WO2024090311A1 - Light-absorbing composition, production method for light-absorbing composition, light absorption film, optical filter, and manufacturing method for optical filter - Google Patents

Light-absorbing composition, production method for light-absorbing composition, light absorption film, optical filter, and manufacturing method for optical filter Download PDF

Info

Publication number
WO2024090311A1
WO2024090311A1 PCT/JP2023/037742 JP2023037742W WO2024090311A1 WO 2024090311 A1 WO2024090311 A1 WO 2024090311A1 JP 2023037742 W JP2023037742 W JP 2023037742W WO 2024090311 A1 WO2024090311 A1 WO 2024090311A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light
light absorbing
optical filter
mass
Prior art date
Application number
PCT/JP2023/037742
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 久保
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2024090311A1 publication Critical patent/WO2024090311A1/en

Links

Images

Definitions

  • the present invention relates to a light-absorbing composition, a light-absorbing film, and an optical filter.
  • solid-state imaging elements such as CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor)
  • various optical filters are placed in front of the solid-state imaging element to obtain images with good color reproducibility.
  • solid-state imaging elements have a spectral sensitivity in a wider wavelength range than the human visual sensitivity corresponding to the visible light region.
  • an optical filter that blocks some infrared or ultraviolet light is placed in front of the solid-state imaging element in order to bring the spectral sensitivity of the solid-state imaging element in the imaging device closer to the human visual sensitivity.
  • optical filters have generally used a dielectric multilayer film to block infrared or ultraviolet rays.
  • optical filters with a film containing a light absorbing agent have been attracting attention.
  • the transmittance characteristics of optical filters with a film containing a light absorbing agent are not easily affected by the angle of incidence, so good images with little change in color can be obtained even when light is incident on the optical filter at an angle in an imaging device.
  • light absorbing optical filters that do not use a light reflecting film can suppress the occurrence of ghosts and flares caused by multiple reflections by the light reflecting film, making it easier to obtain good images in backlit conditions or when photographing night scenes.
  • optical filters with a film containing a light absorbing agent are also advantageous in terms of making imaging devices smaller and thinner.
  • Patent Document 1 describes an optical filter having a light absorbing layer containing a light absorber formed from phosphonic acid having a phenyl group or a halogenated phenyl group (phenyl-based phosphonic acid) and copper ions.
  • Patent Document 2 describes an optical filter having a UV-IR absorbing layer capable of absorbing infrared and ultraviolet rays.
  • the UV-IR absorbing layer contains a UV-IR absorbent formed of phosphonic acid and copper ions.
  • the UV-IR absorbing composition contains, for example, a phenyl-based phosphonic acid and a phosphonic acid having an alkyl group or a halogenated alkyl group (alkyl-based phosphonic acid).
  • Patent document 3 also describes an ophthalmic device that includes a vertical violet cutoff filter.
  • the vertical violet cutoff filter sharply absorbs light with wavelengths in the range of approximately 400 nm to 450 nm.
  • Patent Documents 1 and 2 need to be reconsidered from the perspective of the blocking properties of light in the short wavelength region of 410 nm or less.
  • the violet light vertical cutoff filter described in Patent Document 3 is thought to have a low transmittance of visible light with a wavelength of 450 nm or more.
  • the technologies described in Patent Documents 1 to 3 need to be reconsidered in terms of cleaning of the optical filter or durability during the manufacturing process of the optical filter.
  • the present invention provides a light-absorbing composition, a light-absorbing film, and an optical filter that are advantageous in terms of reproducing human visual sensitivity, particularly in terms of light absorption characteristics in the short wavelength region, and that are also advantageous in terms of durability during cleaning or manufacturing processes of the optical filter.
  • the present invention relates to an ultraviolet absorbing compound having a hydroxy group and a carbonyl group in the molecule; Metal components, Polyvinyl butyral, Contains an isocyanate, At least a portion of the metal component is bonded to an organic oxy group.
  • a light absorbing composition is provided.
  • the present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of: an organic solvent, a UV-absorbing compound having a hydroxyl group and a carbonyl group in the molecule, The method includes adding and mixing a compound containing a metal component, polyvinyl butyral, and an isocyanate. A method for producing the light absorbing composition is provided.
  • the present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of: an ultraviolet absorbing compound having a hydroxy group and a carbonyl group in the molecule; Metal components, A resin having a urethane bond, At least a portion of the metal component is bonded to an organic oxy group. A light absorbing film is provided.
  • the present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of: An optical filter including the above light absorbing film is provided.
  • the present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of: A method for producing an optical filter including the light absorbing film, comprising the steps of:
  • the manufacturing method provides a method for manufacturing an optical filter, the method including the steps of: (i) forming a first insulating film; (i) forming the light absorbing film on an imaging element or an optical component; (ii) forming the light absorbing film on a substrate and peeling the light absorbing film from the substrate;
  • the above light absorbing composition is advantageous from the viewpoint of reproducing human visual sensitivity, particularly the absorption characteristics of light in the short wavelength region, and is also advantageous from the viewpoint of durability during cleaning or manufacturing of the optical filter.
  • the above light absorbing film and the above optical filter are advantageous from the viewpoint of reproducing human visual sensitivity, particularly the absorption characteristics of light in the short wavelength region.
  • the above light absorbing film and the above optical filter are also advantageous from the viewpoint of durability, as they are less likely to be scratched when the surface is cleaned or wiped.
  • FIG. 1 is a cross-sectional view showing an example of a light absorbing film according to the present invention.
  • FIG. 2A is a cross-sectional view showing an example of an optical filter according to the present invention.
  • FIG. 2B is a cross-sectional view showing an example of an optical filter according to the present invention.
  • FIG. 3 shows the transmission spectrum of the optical filter according to the first embodiment.
  • FIG. 4 shows the transmission spectrum of the optical filter according to the fifth embodiment.
  • FIG. 5 shows the transmission spectrum of the optical filter according to the seventh embodiment.
  • FIG. 6 shows the transmission spectrum of the optical filter according to the ninth embodiment.
  • FIG. 7 shows the transmission spectrum of the optical filter according to the eleventh embodiment.
  • FIG. 8 shows the reflection spectrum of the optical filter according to the first embodiment.
  • FIG. 3 shows the transmission spectrum of the optical filter according to the first embodiment.
  • FIG. 4 shows the transmission spectrum of the optical filter according to the fifth embodiment.
  • FIG. 5 shows the transmission spectrum of the optical filter according to the seventh embodiment.
  • FIG. 9 shows the reflection spectrum of the optical filter according to the fifth embodiment.
  • FIG. 10 shows the reflection spectrum of the optical filter according to the seventh embodiment.
  • FIG. 11 shows the reflection spectrum of the optical filter according to the ninth embodiment.
  • FIG. 12 shows the reflection spectrum of the optical filter according to the eleventh embodiment.
  • FIG. 13 shows the transmission spectrum of a transparent glass substrate.
  • an optical filter for an imaging device using a solid-state imaging element can effectively absorb light in the short wavelength region of 410 nm or less, the value of the optical filter can be further increased in terms of reproducing human visual sensitivity.
  • the wavelength at which the spectral transmittance is 50% in the wavelength range of 350 nm to 450 nm is less than 400 nm.
  • the wavelength at which the spectral transmittance is 50% in the wavelength range of 350 nm to 450 nm is in the range of approximately 390 nm to 415 nm.
  • the optical filters described in Patent Documents 1 and 2 are advantageous in terms of effectively absorbing light in the short wavelength region of 410 nm or less.
  • the purple light vertical cutoff filter described in Patent Document 3 may be able to effectively absorb light in the short wavelength region of 410 nm or less, but the transmittance of the filter for visible light of wavelengths of 450 nm or more is considered to be low.
  • the inventors therefore conducted extensive research to develop a light-absorbing composition that is advantageous from the standpoint of reproducing human visual sensitivity, particularly in terms of effectively absorbing light in the short-wavelength region of wavelengths of 410 nm or less.
  • a light-absorbing composition containing a specific ultraviolet absorbing compound and a metal component is advantageous from the standpoint of effectively absorbing light in the short-wavelength region.
  • the present inventors have further studied whether advantageous properties can be imparted to the light absorbing composition containing the above ultraviolet absorbing compound and metal component in terms of durability during the cleaning or manufacturing process of the optical filter.
  • the optical filter may be cleaned by wiping it with a wipe or cloth such as a wiping cloth impregnated with an organic solvent such as alcohol or acetone, or with a microfiber.
  • the portion containing the light absorbing composition or the solidified product of the light absorbing composition may come into contact with another member or the like.
  • the light absorbing composition containing the above ultraviolet absorbing compound and metal component it is important for the light absorbing composition containing the above ultraviolet absorbing compound and metal component to have advantageous properties in terms of durability or solvent resistance regarding the mechanical strength of the surface during the cleaning or manufacturing process of the optical filter in order to increase the added value of the light absorbing composition, light absorbing film, or optical filter.
  • the light absorbing composition it is important for the light absorbing composition to have advantageous properties in terms of scratch resistance and solvent resistance during the cleaning or manufacturing process of the optical filter.
  • the inventor has newly identified an additive component that can provide advantageous characteristics in terms of durability during cleaning or manufacturing of optical filters in the light absorbing composition containing the above ultraviolet absorbing compound and metal component without impairing effective absorption of light in the short wavelength region of 410 nm or less, and has completed the present invention.
  • the light-absorbing composition according to the present invention contains an ultraviolet absorbing compound having a hydroxyl group and a carbonyl group in the molecule, a metal component, polyvinyl butyral (PVB), and an isocyanate.
  • at least a part of the metal component is bonded to an organic oxy group.
  • at least a part of the metal component is bonded to an oxygen atom in the organic oxy group.
  • Favourable conditions for ultraviolet absorbing compounds include appropriate light absorption and transmission ranges, photochemical stability, low enough photosensitisation to have no effect within the range of use, and thermochemical stability. From this perspective, it is considered that the mechanism of light absorption of ultraviolet absorbing compounds is the use of a hydrogen transfer reaction of a hydroxyl group in a molecule due to photoexcitation (intramolecular hydrogen abstraction reaction). Examples of ultraviolet absorbing compounds that exhibit this mechanism include compounds such as hydroxybenzophenone, salicylic acid, hydroxyphenylbenzotriazole, hydroxyphenyltriazine, and substituted acrylonitrile.
  • a phenomenon occurs in which a part of the light absorption band at wavelengths of 300 to 500 nm shifts to the long wavelength side in a light absorbing film or an optical filter having a light absorbing film obtained by curing a light absorbing composition containing an ultraviolet absorbing compound having a hydroxy group and a carbonyl group in the molecule and a metal component.
  • a light absorbing film has advantageous properties for effectively and appropriately absorbing light having a wavelength of 410 nm or less.
  • the light absorption band shifts to the longer wavelength side for example, the phenomenon of the maximum absorption wavelength shifting to the longer wavelength side within the wavelength range of 300 nm to 500 nm of the transmission spectrum, or the phenomenon of the wavelength at which the transmittance is 50% (UV cutoff wavelength) shifting to the longer wavelength side may become apparent.
  • the light-absorbing composition of the present invention the light-absorbing film which is the cured product thereof, and the optical filter equipped with the light-absorbing film, the absorption characteristics inherent to the ultraviolet absorbing compound are adjusted so that light in the short wavelength region can be effectively absorbed.
  • the spectral transmittance of such a light-absorbing film or optical filter is likely to be more appropriate when used together with a solid-state imaging device or the like.
  • the light-absorbing composition contains PVB and isocyanate. This makes the light-absorbing composition more likely to have advantageous properties in terms of durability during the cleaning or manufacturing process of the optical filter.
  • the light-absorbing composition containing PVB and isocyanate is advantageous in terms of improving scratch resistance and solvent resistance during the cleaning or manufacturing process of the optical filter.
  • the light-absorbing composition contains PVB and isocyanate, this does not prevent the absorption properties inherent to the ultraviolet absorbing compound from being adjusted so that light in the short wavelength region can be effectively absorbed by the above-mentioned mechanism of action.
  • PVB for example, tends to have high transparency and can have high compatibility with organic solvents and the like.
  • PVB has high weather resistance and high light resistance, and since the light absorbing composition contains PVB, the light absorbing film and optical filter obtained from the light absorbing composition also tend to exhibit high weather resistance and light resistance.
  • PVB can exhibit advantageous properties as a binder for functional components such as the above-mentioned ultraviolet absorbing compound.
  • the light absorbing composition may have advantageous properties for producing composite optical elements or optical components that combine multiple members or parts.
  • PVB is represented, for example, by the following structural formula:
  • k is the mole fraction [%] of structural units having vinyl butyral groups
  • m is the mole fraction [%] of structural units derived from vinyl alcohol and having hydroxyl groups
  • n is the mole fraction [%] of structural units derived from vinyl acetate.
  • PVB is obtained by reacting polyvinyl alcohol (PVA) with butyraldehyde. Since it is not possible to esterify all of the vinyl groups in PVA, some of the PVB contains groups that contain hydroxyl groups.
  • the number average molecular weight of PVB contained in the light absorbing composition is not limited to a specific value.
  • the number average molecular weight is, for example, 12.0 ⁇ 10 4 or less. This makes it easy to form a film of the light absorbing composition, and the haze of the light absorbing film and optical filter obtained from the light absorbing composition is likely to be low.
  • the number average molecular weight of PVB is, for example, 1.0 ⁇ 10 4 or more. This makes it difficult for the light absorbing composition to shrink during curing, and the haze of the light absorbing film and optical filter obtained from the light absorbing composition is likely to be low.
  • the number average molecular weight of PVB may be 1.2 ⁇ 10 4 or more, or 1.5 ⁇ 10 4 or more.
  • the number average molecular weight of PVB may be 11.5 ⁇ 10 4 or less, or 11.0 ⁇ 10 4 or less.
  • the number average molecular weight of PVB can be measured, for example, according to Japanese Industrial Standards (JIS) K7252-1:2016.
  • the butyralization degree of PVB is not limited to a specific value.
  • the butyralization degree is, for example, 60 mol% or more. This makes it easy to adjust the hydrophobicity and toughness of the surface of the light-absorbing film or optical filter obtained from the light-absorbing composition to the desired level.
  • the butyralization degree is preferably 65 mol% or more.
  • the butyralization degree is, for example, 90 mol% or less. This makes it easy for the desired amount of hydroxyl groups to be present in the PVB.
  • the butyralization degree is preferably 80 mol% or less.
  • the butyralization degree of PVB is, for example, a value expressed as a percentage of the molar fraction calculated by dividing the amount of ethylene groups to which butyral groups are bonded by the total amount of ethylene groups in the main chain.
  • This butyralization degree can be calculated, for example, by measuring the degree of acetylation and the hydroxyl group content according to a method conforming to JIS K 6728 (Testing method for polyvinyl butyral), calculating the molar fraction from the measurement results, and then subtracting the degree of acetylation and the hydroxyl group content from 100 mol%.
  • the content of hydroxyl groups in PVB is not limited to a specific value.
  • the content is, for example, 10 mol% or more.
  • a sufficient amount of hydroxyl groups is likely to be present in PVB to be subjected to a reaction with isocyanate during curing of the light absorbing composition.
  • the content of hydroxyl groups in PVB is preferably 20 mol% or more.
  • the content of hydroxyl groups in PVB is, for example, 50 mol% or less.
  • the PVB is likely to contain a desired amount of butyral groups from the viewpoint of toughness.
  • the content of hydroxyl groups in PVB is preferably 40 mol% or less.
  • the content of hydroxyl groups can be calculated, for example, according to a method in accordance with JIS K6728 (Test method for polyvinyl butyral).
  • PVB examples include S-LEC KS-1, S-LEC KS-10, S-LEC BX-L, S-LEC BX-1, S-LEC BL-S, and S-LEC BL-1 manufactured by Sekisui Chemical Co., Ltd. S-LEC is a registered trademark.
  • Other examples of PVB are Mobital B20H, Mobital B30T, Mobital B30H, and Mobital B45H manufactured by Kuraray Co., Ltd. Mobital is a registered trademark.
  • one or more types of PVB are selected from these PVBs or are mixed and used.
  • the isocyanate contained in the light absorbing composition has, for example, two or more isocyanate groups in the molecule, and each isocyanate group is bonded to a carbon atom.
  • the presence or absence of a urethane bond can be understood by obtaining an infrared spectrum of a sample by a method such as Fourier transform infrared spectroscopy (FT-IR) and analyzing the presence or absence or intensity of peaks characteristic of a urethane bond in the infrared spectrum.
  • FT-IR Fourier transform infrared spectroscopy
  • the isocyanate contained in the light absorbing composition is not limited to a specific isocyanate.
  • the isocyanate is a compound having an isocyanate group in the molecule.
  • Examples of the isocyanate are tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), phenylene diisocyanate, dinaphthalene diisocyanate, isophorone diisocyanate, and xylylene diisocyanate.
  • Other examples of the isocyanate are trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, and trimethylhexamethylene diisocyanate.
  • the isocyanate may be an alicyclic polyisocyanate.
  • the alicyclic polyisocyanate are isophorone diisocyanate, dicyclohexylmethane diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, and bis(isocyanatomethyl)norbornane.
  • the isocyanate may be an araliphatic polyisocyanate.
  • araliphatic polyisocyanates are xylylene diisocyanate, tetramethyl xylylene diisocyanate, and ⁇ , ⁇ '-diisocyanate-1,4-diethylbenzene.
  • the metal component is bonded to the organic oxy group, and the compound includes a metal component bonded to the organic oxy group.
  • the compound containing a metal component bonded to the organic oxy group is generally a compound represented by (R k -O) n -M.
  • M represents a metal component such as a metal atom or a metal ion.
  • the (R k -O) n - group represents n organic oxy groups (or collectively referred to as organic oxy groups, the same applies hereinafter), R k represents an organic group containing at least a carbon atom (C) and a hydrogen atom (H), etc., and n represents the number of groups bonded or coordinated to the metal component M, and one or more organic oxy groups may be bonded or coordinated to the metal component M.
  • the organic oxy group (R k -O)- may contain two or more O (oxygen), and the organic oxy group may be bonded or coordinated to the metal component M via these two or more O (oxygen).
  • the organic group R k may be the same or different for each organic oxy group (R k -O)- to be bonded or coordinated, and a plurality of organic oxy groups may be bonded without the metal component M being interposed therebetween.
  • the organic oxy group is not particularly limited as long as it satisfies such conditions, and may be, for example, an alkoxy group such as a methoxy group, an ethoxy group, a propyloxy group, a phenoxy group, or an alkylphenoxy group, or a vinyl group.
  • the organic oxy group may be an organic group R k that contains a partial structure (group) such as an acyl group, an acetyl group, a ketone group, a vinyl group, a propionyl group, an acrylyl group, an acetoxy group, an acryloyl group, an ethyl acetate group, an ethyl acetoacetate group, an acetylacetone group, or other ester or ether.
  • the organic oxy group may contain one or more groups selected from these.
  • the metal component M may include at least one selected from the group consisting of metal components such as metal atoms and ions of, for example, Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr.
  • metal components such as metal atoms and ions of, for example, Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr.
  • the arrangement of the hydroxyl group and the carbonyl group in the ultraviolet absorbing compound is not limited to a specific arrangement.
  • the hydroxyl group and the carbonyl group are preferably arranged with one to three atoms between them. This is thought to facilitate the transfer of hydrogen between the hydroxyl group and the carbonyl group in the ultraviolet absorbing compound. This effectively facilitates the shift of the light absorption band in the wavelength range of 300 to 500 nm to the longer wavelength side.
  • the light absorbing film obtained by curing the light absorbing composition more reliably and effectively absorbs light with a wavelength of 410 nm or less.
  • the ultraviolet absorbing compound is not limited to a specific compound as long as it has a hydroxyl group and a carbonyl group in its molecule.
  • the ultraviolet absorbing compound is preferably a compound that does not easily aggregate even when mixed with a metal component.
  • the ultraviolet absorbing compound preferably contains a benzophenone compound represented by the following formula (A1).
  • the light absorbing film or optical filter produced using the light absorbing composition is more likely to effectively absorb light in the short wavelength region of 410 nm or less.
  • R 11 , R 12 , R 21 , and R 22 is a hydroxy group.
  • R 11 , R 12 , R 21 , or R 22 is a functional group other than a hydroxy group, a plurality of R 11 , a plurality of R 12 , a plurality of R 21 , or a plurality of R 22 may be present, and at least one of R 11 , R 12 , R 21 , and R 22 may not be present.
  • R 11 , R 12 , R 21 , or R 22 is a functional group other than a hydroxy group
  • the functional group is, for example, a carboxyl group, an aldehyde group, a halogen atom, an alkyl group having 1 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with halogen atoms, an alkoxy group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with halogen atoms.
  • the ultraviolet absorbing compound contains a benzophenone compound represented by the following formula (A2).
  • the light absorbing film or optical filter produced using the light absorbing composition is more likely to effectively absorb light in the short wavelength region of 410 nm or less.
  • R 31 is a hydrogen atom, a hydroxyl group, a carboxyl group, an aldehyde group, a halogen atom, a group having a halogen atom, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
  • R 41 and R 42 may be a hydroxyl group, a carboxyl group, an aldehyde group, a group having a halogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, and R 41 and R 42 may not be present.
  • a plurality of R 41 may be present, and a plurality of R 42 may be present.
  • the group having a halogen atom may be a halogenated alkyl group in which at least one hydrogen atom in the alkyl group is substituted with a halogen atom.
  • the group having a halogen atom may be a halogenated aryl group in which at least one hydrogen atom in the aryl group is substituted with a halogen atom.
  • the group having a halogen atom may be a halogenated alkoxy group in which at least one hydrogen atom in the alkoxy group is substituted with a halogen atom.
  • the benzophenone compound represented by formula (A1) or formula (A2) is not limited to a specific compound.
  • the benzophenone compound is, for example, at least one selected from the group consisting of 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-n-octoxybenzophenone, 2-hydroxy-5-chlorobenzophenone, and 2,4-dibenzoylresorcinol.
  • the ultraviolet absorbing compound may contain a salicylic acid compound represented by the following formula (B).
  • the light absorbing film or optical filter produced using the light absorbing composition is more likely to effectively absorb light in the short wavelength region around 410 nm.
  • R 51 may be a hydroxy group, a carboxy group, a group containing a halogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms. In formula (B), a plurality of R 51 may be present, or R 51 may not be present.
  • R 52 is a hydrogen atom, an aryl group, or a halogenated aryl group in which one or more hydrogen atoms are substituted with halogen atoms.
  • the group having a halogen atom may be a halogenated alkyl group in which at least one hydrogen atom in the alkyl group is substituted with a halogen atom.
  • the group having a halogen atom may be a halogenated aryl group in which at least one hydrogen atom in the aryl group is substituted with a halogen atom.
  • the group having a halogen atom may be a halogenated alkoxy group in which at least one hydrogen atom in the alkoxy group is substituted with a halogen atom.
  • the salicylic acid compound represented by formula (B) is not limited to a specific compound.
  • the salicylic acid compound represented by formula (B) includes, for example, at least one selected from the group consisting of phenyl salicylate, 4-butylphenyl salicylate, and octylphenyl salicylate.
  • the metal component is not limited to a specific metal component.
  • the metal component is typically a component that does not aggregate in the light absorbing composition and the light absorbing film produced using the light absorbing composition, and is thermally and chemically stable.
  • the metal component is typically a component that can interact with the ultraviolet absorbing compound.
  • the metal component includes at least one selected from the group consisting of, for example, Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr.
  • the metal component is likely to interact with the above-mentioned ultraviolet absorbing compound.
  • the content C M of the metal component in the light-absorbing composition is not limited to a specific value.
  • the content C M is, for example, 0.005% to 2% by mass. This makes it easier for a light-absorbing film or optical filter produced using the light-absorbing composition to more reliably absorb light in the short wavelength region of 410 nm or less.
  • the content C M is preferably 0.01% to 1%, more preferably 0.01% to 0.5%, and even more preferably 0.01% to 0.3%.
  • the content C UV of the ultraviolet absorbing compound in the light absorbing composition is not limited to a specific value.
  • the content C UV is, for example, 0.1% to 20% by mass. This makes it easier for a light absorbing film or optical filter produced using the light absorbing composition to more reliably absorb light in the short wavelength region of 410 nm or less.
  • the content C UV is preferably 0.1% to 15%, more preferably 0.2 to 10%, even more preferably 0.5% to 10%, and particularly preferably 1% to 10%.
  • the ratio R UV/M of the content of the ultraviolet absorbing compound to the content of the metal component is not limited to a specific value.
  • the ratio R UV/M is, for example, 5 to 300 on a mass basis. This makes it easier for a light-absorbing film or optical filter produced using the light-absorbing composition to more reliably absorb light in the short wavelength region of 410 nm or less effectively.
  • the ratio R UV/M is preferably 10 to 300, more preferably 20 to 300, and even more preferably 30 to 280.
  • the ratio R I/P of the mass of isocyanate to the mass of PVB is not limited to a specific value.
  • the ratio R I/P is, for example, 0.05 to 3.0. This makes it easier for the surface hardness of the cured product of the light absorbing composition to be increased by the crosslinking reaction between PVB and isocyanate.
  • the ratio R I/P is preferably 0.05 to 3.0, more preferably 0.1 to 0.3, and even more preferably 0.2 to 3.0.
  • the ratio R I/UV of the mass of the isocyanate to the mass of the ultraviolet absorbing compound is not limited to a specific value.
  • the ratio R I/UV is, for example, 0.1 to 3.0. This makes it easier to increase the hardness of the surface of the cured product of the light-absorbing composition, and makes it easier to achieve advantageous mechanical properties and solvent resistance from the viewpoint of durability during cleaning or manufacturing of optical filters.
  • the ratio R I/UV is preferably 0.2 to 3.0, more preferably 0.25 to 3.0.
  • the method for producing the light-absorbing composition is not limited to a specific method.
  • the light-absorbing composition can be produced by a method including adding an ultraviolet-absorbing compound having a hydroxyl group and a carbonyl group in the molecule, a compound containing a metal component, polyvinyl butyral, and an isocyanate to an organic solvent and mixing them.
  • the light absorbing composition can be used to provide, for example, the light absorbing film 10 shown in FIG. 1.
  • the light absorbing film 10 can be obtained, for example, by curing the light absorbing composition.
  • the light absorbing film 10 contains an ultraviolet absorbing compound having a hydroxyl group and a carbonyl group in the molecule, a metal component, and a resin having a urethane bond.
  • at least a part of the metal component is bonded to an organic oxy group.
  • At least a part of the metal component is bonded to an oxygen atom in the organic oxy group.
  • the light absorbing film 10 contains a resin having a urethane bond, the light absorbing film 10 is easy to have advantageous characteristics in terms of improving durability or solvent resistance in cleaning optical filters.
  • the metal component is bonded to the organic oxy group, and the compound includes a metal component bonded to the organic oxy group.
  • the compound containing the metal component bonded to the organic oxy group is generally a compound represented by (R k -O) n -M.
  • M represents a metal component such as a metal atom or a metal ion.
  • the (R k -O) n - group represents n organic oxy groups (or collectively referred to as organic oxy groups, the same applies hereinafter), R k represents an organic group containing at least a carbon atom (C) and a hydrogen atom (H), etc., n represents the number of atoms bonded or coordinated to the metal component M, and one or more organic oxy groups may be bonded or coordinated to the metal component M.
  • the organic oxy group (R k -O)- may contain two or more O (oxygen), and the organic oxy group may be bonded or coordinated to the metal component M via these two or more O (oxygen).
  • the organic group R k may be the same or different for each organic oxy group (R k -O)- to be bonded or coordinated, and a plurality of organic oxy groups may be bonded without the metal component M being interposed therebetween.
  • the organic oxy group is not particularly limited as long as it satisfies such conditions, and may be, for example, an alkoxy group such as a methoxy group, an ethoxy group, a propyloxy group, a phenoxy group, or an alkylphenoxy group, or a vinyl group.
  • the organic oxy group may be an organic group R k that contains a partial structure (group) such as an acyl group, an acetyl group, a ketone group, a vinyl group, a propionyl group, an acrylyl group, an acetoxy group, an acryloyl group, an ethyl acetate group, an ethyl acetoacetate group, an acetylacetone group, or other ester or ether.
