エアナイフコーター、スリットダイコーター、グラビアコーター、マイクログラビアコーター、ゲートロールコーター、カーテンコーター等を用いて行うことができる。これらの中でも、カーテンコーターを用いて行うことが好ましい。 Each coating liquid can be applied by a conventional method. For example, coating can be performed using a blade coater, bar coater, air knife coater, slit die coater, gravure coater, microgravure coater, gate roll coater, curtain coater, etc. Among these, it is preferable to use a curtain coater.
 すなわち、本発明の一実施形態に係る構造体の製造方法は、A層、B層及びC層のうちの少なくとも一つを、カーテンコーターを用いて設ける工程を備える。当該製造方法においては、A層、B層及びC層の全てを、カーテンコーターを用いて設けることが好ましい。 In other words, the method for manufacturing a structure according to one embodiment of the present invention includes a step of forming at least one of the layers A, B, and C using a curtain coater. In this manufacturing method, it is preferable to form all of the layers A, B, and C using a curtain coater.
 塗工した塗工液を乾燥する方法としては特に限定されず、例えば、熱風乾燥機、赤外線乾燥機、ガスバーナー、熱板等を用いて行うことができる。 The method for drying the applied coating liquid is not particularly limited, and can be done using, for example, a hot air dryer, an infrared dryer, a gas burner, a hot plate, etc.
 各層形成用の塗工液の溶媒又は分散媒としては、特に限定されず、水、有機溶媒(エタノール、イソプロピルアルコール、メチルエチルケトン、トルエン等)を用いることができ、水が好ましい。 The solvent or dispersion medium for the coating liquid used to form each layer is not particularly limited, and water or an organic solvent (ethanol, isopropyl alcohol, methyl ethyl ketone, toluene, etc.) can be used, with water being preferred.
 各層形成用の塗工液の固形分量(固形分濃度)は特に限定されないが、例えば3質量%以上70質量%以下とすることができ、5質量%以上60質量%以下とすることもでき、10質量%以上50質量%以下とすることもできる。 The solid content (solid content concentration) of the coating liquid for forming each layer is not particularly limited, but can be, for example, 3% by mass or more and 70% by mass or less, 5% by mass or more and 60% by mass or less, or 10% by mass or more and 50% by mass or less.
<耐油紙>
 本発明の一実施形態に係る耐油紙は、本発明の一実施形態に係る構造体を含む。本発明の一実施形態に係る耐油紙は、本発明の一実施形態に係る構造体からなるものであってもよい。
<Oil-resistant paper>
The grease-resistant paper according to one embodiment of the present invention includes the structure according to one embodiment of the present invention. The grease-resistant paper according to one embodiment of the present invention may be made of the structure according to one embodiment of the present invention.
 当該耐油紙は、水蒸気バリア性及び酸素バリア性に優れ、ヒートシールされた部分がある場合、その密着性も良好である。当該耐油紙は、例えばフライドポテト、唐揚げ等の油分が多い食品を提供する際に使用する包材、バター等を包むための包材、パン、ケーキ等を焼く際に用いられるクッキングペーパー等として好適に用いられる。 This grease-resistant paper has excellent water vapor barrier properties and oxygen barrier properties, and when there are heat-sealed parts, the adhesion is also good. This grease-resistant paper is ideally used as a packaging material for serving oily foods such as French fries and fried chicken, a packaging material for wrapping butter, and cooking paper for baking bread, cakes, etc.
 当該耐油紙の耐油度(KIT値)は、5級以上が好ましく、6級又は7級以上がより好ましい。この耐油度は、TAPPI UM-557法(キット法)によってC層表面を測定したときの値とする。 The oil resistance (KIT value) of the oil-resistant paper is preferably grade 5 or higher, and more preferably grade 6 or 7 or higher. This oil resistance is the value measured on the surface of layer C using the TAPPI UM-557 method (KIT method).
<ガスバリア紙>
 本発明の一実施形態に係るガスバリア紙は、本発明の一実施形態に係る構造体を含む。本発明の一実施形態に係るガスバリア紙は、本発明の一実施形態に係る構造体からなるものであってもよい。
<Gas barrier paper>
The gas barrier paper according to one embodiment of the present invention includes the structure according to one embodiment of the present invention. The gas barrier paper according to one embodiment of the present invention may be made of the structure according to one embodiment of the present invention.
 当該ガスバリア紙は、酸素バリア性と共に水蒸気バリア性にも優れ、ヒートシールされた部分がある場合、その密着性も良好である。当該ガスバリア紙は、例えば食品、農薬、薬品、化粧品、医療品、電子部品、衣料等の包材などとして好適に用いられる。 This gas barrier paper has excellent oxygen and water vapor barrier properties, and when there are heat-sealed parts, the adhesion is also good. This gas barrier paper is suitable for use as a packaging material for food, pesticides, medicines, cosmetics, medical products, electronic parts, clothing, etc.
 当該ガスバリア紙の酸素透過度としては、10cc/m・24h以下が好ましく、5cc/m・24h以下がより好ましく、3cc/m・24h以下がさらに好ましい。酸素透過度は、23℃65%RH条件で測定される値とする。 The oxygen permeability of the gas barrier paper is preferably 10 cc/ m2 ·24h or less, more preferably 5 cc/ m2 ·24h or less, and even more preferably 3 cc/ m2 ·24h or less. The oxygen permeability is a value measured under conditions of 23°C and 65% RH.
<フレーバーバリア紙>
 本発明の一実施形態に係るフレーバーバリア紙は、本発明の一実施形態に係る構造体を含む。本発明の一実施形態に係るフレーバーバリア紙は、本発明の一実施形態に係る構造体からなるものであってもよい。
<Flavor barrier paper>
The flavour barrier paper according to an embodiment of the present invention comprises a structure according to an embodiment of the present invention. The flavour barrier paper according to an embodiment of the present invention may consist of a structure according to an embodiment of the present invention.
