WO2024090004A1 - Design assistance method, design assistance system, and program - Google Patents

Design assistance method, design assistance system, and program Download PDF

Info

Publication number
WO2024090004A1
WO2024090004A1 PCT/JP2023/030842 JP2023030842W WO2024090004A1 WO 2024090004 A1 WO2024090004 A1 WO 2024090004A1 JP 2023030842 W JP2023030842 W JP 2023030842W WO 2024090004 A1 WO2024090004 A1 WO 2024090004A1
Authority
WO
WIPO (PCT)
Prior art keywords
customer
driving control
area
unit
odd
Prior art date
Application number
PCT/JP2023/030842
Other languages
French (fr)
Japanese (ja)
Inventor
哲平 齋藤
新士 石原
貴大 酒井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024090004A1 publication Critical patent/WO2024090004A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/20Information sensed or collected by the things relating to the thing itself
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/60Positioning; Navigation

Definitions

  • the present invention relates to a design support method, design support system, and program for the Operational Design Domain (ODD) of control systems for automatically driving transport robots, automobiles, and other work vehicles.
  • ODD Operational Design Domain
  • control systems have been developed to realize automated driving of automobiles and automated driving of various industrial vehicles such as transport robots and construction machinery.
  • the automation of industrial vehicles is expected to reduce costs by making the site unmanned, and to improve work efficiency by standardizing work efficiency.
  • automated driving of automobiles is expected to improve traffic congestion and reduce accidents.
  • control systems that realize automation vary widely depending on the target vehicle and the environment in which it operates, and designing them requires know-how such as matching the vehicle's control characteristics with its performance to suit the environment, which requires a significant amount of work.
  • ODD the environmental condition that guarantees the operation of the autonomous driving control system.
  • Patent Document 1 The design support system described in Patent Document 1 is known as a method for defining and updating an ODD.
  • Patent Document 1 describes a technology for creating a data set from an environmental map and defining an ODD for a condition space through a safety evaluation of an autonomous driving control system.
  • the defined ODD can be updated when additional data is received.
  • This type of design support system makes it possible to automatically define an ODD from an environmental map without relying on individual know-how, thereby reducing the number of people required for development and lowering development costs.
  • Patent Document 1 which defines an ODD based on a reliability evaluation (such as operation rate) from an environmental data set
  • the ODD that matches the environment in which the autonomous driving service is provided requires an autonomous driving control system with high functionality, which may not satisfy the key performance indicators indicated by the operator of the autonomous driving service. For example, this may result in increased development costs or a decrease in operation rate.
  • the present invention aims to provide a design support method, design support system, and program that can design an ODD that suppresses increases in development costs for autonomous driving services and improves key performance indicators for business operators.
  • the present invention provides a design support system that receives environmental data from an environmental measurement device that measures the environment of a service provision area managed by a customer and customer requests and outputs improvement values of the customer's key performance indicators, comprising an automatic driving control function database that stores a program for automatic driving control of vehicles traveling in the service provision area, an area environmental data generation unit that has an area digital map generation unit that uses the environmental data to generate a digital map of the service provision area, an automatic driving ODD automatic definition unit that generates and outputs an operation design area that is an environmental constraint condition for operating an automatic driving service from information on the digital map, and an automatic driving control program that generates and outputs an operation design area that is an environmental constraint condition for operating an automatic driving service for the operation design area output from the automatic driving ODD automatic definition unit.
  • the design support system is characterized in that it includes an ODD adjustment unit that evaluates the fulfillment of the driving control function specifications and changes the operation design domain based on the evaluation results, an automatic driving control system evaluation unit that evaluates the operation design domain based on the customer requirements, and a KPI evaluation unit that generates a customer requirement evaluation formula that evaluates the customer's key performance indicators based on the customer requirements, calculates the customer requirement evaluation formula based on the value output from the automatic driving control system evaluation unit, and outputs the operation design domain and the customer's key performance indicators, and the ODD adjustment unit makes changes to the operation design domain so as to improve it over the previous value of the customer requirement evaluation formula based on the value of the customer requirement evaluation formula calculated and output by the KPI evaluation unit, and the KPI evaluation unit outputs an improvement value of the customer's key performance indicator based on the changed operation design domain.