  • the organic oxy group may contain one or more groups selected from these.
  • the metal component M may include at least one selected from the group consisting of metal components such as metal atoms and ions of, for example, Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr.
  • metal components such as metal atoms and ions of, for example, Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr.
  • the hydroxyl group and the carbonyl group are preferably spaced apart by 1 to 3 atoms. This makes it easier to improve the light absorbing film 10's ability to absorb light in the wavelength range of 410 nm or less.
  • the ultraviolet absorbing compound in the light absorbing film 10 includes, for example, a benzophenone-based compound represented by the above formula (A1). This makes it easier to improve the ability of the light absorbing film 10 to absorb light in the wavelength range of 410 nm or less.
  • the ultraviolet absorbing compound in the light absorbing film 10 preferably contains a benzophenone-based compound represented by the above formula (A2). This makes it particularly easy to improve the ability of the light absorbing film 10 to absorb light in the wavelength range of 410 nm or less.
  • the ultraviolet absorbing compound in the light absorbing film 10 may contain, for example, a salicylic acid compound represented by the above formula (B). In this case, it is easy to improve the ability of the light absorbing film 10 to absorb light in the wavelength range of 410 nm or less.
  • the metal component in the light absorbing film 10 includes at least one selected from the group consisting of, for example, Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr.
  • the ratio r UV/M of the content of the ultraviolet absorbing compound to the content of the metal component is not limited to a specific value.
  • the ratio r UV/M is, for example, 5 to 300 on a mass basis. This makes it easier for the light absorbing film or optical filter produced using the light absorbing composition to more reliably absorb light in the short wavelength region of 410 nm or less effectively.
  • the ratio r UV/M is preferably 10 to 300, more preferably 20 to 300, and even more preferably 30 to 280.
  • the transmittance T400 of the light absorbing film 10 is, for example, 5% or less. This is advantageous from the viewpoint of reproducing the visual sensitivity of the human eye.
  • the transmittance T400 is the transmittance at a wavelength of 400 nm in the transmission spectrum at an incident angle of 0°.
  • the transmittance T400 is preferably 4.5% or less, and more preferably 4% or less.
  • the content of the ultraviolet absorbing compound in the light absorbing film 10 is not limited to a specific value.
  • the content is, for example, 0.1% to 90%, preferably 0.5% to 80%, and more preferably 2% to 70%, by mass.
  • the content of the metal component in the light absorbing film 10 is not limited to a specific value.
  • the content is, for example, 0.005% to 5% by mass, preferably 0.01% to 4%, and more preferably 0.03% to 3%.
  • the ratio r I/P of the mass of isocyanate to the mass of PVB is not limited to a specific value.
  • the ratio r I/P is, for example, 0.05 to 3.0, preferably 0.05 to 2.5, more preferably 0.05 to 2.0, and further preferably 1.0 to 2.0.
  • the ratio r I/UV of the mass of the isocyanate to the mass of the ultraviolet absorbing compound is not limited to a specific value.
  • the ratio r I/UV is, for example, 0.1 to 3.0, preferably 0.2 to 2.8, and more preferably 0.2 to 2.5.
  • the thickness of the light absorbing film 10 is not limited to a specific value.
  • the thickness of the light absorbing film 10 is, for example, 0.5 ⁇ m to 500 ⁇ m, may be 1 ⁇ m to 100 ⁇ m, or may be 1 ⁇ m to 50 ⁇ m.
  • the method of curing the light absorbing composition is not limited to a specific method.
  • the conditions for curing the light absorbing composition are adjusted so that a crosslinking reaction occurs between the PVB contained in the light absorbing composition and the isocyanate.
  • the light absorbing film 10 contains a resin having a urethane bond.
  • the light absorbing composition may be cured by heating at a predetermined temperature.
  • the predetermined temperature is, for example, 80°C or higher, preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 140 to 180°C. This makes it easier for the light absorbing film 10 to have advantageous characteristics in terms of durability in cleaning the optical filter while preventing deterioration of the ultraviolet absorbing compound.
  • optical filters 1a and 1b equipped with a light absorbing film 10 can be provided.
  • the optical filters 1a and 1b tend to effectively absorb light in the short wavelength region of 410 nm or less.
  • the transmittance T 410 at a wavelength of 410 nm is, for example, 20% or less, preferably 15% or less, and more preferably 10% or less.
  • the maximum transmittance T M 300-380 in the wavelength range of 300 to 380 nm is, for example, 3% or less. This makes it easy for the optical filter to effectively absorb light in the wavelength range shorter than 400 nm.
  • the maximum transmittance T M 300-380 is preferably 2% or less, and more preferably 1% or less.
  • the wavelength at which the transmittance in the wavelength range of 300 to 520 nm is 50% is defined as the ultraviolet cutoff wavelength ⁇ UV .
  • the condition 405 nm ⁇ UV ⁇ 500 nm is satisfied. This makes it easier for the light absorbing film 10 to effectively absorb light in the short wavelength region around the wavelength of 410 nm, and makes it easier for light in a wavelength region that is difficult for humans to recognize to be cut in an imaging device used in combination with an imaging element.
  • the optical filters 1a and 1b preferably satisfy the condition 405 nm ⁇ UV ⁇ 490 nm, and more preferably satisfy the condition 405 nm ⁇ UV ⁇ 480 nm.
  • the minimum transmittance T m 480-600 in the wavelength range of 480 to 600 nm is, for example, 85% or more. This allows the optical filters 1a and 1b to appropriately transmit visible light, and in an imaging device used in combination with an imaging element, it is possible to increase the light flux reaching the imaging element from the subject.
  • the minimum value of the transmittance T m 480-600 is preferably 86% or more, and more preferably 87% or more.
  • the transmission spectrum obtained by irradiating light having a wavelength in the range of 300 nm to 1200 nm on the optical filters 1a and 1b at an incident angle of 0° may satisfy the following requirements (ia), (ii-a), (iii-a), (iv-a), (va), and (vi-a).
  • the maximum transmittance T M 300-380 in the wavelength range of 300 nm to 380 nm is 3% or less.
  • the transmittance T 400 at a wavelength of 400 nm is 5% or less.
  • the transmittance T 410 at a wavelength of 410 nm is 10% or less.
  • the wavelength ⁇ UV [nm] at which the transmittance is 50% is within the range of 405 nm to 490 nm.
  • the minimum transmittance T m 480-600 in the wavelength range of 480 to 600 nm is 85% or more.
  • the ratio T 0 UV+ /T 0 UV- of the transmittance T 0 UV+ at a wavelength of ( ⁇ UV +10) nm to the transmittance T 0 UV- at a wavelength of ( ⁇ UV -10) nm is 1.8 or more.
  • the optical filters 1a and 1b can exhibit high ultraviolet absorption properties.
  • the optical filters 1a and 1b can exhibit higher ultraviolet absorbing properties.
  • the optical filters 1a and 1b can be applied to optical filter applications that require higher ultraviolet absorbing performance.
  • the transmittance T400 is preferably 4% or less.
  • the optical filters 1a and 1b can exhibit high ultraviolet absorption properties, and the spectrum to which the image sensor is sensitive can easily partially match the spectrum corresponding to the human visual sensitivity.
  • the wavelength ⁇ UV is preferably 420 nm to 490 nm, more preferably 420 nm to 450 nm.
  • purple fringing is easily suppressed in the obtained image.
  • Purple fringing is a color bleeding that appears approximately purple, especially on the contours of the subject.
  • the transmittance of light belonging to the human visible light range can be increased, making it easier to obtain a bright image.
  • the transmittance of light in the human visible light range tends to be high, making it easier to obtain bright images.
  • the transmittance of the wavelength range corresponding to the maximum sensitivity on the human luminosity curve tends to be high, making it easier for humans to perceive brightness when viewing an image.
  • the ratio T 0 UV+ /T 0 UV- is preferably 1.9 or more, more preferably 2.0 or more, even more preferably 2.2 or more, and particularly preferably 2.4 or more.
  • the reflection spectrum obtained by making light in the wavelength range of 300 nm to 1200 nm incident on the optical filters 1a and 1b at an incident angle of 5° may satisfy the following requirements (ib) and (ii-b).
  • the reflection spectrum obtained by making light in the wavelength range of 300 nm to 1200 nm incident on the optical filters 1a and 1b at an incident angle of 40° may satisfy the following requirements (iii-b) and (iv-b).
  • the reflection spectrum obtained by making light in the wavelength range of 300 nm to 1200 nm incident on the optical filters 1a and 1b at an incident angle of 60° may satisfy the following requirements (vb) and (vi-b).
  • the maximum reflectance R 5 300-450 in the wavelength range of 300 nm to 450 nm is 20% or less.
  • the maximum reflectance R 5 300-600 in the wavelength range of 300 nm to 600 nm is 25% or less.
  • the maximum reflectance R 40 300-450 in the wavelength range of 300 nm to 450 nm is 20% or less.
  • the maximum reflectance R 40 300-600 in the wavelength range of 300 nm to 600 nm is 25% or less.
  • the maximum reflectance R 60 300-450 in the wavelength range of 300 nm to 450 nm is 30% or less.
  • the maximum reflectance R 60 300-600 in the wavelength range of 300 nm to 600 nm is 35% or less.
  • the maximum value R5 300-450 is preferably 15% or less.
  • the maximum value R40 300-450 is preferably 15% or less.
  • the maximum value R60 300-450 is preferably 20% or less.
  • the maximum value R5 300-600 is preferably 20% or less.
  • the maximum value R40 300-600 is preferably 20% or less.
  • the maximum value R60 300-600 is preferably 25% or less.
  • the optical filters 1a and 1b may satisfy the following requirements (ic), (ii-c), (iii-c), (iv-c), and (vc).
  • the ⁇ 30 UV [nm] in (ic) is a wavelength at which the transmittance is 50% in the range of 350 nm to 500 nm in the transmission spectrum when light in the range of 300 nm to 1200 nm is incident on the optical filter at an incident angle of 30°.
  • the ⁇ 40 UV [nm] in (ii-c) is a wavelength at which the transmittance is 50% in the range of 350 nm to 500 nm in the transmission spectrum when light in the range of 300 nm to 1200 nm is incident on the optical filter at an incident angle of 40°.
  • the ⁇ 50 UV [nm] in (iii-c) is a wavelength at which the transmittance is 50% in the range of 350 nm to 500 nm in the transmission spectrum when light in the range of 300 nm to 1200 nm is incident on the optical filter at an incident angle of 50°.
  • the ⁇ 60 UV [nm] of (iv-c) is a wavelength at which the transmittance is 50% in the range of 350 nm to 500 nm in the transmission spectrum when light in the range of 300 nm to 1200 nm is incident on the optical filter at an incident angle of 60°.
  • the ⁇ 70 UV [nm] of (vc) is a wavelength at which the transmittance is 50% in the range of 350 nm to 500 nm in the transmission spectrum when light in the range of 300 nm to 1200 nm is incident on the optical filter at an incident angle of 70°.
  • UV cut filters have the advantage that the angle dependency of the transmission spectrum is small.
  • UV cut filters that cut UV rays with a reflective film made of a dielectric multilayer film tend to have a UV cutoff wavelength that shifts to the short wavelength side for light incident at an angle. For this reason, the UV light that you want to cut may be detected by the sensor depending on the angle of incidence.
  • optical filters 1a and 1b satisfy the above requirements (i-c) to (v-c), and there is little change in the UV cutoff wavelength for oblique incidence, and the UV cutoff wavelength is unlikely to shift to the short wavelength side. Therefore, optical filters 1a and 1b, in addition to the function of suppressing ghosts and flares, make it easy to achieve good color reproducibility that is less likely to cause color unevenness within the surface, making it easy to obtain high-quality images.
  • preferably satisfies
  • preferably satisfies
  • is preferably
  • the optical filter 1a is, for example, composed of a single light absorbing film 10.
  • the optical filter 1a can be used, for example, separately from the imaging element or optical component.
  • the optical filter 1a may be bonded to the imaging element and the optical component.
  • the optical filter 1a may be constructed by applying the above-mentioned light absorbing composition to the imaging element or optical component and curing the light absorbing composition. In this way, the optical filter 1a may be manufactured by forming the light absorbing film 10 on the imaging element or optical component.
  • the optical filter 1a can be produced, for example, by peeling off the light absorbing film 10 formed on the substrate from the substrate.
  • the material of the substrate may be glass, resin, or metal.
  • the surface of the substrate may be subjected to a surface treatment such as coating with a fluorine-containing compound. In this way, the optical filter 1a may be manufactured by forming the light absorbing film 10 on the substrate and peeling off the light absorbing film 10 from the substrate.
  • the optical filter 1b includes a light absorbing film 10 and a transparent dielectric substrate 20.
  • the light absorbing film 10 is provided parallel to one of the main surfaces of the transparent dielectric substrate 20.
  • the light absorbing film 10 may be in contact with one of the main surfaces of the transparent dielectric substrate 20, for example.
  • the light absorbing film 10 can be formed, for example, by applying the above-mentioned light absorbing composition to one of the main surfaces of the transparent dielectric substrate 20 and curing the light absorbing composition.
  • the type of the transparent dielectric substrate 20 is not limited to a specific type.
  • the transparent dielectric substrate 20 may have an absorption ability in the infrared region.
  • the transparent dielectric substrate 20 may have an average spectral transmittance of 90% or more at wavelengths of, for example, 350 nm to 900 nm.
  • the material of the transparent dielectric substrate 20 is not limited to a specific material, but may be, for example, a specific glass or resin.
  • the transparent dielectric substrate 20 may be, for example, transparent glass made of silicate glass such as soda-lime glass and borosilicate glass, or phosphate glass and fluorophosphate glass containing coloring components such as Cu and Co.
  • Phosphate glass and fluorophosphate glass containing coloring components are, for example, infrared absorbing glass, and are themselves light absorbing.
  • the light absorbing film 10 is used together with the transparent dielectric substrate 20 of infrared absorbing glass, the light absorption and transmission spectrum of both can be adjusted to produce an optical filter having desired optical characteristics, and the degree of freedom in designing the optical filter is high.
  • the resin is, for example, a cyclic olefin resin such as a norbornene resin, a polyarylate resin, an acrylic resin, a modified acrylic resin, a polyimide resin, a polyetherimide resin, a polysulfone resin, a polyethersulfone resin, a polycarbonate resin, or a silicone resin.
  • a cyclic olefin resin such as a norbornene resin, a polyarylate resin, an acrylic resin, a modified acrylic resin, a polyimide resin, a polyetherimide resin, a polysulfone resin, a polyethersulfone resin, a polycarbonate resin, or a silicone resin.
  • Each of the optical filters 1a and 1b may be modified to further include other functional films such as an infrared absorbing film, an infrared reflecting film, and an anti-reflection film.
  • Such functional films may be provided on the light absorbing film 10 or the transparent dielectric substrate 20.
  • the optical filter may include an anti-reflection film to increase the transmittance in a predetermined wavelength range (for example, the visible light range).
  • the anti-reflection film may be configured as a layer of a low refractive index material such as MgF2 and SiO2 , or may be configured as a laminate of such a layer of a low refractive index material and a layer of a high refractive index material such as TiO2 , or may be configured as a dielectric multilayer film.
  • a low refractive index material such as MgF2 and SiO2
  • Such an anti-reflection film may be formed by a method involving a physical reaction such as vacuum deposition and sputtering, or by a method involving a chemical reaction such as CVD and sol-gel.
  • the optical filter may be configured, for example, with the light absorbing film 10 disposed between two sheets of glass.
  • the light absorbing film 10 acts as a so-called intermediate film. This improves the rigidity and mechanical strength of the optical filter.
  • the main surface of the optical filter becomes hard, which is advantageous from the standpoint of preventing scratches, etc. This advantage is particularly important when a relatively flexible resin is used as the binder or matrix in the light absorbing film 10.
  • an optical filter 1c can be provided that includes a light absorbing film 10 and an anti-reflection film 30.
  • an optical filter having an anti-reflection film when light is incident on the optical filter at a predetermined angle of incidence, the light reflected from the optical filter is reduced and approaches zero. This is extremely advantageous in an imaging device equipped with an optical filter having an anti-reflection film, from the viewpoint of preventing ghosts, flares, and noise that occur due to multiple scattering of reflected light within the imaging device or camera module, for example.
  • the material of the anti-reflective film is not limited to a specific material.
  • the method of forming the anti-reflective film is not limited to a specific method.
  • the method of forming the anti-reflective film may be a gas phase method or a liquid phase method.
  • the method of forming the anti-reflective film may be a vapor deposition method.
  • the method of forming the anti-reflective film may be a sol-gel method using a reactive material containing silicon, which is a liquid phase method that is excellent for forming anti-reflective films.
  • the anti-reflective film may be a single layer film made of the same type of material, or a multilayer film made of two or more different materials.
  • the material constituting each layer of the film and multilayer film is not limited to a specific material.
  • the material is, for example, an inorganic compound such as SiO 2 , TiO 2 , Ta 2 O 3 , MgF 2 , Al 2 O 3 , CaF 2 , ZrO 2 , CeO 2 , and ZnS.
  • the film or layer may be formed by a so-called sol-gel method using an alkoxysilane compound as a starting material.
  • the alkoxysilane compound is hydrolyzed and then condensed in the presence of water and a catalyst to obtain a dense and hard film containing SiO 2.
  • the sol-gel method has the advantage that a film or layer containing SiO 2 can be formed without requiring high temperatures.
  • the starting material is not limited to a specific material, and the functional group of the starting material is not limited to a specific functional group.
  • the starting material preferably includes "trifunctional silanes containing alkyl groups" such as MTES (methyltriethoxysilane) and TEOS (tetraethoxysilane), and "tetrafunctional silanes". Tetrafunctional silanes are essential for forming a film or layer with a strong and dense skeleton. On the other hand, it is difficult to control the reactivity with tetrafunctional silanes alone, and it is difficult to adjust the polarity of the film or layer. In addition, cracks are likely to occur in the film or layer.
  • the starting material contains trifunctional silane in addition to tetrafunctional silane, the flexibility of the silica skeleton is improved, the polarity of the film or layer is easily adjusted, and cracks in the film or layer are easily suppressed. It is desirable to be able to easily adjust the polarity of the film or layer from the viewpoint of adjusting the refractive index of the anti-reflective coating.
  • the organic functional groups in the trifunctional silanes are not originally limited to specific functional groups.
  • trifunctional silanes that have a methyl group as an organic functional group are desirable in order to form homogeneous liquids and coatings when combined with tetrafunctional silanes.
  • the ratio of the amount of "trifunctional silane containing an alkyl group” to the amount of "tetrafunctional silane” is not limited to a specific value.
  • the relationship of the amount of "trifunctional silane containing an alkyl group” to the amount of "tetrafunctional silane” 5:1 to 1:3 is satisfied on a mass basis. This makes it easier to suppress cracks in the anti-reflective film, and makes it easier for the tetrafunctional silane to form a strong skeleton.
  • the starting material may contain components other than those involved in the sol-gel method.
  • the starting material may contain fine particles and fillers for adjusting the refractive index.
  • the fine particles and fillers may be hollow or may be high refractive index materials.
  • the starting material may contain components that decompose at low temperatures. This makes it easier to adjust the refractive index of the anti-reflective film.
  • the temperature at which the coating film is baked in the sol-gel method is not limited to a specific temperature. The temperature is, for example, in the range of 60°C to 250°C, preferably in the range of 70°C to 230°C, and more preferably in the range of 80°C to 200°C.
  • the material of the single-layer film has a low refractive index.
  • n 0 is the refractive index of the substrate on which the anti-reflective film is formed.
  • the anti-reflective film contains hollow particles formed of metal oxides such as SiO 2 and TiO 2 or organic materials such as PMMA, the inside of the hollow particles is occupied by air with a refractive index of about 1, so that the effective refractive index of the particles can be lowered and the refractive index of the anti-reflective film is likely to be low.
  • the dielectric constant and refractive index of a mixture consisting of multiple phases can be obtained by an effective medium approximation method using the Bruggemann formula.
  • the anti-reflective film may contain solid particles formed of the above materials.
  • mechanical strength such as scratch resistance is required for the anti-reflective film, it is advantageous for the anti-reflective film to contain such solid particles.
  • a film may be formed by a sol-gel method in a state containing such hollow particles or solid particles.
  • the affinity between the SiO2 in the film formed by the sol-gel method and the hollow or solid particles is good, and aggregation of the hollow or solid particles is suppressed, which is expected to suppress bleed-out, etc.
  • the anti-reflection film may have a multilayer structure including a layer containing SiO 2 formed by a sol-gel method and a layer formed by, for example, a vacuum deposition method, a sol-gel method, or other methods.
  • a multilayer structure including a layer containing SiO 2 formed by a sol-gel method and a layer formed by, for example, a vacuum deposition method, a sol-gel method, or other methods.
  • the layer to be combined may be, for example, a layer containing hollow particles and containing SiO 2 formed by a sol-gel method, a layer made of a material having a relatively high refractive index such as TiO 2 and Ta 2 O 3 , or a layer made of other materials such as MgF 2 .
  • ⁇ Thickness measurement> The distance from the surface of each optical filter was measured using a laser displacement meter (Keyence Corporation, product name: LK-H008), and the thickness of the light absorbing film was measured by subtracting the thickness of the transparent glass substrate.
  • Kuraray Kuraclean Wiper LF-8G was soaked with ethanol, propylene glycol monomethyl ether (PGME), or propylene glycol monomethyl ether acetate (PGMEA) to obtain an alcohol-soaked wiper.
  • the alcohol-soaked wiper was pressed against the light-absorbing film obtained in each Example and Comparative Example at a pressure of 40 to 60 g/cm 2 and reciprocated 10 times over a length of about 3 cm to rub the surface of the light-absorbing film.
  • UV absorbing compound ⁇ Ultraviolet absorbing compound> The following ultraviolet absorbing compounds were used in the production of the optical filters according to the examples and comparative examples.
  • the structural formulas of the ultraviolet absorbing compounds (1-1) and (1-2) are represented by the following formulas (C) and (D), respectively.
  • Example 1 5.0 g of the ultraviolet absorber (1-1) shown in Table 1, 80.0 g of cyclohexanone as a solvent, and 8.0 g of polyvinyl butyral (PVB) S-LEC KS-10 (molecular weight 1.7 ⁇ 10 4 , degree of acetalization 74 mol %, hydroxyl group content 25 mol %) manufactured by Sekisui Chemical Co., Ltd. were mixed and stirred for 30 minutes. Next, 0.308 g of the material (2-1) containing a metal component shown in Table 2 was added to the obtained mixture and stirred for 30 minutes.
  • PVB polyvinyl butyral
  • Example 1 4.0 g of tolylene diisocyanate (TDI) was further added to the obtained mixture and stirred for 30 seconds to obtain a light absorbing composition according to Example 1.
  • the content of each component, the mass ratio of the predetermined components, and the substance amount ratio of the predetermined components in the light absorbing composition according to Example 1 are shown in Tables 3 and 4. Note that the content of the metal component in the material (2-1) containing a metal component was determined to be 6.5 mass %, as shown in Table 2, and the mass ratio or substance amount ratio of the components of the light-absorbing composition according to Example 1 was calculated based on this premise.
  • the light absorbing composition according to Example 1 was spin-coated at 500 rotations per minute (rpm) on one main surface of a transparent glass substrate (manufactured by SCHOTT, product name: D263T eco) made of borosilicate glass having dimensions of 76 mm x 76 mm x 0.21 mm to form a coating film.
  • the resulting coating film was thoroughly dried at room temperature, and then placed in an oven and heat-treated at 140°C for 1 hour and at 160°C for 2 hours to cause a crosslinking reaction between PVB and TDI, thereby obtaining a light absorbing film according to Example 1.
  • an optical filter provided with a light absorbing film according to Example 1 was produced.
  • Figure 3 shows the transmission spectrum of the optical filter according to Example 1.
  • Figure 8 shows the reflection spectrum of the optical filter according to Example 1. Values related to the film thickness and optical properties of the light absorbing film of the optical filter according to Example 1 are shown in Tables 5, 6, and 7. The results of the scratch resistance test of the light absorbing film according to Example 1 are shown in Table 8. Figure 13 shows the transmission spectrum of the transparent glass substrate at an incident angle of 0 degrees.
  • Examples 2 to 4 The light-absorbing compositions according to Examples 2 to 4 were prepared in the same manner as in Example 1, except that the amount of isocyanate added and/or the type of PVB were changed as shown in Table 3.
  • the light-absorbing films and optical filters according to Examples 2 to 4 were produced in the same manner as in Example 1, except that the light-absorbing compositions according to Examples 2 to 4 were used instead of the light-absorbing composition according to Example 1.
  • the PVB used in Example 4 was S-LEC KS-1 (molecular weight 2.7 ⁇ 10 4 , acetalization degree 74 mol %, hydroxyl group content 25 mol %) manufactured by Sekisui Chemical Co., Ltd.
  • Tables 5, 6, and 7 show values related to the optical properties that can be seen from the transmission spectrum and reflection spectrum of the optical filters according to Examples 2 to 4. From these results, it can be understood that good optical properties can be obtained even if the ratio of the mass of isocyanate to the mass of PVB in the light-absorbing composition varies in the range of 0.18 to 1.50.
  • the results of the scratch resistance test of the light-absorbing films according to Examples 2 to 4 are shown in Table 8.
  • Examples 5 and 6 Light absorbing compositions according to Examples 5 and 6 were prepared in the same manner as in Example 1, except that the type of PVB and the type and amount of isocyanate added were changed as shown in Table 3. Light absorbing films and optical filters according to Examples 5 and 6 were produced in the same manner as in Example 1, except that the light absorbing compositions according to Examples 5 and 6 were used instead of the light absorbing composition according to Example 1.
  • the PVB used in Example 5 was S-LEC BX-L (molecular weight 1.8 ⁇ 10 4 , acetalization degree 67 mol %, hydroxyl group content 32 mol %) manufactured by Sekisui Chemical Co., Ltd.
  • the PVB used in Example 6 was S-LEC BX-1 (molecular weight 10 ⁇ 10 4 , acetalization degree 72 mol %, hydroxyl group content 27 mol %) manufactured by Sekisui Chemical Co., Ltd.
  • the isocyanate used in Example 5 was diphenylmethane diisocyanate (MDI), and the isocyanate used in Example 6 was hexamethylene diisocyanate (HDI).
  • FIG. 4 shows the transmission spectrum of the optical filter according to Example 5.
  • FIG. 9 shows the reflection spectrum of the optical filter according to Example 5.
  • Tables 5, 6, and 7 show the optical property values of the optical filters according to Examples 5 and 6. According to Examples 5 and 6, it is understood that good optical properties can be obtained even if MDI or HDI is used instead of TDI.
  • Table 8 shows the results of the scratch resistance test of the light absorbing films according to Examples 5 and 6.
  • Example 7 to 14 Light absorbing compositions according to Examples 7 to 14 were prepared in the same manner as in Example 1, except that the type or amount of the ultraviolet absorbing compound, the material containing a metal component, the PVB, or the isocyanate was changed as shown in Table 3. Light absorbing films and optical filters according to Examples 7 to 14 were produced in the same manner as in Example 1, except that the light absorbing compositions according to Examples 7 to 14 were used instead of the light absorbing composition according to Example 1.
  • the PVB used in Example 7 was S-LEC BX-1 manufactured by Sekisui Chemical Co., Ltd.
  • the PVB used in Example 8 was S-LEC KS-1 manufactured by Sekisui Chemical Co., Ltd.
  • the PVB used in Example 12 was S-LEC BL-S manufactured by Sekisui Chemical Co., Ltd. (molecular weight 2.3 ⁇ 10 4 , acetalization degree 72 mol%, hydroxyl group content 23 mol%).
  • the PVB used in Example 13 was S-LEC BL-1 (molecular weight 1.9 ⁇ 10 4 , acetalization degree 63 mol %, hydroxyl group content 36 mol %) manufactured by Sekisui Chemical Co., Ltd.
  • S-LEC KS-10 manufactured by Sekisui Chemical Co., Ltd. was used as the PVB.
  • Figures 5, 6, and 7 show the transmission spectra of the optical filters according to Examples 7, 9, and 11, respectively.
  • Figures 10, 11, and 12 show the reflection spectra of the optical filters according to Examples 7, 9, and 11, respectively. Furthermore, values related to the optical properties of the optical filters according to Examples 7 to 14 are shown in Tables 5, 6, and 7. The results of the scratch resistance test of the light absorbing films according to Examples 7 to 14 are shown in Table 8.
  • a light-absorbing composition according to Comparative Example 1 was prepared in the same manner as in Example 1, except that no isocyanate was added.
  • a light-absorbing film and an optical filter according to Comparative Example 1 were produced in the same manner as in Example 1, except that the light-absorbing composition according to Comparative Example 1 was used instead of the light-absorbing composition according to Example 1.
  • Values relating to the optical properties of the optical filter according to Comparative Example 1 are shown in Tables 5, 6, and 7.
  • the results of the scratch resistance test of the light-absorbing film according to Comparative Example 1 are shown in Table 8.
  • the optical filters according to each of the Examples and Comparative Example 1 had good optical characteristics from the viewpoint of reproducing the visual sensitivity of humans.
  • a comparison between the Examples and Comparative Examples suggested that the light-absorbing composition containing both PVB and isocyanate is likely to provide good solvent resistance and scratch resistance.
  • good solvent resistance and scratch resistance are likely to be obtained when the ratio of the mass of isocyanate to the mass of PVB in the light-absorbing composition is 0.15 or more.
  • the ratio of the mass of isocyanate to the mass of PVB is preferably 0.15 or more, and more preferably 0.18 or more.
  • the upper limit of the ratio of the mass of isocyanate to the mass of PVB is not limited to a specific value, but from the viewpoint of suppressing the hardening of the light-absorbing composition immediately after application of the light-absorbing composition due to an increase in isocyanate, and facilitating the formation of a light-absorbing film with a flat and uniform thickness, it is considered that the ratio is preferably 1.50 or less. From the viewpoint of good optical properties, solvent resistance, and scratch resistance, it was suggested that the ratio of the mass of the isocyanate to the mass of the UV-absorbing compound is preferably 0.3 or more, and more preferably in the range of 0.3 to 2.4.