 当該フレーバーバリア紙は、酸素バリア性と共に水蒸気バリア性にも優れ、ヒートシールされた部分がある場合、その密着性も良好である。当該フレーバーバリア紙は、例えば菓子、茶葉、コーヒー、香辛料、煙草、化粧品、香料等、香りを有する物品の包材として好適に用いられる。当該フレーバーバリア紙は、その他の食品、農薬、薬品、衣料等の包材などとしても有用である。 This flavor barrier paper has excellent oxygen and water vapor barrier properties, and when there are heat-sealed sections, the adhesion is also good. This flavor barrier paper is suitable for use as a packaging material for items that have a scent, such as confectionery, tea leaves, coffee, spices, tobacco, cosmetics, fragrances, etc. This flavor barrier paper is also useful as a packaging material for other foods, pesticides, medicines, clothing, etc.
 一般的に酸素透過度が低い場合、香りを遮蔽する性質も高くなる傾向にある。当該フレーバーバリア紙の酸素透過度としては、10cc/m・24h以下が好ましく、5cc/m・24h以下がより好ましく、3cc/m・24h以下がさらに好ましい。 Generally, when the oxygen permeability is low, the property of blocking aromas also tends to be high. The oxygen permeability of the flavor barrier paper is preferably 10 cc/ m2 ·24 h or less, more preferably 5 cc/ m2 ·24 h or less, and even more preferably 3 cc/ m2 ·24 h or less.
<包材>
 本発明の一実施形態に係る包材は、本発明の一実施形態に係る耐油紙、本発明の一実施形態に係るガスバリア紙、及び本発明の一実施形態に係るフレーバーバリア紙からなる群より選ばれる少なくとも1種を含む。本発明の一実施形態に係る包材は、本発明の一実施形態に係る構造体を含むものであってもよい。
<Packaging materials>
The packaging material according to one embodiment of the present invention includes at least one selected from the group consisting of the greaseproof paper according to one embodiment of the present invention, the gas barrier paper according to one embodiment of the present invention, and the flavor barrier paper according to one embodiment of the present invention. The packaging material according to one embodiment of the present invention may include the structure according to one embodiment of the present invention.
 当該包材は、水蒸気バリア性及び酸素バリア性に優れ、ヒートシールされた部分がある場合、その密着性も良好である。当該包材は、例えば食品、農薬、薬品、化粧品、医療品、電子部品、衣料等の包材として好適に用いられる。 The packaging material has excellent water vapor barrier properties and oxygen barrier properties, and when there are heat-sealed parts, the adhesion is also good. The packaging material is suitable for use as packaging for, for example, food, pesticides, medicines, cosmetics, medical products, electronic parts, clothing, etc.
 以下、実施例を用いて本発明を更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 The present invention will be explained in more detail below using examples, but the present invention is not limited to these examples in any way.
[製造例1]PVA-1の製造
 撹拌機、窒素導入口及び開始剤添加口を備えた反応槽に酢酸ビニル1,050g及びメタノール1,950gを仕込み、60℃に昇温した後30分間窒素バブリングにより系中を窒素置換した。上記の反応槽内温度を60℃に調整した後、重合開始剤としてアゾビスイソブチロニトリル(AIBN)を1.6g投入し、重合を開始した。3時間後に重合率が50%となったところで冷却して重合を停止した。未反応酢酸ビニルモノマーを除去し、メタノールを加えて、ポリ酢酸ビニル(PVAc)のメタノール溶液(濃度30質量%)を得た。該PVAcのメタノール溶液400g(溶液中のPVAc120g)に、NaOHの10%メタノール溶液55.8g(PVAc中の酢酸ビニル単位に対するNaOH量のモル比[MR]0.10)を添加して、40℃でけん化を行った。NaOHメタノール溶液添加後、ゲル化したものを粉砕器にて粉砕し、合計1時間けん化反応を行った。その後、酢酸メチル1,000gを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和の終了を確認後、濾別して得られた白色固体にメタノール1,000gを加えて室温で3時間放置洗浄した。上記洗浄操作を3回繰り返した後、遠心脱液して得られた固体を乾燥機中70℃で2日間放置して乾燥することで、ビニルアルコール系重合体(PVA-1)を得た。
[Production Example 1] Production of PVA-1 1,050g of vinyl acetate and 1,950g of methanol were charged into a reaction vessel equipped with a stirrer, a nitrogen inlet and an initiator addition port, and the temperature was raised to 60°C, after which the system was replaced with nitrogen by nitrogen bubbling for 30 minutes. After adjusting the temperature inside the reaction vessel to 60°C, 1.6g of azobisisobutyronitrile (AIBN) was added as a polymerization initiator to start polymerization. After 3 hours, when the polymerization rate reached 50%, the polymerization was stopped by cooling. Unreacted vinyl acetate monomer was removed, and methanol was added to obtain a methanol solution of polyvinyl acetate (PVAc) (concentration 30% by mass). 55.8g of a 10% methanol solution of NaOH (molar ratio [MR] of the amount of NaOH to the vinyl acetate unit in PVAc: 0.10) was added to 400g of the methanol solution of PVAc (120g of PVAc in the solution), and saponification was carried out at 40°C. After the addition of the NaOH methanol solution, the gel was pulverized in a pulverizer and subjected to a saponification reaction for a total of 1 hour. Then, 1,000 g of methyl acetate was added to neutralize the remaining alkali. After confirming the completion of neutralization using a phenolphthalein indicator, 1,000 g of methanol was added to the white solid obtained by filtration and left to stand at room temperature for 3 hours for washing. After repeating the above washing operation three times, the solid obtained by centrifugal deliquor was left to stand in a dryer at 70°C for 2 days to dry, thereby obtaining a vinyl alcohol polymer (PVA-1).