  • the present invention also provides a design support method that obtains environmental data from an environmental measurement device that measures the environment of a service area managed by a customer and customer requirements, and outputs an improvement value of the customer's key performance indicators using a computer device
  • the design support method comprising: an automatic driving control function database that stores an automatic driving control program for automatically controlling the driving of vehicles that run in the service area; a calculation unit of the computer device uses the environmental data to generate a digital map of the service area, generates an operation design domain that is an environmental constraint condition for operating the automatic driving service from the information of the digital map, evaluates the satisfaction of the automatic driving control function specifications stored in the automatic driving control program in pairs for the operation design domain, changes the operation design domain based on the evaluation results, evaluates the operation design domain based on the customer requirements, generates a customer requirements evaluation formula that evaluates the customer's key performance indicators based on the customer requirements, calculates the customer requirements evaluation formula based on the value output from the automatic driving control system evaluation unit, obtains the operation design domain and the customer's key performance
  • a design support program for receiving environmental data from an environmental measurement device that measures the environment of a service provision area managed by a customer and customer requests and outputting an improvement value of the customer's key performance indicators comprising an automatic driving control function program which is an automatic driving control program for automatic driving control of vehicles traveling in the service provision area, an area environmental data generation program having an area digital map generation unit that generates a digital map of the service provision area using the environmental data, an automatic driving ODD automatic definition program that generates and outputs an operation design area that is an environmental constraint condition for operating an automatic driving service from information on the digital map, and an evaluation result obtained by evaluating the satisfaction of the automatic driving control function specifications stored in the automatic driving control program in pairs for the operation design area.
  • a KPI evaluation program that generates a customer requirement evaluation formula for evaluating a customer's key performance indicators based on the customer requirements, calculates the customer requirement evaluation formula based on the value output from the automatic driving control system evaluation program, and outputs the operation design area and the customer's key performance indicators
  • the ODD adjustment program modifies the operation design area so as to improve it over the previous value of the customer requirement evaluation formula based on the value of the customer requirement evaluation formula calculated and output by the KPI evaluation program
  • the KPI evaluation program outputs an improved value of the customer's key performance indicators based on the modified operation design area.
  • the present invention provides a design support system that can automatically design an ODD that can improve the business owner's key performance indicators. This makes it possible to provide an autonomous driving service that improves the business owner's key performance indicators.
  • FIG. 1 is a diagram showing an example of the configuration of a design support system according to a first embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of an automated transport area providing cargo transport services.
  • FIG. 13 is a diagram showing an example of a shape digital map.
  • FIG. 4 is a diagram showing an example of a data structure of an automatic driving control function database.
  • FIG. 13 is a diagram showing an example of a traceability table showing the relationship between autonomous driving control function data, ODD items, and KPI values.
  • FIG. 2 is a flowchart showing a design support method according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of use of the output of the design support system 1.
  • FIG. 1 illustrates an example of a work site providing freight transportation services.
  • FIG. 13 is a diagram showing an example of a work site after an environment change.
  • FIG. 1 illustrates an example of a public highway environment in which freight transportation services are provided.
  • FIG. 13 is
  • the present invention can be applied to the design of all services related to machines capable of autonomous driving in specific environments, and the application of the present invention is not limited to automated guided vehicle services.
  • Example 1 the basic configuration of a design support method and a design support system according to an embodiment of the present invention will be described, in Example 2, the case where the service provision area is a work site will be described, in Example 3, the case where the service provision area is a general public road will be described, and in Example 4, the program of the design support system will be described.
  • FIG. 1 is a diagram showing an example of the configuration of a design support system 1 according to an embodiment of the present invention.
  • a design support system 1 is described that is applied to the creation of an automated cargo transport service in a logistics warehouse (area) 10 using automated transport vehicles.
  • the design support system 1 in Figure 1 includes an area environment data generation unit 3, an automatic driving control function database DB, an automatic driving control system evaluation unit 5, a customer information input unit 6, an automatic automatic driving ODD definition unit 7, an ODD adjustment unit 8, and a KPI evaluation unit 9, and provides design support by importing the output of an environmental measurement device 2 from an external logistics warehouse (area) 10 and customer requirements.
  • the design support system 1 which is composed of a computer device, stores a design support program in an internal ROM for automatically designing an ODD for an autonomous vehicle, and is a system that realizes a design support method by executing processing according to the program in a CPU.
  • the program will be described in Example 5.