Abstract

A light-absorbing composition according to the present invention contains: an ultraviolet ray-absorbing compound having a hydroxy group and a carbonyl group in a molecule; metal components; polyvinyl butyral; and isocyanate. At least some of the metal components are bonded to organic oxy groups.

Description

光吸収性組成物、光吸収性組成物の製造方法、光吸収膜、光学フィルタ、及び光学フィルタの製造方法Light-absorbing composition, method for producing light-absorbing composition, light-absorbing film, optical filter, and method for producing optical filter
 本発明は、光吸収性組成物、光吸収膜、及び光学フィルタに関する。 The present invention relates to a light-absorbing composition, a light-absorbing film, and an optical filter.
 CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を用いた撮像装置において、良好な色再現性を有する画像を得るために様々な光学フィルタが固体撮像素子の前面に配置されている。一般的に、固体撮像素子は、可視光の領域に対応する人間の視感度より広い波長範囲で分光感度を有する。このため、撮像装置における固体撮像素子の分光感度を人間の視感度に近づけるために、固体撮像素子の前面に赤外線又は紫外線の一部の光を遮蔽する光学フィルタを配置する技術が知られている。 In imaging devices using solid-state imaging elements such as CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor), various optical filters are placed in front of the solid-state imaging element to obtain images with good color reproducibility. In general, solid-state imaging elements have a spectral sensitivity in a wider wavelength range than the human visual sensitivity corresponding to the visible light region. For this reason, a technology is known in which an optical filter that blocks some infrared or ultraviolet light is placed in front of the solid-state imaging element in order to bring the spectral sensitivity of the solid-state imaging element in the imaging device closer to the human visual sensitivity.
 従来、そのような光学フィルタとしては、誘電体多層膜による光反射を利用して赤外線又は紫外線を遮蔽するものが一般的であった。一方、近年、光吸収剤を含有する膜を備えた光学フィルタが注目されている。光吸収剤を含有する膜を備えた光学フィルタの透過率特性は入射角の影響を受けにくいので、撮像装置において光学フィルタに斜めに光が入射する場合でも色味の変化が少ない良好な画像を得ることができる。また、光反射膜を用いない光吸収型光学フィルタは、光反射膜による多重反射を原因とするゴーストやフレアの発生を抑制できるので、逆光状態や夜景の撮影において良好な画像を得やすい。加えて、光吸収剤を含有する膜を備えた光学フィルタは、撮像装置の小型化及び薄型化の点でも有利である。 Conventionally, such optical filters have generally used a dielectric multilayer film to block infrared or ultraviolet rays. However, in recent years, optical filters with a film containing a light absorbing agent have been attracting attention. The transmittance characteristics of optical filters with a film containing a light absorbing agent are not easily affected by the angle of incidence, so good images with little change in color can be obtained even when light is incident on the optical filter at an angle in an imaging device. In addition, light absorbing optical filters that do not use a light reflecting film can suppress the occurrence of ghosts and flares caused by multiple reflections by the light reflecting film, making it easier to obtain good images in backlit conditions or when photographing night scenes. In addition, optical filters with a film containing a light absorbing agent are also advantageous in terms of making imaging devices smaller and thinner.
 そのような光吸収剤として、ホスホン酸と銅イオンとによって形成された光吸収剤が知られている。例えば、特許文献1には、フェニル基又はハロゲン化フェニル基を有するホスホン酸(フェニル系ホスホン酸)と銅イオンとによって形成された光吸収剤を含有する光吸収層を備えた、光学フィルタが記載されている。 A light absorber formed from phosphonic acid and copper ions is known as such a light absorber. For example, Patent Document 1 describes an optical filter having a light absorbing layer containing a light absorber formed from phosphonic acid having a phenyl group or a halogenated phenyl group (phenyl-based phosphonic acid) and copper ions.
 また、特許文献2には、赤外線及び紫外線を吸収可能なUV‐IR吸収層を備えた光学フィルタが記載されている。UV‐IR吸収層は、ホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含んでいる。光学フィルタが所定の光学特性を満たすように、UV‐IR吸収性組成物は、例えば、フェニル系ホスホン酸と、アルキル基又はハロゲン化アルキル基を有するホスホン酸(アルキル系ホスホン酸)とを含有している。 Also, Patent Document 2 describes an optical filter having a UV-IR absorbing layer capable of absorbing infrared and ultraviolet rays. The UV-IR absorbing layer contains a UV-IR absorbent formed of phosphonic acid and copper ions. In order for the optical filter to have predetermined optical properties, the UV-IR absorbing composition contains, for example, a phenyl-based phosphonic acid and a phosphonic acid having an alkyl group or a halogenated alkyl group (alkyl-based phosphonic acid).
 また、特許文献3には、紫色光垂直カットオフフィルターを含む眼用器具が記載されている。紫色光垂直カットオフフィルターは、約400nm~450nmの範囲の波長の光を急激に吸収する。 Patent document 3 also describes an ophthalmic device that includes a vertical violet cutoff filter. The vertical violet cutoff filter sharply absorbs light with wavelengths in the range of approximately 400 nm to 450 nm.
国際公開第2018/088561号International Publication No. 2018/088561 特許第6232161号公報Japanese Patent No. 6232161 特表2007-535708号公報JP 2007-535708 A
 特許文献1及び2に記載の技術は、波長410nm以下の短波長領域の光の遮蔽特性の観点から再検討の余地を有する。また、特許文献3に記載の紫色光垂直カットオフフィルターにおいて、波長450nm以上の可視光の透過率が低いと考えられる。加えて、特許文献1~3に記載の技術は、光学フィルタの清掃又は光学フィルタの製造過程における耐久性について再検討の余地を有する。 The technologies described in Patent Documents 1 and 2 need to be reconsidered from the perspective of the blocking properties of light in the short wavelength region of 410 nm or less. Furthermore, the violet light vertical cutoff filter described in Patent Document 3 is thought to have a low transmittance of visible light with a wavelength of 450 nm or more. In addition, the technologies described in Patent Documents 1 to 3 need to be reconsidered in terms of cleaning of the optical filter or durability during the manufacturing process of the optical filter.
 そこで、本発明は、人間の視感度の再現、特に短波長領域の光の吸収特性の観点から有利であり、かつ、光学フィルタの清掃又は製造過程における耐久性の観点から有利な、光吸収性組成物、光吸収膜、及び光学フィルタを提供する。 The present invention provides a light-absorbing composition, a light-absorbing film, and an optical filter that are advantageous in terms of reproducing human visual sensitivity, particularly in terms of light absorption characteristics in the short wavelength region, and that are also advantageous in terms of durability during cleaning or manufacturing processes of the optical filter.
 本発明は、
 ヒドロキシ基及びカルボニル基を分子内に有する紫外線吸収性化合物と、
 金属成分と、
 ポリビニルブチラールと、
 イソシアネートと、を含有し、
 前記金属成分の少なくとも一部は、有機オキシ基に結合している、
 光吸収性組成物を提供する。
The present invention relates to
an ultraviolet absorbing compound having a hydroxy group and a carbonyl group in the molecule;
Metal components,
Polyvinyl butyral,
Contains an isocyanate,
At least a portion of the metal component is bonded to an organic oxy group.
A light absorbing composition is provided.
  また、本発明は、
 有機溶媒に、ヒドロキシ基及びカルボニル基を分子内に有する紫外線吸収性化合物と、
金属成分を含む化合物と、ポリビニルブチラールと、イソシアネートとを添加して混合することを含む、
 上記の光吸収性組成物の製造方法を提供する。
The present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
an organic solvent, a UV-absorbing compound having a hydroxyl group and a carbonyl group in the molecule,
The method includes adding and mixing a compound containing a metal component, polyvinyl butyral, and an isocyanate.
A method for producing the light absorbing composition is provided.
 また、本発明は、
 ヒドロキシ基及びカルボニル基を分子内に有する紫外線吸収性化合物と、
 金属成分と、
 ウレタン結合を有する樹脂と、を含有し、
 前記金属成分の少なくとも一部は、有機オキシ基に結合している、
 光吸収膜を提供する。
The present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
an ultraviolet absorbing compound having a hydroxy group and a carbonyl group in the molecule;
Metal components,
A resin having a urethane bond,
At least a portion of the metal component is bonded to an organic oxy group.
A light absorbing film is provided.
 また、本発明は、
 上記の光吸収膜を備えた、光学フィルタを提供する。
The present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
An optical filter including the above light absorbing film is provided.
 また、本発明は、
 上記の光吸収膜を含む光学フィルタの製造方法であって、
 前記製造方法は、次の(i)又は(ii)のいずれかに記載の工程を含む、光学フィルタの製造方法を提供する。
 (i)前記光吸収膜を撮像素子又は光学部品に形成すること。
 (ii)前記光吸収膜を基板上に形成して前記基板から前記光吸収膜を剥離すること。
The present invention also provides a method for producing a method for manufacturing a semiconductor device comprising the steps of:
A method for producing an optical filter including the light absorbing film, comprising the steps of:
The manufacturing method provides a method for manufacturing an optical filter, the method including the steps of: (i) forming a first insulating film;
(i) forming the light absorbing film on an imaging element or an optical component;
(ii) forming the light absorbing film on a substrate and peeling the light absorbing film from the substrate;
 上記の光吸収性組成物は、人間の視感度の再現、特に短波長領域の光の吸収特性の観点から有利であり、光学フィルタの清掃又は製造過程における耐久性の観点からも有利である。加えて、上記の光吸収膜及び上記の光学フィルタは、人間の視感度の再現、特に短波長領域の光の吸収特性の観点から有利である。さらに、上記の光吸収膜及び上記の光学フィルタは、表面に対する清掃又は拭き等によってもキズなどが生じにくく、耐久性の観点からも有利である。 The above light absorbing composition is advantageous from the viewpoint of reproducing human visual sensitivity, particularly the absorption characteristics of light in the short wavelength region, and is also advantageous from the viewpoint of durability during cleaning or manufacturing of the optical filter. In addition, the above light absorbing film and the above optical filter are advantageous from the viewpoint of reproducing human visual sensitivity, particularly the absorption characteristics of light in the short wavelength region. Furthermore, the above light absorbing film and the above optical filter are also advantageous from the viewpoint of durability, as they are less likely to be scratched when the surface is cleaned or wiped.
図1は、本発明に係る光吸収膜の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a light absorbing film according to the present invention. 図2Aは、本発明に係る光学フィルタの一例を示す断面図である。FIG. 2A is a cross-sectional view showing an example of an optical filter according to the present invention. 図2Bは、本発明に係る光学フィルタの一例を示す断面図である。FIG. 2B is a cross-sectional view showing an example of an optical filter according to the present invention. 図3は、実施例1に係る光学フィルタの透過スペクトルである。FIG. 3 shows the transmission spectrum of the optical filter according to the first embodiment. 図4は、実施例5に係る光学フィルタの透過スペクトルである。FIG. 4 shows the transmission spectrum of the optical filter according to the fifth embodiment. 図5は、実施例7に係る光学フィルタの透過スペクトルである。FIG. 5 shows the transmission spectrum of the optical filter according to the seventh embodiment. 図6は、実施例9に係る光学フィルタの透過スペクトルである。FIG. 6 shows the transmission spectrum of the optical filter according to the ninth embodiment. 図7は、実施例11に係る光学フィルタの透過スペクトルである。FIG. 7 shows the transmission spectrum of the optical filter according to the eleventh embodiment. 図8は、実施例1に係る光学フィルタの反射スペクトルである。FIG. 8 shows the reflection spectrum of the optical filter according to the first embodiment. 図9は、実施例5に係る光学フィルタの反射スペクトルである。FIG. 9 shows the reflection spectrum of the optical filter according to the fifth embodiment. 図10は、実施例7に係る光学フィルタの反射スペクトルである。FIG. 10 shows the reflection spectrum of the optical filter according to the seventh embodiment. 図11は、実施例9に係る光学フィルタの反射スペクトルである。FIG. 11 shows the reflection spectrum of the optical filter according to the ninth embodiment. 図12は、実施例11に係る光学フィルタの反射スペクトルである。FIG. 12 shows the reflection spectrum of the optical filter according to the eleventh embodiment. 図13は、透明ガラス基板の透過スペクトルである。FIG. 13 shows the transmission spectrum of a transparent glass substrate.
 固体撮像素子を用いた撮像装置のための光学フィルタにおいて、波長410nm以下の短波長領域の光の効果的な吸収を実現できれば、人間の視感度の再現の観点から光学フィルタの価値をより高めることができる。特許文献1に記載の光学フィルタによれば、波長350nm~450nmにおいて分光透過率が50%となる波長は400nm未満である。特許文献2に記載の光学フィルタによれば、波長350nm~450nmにおいて分光透過率が50%となる波長は、約390nm~415nmの範囲である。これらの事実によれば、特許文献1及び2に記載の光学フィルタは、波長410nm以下の短波長領域の光を効果的に吸収する観点から有利であるとは言い難い。特許文献3に記載の紫色光垂直カットオフフィルターは、波長410nm以下の短波長領域の光を効果的に吸収できる可能性があるが、そのフィルターの波長450nm以上の可視光の透過率は低いと考えられる。 If an optical filter for an imaging device using a solid-state imaging element can effectively absorb light in the short wavelength region of 410 nm or less, the value of the optical filter can be further increased in terms of reproducing human visual sensitivity. According to the optical filter described in Patent Document 1, the wavelength at which the spectral transmittance is 50% in the wavelength range of 350 nm to 450 nm is less than 400 nm. According to the optical filter described in Patent Document 2, the wavelength at which the spectral transmittance is 50% in the wavelength range of 350 nm to 450 nm is in the range of approximately 390 nm to 415 nm. Based on these facts, it is difficult to say that the optical filters described in Patent Documents 1 and 2 are advantageous in terms of effectively absorbing light in the short wavelength region of 410 nm or less. The purple light vertical cutoff filter described in Patent Document 3 may be able to effectively absorb light in the short wavelength region of 410 nm or less, but the transmittance of the filter for visible light of wavelengths of 450 nm or more is considered to be low.
 そこで、本発明者は、人間の視感度の再現、特に波長410nm以下の短波長領域の光の効果的な吸収の観点から有利な光吸収性組成物を開発すべく鋭意検討を重ねた。多大な試行錯誤を重ねた結果、本発明者は、所定の紫外線吸収性化合物及び金属成分を含有している光吸収性組成物が短波長領域の光を効果的に吸収する観点から有利であることを新たに見出した。 The inventors therefore conducted extensive research to develop a light-absorbing composition that is advantageous from the standpoint of reproducing human visual sensitivity, particularly in terms of effectively absorbing light in the short-wavelength region of wavelengths of 410 nm or less. As a result of extensive trial and error, the inventors have newly discovered that a light-absorbing composition containing a specific ultraviolet absorbing compound and a metal component is advantageous from the standpoint of effectively absorbing light in the short-wavelength region.
 加えて、本発明者は、上記の紫外線吸収性化合物及び金属成分を含有している光吸収性組成物に光学フィルタの清掃又は製造過程における耐久性の観点から有利な特性を付与できないかさらなる検討を重ねた。例えば、光学フィルタは、アルコール及びアセトン等の有機溶媒を含ませたワイピングクロス等のワイプ若しくはクロス又はマイクロファイバー等によって拭かれて清掃される場合がある。また、光学フィルタの製造過程において光吸収性組成物又は光吸収性組成物の固化物を含む部位が、別の部材等と接触する可能性がある。このような事情から、上記の紫外線吸収性化合物及び金属成分を含有している光吸収性組成物が光学フィルタの清掃又は製造過程における表面の機械的強度に関する耐久性又は耐溶剤性の観点から有利な特性を有することは、光吸収性組成物、光吸収膜、又は光学フィルタの付加価値を高めるうえで重要である。例えば、光学フィルタの清掃又は製造過程における耐擦傷性及び耐溶剤性の観点から有利な特性を光吸収性組成物が有することが重要である。 In addition, the present inventors have further studied whether advantageous properties can be imparted to the light absorbing composition containing the above ultraviolet absorbing compound and metal component in terms of durability during the cleaning or manufacturing process of the optical filter. For example, the optical filter may be cleaned by wiping it with a wipe or cloth such as a wiping cloth impregnated with an organic solvent such as alcohol or acetone, or with a microfiber. In addition, during the manufacturing process of the optical filter, the portion containing the light absorbing composition or the solidified product of the light absorbing composition may come into contact with another member or the like. In view of these circumstances, it is important for the light absorbing composition containing the above ultraviolet absorbing compound and metal component to have advantageous properties in terms of durability or solvent resistance regarding the mechanical strength of the surface during the cleaning or manufacturing process of the optical filter in order to increase the added value of the light absorbing composition, light absorbing film, or optical filter. For example, it is important for the light absorbing composition to have advantageous properties in terms of scratch resistance and solvent resistance during the cleaning or manufacturing process of the optical filter.
 一方、光学フィルタの清掃又は製造過程における耐久性の観点から有利な特性を付与することと、人間の視感度の再現、特に波長410nm以下の短波長領域の光の効果的な吸収とを両立することは容易なことではない。なぜなら、光学フィルタの清掃又は製造過程における耐久性を付与するために光吸収性組成物に加えられる成分の選定には、その成分と紫外線吸収性化合物等との相互作用により波長410nm以下の短波長領域の光の効果的な吸収が損なわれないか慎重な検討が必要だからである。本発明者は、このような観点から多大な試行錯誤を重ねた。その結果、本発明者は、上記の紫外線吸収性化合物及び金属成分を含有している光吸収性組成物において、波長410nm以下の短波長領域の光の効果的な吸収を損なうことなく、光学フィルタの清掃又は製造過程における耐久性の観点から有利な特性を付与できる添加成分を新たに特定し、本発明を完成させた。 On the other hand, it is not easy to provide advantageous characteristics in terms of durability during cleaning or manufacturing of optical filters while reproducing human visual sensitivity, particularly effective absorption of light in the short wavelength region of 410 nm or less. This is because the selection of components to be added to the light absorbing composition to provide durability during cleaning or manufacturing of optical filters requires careful consideration as to whether the effective absorption of light in the short wavelength region of 410 nm or less is impaired due to interactions between the components and ultraviolet absorbing compounds, etc. From this perspective, the inventor has undergone a great deal of trial and error. As a result, the inventor has newly identified an additive component that can provide advantageous characteristics in terms of durability during cleaning or manufacturing of optical filters in the light absorbing composition containing the above ultraviolet absorbing compound and metal component without impairing effective absorption of light in the short wavelength region of 410 nm or less, and has completed the present invention.
 以下、本発明の実施形態について説明する。なお、以下の説明は、本発明の例示に関するものであり、本発明は以下の実施形態に限定されるものではない。 The following describes an embodiment of the present invention. Note that the following description is an example of the present invention, and the present invention is not limited to the following embodiment.
 本発明に係る光吸収性組成物は、ヒドロキシ基及びカルボニル基を分子内に有する紫外線吸収性化合物と、金属成分と、ポリビニルブチラール(PVB)と、イソシアネートとを含有している。本明細書におけるイソシアネートとは、分子内に-N=C=O(イソシアネート基)を含む化合物である。加えて、金属成分の少なくとも一部は、有機オキシ基に結合している。典型的には、金属成分の少なくとも一部は、有機オキシ基における酸素原子と結合している。これにより、光吸収性組成物を用いて作製される光吸収膜又は光学フィルタは、波長410nm以下近の波長領域の光を効果的に吸収しやすい。加えて、光吸収膜又は光学フィルタが可視光域において高い透過率を発揮しうる。このため、この光吸収性組成物は、人間の視感度の再現の観点から有利である。 The light-absorbing composition according to the present invention contains an ultraviolet absorbing compound having a hydroxyl group and a carbonyl group in the molecule, a metal component, polyvinyl butyral (PVB), and an isocyanate. In this specification, an isocyanate is a compound containing -N=C=O (isocyanate group) in the molecule. In addition, at least a part of the metal component is bonded to an organic oxy group. Typically, at least a part of the metal component is bonded to an oxygen atom in the organic oxy group. This makes it easy for a light-absorbing film or optical filter made using the light-absorbing composition to effectively absorb light in the wavelength region of 410 nm or less. In addition, the light-absorbing film or optical filter can exhibit high transmittance in the visible light region. For this reason, this light-absorbing composition is advantageous from the viewpoint of reproducing human visual sensitivity.
 紫外線吸収性化合物にとって有利な条件として、光の吸収範囲及び透過範囲が適切なこと、光化学的に安定であること、光増感作用が使用の範囲内で影響のない程度に低いこと、熱化学的に安定であること等の条件が挙げられる。このような観点から、紫外線吸収性化合物の光吸収の機序として、光励起による分子内でのヒドロキシ基の水素の移動反応(分子内の水素引き抜き反応)を利用することが考えられる。このような機序を発揮する紫外線吸収性化合物として、例えば、ヒドロキシベンゾフェノン、サリチル酸、ヒドロキシフェニルベンゾトリアゾール、ヒドロキシフェニルトリアジン、及び置換アクリロニトリル等の化合物が挙げられる。ヒドロキシベンゾフェノン及びサリチル酸においては、分子内に含まれるヒドロキシ基とカルボニル基との間で水素の移動に関する反応が紫外線等の光吸収に関わる。一方、ヒドロキシフェニルベンゾトリアゾール、ヒドロキシフェニルトリアジン、及び置換アクリロニトリルにおいては、分子内に含まれるヒドロキシ基と窒素原子との間で水素の移動に関する反応が、紫外線等の光吸収に関わる。これらの紫外線吸収性化合物は、その分子内に非共有電子対を有するヒドロキシ基を有しているので、併存する金属成分又は水素供与体と、一部錯体化等の相互作用を生じるものと推測される。紫外線吸収性化合物を含む光吸収性組成物及びその硬化物等の系において、ヒドロキシ基を有する紫外線吸収性化合物が単独で存在する場合と、金属成分又は水素供与体とヒドロキシ基を有する紫外線吸収性化合物とが併存する場合とを比較する。この比較によれば、上記の推測を裏付けるように、それらの光吸収スペクトル及びそれらの光透過スペクトル等の光学的特性に差異が生じる。特に、ヒドロキシ基及びカルボニル基を分子内に有する紫外線吸収性化合物と金属成分とを含有している光吸収性組成物を硬化して得られる光吸収膜又は光吸収膜を備える光学フィルタにおいて、波長300~500nmにおける光吸収帯の一部が長波長側にシフトする現象が生じることが分かった。このため、このような光吸収膜は、波長410nm以下の光を効果的にかつ適切に吸収するのに有利な特性を有する。なお、光吸収帯が長波長側にシフトすると、例えば、透過スペクトルの波長300nm~500nmの範囲内において吸収極大波長が長波長側にシフトする現象、又は、透過率が50%となる波長(UVカットオフ波長)が長波長側にシフトする現象が顕在化しうる。このように、本発明に係る光吸収性組成物、その硬化物である光吸収膜、及びその光吸収膜を備えた光学フィルタによれば、紫外線吸収性化合物が本来的に備えている吸収特性が短波長領域の光を効果的に吸収できるように調整される。その結果、このような光吸収膜又は光学フィルタの分光透過率が固体撮像素子等とともに使用される場合、より適切なものとなりやすい。 Favourable conditions for ultraviolet absorbing compounds include appropriate light absorption and transmission ranges, photochemical stability, low enough photosensitisation to have no effect within the range of use, and thermochemical stability. From this perspective, it is considered that the mechanism of light absorption of ultraviolet absorbing compounds is the use of a hydrogen transfer reaction of a hydroxyl group in a molecule due to photoexcitation (intramolecular hydrogen abstraction reaction). Examples of ultraviolet absorbing compounds that exhibit this mechanism include compounds such as hydroxybenzophenone, salicylic acid, hydroxyphenylbenzotriazole, hydroxyphenyltriazine, and substituted acrylonitrile. In hydroxybenzophenone and salicylic acid, the reaction of hydrogen transfer between the hydroxyl group and the carbonyl group contained in the molecule is involved in the absorption of ultraviolet light, etc. On the other hand, in hydroxyphenylbenzotriazole, hydroxyphenyltriazine, and substituted acrylonitrile, the reaction of hydrogen transfer between the hydroxyl group and the nitrogen atom contained in the molecule is involved in the absorption of ultraviolet light, etc. These ultraviolet absorbing compounds have a hydroxy group having an unshared electron pair in the molecule, and are therefore presumed to cause interactions such as partial complexation with the coexisting metal component or hydrogen donor. In a system such as a light absorbing composition containing an ultraviolet absorbing compound and a cured product thereof, a comparison is made between a case where an ultraviolet absorbing compound having a hydroxy group exists alone and a case where a metal component or a hydrogen donor and an ultraviolet absorbing compound having a hydroxy group exist together. According to this comparison, differences arise in optical properties such as their light absorption spectrum and their light transmission spectrum, supporting the above presumption. In particular, it has been found that a phenomenon occurs in which a part of the light absorption band at wavelengths of 300 to 500 nm shifts to the long wavelength side in a light absorbing film or an optical filter having a light absorbing film obtained by curing a light absorbing composition containing an ultraviolet absorbing compound having a hydroxy group and a carbonyl group in the molecule and a metal component. For this reason, such a light absorbing film has advantageous properties for effectively and appropriately absorbing light having a wavelength of 410 nm or less. In addition, when the light absorption band shifts to the longer wavelength side, for example, the phenomenon of the maximum absorption wavelength shifting to the longer wavelength side within the wavelength range of 300 nm to 500 nm of the transmission spectrum, or the phenomenon of the wavelength at which the transmittance is 50% (UV cutoff wavelength) shifting to the longer wavelength side may become apparent. Thus, according to the light-absorbing composition of the present invention, the light-absorbing film which is the cured product thereof, and the optical filter equipped with the light-absorbing film, the absorption characteristics inherent to the ultraviolet absorbing compound are adjusted so that light in the short wavelength region can be effectively absorbed. As a result, the spectral transmittance of such a light-absorbing film or optical filter is likely to be more appropriate when used together with a solid-state imaging device or the like.
 上記の通り、光吸収性組成物は、PVB及びイソシアネートを含有している。これにより、光吸収性組成物は、光学フィルタの清掃又は製造過程における耐久性の観点から有利な特性を有しやすい。特に、光吸収性組成物がPVB及びイソシアネートを含有していることは、光学フィルタの清掃又は製造過程における耐擦傷性及び耐溶剤性を向上させる観点から有利である。しかも、光吸収性組成物がPVB及びイソシアネートを含有していても、紫外線吸収性化合物が本来的に備えている吸収特性が上記の作用機序により短波長領域の光を効果的に吸収できるように調整されることが妨げられない。 As described above, the light-absorbing composition contains PVB and isocyanate. This makes the light-absorbing composition more likely to have advantageous properties in terms of durability during the cleaning or manufacturing process of the optical filter. In particular, the light-absorbing composition containing PVB and isocyanate is advantageous in terms of improving scratch resistance and solvent resistance during the cleaning or manufacturing process of the optical filter. Moreover, even if the light-absorbing composition contains PVB and isocyanate, this does not prevent the absorption properties inherent to the ultraviolet absorbing compound from being adjusted so that light in the short wavelength region can be effectively absorbed by the above-mentioned mechanism of action.
 PVBは、例えば、高い透明性を有しやすく、有機溶剤等に対して高い相溶性を有しうる。加えて、PVBは、高い耐候性及び高い耐光性を有し、光吸収性組成物がPVBを含有していることにより、光吸収性組成物から得られる光吸収膜及び光学フィルタも高い対候性及び耐光性を発揮しやすい。また、PVBは、上記の紫外線吸収性化合物等の機能性の成分のバインダーとして有利な特性を発揮しうる。 PVB, for example, tends to have high transparency and can have high compatibility with organic solvents and the like. In addition, PVB has high weather resistance and high light resistance, and since the light absorbing composition contains PVB, the light absorbing film and optical filter obtained from the light absorbing composition also tend to exhibit high weather resistance and light resistance. Furthermore, PVB can exhibit advantageous properties as a binder for functional components such as the above-mentioned ultraviolet absorbing compound.
 PVBは、レンズ又はその他の光学素子及び透明誘電体基板等の基材の表面に対して良好な接着性を示す。このため、光吸収性組成物は、複数の部材又は部品が組み合わせられた複合的な光学素子又は光学部品を作製するうえでも有利な特性を有しうる。 PVB exhibits good adhesion to the surfaces of lenses or other optical elements and substrates such as transparent dielectric substrates. For this reason, the light absorbing composition may have advantageous properties for producing composite optical elements or optical components that combine multiple members or parts.
 PVBは、例えば、下記の構造式で表される。下記の構造式において、kは、ビニルブチラール基を有する構成単位のモル分率[%]であり、mは、ビニルアルコールに由来し、ヒドロキシ基を有する構成単位のモル分率[%]であり、nは、酢酸ビニル由来の構成単位のモル分率[%]である。 PVB is represented, for example, by the following structural formula: In the structural formula, k is the mole fraction [%] of structural units having vinyl butyral groups, m is the mole fraction [%] of structural units derived from vinyl alcohol and having hydroxyl groups, and n is the mole fraction [%] of structural units derived from vinyl acetate.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 PVBは、ポリビニルアルコール(PVA)にブチルアルデヒドを反応させることにより得られる。PVAの全てのビニル基をエステル化することはできないので、PVBには部分的にヒドロキシ基を含む基が存在する。 PVB is obtained by reacting polyvinyl alcohol (PVA) with butyraldehyde. Since it is not possible to esterify all of the vinyl groups in PVA, some of the PVB contains groups that contain hydroxyl groups.
 光吸収性組成物に含まれるPVBの数平均分子量は特定の値に限定されない。その数平均分子量は、例えば、12.0×104以下である。これにより、光吸収性組成物の成膜がしやすく、光吸収性組成物から得られる光吸収膜及び光学フィルタのヘイズが低くなりやすい。PVBの数平均分子量は、例えば、1.0×104以上である。これにより、光吸収性組成物の硬化における収縮が大きくなりにくく、光吸収性組成物から得られる光吸収膜及び光学フィルタのヘイズが低くなりやすい。PVBの数平均分子量は、1.2×104以上であってもよく、1.5×104以上であってもよい。PVBの数平均分子量は、11.5×104以下であってもよいし、11.0×104以下であってもよい。PVBの数平均分子量は、例えば、日本産業規格(JIS) K7252-1:2016に従って測定できる。 The number average molecular weight of PVB contained in the light absorbing composition is not limited to a specific value. The number average molecular weight is, for example, 12.0 × 10 4 or less. This makes it easy to form a film of the light absorbing composition, and the haze of the light absorbing film and optical filter obtained from the light absorbing composition is likely to be low. The number average molecular weight of PVB is, for example, 1.0 × 10 4 or more. This makes it difficult for the light absorbing composition to shrink during curing, and the haze of the light absorbing film and optical filter obtained from the light absorbing composition is likely to be low. The number average molecular weight of PVB may be 1.2 × 10 4 or more, or 1.5 × 10 4 or more. The number average molecular weight of PVB may be 11.5 × 10 4 or less, or 11.0 × 10 4 or less. The number average molecular weight of PVB can be measured, for example, according to Japanese Industrial Standards (JIS) K7252-1:2016.