[製造例2]PVA-2の製造
 撹拌機、窒素導入口、エチレン導入口及び開始剤添加口を備えた5L加圧反応槽に酢酸ビニル1,440g及びメタノール1,560gを仕込み、60℃に昇温した後30分間窒素バブリングにより系中を窒素置換した。次いで反応槽圧力が7.8kg/cmとなるようにエチレンを導入した。上記の反応槽内温度を60℃に調整した後、重合開始剤としてAIBNを2.0g投入し、重合を開始した。重合中はエチレンを導入して反応槽圧力を7.8kg/cmに、重合温度を60℃に維持した。3時間後に重合率が50%となったところで冷却して重合を停止した。反応槽を開放してエチレンを抜いた後、さらに窒素ガスをバブリングした。次いで減圧下で未反応酢酸ビニルモノマーを除去し、メタノールを加えて、エチレン-酢酸ビニル共重合体のメタノール溶液(濃度30質量%)を得た。該エチレン-酢酸ビニル共重合体のメタノール溶液400g(溶液中のエチレン-酢酸ビニル共重合体120g)に、NaOHの10%メタノール溶液55.8g(エチレン-酢酸ビニル共重合体中の酢酸ビニル単位に対するNaOH量のモル比[MR]0.10)を添加して、40℃でけん化を行った。NaOHメタノール溶液添加後、ゲル化したものを粉砕器にて粉砕し、合計1時間けん化反応を行った。その後、酢酸メチル1,000gを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和の終了を確認後、濾別して得られた白色固体にメタノール1,000gを加えて室温で3時間放置洗浄した。上記洗浄操作を3回繰り返した後、遠心脱液して得られた固体を乾燥機中70℃で2日間放置して、エチレン変性ビニルアルコール系重合体(PVA-2)を得た。
[Production Example 2] Production of PVA-2 1,440 g of vinyl acetate and 1,560 g of methanol were charged into a 5 L pressurized reaction vessel equipped with a stirrer, a nitrogen inlet, an ethylene inlet, and an initiator addition port, and the temperature was raised to 60 ° C., and the system was replaced with nitrogen by nitrogen bubbling for 30 minutes. Then, ethylene was introduced so that the reaction vessel pressure was 7.8 kg / cm 2. After adjusting the temperature inside the reaction vessel to 60 ° C., 2.0 g of AIBN was added as a polymerization initiator to start polymerization. During polymerization, ethylene was introduced to maintain the reaction vessel pressure at 7.8 kg / cm 2 and the polymerization temperature at 60 ° C. After 3 hours, when the polymerization rate reached 50%, the polymerization was stopped by cooling. After opening the reaction vessel and removing ethylene, nitrogen gas was further bubbled. Next, unreacted vinyl acetate monomer was removed under reduced pressure, and methanol was added to obtain a methanol solution of ethylene-vinyl acetate copolymer (concentration 30 mass %). To 400 g of the methanol solution of the ethylene-vinyl acetate copolymer (120 g of the ethylene-vinyl acetate copolymer in the solution), 55.8 g of a 10% methanol solution of NaOH (molar ratio [MR] of the amount of NaOH to the vinyl acetate unit in the ethylene-vinyl acetate copolymer: 0.10) was added, and saponification was carried out at 40° C. After the addition of the NaOH methanol solution, the gel was pulverized in a grinder, and a saponification reaction was carried out for a total of 1 hour. Thereafter, 1,000 g of methyl acetate was added to neutralize the remaining alkali. After confirming the completion of neutralization using a phenolphthalein indicator, 1,000 g of methanol was added to the white solid obtained by filtration, and the solid was left to stand at room temperature for 3 hours for washing. The above washing operation was repeated three times, and the solid obtained by centrifugal deliquation was left to stand in a dryer at 70° C. for 2 days to obtain an ethylene-modified vinyl alcohol polymer (PVA-2).
[製造例3-5]PVA-3~PVA-5の製造
 表1に記載の重合条件及びけん化条件について、表1に示すようにしたこと以外は、製造例2と同様の方法により、各エチレン変性ビニルアルコール系重合体(PVA-3~PVA-5)を製造した。
Production Example 3-5: Production of PVA-3 to PVA-5 Each ethylene-modified vinyl alcohol polymer (PVA-3 to PVA-5) was produced in the same manner as in Production Example 2, except that the polymerization conditions and saponification conditions shown in Table 1 were changed to those shown in Table 1.
 得られたPVA-1~PVA-5の粘度平均重合度、けん化度及びエチレン変性量(エチレン単位含有量)を測定した。これらの測定結果を表1に示す。 The viscosity average degree of polymerization, degree of saponification, and amount of ethylene modification (ethylene unit content) of the obtained PVA-1 to PVA-5 were measured. The results of these measurements are shown in Table 1.
 実施例及び比較例で用いたPVA-1~PVA-5以外の各重合体を以下に示す。
(重合体(a))
 重合体a1:「MFP1883」(Michelman, Inc.製)、オレフィン-アクリル酸共重合体エマルション、固形分27質量%
 重合体a2:「OP-671」(ライオン株式会社製)、スチレン-アクリル酸エステル共重合体エマルション、固形分48質量%
 重合体a3:「ケミパールS-100」(三井化学株式会社製)、エチレン-メタクリル酸共重合体エマルション、固形分27質量%
 重合体a4:「Tykote1004」(Mallard Creek Polymers,Inc.製)スチレン-ブタジエン共重合体エマルション
The polymers other than PVA-1 to PVA-5 used in the examples and comparative examples are shown below.