  • the design support system 1 is connected to the environmental measuring device 2 via a signal line, and acquires environmental information D1 for the area 10 for which the design support system 1 provides services.
  • the area 10 for which the services are provided is, for example, the automated transport area for which cargo transport services are provided as shown in FIG. 2.
  • Trucks 18 enter and leave the automated transport area 10 from the outside, and cargo is carried in and out between the trucks 18 and a cargo storage area 16 by forklifts 17. Furthermore, cargo in the cargo storage area 16 is transported by automated transport vehicle 11 to an appropriate designated storage location, moving along a route that avoids obstacles such as shelves 12 within the automated transport service provision area 15.
  • the automated guided vehicle 11 is equipped with cameras and LiDAR as environmental measurement devices 2B, and cameras and LiDAR are placed at appropriate locations within the area 10 as fixed environmental measurement devices 2A, which allow the environment within the area to be understood.
  • Environmental information D1 measured by these environmental measurement devices 2A and 2B is transmitted to the design support system 1.
  • the environmental measuring device 2 may obtain environmental information about the automatic transport area 10 by driving the automatic transport vehicle 11 along a route specified by the area data collection unit 3a described below, or the environmental measuring device 2 may be installed at any location within the automatic transport area 10 to collect environmental information about the automatic transport area 10.
  • the environmental information D1 refers to the road surface and structure positions and shapes on which the automated guided vehicle 11 travels, the brightness of lighting in the travel area, and the availability of infrastructure such as Wi-Fi. Therefore, the environmental measurement device 2 is not limited to cameras and LiDAR, but also includes devices for measuring radio waves and the brightness of lighting. Furthermore, the environmental measurement device 2 may be installed on either the vehicle or the equipment side, and the signal line between the environmental measurement device 2 and the design support system 1 may be a wired or wireless connection.
  • the environmental information D1 measured by the environmental measuring device 2 is input to the area environmental data generating unit 3.
  • the area environment data generating section 3 is composed of an area data collecting section 3a, an area digital map generating section 3b, and a service provision area specifying section 3c.
  • the service provision area specifying section 3c which is involved in the present invention will be described later.
  • the area data collection unit 3a collects environmental information D1 of the automatic transport area 10 from an environmental measurement device 2B mounted on an automatic transport vehicle 11 traveling within the automatic transport area 10 that provides cargo transport services, for example, as shown in FIG. 2.
  • the environmental measurement device 2B may obtain the environmental information D1 of the automatic transport area 10 by having the automatic transport vehicle 11 travel along a route specified by the area data collection unit 3a, or the environmental measurement device 2 may be installed at any location within the automatic transport area 10 to collect the environmental information D1 of the automatic transport area 10.
  • FIG. 2 also shows on-site reference coordinates 19 for defining the position within the area.
  • the area digital map generator 3b aggregates the environmental information D1 collected by the area data collector 3a, and constructs a shape digital map in which obstacles such as shelves 12 installed in the automatic transport area 10 are represented, for example, as a collection of three-dimensional points.
  • Figure 3 shows, as an example of a digital shape map, shape data of a shelf 12 generated based on an image acquired by an image sensor or the like mounted on an automated guided vehicle 11. This data is obtained by extracting the outline 13 based on the image of the shelf 12, and data such as the external dimensions of the shelf 12 and aisle width data 20 are treated as the digital shape map.
  • the environmental measuring device 2 it is advisable to store and manage the information acquired by the environmental measuring device 2 in a digital map regarding environmental information related to radio waves such as Wi-Fi in the automatic transport area 10, such as managing each area according to whether or not wireless infrastructure is available.
  • a Wi-Fi antenna 21 is installed in the shooting area in FIG. 3, and it is advisable to also manage environmental information related to radio waves in this location.
  • the autonomous driving control function database DB in FIG. 1 stores autonomous driving control function data D2.
  • an example of autonomous driving control function data D2 is stored in a relational database format, including the autonomous driving control function ID (D21), function name D22, function specifications D23, autonomous driving control program D24 for the function, sensors D25 required to realize the function, and KPIs (D26, D27).
  • the autonomous driving control function is, for example, a function to acquire the position of the vehicle in the autonomous transport area 10, and control of the autonomous transport vehicle 11 to acquire luggage from the shelf 12.
