WO2024090290A1 - 磁気制御変速機及びそれを用いた人工心臓 - Google Patents

磁気制御変速機及びそれを用いた人工心臓 Download PDF

Info

Publication number
WO2024090290A1
WO2024090290A1 PCT/JP2023/037550 JP2023037550W WO2024090290A1 WO 2024090290 A1 WO2024090290 A1 WO 2024090290A1 JP 2023037550 W JP2023037550 W JP 2023037550W WO 2024090290 A1 WO2024090290 A1 WO 2024090290A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
magnetic flux
output shaft
input shaft
magnetically controlled
Prior art date
Application number
PCT/JP2023/037550
Other languages
English (en)
French (fr)
Inventor
徹 増澤
真啓 長
文矢 北山
Original Assignee
国立大学法人茨城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人茨城大学 filed Critical 国立大学法人茨城大学
Publication of WO2024090290A1 publication Critical patent/WO2024090290A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/196Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body replacing the entire heart, e.g. total artificial hearts [TAH]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • A61M60/411Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/804Impellers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • A61M60/822Magnetic bearings specially adapted for being actively controlled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/32Selection of working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing

Definitions

  • the present invention relates to a magnetically controlled transmission that uses MR fluid to control the rotation speed, and an artificial heart that uses the magnetically controlled transmission to control the blood flow balance.
  • auxiliary artificial hearts which are connected in parallel to the patient's own heart to bypass blood and serve as a bridge until a heart transplant or recovery of the patient's own heart's function
  • total replacement artificial hearts which are extracted from the patient's own heart and replace all of the heart's functions.
  • one actuator simultaneously drives two turbo pumps, one on the left and one on the right, to rotate bladed wheels called impellers to pump blood, but by using a non-contact, wear-free magnetic levitation motor for the actuator, blood cell components are less likely to be damaged.
  • a magnetic levitation motor is a motor equipped with magnetic bearings that support the impeller by magnetic levitation.
  • the invention also discloses a rotating device that uses a high-precision axial-type magnetically levitated rotating motor that maintains stable rotation without risk of axial wobble even during high-speed rotation by combining the magnetic levitation control and rotation control required for five-axis freedom (three axes of position in the radial and axial directions and two axes of inclination around the radial axis).
  • the balance between the systemic and pulmonary circulatory systems is achieved by adjusting the pumping volume of the left and right hearts. For example, if blood accumulates in the lungs, the heart increases the pumping volume of the left heart and decreases the pumping volume of the right heart to eliminate the imbalance in blood flow. Even in a total replacement artificial heart, independent flow control of the left and right heart pumps is required to balance the blood volume.
  • left and right heart pumps are designed with different pump shapes, including the pump casing, impeller, and volute (fluid passage).
  • the present invention aims to balance the blood flow rate by controlling the rotation speed of the left heart pump and the right heart pump in an artificial heart. It also aims to make it possible to control the rotation speed of the impellers of the left heart pump and the right heart pump with a single motor, thereby making it compact and enabling the blood flow rate to be balanced.
  • the magnetically controlled transmission of the present invention has an input shaft that transmits the rotation of a motor to a first impeller, an output shaft that transmits the rotation of the input shaft to a second impeller supported by a magnetic bearing, and an MR fluid interposed in the mating portion between the input shaft and the output shaft, and is characterized in that the viscosity of the MR fluid is varied to control the number of rotations transmitted from the input shaft to the output shaft.
  • the viscosity of the MR fluid is increased by passing a control magnetic flux through the MR fluid, thereby increasing the rotation speed of the output shaft.
  • the control magnetic flux when the viscosity of the MR fluid is to be increased, the control magnetic flux is caused to flow in the same direction as the bias magnetic flux, and when the viscosity of the MR fluid is to be decreased, the control magnetic flux is caused to flow in the opposite direction to the bias magnetic flux.
  • the input shaft and the output shaft are moved axially under a constant magnetic field to vary the control magnetic flux flowing through the MR fluid.
  • the viscosity of the MR fluid is changed by utilizing the magnetic flux generated by the magnetic bearing or the motor.
  • a single motor is used to separately control the rotation speed of the first impeller and the rotation speed of the second impeller.
  • the artificial heart equipped with the magnetically controlled transmission has a left heart pump connected to the input shaft or the output shaft, and a right heart pump connected to the output shaft or the input shaft, and is characterized in that the flow rates of the left heart pump and the right heart pump are independently controlled by varying the viscosity of the MR fluid.
  • the artificial heart is also characterized in that the viscosity of the MR fluid is changed by moving the input shaft and the output shaft due to the pressure difference between the left heart pump and the right heart pump.
  • the shapes of the left heart pump and the right heart pump are made different so that the flow rate from the left heart pump is greater than the flow rate from the right heart pump.
  • the present invention by incorporating a magnetically controlled transmission using MR fluid or the like into the magnetically levitated impellers for two turbo pumps driven by a single magnetically levitated motor, it becomes possible to independently control the rotation speed and flow rate of the two turbo pumps.
  • MR fluid or the like By applying this to an artificial heart, it becomes possible to achieve a compact left heart pump and independent flow rate control for the right heart pump, making it possible to avoid pulmonary congestion, etc.
  • FIG. 1 is an overview showing an artificial heart using a magnetically controlled transmission according to the present invention.
  • 1 is a longitudinal sectional view showing an artificial heart using a magnetically controlled transmission according to the present invention.
  • 1 is a diagram showing the structure of a magnetically controlled transmission according to the present invention; 4 is a graph showing experimental results of the magnetically controlled transmission according to the present invention.
  • FIG. 2 is a diagram showing a magnetic field generating means of a magnetically controlled transmission according to the present invention.
  • FIG. 1 is a diagram showing a case where the rotation speed is controlled using axial displacement in a magnetically controlled transmission according to the present invention.
  • 4 is a diagram showing magnetic flux that varies in accordance with axial displacement of the magnetically controlled transmission according to the present invention; FIG. FIG.
  • FIG. 1 is a diagram showing a case where the rotation speed is controlled using the magnetic flux generated by a magnetic levitation motor in a magnetically controlled transmission according to the present invention.
  • 3 is a diagram showing an example of the arrangement of permanent magnets in the magnetic field generating means of the magnetically controlled transmission according to the present invention;