(Polymer (a))
Polymer a1: "MFP1883" (manufactured by Michelman, Inc.), olefin-acrylic acid copolymer emulsion, solid content 27% by mass
Polymer a2: "OP-671" (manufactured by Lion Corporation), styrene-acrylic acid ester copolymer emulsion, solid content 48% by mass
Polymer a3: "Chemipearl S-100" (manufactured by Mitsui Chemicals, Inc.), ethylene-methacrylic acid copolymer emulsion, solid content 27% by mass
Polymer a4: "Tykote 1004" (Mallard Creek Polymers, Inc.) Styrene-butadiene copolymer emulsion
(重合体(b))
 PU-1:「タケラックWPB-341」(三井化学株式会社製)、ポリウレタンエマルション、固形分30質量%
(Polymer (b))
PU-1: "Takelac WPB-341" (manufactured by Mitsui Chemicals, Inc.), polyurethane emulsion, solid content 30% by mass
(重合体(c))
 重合体c1:「VAPCT2200」(Michelman, Inc.製)、スチレン-アクリル酸エステル共重合体エマルション、固形分48質量%、ガラス転移温度-32.3℃、融点60.4℃
 重合体c2:「498340R」(Michelman, Inc.製)、エチレン-アクリル酸共重合体エマルション、固形分40質量%、ガラス転移温度-0.5℃、融点78.7℃
 重合体c3:「OP-671」(ライオン株式会社製)、スチレン-ブタジエン共重合体エマルション、固形分48質量%、ガラス転移温度2.8℃、融点47.0℃
 重合体c4:「ケミパールS-100」(三井化学株式会社製)、エチレン-メタクリル酸共重合体エマルション、固形分27質量%、ガラス転移温度23.9℃、融点86.9℃
(Polymer (c))
Polymer c1: "VAPCT2200" (manufactured by Michelman, Inc.), styrene-acrylic acid ester copolymer emulsion, solid content 48% by mass, glass transition temperature -32.3°C, melting point 60.4°C
Polymer c2: "498340R" (manufactured by Michelman, Inc.), ethylene-acrylic acid copolymer emulsion, solid content 40% by mass, glass transition temperature -0.5°C, melting point 78.7°C
Polymer c3: "OP-671" (manufactured by Lion Corporation), styrene-butadiene copolymer emulsion, solid content 48% by mass, glass transition temperature 2.8°C, melting point 47.0°C
Polymer c4: "Chemipearl S-100" (manufactured by Mitsui Chemicals, Inc.), ethylene-methacrylic acid copolymer emulsion, solid content 27% by mass, glass transition temperature 23.9°C, melting point 86.9°C
(ガラス転移温度及び融点の測定方法)
 重合体(C)のガラス転移温度及び融点は、以下の方法により測定した。
 測定サンプル約3mgをサンプルパンに充填しDSC Q2000(TA Instruments,Inc.製)装置でガラス転移点及び融点を測定した。サンプルは30℃から200℃まで昇温し、その後-90℃まで降温して5分保持後、200℃まで昇温した。昇温及び降温ともに10℃/分で行った。
(Method of measuring glass transition temperature and melting point)
The glass transition temperature and melting point of the polymer (C) were measured by the following method.
Approximately 3 mg of the measurement sample was filled into a sample pan, and the glass transition point and melting point were measured using a DSC Q2000 (manufactured by TA Instruments, Inc.). The sample was heated from 30° C. to 200° C., then cooled to −90° C., held at that temperature for 5 minutes, and then heated to 200° C. The temperature was increased and decreased at a rate of 10° C./min.
[実施例1]構造体の作製
 坪量70.5g/mの上質紙を紙基材として準備した。この紙基材の片面に、A層形成用塗工液として重合体a1のエマルションである「MFP1883」を乾燥質量で10.0g/mの塗工量で塗工し、乾燥することでA層を設けた。次いで、A層の表面に、B層形成用塗工液としてPVA-1の水溶液(固形分10質量%)を乾燥質量で3.0g/mの塗工量で塗工し、乾燥することでB層を設けた。次いで、B層の表面に、C層形成用塗工液として重合体c1のエマルションである「VAPCT2200」を乾燥質量で10.0g/mの塗工量で塗工し、乾燥することでC層を設けた。以上により、実施例1の構造体を得た。A層、B層及びC層のいずれの塗工もワイヤーバーを用いて行った。得られた構造体及び用いたC層形成用塗工液について、以下の評価を行った。評価結果を表3に示す。
[Example 1] Preparation of structure A fine paper with a basis weight of 70.5 g/m 2 was prepared as a paper substrate. On one side of this paper substrate, "MFP1883", an emulsion of polymer a1, was applied as a coating liquid for forming an A layer in a coating amount of 10.0 g/m 2 in dry mass, and dried to provide an A layer. Next, on the surface of the A layer, an aqueous solution of PVA-1 (solid content 10% by mass) was applied as a coating liquid for forming a B layer in a coating amount of 3.0 g/m 2 in dry mass, and dried to provide a B layer. Next, on the surface of the B layer, "VAPCT2200", an emulsion of polymer c1, was applied as a coating liquid for forming a C layer in a coating amount of 10.0 g/m 2 in dry mass, and dried to provide a C layer. Thus, the structure of Example 1 was obtained. Coating of the A layer, B layer, and C layer was all performed using a wire bar. The obtained structure and the coating solution for forming the C layer used were subjected to the following evaluations. The evaluation results are shown in Table 3.
[評価]
(1)C層形成用塗工液の粘度
 C層形成用塗工液を20℃の部屋で調温した後、B型粘度計を使用して60rpmの条件でC層形成用塗工液の粘度を測定した。
[evaluation]
(1) Viscosity of Coating Liquid for Forming C Layer After adjusting the temperature of the coating liquid for forming C layer in a room of 20° C., the viscosity of the coating liquid for forming C layer was measured at 60 rpm using a Brookfield viscometer.
(2)C層形成用塗工液の粘度安定性
 C層形成用塗工液を固形分22質量%に調整し、この塗工液を撹拌したときの流動性について、以下の基準で評価した。
 A:増粘なく流動する。
 B:増粘はするものの流動はする。
 C:流動性が損なわれる(クリーム状になる。)。
(2) Viscosity Stability of Coating Liquid for Forming C Layer The coating liquid for forming C layer was adjusted to a solid content of 22% by mass, and the fluidity of this coating liquid when stirred was evaluated according to the following criteria.
A: Flows without thickening.
B: The mixture thickens but remains fluid.
C: Fluidity is impaired (becomes creamy).
