WO2024090112A1 - Circuit board resin composition, and method for producing resin powder particles - Google Patents

Circuit board resin composition, and method for producing resin powder particles Download PDF

Info

Publication number
WO2024090112A1
WO2024090112A1 PCT/JP2023/035250 JP2023035250W WO2024090112A1 WO 2024090112 A1 WO2024090112 A1 WO 2024090112A1 JP 2023035250 W JP2023035250 W JP 2023035250W WO 2024090112 A1 WO2024090112 A1 WO 2024090112A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder particles
resin powder
cyclic olefin
resin composition
polymer
Prior art date
Application number
PCT/JP2023/035250
Other languages
French (fr)
Japanese (ja)
Inventor
明 古国府
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024090112A1 publication Critical patent/WO2024090112A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a resin composition for circuit boards and a method for producing resin powder particles, and in particular to a resin composition for circuit boards and a method for producing resin powder particles used in the resin composition for circuit boards.
  • Patent Document 1 proposes a fluororesin-containing polyimide precursor composition containing a fluororesin micropowder, a specific compound, and a polyimide precursor solution as a material for such substrates.
  • the use of the fluororesin-containing polyimide precursor composition can improve electrical properties (low dielectric constant, low dielectric loss tangent), physical properties, etc.
  • the fluorine-based resin-containing polyimide precursor composition disclosed in Patent Document 1 is not preferred because it contains a fluorine-based resin. For this reason, there is a demand for the development of substrate materials that can reduce the environmental burden.
  • the present invention aims to provide a resin composition for substrates that can reduce the environmental impact and can be used as a material for producing substrates with reduced dielectric constants, and a method for producing resin powder particles used in the resin composition for substrates.
  • the present inventors have conducted extensive research to achieve the above object.
  • the inventors have newly discovered that a composition containing resin powder particles with a halogen content of 3% by mass or less can reduce the environmental impact and can be used as a material for manufacturing substrates with a reduced dielectric constant, and have thus completed the present invention.
  • the present invention aims to advantageously solve the above-mentioned problems, and [1] the resin composition for substrates of the present invention is a resin composition for substrates containing resin powder particles having a halogen content of 3 mass% or less.
  • the above-mentioned resin composition for substrates can reduce the environmental load and can be used as a material for producing substrates having a reduced dielectric constant.
  • the "halogen content" can be measured by the method described in the Examples.
  • the resin powder particles have an average particle diameter of 30 ⁇ m or less, and the ratio of the volume of resin powder particles having a particle diameter of 70 ⁇ m or more to the total volume of the resin powder particles in the resin composition for substrates is 15% or less.
  • the resin powder particles have an average particle diameter of 20 ⁇ m or less, and the ratio of the volume of resin powder particles having a particle diameter of 70 ⁇ m or more to the total volume of the resin powder particles in the resin composition for substrates is 15% or less.
  • the term "average particle size” means a volume-weighted average diameter
  • the term “particle size” means a volume-weighted diameter.
  • the "average particle size” and the "proportion of the volume of resin powder particles having a particle size of 70 ⁇ m or more to the total volume of resin powder particles in a resin composition for substrates” can be determined by the method described in the Examples.
  • the resin powder particles are preferably particles of a cyclic olefin resin.
  • the resin powder particles are particles of a cyclic olefin resin, the heat resistance of a substrate produced using the resin composition for substrates of the present invention can be improved.
  • the resin powder particles are preferably particles of a crystalline cyclic olefin resin. If the resin powder particles are particles of a crystalline cyclic olefin resin, the heat resistance of the substrate produced using the resin composition for substrates of the present invention can be further improved.
  • the present invention also aims to solve the above-mentioned problems in an advantageous manner, and [6] the method for producing resin powder particles of the present invention is a method for producing resin powder particles, which comprises subjecting a solution containing a cyclic olefin ring-opening polymer at a solid content concentration of 10 mass% or more to a hydrogenation reaction, to obtain resin powder particles of a hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3 mass% or less.
  • the above-mentioned method for producing resin powder particles it is possible to produce resin powder particles that can be suitably used in the resin composition for substrates of the present invention.
  • the present invention also aims to solve the above-mentioned problems in an advantageous manner, and [7] the method for producing resin powder particles of the present invention is a method for producing resin powder particles, which comprises a step of pulverizing a crystalline cyclic olefin ring-opening polymer hydrogenated product in a solution to obtain resin powder particles of a crystalline cyclic olefin ring-opening polymer hydrogenated product having a halogen content of 3 mass% or less.
  • the above-mentioned method for producing resin powder particles it is possible to produce resin powder particles that can be suitably used in the resin composition for substrates of the present invention.
  • the present invention it is possible to provide a resin composition for substrates which can reduce the environmental load and can be used as a material for producing substrates having a reduced dielectric constant. Furthermore, according to the present invention, it is possible to provide a method for producing resin powder particles used in the resin composition for substrates of the present invention.
  • the resin composition for substrates of the present invention is used as a material for forming a substrate, and contains resin powder particles having a halogen content of 3 mass% or less.
  • the substrate manufactured using the resin composition for substrates of the present invention has a reduced environmental load and a reduced dielectric constant, and therefore can be used for various purposes, and is particularly suitable for use as a high-frequency substrate.
  • the resin powder particles contained in the resin composition for substrates of the present invention can be manufactured, for example, by the manufacturing method of resin powder particles of the present invention.
  • the resin composition for substrates of the present invention contains resin powder particles having a halogen content of 3 mass % or less, and may optionally contain other components such as additives.
  • the resin powder particles contained in the resin composition for substrates of the present invention are resin powder particles having a halogen content of 3 mass % or less.
  • the term "resin powder particles” refers to resin particles having an average particle diameter of 500 ⁇ m or less.
  • the resin powder particles of the present invention preferably have a halogen content of 1% by mass or less, more preferably 0.1% by mass or less, and even more preferably 0.01% by mass or less.
  • the average particle size of the resin powder particles is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the average particle size of the resin powder particles is usually 0.3 ⁇ m or more.
  • the ratio of the volume of resin powder particles having a particle diameter of 70 ⁇ m or more to the total volume of resin powder particles in the resin composition for substrates is preferably 15% or less, more preferably 1% or less, and even more preferably 0% (i.e., the resin powder particles in the resin composition for substrates do not include resin powder particles having a particle diameter of 70 ⁇ m or more).
  • the average particle diameter of the resin powder particles is 30 ⁇ m or less, and the proportion of the volume of resin powder particles having a particle diameter of 70 ⁇ m or more to the total volume of resin powder particles in the resin composition for substrates is 15% or less. And more preferably, the average particle diameter of the resin powder particles is 20 ⁇ m or less, and the proportion of the volume of resin powder particles having a particle diameter of 70 ⁇ m or more to the total volume of resin powder particles in the resin composition for substrates is 15% or less.
  • the resin powder particles having a halogen content of 3% by mass or less are not particularly limited, but from the viewpoint of improving the heat resistance of the resulting substrate, they are preferably particles of a cyclic olefin resin, and more preferably particles of a crystalline cyclic olefin resin.
  • cyclic olefin resin refers to a polymer having an alicyclic structure in the molecule, and is obtained by polymerizing a cyclic olefin monomer, or a hydrogenated product thereof.
  • crystalline cyclic olefin resin refers to a cyclic olefin resin whose melting point can be observed by a differential scanning calorimeter (DSC).
  • Cyclic olefin resins include, for example, ring-opening polymers of cyclic olefin monomers (hereinafter also referred to as “polymer ( ⁇ )”) and their hydrogenated products, as well as addition polymers using at least one cyclic olefin monomer (hereinafter also referred to as “polymer ( ⁇ )”) and their hydrogenated products. Cyclic olefin resins can be used alone or in combination of two or more types.
  • the hydrogenation rate of the hydrogenated product is preferably 95% or more. If the hydrogenation rate is 95% or more, the resin composition for substrates has excellent resistance to heat yellowing and heat deterioration.
  • the "hydrogenation rate” refers to the hydrogenation rate with respect to all carbon-carbon unsaturated bonds contained in the hydrogenated polymer (including double bonds in the aromatic rings, when the polymer has an aromatic ring), and can be measured by a nuclear magnetic resonance (NMR) method.
  • NMR nuclear magnetic resonance
  • the cyclic olefin monomer used in the production of the polymer ( ⁇ ) and its hydrogenated product is a compound having a ring structure formed by carbon atoms and having a carbon-carbon double bond in the ring. Examples of such compounds include norbornene-based monomers.
  • a monocyclic olefin can also be used as the cyclic olefin monomer.
  • the norbornene-based monomer is a monomer that contains a norbornene ring.
  • Norbornene monomers include: Bicyclic monomers such as bicyclo[2.2.1]hept-2-ene (trivial name: norbornene), 5-ethylidene-bicyclo[2.2.1]hept-2-ene (trivial name: ethylidenenorbornene) and their derivatives (having a substituent on the ring); tricyclic monomers such as tricyclo[4.3.0.1 2,5 ]deca-3,7-diene (trivial name: dicyclopentadiene) and its derivatives; 7,8-benzotricyclo[4.3.0.1 2,5 ]deca-3-ene (trivial name: methanotetrahydrofluorene, also known as tetracyclo[7.4.0.0 2,7 .1 10,13 ]trideca-2,4,6,11-tetraene) and its derivatives, tetracycl
  • These monomers may have a substituent at any position.
  • substituents include alkyl groups such as methyl and ethyl groups; alkenyl groups such as vinyl groups; alkylidene groups such as ethylidene and propan-2-ylidene groups; aryl groups such as phenyl groups; hydroxy groups; acid anhydride groups; carboxyl groups; alkoxycarbonyl groups such as methoxycarbonyl groups; and the like.
  • monocyclic olefins examples include cyclic monoolefins such as cyclobutene, cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, cycloheptene, and cyclooctene; and cyclic diolefins such as cyclohexadiene, methylcyclohexadiene, cyclooctadiene, methylcyclooctadiene, and phenylcyclooctadiene.
  • cyclic monoolefins such as cyclobutene, cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, cycloheptene, and cyclooctene
  • cyclic diolefins such as cyclohexadiene, methylcyclohexadiene, cyclooctadiene, methylcyclo
  • cyclic olefin monomers can be used alone or in combination of two or more.
  • the polymer ( ⁇ ) may be a block copolymer or a random copolymer.
  • the polymer ( ⁇ ) can be produced according to a known method using a metathesis polymerization catalyst.
  • the metathesis polymerization catalyst is not particularly limited, and known catalysts can be used.
  • the metathesis polymerization catalyst include a catalyst system consisting of a halide, nitrate, or acetylacetone compound of a metal selected from ruthenium, rhodium, palladium, osmium, iridium, platinum, etc., and a reducing agent; a catalyst system consisting of a halide or acetylacetone compound of a metal selected from titanium, vanadium, zirconium, tungsten, and molybdenum, and an organoaluminum compound as a co-catalyst; a Schrock-type or Grubbs-type living ring-opening metathesis polymerization catalyst (JP Patent Publication 7-179575, J.
  • the amount of metathesis polymerization catalyst used may be appropriately selected depending on the polymerization conditions, etc., but is usually 0.000001 to 0.1 moles, preferably 0.00001 to 0.01 moles, per mole of cyclic olefin monomer.
  • a linear ⁇ -olefin having 4 to 40 carbon atoms such as 1-butene, 1-hexene, or 1-decene
  • the amount of the linear ⁇ -olefin added is usually 0.01 to 0.50 mol, preferably 0.03 to 0.30 mol, and more preferably 0.05 to 0.15 mol, per mol of the cyclic olefin monomer.
  • the ring-opening polymerization of the cyclic olefin monomer can be carried out in an organic solvent.
  • the organic solvent is not particularly limited as long as it is inactive in the polymerization reaction.
  • examples of the organic solvent include alkanes such as pentane, hexane, heptane, octane, nonane, and decane; cycloalkanes such as cyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, cycloheptane, cyclooctane, decalin, norbornane, methylnorbornane, and ethylnorbornane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and cumen
  • the polymerization temperature is not particularly limited, but is usually -50 to 250°C, preferably -30 to 200°C, and more preferably -20 to 150°C.
  • the polymerization time is appropriately selected depending on the polymerization conditions, but is usually 30 minutes to 20 hours, and preferably 1 to 10 hours.
  • the polymer ( ⁇ ) obtained by the above method can be subjected to a hydrogenation reaction to obtain a hydrogenated product of the polymer ( ⁇ ).
  • the hydrogenation reaction of the polymer ( ⁇ ) can be carried out in a conventional manner by contacting the polymer ( ⁇ ) with hydrogen in the presence of a hydrogenation catalyst.
  • the hydrogenation catalyst may be a homogeneous or heterogeneous catalyst.
  • Homogeneous catalysts are easily dispersed in the hydrogenation reaction solution, so that the amount of catalyst added can be reduced.
  • homogeneous catalysts since they have sufficient activity even without high temperature and high pressure, decomposition and gelation of the polymer ( ⁇ ) and its hydrogenated product are unlikely to occur. For this reason, it is preferable to use homogeneous catalysts from the viewpoints of cost and product quality.
  • heterogeneous catalysts exhibit particularly excellent activity under high temperature and pressure conditions, and therefore can hydrogenate the polymer ( ⁇ ) in a short period of time.
  • Homogeneous catalysts include Wilkinson's complex [chlorotris(triphenylphosphine)rhodium(I)], dichlorobis(triphenylphosphine)palladium, chlorohydridocarbonyltris(triphenylphosphine)ruthenium, bis(tricyclohexylphosphine)benzylidineruthenium(IV) dichloride; catalysts consisting of combinations of transition metal compounds and alkyl metal compounds, such as combinations of cobalt acetate/triethylaluminum, nickel acetylacetonate/triisobutylaluminum, titanocene dichloride/n-butyllithium, zirconocene dichloride/sec-butyllithium, tetrabutoxytitanate/dimethylmagnesium, etc.; and the like.
  • Heterogeneous catalysts include those in which metals such as Ni, Pd, Pt, Ru, and Rh are supported on a carrier.
  • metals such as Ni, Pd, Pt, Ru, and Rh
  • an adsorbent such as alumina or diatomaceous earth as the carrier.
  • the hydrogenation reaction is usually carried out in an organic solvent.
  • organic solvent there are no particular limitations on the organic solvent, so long as it is inert to the hydrogenation reaction. Specific examples include the same organic solvents as those mentioned above as used in the ring-opening polymerization of cyclic olefin monomers.
  • the solvent used in the ring-opening polymerization reaction is usually also suitable as a solvent for the hydrogenation reaction, so that after adding a hydrogenation catalyst to the ring-opening polymerization reaction liquid, it can be subjected to the hydrogenation reaction.
  • the hydrogenation rate varies depending on the type of hydrogenation catalyst and the reaction temperature. Therefore, if the polymer ( ⁇ ) has aromatic rings, the remaining rate of aromatic rings can be controlled by selecting the hydrogenation catalyst and adjusting the reaction temperature. For example, in order to leave a certain amount of unsaturated bonds in the aromatic rings, it is sufficient to control the reaction temperature, reduce the hydrogen pressure, shorten the reaction time, etc.
  • Examples of the cyclic olefin monomer used in the synthesis of the polymer ( ⁇ ) and its hydrogenated product include the same cyclic olefin monomers as those used in the synthesis of the polymer ( ⁇ ). In the synthesis of the polymer ( ⁇ ), other monomers copolymerizable with the cyclic olefin monomer may be used as the monomer.
  • Examples of other monomers include ⁇ -olefins having 2 to 20 carbon atoms, such as ethylene, propylene, 1-butene, 1-pentene, and 1-hexene, aromatic ring vinyl compounds, such as styrene and ⁇ -methylstyrene, and non-conjugated dienes, such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, and 1,7-octadiene.
  • ⁇ -olefins are preferred, and ethylene is more preferred.
  • the other monomers may be used alone or in combination of two or more.
  • the ratio of the amounts of the cyclic olefin monomer to the other monomers used is usually 30:70 to 99:1, preferably 50:50 to 97:3, and more preferably 70:30 to 95:5, by weight (cyclic olefin monomer: other monomer).
  • the polymer ( ⁇ ) may be a block copolymer or a random copolymer.
  • the polymer ( ⁇ ) can be synthesized according to a known method using an addition polymerization catalyst.
  • the addition polymerization catalyst include vanadium-based catalysts formed from vanadium compounds and organoaluminum compounds, titanium-based catalysts formed from titanium compounds and organoaluminum compounds, and zirconium-based catalysts formed from zirconium complexes and aluminoxanes. These addition polymerization catalysts can be used alone or in combination of two or more.
  • the amount of the addition polymerization catalyst used may be appropriately selected depending on the polymerization conditions, etc., but is usually 0.000001 to 0.1 mol, preferably 0.00001 to 0.01 mol, per 1 mol of the monomer.
  • the addition polymerization of cyclic olefin monomers is usually carried out in an organic solvent.
  • organic solvent there are no particular limitations on the organic solvent, so long as it is inert to the polymerization reaction. Specific examples include the same organic solvents as those listed above for use in the ring-opening polymerization of cyclic olefin monomers.
  • the polymerization temperature is usually -50 to 250°C, preferably -30 to 200°C, and more preferably -20 to 150°C.
  • the polymerization time is selected appropriately depending on the polymerization conditions, but is usually 30 minutes to 20 hours, and preferably 1 to 10 hours.
  • the polymer ( ⁇ ) obtained by the above method can be subjected to a hydrogenation reaction to obtain a hydrogenated product of the polymer ( ⁇ ).