 PVBのブチラール化度は特定の値に限定されない。そのブチラール化度は、例えば、60モル%以上である。これにより、光吸収性組成物から得られる光吸収膜又は光学フィルタの表面の疎水性及び強靭性が所望の水準に調整されやすい。ブチラール化度は、望ましくは65モル%以上である。ブチラール化度は、例えば、90モル%以下である。これにより、PVBに所望の量のヒドロキシ基が存在しやすい。ブチラール化度は、望ましくは80モル%以下である。PVBのブチラール化度は、例えば、ブチラール基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。このブチラール化度は、例えば、JIS K 6728(ポリビニルブチラール試験方法)に準拠した方法に従って、アセチル化度とヒドロキシ基の含有率とを測定し、得られた測定結果からモル分率を算出し、次いで、100モル%からアセチル化度と水酸基の含有率とを差し引くことにより算出できる。 The butyralization degree of PVB is not limited to a specific value. The butyralization degree is, for example, 60 mol% or more. This makes it easy to adjust the hydrophobicity and toughness of the surface of the light-absorbing film or optical filter obtained from the light-absorbing composition to the desired level. The butyralization degree is preferably 65 mol% or more. The butyralization degree is, for example, 90 mol% or less. This makes it easy for the desired amount of hydroxyl groups to be present in the PVB. The butyralization degree is preferably 80 mol% or less. The butyralization degree of PVB is, for example, a value expressed as a percentage of the molar fraction calculated by dividing the amount of ethylene groups to which butyral groups are bonded by the total amount of ethylene groups in the main chain. This butyralization degree can be calculated, for example, by measuring the degree of acetylation and the hydroxyl group content according to a method conforming to JIS K 6728 (Testing method for polyvinyl butyral), calculating the molar fraction from the measurement results, and then subtracting the degree of acetylation and the hydroxyl group content from 100 mol%.
 PVBにおけるヒドロキシ基の含有量は特定の値に限定されない。その含有量は、例えば10モル%以上である。これにより、後述する通り、光吸収性組成物の硬化においてイソシアネートとの反応に供される十分な量のヒドロキシ基がPVBに存在しやすい。PVBにおけるヒドロキシ基の含有量は、望ましくは20モル%以上である。PVBにおけるヒドロキシ基の含有量は、例えば50モル%以下である。これにより、PVBにおいて強靭性の観点から所望量のブチラール基が含まれやすい。PVBにおけるヒドロキシ基の含有量は、望ましくは40モル%以下である。ヒドロキシ基の含有量は、例えば、JIS K6728(ポリビニルブチラール試験方法)に準拠した方法に従って算出できる。 The content of hydroxyl groups in PVB is not limited to a specific value. The content is, for example, 10 mol% or more. As a result, as described below, a sufficient amount of hydroxyl groups is likely to be present in PVB to be subjected to a reaction with isocyanate during curing of the light absorbing composition. The content of hydroxyl groups in PVB is preferably 20 mol% or more. The content of hydroxyl groups in PVB is, for example, 50 mol% or less. As a result, the PVB is likely to contain a desired amount of butyral groups from the viewpoint of toughness. The content of hydroxyl groups in PVB is preferably 40 mol% or less. The content of hydroxyl groups can be calculated, for example, according to a method in accordance with JIS K6728 (Test method for polyvinyl butyral).
 PVBの例は、積水化学工業社製のエスレックKS-1、エスレックKS-10、エスレックBX-L、エスレックBX-1、エスレックBL-S、及びエスレックBL-1である。エスレックは登録商標である。PVBの別の例は、クラレ社製のモビタールB20H、モビタールB30T、モビタールB30H、及びモビタールB45Hである。モビタールは登録商標である。光吸収性組成物において、これらPVBの中から1種類又は複数種類のPVBが選択又は混合されて用いられる。 Examples of PVB are S-LEC KS-1, S-LEC KS-10, S-LEC BX-L, S-LEC BX-1, S-LEC BL-S, and S-LEC BL-1 manufactured by Sekisui Chemical Co., Ltd. S-LEC is a registered trademark. Other examples of PVB are Mobital B20H, Mobital B30T, Mobital B30H, and Mobital B45H manufactured by Kuraray Co., Ltd. Mobital is a registered trademark. In the light absorbing composition, one or more types of PVB are selected from these PVBs or are mixed and used.
 光吸収性組成物に含まれるイソシアネートは、例えば、分子内に二以上のイソシアネート基を有し、各イソシアネート基は炭素原子に結合している。上記の通り、PVBの分子内にはヒドロキシ基が含まれており、PVBは、イソシアネートとの架橋反応を生じさせることができる。この架橋反応により、PVBのヒドロキシ基が消費され、三次元のネットワーク構造が形成されうる。具体的には、下記の反応式で表すように、イソシアネート基R1-N=C=Oと、PVBに含まれるヒドロキシ基R2-OHとの反応により、ウレタン結合R1-NH-COO-R2が生じ、架橋が起こる。これにより、光吸収性組成物の硬化物の表面の硬度が高くなり、光学フィルタの清掃又は製造過程における耐久性の観点から有利な機械的特性及び耐溶剤性が実現されうる。 The isocyanate contained in the light absorbing composition has, for example, two or more isocyanate groups in the molecule, and each isocyanate group is bonded to a carbon atom. As described above, the PVB molecule contains a hydroxyl group, and the PVB can cause a crosslinking reaction with the isocyanate. This crosslinking reaction consumes the hydroxyl group of the PVB, and a three-dimensional network structure can be formed. Specifically, as shown in the reaction formula below, a urethane bond R 1 -NH-COO-R 2 is generated by the reaction between the isocyanate group R 1 -N=C=O and the hydroxyl group R 2 -OH contained in the PVB, and crosslinking occurs. This increases the hardness of the surface of the cured product of the light absorbing composition, and advantageous mechanical properties and solvent resistance can be realized in terms of durability in the cleaning or manufacturing process of the optical filter.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ウレタン結合の存否は、例えば、フーリエ変換赤外分光法(FT-IR)等の方法によって試料の赤外分光スペクトルを取得し、その赤外分光スペクトルにおいてウレタン結合に特徴的なピークの有無又は強度等を解析することによって理解される。特徴的なピークは、例えば、3450cm-1~3000cm-1の範囲内(例えば、3290cm-1)におけるN-Hの伸縮振動に由来するピーク、1735cm-1~1691cm-1の範囲内(例えば、1725cm-1及び1705cm-1)におけるC=Oの伸縮振動(アミドI)に由来するピーク、及び1530cm-1付近のN-Hの変角振動(アミドII)に由来するピーク等である。 The presence or absence of a urethane bond can be understood by obtaining an infrared spectrum of a sample by a method such as Fourier transform infrared spectroscopy (FT-IR) and analyzing the presence or absence or intensity of peaks characteristic of a urethane bond in the infrared spectrum. Examples of characteristic peaks include a peak derived from the stretching vibration of N-H in the range of 3450 cm -1 to 3000 cm -1 (e.g., 3290 cm -1 ), a peak derived from the stretching vibration of C=O (amide I) in the range of 1735 cm -1 to 1691 cm -1 (e.g., 1725 cm -1 and 1705 cm -1 ), and a peak derived from the deformation vibration of N-H (amide II) around 1530 cm -1 .
 光吸収性組成物に含まれるイソシアネートは、特定のイソシアネートに限定されない。イソシアネートは、分子内にイソシアネート基を有する化合物である。イソシアネートの例は、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、フェニレンジイソシアネート、ジナフタレンジイソシアネート、イソホロンジイソシアネート、及びキシリレンジイソシアネートである。イソシアネートの別の例は、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、及びトリメチルヘキサメチレンジイソシアネートである。イソシアネートは、脂環式ポリイソシアネートであってもよい。脂環式ポリイソシアネートの例は、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、1,3‐ビス(イソシアネートメチル)シクロヘキサン、及びビス(イソシアナトメチル)ノルボルナンである。イソシアネートは、芳香脂肪族ポリイソシアネートであってもよい。芳香脂肪族ポリイソシアネートの例は、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、及びω,ω’‐ジイソシアネート‐1,4‐ジエチルベンゼンである。 The isocyanate contained in the light absorbing composition is not limited to a specific isocyanate. The isocyanate is a compound having an isocyanate group in the molecule. Examples of the isocyanate are tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), phenylene diisocyanate, dinaphthalene diisocyanate, isophorone diisocyanate, and xylylene diisocyanate. Other examples of the isocyanate are trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, and trimethylhexamethylene diisocyanate. The isocyanate may be an alicyclic polyisocyanate. Examples of the alicyclic polyisocyanate are isophorone diisocyanate, dicyclohexylmethane diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, and bis(isocyanatomethyl)norbornane. The isocyanate may be an araliphatic polyisocyanate. Examples of araliphatic polyisocyanates are xylylene diisocyanate, tetramethyl xylylene diisocyanate, and ω,ω'-diisocyanate-1,4-diethylbenzene.
 上記の通り、光吸収性組成物において、金属成分の少なくとも一部は有機オキシ基と結合しており、有機オキシ基と結合した金属成分を含む化合物が含まれる。ここで有機オキシ基と結合する金属成分を含む化合物は、一般的に(Rk-O)n-Mで表される化合物である。Mは、金属原子及び金属イオン等の金属成分を表す。(Rk-O)n-の基は、n個の有機オキシ基(または、まとめて有機オキシ基という、以降同じ。)を表し、Rkは、少なくとも、炭素原子(C)及び水素原子(H)等を含む有機基を表し、nは、金属成分Mに結合又は配位する数を表し、1又は複数の有機オキシ基が金属成分Mに結合又は配位していてもよい。有機オキシ基(Rk-O)-内には二以上のO(酸素)が含まれてもよく、これら二以上のO(酸素)を介して、有機オキシ基が金属成分Mに結合又は配位してもよい。また、有機基Rkは、結合又は配位する有機オキシ基(Rk-O)-毎に同じであってもよいし、異なっていてもよく、複数の有機オキシ基が金属成分Mを介さずに結合していてもよい。有機オキシ基は、このような条件を満たす基であれば、特に限定されるものではないが、例えばメトキシ基、エトキシ基、プロピルオキシ基、フェノキシ基、アルキルフェノキシ基等のアルコキシ基、ビニル基等である。有機オキシ基は、有機基Rkが、アシル基、アセチル基、ケトン基、ビニル基、プロピオニル基、アクリリル基、アセトキシ基、アクリロイル基、エチルアセテート基、エチルアセトアセテート基、アセチルアセトン基、及びその他のエステルやエーテルなどの部分的構造(基)を含むものであってもよい。また、これらから選択される一又は二以上の基を含む有機オキシ基であってもよい。金属成分Mは、例えば、Li、Na、Mg、Ca、Sr、Ba、Ge、Sn、Pb、Al、Ga、In、Tl、Zn、Cd、Cu、Ag、Au、Ni、Pd、Pt、Co、Rh、Ir、Fe、Mn、Cr、Mo、W、V、Nb、Ta、Ti、及びZr等の金属原子やイオン等の金属成分からなる群より選択される少なくとも一つを含むものであってもよい。 As described above, in the light absorbing composition, at least a part of the metal component is bonded to the organic oxy group, and the compound includes a metal component bonded to the organic oxy group. The compound containing a metal component bonded to the organic oxy group is generally a compound represented by (R k -O) n -M. M represents a metal component such as a metal atom or a metal ion. The (R k -O) n - group represents n organic oxy groups (or collectively referred to as organic oxy groups, the same applies hereinafter), R k represents an organic group containing at least a carbon atom (C) and a hydrogen atom (H), etc., and n represents the number of groups bonded or coordinated to the metal component M, and one or more organic oxy groups may be bonded or coordinated to the metal component M. The organic oxy group (R k -O)- may contain two or more O (oxygen), and the organic oxy group may be bonded or coordinated to the metal component M via these two or more O (oxygen). In addition, the organic group R k may be the same or different for each organic oxy group (R k -O)- to be bonded or coordinated, and a plurality of organic oxy groups may be bonded without the metal component M being interposed therebetween. The organic oxy group is not particularly limited as long as it satisfies such conditions, and may be, for example, an alkoxy group such as a methoxy group, an ethoxy group, a propyloxy group, a phenoxy group, or an alkylphenoxy group, or a vinyl group. The organic oxy group may be an organic group R k that contains a partial structure (group) such as an acyl group, an acetyl group, a ketone group, a vinyl group, a propionyl group, an acrylyl group, an acetoxy group, an acryloyl group, an ethyl acetate group, an ethyl acetoacetate group, an acetylacetone group, or other ester or ether. Alternatively, the organic oxy group may contain one or more groups selected from these. The metal component M may include at least one selected from the group consisting of metal components such as metal atoms and ions of, for example, Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr.
 紫外線吸収性化合物におけるヒドロキシ基とカルボニル基との配置は特定の配置に限定されない。紫外線吸収性化合物において、望ましくは、ヒドロキシ基とカルボニル基とは、1~3個の原子を隔てて配置されている。これにより、紫外線吸収性化合物において、ヒドロキシ基とカルボニル基との間で水素の移動が生じやすいと考えられる。このため、波長300~500nmにおける光吸収帯が長波長側にシフトする現象が効果的に生じやすい。その結果、光吸収性組成物を硬化させて得られる光吸収膜は、より確実に、波長410nm以下の光を効果的に吸収しやすい。 The arrangement of the hydroxyl group and the carbonyl group in the ultraviolet absorbing compound is not limited to a specific arrangement. In the ultraviolet absorbing compound, the hydroxyl group and the carbonyl group are preferably arranged with one to three atoms between them. This is thought to facilitate the transfer of hydrogen between the hydroxyl group and the carbonyl group in the ultraviolet absorbing compound. This effectively facilitates the shift of the light absorption band in the wavelength range of 300 to 500 nm to the longer wavelength side. As a result, the light absorbing film obtained by curing the light absorbing composition more reliably and effectively absorbs light with a wavelength of 410 nm or less.
 紫外線吸収性化合物は、その分子内にヒドロキシ基及びカルボニル基を有する限り特定の化合物に限定されない。紫外線吸収性化合物は、望ましくは、金属成分と混合されても凝集しにくい化合物である。 The ultraviolet absorbing compound is not limited to a specific compound as long as it has a hydroxyl group and a carbonyl group in its molecule. The ultraviolet absorbing compound is preferably a compound that does not easily aggregate even when mixed with a metal component.
 紫外線吸収性化合物は、望ましくは、下記式(A1)で表されるベンゾフェノン系化合物を含む。この場合、光吸収性組成物を用いて作製される光吸収膜又は光学フィルタは、より確実に、波長410nm以下の短波長領域の光を効果的に吸収しやすい。 The ultraviolet absorbing compound preferably contains a benzophenone compound represented by the following formula (A1). In this case, the light absorbing film or optical filter produced using the light absorbing composition is more likely to effectively absorb light in the short wavelength region of 410 nm or less.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(A1)において、R11、R12、R21、及びR22の少なくとも1つはヒドロキシ基である。式(A1)において、R11、R12、R21、又はR22がヒドロキシ基以外の官能基である場合、複数のR11、複数のR12、複数のR21、又は複数のR22が存在していてもよく、R11、R12、R21、及びR22の少なくとも1つは存在しなくてもよい。 In formula (A1), at least one of R 11 , R 12 , R 21 , and R 22 is a hydroxy group. In formula (A1), when R 11 , R 12 , R 21 , or R 22 is a functional group other than a hydroxy group, a plurality of R 11 , a plurality of R 12 , a plurality of R 21 , or a plurality of R 22 may be present, and at least one of R 11 , R 12 , R 21 , and R 22 may not be present.
 R11、R12、R21、又はR22がヒドロキシ基以外の官能基である場合、その官能基は、例えば、カルボキシル基、アルデヒド基、ハロゲン原子、1~12個の炭素原子を有するアルキル基、1つ以上の水素原子がハロゲン原子に置換された1~12個の炭素原子を有するアルキル基、1~12個の炭素原子を有するアルコキシ基、又は1つ以上の水素原子がハロゲン原子に置換された1~12個の炭素原子を有するアルコキシ基である。 When R 11 , R 12 , R 21 , or R 22 is a functional group other than a hydroxy group, the functional group is, for example, a carboxyl group, an aldehyde group, a halogen atom, an alkyl group having 1 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with halogen atoms, an alkoxy group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with halogen atoms.
 紫外線吸収性化合物は、より望ましくは、下記式(A2)で表されるベンゾフェノン系化合物を含む。この場合、光吸収性組成物を用いて作製される光吸収膜又は光学フィルタは、さらに確実に、波長410nm以下の短波長領域の光を効果的に吸収しやすい。 More preferably, the ultraviolet absorbing compound contains a benzophenone compound represented by the following formula (A2). In this case, the light absorbing film or optical filter produced using the light absorbing composition is more likely to effectively absorb light in the short wavelength region of 410 nm or less.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(A2)において、R31は、水素原子、ヒドロキシ基、カルボキシル基、アルデヒド基、ハロゲン原子、ハロゲン原子を有する基、1~12個の炭素原子を有するアルキル基、又は1~12個の炭素原子を有するアルコキシ基である。式(A2)において、R41及びR42は、ヒドロキシ基、カルボキシル基、アルデヒド基、ハロゲン原子を有する基、1~12個の炭素原子を有するアルキル基、6~12個の炭素原子を有するアリール基、又は1~12個の炭素原子を有するアルコキシ基であってもよく、R41及びR42は、存在していなくてもよい。式(A2)において、複数のR41が存在していてもよく、複数のR42が存在していてもよい。ハロゲン原子を有する基は、アルキル基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アルキル基であってもよい。ハロゲン原子を有する基は、アリール基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アリール基であってもよい。ハロゲン原子を有する基は、アルコキシ基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アルコキシ基であってもよい。 In formula (A2), R 31 is a hydrogen atom, a hydroxyl group, a carboxyl group, an aldehyde group, a halogen atom, a group having a halogen atom, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms. In formula (A2), R 41 and R 42 may be a hydroxyl group, a carboxyl group, an aldehyde group, a group having a halogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, and R 41 and R 42 may not be present. In formula (A2), a plurality of R 41 may be present, and a plurality of R 42 may be present. The group having a halogen atom may be a halogenated alkyl group in which at least one hydrogen atom in the alkyl group is substituted with a halogen atom. The group having a halogen atom may be a halogenated aryl group in which at least one hydrogen atom in the aryl group is substituted with a halogen atom. The group having a halogen atom may be a halogenated alkoxy group in which at least one hydrogen atom in the alkoxy group is substituted with a halogen atom.
 式(A1)又は式(A2)で表されるベンゾフェノン系化合物は、特定の化合物に限定されない。そのベンゾフェノン系化合物は、例えば、2,2’‐ジヒドロキシ‐4,4’‐ジメトキシベンゾフェノン、2,2’,4,4’‐テトラヒドロキシベンゾフェノン、2‐ヒドロキシ‐4‐メトキシベンゾフェノン、2‐ヒドロキシ‐4‐メトキシ‐4’‐クロロベンゾフェノン、2‐ヒドロキシ‐4‐n‐オクトキシベンゾフェノン、2‐ヒドロキシ‐4‐ドデシルオキシベンゾフェノン、2,4‐ジヒドロキシベンゾフェノン、2‐ヒドロキシ‐4‐メトキシ‐2’‐カルボキシベンゾフェノン、2,2’‐ジヒドロキシ‐4‐メトキシベンゾフェノン、2,2’‐ジヒドロキシ‐4‐n‐オクトキシベンゾフェノン、2‐ヒドロキシ‐5‐クロロベンゾフェノン、及び2,4‐ジベンゾイルレゾルシンからなる群より選ばれる少なくとも1つである。 The benzophenone compound represented by formula (A1) or formula (A2) is not limited to a specific compound. The benzophenone compound is, for example, at least one selected from the group consisting of 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorobenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-n-octoxybenzophenone, 2-hydroxy-5-chlorobenzophenone, and 2,4-dibenzoylresorcinol.
 紫外線吸収性化合物は、下記式(B)で表されるサリチル酸系化合物を含んでいてもよい。この場合、光吸収性組成物を用いて作製される光吸収膜又は光学フィルタは、より確実に、波長410nm付近の短波長領域の光を効果的に吸収しやすい。 The ultraviolet absorbing compound may contain a salicylic acid compound represented by the following formula (B). In this case, the light absorbing film or optical filter produced using the light absorbing composition is more likely to effectively absorb light in the short wavelength region around 410 nm.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(B)において、R51は、ヒドロキシ基、カルボキシ基、ハロゲン原子を含む基、1~12個の炭素原子を有するアルキル基、6~12個の炭素原子を有するアリール基、又は1~12個の炭素原子を有するアルコキシ基であってもよい。式(B)において、複数のR51が存在していてもよく、R51が存在していなくてもよい。式(B)において、R52は、水素原子、アリール基、又は1つ以上の水素原子がハロゲン原子に置換されたハロゲン化アリール基である。ハロゲン原子を有する基は、アルキル基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アルキル基であってもよい。ハロゲン原子を有する基は、アリール基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アリール基であってもよい。ハロゲン原子を有する基は、アルコキシ基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アルコキシ基であってもよい。 In formula (B), R 51 may be a hydroxy group, a carboxy group, a group containing a halogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms. In formula (B), a plurality of R 51 may be present, or R 51 may not be present. In formula (B), R 52 is a hydrogen atom, an aryl group, or a halogenated aryl group in which one or more hydrogen atoms are substituted with halogen atoms. The group having a halogen atom may be a halogenated alkyl group in which at least one hydrogen atom in the alkyl group is substituted with a halogen atom. The group having a halogen atom may be a halogenated aryl group in which at least one hydrogen atom in the aryl group is substituted with a halogen atom. The group having a halogen atom may be a halogenated alkoxy group in which at least one hydrogen atom in the alkoxy group is substituted with a halogen atom.
 式(B)で表されるサリチル酸系化合物は、特定の化合物に限定されない。式(B)で表されるサリチル酸系化合物は、例えば、サリチル酸フェニル、サリチル酸‐4‐ブチルフェニル、及びサリチル酸‐オクチルフェニルからなる群より選択される少なくとも1つを含む。 The salicylic acid compound represented by formula (B) is not limited to a specific compound. The salicylic acid compound represented by formula (B) includes, for example, at least one selected from the group consisting of phenyl salicylate, 4-butylphenyl salicylate, and octylphenyl salicylate.
 金属成分は、特定の金属成分に限定されない。金属成分は、典型的には、光吸収性組成物及び光吸収性組成物を用いて作製される光吸収膜において凝集せず、熱的及び化学的に安定な成分である。加えて、金属成分は、典型的には、上記の紫外線吸収性化合物と相互作用可能な成分である。 The metal component is not limited to a specific metal component. The metal component is typically a component that does not aggregate in the light absorbing composition and the light absorbing film produced using the light absorbing composition, and is thermally and chemically stable. In addition, the metal component is typically a component that can interact with the ultraviolet absorbing compound.
 金属成分は、例えば、Li、Na、Mg、Ca、Sr、Ba、Ge、Sn、Pb、Al、Ga、In、Tl、Zn、Cd、Cu、Ag、Au、Ni、Pd、Pt、Co、Rh、Ir、Fe、Mn、Cr、Mo、W、V、Nb、Ta、Ti、及びZrからなる群より選択される少なくとも一つを含む。この場合、金属成分は、上記の紫外線吸収性化合物と相互作用しやすい。 The metal component includes at least one selected from the group consisting of, for example, Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr. In this case, the metal component is likely to interact with the above-mentioned ultraviolet absorbing compound.
 光吸収性組成物における金属成分の含有率CMは、特定の値に限定されない。含有率CMは、質量基準で、例えば0.005%~2%である。これにより、光吸収性組成物を用いて作製される光吸収膜又は光学フィルタは、より確実に、波長410nm以下の短波長領域の光を効果的に吸収しやすい。含有量CMは、望ましくは、0.01%~1%であり、より望ましくは0.01%~0.5%であり、さらに望ましくは0.01%~0.3%である。 The content C M of the metal component in the light-absorbing composition is not limited to a specific value. The content C M is, for example, 0.005% to 2% by mass. This makes it easier for a light-absorbing film or optical filter produced using the light-absorbing composition to more reliably absorb light in the short wavelength region of 410 nm or less. The content C M is preferably 0.01% to 1%, more preferably 0.01% to 0.5%, and even more preferably 0.01% to 0.3%.
 光吸収性組成物における紫外線吸収性化合物の含有率CUVは、特定の値に限定されない。含有率CUVは、質量基準で、例えば0.1%~20%である。これにより、光吸収性組成物を用いて作製される光吸収膜又は光学フィルタは、より確実に、波長410nm以下の短波長領域の光を効果的に吸収しやすい。含有率CUVは、望ましくは0.1%~15%であり、より望ましくは0.2~10%であり、さらに望ましくは0.5%~10%であり、特に望ましくは1%~10%である。 The content C UV of the ultraviolet absorbing compound in the light absorbing composition is not limited to a specific value. The content C UV is, for example, 0.1% to 20% by mass. This makes it easier for a light absorbing film or optical filter produced using the light absorbing composition to more reliably absorb light in the short wavelength region of 410 nm or less. The content C UV is preferably 0.1% to 15%, more preferably 0.2 to 10%, even more preferably 0.5% to 10%, and particularly preferably 1% to 10%.
 光吸収性組成物において、金属成分の含有量に対する紫外線吸収性化合物の含有量の比RUV/Mは、特定の値に限定されない。比RUV/Mは、質量基準で、例えば5~300である。これにより、光吸収性組成物を用いて作製される光吸収膜又は光学フィルタは、より確実に、波長410nm以下の短波長領域の光を効果的に吸収しやすい。比RUV/Mは、望ましくは10~300であり、より望ましくは20~300であり、さらに望ましくは30~280である。 In the light-absorbing composition, the ratio R UV/M of the content of the ultraviolet absorbing compound to the content of the metal component is not limited to a specific value. The ratio R UV/M is, for example, 5 to 300 on a mass basis. This makes it easier for a light-absorbing film or optical filter produced using the light-absorbing composition to more reliably absorb light in the short wavelength region of 410 nm or less effectively. The ratio R UV/M is preferably 10 to 300, more preferably 20 to 300, and even more preferably 30 to 280.
 光吸収性組成物において、PVBの質量に対するイソシアネートの質量の比RI/Pは、特定の値に限定されない。比RI/Pは、例えば0.05~3.0である。これにより、PVBとイソシアネートとの架橋反応により、光吸収性組成物の硬化物の表面の硬度がより高くなりやすい。比RI/Pは、望ましくは0.05~3.0であり、より望ましくは0.1~0.3であり、さらに望ましくは0.2~3.0である。 In the light absorbing composition, the ratio R I/P of the mass of isocyanate to the mass of PVB is not limited to a specific value. The ratio R I/P is, for example, 0.05 to 3.0. This makes it easier for the surface hardness of the cured product of the light absorbing composition to be increased by the crosslinking reaction between PVB and isocyanate. The ratio R I/P is preferably 0.05 to 3.0, more preferably 0.1 to 0.3, and even more preferably 0.2 to 3.0.
 光吸収性組成物において、紫外線吸収性化合物の質量に対するイソシアネートの質量の比RI/UVは、特定の値に限定されない。比RI/UVは、例えば0.1~3.0である。これにより、光吸収性組成物の硬化物の表面の硬度がより高くなりやすく、光学フィルタの清掃又は製造過程における耐久性の観点から有利な機械的特性及び耐溶剤性がより実現されやすい。比RI/UVは、望ましくは0.2~3.0であり、より望ましくは0.25~3.0である。 In the light-absorbing composition, the ratio R I/UV of the mass of the isocyanate to the mass of the ultraviolet absorbing compound is not limited to a specific value. The ratio R I/UV is, for example, 0.1 to 3.0. This makes it easier to increase the hardness of the surface of the cured product of the light-absorbing composition, and makes it easier to achieve advantageous mechanical properties and solvent resistance from the viewpoint of durability during cleaning or manufacturing of optical filters. The ratio R I/UV is preferably 0.2 to 3.0, more preferably 0.25 to 3.0.
 光吸収性組成物を製造する方法は、特定の方法に限定されない。光吸収性組成物は、例えば、有機溶媒に、ヒドロキシ基及びカルボニル基を分子内に有する紫外線吸収性化合物と、金属成分を含む化合物と、ポリビニルブチラールと、イソシアネートとを添加して混合することを含む方法によって、製造されうる。 The method for producing the light-absorbing composition is not limited to a specific method. For example, the light-absorbing composition can be produced by a method including adding an ultraviolet-absorbing compound having a hydroxyl group and a carbonyl group in the molecule, a compound containing a metal component, polyvinyl butyral, and an isocyanate to an organic solvent and mixing them.
 光吸収性組成物を用いて、例えば、図1に示す光吸収膜10を提供できる。光吸収膜10は、例えば、光吸収性組成物を硬化させることによって得られる。光吸収膜10は、ヒドロキシ基及びカルボニル基を分子内に有する紫外線吸収性化合物と、金属成分と、ウレタン結合を有する樹脂とを含有している。光吸収膜10において、金属成分の少なくとも一部は、有機オキシ基に結合している。金属成分の少なくとも一部は、有機オキシ基における酸素原子に結合している。これにより、光吸収膜10は、波長410nm以下の短波長領域の光を効果的に吸収しやすい。加えて、光吸収膜10がウレタン結合を有する樹脂を含むことにより、光吸収膜10は、光学フィルタの清掃における耐久性又は耐溶剤性の向上の観点から有利な特性を有しやすい。 The light absorbing composition can be used to provide, for example, the light absorbing film 10 shown in FIG. 1. The light absorbing film 10 can be obtained, for example, by curing the light absorbing composition. The light absorbing film 10 contains an ultraviolet absorbing compound having a hydroxyl group and a carbonyl group in the molecule, a metal component, and a resin having a urethane bond. In the light absorbing film 10, at least a part of the metal component is bonded to an organic oxy group. At least a part of the metal component is bonded to an oxygen atom in the organic oxy group. This makes it easy for the light absorbing film 10 to effectively absorb light in the short wavelength region of 410 nm or less. In addition, since the light absorbing film 10 contains a resin having a urethane bond, the light absorbing film 10 is easy to have advantageous characteristics in terms of improving durability or solvent resistance in cleaning optical filters.
 上記の通り、光吸収膜10において、金属成分の少なくとも一部は有機オキシ基と結合しており、有機オキシ基と結合した金属成分を含む化合物が含まれる。ここで有機オキシ基と結合する金属成分を含む化合物は、一般的に(Rk-O)n-Mで表される化合物である。Mは、金属原子及び金属イオン等の金属成分を表す。(Rk-O)n-の基は、n個の有機オキシ基(または、まとめて有機オキシ基という、以降同じ。)を表し、Rkは、少なくとも、炭素原子(C)及び水素原子(H)等を含む有機基を表し、nは、金属成分Mに結合又は配位する数を表し、1又は複数の有機オキシ基が金属成分Mに結合又は配位していてもよい。有機オキシ基(Rk-O)-内には二以上のO(酸素)が含まれてもよく、これら二以上のO(酸素)を介して、有機オキシ基が金属成分Mに結合又は配位してもよい。また、有機基Rkは、結合又は配位する有機オキシ基(Rk-O)-毎に同じであってもよいし、異なっていてもよく、複数の有機オキシ基が金属成分Mを介さずに結合していてもよい。有機オキシ基は、このような条件を満たす基であれば、特に限定されるものではないが、例えばメトキシ基、エトキシ基、プロピルオキシ基、フェノキシ基、アルキルフェノキシ基等のアルコキシ基、ビニル基等である。有機オキシ基は、有機基Rkが、アシル基、アセチル基、ケトン基、ビニル基、プロピオニル基、アクリリル基、アセトキシ基、アクリロイル基、エチルアセテート基、エチルアセトアセテート基、アセチルアセトン基、及びその他のエステルやエーテルなどの部分的構造(基)を含むものであってもよい。また、これらから選択される一又は二以上の基を含む有機オキシ基であってもよい。金属成分Mは、例えば、Li、Na、Mg、Ca、Sr、Ba、Ge、Sn、Pb、Al、Ga、In、Tl、Zn、Cd、Cu、Ag、Au、Ni、Pd、Pt、Co、Rh、Ir、Fe、Mn、Cr、Mo、W、V、Nb、Ta、Ti、及びZr等の金属原子やイオン等の金属成分からなる群より選択される少なくとも一つを含むものであってもよい。 As described above, in the light absorbing film 10, at least a part of the metal component is bonded to the organic oxy group, and the compound includes a metal component bonded to the organic oxy group. The compound containing the metal component bonded to the organic oxy group is generally a compound represented by (R k -O) n -M. M represents a metal component such as a metal atom or a metal ion. The (R k -O) n - group represents n organic oxy groups (or collectively referred to as organic oxy groups, the same applies hereinafter), R k represents an organic group containing at least a carbon atom (C) and a hydrogen atom (H), etc., n represents the number of atoms bonded or coordinated to the metal component M, and one or more organic oxy groups may be bonded or coordinated to the metal component M. The organic oxy group (R k -O)- may contain two or more O (oxygen), and the organic oxy group may be bonded or coordinated to the metal component M via these two or more O (oxygen). In addition, the organic group R k may be the same or different for each organic oxy group (R k -O)- to be bonded or coordinated, and a plurality of organic oxy groups may be bonded without the metal component M being interposed therebetween. The organic oxy group is not particularly limited as long as it satisfies such conditions, and may be, for example, an alkoxy group such as a methoxy group, an ethoxy group, a propyloxy group, a phenoxy group, or an alkylphenoxy group, or a vinyl group. The organic oxy group may be an organic group R k that contains a partial structure (group) such as an acyl group, an acetyl group, a ketone group, a vinyl group, a propionyl group, an acrylyl group, an acetoxy group, an acryloyl group, an ethyl acetate group, an ethyl acetoacetate group, an acetylacetone group, or other ester or ether. Alternatively, the organic oxy group may contain one or more groups selected from these. The metal component M may include at least one selected from the group consisting of metal components such as metal atoms and ions of, for example, Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr.