(3)酸素透過度(ガスバリア性)
 構造体の酸素透過度について、MOCON社製「OX-TRAN2/21」を使用して23℃65%RH条件にて測定した。
(3) Oxygen permeability (gas barrier properties)
The oxygen permeability of the structure was measured under conditions of 23° C. and 65% RH using “OX-TRAN2/21” manufactured by MOCON Corporation.
(4)水蒸気透過度(水蒸気バリア性)
 構造体の水蒸気透過度について、JIS Z 2080に基づき、カップ法にて温度40±0.5℃、相対湿度差90±2%の条件下で測定した。
(4) Water vapor permeability (water vapor barrier property)
The water vapor permeability of the structure was measured by the cup method based on JIS Z 2080 under conditions of a temperature of 40±0.5° C. and a relative humidity difference of 90±2%.
(5)C層のひび割れ
 構造体のC層のひび割れの有無と度合いについて、目視にて以下の基準で評価した。
 A:ひび割れが見られない。
 A:部分的にひび割れが見られる。
 B:部分的に連続的な割れが見られる。
 C:全体的に連続的な割れが見られる。
(5) Cracking in Layer C The presence or absence and the degree of cracking in Layer C of the structure was visually evaluated according to the following criteria.
A + : No cracks observed.
A: Partial cracks are observed.
B: Partial continuous cracks are observed.
C: Continuous cracks are observed throughout the entire surface.
(6)ヒートシール性
 構造体のC層同士を重ね合わせ、熱傾斜試験機で160℃、0.3MPa、1秒間の条件でヒートシールした。その後、オートグラフを使用し、180°剥離試験を実施し、その破断箇所を以下の基準で評価した。
 A:紙基材の材破(C層間の強度が紙基材以上で十分に強い)
 B:層間剥離(シールはされているものの、紙基材の強度より弱い)
 C:自然剥離(シールされていない状態)
(6) Heat sealability The C layers of the structures were overlapped and heat sealed using a thermal gradient tester under conditions of 160°C, 0.3 MPa, and 1 second. Then, a 180° peel test was performed using an autograph, and the breakage point was evaluated according to the following criteria.
A: Damage to the paper base material (strength between layers C is greater than or equal to the paper base material and is sufficiently strong)
B: Interlayer delamination (sealed, but weaker than the strength of the paper base material)
C: Natural peeling (unsealed state)
[実施例2]
 B層形成用塗工液においてPVA-1に替えてPVA-2を用い、C層形成用塗工液として重合体c2のエマルションである「498340R」を用いたこと以外は実施例1と同様の操作をして、実施例2の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 2]
The structure of Example 2 was obtained in the same manner as in Example 1, except that PVA-2 was used instead of PVA-1 in the coating liquid for forming the B layer, and "498340R", an emulsion of polymer c2, was used as the coating liquid for forming the C layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例3]
 C層形成用塗工液として重合体c3のエマルションである「OP-671」を用いたこと以外は実施例2と同様の操作をして、実施例3の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 3]
The structure of Example 3 was obtained in the same manner as in Example 2, except that "OP-671", an emulsion of polymer c3, was used as the coating liquid for forming the C layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例4]
 重合体c1のエマルションである「VAPACT2200」に、パラフィンワックスのエマルションである「ハリコートRT」(ハリマ化成グループ株式会社製)を添加し、重合体c1(100質量部)に対する「ハリコートRT」の固形分換算の含有量が0.5質量部である混合液を調製した。この混合液をC層形成用塗工液として用いたこと以外は実施例2と同様の操作をして、実施例4の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 4]
A paraffin wax emulsion "Haricoat RT" (manufactured by Harima Chemical Group Co., Ltd.) was added to an emulsion of polymer c1 "VAPACT 2200" to prepare a mixed solution in which the solid content of "Haricoat RT" per polymer c1 (100 parts by mass) was 0.5 parts by mass. The same operation as in Example 2 was carried out except that this mixed solution was used as the coating liquid for forming the C layer, to obtain the structure of Example 4. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例5]
 C層形成用塗工液における重合体c1(100質量部)に対する「ハリコートRT」の固形分換算の含有量を10質量部としたこと以外は実施例4と同様の操作をして、実施例5の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 5]
The same operation as in Example 4 was performed except that the content of "Haricoat RT" in terms of solid content relative to the polymer c1 (100 parts by mass) in the coating liquid for forming the C layer was 10 parts by mass, to obtain a structure of Example 5. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例6]
 C層形成用塗工液における重合体c1(100質量部)に対する「ハリコートRT」の固形分換算の含有量を22質量部としたこと以外は実施例4と同様の操作をして、実施例6の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 6]
The same operation as in Example 4 was performed except that the content of "Haricoat RT" in terms of solid content relative to the polymer c1 (100 parts by mass) in the coating liquid for forming the C layer was 22 parts by mass, to obtain a structure of Example 6. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例7]
 A層形成用塗工液として重合体a2のエマルションである「OP-671」を用いたこと以外は実施例5と同様の操作をして、実施例7の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 7]
The structure of Example 7 was obtained in the same manner as in Example 5, except that "OP-671", an emulsion of polymer a2, was used as the coating liquid for forming layer A. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例8]
 A層形成用塗工液として重合体a3のエマルションである「ケミパールS-100」を用いたこと以外は実施例5と同様の操作をして、実施例8の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 8]
The structure of Example 8 was obtained in the same manner as in Example 5, except that "Chemipearl S-100", an emulsion of polymer a3, was used as the coating liquid for forming layer A. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例9]
 A層形成用塗工液として重合体a4のエマルションである「Tykote1004」を用いたこと以外は実施例5と同様の操作をして、実施例9の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 9]
The structure of Example 9 was obtained in the same manner as in Example 5, except that "Tykote 1004", an emulsion of polymer a4, was used as the coating liquid for forming the A layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例10]