  • the hydrogenation reaction of the polymer ( ⁇ ) can be carried out by the same method as that described above for hydrogenating the polymer ( ⁇ ).
  • a crystalline hydrogenated cyclic olefin polymer (hereinafter, also referred to as "polymer ( ⁇ )") is preferable.
  • the polymer ( ⁇ ) is a hydrogenated product of a polymer obtained by polymerizing a cyclic olefin monomer, and has crystallinity. That is, the polymer ( ⁇ ) is a polymer whose melting point can be observed by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the melting point of the polymer ( ⁇ ) is preferably 200°C or higher, more preferably 230 to 290°C.
  • the polymer ( ⁇ ) may be a ring-opening polymer or an addition polymer, but a ring-opening polymer (i.e., a hydrogenated product of the polymer ( ⁇ ) that has crystallinity) is preferred because it has better crystallinity.
  • a ring-opening polymer i.e., a hydrogenated product of the polymer ( ⁇ ) that has crystallinity
  • the cyclic olefin monomer used in the production of polymer ( ⁇ ) is not particularly limited, and those previously mentioned as the cyclic olefin monomers used in the production of polymer ( ⁇ ) can be used. Among them, it is preferable to use dicyclopentadiene as at least one of the cyclic olefin monomers, since it gives a polymer ( ⁇ ) with better crystallinity.
  • the content of dicyclopentadiene-derived repeating units in all repeating units of polymer ( ⁇ ) is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 90% by mass or more, and even more preferably 100% by mass.
  • Some cyclic olefin monomers have stereoisomers, endo and exo, and both can be used as monomers when producing polymer ( ⁇ ).
  • One of the isomers may be used alone, or an isomer mixture in which the endo and exo are present in any ratio may be used. Since polymer ( ⁇ ) has better crystallinity, it is preferable to increase the ratio of one of the stereoisomers.
  • the ratio of the endo isomer is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more, based on the total isomer mixture being 100% by mass.
  • the ratio of the exo isomer is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more, based on the total isomer mixture being 100% by mass. Since synthesis is easier, it is preferable that the ratio of the endo isomer is high in the isomer mixture.
  • the degree of syndiotactic stereoregularity (ratio of racemo-dyad) increases, the crystallinity tends to become higher.
  • the degree of stereoregularity of the polymer ( ⁇ ) is not particularly limited, but the ratio of racemo-dyads in the repeating units is preferably 60% or more, more preferably 70% or more, and particularly preferably 88% or more.
  • the ratio of the racemo dyad can be determined by measuring with 13 C-NMR spectrum analysis. Specifically, 13 C-NMR measurement is performed by applying the inverse-gated decoupling method at 200 ° C. using a mixed solvent of 1,3,5-trichlorobenzene-d3/1,2-dichlorobenzene-d4 (volume ratio 2:1) as the solvent, and the ratio of the racemo dyad can be determined from the intensity ratio of the signal at 43.35 ppm derived from the meso dyad and the signal at 43.43 ppm derived from the racemo dyad, with the peak at 127.5 ppm of 1,2-dichlorobenzene-d4 as the reference shift.
  • a polymer ( ⁇ ) having high syndiotactic stereoregularity can be obtained, for example, by ring-opening polymerization of a cyclic olefin monomer to obtain a polymer having high syndiotactic stereoregularity, and then subjecting the polymer to a hydrogenation reaction.
  • a polymer ( ⁇ ) having high syndiotactic stereoregularity can be synthesized according to the methods described in WO2012/033076, JP2014-118475A, and the like.
  • the weight average molecular weight (Mw) of the above-mentioned cyclic olefin resin is not particularly limited, but is preferably 10,000 or more and 100,000 or less, and the number average molecular weight (Mn) is preferably 3,000 or more and 800,000 or less.
  • the method for producing the resin powder particles having a halogen content of 3 mass % or less contained in the resin composition for substrates of the present invention is not particularly limited, and for example, the following methods 1) to 3) can be adopted.
  • a method for producing resin powder particles comprising the step of pulverizing a hydrogenated crystalline cyclic olefin ring-opening polymer in a solution to obtain resin powder particles of a hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3 mass% or less.
  • a method for producing resin powder particles comprising dry-pulverizing a cyclic olefin resin having a halogen content of 3% by mass or less to obtain resin powder particles of the cyclic olefin resin having a halogen content of 3% by mass or less. Methods 1) to 3) will be described in detail below.
  • Method 1 a solution containing a cyclic olefin ring-opening polymer at a solid content concentration of 10% by mass or more is subjected to a hydrogenation reaction, thereby hydrogenating the cyclic olefin ring-opening polymer in the solution to obtain resin powder particles of a hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3% by mass or less.
  • the polymer ( ⁇ ) described above can be used as the cyclic olefin ring-opening polymer.
  • a solution containing the cyclic olefin ring-opening polymer at a solid content concentration of 10 mass% or more for example, a solution containing the polymer ( ⁇ ), an organic solvent, a polymerization catalyst, etc. can be used.
  • the organic solvent and the polymerization catalyst the organic solvent and the polymerization catalyst used in the hydrogenation reaction of the polymer ( ⁇ ) described above can be used.
  • the method for hydrogenating the polymer ( ⁇ ) can be the same as the method described above.
  • the resin powder particles of the hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3% by mass or less obtained by the above method 1) usually have an average particle size of 10 ⁇ m or less. Therefore, by the above method 1), it is possible to produce resin powder particles that can be suitably used in the resin composition for substrates of the present invention.
  • the reason why the resin powder particles of the hydrogenated crystalline cyclic olefin ring-opening polymer obtained by the above method 1) have a small particle size is not clear, but when a solution containing a cyclic olefin ring-opening polymer is subjected to a hydrogenation reaction, a hydrogenated crystalline cyclic olefin ring-opening polymer is generated in the solution.
  • the solid concentration of the ring-opening polymer of the cyclic olefin in the solution is 10% by mass or more, the solubility of the hydrogenated crystalline cyclic olefin ring-opening polymer in the solution decreases, and the hydrogenated crystalline cyclic olefin ring-opening polymer precipitates more quickly.
  • a hydrogenated crystalline cyclic olefin ring-opening polymer is pulverized in a solution to obtain resin powder particles of a hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3 mass % or less.
  • the crystalline cyclic olefin ring-opening polymer hydrogenation product for example, the polymer ( ⁇ ) described above can be used.
  • the method for pulverizing the crystalline cyclic olefin ring-opening polymer hydrogenation product in the solution is not particularly limited, and a known wet pulverization method can be used. From the viewpoint of efficiently producing resin powder particles that can be suitably used in the resin composition for substrates of the present invention, in the above method 2), it is preferable to spray a solution containing the crystalline cyclic olefin ring-opening polymer hydrogenation product at high pressure and pulverize the crystalline cyclic olefin ring-opening polymer hydrogenation products by colliding them with each other.
  • the particles of the crystalline cyclic olefin ring-opening polymer hydrogenation product obtained by such pulverization are usually resin powder particles having an average particle size of 10 ⁇ m or less. Therefore, they can be suitably used as resin powder particles for the resin composition for substrates of the present invention.
  • the spray pressure is preferably 100 MPa or more from the viewpoint of uniforming the particle size of the obtained resin powder particles.
  • the above methods 1) and 2) may be carried out alone or in combination.
  • resin powder particles having a smaller average particle size can be efficiently produced.
  • the resin having a halogen content of 3% by mass or less used in the method 3) is not particularly limited, and may be, for example, the cyclic olefin resin described above, polypropylene, etc.
  • the dry grinding method is not particularly limited, and any known dry grinding method may be used.
  • the resin composition for substrates of the present invention may further contain components other than the above-mentioned resin powder particles.
  • other components include known additives such as antioxidants, ultraviolet absorbers, light stabilizers, near-infrared absorbers, colorants, plasticizers, flame retardants, and antistatic agents.
  • antioxidants such as antioxidants, ultraviolet absorbers, light stabilizers, near-infrared absorbers, colorants, plasticizers, flame retardants, and antistatic agents.
  • the content of other components in the resin composition for substrates can be appropriately determined depending on the application of the composition for substrates.
  • the method for preparing the resin composition for substrates of the present invention is not particularly limited, and for example, it can be prepared by mixing resin powder particles having a halogen content of 3 mass% or less with other components by a known method.
  • the content of resin powder particles in the resin composition for substrates is preferably 5% by mass or more, more preferably 15% by mass or more, and even more preferably 30% by mass or more, based on the total amount of the resin composition for substrates. If the content of resin powder is equal to or more than the lower limit, the resin composition for substrates of the present invention can be used more suitably as a material for manufacturing substrates for various applications.
  • the substrate produced using the resin composition for substrates of the present invention usually has a dielectric constant of 2.5 or less at a frequency of 10 GHz. Therefore, the substrate produced using the resin composition for substrates of the present invention can be used for various applications, and is particularly suitable for use as a high-frequency substrate.
  • the method for manufacturing a substrate using the resin composition for substrates of the present invention is not particularly limited, and for example, a substrate can be manufactured by pressing the resin composition for substrates of the present invention.
  • the pressing method is not particularly limited, and pressing can be performed by a known method.
  • the pressing pressure is not particularly limited, and can be adjusted according to the thickness of the substrate to be obtained.
  • ⁇ Weight average molecular weight and number average molecular weight> The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymers obtained in Examples 1, 3, 4, and 5 were determined as standard polystyrene equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent. The GPC was measured at 40° C.
  • the measurement apparatus used was "System HLC-8320" manufactured by Tosoh Corporation, and the measurement column used was "H-type column” manufactured by Tosoh Corporation.
  • ⁇ Glass transition temperature and melting point> The sample was heated in a differential scanning calorimeter to completely melt it, then cooled to room temperature at a temperature drop rate of 10°C/min, and then differential scanning calorimetry was performed at a temperature rise rate of 10°C/min up to 350°C. From the peak at this time, the glass transition temperature (Tg) and melting point were measured.
  • the differential scanning calorimeter used was a "High Sensitivity Differential Scanning Calorimeter EXSTARX-DSC7000" manufactured by Hitachi High-Tech Science Corporation.
  • calibration was performed using indium, tin, and lead as standard substances for temperature and heat.
  • ⁇ Halogen content> The sample was placed in an aluminum ring, compressed with a press, and covered with a polypropylene (PP) film, and an X-ray fluorescence (XRF) analyzer (Rigaku Corporation, "Primus IV”) was used to perform composition analysis between elements from carbon (C) to gallium (Ga). From the results of the XRF analysis, the ratio of the total mass of fluorine (F) and chlorine (Cl) to the total mass of elements from carbon (C) to gallium (Ga) (C to Ga) [(F+Cl)/(C to Ga) x 100] was calculated, and the obtained value was taken as the halogen content (mass%).
  • XRF X-ray fluorescence
  • ⁇ Average particle size and proportion of resin powder particles with a particle size of 70 ⁇ m or more> The sample was dispersed in a dispersion medium (cyclohexane, isopropyl alcohol, or 3M's "Novec7300"), and the volume-weighted average diameter and particle size distribution of the sample were measured using a laser diffraction particle size distribution measuring device (Shimadzu Corporation's "SALD-3100"). The volume-weighted average diameter obtained was taken as the average particle diameter.
  • the proportion of samples with a volume-weighted diameter exceeding 70 ⁇ m to the entire sample was taken as the proportion of the volume of resin powder particles with a particle diameter of 70 ⁇ m or more to the total volume of resin powder particles in the resin composition for substrates.
  • ⁇ Dielectric constant> The sample was pressed at a pressure of 20 MPa or more to produce a sheet. The pressure during pressing was set to be equal to or higher than the glass transition temperature (Tg) of the sample if the sample was amorphous, or equal to or higher than the melting point of the sample if the sample was crystalline. The sheet was then cut to obtain test pieces, which were used to measure the dielectric constant at a frequency of 10 GHz by a cylindrical cavity resonator method using a network analyzer ("N5230A" manufactured by Keysight Technologies, Inc.).
  • Tg glass transition temperature
  • Example 1 Into a glass pressure-resistant reaction vessel that had been thoroughly dried and then substituted with nitrogen, 143 parts of a 70% cyclohexane solution of dicyclopentadiene (endo isomer content of 99% or more) (100 parts as the amount of dicyclopentadiene), 5.1 parts of 1-hexene, and 514 parts of cyclohexane were added, followed by adding 0.37 parts of a 19% concentration n-hexane solution of diethylaluminum ethoxide and stirring.
  • a 70% cyclohexane solution of dicyclopentadiene endo isomer content of 99% or more
  • the solution containing the obtained dicyclopentadiene ring-opening polymer was transferred to a reactor (manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a stirrer and a temperature-controlled jacket, and then 167 parts of cyclohexane and 0.1 parts of chlorohydridocarbonyltris(triphenylphosphine)ruthenium were added to prepare a solution containing dicyclopentadiene ring-opening polymer at a solid content concentration of 12%. Next, while stirring the entire volume at a rotation speed of 64 rpm, a hydrogenation reaction was carried out at a hydrogen pressure of 4 MPa and a temperature of 180° C.
  • the obtained hydrogenated dicyclopentadiene ring-opening polymer particles were used as a sample, and differential scanning calorimetry was performed, and it was found that the hydrogenated dicyclopentadiene ring-opening polymer particles had crystallinity.
  • the halogen content, average particle size, proportion of resin powder particles with a particle size of 70 ⁇ m or more, and dielectric constant were also determined using the sample. The results are shown in Table 1.
  • Example 2 The slurry to which the antioxidant had been added in Example 1 was passed 30 times, calculated from the circulation time, through a ball chamber having a diameter of ⁇ 14 mm using a wet microparticulation device (manufactured by Sugino Machine, "HJP-25005"). The spray pressure was set to 200 MPa. The solvent was removed from the resulting slurry using a freeze dryer (manufactured by Nippon Techno Service, "FD0480-1601”) to obtain particles of a hydrogenated dicyclopentadiene ring-opening polymer.
  • a wet microparticulation device manufactured by Sugino Machine, "HJP-25005"
  • the spray pressure was set to 200 MPa.
  • the solvent was removed from the resulting slurry using a freeze dryer (manufactured by Nippon Techno Service, "FD0480-1601") to obtain particles of a hydrogenated dicyclopentadiene ring-opening polymer.
  • the obtained particles of hydrogenated dicyclopentadiene ring-opening polymer were used as a sample for differential scanning calorimetry, and it was found that the particles of hydrogenated dicyclopentadiene ring-opening polymer had crystallinity.
  • the same measurements as in Example 1 were also carried out using the above sample. The results are shown in Table 1.
  • Example 3 After thorough drying, a pressure-resistant glass reactor was substituted with nitrogen and 2.0 parts of a monomer mixture consisting of 25% tetracyclododecene, 70% methanotetrahydrofluorene and 25% norbornene (1% relative to the total amount of monomers used in polymerization), 1.2 parts of 1-hexene, 0.42 parts of diisopropyl ether, 0.11 parts of isobutyl alcohol, and 785 parts of cyclohexane were added, followed by adding 1.35 parts of a cyclohexane solution of triisobutylaluminum with a concentration of 20% and stirring.
  • a monomer mixture consisting of 25% tetracyclododecene, 70% methanotetrahydrofluorene and 25% norbornene (1% relative to the total amount of monomers used in polymerization)
  • the weight average molecular weight (Mw) of the ring-opening polymer (cyclic olefin ring-opening polymer) of the monomer mixture contained in the obtained polymerization reaction solution was 19,000, and the number average molecular weight (Mn) was 10,700.
  • 300 parts of the obtained polymerization reaction solution was transferred to an autoclave equipped with a stirrer, and 32 parts of cyclohexane and 3.8 parts of a diatomaceous earth supported nickel catalyst (manufactured by JGC Chemical Industries, Ltd., "T8400RL", nickel support rate 58%) were added. After replacing the atmosphere in the autoclave with hydrogen, the reaction was carried out at 190° C. under a hydrogen pressure of 4.5 MPa for 6 hours.
  • the mixture was filtered at a pressure of 0.25 MPa using a pressure filter (manufactured by Ishikawajima-Harima Heavy Industries, Ltd., "Funda Filter”) with diatomaceous earth (manufactured by Showa Chemical Industry Co., Ltd., "Radiolite (registered trademark) #500”) as a filter bed to obtain a colorless and transparent solution containing a hydrogenated cyclic olefin ring-opening polymer.
  • the hydrogenation rate of the hydrogenated cyclic olefin ring-opening polymer was 99.7%.
  • the obtained filtrate was then placed in a cylindrical concentrating dryer (Hitachi, Ltd.), and the solvent cyclohexane and other volatile components were removed under conditions of a temperature of 290°C and a pressure of 1 kPa or less, and the filtrate was extruded in a molten state into a strand shape from a die directly connected to the concentrator, cooled with water, and cut with a pelletizer (Nagata Manufacturing Co., Ltd., "OSP-2”) to obtain pellets.
  • a pelletizer Nagata Manufacturing Co., Ltd., "OSP-2
  • the obtained pellets were put into a rotor speed mill ("P-14" manufactured by Fritsch) together with liquid nitrogen and pulverized (dry pulverization) at a rotation speed of 10,000 rpm and a sieve ring mesh condition of 0.08 mm to 6.0 mm to obtain particles of a hydrogenated cyclic olefin ring-opening polymer.
  • the obtained particles of hydrogenated cyclic olefin ring-opening polymer were used as a sample for differential scanning calorimetry, and it was found that the particles of hydrogenated cyclic olefin ring-opening polymer were amorphous.