 光吸収膜10の紫外線吸収性化合物において、望ましくは、ヒドロキシ基と前記カルボニル基とは、1~3個の原子を隔てて配置されている。これにより、光吸収膜10の波長410nm以下の領域の光を吸収する能力を向上させやすい。 In the ultraviolet absorbing compound of the light absorbing film 10, the hydroxyl group and the carbonyl group are preferably spaced apart by 1 to 3 atoms. This makes it easier to improve the light absorbing film 10's ability to absorb light in the wavelength range of 410 nm or less.
 光吸収膜10における紫外線吸収性化合物は、例えば、上記の式(A1)で表されるベンゾフェノン系化合物を含む。これにより、光吸収膜10の波長410nm以下の領域の光を吸収する能力を向上させやすい。 The ultraviolet absorbing compound in the light absorbing film 10 includes, for example, a benzophenone-based compound represented by the above formula (A1). This makes it easier to improve the ability of the light absorbing film 10 to absorb light in the wavelength range of 410 nm or less.
 光吸収膜10における紫外線吸収性化合物は、望ましくは、上記の式(A2)で表されるベンゾフェノン系化合物を含む。これにより、光吸収膜10の波長410nm以下の領域の光を吸収する能力を特に向上させやすい。 The ultraviolet absorbing compound in the light absorbing film 10 preferably contains a benzophenone-based compound represented by the above formula (A2). This makes it particularly easy to improve the ability of the light absorbing film 10 to absorb light in the wavelength range of 410 nm or less.
 光吸収膜10における紫外線吸収性化合物は、例えば、上記の式(B)で表されるサリチル酸系化合物を含んでいてもよい。この場合、光吸収膜10の波長410nm以下の領域の光を吸収する能力を向上させやすい。 The ultraviolet absorbing compound in the light absorbing film 10 may contain, for example, a salicylic acid compound represented by the above formula (B). In this case, it is easy to improve the ability of the light absorbing film 10 to absorb light in the wavelength range of 410 nm or less.
 光吸収膜10における金属成分は、例えば、Li、Na、Mg、Ca、Sr、Ba、Ge、Sn、Pb、Al、Ga、In、Tl、Zn、Cd、Cu、Ag、Au、Ni、Pd、Pt、Co、Rh、Ir、Fe、Mn、Cr、Mo、W、V、Nb、Ta、Ti、及びZrからなる群より選択される少なくとも一つを含んでいる。 The metal component in the light absorbing film 10 includes at least one selected from the group consisting of, for example, Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr.
 光吸収膜10において、金属成分の含有量に対する紫外線吸収性化合物の含有量の比rUV/Mは、特定の値に限定されない。比rUV/Mは、質量基準で、例えば5~300である。これにより、光吸収性組成物を用いて作製される光吸収膜又は光学フィルタは、より確実に、波長410nm以下の短波長領域の光を効果的に吸収しやすい。比rUV/Mは、望ましくは10~300であり、より望ましくは20~300であり、さらに望ましくは30~280である。 In the light absorbing film 10, the ratio r UV/M of the content of the ultraviolet absorbing compound to the content of the metal component is not limited to a specific value. The ratio r UV/M is, for example, 5 to 300 on a mass basis. This makes it easier for the light absorbing film or optical filter produced using the light absorbing composition to more reliably absorb light in the short wavelength region of 410 nm or less effectively. The ratio r UV/M is preferably 10 to 300, more preferably 20 to 300, and even more preferably 30 to 280.
 光吸収膜10の透過率T400は、例えば5%以下である。このことは、人間の視感度の再現の観点から有利である。透過率T400は、0°の入射角度での透過スペクトルの波長400nmにおける透過率である。透過率T400は、望ましくは4.5%以下であり、より望ましくは4%以下である。 The transmittance T400 of the light absorbing film 10 is, for example, 5% or less. This is advantageous from the viewpoint of reproducing the visual sensitivity of the human eye. The transmittance T400 is the transmittance at a wavelength of 400 nm in the transmission spectrum at an incident angle of 0°. The transmittance T400 is preferably 4.5% or less, and more preferably 4% or less.
 光吸収膜10における紫外線吸収性化合物の含有量は、特定の値に限定されない。その含有量は、質量基準で、例えば0.1%~90%であり、望ましくは0.5%~80%であり、より望ましくは2%~70%である。 The content of the ultraviolet absorbing compound in the light absorbing film 10 is not limited to a specific value. The content is, for example, 0.1% to 90%, preferably 0.5% to 80%, and more preferably 2% to 70%, by mass.
 光吸収膜10における金属成分の含有量は、特定の値に限定されない。その含有量は、質量基準で、例えば0.005%~5%であり、望ましくは0.01%~4%であり、より望ましくは0.03%~3%である。 The content of the metal component in the light absorbing film 10 is not limited to a specific value. The content is, for example, 0.005% to 5% by mass, preferably 0.01% to 4%, and more preferably 0.03% to 3%.
 光吸収膜10において、PVBの質量に対するイソシアネートの質量の比rI/Pは、特定の値に限定されない。比rI/Pは、例えば0.05~3.0であり、望ましくは0.05~2.5であり、より望ましくは0.05~2.0であり、さらに望ましくは1.0~2.0である。 In the light absorbing film 10, the ratio r I/P of the mass of isocyanate to the mass of PVB is not limited to a specific value. The ratio r I/P is, for example, 0.05 to 3.0, preferably 0.05 to 2.5, more preferably 0.05 to 2.0, and further preferably 1.0 to 2.0.
 光吸収膜10において、紫外線吸収性化合物の質量に対するイソシアネートの質量の比rI/UVは、特定の値に限定されない。比rI/UVは、例えば0.1~3.0であり、望ましくは0.2~2.8であり、より望ましくは0.2~2.5である。 In the light absorbing film 10, the ratio r I/UV of the mass of the isocyanate to the mass of the ultraviolet absorbing compound is not limited to a specific value. The ratio r I/UV is, for example, 0.1 to 3.0, preferably 0.2 to 2.8, and more preferably 0.2 to 2.5.
 光吸収膜10の厚みは特定の値に限定されない。光吸収膜10の厚みは、例えば、0.5μm~500μmであり、1μm~100μmであってもよく、1μm~50μmであってもよい。 The thickness of the light absorbing film 10 is not limited to a specific value. The thickness of the light absorbing film 10 is, for example, 0.5 μm to 500 μm, may be 1 μm to 100 μm, or may be 1 μm to 50 μm.
 光吸収膜10の製造において、光吸収性組成物を硬化させる方法は、特定の方法に限定されない。例えば、光吸収性組成物に含まれるPVBと、イソシアネートとの架橋反応が生じるように光吸収性組成物の硬化の条件が調整される。これにより、光吸収膜10にウレタン結合を有する樹脂が含まれる。例えば、光吸収性組成物を所定の温度で加熱することによって硬化させてもよい。この場合、所定の温度は、例えば、80℃以上であり、望ましくは100℃以上であり、より望ましくは120℃以上であり、さらに望ましくは140~180℃である。これにより、紫外線吸収性化合物の劣化を防止しつつ光吸収膜10が光学フィルタの清掃における耐久性の観点から有利な特性を有しやすい。 In the manufacture of the light absorbing film 10, the method of curing the light absorbing composition is not limited to a specific method. For example, the conditions for curing the light absorbing composition are adjusted so that a crosslinking reaction occurs between the PVB contained in the light absorbing composition and the isocyanate. As a result, the light absorbing film 10 contains a resin having a urethane bond. For example, the light absorbing composition may be cured by heating at a predetermined temperature. In this case, the predetermined temperature is, for example, 80°C or higher, preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 140 to 180°C. This makes it easier for the light absorbing film 10 to have advantageous characteristics in terms of durability in cleaning the optical filter while preventing deterioration of the ultraviolet absorbing compound.
 図1及び2Aに示す通り、例えば、光吸収膜10を備えた光学フィルタ1a及び1bを提供できる。光学フィルタ1a及び1bによって、波長410nm以下の短波長領域の光が効果的に吸収されやすい。 As shown in Figures 1 and 2A, for example, optical filters 1a and 1b equipped with a light absorbing film 10 can be provided. The optical filters 1a and 1b tend to effectively absorb light in the short wavelength region of 410 nm or less.
 光学フィルタ1a及び1bの0度の入射角度での透過スペクトルにおいて、波長410nmにおける透過率T410は、例えば20%以下であり、望ましくは15%以下であり、より望ましくは10%以下である。 In the transmission spectrum of the optical filters 1a and 1b at an incident angle of 0 degrees, the transmittance T 410 at a wavelength of 410 nm is, for example, 20% or less, preferably 15% or less, and more preferably 10% or less.
 光学フィルタ1a及び1bの0度の入射角度での透過スペクトルにおいて、波長300~380nmの範囲内における透過率の最大値TM 300-380は、例えば、3%以下である。これにより、光学フィルタが波長400nmより短波長領域の光を効果的に吸収しやすい。透過率の最大値TM 300-380は、望ましくは2%以下であり、より望ましくは1%以下である。 In the transmission spectrum of the optical filters 1a and 1b at an incident angle of 0 degrees, the maximum transmittance T M 300-380 in the wavelength range of 300 to 380 nm is, for example, 3% or less. This makes it easy for the optical filter to effectively absorb light in the wavelength range shorter than 400 nm. The maximum transmittance T M 300-380 is preferably 2% or less, and more preferably 1% or less.
 光学フィルタ1a及び1bの0度の入射角度での透過スペクトルにおいて、波長300~520nmの範囲における透過率が50%である波長を紫外線カットオフ波長λUVと定める。光学フィルタ1a及び1bにおいて、例えば、405nm≦λUV≦500nmの条件が満たされる。これにより、光吸収膜10が波長410nm付近の短波長領域の光を効果的に吸収しやすく、撮像素子と組み合わせて用いる撮像装置において、ヒトが認識しにくい波長領域の光がカットされやすい。光学フィルタ1a及び1bは、望ましくは405nm≦λUV≦490nmの条件を満たし、より望ましくは405nm≦λUV≦480nmの条件を満たす。 In the transmission spectrum of the optical filters 1a and 1b at an incident angle of 0 degrees, the wavelength at which the transmittance in the wavelength range of 300 to 520 nm is 50% is defined as the ultraviolet cutoff wavelength λ UV . In the optical filters 1a and 1b, for example, the condition 405 nm≦λ UV ≦500 nm is satisfied. This makes it easier for the light absorbing film 10 to effectively absorb light in the short wavelength region around the wavelength of 410 nm, and makes it easier for light in a wavelength region that is difficult for humans to recognize to be cut in an imaging device used in combination with an imaging element. The optical filters 1a and 1b preferably satisfy the condition 405 nm≦λ UV ≦490 nm, and more preferably satisfy the condition 405 nm≦λ UV ≦480 nm.
 光学フィルタ1a及び1bの0度の入射角度での透過スペクトルにおいて、波長480~600nmの範囲における透過率の最小値Tm 480-600は、例えば、85%以上である。これにより、光学フィルタ1a及び1bは、可視光を適切に透過でき、撮像素子と組み合わせて用いる撮像装置において、被写体から撮像素子に到達する光束の増大を図ることができる。 In the transmission spectrum of the optical filters 1a and 1b at an incident angle of 0 degree, the minimum transmittance T m 480-600 in the wavelength range of 480 to 600 nm is, for example, 85% or more. This allows the optical filters 1a and 1b to appropriately transmit visible light, and in an imaging device used in combination with an imaging element, it is possible to increase the light flux reaching the imaging element from the subject.
 透過率の最小値Tm 480-600は、望ましくは86%以上であり、より望ましくは87%以上である。 The minimum value of the transmittance T m 480-600 is preferably 86% or more, and more preferably 87% or more.
 波長300nm~1200nmの範囲の光を0°の入射角度で光学フィルタ1a及び1bに入射させて得られる透過スペクトルは、下記の(i-a)、(ii-a)、(iii-a)、(iv-a)、(v-a)、及び(vi-a)の要件を満たしてもよい。
(i-a)波長300nm~380nmの範囲における透過率の最大値TM 300-380は3%以下である。
(ii-a)波長400nmにおける透過率T400は5%以下である。
(iii-a)波長410nmにおける透過率T410は10%以下である。
(iv-a)波長350nm~500nmの範囲内において、透過率が50%となる波長λUV[nm]は405nm~490nmの範囲内に存在する。
(v-a)波長480~600nmの範囲における透過率の最小値Tm 480-600は85%以上である。
(vi-a)波長(λUV-10)nmにおける透過率T0 UV-に対する、波長(λUV+10)nmにおける透過率T0 UV+の比T0 UV+/T0 UV-が1.8以上である。
The transmission spectrum obtained by irradiating light having a wavelength in the range of 300 nm to 1200 nm on the optical filters 1a and 1b at an incident angle of 0° may satisfy the following requirements (ia), (ii-a), (iii-a), (iv-a), (va), and (vi-a).
(ia) The maximum transmittance T M 300-380 in the wavelength range of 300 nm to 380 nm is 3% or less.
(ii-a) The transmittance T 400 at a wavelength of 400 nm is 5% or less.
(iii-a) The transmittance T 410 at a wavelength of 410 nm is 10% or less.
(iv-a) Within the wavelength range of 350 nm to 500 nm, the wavelength λ UV [nm] at which the transmittance is 50% is within the range of 405 nm to 490 nm.
(va) The minimum transmittance T m 480-600 in the wavelength range of 480 to 600 nm is 85% or more.
(vi-a) The ratio T 0 UV+ /T 0 UV- of the transmittance T 0 UV+ at a wavelength of (λ UV +10) nm to the transmittance T 0 UV- at a wavelength of (λ UV -10) nm is 1.8 or more.
 上記(i-a)の要件を満たすことにより、光学フィルタ1a及び1bが高い紫外線吸収性を発揮しうる。 By satisfying the above requirement (i-a), the optical filters 1a and 1b can exhibit high ultraviolet absorption properties.
 (i-a)の要件に加えて、上記(ii-a)及び(iii-a)の要件を満たすことにより、光学フィルタ1a及び1bがより高い紫外線吸収性を発揮しうる。特に、光学フィルタ1a及び1bは、より高度な紫外線吸収性能を求められる光学フィルタのアプリケーションに対して適応しうる。透過率T400は、望ましくは4%以下である。 By satisfying the above requirements (ii-a) and (iii-a) in addition to the requirement (ia), the optical filters 1a and 1b can exhibit higher ultraviolet absorbing properties. In particular, the optical filters 1a and 1b can be applied to optical filter applications that require higher ultraviolet absorbing performance. The transmittance T400 is preferably 4% or less.
 上記(iv-a)の要件を満たすことにより、光学フィルタ1a及び1bが高い紫外線吸収性を発揮しうるとともに、撮像素子が感受するスペクトルがヒトの視感度に対応したスペクトルと部分的に合致しやすくなる。波長λUVは、望ましくは420nm~490nmであり、より望ましくは420nm~450nmである。この場合、得られた画像の中でパープルフリンジが抑制されやすい。パープルフリンジは、特に被写体の輪郭に発現する略紫色を呈する色にじみである。加えて、ヒトの可視光域に属する光の透過率が高くすることができ、明るい画像が得られやすい。 By satisfying the above requirement (iv-a), the optical filters 1a and 1b can exhibit high ultraviolet absorption properties, and the spectrum to which the image sensor is sensitive can easily partially match the spectrum corresponding to the human visual sensitivity. The wavelength λ UV is preferably 420 nm to 490 nm, more preferably 420 nm to 450 nm. In this case, purple fringing is easily suppressed in the obtained image. Purple fringing is a color bleeding that appears approximately purple, especially on the contours of the subject. In addition, the transmittance of light belonging to the human visible light range can be increased, making it easier to obtain a bright image.
 上記(v-a)の要件を満たすことにより、ヒトの可視光域に属する光の透過率が高くなりやすく、明るい画像が得られやすい。特に、ヒトの視感度曲線における最大の感度に対応する波長域の透過率が高くなりやすく、ヒトが画像を観察したとき、より明るさを感じやすい。 By satisfying the above requirement (v-a), the transmittance of light in the human visible light range tends to be high, making it easier to obtain bright images. In particular, the transmittance of the wavelength range corresponding to the maximum sensitivity on the human luminosity curve tends to be high, making it easier for humans to perceive brightness when viewing an image.
 上記(vi-a)の要件を満たすことにより、波長λUV(UVカットオフ波長)近傍における透過スペクトルが急峻に変化するので、ヒトに不可視な紫外線をよりシャープに遮蔽することができるとともに、可視光域に含まれる光量の増加を図ることができる。比T0 UV+/T0 UV-は、望ましくは1.9以上であり、より望ましくは2.0以上であり、さらに望ましくは2.2以上であり、特に望ましくは2.4以上である。 By satisfying the above requirement (vi-a), the transmission spectrum in the vicinity of the wavelength λ UV (UV cutoff wavelength) changes sharply, so that ultraviolet rays invisible to humans can be blocked more sharply and the amount of light contained in the visible light range can be increased. The ratio T 0 UV+ /T 0 UV- is preferably 1.9 or more, more preferably 2.0 or more, even more preferably 2.2 or more, and particularly preferably 2.4 or more.
 波長300nm~1200nmの範囲の光を5°の入射角度で光学フィルタ1a及び1bに入射させて得られる反射スペクトルは、下記の(i-b)及び(ii-b)の要件を満たしてもよい。加えて、波長300nm~1200nmの範囲の光を40°の入射角度で光学フィルタ1a及び1bに入射させて得られる反射スペクトルは、下記の(iii-b)及び(iv-b)の要件を満たしていてもよい。さらに、波長300nm~1200nmの範囲の光を60°の入射角度で光学フィルタ1a及び1bに入射させて得られる反射スペクトルは、下記の(v-b)及び(vi-b)の要件を満たしていてもよい。
(i-b)波長300nm~450nmの範囲における反射率の最大値R5 300-450が20%以下である。
(ii-b)波長300nm~600nmの範囲における反射率の最大値R5 300-600が25%以下である。
(iii-b)波長300nm~450nmの範囲における反射率の最大値R40 300-450が20%以下である。
(iv-b)波長300nm~600nmの範囲における反射率の最大値R40 300-600が25%以下である。
(v-b)波長300nm~450nmの範囲における反射率の最大値R60 300-450が30%以下である。
(vi-b)波長300nm~600nmの範囲における反射率の最大値R60 300-600が35%以下である。
The reflection spectrum obtained by making light in the wavelength range of 300 nm to 1200 nm incident on the optical filters 1a and 1b at an incident angle of 5° may satisfy the following requirements (ib) and (ii-b). In addition, the reflection spectrum obtained by making light in the wavelength range of 300 nm to 1200 nm incident on the optical filters 1a and 1b at an incident angle of 40° may satisfy the following requirements (iii-b) and (iv-b). Furthermore, the reflection spectrum obtained by making light in the wavelength range of 300 nm to 1200 nm incident on the optical filters 1a and 1b at an incident angle of 60° may satisfy the following requirements (vb) and (vi-b).
(ib) The maximum reflectance R 5 300-450 in the wavelength range of 300 nm to 450 nm is 20% or less.
(ii-b) The maximum reflectance R 5 300-600 in the wavelength range of 300 nm to 600 nm is 25% or less.
(iii-b) The maximum reflectance R 40 300-450 in the wavelength range of 300 nm to 450 nm is 20% or less.
(iv-b) The maximum reflectance R 40 300-600 in the wavelength range of 300 nm to 600 nm is 25% or less.
(vb) The maximum reflectance R 60 300-450 in the wavelength range of 300 nm to 450 nm is 30% or less.
(vi-b) The maximum reflectance R 60 300-600 in the wavelength range of 300 nm to 600 nm is 35% or less.
 上記の(i-b)~(vi-b)の要件を満たすことは、光学フィルタ1a及び1bの表面で反射した反射光が、例えばカメラモジュール又は筐体の内部、エッジ、又はレンズ表面等で繰り返し反射又は屈折して撮像素子に到達して発生するゴースト、フレア、又はノイズを防ぐ観点から非常に有利である。この点は、紫外線をカット(遮蔽)するフィルタとして、光吸収タイプを用いることのメリットである。最大値R5 300-450は望ましくは15%以下である。最大値R40 300-450は望ましくは15%以下である。最大値R60 300-450は望ましくは20%以下である。最大値R5 300-600は望ましくは20%以下である。最大値R40 300-600は望ましくは20%以下である。最大値R60 300-600は望ましくは25%以下である。 Satisfying the above requirements (ib) to (vi-b) is extremely advantageous in terms of preventing ghosts, flares, or noise that occur when light reflected on the surfaces of the optical filters 1a and 1b is repeatedly reflected or refracted, for example, inside the camera module or the housing, at the edges, or at the lens surface, and reaches the image sensor. This is an advantage of using a light absorbing type filter as a filter that cuts (blocks) ultraviolet rays. The maximum value R5 300-450 is preferably 15% or less. The maximum value R40 300-450 is preferably 15% or less. The maximum value R60 300-450 is preferably 20% or less. The maximum value R5 300-600 is preferably 20% or less. The maximum value R40 300-600 is preferably 20% or less. The maximum value R60 300-600 is preferably 25% or less.
 光学フィルタ1a及び1bは、下記の(i-c)、(ii-c)、(iii-c)、(iv-c)、及び(v-c)の要件を満たしてもよい。(i-c)のλ30 UV[nm]は、入射角度30°で波長300nm~1200nmの範囲の光を光学フィルタに入射させたときの透過スペクトルにおいて、波長350nm~500nmの範囲内で透過率が50%となる波長である。(ii-c)のλ40 UV[nm]は、入射角度40°で波長300nm~1200nmの範囲の光を光学フィルタに入射させたときの透過スペクトルにおいて、波長350nm~500nmの範囲内で透過率が50%となる波長である。(iii-c)のλ50 UV[nm]は、入射角度50°で波長300nm~1200nmの範囲の光を光学フィルタに入射させたときの透過スペクトルにおいて、波長350nm~500nmの範囲内で透過率が50%となる波長である。(iv-c)のλ60 UV[nm]は、入射角度60°で波長300nm~1200nmの範囲の光を光学フィルタに入射させたときの透過スペクトルにおいて、波長350nm~500nmの範囲内で透過率が50%となる波長である。(v-c)のλ70 UV[nm]は、入射角度70°で波長300nm~1200nmの範囲の光を光学フィルタに入射させたときの透過スペクトルにおいて、波長350nm~500nmの範囲内で透過率が50%となる波長である。
(i-c)|λ30 UV-λUV|≦2.4nm
(ii-c)|λ40 UV-λUV|≦3nm
(iii-c)|λ50 UV-λUV|≦5nm
(iv-c)|λ60 UV-λUV|≦9nm
(v-c)|λ70 UV-λUV|≦18nm
The optical filters 1a and 1b may satisfy the following requirements (ic), (ii-c), (iii-c), (iv-c), and (vc). The λ 30 UV [nm] in (ic) is a wavelength at which the transmittance is 50% in the range of 350 nm to 500 nm in the transmission spectrum when light in the range of 300 nm to 1200 nm is incident on the optical filter at an incident angle of 30°. The λ 40 UV [nm] in (ii-c) is a wavelength at which the transmittance is 50% in the range of 350 nm to 500 nm in the transmission spectrum when light in the range of 300 nm to 1200 nm is incident on the optical filter at an incident angle of 40°. The λ 50 UV [nm] in (iii-c) is a wavelength at which the transmittance is 50% in the range of 350 nm to 500 nm in the transmission spectrum when light in the range of 300 nm to 1200 nm is incident on the optical filter at an incident angle of 50°. The λ 60 UV [nm] of (iv-c) is a wavelength at which the transmittance is 50% in the range of 350 nm to 500 nm in the transmission spectrum when light in the range of 300 nm to 1200 nm is incident on the optical filter at an incident angle of 60°. The λ 70 UV [nm] of (vc) is a wavelength at which the transmittance is 50% in the range of 350 nm to 500 nm in the transmission spectrum when light in the range of 300 nm to 1200 nm is incident on the optical filter at an incident angle of 70°.
(ic) | λ 30 UV - λ UV | ≦ 2.4 nm
(ii-c) | λ 40 UV - λ UV | ≦ 3 nm
(iii-c) | λ 50 UV - λ UV | ≦ 5 nm
(iv-c) | λ 60 UV - λ UV | ≦ 9 nm
(vc) | λ 70 UV - λ UV | ≦ 18 nm
 完全吸収タイプの紫外線カットフィルタは、透過スペクトルの角度依存性が小さいという利点を有しうる。誘電体多層膜からなる反射膜で紫外線をカットするタイプの紫外線カットフィルタは、斜めから入射した光に対してはUVカットオフ波長が短波長側にシフトする傾向にある。このため、カットしたい紫外線が入射角によってはセンサーによって検知されてしまう可能性がある。一方、光学フィルタ1a及び1bは、上記の(i-c)~(v-c)の要件を満たし、斜め入射に対してのUVカットオフ波長の変化が少なく、かつ、UVカットオフ波長の短波長側へのシフトが生じにくい。このため、光学フィルタ1a及び1bによれば、ゴースト及びフレアを抑制する機能に加えて、面内で色むらができにくい良好な色再現性を実現しやすく、高画質の画像が得られやすい。 Complete absorption type UV cut filters have the advantage that the angle dependency of the transmission spectrum is small. UV cut filters that cut UV rays with a reflective film made of a dielectric multilayer film tend to have a UV cutoff wavelength that shifts to the short wavelength side for light incident at an angle. For this reason, the UV light that you want to cut may be detected by the sensor depending on the angle of incidence. On the other hand, optical filters 1a and 1b satisfy the above requirements (i-c) to (v-c), and there is little change in the UV cutoff wavelength for oblique incidence, and the UV cutoff wavelength is unlikely to shift to the short wavelength side. Therefore, optical filters 1a and 1b, in addition to the function of suppressing ghosts and flares, make it easy to achieve good color reproducibility that is less likely to cause color unevenness within the surface, making it easy to obtain high-quality images.
 (i-c)に関し、|λ30 UV-λUV|は、望ましくは|λ30 UV-λUV|≦1.6nmを満たし、より望ましくは|λ30 UV-λUV|≦1.2nmを満たす。(ii-c)に関し、|λ40 UV-λUV|は、望ましくは|λ40 UV-λUV|≦2.5nmを満たし、より望ましくは|λ40 UV-λUV|≦2nmを満たす。(iii-c)に関し、|λ50 UV-λUV|は、望ましくは|λ50 UV-λUV|≦3.5nmであり、より望ましくは|λ50 UV-λUV|≦3nmである。(iv-c)に関し、|λ60 UV-λUV|は、望ましくは|λ60 UV-λUV|≦6nmであり、より望ましくは|λ60 UV-λUV|≦5nmである。(v-c)に関し、|λ70 UV-λUV|は、望ましくは|λ70 UV―λUV|≦12nmであり、より望ましくは|λ70 UV-λUV|≦9nmである。 With regard to (ic), |λ 30 UV - λ UV | preferably satisfies |λ 30 UV - λ UV | ≦ 1.6 nm, and more preferably satisfies |λ 30 UV - λ UV | ≦ 1.2 nm. With regard to (ii-c), |λ 40 UV - λ UV | preferably satisfies |λ 40 UV - λ UV | ≦ 2.5 nm, and more preferably satisfies |λ 40 UV - λ UV | ≦ 2 nm. With regard to (iii-c), |λ 50 UV - λ UV | preferably satisfies |λ 50 UV - λ UV | ≦ 3.5 nm, and more preferably satisfies |λ 50 UV - λ UV | ≦ 3 nm. With regard to (iv-c), |λ 60 UV - λ UV | preferably satisfies |λ 60 UV - λ UV | ≦ 6 nm, and more preferably satisfies |λ 60 UV - λ UV | ≦ 5 nm. With regard to (vc), |λ 70 UV - λ UV | is preferably |λ 70 UV - λ UV |≦12 nm, and more preferably |λ 70 UV - λ UV |≦9 nm.
 光学フィルタ1aは、例えば、光吸収膜10単体で構成されている。この場合、光学フィルタ1aは、例えば、撮像素子又は光学部品とは別体で使用されうる。光学フィルタ1aは、撮像素子及び光学部品に対して接合されていてもよい。一方、上記の光吸収性組成物を撮像素子又は光学部品に塗布して、光吸収性組成物を硬化させることによって、光学フィルタ1aが構成されていてもよい。このように、光学フィルタ1aは、光吸収膜10を撮像素子又は光学部品に形成することによって製造されてもよい。 The optical filter 1a is, for example, composed of a single light absorbing film 10. In this case, the optical filter 1a can be used, for example, separately from the imaging element or optical component. The optical filter 1a may be bonded to the imaging element and the optical component. On the other hand, the optical filter 1a may be constructed by applying the above-mentioned light absorbing composition to the imaging element or optical component and curing the light absorbing composition. In this way, the optical filter 1a may be manufactured by forming the light absorbing film 10 on the imaging element or optical component.
 光学フィルタ1aは、例えば、基板上に形成された光吸収膜10を基板から剥離することによって作製できる。この場合、基板の材料は、ガラスであってもよく、樹脂であってもよく、金属であってもよい。基板の表面には、フッ素含有化合物を用いたコーティング等の表面処理が施されていてもよい。このように、光学フィルタ1aは、光吸収膜10を基板上に形成してその基板から光吸収膜10を剥離することによって製造されてもよい。 The optical filter 1a can be produced, for example, by peeling off the light absorbing film 10 formed on the substrate from the substrate. In this case, the material of the substrate may be glass, resin, or metal. The surface of the substrate may be subjected to a surface treatment such as coating with a fluorine-containing compound. In this way, the optical filter 1a may be manufactured by forming the light absorbing film 10 on the substrate and peeling off the light absorbing film 10 from the substrate.
 図2Aに示す通り、光学フィルタ1bは、光吸収膜10と、透明誘電体基板20とを備えている。光吸収膜10は、透明誘電体基板20の一方の主面と平行に設けられている。光吸収膜10は、例えば、透明誘電体基板20の一方の主面に接触していてもよい。この場合、例えば、透明誘電体基板20の一方の主面に上記の光吸収性組成物を塗布して光吸収性組成物を硬化させることによって光吸収膜10が形成されうる。 As shown in FIG. 2A, the optical filter 1b includes a light absorbing film 10 and a transparent dielectric substrate 20. The light absorbing film 10 is provided parallel to one of the main surfaces of the transparent dielectric substrate 20. The light absorbing film 10 may be in contact with one of the main surfaces of the transparent dielectric substrate 20, for example. In this case, the light absorbing film 10 can be formed, for example, by applying the above-mentioned light absorbing composition to one of the main surfaces of the transparent dielectric substrate 20 and curing the light absorbing composition.
 透明誘電体基板20の種類は、特定の種類に限定されない。透明誘電体基板20は、赤外線領域に吸収能を有していてもよい。透明誘電体基板20は、例えば波長350nm~900nmにおいて90%以上の平均分光透過率を有していてもよい。透明誘電体基板20の材料は、特定の材料に制限されないが、例えば、所定のガラス又は樹脂である。透明誘電体基板20の材料がガラスである場合、透明誘電体基板20は、例えば、ソーダ石灰ガラス及びホウケイ酸ガラスなどのケイ酸塩ガラスでできた透明なガラス又はCu及びCo等の着色性の成分を含有するリン酸塩ガラス及び弗リン酸塩ガラスでありうる。着色性の成分を含有するリン酸塩ガラス及び弗リン酸塩ガラスは、例えば赤外線吸収性ガラスであり、それ自体が光吸収性を有する。光吸収膜10を、赤外線吸収性ガラスの透明誘電体基板20とともに用いる場合には、双方の光吸収性及び透過スペクトルを調整して、所望の光学特性を有する光学フィルタを作製でき、光学フィルタの設計の自由度が高い。 The type of the transparent dielectric substrate 20 is not limited to a specific type. The transparent dielectric substrate 20 may have an absorption ability in the infrared region. The transparent dielectric substrate 20 may have an average spectral transmittance of 90% or more at wavelengths of, for example, 350 nm to 900 nm. The material of the transparent dielectric substrate 20 is not limited to a specific material, but may be, for example, a specific glass or resin. When the material of the transparent dielectric substrate 20 is glass, the transparent dielectric substrate 20 may be, for example, transparent glass made of silicate glass such as soda-lime glass and borosilicate glass, or phosphate glass and fluorophosphate glass containing coloring components such as Cu and Co. Phosphate glass and fluorophosphate glass containing coloring components are, for example, infrared absorbing glass, and are themselves light absorbing. When the light absorbing film 10 is used together with the transparent dielectric substrate 20 of infrared absorbing glass, the light absorption and transmission spectrum of both can be adjusted to produce an optical filter having desired optical characteristics, and the degree of freedom in designing the optical filter is high.
 透明誘電体基板20の材料が樹脂である場合、その樹脂は、例えば、ノルボルネン系樹脂等の環状オレフィン系樹脂、ポリアリレート系樹脂、アクリル樹脂、変性アクリル樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリカーボネート樹脂、又はシリコーン樹脂である。 When the material of the transparent dielectric substrate 20 is a resin, the resin is, for example, a cyclic olefin resin such as a norbornene resin, a polyarylate resin, an acrylic resin, a modified acrylic resin, a polyimide resin, a polyetherimide resin, a polysulfone resin, a polyethersulfone resin, a polycarbonate resin, or a silicone resin.
 光学フィルタ1a及び1bのそれぞれは、赤外線吸収膜、赤外線反射膜、及び反射防止膜等の他の機能膜をさらに備えるように変更されてもよい。このような機能膜は、光吸収膜10又は透明誘電体基板20の上に設けられうる。例えば、光学フィルタが反射防止膜を備えることにより、所定の波長の範囲(例えば可視光域)の透過率を高めることができる。反射防止膜は、MgF2及びSiO2等の低屈折率材料の層として構成されていてもよく、このような低屈折率材料の層とTiO2等の高屈折率材料の層との積層体として構成されていてもよく、誘電体多層膜として構成されていてもよい。このような反射防止膜は、真空蒸着及びスパッタ法等の物理的な反応を伴う方法、又は、CVD法及びゾルゲル法等の化学的な反応を伴う方法によって形成されうる。 Each of the optical filters 1a and 1b may be modified to further include other functional films such as an infrared absorbing film, an infrared reflecting film, and an anti-reflection film. Such functional films may be provided on the light absorbing film 10 or the transparent dielectric substrate 20. For example, the optical filter may include an anti-reflection film to increase the transmittance in a predetermined wavelength range (for example, the visible light range). The anti-reflection film may be configured as a layer of a low refractive index material such as MgF2 and SiO2 , or may be configured as a laminate of such a layer of a low refractive index material and a layer of a high refractive index material such as TiO2 , or may be configured as a dielectric multilayer film. Such an anti-reflection film may be formed by a method involving a physical reaction such as vacuum deposition and sputtering, or by a method involving a chemical reaction such as CVD and sol-gel.