 重合体a1のエマルションである「MFP1883」にタルク分散液である「Finntalc C10B」(Elementis社製)を添加し、重合体a1(100質量部)に対するタルクの含有量が50質量部である混合液を調製した。この混合液をA層形成用塗工液として用いたこと以外は実施例5と同様の操作をして、実施例10の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 10]
A talc dispersion "Finntalc C10B" (manufactured by Elementis) was added to an emulsion of polymer a1, "MFP1883," to prepare a mixed solution in which the talc content was 50 parts by mass relative to polymer a1 (100 parts by mass). The same operation as in Example 5 was carried out except that this mixed solution was used as the coating solution for forming layer A, to obtain a structure of Example 10. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例11]
 PVA-2の水溶液(固形分10質量%)にマイカ分散液である「ME-100」(片倉コープアグリ株式会社製)を添加し、PVA-2(100質量部)に対するマイカの含有量が5質量部である混合液を調製した。この混合液をB層形成用塗工液として用いたこと以外は実施例5と同様の操作をして、実施例11の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 11]
A mica dispersion "ME-100" (manufactured by Katakura Co-op Agri Co., Ltd.) was added to an aqueous solution of PVA-2 (solid content 10% by mass) to prepare a mixed solution in which the mica content was 5 parts by mass relative to PVA-2 (100 parts by mass). The same operation as in Example 5 was carried out except that this mixed solution was used as the coating solution for forming B layer, to obtain a structure of Example 11. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例12]
 B層形成用塗工液においてPVA-2に替えてPVA-3を用いたこと以外は実施例5と同様の操作をして、実施例12の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 12]
The same procedure as in Example 5 was carried out except that PVA-3 was used instead of PVA-2 in the coating liquid for forming the B layer, to obtain a structure of Example 12. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例13]
 B層形成用塗工液においてPVA-2に替えてPVA-4を用いたこと以外は実施例5と同様の操作をして、実施例13の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 13]
The same procedure as in Example 5 was carried out except that PVA-4 was used instead of PVA-2 in the coating liquid for forming the B layer, to obtain a structure of Example 13. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
[実施例14]
 PVA-2の水溶液(固形分10質量%)にマイカ分散液である「ME-100」(片倉コープアグリ株式会社製)を添加し、PVA-2(100質量部)に対するマイカの含有量が5質量部である混合液を調製した。この混合液をB層形成用塗工液として用いたこと以外は実施例10と同様の操作をして、実施例14の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Example 14]
A mica dispersion "ME-100" (manufactured by Katakura Co-op Agri Co., Ltd.) was added to an aqueous solution of PVA-2 (solid content 10% by mass) to prepare a mixed solution in which the mica content was 5 parts by mass relative to PVA-2 (100 parts by mass). The same operation as in Example 10 was carried out except that this mixed solution was used as the coating solution for forming B layer, to obtain the structure of Example 14. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
[比較例1]
 C層形成用塗工液として重合体c4のエマルションである「ケミパールS-100」を用いたこと以外は実施例5と同様の操作をして、比較例1の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Comparative Example 1]
A structure of Comparative Example 1 was obtained in the same manner as in Example 5, except that "Chemipearl S-100", an emulsion of polymer c4, was used as the coating liquid for forming the C layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
[比較例2]
 C層形成用塗工液として重合体c4のエマルションである「ケミパールS-100」を用いたこと以外は実施例2と同様の操作をして、比較例2の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Comparative Example 2]
A structure of Comparative Example 2 was obtained in the same manner as in Example 2, except that "Chemipearl S-100", an emulsion of polymer c4, was used as the coating liquid for forming the C layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
[比較例3]
 重合体c4のエマルションである「ケミパールS-100」にPVA-5を添加し、重合体c4(100質量部)に対するPVA-5の含有量が5質量部である混合液を調製した。この混合液をC層形成用塗工液として用いたこと以外は比較例2と同様の操作をして、比較例3の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Comparative Example 3]
PVA-5 was added to "Chemipearl S-100", an emulsion of polymer c4, to prepare a mixed solution in which the content of PVA-5 was 5 parts by mass relative to polymer c4 (100 parts by mass). The same operation as in Comparative Example 2 was carried out except that this mixed solution was used as the coating solution for forming C layer, to obtain a structure of Comparative Example 3. Evaluation was carried out in the same manner as in Example 1. The evaluation results are shown in Table 3.
[比較例4]
 B層形成用塗工液としてPU-1のエマルションである「タケラックWPB-341」を用いたこと以外は比較例2と同様の操作をして、比較例4の構造体を得た。実施例1と同様の方法で評価を行った。評価結果を表3に示す。
[Comparative Example 4]
A structure of Comparative Example 4 was obtained in the same manner as in Comparative Example 2, except that "Takelac WPB-341", an emulsion of PU-1, was used as the coating liquid for forming the B layer. Evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 B層がビニルアルコール系重合体(PVA-1~PVA-4)を含み、C層が、ガラス転移温度が-100℃以上5℃以下である重合体(重合体c1~重合体c3)を含む実施例1~14の構造体は、C層のひび割れが少なく、水蒸気バリア性、ヒートシール性及び酸素バリア性に優れる結果となった。特に、例えば重合体(c)の種類のみ異なる実施例2、3及び比較例2の対比から、C層を構成する重合体(c)のガラス転移温度が、C層のひび割れの発生及び水蒸気バリア性に大きく影響することが確認できる。 The structures of Examples 1 to 14, in which Layer B contains vinyl alcohol polymers (PVA-1 to PVA-4) and Layer C contains polymers (Polymers c1 to c3) with glass transition temperatures of -100°C or higher and 5°C or lower, showed little cracking in Layer C and excellent water vapor barrier properties, heat sealability, and oxygen barrier properties. In particular, by comparing Examples 2 and 3 with Comparative Example 2, which differ only in the type of polymer (c), it can be confirmed that the glass transition temperature of the polymer (c) that constitutes Layer C has a significant effect on the occurrence of cracking and water vapor barrier properties of Layer C.