  • the automatic driving control system evaluation unit 5 in FIG. 1 includes an operation evaluation unit 5a, and has a function of evaluating the automatic driving performance in the automatic transport area 10 when some of the automatic driving control functions as automatic driving control programs registered in the automatic driving control function database DB are installed on an automatic transport vehicle 11.
  • the operation evaluation unit 5a may be configured, for example, as a vehicle motion simulator capable of performing simulations on a computer, or may be a computing device that performs evaluation based on the functional specifications of the automatic driving control functions registered in the automatic driving control function database DB.
  • the customer information input unit 6 sets key performance indicators (hereinafter, KPIs) as variables based on request input from the customer to whom the service is provided.
  • KPIs are, for example, the introduction cost and running cost of the service, safety, operation rate, the number of cargo shipments per unit time, etc.
  • the customer information input unit 6 also defines a formula for calculating the KPIs.
  • the customer information input unit 6 also identifies the area in which the service is provided based on the input request for the service, and outputs information about the area to the service provision area identification unit 3c.
  • the customer information input unit 6 may be equipped with a system that identifies the area using a graphical user interface (GUI), such as by specifying a rectangle on a map.
  • GUI graphical user interface
  • area 10 in FIG. 2 is identified as the area in which the service is provided.
  • the customer may use the GUI to specify the automatic transport service provision area 15 and the cargo storage area 16.
  • the forklift 17 is specified to only enter the cargo storage area 16 within the automatic transport service provision area 15.
  • the customer can specify that the forklift 17 is to be manually operated, and that the forklift 17 will transport cargo from the cargo storage area 16 to the truck 18.
  • the service provision area identification unit 3c in Figure 1 receives information on the service area 10 and identifies the area.
  • the area is identified by specifying a certain area based on the area's latitude and longitude position and size from a position on a map specified by the GUI provided in the customer information input unit 6, or by specifying a route by specifying the latitude and longitude of multiple points.
  • on-site reference coordinates 19 are provided in the automatic transport service provision area 15, and the coordinates of the four corners of the automatic transport service provision area 15 are specified by the on-site reference coordinates 19.
  • the identified area information is provided to the area data collection unit 3a, which collects environmental information within the area.
  • the area information is also provided to the area digital map generation unit 3b, and the area digital map generation unit 3b specifies the range within which the digital map is to be generated.
  • the area environment data generation unit 3 organizes, for example, the current area configuration (area digital map, obstacles, etc.) and in-area environment information of the area 10 for which the service is provided, as well as what (where) and how the driving environment is to be changed from this state based on customer requests, along with the requested items, and passes this information to the automatic driving ODD definition unit 7 for the next stage of processing.
  • the automated driving ODD automatic definition unit 7 in FIG. 1 includes an operational environment characteristic extraction unit 7a and an operational environment change unit 7b.
  • the operational environment characteristic extraction unit 7a defines the ODD based on the digital map generated by the area digital map generation unit 3b and environmental information D1. Items of the ODD include, for example, the minimum width 20 of the passageway through which the automated transport vehicle 11 in FIG. 3 passes, the presence or absence of infrastructure equipment such as a WiFi antenna 21 required for the automated transport vehicle 11 to use WiFi, the presence or absence of workers in the automated transport service provision area 15 in FIG. 2, and the maximum vehicle speed defined by the safety rules of the automated transport area 10.
  • the operation environment change unit 7b has a function of outputting changes related to ODD items to the operation environment characteristic extraction unit 7a when there is a change in the automatic transport area 10 related to the ODD items. For example, if there is a change in the layout of the shelves 12 in the automatic transport area 10 and the minimum value of the aisle width 20 in FIG. 3 is changed, the minimum value is output. Also, when a change is made to the automatic transport area 10, such as installing a fixed surveillance camera 2A in the automatic transport area 10 in FIG. 2, the change is extracted.
  • the installation of a fixed surveillance camera 2A means that the ODD item's infrastructure sensor support, that is, the automatic driving of the automatic transport vehicle 11 can use infrastructure sensor support, and this change is defined as the presence or absence of infrastructure sensor support for the ODD item through the operation environment characteristic extraction unit 7a.
  • the operation environment change unit 7b also has a function to calculate, based on the digital map, candidates for installing infrastructure sensors such as the surveillance cameras 2A that provide infrastructure sensor support in the automatic transport area 10. For example, based on the digital map, if there is an area within the automatic transport service provision area 15 where multiple automatic transport vehicles 11 have difficulty detecting each other due to blind spots caused by shelves 12, the type and installation location of sensors such as the surveillance cameras 2A to be placed so as to eliminate the blind spots is output as candidates.