  • the same measurements as in Example 1 were performed using the above sample. The results are shown in Table 1.
  • Example 4 After thorough drying, 100 parts of tetracyclododecene, 0.42 parts of 1-hexene, and 388 parts of cyclohexane were added to a glass pressure-resistant reaction vessel substituted with nitrogen, followed by adding 0.40 parts of a 20% concentration triisobutylaluminum cyclohexane solution, 0.16 parts of n-dibutyl ether, and 0.31 parts of a 10% concentration isobutyl alcohol cyclohexane solution, and stirring. Next, 9.70 parts of a 0.65% cyclohexane solution of tungsten hexachloride was added, and the mixture was heated to 50°C to initiate a ring-opening polymerization reaction.
  • the weight average molecular weight (Mw) of the tetracyclododecene ring-opening polymer (cyclic olefin ring-opening polymer) contained in the obtained polymerization reaction solution was 36,200, and the number average molecular weight (Mn) was 23,200.
  • Mw weight average molecular weight of the tetracyclododecene ring-opening polymer contained in the obtained polymerization reaction solution was 36,200, and the number average molecular weight (Mn) was 23,200.
  • diatomaceous earth (Radiolite #300" manufactured by Showa Chemical Industry Co., Ltd.) was added as a filter aid.
  • This suspension was filtered using a leaf filter ("CFR2" manufactured by IHI Corporation) to obtain a solution containing a tetracyclododecene ring-opening polymer.
  • CFR2 leaf filter
  • the solution containing the obtained tetracyclododecene ring-opening polymer was transferred to a reactor (manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a stirrer and a temperature-controlled jacket, and then 600 parts of cyclohexane and 0.1 parts of chlorohydridocarbonyltris(triphenylphosphine)ruthenium were added to obtain a solution containing tetracyclododecene ring-opening polymer at a solid content concentration of 12%.
  • the obtained particles of hydrogenated tetracyclododecene ring-opening polymer were used as a sample for differential scanning calorimetry, and it was found that the particles of hydrogenated tetracyclododecene ring-opening polymer had crystallinity.
  • the same measurements as in Example 1 were also carried out using the above sample. The results are shown in Table 1.
  • Example 5 Into a polymerization reactor whose inside had been dried and purged with nitrogen, 960 parts of toluene, 220 parts of tetracyclododecene, and 0.166 parts of 1-hexene were charged, and the solvent temperature was raised to 40° C. while stirring at a rotation speed of 300 to 350 rpm. On the other hand, 23.5 parts of toluene, 0.044 parts of rac-ethylenebis(1-indenyl)zirconium dichloride, and 6.22 parts of a 9.0% toluene solution of methylaluminoxane (manufactured by Tosoh Finechem Corporation, "TMAO-200 series”) were mixed in a glass container to obtain a catalyst solution.
  • TMAO-200 series a 9.0% toluene solution of methylaluminoxane
  • the catalyst solution was added to the reactor, and immediately thereafter, ethylene gas at 0.08 MPa was introduced into the liquid phase to initiate polymerization.
  • the position of the ethylene outlet was such that the ratio (B)/(A) of the distance (A) between the bottom of the reactor and the liquid level and the distance (B) between the ethylene outlet and the liquid level was 0.60.
  • Ethylene gas was automatically supplied when ethylene gas was consumed, so that the pressure of ethylene gas was kept constant. After 30 minutes, the introduction of ethylene gas was stopped, the pressure was released, and then 5 parts of methanol was added to terminate the polymerization reaction.
  • the resulting reaction solution was filtered through diatomaceous earth ("Radiolite (registered trademark) #800" manufactured by Showa Chemical Industry Co., Ltd.) and poured into isopropanol containing 0.05% hydrochloric acid to precipitate a polymer.
  • the precipitated polymer was separated, washed, and dried under reduced pressure at 100°C for 15 hours to obtain an ethylene-tetracyclododecene copolymer.
  • the resulting ethylene-tetracyclododecene copolymer had a weight average molecular weight (Mw) of 56,000 and a number average molecular weight (Mn) of 22,000.
  • the material obtained after removing the solvent was finely crushed and placed in a rotor speed mill (manufactured by Fritsch, model number "P-14") together with liquid nitrogen, and pulverized (dry pulverization) at a rotation speed of 10,000 rpm and a sieve ring mesh condition of 0.08 mm to 6.0 mm was performed to obtain particles of an ethylene-tetracyclododecene copolymer.
  • the obtained ethylene-tetracyclododecene copolymer particles were used as samples and measurements were carried out in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 Pellets of polypropylene (Prime Polypro) were placed in a rotor speed mill (Fritsch P-14) together with liquid nitrogen. The rotation speed was set to 10,000 rpm, and the pellets were pulverized under a sieve ring mesh condition of 0.08 to 6.0 mm to obtain polypropylene particles. The obtained polypropylene particles were used as samples and measurements were carried out in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 A commercially available polytetrafluoroethylene powder (manufactured by DuPont-Mitsui Fluorochemicals, "6-J") was used as a sample and measurements were carried out in the same manner as in Example 1. The results are shown in Table 1.
  • Crystalline DCPD refers to a crystalline hydrogenated dicyclopentadiene ring-opening polymer
  • Amorphous COP refers to a hydrogenated amorphous cyclic olefin ring-opening polymer
  • Crystalline TCD refers to a crystalline hydrogenated tetracyclododecene ring-opening polymer
  • PP indicates polypropylene
  • PTFE refers to polytetrafluoroethylene
  • PFA refers to perfluoroalkoxyalkane.
  • the particles obtained in Examples 1 to 6 are resin powder particles with a halogen content of 3% by mass or less and a low dielectric constant, and therefore by using a resin composition for substrates containing these particles, it is possible to reduce the environmental load and produce substrates with a reduced dielectric constant.
  • the present invention it is possible to provide a resin composition for substrates which can reduce the environmental load and can be used as a material for producing substrates having a reduced dielectric constant. Furthermore, according to the present invention, it is possible to provide a method for producing resin powder particles that can be suitably used in the resin composition for substrates of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a circuit board resin composition that can reduce environmental load and that can be used as a material for manufacturing circuit boards in which the dielectric constant is reduced. The present invention pertains to a circuit board resin composition containing resin powder particles having a halogen content of 3 mass% or less.

Description

基板用樹脂組成物及び樹脂パウダー粒子の製造方法Resin composition for substrates and method for producing resin powder particles
 本発明は、基板用樹脂組成物及び樹脂パウダー粒子の製造方法に関し、特に、基板用樹脂組成物及び当該基板用樹脂組成物に用いられる樹脂パウダー粒子の製造方法に関するものである。 The present invention relates to a resin composition for circuit boards and a method for producing resin powder particles, and in particular to a resin composition for circuit boards and a method for producing resin powder particles used in the resin composition for circuit boards.
 電子機器の高速化、高機能化に伴い、各種電子機器に用いる基板には、低誘電率化、低誘電正接化などが求められている。このような基板に用いられる材料として、例えば特許文献1には、フッ素系樹脂のマイクロパウダーと、所定の化合物と、ポリイミド前駆体溶液とを含むフッ素系樹脂含有ポリイミド前駆体組成物が提案されている。特許文献1によれば、上記フッ素系樹脂含有ポリイミド前駆体組成物を用いることで、電気特性(低誘電率、低誘電正接)、物理特性等を改善することができる。 As electronic devices become faster and more functional, substrates used in various electronic devices are required to have low dielectric constants and low dielectric loss tangents. For example, Patent Document 1 proposes a fluororesin-containing polyimide precursor composition containing a fluororesin micropowder, a specific compound, and a polyimide precursor solution as a material for such substrates. According to Patent Document 1, the use of the fluororesin-containing polyimide precursor composition can improve electrical properties (low dielectric constant, low dielectric loss tangent), physical properties, etc.
特開2017-008209号公報JP 2017-008209 A
 ところで、近年では、ペルフルオロアルキル物質及びポリフルオロアルキル化合物(PFAS)に対する規制が世界的に強化されている。このような中、特許文献1に開示されているフッ素系樹脂含有ポリイミド前駆体組成物は、フッ素系樹脂を含有しているため好ましくない。そのため、環境負荷を低減することができる基板の材料の開発が求められている。 However, in recent years, regulations on perfluoroalkyl substances and polyfluoroalkyl compounds (PFAS) have been strengthened worldwide. In this context, the fluorine-based resin-containing polyimide precursor composition disclosed in Patent Document 1 is not preferred because it contains a fluorine-based resin. For this reason, there is a demand for the development of substrate materials that can reduce the environmental burden.
 そこで、本発明は、環境負荷を低減することができ、かつ、誘電率が低減された基板を製造するための材料として用い得る基板用樹脂組成物と、当該基板用樹脂組成物に用いられる樹脂パウダー粒子の製造方法を提供することを目的とする。 The present invention aims to provide a resin composition for substrates that can reduce the environmental impact and can be used as a material for producing substrates with reduced dielectric constants, and a method for producing resin powder particles used in the resin composition for substrates.
 本発明者は、上記課題を達成するために鋭意検討を行った。そして、本発明者は、ハロゲン含有量が3質量%以下である樹脂パウダー粒子を含む組成物であれば、環境負荷を低減することができ、かつ、誘電率が低減された基板を製造するための材料として用いることができることを新たに見出し、本発明を完成させた。 The present inventors have conducted extensive research to achieve the above object. The inventors have newly discovered that a composition containing resin powder particles with a halogen content of 3% by mass or less can reduce the environmental impact and can be used as a material for manufacturing substrates with a reduced dielectric constant, and have thus completed the present invention.
 すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、[1]本発明の基板用樹脂組成物は、ハロゲン含有量が3質量%以下の樹脂パウダー粒子を含有する基板用樹脂組成物である。
 上記基板用樹脂組成物であれば、環境負荷を低減することができ、かつ、誘電率が低減された基板を製造するための材料として用いることができる。
 なお、本発明において、「ハロゲン含有量」は、実施例に記載の方法を用いて測定することができる。
That is, the present invention aims to advantageously solve the above-mentioned problems, and [1] the resin composition for substrates of the present invention is a resin composition for substrates containing resin powder particles having a halogen content of 3 mass% or less.
The above-mentioned resin composition for substrates can reduce the environmental load and can be used as a material for producing substrates having a reduced dielectric constant.
In the present invention, the "halogen content" can be measured by the method described in the Examples.
 [2]上記[1]の基板用樹脂組成物において、前記樹脂パウダー粒子は平均粒子径が30μm以下であり、かつ、前記基板用樹脂組成物中の前記樹脂パウダー粒子の全体積に対する、粒子径が70μm以上の樹脂パウダー粒子の体積が占める割合が15%以下であることが好ましい。
 上記基板用樹脂組成物を用いれば、誘電率が更に低減した基板を製造することができる。
[2] In the resin composition for substrates of [1] above, it is preferable that the resin powder particles have an average particle diameter of 30 μm or less, and the ratio of the volume of resin powder particles having a particle diameter of 70 μm or more to the total volume of the resin powder particles in the resin composition for substrates is 15% or less.
By using the above-mentioned resin composition for substrates, a substrate having a further reduced dielectric constant can be produced.
 [3]上記[1]の基板用樹脂組成物において、前記樹脂パウダー粒子は平均粒子径が20μm以下であり、かつ、前記基板用樹脂組成物中の前記樹脂パウダー粒子の全体積に対する、粒子径が70μm以上の樹脂パウダー粒子の体積が占める割合が15%以下であることが好ましい。
 上記基板用樹脂組成物を用いれば、誘電率が一層低減した基板を製造することができる。
 なお、本発明において、「平均粒子径」は、体積加重平均直径を意味し、「粒子径」は、体積加重直径を意味する。本発明において「平均粒子径」及び「基板用樹脂組成物中の樹脂パウダー粒子の全体積に対する、粒子径が70μm以上の樹脂パウダー粒子の体積が占める割合」は、実施例に記載の方法により求めることができる。
[3] In the resin composition for substrates of [1] above, it is preferable that the resin powder particles have an average particle diameter of 20 μm or less, and the ratio of the volume of resin powder particles having a particle diameter of 70 μm or more to the total volume of the resin powder particles in the resin composition for substrates is 15% or less.
By using the above-mentioned resin composition for substrates, a substrate having a further reduced dielectric constant can be produced.
In the present invention, the term "average particle size" means a volume-weighted average diameter, and the term "particle size" means a volume-weighted diameter. In the present invention, the "average particle size" and the "proportion of the volume of resin powder particles having a particle size of 70 μm or more to the total volume of resin powder particles in a resin composition for substrates" can be determined by the method described in the Examples.
 [4]上記[1]~[3]のいずれかの基板用樹脂組成物において、前記樹脂パウダー粒子は、環状オレフィン樹脂の粒子であることが好ましい。
 樹脂パウダー粒子が環状オレフィン樹脂の粒子であれば、本発明の基板用樹脂組成物を用いて製造された基板の耐熱性を向上させることができる。
[4] In the resin composition for substrates according to any one of the above [1] to [3], the resin powder particles are preferably particles of a cyclic olefin resin.
When the resin powder particles are particles of a cyclic olefin resin, the heat resistance of a substrate produced using the resin composition for substrates of the present invention can be improved.
 [5]上記[1]~[4]のいずれかの基板用樹脂組成物において、前記樹脂パウダー粒子は、結晶性の環状オレフィン樹脂の粒子であることが好ましい。
 樹脂パウダー粒子が結晶性の環状オレフィン樹脂の粒子であれば、本発明の基板用樹脂組成物を用いて製造された基板の耐熱性を更に向上させることができる。
[5] In the resin composition for substrates according to any one of the above [1] to [4], the resin powder particles are preferably particles of a crystalline cyclic olefin resin.
If the resin powder particles are particles of a crystalline cyclic olefin resin, the heat resistance of the substrate produced using the resin composition for substrates of the present invention can be further improved.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、[6]本発明の樹脂パウダー粒子の製造方法は、環状オレフィン開環重合体を10質量%以上の固形分濃度で含む溶液を水素添加反応に供する工程を経て、ハロゲン含有量が3質量%以下の結晶性環状オレフィン開環重合体水素化物の樹脂パウダー粒子を得る、樹脂パウダー粒子の製造方法である。
 上記樹脂パウダー粒子の製造方法によれば、本発明の基板用樹脂組成物に好適に用い得る樹脂パウダー粒子を製造することができる。
The present invention also aims to solve the above-mentioned problems in an advantageous manner, and [6] the method for producing resin powder particles of the present invention is a method for producing resin powder particles, which comprises subjecting a solution containing a cyclic olefin ring-opening polymer at a solid content concentration of 10 mass% or more to a hydrogenation reaction, to obtain resin powder particles of a hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3 mass% or less.
According to the above-mentioned method for producing resin powder particles, it is possible to produce resin powder particles that can be suitably used in the resin composition for substrates of the present invention.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、[7]本発明の樹脂パウダー粒子の製造方法は、結晶性環状オレフィン開環重合体水素化物を溶液中で粉砕する工程を経て、ハロゲン含有量が3質量%以下の結晶性環状オレフィン開環重合体水素化物の樹脂パウダー粒子を得る、樹脂パウダー粒子の製造方法である。
 上記樹脂パウダー粒子の製造方法によれば、本発明の基板用樹脂組成物に好適に用い得る樹脂パウダー粒子を製造することができる。
The present invention also aims to solve the above-mentioned problems in an advantageous manner, and [7] the method for producing resin powder particles of the present invention is a method for producing resin powder particles, which comprises a step of pulverizing a crystalline cyclic olefin ring-opening polymer hydrogenated product in a solution to obtain resin powder particles of a crystalline cyclic olefin ring-opening polymer hydrogenated product having a halogen content of 3 mass% or less.
According to the above-mentioned method for producing resin powder particles, it is possible to produce resin powder particles that can be suitably used in the resin composition for substrates of the present invention.
 本発明によれば、環境負荷を低減することができ、かつ、誘電率が低減された基板を製造するための材料として用いることができる基板用樹脂組成物を提供することができる。
 また、本発明によれば、本発明の基板用樹脂組成物に用いられる樹脂パウダー粒子の製造方法を提供することができる。
According to the present invention, it is possible to provide a resin composition for substrates which can reduce the environmental load and can be used as a material for producing substrates having a reduced dielectric constant.
Furthermore, according to the present invention, it is possible to provide a method for producing resin powder particles used in the resin composition for substrates of the present invention.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の基板用樹脂組成物は、基板を形成するための材料として用いられるものであり、ハロゲン含有量が3質量%以下の樹脂パウダー粒子を含む。そして、本発明の基板用樹脂組成物を用いて製造された基板は、環境負荷が低減されており、誘電率が低減されているため、各種用途に使用することができ、特に、高周波用基板として好適に用いることができる。本発明の基板用樹脂組成物に含まれる樹脂パウダー粒子は、例えば、本発明の樹脂パウダー粒子の製造方法により製造することができる。
Hereinafter, an embodiment of the present invention will be described in detail.
Here, the resin composition for substrates of the present invention is used as a material for forming a substrate, and contains resin powder particles having a halogen content of 3 mass% or less. The substrate manufactured using the resin composition for substrates of the present invention has a reduced environmental load and a reduced dielectric constant, and therefore can be used for various purposes, and is particularly suitable for use as a high-frequency substrate. The resin powder particles contained in the resin composition for substrates of the present invention can be manufactured, for example, by the manufacturing method of resin powder particles of the present invention.