 なお、比較例4のように、B層がビニルアルコール系重合体を含まない場合、酸素バリア性は低い一方、C層に含まれる重合体のガラス転移温度が高くてもC層のひび割れは生じにくかった。これに対し、比較例1、2のように、B層がビニルアルコール系重合体を含む場合、C層に含まれる重合体のガラス転移温度によってはC層にひび割れが生じ、水蒸気バリア性が低くなった。このように、C層のひび割れは、B層にビニルアルコール系重合体が含まれるときに顕著に生じる現象であることが確認できる。換言すれば、実施例1~14の構造体においては、B層に酸素バリア性が特に高いビニルアルコール系重合体を用い、且つC層にひび割れの生じにくい重合体を用いていることで、優れた酸素バリア性と水蒸気バリア性との両立を図ることができている。 When layer B does not contain a vinyl alcohol-based polymer, as in Comparative Example 4, the oxygen barrier property is low, but cracks in layer C are unlikely to occur even if the glass transition temperature of the polymer contained in layer C is high. In contrast, when layer B contains a vinyl alcohol-based polymer, as in Comparative Examples 1 and 2, cracks occur in layer C depending on the glass transition temperature of the polymer contained in layer C, and the water vapor barrier property is low. In this way, it can be confirmed that cracks in layer C are a phenomenon that occurs significantly when layer B contains a vinyl alcohol-based polymer. In other words, in the structures of Examples 1 to 14, a vinyl alcohol-based polymer with particularly high oxygen barrier property is used in layer B, and a polymer that is unlikely to crack is used in layer C, making it possible to achieve both excellent oxygen barrier property and water vapor barrier property.
 また、比較例3のように、C層形成用塗工液にビニルアルコール系重合体が含まれる場合、粘度が高く且つ粘度安定性が低くなり、塗工性が低下することがわかる。 Furthermore, when the coating liquid for forming the C layer contains a vinyl alcohol polymer, as in Comparative Example 3, the viscosity becomes high and the viscosity stability becomes low, resulting in poor coatability.
 本発明の構造体は、耐油紙、ガスバリア紙、フレーバーバリア紙等の包材として好適に用いることができる。 The structure of the present invention can be suitably used as packaging materials such as grease-resistant paper, gas barrier paper, and flavor barrier paper.
10 構造体
11 紙基材
12 A層
13 B層
14 C層
10 Structure 11 Paper base material 12 A layer 13 B layer 14 C layer

Claims (19)

  1.  紙基材の少なくとも片面に、A層、B層及びC層がこの順で積層された構造体であり、
     上記A層が、オレフィン系重合体、スチレン系重合体及びポリエステル系重合体からなる群より選ばれる少なくとも1種を含み、
     上記B層が、ビニルアルコール系重合体を含み、
     上記C層が、ガラス転移温度が-100℃以上5℃以下である重合体を含む、構造体。
    A structure in which an A layer, a B layer, and a C layer are laminated in this order on at least one surface of a paper substrate,
    The layer A contains at least one selected from the group consisting of an olefin-based polymer, a styrene-based polymer, and a polyester-based polymer,
    The layer B contains a vinyl alcohol polymer,
    The structure, wherein the layer C contains a polymer having a glass transition temperature of -100°C or higher and 5°C or lower.
  2.  上記C層が、120℃以下の融点を有する、請求項1に記載の構造体。 The structure described in claim 1, wherein the C layer has a melting point of 120°C or less.
  3.  上記A層が、上記オレフィン系重合体を含み、
     上記オレフィン系重合体が、オレフィン-不飽和カルボン酸系共重合体を含む、請求項1又は請求項2に記載の構造体。
    The layer A contains the olefin polymer,
    3. The structure according to claim 1, wherein the olefin polymer comprises an olefin-unsaturated carboxylic acid copolymer.
  4.  上記A層が、タルクをさらに含む、請求項1、請求項2又は請求項3に記載の構造体。 The structure according to claim 1, claim 2 or claim 3, wherein the A layer further contains talc.
  5.  上記A層における上記タルクの含有量が、1質量%以上80質量%以下である、請求項4に記載の構造体。 The structure according to claim 4, wherein the talc content in layer A is 1% by mass or more and 80% by mass or less.
  6.  上記ビニルアルコール系重合体が、エチレン変性ビニルアルコール系重合体である、請求項1~5のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 5, wherein the vinyl alcohol polymer is an ethylene-modified vinyl alcohol polymer.
  7.  上記ガラス転移温度が-100℃以上5℃以下である重合体が、スチレン-アクリル系共重合体である、請求項1~6のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 6, wherein the polymer having a glass transition temperature of -100°C or more and 5°C or less is a styrene-acrylic copolymer.
  8.  上記C層が、ワックスをさらに含む、請求項1~7のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 7, wherein the C layer further contains wax.
  9.  上記C層における上記ワックスの含有量が0.1質量%以上30質量%以下である、請求項8に記載の構造体。 The structure according to claim 8, wherein the wax content in the C layer is 0.1% by mass or more and 30% by mass or less.
  10.  上記ワックスが、パラフィンワックスを含む、請求項8又は請求項9に記載の構造体。 The structure according to claim 8 or claim 9, wherein the wax comprises paraffin wax.
  11.  上記C層における上記パラフィンワックスの含有量が、1質量%以上30質量%以下である、請求項10に記載の構造体。 The structure according to claim 10, wherein the content of the paraffin wax in the C layer is 1% by mass or more and 30% by mass or less.
  12.  上記ビニルアルコール系重合体が、重合度の異なる2種類以上のビニルアルコール系重合体からなる、請求項1~11のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 11, wherein the vinyl alcohol polymer is made of two or more types of vinyl alcohol polymers having different degrees of polymerization.
  13.  上記A層が、上記オレフィン系重合体、スチレン系重合体及びポリエステル系重合体からなる群より選ばれる少なくとも2種を含む、請求項1~12のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 12, wherein the A layer contains at least two types selected from the group consisting of the olefin-based polymer, the styrene-based polymer, and the polyester-based polymer.
  14.  上記C層が、2種以上の重合体を含む、請求項1~13のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 13, wherein the C layer contains two or more types of polymers.