 光学フィルタは、例えば、二枚の板状のガラスの間に光吸収膜10が配置された状態で構成されていてもよい。このとき、光吸収膜10は、いわゆる中間膜の態様を表す。これにより、光学フィルタの剛性及び機械的強度が向上する。加えて、光学フィルタの主面が硬質となり、キズ防止等の観点から有利である。特に、光吸収膜10におけるバインダー又はマトリクスとして比較的柔軟性の高い樹脂を用いた場合に、このような利点が重要である。 The optical filter may be configured, for example, with the light absorbing film 10 disposed between two sheets of glass. In this case, the light absorbing film 10 acts as a so-called intermediate film. This improves the rigidity and mechanical strength of the optical filter. In addition, the main surface of the optical filter becomes hard, which is advantageous from the standpoint of preventing scratches, etc. This advantage is particularly important when a relatively flexible resin is used as the binder or matrix in the light absorbing film 10.
 光吸収性組成物を硬化させて得られる、光吸収膜及び光学フィルタの表面に、反射防止膜を設けることによって、さらに良好な光学特性を有する光学フィルタを提供できる。例えば、図2Bに示す通り、光吸収膜10及び反射防止膜30を備えた光学フィルタ1cを提供できる。反射防止膜が形成された光学フィルタにおいては、光学フィルタに所定の入射角度で光が入射したとき、光学フィルタから反射する光が、低減され、著しくゼロに近くなる。このことは、反射防止膜が形成された光学フィルタを搭載した撮像装置においては、例えば、撮像装置又はカメラモジュール内等で反射光が多重散乱して発生するゴースト、フレア、及びノイズを防ぐ観点から非常に有利である。 By providing an anti-reflection film on the surface of the light absorbing film and optical filter obtained by curing the light absorbing composition, an optical filter with even better optical properties can be provided. For example, as shown in FIG. 2B, an optical filter 1c can be provided that includes a light absorbing film 10 and an anti-reflection film 30. In an optical filter having an anti-reflection film, when light is incident on the optical filter at a predetermined angle of incidence, the light reflected from the optical filter is reduced and approaches zero. This is extremely advantageous in an imaging device equipped with an optical filter having an anti-reflection film, from the viewpoint of preventing ghosts, flares, and noise that occur due to multiple scattering of reflected light within the imaging device or camera module, for example.
 反射防止膜の材料は特定の材料に限定されない。反射防止膜の形成方法は特定の方法に限定されない。反射防止膜の形成方法は、気相法であってもよいし、液相法であってもよい。例えば、反射防止膜の形成方法は蒸着法であってもよい。反射防止膜の形成方法は、ケイ素を含む反応性材料を用いたゾルゲル法であってもよく、この方法は反射防止膜の形成に優れた液相法である。 The material of the anti-reflective film is not limited to a specific material. The method of forming the anti-reflective film is not limited to a specific method. The method of forming the anti-reflective film may be a gas phase method or a liquid phase method. For example, the method of forming the anti-reflective film may be a vapor deposition method. The method of forming the anti-reflective film may be a sol-gel method using a reactive material containing silicon, which is a liquid phase method that is excellent for forming anti-reflective films.
 反射防止膜は、同一種類の材料から構成される単層膜、二種類以上の異なる材料からなる多層膜の態様がある。膜及び多層膜の各層を構成する材料は特定の材料に限定されない。その材料は、例えば、SiO2、TiO2、Ta23、MgF2、Al23、CaF2、ZrO2、CeO2、及びZnSなどの無機系化合物である。例えば、反射防止膜又は反射防止膜に含まれる層がSiO2を含む場合、その膜又は層は、アルコキシシラン化合物を出発材料として、いわゆるゾルゲル法によって形成されてもよい。ゾルゲル法によって、アルコキシシラン化合物は、水及び触媒の存在下で加水分解のうえ縮重合し、SiO2を含む緻密で硬い膜が得られる。ゾルゲル法は、高温を必要とせずに、SiO2を含む膜又は層を形成できるという利点を有する。 The anti-reflective film may be a single layer film made of the same type of material, or a multilayer film made of two or more different materials. The material constituting each layer of the film and multilayer film is not limited to a specific material. The material is, for example, an inorganic compound such as SiO 2 , TiO 2 , Ta 2 O 3 , MgF 2 , Al 2 O 3 , CaF 2 , ZrO 2 , CeO 2 , and ZnS. For example, when the anti-reflective film or a layer contained in the anti-reflective film contains SiO 2 , the film or layer may be formed by a so-called sol-gel method using an alkoxysilane compound as a starting material. By the sol-gel method, the alkoxysilane compound is hydrolyzed and then condensed in the presence of water and a catalyst to obtain a dense and hard film containing SiO 2. The sol-gel method has the advantage that a film or layer containing SiO 2 can be formed without requiring high temperatures.
 ゾルゲル法を用いて、反射防止膜を形成する場合、その出発材料は特定の材料に限定されず、出発材料が有する官能基も特定の官能基に限定されない。出発材料は、望ましくは、MTES(メチルトリエトキシシラン)及びTEOS(テトラエトキシシラン)等の「アルキル基を含む三官能シラン」と、「四官能シラン」とを含む。四官能シランは、強固かつ緻密な骨格を有する膜又は層の形成には欠かせない。一方、四官能シランのみでは反応性の制御が難しく、膜又は層のポーラシティを調整しづらい。加えて、膜又は層においてクラックが発生しやすい。出発材料が四官能シランに加えて三官能シランを含んでいると、シリカ骨格のフレキシブル性が向上し、膜又は層のポーラシティを調整しやすく、膜又は層においてクラックが抑制されやすい。膜又は層のポーラシティを調整しやすいことは、反射防止膜の屈折率の調整の観点から望ましい。三官能シランにおける有機官能基は、本来特定の官能基に限定されない。特に、四官能シランと組み合わせたときに均質な液及び塗膜を形成するために、有機官能基としてメチル基を有する三官能シランが望ましい。 When forming an anti-reflective coating using the sol-gel method, the starting material is not limited to a specific material, and the functional group of the starting material is not limited to a specific functional group. The starting material preferably includes "trifunctional silanes containing alkyl groups" such as MTES (methyltriethoxysilane) and TEOS (tetraethoxysilane), and "tetrafunctional silanes". Tetrafunctional silanes are essential for forming a film or layer with a strong and dense skeleton. On the other hand, it is difficult to control the reactivity with tetrafunctional silanes alone, and it is difficult to adjust the polarity of the film or layer. In addition, cracks are likely to occur in the film or layer. If the starting material contains trifunctional silane in addition to tetrafunctional silane, the flexibility of the silica skeleton is improved, the polarity of the film or layer is easily adjusted, and cracks in the film or layer are easily suppressed. It is desirable to be able to easily adjust the polarity of the film or layer from the viewpoint of adjusting the refractive index of the anti-reflective coating. The organic functional groups in the trifunctional silanes are not originally limited to specific functional groups. In particular, trifunctional silanes that have a methyl group as an organic functional group are desirable in order to form homogeneous liquids and coatings when combined with tetrafunctional silanes.
 出発材料において、「アルキル基を含む三官能シラン」の量と「四官能シラン」の量との比は特定の値に限定されない。望ましくは、出発材料において、質量基準で、「アルキル基を含む三官能シラン」の量:「四官能シラン」の量=5:1~1:3の関係が満たされる。これにより、反射防止膜中のクラックが抑制されやすく、かつ、四官能シランによって強固な骨格が形成されやすい。出発材料には、ゾルゲル法に関与する成分以外の成分が含まれてもよい。例えば、出発材料は、屈折率調整のために微粒子及びフィラーを含んでいてもよい。この場合、微粒子及びフィラーは、中空であってもよく、高屈折率材料であってもよい。出発材料は、低い温度で分解する成分を含んでいてもよい。これにより、反射防止膜の屈折率を調整しやすい。ゾルゲル法において塗膜を焼成する温度は特定の温度に限定されない。その温度は、例えば60℃~250℃の範囲であり、望ましくは70℃~230℃の範囲であり、より望ましくは80℃~200℃の範囲である。 In the starting material, the ratio of the amount of "trifunctional silane containing an alkyl group" to the amount of "tetrafunctional silane" is not limited to a specific value. Preferably, in the starting material, the relationship of the amount of "trifunctional silane containing an alkyl group" to the amount of "tetrafunctional silane" = 5:1 to 1:3 is satisfied on a mass basis. This makes it easier to suppress cracks in the anti-reflective film, and makes it easier for the tetrafunctional silane to form a strong skeleton. The starting material may contain components other than those involved in the sol-gel method. For example, the starting material may contain fine particles and fillers for adjusting the refractive index. In this case, the fine particles and fillers may be hollow or may be high refractive index materials. The starting material may contain components that decompose at low temperatures. This makes it easier to adjust the refractive index of the anti-reflective film. The temperature at which the coating film is baked in the sol-gel method is not limited to a specific temperature. The temperature is, for example, in the range of 60°C to 250°C, preferably in the range of 70°C to 230°C, and more preferably in the range of 80°C to 200°C.
 反射防止膜が単層膜である場合、単層膜の材料の屈折率が低いことが望ましい。反射防止膜の材料の屈折率n1は、n1=√n0となるときに反射率が最も小さくなりやすい。n0は、反射防止膜が形成される基材の屈折率である。例えば、反射防止膜が、SiO2及びTiO2等の金属酸化物又はPMMA等の有機系材料で形成された中空粒子を含む場合、中空粒子の内部は屈折率が約1である空気が占めるので、粒子の実質的な屈折率を低くすることができ、反射防止膜の屈折率が低くなりやすい。複数の相からなる混合体の誘電率や屈折率は、Bruggemannの式を用いた有効媒質近似法によって求めることができる。反射防止膜に求められる屈折率がそれほど低くない場合、反射防止膜は、上記の材料で形成された中実粒子を含んでいてもよい。反射防止膜に耐擦傷性等の機械的強度が求められる場合、反射防止膜がこのような中実粒子を含んでいることが有利である。このような中空粒子又は中実粒子を含んだ状態でゾルゲル法による膜形成がなされてもよい。特に、SiO2からなる中空粒子又は中実粒子が用いられる場合、ゾルゲル法で形成された膜内のSiO2と中空粒子又は中実粒子との親和性がよく、中空粒子又は中実粒子の凝集が抑制され、ブリードアウトの抑制などが期待できる。 When the anti-reflective film is a single-layer film, it is desirable that the material of the single-layer film has a low refractive index. The refractive index n 1 of the material of the anti-reflective film is likely to be the smallest when n 1 = √n 0. n 0 is the refractive index of the substrate on which the anti-reflective film is formed. For example, when the anti-reflective film contains hollow particles formed of metal oxides such as SiO 2 and TiO 2 or organic materials such as PMMA, the inside of the hollow particles is occupied by air with a refractive index of about 1, so that the effective refractive index of the particles can be lowered and the refractive index of the anti-reflective film is likely to be low. The dielectric constant and refractive index of a mixture consisting of multiple phases can be obtained by an effective medium approximation method using the Bruggemann formula. When the refractive index required for the anti-reflective film is not so low, the anti-reflective film may contain solid particles formed of the above materials. When mechanical strength such as scratch resistance is required for the anti-reflective film, it is advantageous for the anti-reflective film to contain such solid particles. A film may be formed by a sol-gel method in a state containing such hollow particles or solid particles. In particular, when hollow or solid particles made of SiO2 are used, the affinity between the SiO2 in the film formed by the sol-gel method and the hollow or solid particles is good, and aggregation of the hollow or solid particles is suppressed, which is expected to suppress bleed-out, etc.
 反射防止膜は、ゾルゲル法で形成されたSiO2を含む層と、例えば、真空蒸着法、ゾルゲル法、又はその他の方法で形成される層と、を含む多層膜構造を有していてもよい。例えば、二以上の異なる屈折率を有する材料によって反射防止膜を多層膜化することにより、反射防止効果の得られる波長帯域が、比較的広く確保されやすく、光学フィルタにおいて反射率の最小値が低くなりやすい。反射防止膜において、ゾルゲル法で形成されたSiO2を含む層と組み合わせて多層膜構造を形成するとき、組み合わせられる層は、例えば、中空粒子を含み、ゾルゲル法で形成されたSiO2を含む層であってもよいし、TiO2及びTa23などの比較的高い屈折率を有する材料からなる層であってもよいし、MgF2等のそれ以外の材料からなる層などであってもよい。 The anti-reflection film may have a multilayer structure including a layer containing SiO 2 formed by a sol-gel method and a layer formed by, for example, a vacuum deposition method, a sol-gel method, or other methods. For example, by forming the anti-reflection film into a multilayer structure using two or more materials having different refractive indexes, the wavelength band in which the anti-reflection effect can be obtained is relatively wide, and the minimum value of the reflectance in the optical filter is likely to be low. When the anti-reflection film is combined with a layer containing SiO 2 formed by a sol-gel method to form a multilayer structure, the layer to be combined may be, for example, a layer containing hollow particles and containing SiO 2 formed by a sol-gel method, a layer made of a material having a relatively high refractive index such as TiO 2 and Ta 2 O 3 , or a layer made of other materials such as MgF 2 .
 実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。まず、各実施例及び各比較例に係る光学フィルタの評価方法を説明する。 The present invention will be explained in more detail using examples. Note that the present invention is not limited to the following examples. First, the evaluation method of the optical filters in each example and each comparative example will be explained.
 <透過スペクトル及び反射スペクトルの測定>
 紫外可視近赤外分光光度計(日本分光社製、製品名:V-670)を用いて、各光学フィルタの所定の入射角における透過スペクトル及び反射スペクトルを測定した。
<Measurement of Transmission Spectrum and Reflection Spectrum>
The transmission spectrum and reflection spectrum of each optical filter at a predetermined angle of incidence were measured using an ultraviolet-visible-near infrared spectrophotometer (manufactured by JASCO Corporation, product name: V-670).
 <厚み測定>
 レーザー変位計(キーエンス社製、製品名:LK-H008)を用いて、各光学フィルタの表面との距離を測定し、透明ガラス基板の厚みを差し引くことによって、光吸収膜の厚みを測定した。
<Thickness measurement>
The distance from the surface of each optical filter was measured using a laser displacement meter (Keyence Corporation, product name: LK-H008), and the thickness of the light absorbing film was measured by subtracting the thickness of the transparent glass substrate.
 <耐擦傷性試験>
 クラレ社製のクラクリーンワイパーLF-8Gに、エタノール、プロピレングリコールモノメチルエーテル(PGME)、又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)をしみ込ませてアルコール浸潤ワイパーを得た。このアルコール浸潤ワイパーを各実施例及び比較例で得られた光吸収膜に対して40~60g/cm2の圧力で押し付けた状態で約3cmの長さに亘って10往復させ、光吸収膜の表面を擦った。その後、目視で光吸収膜の表面の状態を確認し、特に変化がない場合を「A」と評価し、表面に擦り傷が認められる場合を「B」と評価し、光吸収膜の剥離が生じている場合を「C」と評価した。結果を表8に示す。
<Scratch resistance test>
Kuraray Kuraclean Wiper LF-8G was soaked with ethanol, propylene glycol monomethyl ether (PGME), or propylene glycol monomethyl ether acetate (PGMEA) to obtain an alcohol-soaked wiper. The alcohol-soaked wiper was pressed against the light-absorbing film obtained in each Example and Comparative Example at a pressure of 40 to 60 g/cm 2 and reciprocated 10 times over a length of about 3 cm to rub the surface of the light-absorbing film. Thereafter, the condition of the surface of the light-absorbing film was visually confirmed, and the case where there was no particular change was evaluated as "A", the case where scratches were observed on the surface was evaluated as "B", and the case where peeling of the light-absorbing film occurred was evaluated as "C". The results are shown in Table 8.
 <紫外線吸収性化合物>
 実施例及び比較例に係る光学フィルタの作製において下記の紫外線吸収性化合物を使用した。
<Ultraviolet absorbing compound>
The following ultraviolet absorbing compounds were used in the production of the optical filters according to the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 紫外線吸収性化合物(1-1)及び(1-2)の構造式は、それぞれ、下記の式(C)及び(D)で表される。 The structural formulas of the ultraviolet absorbing compounds (1-1) and (1-2) are represented by the following formulas (C) and (D), respectively.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 <金属成分を含む化合物>
 実施例及び比較例に係る光学フィルタの作製において下記の金属成分を含む材料を使用した。
<Compounds containing metal components>
In producing the optical filters according to the examples and comparative examples, materials containing the following metal components were used.
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
 <実施例1>
 表1に示す紫外線吸収剤(1-1)5.0gと、溶媒としてのシクロヘキサノン80.0gと、積水化学工業社製のポリビニルブチラール(PVB)エスレックKS-10(分子量1.7×104、アセタール化度74mol%、水酸基含有量25mol%)8.0gとを混合して30分間撹拌した。次に、得られた混合物に、表2に示す金属成分を含む材料(2-1)0.308gを添加して30分間撹拌した。得られた混合物に、さらにトリレンジイソシアネート(TDI)4.0gを加えて30秒間撹拌し、実施例1に係る光吸収性組成物を得た。実施例1に係る光吸収性組成物における各成分の含有量、所定の成分の質量比、及び所定の成分の物質量比を表3及び表4に示す。なお、金属成分を含む材料(2-1)における金属成分の含有量は、表2に示す記載の通り、6.5質量%である前提で、実施例1に係る光吸収性組成物の成分の質量比又は物質量比を求めた。
Example 1
5.0 g of the ultraviolet absorber (1-1) shown in Table 1, 80.0 g of cyclohexanone as a solvent, and 8.0 g of polyvinyl butyral (PVB) S-LEC KS-10 (molecular weight 1.7×10 4 , degree of acetalization 74 mol %, hydroxyl group content 25 mol %) manufactured by Sekisui Chemical Co., Ltd. were mixed and stirred for 30 minutes. Next, 0.308 g of the material (2-1) containing a metal component shown in Table 2 was added to the obtained mixture and stirred for 30 minutes. 4.0 g of tolylene diisocyanate (TDI) was further added to the obtained mixture and stirred for 30 seconds to obtain a light absorbing composition according to Example 1. The content of each component, the mass ratio of the predetermined components, and the substance amount ratio of the predetermined components in the light absorbing composition according to Example 1 are shown in Tables 3 and 4. Note that the content of the metal component in the material (2-1) containing a metal component was determined to be 6.5 mass %, as shown in Table 2, and the mass ratio or substance amount ratio of the components of the light-absorbing composition according to Example 1 was calculated based on this premise.
 76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(SCHOTT社製、製品名:D263T eco)の一方の主面に実施例1に係る光吸収性組成物を500rotations per minute(rpm)の回転数でスピンコーティングし、塗膜を形成した。得られた塗膜を室温で十分に乾燥させた後、オーブンに入れて140℃で1時間、160℃で2時間の熱処理行い、PVBとTDIとの架橋反応を生じさせ、実施例1に係る光吸収膜を得た。このようにして、実施例1に係る光吸収膜を備えた光学フィルタを作製した。図3に、実施例1に係る光学フィルタの透過スペクトルを示す。図8に実施例1に係る光学フィルタの反射スペクトルを示す。実施例1に係る光学フィルタの光吸収膜の膜厚及び光学特性に関する値を、表5、表6、及び表7に示す。実施例1に係る光吸収膜の耐擦傷性試験の結果を表8に示す。図13に透明ガラス基板の0度の入射角度における透過スペクトルを示す。 The light absorbing composition according to Example 1 was spin-coated at 500 rotations per minute (rpm) on one main surface of a transparent glass substrate (manufactured by SCHOTT, product name: D263T eco) made of borosilicate glass having dimensions of 76 mm x 76 mm x 0.21 mm to form a coating film. The resulting coating film was thoroughly dried at room temperature, and then placed in an oven and heat-treated at 140°C for 1 hour and at 160°C for 2 hours to cause a crosslinking reaction between PVB and TDI, thereby obtaining a light absorbing film according to Example 1. In this manner, an optical filter provided with a light absorbing film according to Example 1 was produced. Figure 3 shows the transmission spectrum of the optical filter according to Example 1. Figure 8 shows the reflection spectrum of the optical filter according to Example 1. Values related to the film thickness and optical properties of the light absorbing film of the optical filter according to Example 1 are shown in Tables 5, 6, and 7. The results of the scratch resistance test of the light absorbing film according to Example 1 are shown in Table 8. Figure 13 shows the transmission spectrum of the transparent glass substrate at an incident angle of 0 degrees.
 <実施例2~4>
 イソシアネートの添加量及び/又はPVBの種類を表3に示す通り変更したこと以外は、実施例1と同様にして、実施例2~4に係る光吸収性組成物を調製した。実施例1に係る光吸収性組成物の代わりに実施例2~4に係る光吸収性組成物を用いたこと以外は実施例1と同様にして、実施例2~4に係る光吸収膜及び光学フィルタを作製した。実施例4で用いたPVBは、積水化学工業社製のエスレックKS-1(分子量2.7×104、アセタール化度74mol%、水酸基含有量25mol%)であった。実施例2~4に係る光学フィルタ透過スペクトル及び反射スペクトルから看取できる光学特性に関する値を表5、表6、及び表7に示す。これらの結果から、光吸収性組成物におけるPVBの質量に対するイソシアネートの質量の比が0.18~1.50の範囲で変動しても良好な光学特性が得られることが理解される。実施例2~4に係る光吸収膜の耐擦傷性試験の結果を表8に示す。
<Examples 2 to 4>
The light-absorbing compositions according to Examples 2 to 4 were prepared in the same manner as in Example 1, except that the amount of isocyanate added and/or the type of PVB were changed as shown in Table 3. The light-absorbing films and optical filters according to Examples 2 to 4 were produced in the same manner as in Example 1, except that the light-absorbing compositions according to Examples 2 to 4 were used instead of the light-absorbing composition according to Example 1. The PVB used in Example 4 was S-LEC KS-1 (molecular weight 2.7×10 4 , acetalization degree 74 mol %, hydroxyl group content 25 mol %) manufactured by Sekisui Chemical Co., Ltd. Tables 5, 6, and 7 show values related to the optical properties that can be seen from the transmission spectrum and reflection spectrum of the optical filters according to Examples 2 to 4. From these results, it can be understood that good optical properties can be obtained even if the ratio of the mass of isocyanate to the mass of PVB in the light-absorbing composition varies in the range of 0.18 to 1.50. The results of the scratch resistance test of the light-absorbing films according to Examples 2 to 4 are shown in Table 8.
 <実施例5及び6>
 PVBの種類並びにイソシアネートの種類及び添加量を表3に示す通り変更したこと以外は、実施例1と同様にして、実施例5及び6に係る光吸収性組成物を調製した。実施例1に係る光吸収性組成物の代わりに実施例5及び6に係る光吸収性組成物を用いたこと以外は実施例1と同様にして、実施例5及び6に係る光吸収膜及び光学フィルタを作製した。実施例5で用いたPVBは、積水化学工業社製のエスレックBX-L(分子量1.8×104、アセタール化度67mol%、水酸基含有量32mol%)であり、実施例6で用いたPVBは、積水化学工業社製のエスレックBX-1(分子量10×104、アセタール化度72mol%、水酸基含有量27mol%)であった。実施例5で用いたイソシアネートはジフェニルメタンジイソシアネート(MDI)であり、実施例6で用いたイソシアネートはヘキサメチレンジイソシアネート(HDI)であった。図4に、実施例5に係る光学フィルタの透過スペクトルを示す。図9に実施例5に係る光学フィルタの反射スペクトルを示す。実施例5及び6に係る光学フィルタの光学特性に関する値を表5、表6、及び表7に示す。実施例5及び6によれば、TDIの代わりに、MDI又はHDIを用いても良好な光学特性が得られることが理解される。実施例5及び6に係る光吸収膜の耐擦傷性試験の結果を表8に示す。
<Examples 5 and 6>
Light absorbing compositions according to Examples 5 and 6 were prepared in the same manner as in Example 1, except that the type of PVB and the type and amount of isocyanate added were changed as shown in Table 3. Light absorbing films and optical filters according to Examples 5 and 6 were produced in the same manner as in Example 1, except that the light absorbing compositions according to Examples 5 and 6 were used instead of the light absorbing composition according to Example 1. The PVB used in Example 5 was S-LEC BX-L (molecular weight 1.8×10 4 , acetalization degree 67 mol %, hydroxyl group content 32 mol %) manufactured by Sekisui Chemical Co., Ltd., and the PVB used in Example 6 was S-LEC BX-1 (molecular weight 10×10 4 , acetalization degree 72 mol %, hydroxyl group content 27 mol %) manufactured by Sekisui Chemical Co., Ltd. The isocyanate used in Example 5 was diphenylmethane diisocyanate (MDI), and the isocyanate used in Example 6 was hexamethylene diisocyanate (HDI). FIG. 4 shows the transmission spectrum of the optical filter according to Example 5. FIG. 9 shows the reflection spectrum of the optical filter according to Example 5. Tables 5, 6, and 7 show the optical property values of the optical filters according to Examples 5 and 6. According to Examples 5 and 6, it is understood that good optical properties can be obtained even if MDI or HDI is used instead of TDI. Table 8 shows the results of the scratch resistance test of the light absorbing films according to Examples 5 and 6.
 <実施例7~14>
 紫外線吸収性化合物、金属成分を含む材料、PVB、又はイソシアネートの種類又は添加量を表3に示す通り変更したこと以外は、実施例1と同様にして、実施例7~14に係る光吸収性組成物を調製した。実施例1に係る光吸収性組成物の代わりに実施例7~14に係る光吸収性組成物を用いたこと以外は実施例1と同様にして、実施例7~14に係る光吸収膜及び光学フィルタを作製した。実施例7で用いたPVBは、積水化学工業社製エスレックBX-1であった。実施例8で用いたPVBは、積水化学工業社製エスレックKS-1であった。実施例12で用いたPVBは、積水化学工業社製のエスレックBL-S(分子量2.3×104、アセタール化度72mol%、水酸基含有量23mol%)であった。実施例13で用いたPVBは、積水化学工業社製のエスレックBL-1(分子量1.9×104、アセタール化度63mol%、水酸基含有量36mol%)であった。実施例9、10、11、及び14において、PVBとして、積水化学工業社製のエスレックKS-10を用いた。図5、図6、及び図7にそれぞれ実施例7、9、及び11に係る光学フィルタの透過スペクトルを示す。図10、図11、及び図12にそれぞれ実施例7、9、及び11に係る光学フィルタの反射スペクトルを示す。さらに、実施例7~14に係る光学フィルタの光学特性に関する値を、表5、表6、及び表7に示す。実施例7~14に係る光吸収膜の耐擦傷性試験の結果を表8に示す。
<Examples 7 to 14>
Light absorbing compositions according to Examples 7 to 14 were prepared in the same manner as in Example 1, except that the type or amount of the ultraviolet absorbing compound, the material containing a metal component, the PVB, or the isocyanate was changed as shown in Table 3. Light absorbing films and optical filters according to Examples 7 to 14 were produced in the same manner as in Example 1, except that the light absorbing compositions according to Examples 7 to 14 were used instead of the light absorbing composition according to Example 1. The PVB used in Example 7 was S-LEC BX-1 manufactured by Sekisui Chemical Co., Ltd. The PVB used in Example 8 was S-LEC KS-1 manufactured by Sekisui Chemical Co., Ltd. The PVB used in Example 12 was S-LEC BL-S manufactured by Sekisui Chemical Co., Ltd. (molecular weight 2.3×10 4 , acetalization degree 72 mol%, hydroxyl group content 23 mol%). The PVB used in Example 13 was S-LEC BL-1 (molecular weight 1.9×10 4 , acetalization degree 63 mol %, hydroxyl group content 36 mol %) manufactured by Sekisui Chemical Co., Ltd. In Examples 9, 10, 11, and 14, S-LEC KS-10 manufactured by Sekisui Chemical Co., Ltd. was used as the PVB. Figures 5, 6, and 7 show the transmission spectra of the optical filters according to Examples 7, 9, and 11, respectively. Figures 10, 11, and 12 show the reflection spectra of the optical filters according to Examples 7, 9, and 11, respectively. Furthermore, values related to the optical properties of the optical filters according to Examples 7 to 14 are shown in Tables 5, 6, and 7. The results of the scratch resistance test of the light absorbing films according to Examples 7 to 14 are shown in Table 8.
 <比較例1>
 イソシアネートを加えなかったこと以外は、実施例1と同様にして、比較例1に係る光吸収性組成物を調製した。実施例1に係る光吸収性組成物の代わりに比較例1に係る光吸収性組成物を用いたこと以外は実施例1と同様にして、比較例1に係る光吸収膜及び光学フィルタを作製した。比較例1に係る光学フィルタの光学特性に関する値を、表5、表6、及び表7に示す。比較例1に係る光吸収膜の耐擦傷性試験の結果を表8に示す。
<Comparative Example 1>
A light-absorbing composition according to Comparative Example 1 was prepared in the same manner as in Example 1, except that no isocyanate was added. A light-absorbing film and an optical filter according to Comparative Example 1 were produced in the same manner as in Example 1, except that the light-absorbing composition according to Comparative Example 1 was used instead of the light-absorbing composition according to Example 1. Values relating to the optical properties of the optical filter according to Comparative Example 1 are shown in Tables 5, 6, and 7. The results of the scratch resistance test of the light-absorbing film according to Comparative Example 1 are shown in Table 8.
 各実施例及び比較例1に係る光学フィルタは、人間の視感度の再現の観点から良好な光学特性を有していた。一方、実施例と比較例との対比によれば、光吸収性組成物がPVB及びイソシアネートの両方を含有することにより、良好な耐溶剤性及び耐擦傷性が得られやすいことが示唆された。特に、光吸収性組成物においてPVBの質量に対するイソシアネートの質量の比が0.15以上であると、良好な耐溶剤性及び耐擦傷性が得られやすいことが示唆された。良好な耐溶剤性及び耐擦傷性の観点から、PVBの質量に対するイソシアネートの質量の比は、望ましくは0.15以上であり、より望ましくは0.18以上であると考えらえる。PVBの質量に対するイソシアネートの質量の比の上限については特定の値に限定されないと考えられるが、イソシアネートの増加により光吸収性組成物の塗布直後に光吸収性組成物が硬化することを抑制して平坦で均一な厚みの光吸収膜の形成を容易にする観点から、その比は1.50以下にすることが望ましいと考えられる。良好な光学特性、耐溶剤性、及び耐擦傷性の観点から、紫外線吸収性化合物の質量に対するイソシアネートの質量の比は0.3以上であることが望ましく、その比が0.3~2.4の範囲にあることがより望ましいことが示唆された。 The optical filters according to each of the Examples and Comparative Example 1 had good optical characteristics from the viewpoint of reproducing the visual sensitivity of humans. On the other hand, a comparison between the Examples and Comparative Examples suggested that the light-absorbing composition containing both PVB and isocyanate is likely to provide good solvent resistance and scratch resistance. In particular, it was suggested that good solvent resistance and scratch resistance are likely to be obtained when the ratio of the mass of isocyanate to the mass of PVB in the light-absorbing composition is 0.15 or more. From the viewpoint of good solvent resistance and scratch resistance, the ratio of the mass of isocyanate to the mass of PVB is preferably 0.15 or more, and more preferably 0.18 or more. It is considered that the upper limit of the ratio of the mass of isocyanate to the mass of PVB is not limited to a specific value, but from the viewpoint of suppressing the hardening of the light-absorbing composition immediately after application of the light-absorbing composition due to an increase in isocyanate, and facilitating the formation of a light-absorbing film with a flat and uniform thickness, it is considered that the ratio is preferably 1.50 or less. From the viewpoint of good optical properties, solvent resistance, and scratch resistance, it was suggested that the ratio of the mass of the isocyanate to the mass of the UV-absorbing compound is preferably 0.3 or more, and more preferably in the range of 0.3 to 2.4.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 
Figure JPOXMLDOC01-appb-T000019
 