(基板用樹脂組成物)
 本発明の基板用樹脂組成物は、ハロゲン含有量が3質量%以下である樹脂パウダー粒子を含有し、任意に、添加剤などのその他の成分を含み得る。
(Resin composition for substrates)
The resin composition for substrates of the present invention contains resin powder particles having a halogen content of 3 mass % or less, and may optionally contain other components such as additives.
<樹脂パウダー粒子>
 本発明の基板用樹脂組成物に含まれる樹脂パウダー粒子は、ハロゲン含有量が3質量%以下の樹脂パウダー粒子である。なお、本発明において、「樹脂パウダー粒子」は、平均粒子径が500μm以下の樹脂の粒子を指す。
<Resin powder particles>
The resin powder particles contained in the resin composition for substrates of the present invention are resin powder particles having a halogen content of 3 mass % or less. In the present invention, the term "resin powder particles" refers to resin particles having an average particle diameter of 500 μm or less.
 ここで、環境負荷を更に低減する観点から、本発明の樹脂パウダー粒子は、ハロゲン含有量が1質量%以下であることが好ましく、0.1質量%以下であることがより好ましく、0.01質量%以下であることが更に好ましい。 Here, from the viewpoint of further reducing the environmental load, the resin powder particles of the present invention preferably have a halogen content of 1% by mass or less, more preferably 0.1% by mass or less, and even more preferably 0.01% by mass or less.
 また、得られる基板の薄膜化を効果的に実現する観点から、樹脂パウダー粒子の平均粒子径は30μm以下であることが好ましく、20μm以下であることがより好ましく、10μm以下であることが更に好ましい。なお、樹脂パウダー粒子の平均粒子径は、通常は0.3μm以上である。 In order to effectively achieve a thin substrate, the average particle size of the resin powder particles is preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 10 μm or less. The average particle size of the resin powder particles is usually 0.3 μm or more.
 さらに、得られる基板の誘電率を更に低減させる観点から、基板用樹脂組成物中の樹脂パウダー粒子の全体積に対する、粒子径が70μm以上の樹脂パウダー粒子の体積が占める割合は15%以下であることが好ましく、1%以下であることがより好ましく、0%である(すなわち、基板用樹脂組成物中の樹脂パウダー粒子は、粒子径が70μm以上の樹脂パウダー粒子を含まない)ことが更に好ましい。 Furthermore, from the viewpoint of further reducing the dielectric constant of the obtained substrate, the ratio of the volume of resin powder particles having a particle diameter of 70 μm or more to the total volume of resin powder particles in the resin composition for substrates is preferably 15% or less, more preferably 1% or less, and even more preferably 0% (i.e., the resin powder particles in the resin composition for substrates do not include resin powder particles having a particle diameter of 70 μm or more).
 そして、得られる基板の誘電率を一層低減させる観点から、好ましくは、樹脂パウダー粒子の平均粒子径は30μm以下であり、かつ、基板用樹脂組成物中の樹脂パウダー粒子の全体積に対する、粒子径が70μm以上の樹脂パウダー粒子の体積が占める割合は15%以下である。そしてより好ましくは、樹脂パウダー粒子の平均粒子径は20μm以下であり、かつ、基板用樹脂組成物中の樹脂パウダー粒子の全体積に対する、粒子径が70μm以上の樹脂パウダー粒子の体積が占める割合が15%以下である。 From the viewpoint of further reducing the dielectric constant of the obtained substrate, preferably, the average particle diameter of the resin powder particles is 30 μm or less, and the proportion of the volume of resin powder particles having a particle diameter of 70 μm or more to the total volume of resin powder particles in the resin composition for substrates is 15% or less. And more preferably, the average particle diameter of the resin powder particles is 20 μm or less, and the proportion of the volume of resin powder particles having a particle diameter of 70 μm or more to the total volume of resin powder particles in the resin composition for substrates is 15% or less.
 上述したハロゲン含有量が3質量%以下の樹脂パウダー粒子としては、特に限定されないが、得られる基板の耐熱性を向上させる観点からは、環状オレフィン樹脂の粒子であることが好ましく、結晶性の環状オレフィン樹脂の粒子であることがより好ましい。なお、本発明おいて、「環状オレフィン樹脂」とは、分子内に脂環式構造を有する重合体であって、環状オレフィン単量体を重合して得られる重合体又はその水素化物を意味する。また、本発明において、「結晶性の環状オレフィン樹脂」とは、示差走査熱量計(DSC)で融点が観測される環状オレフィン樹脂を意味する。 The resin powder particles having a halogen content of 3% by mass or less are not particularly limited, but from the viewpoint of improving the heat resistance of the resulting substrate, they are preferably particles of a cyclic olefin resin, and more preferably particles of a crystalline cyclic olefin resin. In the present invention, "cyclic olefin resin" refers to a polymer having an alicyclic structure in the molecule, and is obtained by polymerizing a cyclic olefin monomer, or a hydrogenated product thereof. In the present invention, "crystalline cyclic olefin resin" refers to a cyclic olefin resin whose melting point can be observed by a differential scanning calorimeter (DSC).
 環状オレフィン樹脂としては、例えば、環状オレフィン単量体の開環重合体(以下、「重合体(α)」ともいう。)及びその水素化物、並びに、環状オレフィン単量体を少なくとも一種用いた付加重合体(以下、「重合体(β)ともいう。」)及びその水素化物が挙げられる。環状オレフィン樹脂は、1種単独で、あるいは2種以上を組み合わせて用いることができる。 Cyclic olefin resins include, for example, ring-opening polymers of cyclic olefin monomers (hereinafter also referred to as "polymer (α)") and their hydrogenated products, as well as addition polymers using at least one cyclic olefin monomer (hereinafter also referred to as "polymer (β)") and their hydrogenated products. Cyclic olefin resins can be used alone or in combination of two or more types.
 ここで、前記水素化物の水素化率は95%以上であることが好ましい。水素化率が95%以上であれば、基板用樹脂組成物は耐熱黄変性、耐熱劣化性に優れる。
 なお、本発明において、「水素化率」は、水素化された重合体に含まれていた全ての炭素-炭素不飽和結合(重合体が芳香環を有する場合には当該芳香環中の二重結合も含む)に対する水素化率であり、核磁気共鳴(NMR)法を用いて測定することができる。
Here, the hydrogenation rate of the hydrogenated product is preferably 95% or more. If the hydrogenation rate is 95% or more, the resin composition for substrates has excellent resistance to heat yellowing and heat deterioration.
In the present invention, the "hydrogenation rate" refers to the hydrogenation rate with respect to all carbon-carbon unsaturated bonds contained in the hydrogenated polymer (including double bonds in the aromatic rings, when the polymer has an aromatic ring), and can be measured by a nuclear magnetic resonance (NMR) method.
 重合体(α)及びその水素化物の製造に用いる環状オレフィン単量体は、炭素原子で形成される環構造を有し、該環中に炭素-炭素二重結合を有する化合物である。このような化合物として、ノルボルネン系単量体等が挙げられる。また、重合体(α)が共重合体である場合には、環状オレフィン単量体として、単環の環状オレフィンを用いることもできる。 The cyclic olefin monomer used in the production of the polymer (α) and its hydrogenated product is a compound having a ring structure formed by carbon atoms and having a carbon-carbon double bond in the ring. Examples of such compounds include norbornene-based monomers. In addition, when the polymer (α) is a copolymer, a monocyclic olefin can also be used as the cyclic olefin monomer.
 ノルボルネン系単量体は、ノルボルネン環を含む単量体である。
 ノルボルネン系単量体としては、
ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、5-エチリデン-ビシクロ[2.2.1]ヘプト-2-エン(慣用名:エチリデンノルボルネン)及びその誘導体(環に置換基を有するもの)等の2環式単量体;トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)及びその誘導体等の3環式単量体;7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン、テトラシクロ[7.4.0.02,7.110,13]トリデカ-2,4,6,11-テトラエンともいう)及びその誘導体、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン及びその誘導体等の4環式単量体;等が挙げられる。
The norbornene-based monomer is a monomer that contains a norbornene ring.
Norbornene monomers include:
Bicyclic monomers such as bicyclo[2.2.1]hept-2-ene (trivial name: norbornene), 5-ethylidene-bicyclo[2.2.1]hept-2-ene (trivial name: ethylidenenorbornene) and their derivatives (having a substituent on the ring); tricyclic monomers such as tricyclo[4.3.0.1 2,5 ]deca-3,7-diene (trivial name: dicyclopentadiene) and its derivatives; 7,8-benzotricyclo[4.3.0.1 2,5 ]deca-3-ene (trivial name: methanotetrahydrofluorene, also known as tetracyclo[7.4.0.0 2,7 .1 10,13 ]trideca-2,4,6,11-tetraene) and its derivatives, tetracyclo[4.4.0.1 2,5 . 1 7,10 ]dodec-3-ene (common name: tetracyclododecene), 8-ethylidenetetracyclo[4.4.0.1 2,5 .1 7,10 ]-3-dodecene and derivatives thereof; and the like.
 これらの単量体は、任意の位置に置換基を有していてもよい。かかる置換基としては、メチル基、エチル基等のアルキル基;ビニル基等のアルケニル基;エチリデン基、プロパン-2-イリデン基等のアルキリデン基;フェニル基等のアリール基;ヒドロキシ基;酸無水物基;カルボキシル基;メトキシカルボニル基等のアルコキシカルボニル基;等が挙げられる。 These monomers may have a substituent at any position. Such substituents include alkyl groups such as methyl and ethyl groups; alkenyl groups such as vinyl groups; alkylidene groups such as ethylidene and propan-2-ylidene groups; aryl groups such as phenyl groups; hydroxy groups; acid anhydride groups; carboxyl groups; alkoxycarbonyl groups such as methoxycarbonyl groups; and the like.
 単環の環状オレフィンとしては、シクロブテン、シクロペンテン、メチルシクロペンテン、シクロヘキセン、メチルシクロヘキセン、シクロヘプテン、シクロオクテン等の環状モノオレフィン;シクロヘキサジエン、メチルシクロヘキサジエン、シクロオクタジエン、メチルシクロオクタジエン、フェニルシクロオクタジエン等の環状ジオレフィン;等が挙げられる。  Examples of monocyclic olefins include cyclic monoolefins such as cyclobutene, cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, cycloheptene, and cyclooctene; and cyclic diolefins such as cyclohexadiene, methylcyclohexadiene, cyclooctadiene, methylcyclooctadiene, and phenylcyclooctadiene.
 これらの環状オレフィン単量体は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 環状オレフィン単量体を2種以上用いる場合、重合体(α)は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
These cyclic olefin monomers can be used alone or in combination of two or more.
When two or more kinds of cyclic olefin monomers are used, the polymer (α) may be a block copolymer or a random copolymer.
 重合体(α)は、メタセシス重合触媒を用いる公知の方法に従って、製造することができる。
 メタセシス重合触媒としては、特に限定はなく公知のものが用いられる。メタセシス重合触媒としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金などから選ばれる金属のハロゲン化物、硝酸塩又はアセチルアセトン化合物と、還元剤とからなる触媒系;チタン、バナジウム、ジルコニウム、タングステン及びモリブデンから選ばれる金属のハロゲン化物又はアセチルアセトン化合物と、助触媒の有機アルミニウム化合物とからなる触媒系;シュロック型又はグラブス型のリビング開環メタセシス重合触媒(特開平7-179575号、J.Am.Chem.Soc.,1986年,108,p.733、J.Am.Chem.Soc.,1993年,115,p.9858、及びJ.Am.Chem.Soc.,1996年,118,p.100);等が挙げられる。
 これらのメタセシス重合触媒は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
The polymer (α) can be produced according to a known method using a metathesis polymerization catalyst.
The metathesis polymerization catalyst is not particularly limited, and known catalysts can be used. Examples of the metathesis polymerization catalyst include a catalyst system consisting of a halide, nitrate, or acetylacetone compound of a metal selected from ruthenium, rhodium, palladium, osmium, iridium, platinum, etc., and a reducing agent; a catalyst system consisting of a halide or acetylacetone compound of a metal selected from titanium, vanadium, zirconium, tungsten, and molybdenum, and an organoaluminum compound as a co-catalyst; a Schrock-type or Grubbs-type living ring-opening metathesis polymerization catalyst (JP Patent Publication 7-179575, J. Am. Chem. Soc., 1986, 108, p. 733, J. Am. Chem. Soc., 1993, 115, p. 9858, and J. Am. Chem. Soc., 1996, 118, p. 100); and the like.
These metathesis polymerization catalysts can be used alone or in combination of two or more.
 メタセシス重合触媒の使用量は、重合条件等により適宜選択すればよいが、環状オレフィン単量体1モルに対して、通常0.000001~0.1モル、好ましくは、0.00001~0.01モルである。 The amount of metathesis polymerization catalyst used may be appropriately selected depending on the polymerization conditions, etc., but is usually 0.000001 to 0.1 moles, preferably 0.00001 to 0.01 moles, per mole of cyclic olefin monomer.
 環状オレフィン単量体の開環重合を行う際は、分子量調節剤として、1-ブテン、1-ヘキセン、1-デセン等の炭素数4~40の直鎖α-オレフィンを用いることができる。
 直鎖α-オレフィンの添加量は、環状オレフィン単量体1モルに対して、通常0.01~0.50モル、好ましくは0.03~0.30モル、より好ましくは0.05~0.15モルである。
When carrying out ring-opening polymerization of a cyclic olefin monomer, a linear α-olefin having 4 to 40 carbon atoms, such as 1-butene, 1-hexene, or 1-decene, can be used as a molecular weight regulator.
The amount of the linear α-olefin added is usually 0.01 to 0.50 mol, preferably 0.03 to 0.30 mol, and more preferably 0.05 to 0.15 mol, per mol of the cyclic olefin monomer.
 環状オレフィン単量体の開環重合は、有機溶媒中で行うことができる。有機溶媒としては、重合反応に不活性なものであれば特に限定されない。有機溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカンなどのアルカン類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、ジエチルシクロヘキサン、トリメチルシクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン、メチルノルボルナン、エチルノルボルナンなどのシクロアルカン類;ベンゼン、トルエン、キシレン、エチルベンゼン、クメンなどの芳香族炭化水素類;クロロブタン、ブロムヘキサン、塩化メチレン、ジクロロエタン、ヘキサメチレンジブロミド、クロロベンゼン、クロロホルム、テトラクロロエチレンなどのハロゲン化アルカンやアリールなどの化合物;などが挙げられる。
 これらの有機溶媒は、1種単独で、あるいは2種以上組み合わせて用いることができる。
The ring-opening polymerization of the cyclic olefin monomer can be carried out in an organic solvent. The organic solvent is not particularly limited as long as it is inactive in the polymerization reaction. Examples of the organic solvent include alkanes such as pentane, hexane, heptane, octane, nonane, and decane; cycloalkanes such as cyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, diethylcyclohexane, trimethylcyclohexane, cycloheptane, cyclooctane, decalin, norbornane, methylnorbornane, and ethylnorbornane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and cumene; halogenated alkanes and aryl compounds such as chlorobutane, bromohexane, methylene chloride, dichloroethane, hexamethylene dibromide, chlorobenzene, chloroform, and tetrachloroethylene; and the like.
These organic solvents may be used alone or in combination of two or more.
 重合温度は、特に限定されないが、通常-50~250℃、好ましくは-30~200℃、より好ましくは-20~150℃である。重合時間は、重合条件により適宜選択されるが、通常30分から20時間、好ましくは1~10時間である。 The polymerization temperature is not particularly limited, but is usually -50 to 250°C, preferably -30 to 200°C, and more preferably -20 to 150°C. The polymerization time is appropriately selected depending on the polymerization conditions, but is usually 30 minutes to 20 hours, and preferably 1 to 10 hours.
 上記方法により得られた重合体(α)を水素添加反応に供することで、重合体(α)の水素化物を得ることができる。
 重合体(α)の水素添加反応は、常法に従って、水素添加触媒の存在下に、重合体(α)を水素と接触させることにより行うことができる。
The polymer (α) obtained by the above method can be subjected to a hydrogenation reaction to obtain a hydrogenated product of the polymer (α).
The hydrogenation reaction of the polymer (α) can be carried out in a conventional manner by contacting the polymer (α) with hydrogen in the presence of a hydrogenation catalyst.
 水素添加触媒は、均一系触媒であっても、不均一触媒であってもよい。
 均一系触媒は、水素添加反応液中で分散し易いため、触媒の添加量を抑えることができる。また、高温高圧にしなくても十分な活性を有するため、重合体(α)やその水素化物の分解やゲル化が起こりにくい。このため、費用面や生成物の品質の観点からは、均一系触媒を用いることが好ましい。
 一方、不均一触媒は、高温高圧下において特に優れた活性を示すため、短時間で重合体(α)を水素化することができる。
The hydrogenation catalyst may be a homogeneous or heterogeneous catalyst.
Homogeneous catalysts are easily dispersed in the hydrogenation reaction solution, so that the amount of catalyst added can be reduced. In addition, since they have sufficient activity even without high temperature and high pressure, decomposition and gelation of the polymer (α) and its hydrogenated product are unlikely to occur. For this reason, it is preferable to use homogeneous catalysts from the viewpoints of cost and product quality.
On the other hand, heterogeneous catalysts exhibit particularly excellent activity under high temperature and pressure conditions, and therefore can hydrogenate the polymer (α) in a short period of time.