  15.  請求項1~14のいずれか1項に記載の構造体の製造方法であり、
     上記A層、B層及びC層のうちの少なくとも一つを、カーテンコーターを用いて設ける工程を備える、構造体の製造方法。
    A method for producing the structure according to any one of claims 1 to 14,
    A method for manufacturing a structure, comprising a step of providing at least one of the A layer, B layer, and C layer using a curtain coater.
  16.  請求項1~14のいずれか1項に記載の構造体を含む、耐油紙。  Grease-resistant paper comprising the structure described in any one of claims 1 to 14.
  17.  請求項1~14のいずれか1項に記載の構造体を含む、ガスバリア紙。 Gas barrier paper comprising the structure described in any one of claims 1 to 14.
  18.  請求項1~14のいずれか1項に記載の構造体を含む、フレーバーバリア紙。 Flavor barrier paper comprising the structure described in any one of claims 1 to 14.
  19.  請求項16に記載の耐油紙、請求項17に記載のガスバリア紙、及び請求項18に記載のフレーバーバリア紙からなる群より選ばれる少なくとも1種を含む、包材。 A packaging material comprising at least one selected from the group consisting of the grease-resistant paper according to claim 16, the gas barrier paper according to claim 17, and the flavor barrier paper according to claim 18.
PCT/JP2023/038537 2022-10-27 2023-10-25 Structure, method for producing structure, oil-resistant paper, gas barrier paper, flavor barrier paper and packaging material WO2024090483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-172624 2022-10-27
JP2022172624 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090483A1 true WO2024090483A1 (en) 2024-05-02

Family

ID=90830849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038537 WO2024090483A1 (en) 2022-10-27 2023-10-25 Structure, method for producing structure, oil-resistant paper, gas barrier paper, flavor barrier paper and packaging material

Country Status (1)

Country Link
WO (1) WO2024090483A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236013A (en) * 2012-05-10 2013-11-21 Mitsubishi Electric Corp Semiconductor device
WO2019069963A1 (en) * 2017-10-04 2019-04-11 日本製紙株式会社 Barrier material
JP2020066216A (en) * 2018-10-26 2020-04-30 王子ホールディングス株式会社 Gas barrier laminate and manufacturing method therefor
JP2020163675A (en) * 2019-03-29 2020-10-08 日本製紙株式会社 Paper-made barrier material
JP2020196259A (en) * 2019-05-28 2020-12-10 王子ホールディングス株式会社 Barrier laminate and production method thereof
JP2021020398A (en) * 2019-07-29 2021-02-18 王子ホールディングス株式会社 Barrier packaging material
JP2021075827A (en) * 2019-11-13 2021-05-20 三菱製紙株式会社 Food packaging paper
WO2022009608A1 (en) * 2020-07-09 2022-01-13 凸版印刷株式会社 Gas barrier laminate and packaging bag
WO2022059324A1 (en) * 2020-09-15 2022-03-24 三菱製紙株式会社 Food packaging paper

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236013A (en) * 2012-05-10 2013-11-21 Mitsubishi Electric Corp Semiconductor device
WO2019069963A1 (en) * 2017-10-04 2019-04-11 日本製紙株式会社 Barrier material
JP2020066216A (en) * 2018-10-26 2020-04-30 王子ホールディングス株式会社 Gas barrier laminate and manufacturing method therefor
JP2020163675A (en) * 2019-03-29 2020-10-08 日本製紙株式会社 Paper-made barrier material
JP2020196259A (en) * 2019-05-28 2020-12-10 王子ホールディングス株式会社 Barrier laminate and production method thereof
JP2021020398A (en) * 2019-07-29 2021-02-18 王子ホールディングス株式会社 Barrier packaging material
JP2021075827A (en) * 2019-11-13 2021-05-20 三菱製紙株式会社 Food packaging paper
WO2022009608A1 (en) * 2020-07-09 2022-01-13 凸版印刷株式会社 Gas barrier laminate and packaging bag
WO2022059324A1 (en) * 2020-09-15 2022-03-24 三菱製紙株式会社 Food packaging paper

Similar Documents

Publication Publication Date Title
JP7093779B2 (en) The method of manufacturing the packaging material and the packaging material produced by this method.
US10422081B2 (en) Barrier compositions
US9982148B2 (en) Gas barrier coatings
KR20180005216A (en) Coated substrates comprising surface-treated, aqueous polymer coatings and methods of making and using them
EP3679190A1 (en) Heat sealable barrier coatings for paperboard
JP2020069801A (en) Gas barrier laminate
JP2020066216A (en) Gas barrier laminate and manufacturing method therefor
JP6526444B2 (en) Liquid paper container
TW201326515A (en) The wrapping paper for food
WO2020085110A1 (en) Gas barrier laminate and method for producing same
CN111836868B (en) heat seal coating
JP2021503563A (en) Heat seal coating
US2391621A (en) Method of coating paper
WO2024090483A1 (en) Structure, method for producing structure, oil-resistant paper, gas barrier paper, flavor barrier paper and packaging material
FI129111B (en) Coating structure, sheet-like product and its use
US3298855A (en) Moisture-resistant wrapping paper
JP6877257B2 (en) Oil resistant paper
JP2015516472A (en) Ionomer-poly (vinyl alcohol) blends and coatings
CA3170604A1 (en) Coffee stain-resistant cellulosic structures and associated containers and methods
JP7468821B2 (en) Barrier laminate and packaging bag
FI130515B (en) A method for producing a heat sealable multi-layer paperboard and a heat sealable multi-layer paperboard obtainable by the method
JP4126540B2 (en) Polymer latex for oil-resistant paper and oil-resistant paper
JP2023091508A (en) Coated paper and package or container using the coated paper
JP2024027967A (en) Gas barrier laminates, packaging bags and packaging products
JP2024038668A (en) Oil-resistant coating composition for paper, oil-resistant paper using the oil-resistant coating composition for paper, food packaging material or cooking utensil