  • Figure 1 is an overview of an artificial heart using a magnetically controlled transmission.
  • Figure 2 is a vertical cross-sectional view of an artificial heart using a magnetically controlled transmission. Note that the left heart is placed on the bottom and the right heart on the top, and power is transmitted from the left heart to the right heart, but the placement and drive side may be reversed.
  • the artificial heart 100 takes in blood drawn from the pulmonary circulation into the left atrium through the inlet 310 into the left heart pump 300, and sends out blood from the left ventricle through the outlet 320 to the aorta for systemic circulation, while taking in blood drawn from the systemic circulation into the right atrium through the inlet 210 into the right heart pump 200, and sends out blood from the right ventricle through the outlet 220 to the pulmonary artery for pulmonary circulation.
  • the impeller 330 is rotated by the rotating shaft 500 to send blood from the inlet 310 to the outlet 320
  • the impeller 230 is rotated by the rotating shaft 500 to send blood from the inlet 210 to the outlet 220.
  • the rotating shaft 500 is rotated by a motor, and the speed can be changed by the magnetically controlled transmission 400.
  • the impellers 230 and 330 are impeller-shaped rotating bodies.
  • the rotating shaft 500 is an input shaft 510 and an output shaft 520 that are axially connected with an MR fluid 540 interposed between them, and the rotational speeds (rotational speeds) of each are controlled by the magnetically controlled transmission 400.
  • the output shaft 520 is connected to the right heart pump 200, and the input shaft 510 is connected to the left heart pump 300.
  • the viscosity of the MR fluid 540 is changed by the magnetic field generating means 600, and the flow rates of the right heart pump 200 and the left heart pump 300 are independently controlled.
  • the input shaft 510 transmits the rotation of the single motor 420 to the impeller 330 of the left heart pump 300.
  • the rotation of the input shaft 510 is transmitted to the output shaft 520 according to the viscosity of the MR fluid 540, and is transmitted to the impeller 230 of the right heart pump 200.
  • the left heart pump and the right heart pump In order to make the flow rate from the left heart pump 300 greater than the flow rate from the right heart pump 200, the left heart pump and the right heart pump must be designed with different pump shapes, such as the pump casing, impeller, and volute (fluid passage). Specifically, it is possible to change the pump casing dimensions, impeller diameter, impeller blade shape and dimensions, volute shape, etc.
  • the right heart pump 200 is a turbo pump in which the impeller 230 is supported by magnetic levitation using magnetic bearings 410, but other magnetic support methods may be used.
  • the combination of the input/output shafts and the left and right pumps may be reversed.
  • the MR fluid 540 is a magnetorheological fluid in which ferromagnetic particles are dispersed in a medium, and its viscosity changes when a magnetic field is applied. When the magnetic field is weak, it becomes a low-viscosity liquid, and when the magnetic field is strong, it becomes a high-viscosity semi-solid state. Note that the end shape of the input shaft 510 may be convex and the end shape of the output shaft 520 may be concave, or vice versa.
  • Figure 3 shows the structure of a magnetically controlled transmission.
  • Figure 4 is a graph showing the experimental results of a magnetically controlled transmission.
  • the MR fluid 540 is present between the mating portion 530 of the input shaft 510 and the output shaft 520, allowing the output shaft 520 to rotate separately from the input shaft 510.
  • the magnetically controlled transmission 400 has a coil 610 and a yoke 620 arranged around the input shaft 510 and the output shaft 520 as a magnetic field generating means 600.
  • a magnetic field is generated by passing a current through the coil 610, and the yoke 620 guides the magnetic flux 630 to the desired area.
  • the electromagnets may be arranged with their magnetic poles aligned radially or axially with respect to the rotating shaft 500.
  • the viscosity of the MR fluid 540 is changed by changing the strength of the magnetic field applied to the MR fluid 540 or the way the magnetic flux 630 passes through it.
  • the rotation speeds of the input shaft 510, which rotates as power is transmitted from the motor 420, and the output shaft 520, which rotates as power is transmitted from the input shaft 510 via the MR fluid 540 also change relatively.
  • Figure 4(a) shows the results of controlling the rotation speed of the output shaft 520 by changing the current value while fixing the position of the electromagnet in the magnetically controlled transmission 400 when the input shaft 510 is rotated by the motor 420 at 2000 rpm.
  • the generated magnetic field is weak and the viscosity of the MR fluid 540 is low, so the rotation speed of the output shaft 520 is lower than the rotation speed of the motor 420.
  • the generated magnetic field is stronger and the viscosity of the MR fluid 540 increases, so the rotation speed of the output shaft 520 increases to the same level as the rotation speed of the motor 420.
  • Figure 4(b) shows the results of controlling the rotation speed of the output shaft 520 by changing the position of the electromagnet at a constant current value in the magnetically controlled transmission 400 when the input shaft 510 is rotated by the motor 420 at 2000 rpm.
  • Figure 5 shows the magnetic field generating means of a magnetically controlled transmission. This shows an example in which a control magnetic flux 650 is caused to flow through the MR fluid 540 by an electromagnet, thereby increasing the viscosity of the MR fluid 540 and increasing the rotation speed of the output shaft 520.
  • coils 610 When coils 610 are arranged on all four sides of output shaft 520 as shown in FIG. 5(a), coils 610 may be wound in a multi-pole type to generate current-driven control magnetic flux 650, for example, from the horizontal direction toward the center and then exiting vertically. Also, as shown in FIG. 5(b), coils 610 may be wound in a homopolar type to generate current-driven control magnetic flux 650, for example, from all four sides toward the center. Note that there are many different ways to arrange the coils, i.e., how to rotate the magnetic flux, for both the multi-pole type and the homopolar type.
  • the multi-pole type is one in which the magnetic flux distribution generated on the shaft surface by an electromagnet or the like has two or more poles, an N pole and an S pole, as shown in Figure 5 (a).
  • the use of a multi-pole type has the advantage that the axial height of the device can be reduced because the electromagnets can be configured on a radial plane, but the rotation of the shaft causes magnetic pole changes in the shaft, making it more likely that eddy current loss will occur.
  • the homopolar type has a magnetic flux distribution generated on the shaft surface by an electromagnet or the like, with one north pole or one south pole.
  • the homopolar type needs to form a magnetic circuit that rotates the magnetic flux in the axial direction. If two north and two south pole generating parts are provided in the axial direction, the eddy current loss due to shaft rotation can be reduced, but the device becomes taller in the axial direction.
  • the magnetic flux can be handled (the path along which the magnetic flux flows).
  • permanent magnets 640 may be arranged on all four sides of the output shaft 520, and bias magnetic flux 660 may be generated by the magnets, for example, from the horizontal direction toward the center and then passing vertically. Also, as shown in FIG. 5(d), bias magnetic flux 660 may be generated by the magnets, for example, from all four sides toward the center.