 均一系触媒としては、ウィルキンソン錯体〔クロロトリス(トリフェニルホスフィン)ロジウム(I)〕、ジクロロビス(トリフェニルホスフィン)パラジウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、ビス(トリシクロヘキシルホスフィン)ベンジリジンルテニウム(IV)ジクロリド;酢酸コバルト/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリイソブチルアルミニウム、チタノセンジクロリド/n-ブチルリチウム、ジルコノセンジクロリド/sec-ブチルリチウム、テトラブトキシチタネート/ジメチルマグネシウム等の組み合わせ等の、遷移金属化合物とアルキル金属化合物の組み合わせからなる触媒;等が挙げられる。 Homogeneous catalysts include Wilkinson's complex [chlorotris(triphenylphosphine)rhodium(I)], dichlorobis(triphenylphosphine)palladium, chlorohydridocarbonyltris(triphenylphosphine)ruthenium, bis(tricyclohexylphosphine)benzylidineruthenium(IV) dichloride; catalysts consisting of combinations of transition metal compounds and alkyl metal compounds, such as combinations of cobalt acetate/triethylaluminum, nickel acetylacetonate/triisobutylaluminum, titanocene dichloride/n-butyllithium, zirconocene dichloride/sec-butyllithium, tetrabutoxytitanate/dimethylmagnesium, etc.; and the like.
 不均一触媒としては、Ni、Pd、Pt、Ru、Rh等の金属を担体に担持させたものが挙げられる。特に、得られる水素化物中の不純物量を低下させる場合は、担体として、アルミナや珪藻土等の吸着剤を用いることが好ましい。 Heterogeneous catalysts include those in which metals such as Ni, Pd, Pt, Ru, and Rh are supported on a carrier. In particular, when reducing the amount of impurities in the resulting hydride, it is preferable to use an adsorbent such as alumina or diatomaceous earth as the carrier.
 水素添加反応は、通常、有機溶媒中で行われる。有機溶媒としては、水素添加反応に不活性なものであれば格別な制限はない。その具体例としては、環状オレフィン単量体の開環重合に用いる有機溶媒として先に示したものと同様のものが挙げられる。また、通常は、開環重合反応に用いた溶媒は、水素添加反応の溶媒としても適するため、開環重合反応液に水素添加触媒を添加した後、それを水素添加反応に供することができる。 The hydrogenation reaction is usually carried out in an organic solvent. There are no particular limitations on the organic solvent, so long as it is inert to the hydrogenation reaction. Specific examples include the same organic solvents as those mentioned above as used in the ring-opening polymerization of cyclic olefin monomers. In addition, the solvent used in the ring-opening polymerization reaction is usually also suitable as a solvent for the hydrogenation reaction, so that after adding a hydrogenation catalyst to the ring-opening polymerization reaction liquid, it can be subjected to the hydrogenation reaction.
 水素添加触媒の種類や反応温度によって水素化率は変化する。従って、重合体(α)が芳香族環を有するものである場合、水素添加触媒の選択や反応温度の調整等により、芳香族環の残存率を制御することができる。例えば、芳香族環の不飽和結合をある程度以上残存させるためには、反応温度を低くしたり、水素圧力を下げたり、反応時間を短くする等の制御を行えばよい。 The hydrogenation rate varies depending on the type of hydrogenation catalyst and the reaction temperature. Therefore, if the polymer (α) has aromatic rings, the remaining rate of aromatic rings can be controlled by selecting the hydrogenation catalyst and adjusting the reaction temperature. For example, in order to leave a certain amount of unsaturated bonds in the aromatic rings, it is sufficient to control the reaction temperature, reduce the hydrogen pressure, shorten the reaction time, etc.
 重合体(β)及びその水素化物の合成に用いる環状オレフィン単量体としては、重合体(α)の合成に用いる環状オレフィン単量体として示したものと同様のものが挙げられる。
 重合体(β)の合成においては、単量体として、環状オレフィン単量体とともに、このものと共重合可能なその他の単量体を用いることもできる。
 その他の単量体としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素数2~20のα-オレフィン;スチレン、α-メチルスチレン等の芳香環ビニル化合物;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン;等が挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。
 その他の単量体は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
Examples of the cyclic olefin monomer used in the synthesis of the polymer (β) and its hydrogenated product include the same cyclic olefin monomers as those used in the synthesis of the polymer (α).
In the synthesis of the polymer (β), other monomers copolymerizable with the cyclic olefin monomer may be used as the monomer.
Examples of other monomers include α-olefins having 2 to 20 carbon atoms, such as ethylene, propylene, 1-butene, 1-pentene, and 1-hexene, aromatic ring vinyl compounds, such as styrene and α-methylstyrene, and non-conjugated dienes, such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, and 1,7-octadiene. Among these, α-olefins are preferred, and ethylene is more preferred.
The other monomers may be used alone or in combination of two or more.
 環状オレフィン単量体と、その他の単量体とを付加共重合する場合は、環状オレフィン単量体とその他の単量体との使用量の割合は、重量比(環状オレフィン単量体:その他の単量体)で、通常30:70~99:1、好ましくは50:50~97:3、より好ましくは70:30~95:5である。 When a cyclic olefin monomer is addition copolymerized with other monomers, the ratio of the amounts of the cyclic olefin monomer to the other monomers used is usually 30:70 to 99:1, preferably 50:50 to 97:3, and more preferably 70:30 to 95:5, by weight (cyclic olefin monomer: other monomer).
 環状オレフィン単量体を2種以上用いる場合や、環状オレフィン単量体とその他の単量体を用いる場合は、重合体(β)は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。 When two or more types of cyclic olefin monomers are used, or when a cyclic olefin monomer and another monomer are used, the polymer (β) may be a block copolymer or a random copolymer.
 重合体(β)は、付加重合触媒を用いる公知の方法に従って合成することができる。
 付加重合触媒としては、バナジウム化合物及び有機アルミニウム化合物から形成されるバナジウム系触媒、チタン化合物及び有機アルミニウム化合物から形成されるチタン系触媒、ジルコニウム錯体及びアルミノオキサンから形成されるジルコニウム系触媒等が挙げられる。
 これらの付加重合触媒は、1種単独で、あるいは2種以上を組み合わせて用いることができる。付加重合触媒の使用量は、重合条件等により適宜選択すればよいが、単量体1モルに対して、通常0.000001~0.1モル、好ましくは、0.00001~0.01モルである。
The polymer (β) can be synthesized according to a known method using an addition polymerization catalyst.
Examples of the addition polymerization catalyst include vanadium-based catalysts formed from vanadium compounds and organoaluminum compounds, titanium-based catalysts formed from titanium compounds and organoaluminum compounds, and zirconium-based catalysts formed from zirconium complexes and aluminoxanes.
These addition polymerization catalysts can be used alone or in combination of two or more. The amount of the addition polymerization catalyst used may be appropriately selected depending on the polymerization conditions, etc., but is usually 0.000001 to 0.1 mol, preferably 0.00001 to 0.01 mol, per 1 mol of the monomer.
 環状オレフィン単量体の付加重合は、通常、有機溶媒中で行われる。有機溶媒としては、重合反応に不活性なものであれば格別な制限はない。その具体例としては、環状オレフィン単量体の開環重合に用いる有機溶媒として先に示したものと同様のものが挙げられる。 The addition polymerization of cyclic olefin monomers is usually carried out in an organic solvent. There are no particular limitations on the organic solvent, so long as it is inert to the polymerization reaction. Specific examples include the same organic solvents as those listed above for use in the ring-opening polymerization of cyclic olefin monomers.
 重合温度は、通常-50~250℃、好ましくは-30~200℃、より好ましくは-20~150℃である。重合時間は、重合条件により適宜選択されるが、通常30分から20時間、好ましくは1~10時間である。 The polymerization temperature is usually -50 to 250°C, preferably -30 to 200°C, and more preferably -20 to 150°C. The polymerization time is selected appropriately depending on the polymerization conditions, but is usually 30 minutes to 20 hours, and preferably 1 to 10 hours.
 上記方法により得られた重合体(β)を水素添加反応に供することで、重合体(β)の水素化物を得ることができる。
 重合体(β)の水素添加反応は、重合体(α)を水素化する方法として先に示したものと同様の方法により行うことができる。
The polymer (β) obtained by the above method can be subjected to a hydrogenation reaction to obtain a hydrogenated product of the polymer (β).
The hydrogenation reaction of the polymer (β) can be carried out by the same method as that described above for hydrogenating the polymer (α).
 これらの中でも、環状オレフィン樹脂としては、結晶性環状オレフィン重合体水素化物(以下、「重合体(γ)」ともいう。)が好ましい。
 重合体(γ)は、環状オレフィン単量体を重合して得られた重合体の水素化物であって、結晶性を有するものである。すなわち、重合体(γ)は、示差走査熱量計(DSC)で融点が観測される重合体である。重合体(γ)を用いれば、耐熱性により一層優れた基板を製造することができる。重合体(γ)の融点は、好ましくは200℃以上、より好ましくは230~290℃である。
Among these, as the cyclic olefin resin, a crystalline hydrogenated cyclic olefin polymer (hereinafter, also referred to as "polymer (γ)") is preferable.
The polymer (γ) is a hydrogenated product of a polymer obtained by polymerizing a cyclic olefin monomer, and has crystallinity. That is, the polymer (γ) is a polymer whose melting point can be observed by a differential scanning calorimeter (DSC). By using the polymer (γ), a substrate with even better heat resistance can be manufactured. The melting point of the polymer (γ) is preferably 200°C or higher, more preferably 230 to 290°C.
 重合体(γ)は、開環重合体であってもよいし、付加重合体であってもよいが、結晶性により優れることから、開環重合体(すなわち、前記重合体(α)の水素化物であって、結晶性を有するもの)が好ましい。 The polymer (γ) may be a ring-opening polymer or an addition polymer, but a ring-opening polymer (i.e., a hydrogenated product of the polymer (α) that has crystallinity) is preferred because it has better crystallinity.
 重合体(γ)の製造に用いる環状オレフィン単量体は特に限定されず、重合体(α)の製造に用いる環状オレフィン単量体として先に示したものを用いることができる。中でも、より結晶性に優れる重合体(γ)が得られることから、環状オレフィン単量体の少なくとも1種としてジシクロペンタジエンを用いることが好ましい。重合体(γ)の全繰り返し単位中、ジシクロペンタジエン由来の繰り返し単位の含有量は、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、さらに好ましくは100質量%である。 The cyclic olefin monomer used in the production of polymer (γ) is not particularly limited, and those previously mentioned as the cyclic olefin monomers used in the production of polymer (α) can be used. Among them, it is preferable to use dicyclopentadiene as at least one of the cyclic olefin monomers, since it gives a polymer (γ) with better crystallinity. The content of dicyclopentadiene-derived repeating units in all repeating units of polymer (γ) is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 90% by mass or more, and even more preferably 100% by mass.
 環状オレフィン単量体には、エンド体及びエキソ体の立体異性体が存在するものがあるが、重合体(γ)を製造する際は、そのどちらも単量体として用いることができる。また、一方の異性体のみを単独で用いてもよいし、エンド体及びエキソ体が任意の割合で存在する異性体混合物を用いてもよい。より結晶性に優れる重合体(γ)が得られることから、一方の立体異性体の割合を高くすることが好ましい。そして、異性体混合物において、エンド体の割合が高い場合には、異性体混合物全体を100質量%として、エンド体の割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。また、異性体混合物において、エキソ体の割合が高い場合には、異性体混合物全体を100質量%として、エキソ体の割合は、80質量%であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。なお、合成が容易であることから、異性体混合物は、エンド体の割合が高いことが好ましい。 Some cyclic olefin monomers have stereoisomers, endo and exo, and both can be used as monomers when producing polymer (γ). One of the isomers may be used alone, or an isomer mixture in which the endo and exo are present in any ratio may be used. Since polymer (γ) has better crystallinity, it is preferable to increase the ratio of one of the stereoisomers. When the ratio of the endo isomer is high in the isomer mixture, the ratio of the endo isomer is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more, based on the total isomer mixture being 100% by mass. When the ratio of the exo isomer is high in the isomer mixture, the ratio of the exo isomer is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more, based on the total isomer mixture being 100% by mass. Since synthesis is easier, it is preferable that the ratio of the endo isomer is high in the isomer mixture.
 重合体(γ)においては、通常、そのシンジオタクチック立体規則性の度合い(ラセモ・ダイアッドの割合)が高くなると、結晶性がより高くなる傾向がある。
 重合体(γ)の立体規則性の程度は特に限定されないが、その繰り返し単位についてのラセモ・ダイアッドの割合が、60%以上であることが好ましく、70%以上であることがより好ましく、88%以上であることが特に好ましい。
In the polymer (γ), generally, as the degree of syndiotactic stereoregularity (ratio of racemo-dyad) increases, the crystallinity tends to become higher.
The degree of stereoregularity of the polymer (γ) is not particularly limited, but the ratio of racemo-dyads in the repeating units is preferably 60% or more, more preferably 70% or more, and particularly preferably 88% or more.
 ラセモ・ダイアッドの割合は、13C-NMRスペクトル分析で測定することにより、求めることができる。具体的には、1,3,5-トリクロロベンゼン-d3/1,2-ジクロロベンゼン-d4の混合溶媒(体積比2:1)を溶媒として、200℃でinverse-gated decoupling法を適用して13C-NMR測定を行い、1,2-ジクロロベンゼン-d4の127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルの強度比からラセモ・ダイアッドの割合を決定することができる。 The ratio of the racemo dyad can be determined by measuring with 13 C-NMR spectrum analysis. Specifically, 13 C-NMR measurement is performed by applying the inverse-gated decoupling method at 200 ° C. using a mixed solvent of 1,3,5-trichlorobenzene-d3/1,2-dichlorobenzene-d4 (volume ratio 2:1) as the solvent, and the ratio of the racemo dyad can be determined from the intensity ratio of the signal at 43.35 ppm derived from the meso dyad and the signal at 43.43 ppm derived from the racemo dyad, with the peak at 127.5 ppm of 1,2-dichlorobenzene-d4 as the reference shift.
 水素添加反応の前後において、通常、重合体の立体規則性は変化しない。したがって、シンジオタクチック立体規則性が高い重合体(γ)は、例えば、環状オレフィン単量体を開環重合させてシンジオタクチック立体規則性が高い重合体を得た後、これを水素添加反応に供することにより得ることができる。
 例えば、シンジオタクチック立体規則性が高い重合体(γ)は、WO2012/033076号、特開2014-118475号公報等に記載の方法に従って合成することができる。
Generally, the stereoregularity of the polymer does not change before and after the hydrogenation reaction. Therefore, a polymer (γ) having high syndiotactic stereoregularity can be obtained, for example, by ring-opening polymerization of a cyclic olefin monomer to obtain a polymer having high syndiotactic stereoregularity, and then subjecting the polymer to a hydrogenation reaction.
For example, a polymer (γ) having high syndiotactic stereoregularity can be synthesized according to the methods described in WO2012/033076, JP2014-118475A, and the like.
 上述した環状オレフィン樹脂の重量平均分子量(Mw)は、特に限定されないが、10000以上100000以下であることが好ましく、数平均分子量(Mn)は、3000以上800000以下であることが好ましい。 The weight average molecular weight (Mw) of the above-mentioned cyclic olefin resin is not particularly limited, but is preferably 10,000 or more and 100,000 or less, and the number average molecular weight (Mn) is preferably 3,000 or more and 800,000 or less.
(樹脂パウダー粒子の製造方法)
 本発明の基板用樹脂組成物に含まれるハロゲン含有量が3質量%以下の樹脂パウダー粒子の製造方法は、特に限定されず、例えば、以下の1)~3)の方法を採用することができる。
 1)環状オレフィン開環重合体を10質量%以上の固形分濃度で含む溶液を水素添加反応に供する工程を経て、ハロゲン含有量が3質量%以下の結晶性環状オレフィン開環重合体水素化物の樹脂パウダー粒子を得る、樹脂パウダー粒子の方法。
 2)結晶性環状オレフィン開環重合体水素化物を溶液中で粉砕する工程を経て、ハロゲン含有量が3質量%以下の結晶性環状オレフィン開環重合体水素化物の樹脂パウダー粒子を得る、樹脂パウダー粒子の製造方法。
 3)ハロゲン含有量が3質量%以下の環状オレフィン樹脂を乾式粉砕することで、ハロゲン含有量が3質量%以下の環状オレフィン樹脂の樹脂パウダー粒子を得る、樹脂パウダー粒子の製造方法。
 以下、1)~3)の方法について、詳細に説明する。
(Method of producing resin powder particles)
The method for producing the resin powder particles having a halogen content of 3 mass % or less contained in the resin composition for substrates of the present invention is not particularly limited, and for example, the following methods 1) to 3) can be adopted.
1) A method for producing resin powder particles, comprising subjecting a solution containing a cyclic olefin ring-opening polymer at a solid content concentration of 10% by mass or more to a hydrogenation reaction to obtain resin powder particles of a hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3% by mass or less.
2) A method for producing resin powder particles, comprising the step of pulverizing a hydrogenated crystalline cyclic olefin ring-opening polymer in a solution to obtain resin powder particles of a hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3 mass% or less.
3) A method for producing resin powder particles, comprising dry-pulverizing a cyclic olefin resin having a halogen content of 3% by mass or less to obtain resin powder particles of the cyclic olefin resin having a halogen content of 3% by mass or less.
Methods 1) to 3) will be described in detail below.