Claims (22)

  1.  ヒドロキシ基及びカルボニル基を分子内に有する紫外線吸収性化合物と、
     金属成分と、
     ポリビニルブチラールと、
     イソシアネートと、を含有し、
     前記金属成分の少なくとも一部は、有機オキシ基に結合している、
     光吸収性組成物。
    an ultraviolet absorbing compound having a hydroxy group and a carbonyl group in the molecule;
    Metal components,
    Polyvinyl butyral,
    Contains an isocyanate,
    At least a portion of the metal component is bonded to an organic oxy group.
    Light absorbing composition.
  2.  前記光吸収性組成物における前記金属成分の含有率は、質量基準で、0.005%~2%である、
     請求項1に記載の光吸収性組成物。
    The content of the metal component in the light absorbing composition is 0.005% to 2% by mass.
    The light absorbing composition of claim 1 .
  3.  前記光吸収性組成物における前記紫外線吸収性化合物の含有率は、質量基準で、0.1%~20%である、
     請求項1又は2に記載の光吸収性組成物。
    The content of the ultraviolet absorbing compound in the light absorbing composition is 0.1% to 20% by mass.
    The light absorbing composition according to claim 1 or 2.
  4.  前記金属成分の質量に対する前記紫外線吸収性化合物の質量の比は、5~300である、
     請求項1~3のいずれか1項に記載の光吸収性組成物。
    the ratio of the mass of the ultraviolet absorbing compound to the mass of the metal component is 5 to 300;
    The light absorbing composition according to any one of claims 1 to 3.
  5.  前記ポリビニルブチラールの質量に対する前記イソシアネートの質量の比は、0.05~3.0である、
     請求項1~4のいずれか1項に記載の光吸収性組成物。
    The ratio of the mass of the isocyanate to the mass of the polyvinyl butyral is 0.05 to 3.0;
    The light absorbing composition according to any one of claims 1 to 4.
  6.  前記紫外線吸収性化合物の質量に対する前記イソシアネートの質量の比は、0.1~3.0である、
     請求項1~5のいずれか1項に記載の光吸収性組成物。
    the ratio of the mass of the isocyanate to the mass of the ultraviolet absorbing compound is 0.1 to 3.0;
    The light absorbing composition according to any one of claims 1 to 5.
  7.  前記ヒドロキシ基と前記カルボニル基とは、1~3個の原子を隔てて配置されている、
     請求項1~6のいずれか1項に記載の光吸収性組成物。
    the hydroxy group and the carbonyl group are separated by 1 to 3 atoms;
    The light absorbing composition according to any one of claims 1 to 6.
  8.  前記紫外線吸収性化合物は、下記式(A1)で表されるベンゾフェノン系化合物を含む、
     請求項1~7のいずれか1項に記載の光吸収性組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(A1)において、R11、R12、R21、及びR22の少なくとも1つはヒドロキシ基である。式(A1)において、R11、R12、R21、又はR22がヒドロキシ基以外の官能基である場合、複数のR11、複数のR12、複数のR21、又は複数のR22が存在していてもよく、R11、R12、R21、及びR22の少なくとも1つは存在しなくてもよい。]
    The ultraviolet absorbing compound includes a benzophenone-based compound represented by the following formula (A1):
    The light absorbing composition according to any one of claims 1 to 7.
    Figure JPOXMLDOC01-appb-C000001
    [In formula (A1), at least one of R 11 , R 12 , R 21 , and R 22 is a hydroxy group. In formula (A1), when R 11 , R 12 , R 21 , or R 22 is a functional group other than a hydroxy group, a plurality of R 11 , a plurality of R 12 , a plurality of R 21 , or a plurality of R 22 may be present, and at least one of R 11 , R 12 , R 21 , and R 22 may not be present.]
  9.  前記紫外線吸収性化合物は、下記式(A2)で表されるベンゾフェノン系化合物を含む、
     請求項1~8のいずれか1項に記載の光吸収性組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式(A2)において、R31は、水素原子、ヒドロキシ基、カルボキシル基、アルデヒド基、ハロゲン原子、ハロゲン原子を有する基、1~12個の炭素原子を有するアルキル基、又は1~12個の炭素原子を有するアルコキシ基である。式(A2)において、R41及びR42は、ヒドロキシ基、カルボキシル基、アルデヒド基、ハロゲン原子を有する基、1~12個の炭素原子を有するアルキル基、6~12個の炭素原子を有するアリール基、又は1~12個の炭素原子を有するアルコキシ基であってもよく、R41及びR42は、存在していなくてもよい。式(A2)において、複数のR41が存在していてもよく、複数のR42が存在していてもよい。]
    The ultraviolet absorbing compound includes a benzophenone-based compound represented by the following formula (A2):
    The light absorbing composition according to any one of claims 1 to 8.
    Figure JPOXMLDOC01-appb-C000002
    [In formula (A2), R 31 is a hydrogen atom, a hydroxyl group, a carboxyl group, an aldehyde group, a halogen atom, a group having a halogen atom, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms. In formula (A2), R 41 and R 42 may be a hydroxyl group, a carboxyl group, an aldehyde group, a group having a halogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, and R 41 and R 42 may not be present. In formula (A2), a plurality of R 41 may be present, and a plurality of R 42 may be present.]
  10.  前記金属成分は、Li、Na、Mg、Ca、Sr、Ba、Ge、Sn、Pb、Al、Ga、In、Tl、Zn、Cd、Cu、Ag、Au、Ni、Pd、Pt、Co、Rh、Ir、Fe、Mn、Cr、Mo、W、V、Nb、Ta、Ti、及びZrからなる群より選択される少なくとも一つを含む、
     請求項1~9のいずれか1項に記載の光吸収性組成物。
    The metal component includes at least one selected from the group consisting of Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr;
    The light absorbing composition according to any one of claims 1 to 9.
  11.  有機溶媒に、ヒドロキシ基及びカルボニル基を分子内に有する紫外線吸収性化合物と、
    金属成分を含む化合物と、ポリビニルブチラールと、イソシアネートとを添加して混合することを含む、
     請求項1~10のいずれか1項に記載の光吸収性組成物の製造方法。
    an organic solvent, a UV-absorbing compound having a hydroxyl group and a carbonyl group in the molecule,
    The method includes adding and mixing a compound containing a metal component, polyvinyl butyral, and an isocyanate.
    A method for producing the light absorbing composition according to any one of claims 1 to 10.
  12.  ヒドロキシ基及びカルボニル基を分子内に有する紫外線吸収性化合物と、
     金属成分と、
     ウレタン結合を有する樹脂と、を含有し、
     前記金属成分の少なくとも一部は、有機オキシ基に結合している、
     光吸収膜。
    an ultraviolet absorbing compound having a hydroxy group and a carbonyl group in the molecule;
    Metal components,
    A resin having a urethane bond,
    At least a portion of the metal component is bonded to an organic oxy group.
    Light absorbing film.
  13.  前記金属成分の質量に対する前記紫外線吸収性化合物の質量の比は、5~300である、
     請求項12に記載の光吸収膜。
    the ratio of the mass of the ultraviolet absorbing compound to the mass of the metal component is 5 to 300;
    The light absorbing film according to claim 12.
  14.  前記ウレタン結合は、ポリビニルブチラール由来の第一部位とイソシアネート由来の第二部位との間に形成されており、
     ポリビニルブチラール及び前記第一部位の質量に対する、イソシアネート及び前記第二部位の質量の比は、0.05~3.0である、
     請求項12又は13に記載の光吸収膜。
    the urethane bond is formed between a first moiety derived from polyvinyl butyral and a second moiety derived from an isocyanate;
    The ratio of the mass of the isocyanate and the second portion to the mass of the polyvinyl butyral and the first portion is 0.05 to 3.0;
    The light absorbing film according to claim 12 or 13.
  15.  前記ウレタン結合は、ポリビニルブチラール由来の第一部位とイソシアネート由来の第二部位との間に形成されており、
     前記紫外線吸収性化合物の質量に対する、イソシアネート及び前記第二部位の質量の比は、0.1~3.0である、
     請求項12~14のいずれか1項に記載の光吸収膜。
    the urethane bond is formed between a first moiety derived from polyvinyl butyral and a second moiety derived from an isocyanate;
    the ratio of the mass of the isocyanate and the second portion to the mass of the ultraviolet absorbing compound is 0.1 to 3.0;
    The light absorbing film according to any one of claims 12 to 14.
  16.  前記ヒドロキシ基と前記カルボニル基とは、1~3個の原子を隔てて配置されている、
     請求項12~15のいずれか1項に記載の光吸収膜。
    the hydroxy group and the carbonyl group are separated by 1 to 3 atoms;
    The light absorbing film according to any one of claims 12 to 15.
  17.  0度の入射角度での透過スペクトルにおいて、波長400nmにおける透過率T400は、5%以下である、
     請求項12~16のいずれか1項に記載の光吸収膜。
    In the transmission spectrum at an incident angle of 0 degrees, the transmittance T400 at a wavelength of 400 nm is 5% or less.
    The light absorbing film according to any one of claims 12 to 16.
  18.  前記紫外線吸収性化合物は、下記式(A1)で表されるベンゾフェノン系化合物を含む、
     請求項12~17のいずれか1項に記載の光吸収膜。
    Figure JPOXMLDOC01-appb-C000003
    [式(A1)において、R11、R12、R21、及びR22の少なくとも1つはヒドロキシ基である。式(A1)において、R11、R12、R21、又はR22がヒドロキシ基以外の官能基である場合、複数のR11、複数のR12、複数のR21、又は複数のR22が存在していてもよく、R11、R12、R21、及びR22の少なくとも1つは存在しなくてもよい。]
    The ultraviolet absorbing compound includes a benzophenone-based compound represented by the following formula (A1):
    The light absorbing film according to any one of claims 12 to 17.
    Figure JPOXMLDOC01-appb-C000003
    [In formula (A1), at least one of R 11 , R 12 , R 21 , and R 22 is a hydroxy group. In formula (A1), when R 11 , R 12 , R 21 , or R 22 is a functional group other than a hydroxy group, a plurality of R 11 , a plurality of R 12 , a plurality of R 21 , or a plurality of R 22 may be present, and at least one of R 11 , R 12 , R 21 , and R 22 may not be present.]
  19.  前記紫外線吸収性化合物は、下記式(A2)で表されるベンゾフェノン系化合物を含む、
     請求項12~18のいずれか1項に記載の光吸収膜。
    Figure JPOXMLDOC01-appb-C000004
    [式(A2)において、R31は、水素原子、ヒドロキシ基、カルボキシル基、アルデヒド基、ハロゲン原子、ハロゲン原子を有する基、1~12個の炭素原子を有するアルキル基、又は1~12個の炭素原子を有するアルコキシ基である。式(A2)において、R41及びR42は、ヒドロキシ基、カルボキシル基、アルデヒド基、ハロゲン原子を有する基、1~12個の炭素原子を有するアルキル基、6~12個の炭素原子を有するアリール基、又は1~12個の炭素原子を有するアルコキシ基であってもよく、R41及びR42は、存在していなくてもよい。式(A2)において、複数のR41が存在していてもよく、複数のR42が存在していてもよい。]
    The ultraviolet absorbing compound includes a benzophenone-based compound represented by the following formula (A2):
    The light absorbing film according to any one of claims 12 to 18.
    Figure JPOXMLDOC01-appb-C000004
    [In formula (A2), R 31 is a hydrogen atom, a hydroxyl group, a carboxyl group, an aldehyde group, a halogen atom, a group having a halogen atom, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms. In formula (A2), R 41 and R 42 may be a hydroxyl group, a carboxyl group, an aldehyde group, a group having a halogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, and R 41 and R 42 may not be present. In formula (A2), a plurality of R 41 may be present, and a plurality of R 42 may be present.]
  20.  波長300nm~1200nmの範囲の光を0°の入射角度で前記光吸収膜に入射させて得られる透過スペクトルは、下記の(i-a)、(ii-a)、(iii-a)、(iv-a)、(v-a)、及び(vi-a)の要件を満たす、
     請求項12~19のいずれか1項に記載の光吸収膜。
    (i-a)波長300nm~380nmの範囲における透過率の最大値は3%以下である。
    (ii-a)波長400nmにおける透過率は5%以下である。
    (iii-a)波長410nmにおける透過率は10%以下である。
    (iv-a)波長350nm~500nmの範囲内において、透過率が50%となる波長λUVは405nm~490nmの範囲内に存在する。
    (v-a)波長480~600nmの範囲における透過率の最小値は85%以上である。
    (vi-a)波長(λUV-10)nmにおける透過率に対する、波長(λUV+10)nmにおける透過率の比が1.8以上である。
    A transmission spectrum obtained by irradiating light having a wavelength in the range of 300 nm to 1200 nm at an incident angle of 0° onto the light absorbing film satisfies the following requirements (ia), (ii-a), (iii-a), (iv-a), (va), and (vi-a):
    The light absorbing film according to any one of claims 12 to 19.
    (ia) The maximum transmittance in the wavelength range of 300 nm to 380 nm is 3% or less.
    (ii-a) The transmittance at a wavelength of 400 nm is 5% or less.
    (iii-a) The transmittance at a wavelength of 410 nm is 10% or less.
    (iv-a) Within the wavelength range of 350 nm to 500 nm, the wavelength λ UV at which the transmittance is 50% is within the range of 405 nm to 490 nm.
    (va) The minimum transmittance in the wavelength range of 480 to 600 nm is 85% or more.
    (vi-a) The ratio of the transmittance at a wavelength of (λ UV +10) nm to the transmittance at a wavelength of (λ UV -10) nm is 1.8 or more.
  21.  請求項12~20のいずれか1項に記載の光吸収膜を備えた、光学フィルタ。 An optical filter comprising a light absorbing film according to any one of claims 12 to 20.
  22.  請求項12~20のいずれか1項に記載の光吸収膜を含む光学フィルタの製造方法であって、
     前記製造方法は、次の(i)又は(ii)のいずれかに記載の工程を含む、光学フィルタの製造方法。
     (i)前記光吸収膜を撮像素子又は光学部品に形成すること。
     (ii)前記光吸収膜を基板上に形成して前記基板から前記光吸収膜を剥離すること。
     