  • the types of sensors that can be used for infrastructure sensor support and their use are stored in the automatic driving control function database DB.
  • the ODD adjustment unit 8 in FIG. 1 has a function of adjusting and determining the ODD items D3 of the automated guided vehicles 11 in the service to be provided and the automated driving control function data D2 of the automated driving control function installed in the automated guided vehicles 11, based on the ODD items D3 from the driving environment characteristics extraction unit 7a and the automated driving control function data D2 from the automated driving control function database DB.
  • the adjustment is made so as to improve the customer KPI evaluation value from the KPI evaluation unit 9, which will be described later.
  • the adjustment method is, for example, based on the process shown in traceability tables 23a and 23b, which show the relationship between the automatic driving control function data D2, ODD item D3, and KPI values D26 and D27 shown in Figure 5.
  • Traceability table 23a lists multiple autonomous driving control functions (IDs 1, 2, 3) referenced from the autonomous driving control function database DB on the vertical axis, and lists the ID (D21) of the autonomous driving control function data D2, function name D22, and KPI values D26, D27 on the horizontal axis.
  • the KPI values for each autonomous driving control function, D27 are the KPI values that will arise from installing that function. For example, KPI1 in D26 is the cost of installing the function (k yen), and KPI2 in D27 is the impact on power consumption and service operation time (h), etc.
  • the impact KPI2 on power consumption and service operation time (h) is 0, and the impact KPI on the cost of installing the function (k ⁇ ) is -4, -3, or -8.
  • Traceability table 23a also shows a list of ODD items D3 (ODD items 1, 2, 3) for multiple automatic driving control functions (IDs 1, 2, 3) on the horizontal axis, and shows the correspondence between the ODD items and the automatic driving control functions on the vertical axis, depending on whether or not there is an ODD item and what the numerical value influences.
  • ODD items 1 and 3 are applied to automatic driving control functions 1 and 2, and ODD item 2 is applied to automatic driving control function 3.
  • the traceability table 23a also includes, for odd item D3, KPI values (customer KPI evaluation values 13) that will arise as a result of changing odd item D3.
  • KPI values customer KPI evaluation values 13
  • the KPI impact on the cost of installing the function (k ⁇ ) after changing odd item D3 is 0 for all odd items 1, 2, and 3, meaning that there will be no increase in cost due to the change.
  • the KPI impact 2 on power consumption and service operating time (h) after changing odd item D3 is +12, +4, and +12 for odd items 1, 2, and 3, respectively.
  • traceability table 23b shows that the application of ODD item 2 to autonomous driving control function 2 has been excluded.
  • the new applied KPI value at this time is shown as customer KPI evaluation value 17.
  • the KPIs for each item in the traceability table 23a are set by transmitting the KPIs set in the customer information input unit 6 to the ODD adjustment unit 8 via the KPI evaluation unit 9 and the automatic driving control function database DB.
  • Flowchart 24 in FIG. 6 shows an example of a process performed by the ODD adjustment unit 8, the automatic driving control system evaluation unit 5, and the KPI evaluation unit 9 to determine a combination of ODD items and automatic driving control functions to improve the customer KPI evaluation value.
  • Flowchart 24 consists of steps S100 to S107, with steps S100, S101, S102, S105, S106, and S107 being processed by ODD adjustment unit 8.
  • Step S103 is a process within the automated driving control system evaluation unit 5
  • step S104 is a process within the KPI evaluation unit 9.
  • step S101 a temporary storage variable Ep of the KPI evaluation value is initialized to 0.
  • step S102 the combination of the automatic driving control function and the ODD item on the vertical and horizontal axes of the traceability table 23 is changed.
  • step S103 the ODD item D3 and the automatic driving control function D2 selected by the automatic driving control system evaluation unit 5 are evaluated.
  • step S104 the KPI evaluation unit 9 calculates a customer KPI evaluation value from the evaluation result of the automatic driving control system evaluation unit 5 and assigns it to the variable E.
  • Ki is each KPI value
  • wi is a weight for each KPI calculated by the customer information input unit 6 based on the information entered by the customer in the customer information input unit 6, and is set based on the importance or priority of the customer, for example.