<1)の方法>
 1)の方法では、環状オレフィン開環重合体を10質量%以上の固形分濃度で含む溶液を水素添加反応に供することで、溶液中の環状オレフィン開環重合体を水素化して、ハロゲン含有量が3質量%以下の結晶性環状オレフィン開環重合体水素化物の樹脂パウダー粒子を得る。
<Method 1>
In method 1), a solution containing a cyclic olefin ring-opening polymer at a solid content concentration of 10% by mass or more is subjected to a hydrogenation reaction, thereby hydrogenating the cyclic olefin ring-opening polymer in the solution to obtain resin powder particles of a hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3% by mass or less.
 環状オレフィン開環重合体としては、例えば、先に説明した重合体(α)を用いることができる。また、環状オレフィンの開環重合体を10質量%以上の固形分濃度で含む溶液としては、例えば、重合体(α)と、有機溶媒と、重合触媒などを含む溶液を用いることができる。有機溶媒及び重合触媒としては、先に説明した重合体(α)を水素添加反応する際に使用する有機溶媒及び重合触媒を用いることができる。また、重合体(α)を水素化する方法としては、先に説明した方法と同様とすることができる。 As the cyclic olefin ring-opening polymer, for example, the polymer (α) described above can be used. In addition, as the solution containing the cyclic olefin ring-opening polymer at a solid content concentration of 10 mass% or more, for example, a solution containing the polymer (α), an organic solvent, a polymerization catalyst, etc. can be used. As the organic solvent and the polymerization catalyst, the organic solvent and the polymerization catalyst used in the hydrogenation reaction of the polymer (α) described above can be used. In addition, the method for hydrogenating the polymer (α) can be the same as the method described above.
 上記1)の方法によって得られるハロゲン含有量が3質量%以下の結晶性環状オレフィン開環重合体水素化物の樹脂パウダー粒子は、通常、平均粒子径が10μm以下である。そのため、上記1)の方法によれば、本発明の基板用樹脂組成物に好適に用い得る樹脂パウダー粒子を製造することができる。ここで、上記1)の方法によって得られる結晶性環状オレフィン開環重合体水素化物の樹脂パウダー粒子が小粒径になる理由は明らかではないが、環状オレフィン開環重合体を含む溶液を水素添加反応に供すると、溶液中に結晶性環状オレフィン開環重合体水素化物が生じるが、その際、溶液中の環状オレフィンの開環重合体の固形分濃度が10質量%以上であると、結晶性環状オレフィン開環重合体水素化物の溶液に対する溶解性が低下して、結晶性環状オレフィン開環重合体水素化物がより早く析出するためであると推察される。 The resin powder particles of the hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3% by mass or less obtained by the above method 1) usually have an average particle size of 10 μm or less. Therefore, by the above method 1), it is possible to produce resin powder particles that can be suitably used in the resin composition for substrates of the present invention. Here, the reason why the resin powder particles of the hydrogenated crystalline cyclic olefin ring-opening polymer obtained by the above method 1) have a small particle size is not clear, but when a solution containing a cyclic olefin ring-opening polymer is subjected to a hydrogenation reaction, a hydrogenated crystalline cyclic olefin ring-opening polymer is generated in the solution. At that time, if the solid concentration of the ring-opening polymer of the cyclic olefin in the solution is 10% by mass or more, the solubility of the hydrogenated crystalline cyclic olefin ring-opening polymer in the solution decreases, and the hydrogenated crystalline cyclic olefin ring-opening polymer precipitates more quickly.
<2)の方法>
 2)の方法では、結晶性環状オレフィン開環重合体水素化物を溶液中で粉砕することで、ハロゲン含有量が3質量%以下の結晶性環状オレフィン開環重合体水素化物の樹脂パウダー粒子を得る。
<Method 2>
In the method 2), a hydrogenated crystalline cyclic olefin ring-opening polymer is pulverized in a solution to obtain resin powder particles of a hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3 mass % or less.
 結晶性環状オレフィン開環重合体水素化物としては、例えば、先に説明した重合体(γ)を用いることができる。また、結晶性環状オレフィン開環重合体水素化物を溶液中で粉砕する方法は、特に限定されず、公知の湿式粉砕方法を用いることができる。そして、本発明の基板用樹脂組成物に好適に用い得る樹脂パウダー粒子を効率的に製造する観点からは、上記2)の方法では、結晶性環状オレフィン開環重合体水素化物を含む溶液を高圧で噴射し、結晶性環状オレフィンの開環重合体水素化物同士を衝突させて粉砕することが好ましい。このように粉砕して得られる結晶性環状オレフィンの開環重合体水素化物の粒子は、通常、平均粒子径が10μm以下の樹脂パウダー粒子である。そのため、本発明の基板用樹脂組成物の樹脂パウダー粒子として好適に用いることができる。なお、結晶性環状オレフィン開環重合体水素化物を含む溶液を高圧で噴射する場合、得られる樹脂パウダー粒子の粒子径を均一化する観点からは、噴霧圧力は、100MPa以上であることが好ましい。 As the crystalline cyclic olefin ring-opening polymer hydrogenation product, for example, the polymer (γ) described above can be used. The method for pulverizing the crystalline cyclic olefin ring-opening polymer hydrogenation product in the solution is not particularly limited, and a known wet pulverization method can be used. From the viewpoint of efficiently producing resin powder particles that can be suitably used in the resin composition for substrates of the present invention, in the above method 2), it is preferable to spray a solution containing the crystalline cyclic olefin ring-opening polymer hydrogenation product at high pressure and pulverize the crystalline cyclic olefin ring-opening polymer hydrogenation products by colliding them with each other. The particles of the crystalline cyclic olefin ring-opening polymer hydrogenation product obtained by such pulverization are usually resin powder particles having an average particle size of 10 μm or less. Therefore, they can be suitably used as resin powder particles for the resin composition for substrates of the present invention. When spraying a solution containing the crystalline cyclic olefin ring-opening polymer hydrogenation product at high pressure, the spray pressure is preferably 100 MPa or more from the viewpoint of uniforming the particle size of the obtained resin powder particles.
 なお、上記1)及び上記2)の方法は、それぞれ単独で行ってもよく、あるいは、組み合わせて行ってもよい。例えば、上記1)の方法の後に上記2)の方法を行えば、平均粒子径がより小さい樹脂パウダー粒子を効率的に製造することができる。 The above methods 1) and 2) may be carried out alone or in combination. For example, by carrying out the above method 2) after the above method 1), resin powder particles having a smaller average particle size can be efficiently produced.
<3)の方法>
 3)の方法で用いるハロゲン含有量が3質量%以下の樹脂は、特に限定されず、例えば先に説明した環状オレフィン樹脂や、ポリプロピレン等を用いることができる。また、乾式粉砕方法は特に限定されず、公知の乾式粉砕方法を用いることができる。
<Method 3)>
The resin having a halogen content of 3% by mass or less used in the method 3) is not particularly limited, and may be, for example, the cyclic olefin resin described above, polypropylene, etc. The dry grinding method is not particularly limited, and any known dry grinding method may be used.
<その他の成分>
 本発明の基板用樹脂組成物は、上述した樹脂パウダー粒子以外の成分を更に含み得る。その他の成分としては、例えば、酸化防止剤、紫外線吸収剤、光安定剤、近赤外線吸収剤、着色剤、可塑剤、難燃剤及び帯電防止剤等の既知の添加剤などが挙げられる。基板用樹脂組成物中のその他の成分の含有量は、基板用組成物の用途などに応じて適宜決定することができる。
<Other ingredients>
The resin composition for substrates of the present invention may further contain components other than the above-mentioned resin powder particles. Examples of other components include known additives such as antioxidants, ultraviolet absorbers, light stabilizers, near-infrared absorbers, colorants, plasticizers, flame retardants, and antistatic agents. The content of other components in the resin composition for substrates can be appropriately determined depending on the application of the composition for substrates.
<基板用樹脂組成物の調製方法>
 本発明の基板用樹脂組成物の調製方法は、特に限定されず、例えば、ハロゲン含有量が3質量%以下の樹脂パウダー粒子と、その他の成分とを公知の方法で混合することで調製することができる。
<Method for preparing resin composition for substrate>
The method for preparing the resin composition for substrates of the present invention is not particularly limited, and for example, it can be prepared by mixing resin powder particles having a halogen content of 3 mass% or less with other components by a known method.
 基板用樹脂組成物中の樹脂パウダー粒子の含有量は、基板用樹脂組成物全体に対して、5質量%以上であることが好ましく、15質量%以上であることがより好ましく、30質量%以上であることが更に好ましい。樹脂パウダーの含有量が上記下限値以上であれば、本発明の基板用樹脂組成物を、各種用途の基板の製造するための材料として更に好適に使用することができる。 The content of resin powder particles in the resin composition for substrates is preferably 5% by mass or more, more preferably 15% by mass or more, and even more preferably 30% by mass or more, based on the total amount of the resin composition for substrates. If the content of resin powder is equal to or more than the lower limit, the resin composition for substrates of the present invention can be used more suitably as a material for manufacturing substrates for various applications.
(基板)
 本発明の基板用樹脂組成物を用いて製造される基板は、通常、周波数10GHzにおける誘電率が2.5以下である。そのため、本発明の基板用樹脂組成物を用いて製造された基板は、各種用途に用いることができ、特に、高周波用基板として好適に用いることができる。
(substrate)
The substrate produced using the resin composition for substrates of the present invention usually has a dielectric constant of 2.5 or less at a frequency of 10 GHz. Therefore, the substrate produced using the resin composition for substrates of the present invention can be used for various applications, and is particularly suitable for use as a high-frequency substrate.
<基板の製造方法>
 ここで、本発明の基板用樹脂組成物を用いた基板の製造方法は特に限定されず、例えば、本発明の基板用樹脂組成物をプレスすることで基板を製造することができる。その際、プレス方法は特に限定されず、公知の方法によりプレスすることができる。また、プレス圧力は特に限定されず、得られる基板の厚みに応じて調整することができる。
<Substrate manufacturing method>
Here, the method for manufacturing a substrate using the resin composition for substrates of the present invention is not particularly limited, and for example, a substrate can be manufactured by pressing the resin composition for substrates of the present invention. At that time, the pressing method is not particularly limited, and pressing can be performed by a known method. In addition, the pressing pressure is not particularly limited, and can be adjusted according to the thickness of the substrate to be obtained.
 以下、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。なお、以下において、「%」及び「部」は、特に断りのない限り質量基準である。実施例及び比較例における測定は、以下の方法により行った。 The present invention will be explained below with reference to examples, but the present invention is not limited thereto. In the following, "%" and "parts" are based on mass unless otherwise specified. Measurements in the examples and comparative examples were performed using the following methods.
<重量平均分子量及び数平均分子量>
 実施例1、3、4、5で得られた重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、テトラヒドロフラン(THF)を溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)による、標準ポリスチレン換算値として求めた。なお、GPCは40℃において測定した。また、測定装置としては、東ソー社製「システムHLC-8320」を用い、測定カラムとしては東ソー社製「Hタイプカラム」を用いた。
<Weight average molecular weight and number average molecular weight>
The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymers obtained in Examples 1, 3, 4, and 5 were determined as standard polystyrene equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent. The GPC was measured at 40° C. The measurement apparatus used was "System HLC-8320" manufactured by Tosoh Corporation, and the measurement column used was "H-type column" manufactured by Tosoh Corporation.
<水素化率>
 実施例1、3、4で得られた水素化物の水素化率は、H-NMRを測定して算出した。
<Hydrogenation rate>
The hydrogenation rates of the hydrogenated products obtained in Examples 1, 3 and 4 were calculated by measuring 1 H-NMR.
<ガラス転移温度及び融点>
 試料を、示差走査熱量計装置内で加熱することで完全に融解させた後、10℃/分の降温条件で室温まで冷却させ、次いで、10℃/分の昇温条件で350℃まで示差走査熱量測定を行なった。このときのピークから、ガラス転移温度(Tg)及び融点を測定した。なお、示差走査熱量計装置としては、日立ハイテクサイエンス社製、「高感度型示差走査熱量計 EXSTARX-DSC7000」を用いた。また、示差走査熱量測定では、温度及び熱量の標準物質としてインジウム、スズ、鉛を用いて校正を行なった。
<Glass transition temperature and melting point>
The sample was heated in a differential scanning calorimeter to completely melt it, then cooled to room temperature at a temperature drop rate of 10°C/min, and then differential scanning calorimetry was performed at a temperature rise rate of 10°C/min up to 350°C. From the peak at this time, the glass transition temperature (Tg) and melting point were measured. The differential scanning calorimeter used was a "High Sensitivity Differential Scanning Calorimeter EXSTARX-DSC7000" manufactured by Hitachi High-Tech Science Corporation. In addition, in the differential scanning calorimeter measurement, calibration was performed using indium, tin, and lead as standard substances for temperature and heat.
<ハロゲン含有量>
 試料をアルミのリング内に入れて、プレス機にて圧縮、ポリプロピレン(PP)フィルムで覆って、蛍光X線(XRF)分析装置(リガク社製、「Primus IV」)を用い、炭素(C)からガリウム(Ga)までの元素間の組成分析を行った。そして、XRF分析結果により、炭素(C)からガリウム(Ga)までの元素の質量の合計(C~Ga)に対するフッ素(F)と塩素(Cl)との質量の合計の割合[(F+Cl)/(C~Ga)×100]を算出し、得られた値をハロゲン含有量(質量%)とした。
<Halogen content>
The sample was placed in an aluminum ring, compressed with a press, and covered with a polypropylene (PP) film, and an X-ray fluorescence (XRF) analyzer (Rigaku Corporation, "Primus IV") was used to perform composition analysis between elements from carbon (C) to gallium (Ga). From the results of the XRF analysis, the ratio of the total mass of fluorine (F) and chlorine (Cl) to the total mass of elements from carbon (C) to gallium (Ga) (C to Ga) [(F+Cl)/(C to Ga) x 100] was calculated, and the obtained value was taken as the halogen content (mass%).
<平均粒子径、及び、粒子径70μm以上の樹脂パウダー粒子の割合>
 試料を分散媒(シクロヘキサン、イソプロピルアルコール、スリーエム製「Novec7300」のいずれか)に分散し、レーザー回折式粒度分布測定装置(島津製作所製、「SALD-3100」)にて試料の体積加重平均直径及び粒度分布を測定した。そして、得られた体積加重平均直径を平均粒子径とした。また、上記粒度分布において、試料全体に対して体積加重直径が70μmを超える試料が占める割合を、基板用樹脂組成物中の樹脂パウダー粒子の全体積に対する、粒子径が70μm以上の樹脂パウダー粒子の体積が占める割合とした。
<Average particle size and proportion of resin powder particles with a particle size of 70 μm or more>
The sample was dispersed in a dispersion medium (cyclohexane, isopropyl alcohol, or 3M's "Novec7300"), and the volume-weighted average diameter and particle size distribution of the sample were measured using a laser diffraction particle size distribution measuring device (Shimadzu Corporation's "SALD-3100"). The volume-weighted average diameter obtained was taken as the average particle diameter. In addition, in the above particle size distribution, the proportion of samples with a volume-weighted diameter exceeding 70 μm to the entire sample was taken as the proportion of the volume of resin powder particles with a particle diameter of 70 μm or more to the total volume of resin powder particles in the resin composition for substrates.
<誘電率>
 試料を20MPa以上の圧力にてプレスすることで、シートを作製した。プレス時の圧力は、試料が非晶性であれば試料のガラス転移温度(Tg)以上とし、結晶性であれば試料の融点以上とした。
 次に、得られたシートをカットして、試験片を得た。この試験片にて、ネットワークアナライザ(キーサイト・テクノロジー株式会社製、「N5230A」)を用いて、円筒空洞共振器法により、周波数10GHzにおける誘電率を測定した。
<Dielectric constant>
The sample was pressed at a pressure of 20 MPa or more to produce a sheet. The pressure during pressing was set to be equal to or higher than the glass transition temperature (Tg) of the sample if the sample was amorphous, or equal to or higher than the melting point of the sample if the sample was crystalline.
The sheet was then cut to obtain test pieces, which were used to measure the dielectric constant at a frequency of 10 GHz by a cylindrical cavity resonator method using a network analyzer ("N5230A" manufactured by Keysight Technologies, Inc.).