  • the way in which bias magnetic flux 660 is routed (the path through which magnetic flux flows) also varies depending on where permanent magnets 640 are arranged, and together with the way in which electromagnet magnetic flux is routed, there are many different methods for forming the magnetic circuit.
  • a control magnetic flux 650 caused by a current is passed in the same direction as the bias magnetic flux 660 caused by the magnet, and when decreasing the viscosity of the MR fluid 540, a control magnetic flux 650 caused by a current is passed in the opposite direction to the bias magnetic flux 660 caused by the magnet.
  • the control magnetic flux 650 and bias magnetic flux 660 may be generated by a permanent magnet or an electromagnet, and there are many different methods for generating magnetic flux.
  • Figure 6 shows a case where the rotation speed is controlled using axial displacement in a magnetically controlled transmission.
  • Figure 7 shows the magnetic flux that varies according to the axial displacement of a magnetically controlled transmission.
  • the artificial heart 100a has a structure in which the rotating shaft 500 can be displaced in the axial direction relative to the right heart pump 200 and the left heart pump 300.
  • the input shaft 510 rotated by the motor 420 is magnetically supported in the radial direction by the magnetic bearings 410, 410a.
  • the impeller 330 of the left heart pump 300 is directly rotated by the input shaft 510.
  • the rotation of the input shaft 510 is transmitted to the output shaft 520 via the magnetically controlled transmission 400 using the MR fluid 540, rotating the impeller 230 of the right heart pump 200.
  • the impeller 230 of the right heart pump 200 may be directly rotated by the input shaft 510
  • the impeller 330 of the left heart pump 300 may be rotated by the output shaft 520 via the magnetically controlled transmission 400.
  • the impellers 230, 330 By moving the impellers 230, 330 in the axial direction using the input pressure difference between the right heart pump 200 and the left heart pump 300, it is possible to passively control the rotation speed (providing a rotation difference between the impellers 230, 330).
  • the concave input shaft 510 is the main shaft and the convex output shaft 520 is the slave shaft, but the convex shaft may be the main shaft and the concave shaft the slave shaft.
  • a permanent magnet 640 is placed around the MR fluid 540 to generate a constant magnetic field, and a control magnetic flux 650a is passed through the MR fluid 540 under the constant magnetic field.
  • the constant magnetic field may also be generated by an electromagnet.
  • the magnetic flux region 670 becomes smaller, the control magnetic flux 650a flowing through the MR fluid 540 decreases, and the viscosity of the MR fluid 540 decreases.
  • Axial displacement of the input and output shafts 510, 520 may be created using the pressure difference between the left and right pumps 200, 300, and the rotation speed may be changed by increasing or decreasing the magnetic flux applied to the magnetically controlled transmission 400, thereby providing passive control.
  • the pressure at the inlet 210 of the right heart pump 200 and the inlet 310 of the left heart pump 300 may be measured, and the input shaft 510 and output shaft 520 may be moved axially by a separate mechanism according to the input pressure difference, thereby controlling the rotation speed of the input shaft 510 and the output shaft.
  • FIG. 8 is a diagram showing a case where the rotation speed is controlled using the magnetic flux generated by a magnetically levitated motor in a magnetically controlled transmission.
  • the viscosity of the MR fluid may be changed by using the magnetic flux generated by the magnetic bearing 410 or the motor 420.
  • the right heart pump 200 and the left heart pump 300 are similar and are magnetically levitated motors using magnetic bearings 410, so the viscosity of the MR fluid 540 is controlled by the magnetic flux generated therein.
  • the magnetically controlled transmission 400a is disk-shaped, and increasing the magnetic flux of the coil of the magnetic bearing 410 increases the rotation speed.
  • the magnetically controlled transmission 400a may be provided on either the right or left heart side. If the magnetically controlled transmission 400a is provided on the motor side, opposite to the figure, increasing the magnetic flux of the motor 420 increases the rotation speed of the impeller on the motor side.
  • the magnetically controlled transmission 400a may be provided on both the magnetic bearing side and the motor side.
  • the artificial heart 100c does not levitate the impellers 230, 330 by controlling the suction force in the bearing direction, but by controlling the suction force in the radial direction using the magnetic bearings 410, 410a.
  • the magnetically controlled transmission 400b and the rotating shaft 500 are incorporated into the body that constitutes the impellers 230, 330, and the magnetic flux applied to the magnetically controlled transmission 400b is controlled by changing the control magnetic flux and motor control magnetic flux of the magnetic bearings 410, 410a, thereby varying the viscosity of the MR fluid 540.
  • the magnetically controlled transmission 400b may be one that uses only the magnetic flux of the magnetic bearings, one that uses only the magnetic flux of the motor, or one that uses the magnetic flux of both the magnetic bearings and the motor.
  • Figure 9 is a diagram showing an example of the arrangement of permanent magnets in the magnetic field generating means of a magnetically controlled transmission when the electromagnet coil that generates the control magnetic flux is arranged around the transmission as a single coil.
  • the magnetic flux may be generated by a permanent magnet or an electromagnet, and there are a wide variety of methods for generating the magnetic flux.
  • Possible methods for arranging the permanent magnets include embedding the permanent magnets 640 in the yoke 620 as shown in FIG. 9(a) and arranging the permanent magnets 640 on the surface of the yoke 620 as shown in FIG. 9(b).
  • the yoke 620 may also be in the shape of a U-shaped claw pole as shown in FIGS. 9(a) and 9(b) or in the shape of a case that covers the coil 610 as shown in FIG. 9(c).
  • the present invention by incorporating a magnetically controlled transmission using MR fluid or the like into the magnetically levitated impellers for two turbo pumps driven by a single magnetically levitated motor, it becomes possible to independently control the rotation speed and flow rate of the two turbo pumps.
  • MR fluid or the like By applying this to an artificial heart, it becomes possible to achieve a compact left heart pump and independent flow rate control for the right heart pump, making it possible to avoid pulmonary congestion, etc.
  • the positions of the input shaft and output shaft may be interchanged, the installation locations of the magnetically controlled transmissions may be interchanged, or multiple magnetically controlled transmissions may be installed.
  • the positions of the left heart pump and right heart pump may also be interchanged.
  • Various magnetic levitation methods and magnetically controlled transmission control methods can be adopted. This can be applied to the rotation speed control of not only total replacement artificial hearts, but also auxiliary artificial hearts and industrial pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Cardiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Anesthesiology (AREA)
  • External Artificial Organs (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