  • the weight wi may also be used as a parameter for normalizing KPI values having different units.
  • L is the number of KPIs.
  • step S105 it is determined whether the customer KPI evaluation value has improved and converged sufficiently, and if the condition is true, it is determined that the customer KPI has been improved to the maximum extent, and the combination of ODD item D3 and automatic driving control function D2 at that time is output, and the process ends in step S108. If the conditional expression in step S105 is false, the process proceeds to step S107, the calculated customer KPI evaluation value E is substituted for the temporary saved variable Ep, and the process returns to step S102, and a combination that will improve the customer KPI evaluation value D2 is searched for again.
  • the automatic driving control system evaluation unit 5 shown in FIG. 1 includes an operation scenario generation unit 5b, which automatically creates a test scenario for evaluation by the operation evaluation unit 5a based on the ODD item D2 received from the ODD adjustment unit 8, and transmits the test scenario to the operation evaluation unit 5a.
  • the number of vehicles in operation in the test scenario is set according to the number of ODD vehicles in operation.
  • the test scenario describes and evaluates whether the automated transport vehicle 11 can be safely controlled when the worker is walking in various locations.
  • the KPI evaluation unit 9 collects the results of the operation evaluation unit 5a, calculates each KPI value, and calculates the customer KPI evaluation value E using, for example, formula (1). Furthermore, if the ODD adjustment unit 8 determines that the customer KPI evaluation value E has been sufficiently improved, the KPI evaluation unit 9 outputs the ODD, the automatic driving control function, and the customer KPI evaluation value as the calculation results of the design support system 1.
  • the customer first inputs KPIs and services they wish to introduce into the customer information input unit 6, and the area environment data generation unit 3 collects and analyzes environmental information in advance. Based on that environmental information, the ODD automatic definition unit 7 can automatically define the ODD.
  • the performance satisfaction relationship between the ODD defined in the ODD adjustment unit 8 and the functions that can be installed on the automated guided vehicle 11 stored in the automatic driving control function database DB is evaluated, and based on the customer KPI evaluation value estimated through the automatic driving control system evaluation unit 5 and the KPI evaluation unit 9, a combination of the ODD and automatic driving control function that maximizes the satisfaction of the customer KPI evaluation value can be automatically designed.
  • traceability table 23b By improving the customer KPI evaluation value according to the flowchart 24 in FIG. 6 based on this customer KPI evaluation value, a combination like that shown in traceability table 23b can be calculated.
  • traceability table 23b attention is focused on ODD item 2 as an example.
  • the KPI2 value related to ODD item 2 with the KPI1 value of the automatic driving control function CCC required to deal with ODD item 2, it can be seen that the value for improving the customer KPI evaluation value is negative.
  • an automated cargo transport service that does not consider ODD item 2 is provided by not equipping the automated transport vehicle 11 with an automated driving control function CCC. This reduces the service provision time for KPI 2, but when the customer KPI evaluation value in the traceability table 23b is calculated by setting all weights to 1 in equation (1), the result is 17, which is an improved value compared to the traceability table 23a.
  • the customer can minimize the post-implementation adjustments that have previously occurred, and can quickly launch a service that meets the customer's KPIs to the greatest extent possible.
  • the KPI is cost
  • a design solution can be obtained before actual operation that alleviates ODD by excluding pedestrians within the automated transport area 10 from the area using rules, while minimizing the need for additional function development and performance improvements to the automated driving control function.
  • the improvement information provided by the KPI evaluation unit 9 is improvement information D4 related to the autonomous driving control function, improvement information D5 related to the ODD, and customer KPI (D6), and the improvement information provided by the autonomous driving control system evaluation unit 5 is infrastructure sensor information D7 related to sensor placement and sensor type.
  • FIG. 7 is a diagram showing an example of how the output of the design support system 1 is used.
  • the improvement information D4 relating to the autonomous driving control function in the upper part of FIG. 7 is provided directly to the autonomous vehicle 11, or indirectly to the autonomous vehicle 11 via the control system 30.
  • the autonomous driving control function D4 includes control software and the sensor specifications required for it, and the autonomous driving control function D4 from the design support system 1 is newly installed in the autonomous driving vehicle 11.
  • the control software is implemented in the calculation device 11a (controller, etc.) of the autonomous driving vehicle 11, and the sensor 11b is installed in the autonomous driving vehicle 11 according to the sensor specifications.