(実施例1)
 充分に乾燥した後に窒素置換したガラス製耐圧反応容器に、ジシクロペンタジエン(エンド体含有率99%以上)の70%シクロヘキサン溶液143部(ジシクロペンタジエンの量として100部)と、1-へキセン5.1部と、シクロヘキサン514部とを加え、続けて濃度19%のジエチルアルミニウムエトキシドのn-ヘキサン溶液0.37部を加えて撹拌した。次いで、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.07部をトルエン3部に溶解した溶液を加えて、53℃に加温して開環重合反応を開始した。2時間後、メタノール1.3部を加え、開環重合反応を停止させた。得られた重合反応溶液に含まれるジシクロペンタジエン開環重合体(環状オレフィン開環重合体)の重量平均分子量(Mw)は28,200であり、数平均分子量(Mn)は8,900であった。
 得られた重合反応溶液に、ろ過助剤として珪藻土(昭和化学工業社製、「ラヂオライト#300」)0.5部を加えた。この懸濁液に対して、リーフフィルター(IHI社製、「CFR2」)にてろ過処理を行い、ジシクロペンタジエン開環重合体を含む溶液を得た。
 次に、得られたジシクロペンタジエン開環重合体を含む溶液を、撹拌機及び温調ジャケット付きの反応器(住友重機械工業社製)に移送した後、シクロヘキサン167部と、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.1部とを添加して、ジシクロペンタジエン開環重合体を固形分濃度12%で含む溶液を調製した。次いで、全容を回転数64rpmで撹拌しながら、水素圧4MPa、温度180℃にて4時間水素添加反応を行い、ジシクロペンタジエン開環重合体水素化物の粒子を含有するスラリーを得た。ジシクロペンタジエン開環重合体水素化物の水素化率は99.5%であった。
 上記スラリーの固形分100部に対して、酸化防止剤として、テトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン(BASFジャパン社製、「イルガノックス(登録商標)1010」)0.5部を添加し、凍結乾燥機(日本テクノサービス社製、「FD0480-1601」)で溶媒を除去することで、ジシクロペンタジエン開環重合体水素化物の粒子を得た。
 得られたジシクロペンタジエン開環重合体水素化物の粒子を試料として、示差走査熱量測定を行った結果、ジシクロペンタジエン開環重合体水素化物の粒子は結晶性を有することが分かった。また、上記試料を用いてハロゲン含有量、平均粒子径、粒子径70μm以上の樹脂パウダー粒子の割合、誘電率を求めた。結果を表1に示す。
Example 1
Into a glass pressure-resistant reaction vessel that had been thoroughly dried and then substituted with nitrogen, 143 parts of a 70% cyclohexane solution of dicyclopentadiene (endo isomer content of 99% or more) (100 parts as the amount of dicyclopentadiene), 5.1 parts of 1-hexene, and 514 parts of cyclohexane were added, followed by adding 0.37 parts of a 19% concentration n-hexane solution of diethylaluminum ethoxide and stirring. Next, a solution in which 0.07 parts of a tetrachlorotungsten phenylimide (tetrahydrofuran) complex was dissolved in 3 parts of toluene was added, and the mixture was heated to 53° C. to initiate a ring-opening polymerization reaction. After 2 hours, 1.3 parts of methanol were added to terminate the ring-opening polymerization reaction. The weight average molecular weight (Mw) of the dicyclopentadiene ring-opening polymer (cyclic olefin ring-opening polymer) contained in the obtained polymerization reaction solution was 28,200, and the number average molecular weight (Mn) was 8,900.
To the obtained polymerization reaction solution, 0.5 parts of diatomaceous earth ("Radiolite #300" manufactured by Showa Chemical Industry Co., Ltd.) was added as a filter aid. This suspension was filtered using a leaf filter ("CFR2" manufactured by IHI Corporation) to obtain a solution containing a dicyclopentadiene ring-opening polymer.
Next, the solution containing the obtained dicyclopentadiene ring-opening polymer was transferred to a reactor (manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a stirrer and a temperature-controlled jacket, and then 167 parts of cyclohexane and 0.1 parts of chlorohydridocarbonyltris(triphenylphosphine)ruthenium were added to prepare a solution containing dicyclopentadiene ring-opening polymer at a solid content concentration of 12%. Next, while stirring the entire volume at a rotation speed of 64 rpm, a hydrogenation reaction was carried out at a hydrogen pressure of 4 MPa and a temperature of 180° C. for 4 hours to obtain a slurry containing particles of hydrogenated dicyclopentadiene ring-opening polymer. The hydrogenation rate of the hydrogenated dicyclopentadiene ring-opening polymer was 99.5%.
0.5 parts of tetrakis[methylene-3-(3',5'-di-tert-butyl-4'-hydroxyphenyl)propionate]methane (manufactured by BASF Japan, "Irganox (registered trademark) 1010") was added as an antioxidant to 100 parts of the solid content of the above slurry, and the solvent was removed using a freeze dryer (manufactured by Nippon Techno Service Co., Ltd., "FD0480-1601") to obtain particles of a hydrogenated dicyclopentadiene ring-opening polymer.
The obtained hydrogenated dicyclopentadiene ring-opening polymer particles were used as a sample, and differential scanning calorimetry was performed, and it was found that the hydrogenated dicyclopentadiene ring-opening polymer particles had crystallinity. The halogen content, average particle size, proportion of resin powder particles with a particle size of 70 μm or more, and dielectric constant were also determined using the sample. The results are shown in Table 1.
(実施例2)
 実施例1において酸化防止剤を添加した後のスラリーを、湿式微粒子化装置(スギノマシン社製、「HJP-25005」)を用いて直径φ14mmのボールチャンバー内を循環時間から換算して30回パスさせた。その際、噴霧圧力は200MPaとした。得られたスラリーから、凍結乾燥機(日本テクノサービス社製、「FD0480-1601」)で溶媒を除去することで、ジシクロペンタジエン開環重合体水素化物の粒子を得た。
 得られたジシクロペンタジエン開環重合体水素化物の粒子を試料として、示差走査熱量測定を行った結果、ジシクロペンタジエン開環重合体水素化物の粒子は結晶性を有することが分かった。また、上記試料を用いて実施例1と同様に測定を行った。結果を表1に示す。
Example 2
The slurry to which the antioxidant had been added in Example 1 was passed 30 times, calculated from the circulation time, through a ball chamber having a diameter of φ14 mm using a wet microparticulation device (manufactured by Sugino Machine, "HJP-25005"). The spray pressure was set to 200 MPa. The solvent was removed from the resulting slurry using a freeze dryer (manufactured by Nippon Techno Service, "FD0480-1601") to obtain particles of a hydrogenated dicyclopentadiene ring-opening polymer.
The obtained particles of hydrogenated dicyclopentadiene ring-opening polymer were used as a sample for differential scanning calorimetry, and it was found that the particles of hydrogenated dicyclopentadiene ring-opening polymer had crystallinity. The same measurements as in Example 1 were also carried out using the above sample. The results are shown in Table 1.
(実施例3)
 充分に乾燥した後に窒素置換したガラス製耐圧反応容器に、テトラシクロドデセン25%、メタノテトラヒドロフルオレン70%及びノルボルネン25%からなる単量体混合物2.0部(重合に使用するモノマー量全量に対して1%)と、1-へキセン1.2部と、ジイソプロピルエーテル0.42部と、イソブチルアルコール0.11部と、シクロヘキサン785部とを加え、続けて濃度20%のトリイソブチルアルミニウムのシクロヘキサン溶液1.35部を加えて攪拌した。次いで、0.65%の六塩化タングステンのシクロヘキサン溶液13.4部を加えて、53℃に加温し開環重合反応を開始し、10分攪拌した。
 次いで、全容を53℃に保持し攪拌しながら、上記重合反応容器中に単量体混合物198部(重合に使用するモノマー量全量に対して99%)と六塩化タングステン0.65%シクロヘキサン溶液20.1部とを各々150分かけて連続的に滴下した。滴下終了後30分間攪拌を継続した後、イソプロピルアルコール0.4部を添加して開環重合反応を停止させた。得られた重合反応溶液に含まれる単量体混合物の開環重合体(環状オレフィン開環重合体)の重量平均分子量(Mw)は19,000であり、数平均分子量(Mn)は10,700であった。
 次いで、得られた重合反応溶液300部を攪拌器付きオートクレーブに移し、シクロヘキサン32部と、珪藻土担持ニッケル触媒(日揮化学社製、「T8400RL」、ニッケル担持率58%)3.8部とを加えた。オートクレーブ内を水素で置換した後、190℃、4.5MPaの水素圧力下で6時間反応させた。
 水素化反応終了後、珪藻土(昭和化学工業社製、「ラヂオライト(登録商標)♯500」)をろ過床として、加圧ろ過器(石川島播磨重工社製、「フンダフィルタ-」)を使用し、圧力0.25MPaで加圧ろ過して、環状オレフィン開環重合体水素化物を含む無色透明の溶液を得た。環状オレフィン開環重合体水素化物の水素化率は99.7%であった。
 上記無色透明の溶液に、この溶液中の環状オレフィン開環重合体水素化物100部に対して酸化防止剤として、テトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン(BASFジャパン社製「イルガノックス(登録商標)1010」)0.5部を添加した。その後、フィルター(キュノーフィルター社製、「ゼータプラス(登録商標)30H」、孔径0.5~1μm)、及び金属ファイバー製フィルター(ニチダイ社製、孔径0.4μm)を用いて異物をろ別除去した。次いで、得られたろ液を、円筒型濃縮乾燥機(日立製作所製)に入れ、温度290℃、圧力1kPa以下の条件で、溶媒であるシクロヘキサン及びその他の揮発成分を除去し、濃縮機に直結したダイから溶融状態でストランド状に押出し、水冷後、ペレタイザー(長田製作所製、「OSP-2」)でカッティングしてペレットを得た。
 得られたペレットを液体窒素とともに、ロータースピードミル(フリッチュ社製「P-14」)に投入し、回転数10000rpm、ふるいリングメッシュ条件0.08mm~6.0mmにて粉砕(乾式粉砕)し、環状オレフィン開環重合体水素化物の粒子を得た。
 得られた環状オレフィン開環重合体水素化物の粒子を試料として、示差走査熱量測定を行った結果、環状オレフィン開環重合体水素化物の粒子は非晶性であることが分かった。また、上記試料を用いて実施例1と同様に測定を行った。結果を表1に示す。
Example 3
After thorough drying, a pressure-resistant glass reactor was substituted with nitrogen and 2.0 parts of a monomer mixture consisting of 25% tetracyclododecene, 70% methanotetrahydrofluorene and 25% norbornene (1% relative to the total amount of monomers used in polymerization), 1.2 parts of 1-hexene, 0.42 parts of diisopropyl ether, 0.11 parts of isobutyl alcohol, and 785 parts of cyclohexane were added, followed by adding 1.35 parts of a cyclohexane solution of triisobutylaluminum with a concentration of 20% and stirring. Next, 13.4 parts of a cyclohexane solution of 0.65% tungsten hexachloride were added, heated to 53 ° C. to initiate a ring-opening polymerization reaction, and stirred for 10 minutes.
Next, while maintaining the total volume at 53° C. and stirring, 198 parts of the monomer mixture (99% based on the total amount of monomers used in polymerization) and 20.1 parts of a 0.65% cyclohexane solution of tungsten hexachloride were continuously dropped into the polymerization reaction vessel over 150 minutes. After the dropwise addition, stirring was continued for 30 minutes, and then 0.4 parts of isopropyl alcohol was added to terminate the ring-opening polymerization reaction. The weight average molecular weight (Mw) of the ring-opening polymer (cyclic olefin ring-opening polymer) of the monomer mixture contained in the obtained polymerization reaction solution was 19,000, and the number average molecular weight (Mn) was 10,700.
Next, 300 parts of the obtained polymerization reaction solution was transferred to an autoclave equipped with a stirrer, and 32 parts of cyclohexane and 3.8 parts of a diatomaceous earth supported nickel catalyst (manufactured by JGC Chemical Industries, Ltd., "T8400RL", nickel support rate 58%) were added. After replacing the atmosphere in the autoclave with hydrogen, the reaction was carried out at 190° C. under a hydrogen pressure of 4.5 MPa for 6 hours.
After completion of the hydrogenation reaction, the mixture was filtered at a pressure of 0.25 MPa using a pressure filter (manufactured by Ishikawajima-Harima Heavy Industries, Ltd., "Funda Filter") with diatomaceous earth (manufactured by Showa Chemical Industry Co., Ltd., "Radiolite (registered trademark) #500") as a filter bed to obtain a colorless and transparent solution containing a hydrogenated cyclic olefin ring-opening polymer. The hydrogenation rate of the hydrogenated cyclic olefin ring-opening polymer was 99.7%.
To the colorless and transparent solution, 0.5 parts of tetrakis[methylene-3-(3',5'-di-tert-butyl-4'-hydroxyphenyl)propionate]methane (BASF Japan "Irganox (registered trademark) 1010") was added as an antioxidant per 100 parts of the hydrogenated cyclic olefin ring-opening polymer in the solution. Thereafter, foreign matter was removed by filtration using a filter (Cunor Filter, "Zetaplus (registered trademark) 30H", pore size 0.5 to 1 μm) and a metal fiber filter (Nichidai, pore size 0.4 μm). The obtained filtrate was then placed in a cylindrical concentrating dryer (Hitachi, Ltd.), and the solvent cyclohexane and other volatile components were removed under conditions of a temperature of 290°C and a pressure of 1 kPa or less, and the filtrate was extruded in a molten state into a strand shape from a die directly connected to the concentrator, cooled with water, and cut with a pelletizer (Nagata Manufacturing Co., Ltd., "OSP-2") to obtain pellets.
The obtained pellets were put into a rotor speed mill ("P-14" manufactured by Fritsch) together with liquid nitrogen and pulverized (dry pulverization) at a rotation speed of 10,000 rpm and a sieve ring mesh condition of 0.08 mm to 6.0 mm to obtain particles of a hydrogenated cyclic olefin ring-opening polymer.
The obtained particles of hydrogenated cyclic olefin ring-opening polymer were used as a sample for differential scanning calorimetry, and it was found that the particles of hydrogenated cyclic olefin ring-opening polymer were amorphous. The same measurements as in Example 1 were performed using the above sample. The results are shown in Table 1.
(実施例4)
 充分に乾燥した後に窒素置換したガラス製耐圧反応容器に、テトラシクロドデセン100部と、1-へキセン0.42部と、シクロヘキサン388部とを加え、続けて濃度20%のトリイソブチルアルミニウムのシクロヘキサン溶液0.40部と、n-ジブチルエーテル0.16部と、濃度10%のイソブチルアルコールのシクロヘキサン溶液0.31部とを加えて撹拌した。次いで、0.65%の六塩化タングステンのシクロヘキサン溶液9.70部を加えて、50℃に加温して開環重合反応を開始した。2時間後、イソプロピルアルコール0.11部を加え、開環重合反応を停止させた。得られた重合反応溶液に含まれるテトラシクロドデセン開環重合体(環状オレフィン開環重合体)の重量平均分子量(Mw)は36,200であり、数平均分子量(Mn)は23,200であった。
 得られた重合反応溶液に、ろ過助剤として珪藻土(昭和化学工業社製、「ラヂオライト#300」)0.5部を加えた。この懸濁液に対して、リーフフィルター(IHI社製、「CFR2」)にてろ過処理を行い、テトラシクロドデセン開環重合体を含む溶液を得た。
 次に、得られたテトラシクロドデセン開環重合体を含む溶液を、撹拌機及び温調ジャケット付きの反応器(住友重機械工業社製)に移送した後、シクロヘキサン600部と、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.1部とを加えて、テトラシクロドデセン開環重合体を固形分濃度12%で含む溶液を得た。次いで、全容を回転数64rpmで撹拌しながら、水素圧4MPa、温度180℃にて4時間水素添加反応を行い、テトラシクロドデセン開環重合体水素化物の粒子を含有するスラリーを得た。テトラシクロドデセン開環重合体水素化物の水素化率は99.3%であった。
 上記スラリーの固形分100部に対して、酸化防止剤として、テトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン(BASFジャパン社製、「イルガノックス(登録商標)1010」)0.5部を添加し、凍結乾乾燥機(日本テクノサービス社製、「FD0480-1601」)で溶媒を除去することで、テトラシクロドデセン開環重合体水素化物の粒子を得た。
 得られたテトラシクロドデセン開環重合体水素化物の粒子を試料として、示差走査熱量測定を行った結果、テトラシクロドデセン開環重合体水素化物の粒子は結晶性を有することが分かった。また、上記試料を用いて実施例1と同様に測定を行った。結果を表1に示す。
Example 4
After thorough drying, 100 parts of tetracyclododecene, 0.42 parts of 1-hexene, and 388 parts of cyclohexane were added to a glass pressure-resistant reaction vessel substituted with nitrogen, followed by adding 0.40 parts of a 20% concentration triisobutylaluminum cyclohexane solution, 0.16 parts of n-dibutyl ether, and 0.31 parts of a 10% concentration isobutyl alcohol cyclohexane solution, and stirring. Next, 9.70 parts of a 0.65% cyclohexane solution of tungsten hexachloride was added, and the mixture was heated to 50°C to initiate a ring-opening polymerization reaction. After 2 hours, 0.11 parts of isopropyl alcohol was added to stop the ring-opening polymerization reaction. The weight average molecular weight (Mw) of the tetracyclododecene ring-opening polymer (cyclic olefin ring-opening polymer) contained in the obtained polymerization reaction solution was 36,200, and the number average molecular weight (Mn) was 23,200.
To the obtained polymerization reaction solution, 0.5 parts of diatomaceous earth ("Radiolite #300" manufactured by Showa Chemical Industry Co., Ltd.) was added as a filter aid. This suspension was filtered using a leaf filter ("CFR2" manufactured by IHI Corporation) to obtain a solution containing a tetracyclododecene ring-opening polymer.
Next, the solution containing the obtained tetracyclododecene ring-opening polymer was transferred to a reactor (manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a stirrer and a temperature-controlled jacket, and then 600 parts of cyclohexane and 0.1 parts of chlorohydridocarbonyltris(triphenylphosphine)ruthenium were added to obtain a solution containing tetracyclododecene ring-opening polymer at a solid content concentration of 12%. Next, while stirring the entire volume at a rotation speed of 64 rpm, a hydrogenation reaction was carried out at a hydrogen pressure of 4 MPa and a temperature of 180°C for 4 hours to obtain a slurry containing particles of the hydrogenated tetracyclododecene ring-opening polymer. The hydrogenation rate of the hydrogenated tetracyclododecene ring-opening polymer was 99.3%.