人工心臓において、単一のモータで左心ポンプと右心ポンプのそれぞれのインペラの回転数を制御できるようにして、小型かつ血液の流量バランスが取れるようにする。 磁気制御変速機は、モータの回転を第1インペラに伝達する入力シャフトと、磁気軸受で支持された第2インペラに前記入力シャフトの回転を伝達する出力シャフトと、前記入力シャフトと前記出力シャフトとの嵌合部に介在させたMR流体と、を有し、前記MR流体の粘度を変動させることで、前記入力シャフトから前記出力シャフトに伝達される回転数を制御する、ことを特徴とする。

Description

磁気制御変速機及びそれを用いた人工心臓
 本発明は、MR流体を用いて回転数を制御する磁気制御変速機と、その磁気制御変速機を用いて血液の流量バランスを制御した人工心臓に関する。
 重症心不全患者の治療における臓器提供者不足の問題の解決策の一つとして人工心臓の適用が行われている。人工心臓には、心臓移植や自己心臓の機能回復までの繋ぎを目的に自己心臓と並列に接続して血液をバイパスする補助人工心臓と、自己心臓を摘出して心臓の動きを全て代替する全置換型人工心臓がある。
 全置換型人工心臓では、例えば、一つのアクチュエータで左右二つのターボポンプを同時駆動させインペラと呼ばれる羽根車を回すことで血液を送り出すが、アクチュエータに非接触で摩耗のない磁気浮上モータを採用することで血球成分を壊れにくくしている。磁気浮上モータは、インペラを磁気浮上によって支持する磁気軸受を搭載したモータである。
 特許文献1に記載されているように、自由度5軸(ラジアル方向、アキシャル方向の位置3軸とラジアル軸周りの傾き2軸)の磁気浮上制御と回転制御に必要な磁気回路を複合して形成することにより、高速回転時にも軸振れ等の虞れのない安定した回転が維持される高精度のアキシャル型磁気浮上回転モータを用いた回転機器の発明も開示されている。
特許第3808811号公報
 特許文献1に記載の発明では、磁気軸受により小型化と高血液適合性を実現しているが、左心用ターボポンプと右心用ターボポンプを同一回転数で動かしているので、左心用ターボポンプと右心用ターボポンプの両方の流量が同時に増減することになる。
 実際の心臓では、左心と右心の拍出量を調整することで体循環系と肺循環系のバランスを取っている。例えば、肺に血液が溜まった場合、心臓は左心の拍出量を増やし、右心の拍出量を減らすことで、血液の偏りを解消する。全置換型人工心臓においても、血液量のバランスを取るため、左心ポンプと右心ポンプの独立した流量制御が必要となる。
 また、通常、肺動脈に送り出す右心よりも大動脈に送り出す左心の拍出量を大きくする必要があるため、左心ポンプと右心ポンプではポンプケーシング、インペラ、ボリュート(通液路)等のポンプ形状が異なる設計となっている。
 そこで、本発明は、人工心臓において左心ポンプと右心ポンプの回転数を制御して血液の流量バランスを取ることを目的とする。さらに、単一のモータで左心ポンプと右心ポンプのそれぞれのインペラの回転数を制御できるようにして、小型かつ血液の流量バランスが取れるようにすることを目的とする。
 上記の課題を解決するために、本発明である磁気制御変速機は、モータの回転を第1インペラに伝達する入力シャフトと、磁気軸受で支持された第2インペラに前記入力シャフトの回転を伝達する出力シャフトと、前記入力シャフトと前記出力シャフトとの嵌合部に介在させたMR流体と、を有し、前記MR流体の粘度を変動させることで、前記入力シャフトから前記出力シャフトに伝達される回転数を制御する、ことを特徴とする。
 また、前記磁気制御変速機において、前記MR流体に制御磁束を流すことで前記MR流体の粘度を増大させ、前記出力シャフトの回転数を上げる、ことを特徴とする。
 また、前記磁気制御変速機において、前記MR流体の粘度を増大させるときはバイアス磁束と同方向に前記制御磁束を流し、前記MR流体の粘度を減少させるときはバイアス磁束と逆方向に前記制御磁束を流す、ことを特徴とする。
 また、前記磁気制御変速機において、一定磁場下で前記入力シャフト及び前記出力シャフトを軸方向に移動させることで、前記MR流体に流す制御磁束を変動させる、ことを特徴とする。
 また、前記磁気制御変速機において、前記磁気軸受又は前記モータで生じる磁束を利用して前記MR流体の粘度を変動させる、ことを特徴とする。
 また、前記磁気制御変速機において、単一のモータで、前記第1インペラの回転数と前記第2インペラの回転数を別々に制御する、ことを特徴とする。
 さらに、前記磁気制御変速機を備えた人工心臓は、前記入力シャフト又は前記出力シャフトに接続された左心ポンプと、前記出力シャフト又は前記入力シャフトに接続された右心ポンプと、を有し、前記MR流体の粘度を変動させることで、前記左心ポンプと前記右心ポンプの流量を独立制御する、ことを特徴とする。
 また、前記人工心臓は、前記左心ポンプと前記右心ポンプの圧力差により前記入力シャフト及び前記出力シャフトを移動させることにより、前記MR流体の粘度を変動させる、ことを特徴とする。
 また、前記人工心臓において、前記左心ポンプからの流量が前記右心ポンプからの流量より大きくなるよう、前記左心ポンプと前記右心ポンプの双方の形状を異ならせる、ことを特徴とする。