  • the calculation device 11a of the autonomous vehicle 11 calculates a control command value for controlling the autonomous driving of the vehicle, sends the control command value to the control device 11a, and transmits a control signal to the actuator (not shown) of the vehicle (tire rotation speed and steering angle).
  • the calculation device 31 and the control device 11a may be provided in separate devices.
  • the calculation device 31 may be provided in the control system 30, which is a device provided in a location separate from the autonomous vehicle 11.
  • the control system 30 and the autonomous vehicle 11 can exchange signals via wireless communication, etc.
  • control software for the autonomous driving control function D4 is implemented in the arithmetic device 31 of the management system 30, and a sensor is installed in the autonomous driving vehicle 11 based on the sensor specifications.
  • a control command value for autonomous driving control calculated by the arithmetic device 31 of the management system 30 is transmitted to the autonomous driving vehicle 11 via wireless communication, and the control device 11a of the autonomous driving vehicle 11 transmits a control signal for driving the actuator of the host vehicle based on the control command value to the actuator.
  • the sensor signal is transmitted to the arithmetic device 31 of the management system 30 via wireless communication and is used in the calculation of the autonomous driving control.
  • the second row from the top of Figure 7 shows an example of how improvement information D5 related to the ODD is used, in which the information is provided directly to the autonomous vehicle 11, or indirectly to the autonomous vehicle 11 via the control system 30.
  • the ODD-related improvement information D5 is used by the control system 30, and the ODD deviation determination unit 32 provided in the control system 30 determines whether the environment (service provision area) in which the autonomous vehicle 11 is traveling satisfies the driving environment conditions defined in the ODD-related improvement information D5, based on the ODD-related improvement information D5 and various environmental information.
  • the control system 30 can exchange signals with the control device 11a of the autonomous vehicle 11 via wireless communication, and the ODD deviation determination unit 32 does not send any signal to the control device when the driving conditions are met, but sends an ODD deviation signal to the control device 11a of the autonomous vehicle 11 when the driving conditions are not met (when the vehicle deviates from the ODD).
  • control device 11a of the autonomous vehicle 11 When the control device 11a of the autonomous vehicle 11 receives the ODD deviation signal, it notifies the driver who is present to cancel the autonomous driving state that it will switch to manual driving, or it transitions from the autonomous driving state to an emergency stop state, generates a control signal to automatically and safely stop the vehicle, and sends it to the actuator.
  • the ODD deviation determination unit may also be installed in the autonomous vehicle.
  • the various environmental information includes weather, time, GNSS radio wave conditions, road shape and condition, and the presence or absence of unintended pedestrians.
  • the third row from the top of Figure 7 shows an example of using the customer KPI (D6).
  • the customer KPI evaluation D6 e.g., numerical evaluation result
  • the customer KPI evaluation D6 is used to notify the customer of the customer KPI evaluation result via the display device 40. If the customer accepts the evaluation result notified on the display device, the customer issues an instruction to start downstream processes such as the automatic excavation control function, ODD, and infrastructure sensor. If the customer does not accept the evaluation result, the customer request in Figure 1 is changed and the design support system 1 is executed again.
  • the third row from the top of Figure 7 shows an example of how infrastructure sensor information D7 is used.
  • a design firm or the like Based on the infrastructure sensor information D7, a design firm or the like performs detailed design 50 (designing the pillars on which the sensors are attached, etc.) for installing infrastructure sensors in the service provision area, which is the subsequent process, and creates detailed drawings 51.
  • a construction firm installs 52 the infrastructure sensors in the service provision area based on the detailed drawings 51.
  • the ODD conditions are set according to the customer's wishes, but this may be a proposal to change the service conditions. Also, if the ODD is exceeded during implementation, it is advisable to stop the vehicle or stop automatic driving and hand over driving authority to the driver.
  • Example 2 the service provision location is assumed to be as shown in FIG. 8.
  • a shovel 27 excavates soil 26 every day, and the soil is loaded onto a dump truck 28 for transport, so that environmental information changes frequently.
  • design support system 1 supports design before implementation as a service related to automated driving, but it is desirable to redefine the ODD to accommodate environmental changes after operation begins, and to maintain or improve the customer KPI evaluation value.
  • an environmental change detection unit 3d is newly provided within the area data collection unit 3a in Figure 1.