0.5 parts of tetrakis[methylene-3-(3',5'-di-tert-butyl-4'-hydroxyphenyl)propionate]methane (manufactured by BASF Japan, "Irganox (registered trademark) 1010") was added as an antioxidant to 100 parts of the solid content of the above slurry, and the solvent was removed using a freeze-drying dryer (manufactured by Nippon Techno Service Co., Ltd., "FD0480-1601") to obtain particles of a hydrogenated tetracyclododecene ring-opening polymer.
The obtained particles of hydrogenated tetracyclododecene ring-opening polymer were used as a sample for differential scanning calorimetry, and it was found that the particles of hydrogenated tetracyclododecene ring-opening polymer had crystallinity. The same measurements as in Example 1 were also carried out using the above sample. The results are shown in Table 1.
(実施例5)
 内部を乾燥し、窒素置換した重合反応器に、トルエン960部と、テトラシクロドデセン220部と、1-ヘキセン0.166部とを仕込み、回転数300rpm~350rpmで攪拌しながら溶媒温度を40℃に昇温した。
 一方で、トルエン23.5部と、rac-エチレンビス(1-インデニル)ジルコニウムジクロリド0.044部と、メチルアルミノキサン9.0%トルエン溶液(東ソー・ファインケム社製、「TMAO-200シリーズ」)6.22部とをガラス容器にて混合して触媒液を得た。
 上記反応器中の溶媒温度が40℃に達したところで、上記触媒液を反応器に添加し、その後直ちに0.08MPaのエチレンガスを液相に導入し、重合を開始した。エチレン噴出し口の位置は、反応器の底と液面との距離(A)と、エチレン噴出し口と液面との距離(B)との比(B)/(A)が0.60である。エチレンガスが消費されると自動的にエチレンガスが供給されるようにして、エチレンガスの圧力を一定に保った。30分間経過した後、エチレンガスの導入を停止し、脱圧し、次いでメタノール5部を添加し重合反応を停止させた。
 得られた反応溶液を珪藻土(昭和化学工業社製「ラジオライト(登録商標)#800」)でろ過し、0.05%の塩酸を含むイソプロパノール中に注いで重合体を析出させた。析出した重合体を分取、洗浄し、100℃で15時間減圧乾燥し、エチレン・テトラシクロドデセン共重合体を得た。
 得られたエチレン・テトラシクロドデセン共重合体の重量平均分子量(Mw)は56,000であり、数平均分子量(Mn)は22,000であった。
 得られたエチレン・テトラシクロドデセン共重合体に、酸化防止剤として、テトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン(BASFジャパン社製、「イルガノックス(登録商標)1010」)を1.0部と、シクロヘキサン300部とを添加し、凍結乾燥機(日本テクノサービス社製、「FD0480-1601」)で溶媒を除去した。
 溶媒除去後に得られたものを細かく砕き、液体窒素とともに、ロータースピードミル(フリッチュ社製、型番「P-14」)に投入し、回転数10000rpm、ふるいリングメッシュ条件0.08mm~6.0mmにて粉砕(乾式粉砕)を行い、エチレン・テトラシクロドデセン共重合体の粒子を得た。
 得られたエチレン・テトラシクロドデセン共重合体の粒子を試料として、実施例1と同様に測定を行った。結果を表1に示す。
Example 5
Into a polymerization reactor whose inside had been dried and purged with nitrogen, 960 parts of toluene, 220 parts of tetracyclododecene, and 0.166 parts of 1-hexene were charged, and the solvent temperature was raised to 40° C. while stirring at a rotation speed of 300 to 350 rpm.
On the other hand, 23.5 parts of toluene, 0.044 parts of rac-ethylenebis(1-indenyl)zirconium dichloride, and 6.22 parts of a 9.0% toluene solution of methylaluminoxane (manufactured by Tosoh Finechem Corporation, "TMAO-200 series") were mixed in a glass container to obtain a catalyst solution.
When the solvent temperature in the reactor reached 40°C, the catalyst solution was added to the reactor, and immediately thereafter, ethylene gas at 0.08 MPa was introduced into the liquid phase to initiate polymerization. The position of the ethylene outlet was such that the ratio (B)/(A) of the distance (A) between the bottom of the reactor and the liquid level and the distance (B) between the ethylene outlet and the liquid level was 0.60. Ethylene gas was automatically supplied when ethylene gas was consumed, so that the pressure of ethylene gas was kept constant. After 30 minutes, the introduction of ethylene gas was stopped, the pressure was released, and then 5 parts of methanol was added to terminate the polymerization reaction.
The resulting reaction solution was filtered through diatomaceous earth ("Radiolite (registered trademark) #800" manufactured by Showa Chemical Industry Co., Ltd.) and poured into isopropanol containing 0.05% hydrochloric acid to precipitate a polymer. The precipitated polymer was separated, washed, and dried under reduced pressure at 100°C for 15 hours to obtain an ethylene-tetracyclododecene copolymer.
The resulting ethylene-tetracyclododecene copolymer had a weight average molecular weight (Mw) of 56,000 and a number average molecular weight (Mn) of 22,000.
To the obtained ethylene-tetracyclododecene copolymer, 1.0 part of tetrakis[methylene-3-(3',5'-di-tert-butyl-4'-hydroxyphenyl)propionate]methane (manufactured by BASF Japan, "Irganox (registered trademark) 1010") as an antioxidant and 300 parts of cyclohexane were added, and the solvent was removed with a freeze dryer (manufactured by Nippon Techno Service Co., Ltd., "FD0480-1601").
The material obtained after removing the solvent was finely crushed and placed in a rotor speed mill (manufactured by Fritsch, model number "P-14") together with liquid nitrogen, and pulverized (dry pulverization) at a rotation speed of 10,000 rpm and a sieve ring mesh condition of 0.08 mm to 6.0 mm was performed to obtain particles of an ethylene-tetracyclododecene copolymer.
The obtained ethylene-tetracyclododecene copolymer particles were used as samples and measurements were carried out in the same manner as in Example 1. The results are shown in Table 1.
(実施例6)
 ポリプロピレン(プライムポリプロ社製、「プライムポリプロ」)のペレットを液体窒素とともに、ロータースピードミル(フリッチュ社製、「P-14」)に投入した。回転数は10000rpmとし、ふるいリングメッシュ条件0.08~6.0mmにて粉砕し、ポリプロピレンの粒子を得た。
 得られたポリプロピレンの粒子を試料として、実施例1と同様に測定を行った。結果を表1に示す。
Example 6
Pellets of polypropylene (Prime Polypro) were placed in a rotor speed mill (Fritsch P-14) together with liquid nitrogen. The rotation speed was set to 10,000 rpm, and the pellets were pulverized under a sieve ring mesh condition of 0.08 to 6.0 mm to obtain polypropylene particles.
The obtained polypropylene particles were used as samples and measurements were carried out in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
 既製品であるポリテトラフルオロエチレンのパウダー(三井・デュポン フロロケミカル社製、「6-J」)を試料として、実施例1と同様に測定を行った。結果を表1に示す。
(Comparative Example 1)
A commercially available polytetrafluoroethylene powder (manufactured by DuPont-Mitsui Fluorochemicals, "6-J") was used as a sample and measurements were carried out in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
 ペルフルオロアルコキシアルカン(三井・デュポンフロロケミカル社製、440HP-J)のペレットを液体窒素とともに、ロータースピードミル(フリッチュ社製、「P-14」)に投入した。そして、ペルフルオロアルコキシアルカンのペレットを回転数10000rpm、ふるいリングメッシュ条件0.08mm~6.0mmにて粉砕(乾式粉砕)し、ペルフルオロアルコキシアルカンのパウダーを得た。得られたパウダーを試料として、実施例1と同様に測定を行った。結果を表1に示す。
(Comparative Example 2)
Pellets of perfluoroalkoxyalkane (440HP-J, manufactured by Mitsui DuPont Fluorochemicals) were put into a rotor speed mill (P-14, manufactured by Fritsch) together with liquid nitrogen. The pellets of perfluoroalkoxyalkane were then pulverized (dry pulverized) at a rotation speed of 10,000 rpm and a sieve ring mesh condition of 0.08 mm to 6.0 mm to obtain a powder of perfluoroalkoxyalkane. The obtained powder was used as a sample and measurements were carried out in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、
「結晶性DCPD」は、結晶性ジシクロペンタジエン開環重合体水素化物を示し、
「非晶性COP」は、非晶性環状オレフィン開環重合体水素化物を示し、
「結晶性TCD」は、結晶性テトラシクロドデセン開環重合体水素化物を示し、
「PP」は、ポリプロピレンを示し、
「PTFE」は、ポリテトラフルオロエチレンを示し、
「PFA」は、ペルフルオロアルコキシアルカンを示す。
In Table 1,
"Crystalline DCPD" refers to a crystalline hydrogenated dicyclopentadiene ring-opening polymer;
"Amorphous COP" refers to a hydrogenated amorphous cyclic olefin ring-opening polymer,
"Crystalline TCD" refers to a crystalline hydrogenated tetracyclododecene ring-opening polymer,
"PP" indicates polypropylene;
"PTFE" refers to polytetrafluoroethylene;
"PFA" refers to perfluoroalkoxyalkane.
 表1より、実施例1~6で得られた粒子は、ハロゲン含有量が3質量%以下の樹脂パウダー粒子であり、誘電率が低いことから、当該粒子を含む基板用樹脂組成物を用いることで、環境負荷を低減することができ、かつ、誘電率が低減された基板を製造することができることが分かる。 From Table 1, it can be seen that the particles obtained in Examples 1 to 6 are resin powder particles with a halogen content of 3% by mass or less and a low dielectric constant, and therefore by using a resin composition for substrates containing these particles, it is possible to reduce the environmental load and produce substrates with a reduced dielectric constant.
 本発明によれば、環境負荷を低減することができ、かつ、誘電率が低減された基板を製造するための材料として用いることができる基板用樹脂組成物を提供することができる。
 また、本発明によれば、本発明の基板用樹脂組成物に好適に用い得る樹脂パウダー粒子の製造方法を提供することができる。
According to the present invention, it is possible to provide a resin composition for substrates which can reduce the environmental load and can be used as a material for producing substrates having a reduced dielectric constant.
Furthermore, according to the present invention, it is possible to provide a method for producing resin powder particles that can be suitably used in the resin composition for substrates of the present invention.

Claims (7)

  1.  ハロゲン含有量が3質量%以下の樹脂パウダー粒子を含有する、基板用樹脂組成物。 A resin composition for circuit boards containing resin powder particles with a halogen content of 3% by mass or less.
  2.  前記樹脂パウダー粒子は平均粒子径が30μm以下であり、かつ、前記基板用樹脂組成物中の前記樹脂パウダー粒子の全体積に対する、粒子径が70μm以上の樹脂パウダー粒子の体積が占める割合が15%以下である、請求項1に記載の基板用樹脂組成物。 The resin composition for circuit boards according to claim 1, wherein the resin powder particles have an average particle diameter of 30 μm or less, and the ratio of the volume of resin powder particles having a particle diameter of 70 μm or more to the total volume of the resin powder particles in the resin composition for circuit boards is 15% or less.
  3.  前記樹脂パウダー粒子は平均粒子径が20μm以下であり、かつ、前記基板用樹脂組成物中の前記樹脂パウダー粒子の全体積に対する、粒子径が70μm以上の樹脂パウダー粒子の体積が占める割合が15%以下である、請求項1に記載の基板用樹脂組成物。 The resin composition for circuit boards according to claim 1, wherein the resin powder particles have an average particle size of 20 μm or less, and the ratio of the volume of resin powder particles having a particle size of 70 μm or more to the total volume of the resin powder particles in the resin composition for circuit boards is 15% or less.
  4.  前記樹脂パウダー粒子は、環状オレフィン樹脂の粒子である、請求項1~3の何れかに記載の基板用樹脂組成物。 The resin composition for substrates according to any one of claims 1 to 3, wherein the resin powder particles are particles of a cyclic olefin resin.
  5.  前記樹脂パウダー粒子は、結晶性の環状オレフィン樹脂の粒子である、請求項1~4の何れかに記載の基板用樹脂組成物。 The resin composition for substrates according to any one of claims 1 to 4, wherein the resin powder particles are particles of a crystalline cyclic olefin resin.
  6.  環状オレフィン開環重合体を10質量%以上の固形分濃度で含む溶液を水素添加反応に供する工程を経て、ハロゲン含有量が3質量%以下の結晶性環状オレフィン開環重合体水素化物の樹脂パウダー粒子を得る、樹脂パウダー粒子の製造方法。 A method for producing resin powder particles, which comprises subjecting a solution containing a cyclic olefin ring-opening polymer at a solids concentration of 10% by mass or more to a hydrogenation reaction, to obtain resin powder particles of hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3% by mass or less.
  7.  結晶性環状オレフィン開環重合体水素化物を溶液中で粉砕する工程を経て、ハロゲン含有量が3質量%以下の結晶性環状オレフィン開環重合体水素化物の樹脂パウダー粒子を得る、樹脂パウダー粒子の製造方法。 A method for producing resin powder particles, comprising the steps of grinding a hydrogenated crystalline cyclic olefin ring-opening polymer in a solution to obtain resin powder particles of a hydrogenated crystalline cyclic olefin ring-opening polymer having a halogen content of 3% by mass or less.
PCT/JP2023/035250 2022-10-27 2023-09-27 Circuit board resin composition, and method for producing resin powder particles WO2024090112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-172741 2022-10-27
JP2022172741 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090112A1 true WO2024090112A1 (en) 2024-05-02

Family

ID=90830558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035250 WO2024090112A1 (en) 2022-10-27 2023-09-27 Circuit board resin composition, and method for producing resin powder particles

Country Status (1)

Country Link
WO (1) WO2024090112A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128875A (en) * 2000-10-25 2002-05-09 Nippon Zeon Co Ltd Manufacturing method of cyclic olefin ring-opened polymer hydride
JP2013256596A (en) * 2012-06-13 2013-12-26 Nippon Zeon Co Ltd Resin composition, and molded article
JP2014118475A (en) * 2012-12-17 2014-06-30 Nippon Zeon Co Ltd Method of manufacturing cyclic olefin ring-opened polymer hydrogenated material
JP2017195334A (en) * 2016-04-22 2017-10-26 三菱瓦斯化学株式会社 Resin composition for printed wiring board, prepreg, resin sheet, laminate board, metal foil-clad laminate board, and printed wiring board
JP2019023265A (en) * 2017-07-25 2019-02-14 株式会社クラレ Method for producing resin composition
WO2022045363A1 (en) * 2020-08-31 2022-03-03 住友化学株式会社 Film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128875A (en) * 2000-10-25 2002-05-09 Nippon Zeon Co Ltd Manufacturing method of cyclic olefin ring-opened polymer hydride
JP2013256596A (en) * 2012-06-13 2013-12-26 Nippon Zeon Co Ltd Resin composition, and molded article
JP2014118475A (en) * 2012-12-17 2014-06-30 Nippon Zeon Co Ltd Method of manufacturing cyclic olefin ring-opened polymer hydrogenated material
JP2017195334A (en) * 2016-04-22 2017-10-26 三菱瓦斯化学株式会社 Resin composition for printed wiring board, prepreg, resin sheet, laminate board, metal foil-clad laminate board, and printed wiring board
JP2019023265A (en) * 2017-07-25 2019-02-14 株式会社クラレ Method for producing resin composition
WO2022045363A1 (en) * 2020-08-31 2022-03-03 住友化学株式会社 Film

Similar Documents

Publication Publication Date Title
JP5598326B2 (en) Crystalline norbornene-based ring-opening polymer hydride and molded article
KR102220134B1 (en) Release film, laminate and method for manufacturing same, and method for manufacturing fuel cell
TWI805574B (en) Manufacturing method of molding material
US10669398B2 (en) Flame-retardant resin composition and molded resin object
JP2016155327A (en) Production method of container made of resin, and container made of resin
WO2013133226A1 (en) Polymer composition having alicyclic structure
WO2024090112A1 (en) Circuit board resin composition, and method for producing resin powder particles
TW200403261A (en) Cycloolefin addition copolymer and optical transparent material
JP6763373B2 (en) Copolymers, polymers, molding materials and resin moldings
JP4587679B2 (en) Process for producing aromatic-containing cyclic olefin copolymer
JP2016183221A (en) Purification method of cyclic olefin polymer, and production method of cyclic olefin polymer
JP2014118475A (en) Method of manufacturing cyclic olefin ring-opened polymer hydrogenated material
JP2006205723A (en) Method for processing surface of resin molding, resin molding and optical material
JP7416050B2 (en) Ring-opening polymer hydrides, resin compositions, and molded bodies
JPH03273043A (en) Hydrogenated ring-opening polymer composition and its use
JP2007119509A (en) Method for preparing cyclic olefin polymer
JP2016113585A (en) Resin composition, resin molded product and optical member
JP2020050745A (en) Film and method for producing the same
JP2016069642A (en) Method for preparing raw material liquid for hydrogenation reaction, method for producing hydrogenated product of polymer, and hydrogenated product of polymer
JPH0372546A (en) Cyclic olefin polymer composition and impact resistance improver
CN117586452A (en) Cycloolefin composition and optical resin material
TW202328270A (en) Porous body, and method for preparing porous body
JP2006188561A (en) METHOD FOR PRODUCING POLYMER BY POLYMERIZING 1,4-METHANO-1,4,4a,9a-TETRAHYDROFLUORENE
JP2006282696A (en) Method for producing norbornene ring-opened polymer hydrogenate and norbornene ring-opened polymer hydrogenate obtained thereby
JP2017160378A (en) Method for reducing amount of solid phase consisting of crystalline cyclic olefin polymer hydride and method for cleaning reactor