 本発明によれば、単一の磁気浮上モータで駆動される二つのターボポンプ用の磁気浮上インペラにMR流体などを用いた磁気制御変速機を組み込むことにより、二つのターボポンプの回転数や流量が独立に制御できるようになる。それを人工心臓に応用することにより小型かつ左心ポンプと右心ポンプの独立的な流量制御が可能となり、肺うっ血などを回避できるようになる。
本発明である磁気制御変速機を用いた人工心臓を示す概観図である。 本発明である磁気制御変速機を用いた人工心臓を示す縦断面図である。 本発明である磁気制御変速機の構造を示す図である。 本発明である磁気制御変速機の実験結果を示すグラフである。 本発明である磁気制御変速機の磁界発生手段を示す図である。 本発明である磁気制御変速機において軸方向変位を用いて回転数を制御する場合を示す図である。 本発明である磁気制御変速機の軸方向変位に応じて変動する磁束を示す図である。 本発明である磁気制御変速機において磁気浮上モータで生じる磁束を用いて回転数を制御する場合を示す図である。 本発明である磁気制御変速機の磁界発生手段における永久磁石の配置例を示す図である。
 以下に、本発明の実施形態について図面を参照して詳細に説明する。なお、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する場合がある。
 まず、本発明である磁気制御変速機を用いた人工心臓について説明する。図1は、磁気制御変速機を用いた人工心臓を示す概観図である。図2は、磁気制御変速機を用いた人工心臓を示す縦断面図である。なお、左心を下側、右心を上側に配置して、左心側から右心側に動力を伝達しているが、配置や駆動側を逆にしても良い。
 図1(a)に示すように、人工心臓100は、肺循環から左心房で吸い込む血液を流入口310から左心ポンプ300に取り込んで、左心室から送り出す血液を吐出口320から大動脈へ流して体循環させるとともに、体循環から右心房で吸い込む血液を流入口210から右心ポンプ200に取り込んで、右心室から送り出す血液を吐出口220から肺動脈へ流して肺循環させる。
 図1(b)に示すように、左心ポンプ300においては、回転軸500でインペラ330を回転させて流入口310から吐出口320に血液を送り、右心ポンプ200においては、回転軸500でインペラ230を回転させて流入口210から吐出口220に血液を送る。なお、回転軸500は、モータで回転し、磁気制御変速機400で変速可能である。なお、インペラ230、330は、羽根車状の回転体である。
 図2に示すように、回転軸500は、入力シャフト510と出力シャフト520を、間にMR流体540を介在させて軸方向に連結したものであり、磁気制御変速機400によってそれぞれの回転数(回転速度)が制御される。
 人工心臓100において、出力シャフト520が右心ポンプ200に接続され、入力シャフト510が左心ポンプ300に接続される。磁気制御変速機400では、磁界生成手段600によってMR流体540の粘度を変動させ、右心ポンプ200と左心ポンプ300の流量を独立に制御する。
 入力シャフト510は、単一のモータ420の回転を左心ポンプ300のインペラ330に伝達する。出力シャフト520には、MR流体540の粘度に応じて入力シャフト510の回転が伝達され、右心ポンプ200のインペラ230に伝達される。
 なお、左心ポンプ300からの流量を右心ポンプ200からの流量より大きくするため、左心ポンプと右心ポンプでは、ポンプケーシング、インペラ、ボリュート(通液路)等のポンプ形状を異ならせるように設計する必要がある。具体的には、ポンプケーシング寸法、インペラ直径、インペラ羽根形状・寸法、ボリュート形状等を変えることが考えられる。
 また、右心ポンプ200は、磁気軸受410でインペラ230を磁気浮上によって支持しているターボポンプであるが、磁気支持方法は別方法でも良い。入出力シャフトと左右ポンプの組合せは逆でも良い。
 入力シャフト510の一端を凹状、出力シャフト520の一端を凸状にして、入力シャフト510と出力シャフト520の嵌合部530にMR流体540を挟みこむように介在させる。MR流体540は、強磁性微粒子を媒体に分散させた磁気粘性流体であり、磁場を加えると粘度が変化する。磁場が弱いと粘度の低い液体状態になり、磁場が強いと粘度の強い半固体状態になる。なお、入力シャフト510の端部形状を凸状、出力シャフト520の端部形状を凹状と、逆にしても良い。
 図3は、磁気制御変速機の構造を示す図である。図4は、磁気制御変速機の実験結果を示すグラフである。入力シャフト510と出力シャフト520の嵌合部530は、間にMR流体540があることで、出力シャフト520は入力シャフト510とは別々に回転可能である。
 図3(a)に示すように、磁気制御変速機400は、磁界生成手段600として入力シャフト510及び出力シャフト520の周りにコイル610とヨーク620を配置する。コイル610に電流を流すことで磁界を発生させ、ヨーク620で磁束630を通したい領域に誘導する。例えば、電磁石は回転軸500に対して、径方向にその磁極を並べて配置しても良いし、軸方向にその磁極を並べて配置しても良い。
 図3(b)に示すように、磁界生成手段600により嵌合部530のMR流体540に磁束630を通すと、MR流体540の粘度が上がる。MR流体540が流れにくくなると、出力シャフト520は入力シャフト510と共に回転するようになり回転数が上がる。磁束630が減少してMR流体540が流れやすくなると、出力シャフト520は入力シャフト510より遅れて回転するようになり回転数が下がる。