    A method for producing an optical filter including the light-absorbing film according to any one of claims 12 to 20, comprising the steps of:
    The manufacturing method of the optical filter includes the steps of either (i) or (ii) below:
    (i) forming the light absorbing film on an imaging element or an optical component;
    (ii) forming the light absorbing film on a substrate and peeling the light absorbing film from the substrate;
PCT/JP2023/037742 2022-10-27 2023-10-18 Light-absorbing composition, production method for light-absorbing composition, light absorption film, optical filter, and manufacturing method for optical filter WO2024090311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-172216 2022-10-27
JP2022172216 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090311A1 true WO2024090311A1 (en) 2024-05-02

Family

ID=90830807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037742 WO2024090311A1 (en) 2022-10-27 2023-10-18 Light-absorbing composition, production method for light-absorbing composition, light absorption film, optical filter, and manufacturing method for optical filter

Country Status (1)

Country Link
WO (1) WO2024090311A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219496A (en) * 2018-06-19 2019-12-26 キヤノン株式会社 Inspection method and manufacturing method of electrophotographic photoreceptor
WO2020262658A1 (en) * 2019-06-28 2020-12-30 ホヤ レンズ タイランド リミテッド Curable composition, method for producing same, eyeglass lens, eyeglasses and method for producing eyeglass lens
JP2021067932A (en) * 2019-10-18 2021-04-30 キヤノン株式会社 Process cartridge and electrophotographic device
WO2022239590A1 (en) * 2021-05-14 2022-11-17 日本板硝子株式会社 Light-absorptive composition, light-absorbing film, light-absorbing film manufacturing method, and optical filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219496A (en) * 2018-06-19 2019-12-26 キヤノン株式会社 Inspection method and manufacturing method of electrophotographic photoreceptor
WO2020262658A1 (en) * 2019-06-28 2020-12-30 ホヤ レンズ タイランド リミテッド Curable composition, method for producing same, eyeglass lens, eyeglasses and method for producing eyeglass lens
JP2021067932A (en) * 2019-10-18 2021-04-30 キヤノン株式会社 Process cartridge and electrophotographic device
WO2022239590A1 (en) * 2021-05-14 2022-11-17 日本板硝子株式会社 Light-absorptive composition, light-absorbing film, light-absorbing film manufacturing method, and optical filter

Similar Documents

Publication Publication Date Title
US5733660A (en) Glass pane with reflectance reducing coating
KR101265729B1 (en) Substrate having a photocatalytic coating
EP0712815B1 (en) Glazing provided with a thin coating and process for making it
US6287683B1 (en) Anti-fogging coating and optical part using the same
US6372354B1 (en) Composition and method for a coating providing anti-reflective and anti-static properties
TW201920584A (en) Infrared-absorbing composition, infrared-cut filter, optical system for imaging
CA2575970A1 (en) Method of producing a substrate which is coated with a mesoporous layer and use thereof in ophthalmic optics
WO2012073685A1 (en) Anti-fog coated article
JP2012017394A (en) Anti-fog article
WO1997049778A1 (en) Ultraviolet absorbing material and ultraviolet absorbing plate
JP2021177240A (en) Optical device having optical characteristics and mechanical characteristics
CN114901466A (en) Transparent laminate
US20090084488A1 (en) Method of preparing colorless and transparent f-doped tin oxide conductive film using polymer post-treatment process
WO2022239590A1 (en) Light-absorptive composition, light-absorbing film, light-absorbing film manufacturing method, and optical filter
WO2011090156A1 (en) Anti-fog article
WO2024090311A1 (en) Light-absorbing composition, production method for light-absorbing composition, light absorption film, optical filter, and manufacturing method for optical filter
JPH0812375A (en) Water repellent article and its production
Yoneda et al. Mechanical durability of water repellent glass
WO2013031738A1 (en) Antifogging film and antifogging film-coated article
EP4112300A1 (en) Low-refractive-index film, laminate, optical element, windbreak material, and display device
JPH06316443A (en) Ultraviolet-absorbing and heat-insulating glass
JPH08231807A (en) Primer composition and plastic lens
JP7344091B2 (en) Light-absorbing composition, light-absorbing film, and optical filter
JP2001074902A (en) Antifogging film and optical parts
KR20230152823A (en) Film, liquid composition, optical element, and imaging device