 MR流体540に加える磁場の強さや磁束630の通し方を変えることでMR流体540の粘度を変化させる。それに応じて、モータ420から動力が伝達されて回転する入力シャフト510と、入力シャフト510からMR流体540を介して動力が伝達されて回転する出力シャフト520の回転数も相対的に変化する。
 図4(a)には、2000rpmのモータ420で入力シャフト510を回転させたときに、磁気制御変速機400において電磁石の位置固定で電流値を変化させて出力シャフト520の回転数を制御した結果を示す。
 電流値が低いと発生する磁場も弱く、MR流体540の粘度も低いので、出力シャフト520の回転数もモータ420の回転数よりも少ない。電流値を高くすると発生する磁場も強くなり、MR流体540の粘度も高くなるので、出力シャフト520の回転数もモータ420の回転数と同じくらいまで上がる。
 図4(b)には、2000rpmのモータ420で入力シャフト510を回転させたときに、磁気制御変速機400において電流値一定で電磁石の位置を変化させて出力シャフト520の回転数を制御した結果を示す。
 電磁石の位置を軸方向に変位させてMR流体540に近付けると、磁場の影響が強くなりMR流体540の粘度も高くなるので、出力シャフト520の回転数もモータ420の回転数と同じくらいまで上がる。電磁石の位置をMR流体540から遠ざけると、磁場の影響が弱くなりMR流体540の粘度も低くなるので、出力シャフト520の回転数もモータ420の回転数よりも少なくなる。
 図5は、磁気制御変速機の磁界発生手段を示す図である。電磁石によりMR流体540に制御磁束650を流すことでMR流体540の粘度を増大させ、出力シャフト520の回転数を上げる例を示す。
 図5(a)に示すように、出力シャフト520の周囲四方にコイル610を配置する場合に、コイル610の巻き方を多極タイプにして電流による制御磁束650を、例えば横方向から中央に向かい縦方向に抜けるように発生させても良い。また、図5(b)に示すように、コイル610の巻き方をホモポーラタイプにして電流による制御磁束650を、例えば四方から中央に向かうように発生させても良い。なお、多極タイプもホモポーラタイプも、コイルの配置方法、すなわち、磁束の回し方は多岐に渡る。
 ここで、多極タイプは、図5(a)に示すように、電磁石等によって軸表面に生成される磁束分布がN極、S極の2極以上となるものである。多極タイプを採用すると、電磁石を径方向平面に構成できるため装置の軸方向高さを低くできる利点があるが、軸回転により軸中に磁極変化が生じ、渦電流損が生じやすくなる。
 また、ホモポーラタイプは、図5(b)に示すように、電磁石等によって軸表面に生成される磁束分布がN極またはS極のいずれか1極ずつとなるものである。ホモポーラタイプは、効率的な磁気回路を形成するために軸方向に磁束を回す磁気回路を形成する必要があり、N極、S極のそれぞれの生成部を軸方向に2箇所設けると、軸回転による渦電流損は減少できるが軸方向に装置が高くなる。その磁気回路の3次元的設計次第では磁束の取り回し(磁束が流れる経路)は多岐に渡る。
 図5(c)に示すように、出力シャフト520の周囲四方に永久磁石640を配置して磁石によるバイアス磁束660を、例えば横方向から中央に向かい縦方向に抜けるように発生させておいても良い。また、図5(d)に示すように、磁石によるバイアス磁束660を、例えば四方から中央に向かうように発生させておいても良い。バイアス磁束660の取り回し(磁束が流れる経路)もどこに永久磁石640を配置するかによって変わり、電磁石磁束の取り回しと合わせて、その磁気回路形成方法は多岐に渡る。
 なお、MR流体540の粘度を増大少させるときは磁石によるバイアス磁束660と同方向に電流による制御磁束650を流し、MR流体540の粘度を減少させるときは磁石によるバイアス磁束660と逆方向に電流による制御磁束650を流せば良い。制御磁束650やバイアス磁束660は、永久磁石で発生させても良いし、電磁石で発生させても良く、磁束の発生方法は多岐に渡る。
 図6は、磁気制御変速機において軸方向変位を用いて回転数を制御する場合を示す図である。図7は、磁気制御変速機の軸方向変位に応じて変動する磁束を示す図である。
 図6に示すように、人工心臓100aでは、右心ポンプ200と左心ポンプ300に対して回転軸500が軸方向に変位可能な構造にする。モータ420で回転する入力シャフト510は磁気軸受410、410aによって径方向に磁気支持される。左心ポンプ300のインペラ330は入力シャフト510により直接回転させられる。入力シャフト510の回転は、MR流体540による磁気制御変速機400を介して、出力シャフト520に伝達し、右心ポンプ200のインペラ230を回転させる。なお、右心ポンプ200のインペラ230を入力シャフト510で直接回転させ、磁気制御変速機400を介して、出力シャフト520で左心ポンプ300のインペラ330を回転させても良い。
 右心ポンプ200と左心ポンプ300の入力圧力差でインペラ230、330を軸方向に動かすことにより、回転数の受動制御(インペラ230、330に回転差を付ける)が可能となる。なお、凹状の入力シャフト510を主軸、凸状の出力シャフト520を従軸としているが、凸軸を主軸、凹軸を従軸にしても良い。
 図7(a)に示すように、MR流体540の周りに永久磁石640を配置して一定の磁場を発生させておき、一定磁場下においてMR流体540に制御磁束650aを流す。なお、一定の磁場は、電磁石で発生させても良い。
 入力シャフト510及び出力シャフト520を軸方向に変位させて、例えば、上方または下方に移動させると、磁束領域670が少なくなり、MR流体540に流れる制御磁束650aが減ってMR流体540の粘度が下がる。
 図7(b)に示すように、入力シャフト510又は出力シャフト520の周面に突起550のようなものを設け、回転軸500の軸方向変位によって突起550がヨーク620に接すれば、制御磁束650aが通りやすい部分となる。磁路抵抗の変化を利用して磁束密度を変動させることも可能である。他に漏れ磁束などを利用しても良い。
 入出力シャフト510、520の軸方向変位を左右ポンプ200、300の圧力差を利用して作り出し、磁気制御変速機400に掛かる磁束を増減させて回転数を変化させる受動的な制御にしても良い。なお、右心ポンプ200の流入口210と左心ポンプ300の流入口310の圧力を測定し、入力圧力差に応じて入力シャフト510及び出力シャフト520を別機構で軸方向に移動させて、入力シャフト510と出力シャフトの回転数を制御しても良い。
 図8は、磁気制御変速機において磁気浮上モータで生じる磁束を用いて回転数を制御する場合を示す図である。磁気軸受410又はモータ420で生じる磁束を利用してMR流体の粘度を変動させても良い。
 図8(a)に示すように、人工心臓100bでは、右心ポンプ200と左心ポンプ300は同様で、磁気軸受410を用いた磁気浮上モータであることから、そこで発生した磁束でMR流体540の粘度を制御する。磁気制御変速機400aの形状は円盤状で、磁気軸受410のコイルの磁束を強くすると回転数も上がる。磁気制御変速機400aは、右心側に設けても良いし、左心側に設けても良い。磁気制御変速機400aを図とは逆にモータ側に設けた場合は、モータ420の磁束を強くするとモータ側のインペラの回転数が上がる。磁気制御変速機400aは磁気軸受側、モータ側両方に設けても良い。
 図8(b)に示すように、人工心臓100cは、軸受方向に吸引力を制御してインペラ230、330を浮かせるのではなく、磁気軸受410、410aを使って径方向に吸引力を制御してインペラ230、330を浮かせている。また、磁気制御変速機400b及び回転軸500は、インペラ230、330を構成する胴体に組み込み、磁気軸受410、410aの制御磁束やモータ制御磁束を変化させることで磁気制御変速機400bにかかる磁束を制御してMR流体540の粘度を変動させる。磁気制御変速機400bは磁気軸受の磁束のみを利用するもの、モータの磁束のみを利用するもの、磁気軸受、モータ双方の磁束を利用するもの、どれでも良い。
 磁気浮上モータで使用している磁気軸受410やモータ420を利用することで、磁界生成手段600として電磁石や永久磁石640を別途設置する必要が無くなり、構造の複雑化を回避することが可能である。
 本発明である磁気制御変速機における電磁石、永久磁石の配置について説明する。図9は、制御磁束を発生する電磁石コイルを一つのコイルとして変速機周辺に配置した場合、磁気制御変速機の磁界発生手段における永久磁石の配置例を示す図である。図5において説明したように、磁束は、永久磁石で発生させても良いし、電磁石で発生させても良く、磁束の発生方法は多岐に渡る。
 永久磁石の配置方法としては、図9(a)の永久磁石640をヨーク620内に埋め込む方式、図9(b)の永久磁石640をヨーク620表面に配置する方式等が考えられる。また、ヨーク620は、図9(a)(b)のコの字のクローポール形状、図9(c)のコイル610を覆うケース形状等が考えられる。
 本発明によれば、単一の磁気浮上モータで駆動される二つのターボポンプ用の磁気浮上インペラにMR流体などを用いた磁気制御変速機を組み込むことにより、二つのターボポンプの回転数や流量が独立に制御できるようになる。それを人工心臓に応用することにより小型かつ左心ポンプと右心ポンプの独立的な流量制御が可能となり、肺うっ血などを回避できるようになる。
 以上、本発明の実施例を述べたが、これらに限定されるものではない。例えば、入力シャフトと出力シャフトの位置を入れ替えても良いし、磁気制御変速機の設置箇所を入れ替えても良しい、複数の磁気制御変速機を設置しても良い。また、左心ポンプと右心ポンプの配置を入れ替えても良い。様々な磁気浮上方式、磁気制御変速機の制御方式を採用することができる。全置換型人工心臓のみならず、補助人工心臓や工業用ポンプでも、その回転数制御に応用可能である。
 100:人工心臓
 200:右心ポンプ
 210:流入口
 220:吐出口
 230:インペラ
 300:左心ポンプ
 310:流入口
 320:吐出口
 330:インペラ
 400:磁気制御変速機
 410:磁気軸受
 420:モータ
 500:回転軸
 510:入力シャフト
 520:出力シャフト
 530:嵌合部
 540:MR流体
 550:突起
 600:磁界生成手段
 610:コイル
 620:ヨーク
 630:磁束
 640:永久磁石
 650:制御磁束
 660:バイアス磁束
 670:磁束領域

Claims (7)

  1.  モータの回転を第1インペラに伝達する入力シャフトと、
     磁気軸受で支持された第2インペラに前記入力シャフトの回転を伝達する出力シャフトと、
     前記入力シャフトと前記出力シャフトとの嵌合部に介在させたMR流体と、を有し、
     前記MR流体の粘度を変動させることで、前記入力シャフトから前記出力シャフトに伝達される回転数を制御する、
     ことを特徴とする磁気制御変速機。
  2.  前記MR流体に制御磁束を流すことで前記MR流体の粘度を増大させ、前記出力シャフトの回転数を上げる、
     ことを特徴とする請求項1に記載の磁気制御変速機。
  3.  前記MR流体の粘度を増大させるときはバイアス磁束と同方向に前記制御磁束を流し、前記MR流体の粘度を減少させるときはバイアス磁束と逆方向に前記制御磁束を流す、
     ことを特徴とする請求項2に記載の磁気制御変速機。
  4.  一定磁場下で前記入力シャフト及び前記出力シャフトを軸方向に移動させることで、前記MR流体に流す制御磁束を変動させる、
     ことを特徴とする請求項1に記載の磁気制御変速機。
  5.  前記磁気軸受又は前記モータで生じる磁束を利用して前記MR流体の粘度を変動させる、
     ことを特徴とする請求項1に記載の磁気制御変速機。
  6.  請求項1乃至5の何れか一に記載の磁気制御変速機を備えた人工心臓であって、
     前記入力シャフト又は前記出力シャフトに接続された左心ポンプと、
     前記出力シャフト又は前記入力シャフトに接続された右心ポンプと、を有し、
     前記MR流体の粘度を変動させることで、前記左心ポンプと前記右心ポンプの流量を独立制御する、
     ことを特徴とする人工心臓。
  7.  前記左心ポンプと前記右心ポンプの圧力差により前記入力シャフト及び前記出力シャフトを移動させることにより、前記MR流体の粘度を変動させる、
     ことを特徴とする請求項6に記載の人工心臓。
PCT/JP2023/037550 2022-10-24 2023-10-17 磁気制御変速機及びそれを用いた人工心臓 WO2024090290A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022170142 2022-10-24
JP2022-170142 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024090290A1 true WO2024090290A1 (ja) 2024-05-02

Family

ID=90830703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037550 WO2024090290A1 (ja) 2022-10-24 2023-10-17 磁気制御変速機及びそれを用いた人工心臓

Country Status (1)

Country Link
WO (1) WO2024090290A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492129A (ja) * 1990-08-03 1992-03-25 Tochigi Fuji Ind Co Ltd 粘性継手
US20100038309A1 (en) * 2006-09-21 2010-02-18 Dresser-Rand Company Separator drum and compressor impeller assembly
JP2012523857A (ja) * 2009-04-16 2012-10-11 ビバコール プロプライエタリー リミテッド 心臓ポンプコントローラ
JP2013542384A (ja) * 2010-10-20 2013-11-21 ドレッサー ランド カンパニー 可変速磁性軸継手
US20150151230A1 (en) * 2010-03-09 2015-06-04 Dresser-Rand Company Bladed drum for rotary separator system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492129A (ja) * 1990-08-03 1992-03-25 Tochigi Fuji Ind Co Ltd 粘性継手
US20100038309A1 (en) * 2006-09-21 2010-02-18 Dresser-Rand Company Separator drum and compressor impeller assembly
JP2012523857A (ja) * 2009-04-16 2012-10-11 ビバコール プロプライエタリー リミテッド 心臓ポンプコントローラ
US20150151230A1 (en) * 2010-03-09 2015-06-04 Dresser-Rand Company Bladed drum for rotary separator system
JP2013542384A (ja) * 2010-10-20 2013-11-21 ドレッサー ランド カンパニー 可変速磁性軸継手

Similar Documents

Publication Publication Date Title
US20200345908A1 (en) Rotary Blood Pump With Opposing Spindle Magnets, Bore And Drive Windings
JP5539441B2 (ja) 回転式血液ポンプ
US6394769B1 (en) Pump having a magnetically suspended rotor with one active control axis
AU735578B2 (en) Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
US6641378B2 (en) Pump with electrodynamically supported impeller
US6227817B1 (en) Magnetically-suspended centrifugal blood pump
JP4472610B2 (ja) 遠心式血液ポンプ装置
EP2741793B1 (en) Rotary pump comprising a rotor and delivery elements
US20100109463A1 (en) Hybrid Five Axis Magnetic Bearing System Using Axial Passive PM Bearing Magnet Paths and Radial Active Magnetic Bearings with Permanent Magnet Bias and Related Method
Asama et al. A new design for a compact centrifugal blood pump with a magnetically levitated rotor
CN104324428A (zh) 一种磁液悬浮离心式装置
US7598643B2 (en) Motor with electrodynamically and hydrodynamically supported rotor
WO2024090290A1 (ja) 磁気制御変速機及びそれを用いた人工心臓
Yamane et al. New mechanism to reduce the size of the monopivot magnetic suspension blood pump: Direct drive mechanism
JP3808811B2 (ja) アキシャル磁気浮上回転モータおよびこれを用いた回転機器
JPH08284870A (ja) 磁気軸受ポンプ
WO2021230238A1 (ja) ポンプ機構
CN117045960A (zh) 混合磁悬浮离心式血泵
AU8152801A (en) Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
Hijikata et al. Cost-effective Magnetic Bearing System using a Single-Use Magnet-Less Rotor for an Extracorporal Centrifugal Blood Pump