  • the environmental change detection unit 3d means that when a change occurs in the environment of the area in which the service is provided, the area data collection unit 3a collects data again, the area digital map generation unit 3b generates a digital map again, and the design support system 1 is provided with a function of re-executing a series of processes.
  • the environmental change detection unit 3d of the design support system 1 detects a change in the area 29 at the work site 25 based on the environmental information D2 from the environmental measurement device 2 mounted on the dump truck 28, the area environmental data generation unit 3, the ODD automatic definition unit 7, the ODD adjustment unit 8, the automatic driving control system evaluation unit 5, and the KPI evaluation unit 9 are executed again to redesign and output the ODD and automatic driving control function that maintains or improves the customer KPI evaluation value.
  • Example 3 the location where the service is provided is assumed to be as shown in FIG. 10.
  • an autonomous vehicle 31 In a general public road environment 30 as shown in FIG. 10, an autonomous vehicle 31 must travel in accordance with various traffic rules, including traffic lights 32.
  • the traffic rules are defined as ODDs, just like the driving environment, and the autonomous vehicle 31 must be equipped with an autonomous driving control function that satisfies the ODDs provided in the general public road environment 30.
  • the design support system 1 of the first embodiment only functions registered in the autonomous driving control function database DB can be considered, so when providing an autonomous vehicle 31 for a general public road environment 30 where there is no design experience, the design support system 1 does not output an appropriate design, and there is a problem that a design solution that satisfies the customer's KPIs cannot be obtained.
  • the KPI evaluation unit 9 in FIG. 1 of the first embodiment has a function of adding an automatic driving control program with modified function specifications or an automatic driving control program with a newly added function to the automatic driving control function database DB.
  • the general public road environment 30 in FIG. 10 includes traffic lights 32, and is therefore defined as an environment with traffic lights in the ODD. Therefore, the self-driving car 31 is required to have the functionality to recognize the signs of the traffic lights 32.
  • Recognizing traffic light 32 signs using an onboard camera of an autonomous vehicle 31 may be a costly feature depending on other ODD items such as weather and lighting. Therefore, an environment for recognition support using infrastructure equipment 33 is created, and an ODD that can use infrastructure support is provided.
  • ODD item 4 shown in the traceability table 34 in FIG. 11 is an ODD indicating infrastructure support capable of information sharing with the traffic light 32, it is necessary to install the autonomous driving control function DDD35 corresponding to the ODD item 4 in the autonomous driving automobile 31.
  • the traceability table 34 in FIG. 11 is assumed to be a design solution as a result of improving the customer KPI evaluation value according to the flowchart 24 in FIG. 6. If the autonomous driving control function DDD35 is a newly added function, the KPI evaluation unit 9 in FIG. 1 registers the autonomous driving control function DDD35 in the autonomous driving control function database DB.
  • the present invention has been described as being applied to automated transport vehicles, construction vehicles, and autonomous automobiles, but the present invention can also be applied to other autonomous vehicles, such as agricultural vehicles and autonomous work robots.
  • Example 4 the program of the design support system will be explained.
  • the program of the design support system is stored in the ROM of the computer device, and some of these programs execute the processes of the ODD adjustment unit 8, the automatic driving control system evaluation unit 5, and the KPI evaluation unit 9 shown in Figure 6.
  • the other programs although not shown, it is preferable to configure the programs in units of the calculation functions of each unit in Figure 1.
  • an automatic driving control function program which is a program for controlling automatic driving of vehicles traveling in a service provision area; an area environmental data generation program having an area digital map generation unit that uses environmental data to generate a digital map of the service provision area; an automatic driving ODD definition program that generates and outputs an operation design area that is an environmental constraint condition for operating an automatic driving service from digital map information; an ODD adjustment program that evaluates the satisfaction of the automatic driving control function specifications stored in the automatic driving control program in pairs for the operation design area and changes the operation design area based on the evaluation results; an automatic driving control system evaluation program that evaluates the operation design area based on customer requirements; and a KPI evaluation program that generates a customer requirement evaluation formula that evaluates the customer's key performance indicators based on the customer requirements, calculates the customer requirement evaluation formula based on the values output from the automatic driving control system evaluation program, and outputs the operation design area and the customer's key performance indicators.
  • Design support system 2 Environmental measurement device 3: Area environmental data generation unit 3a: Area data collection unit 3b: Area digital map generation unit 3c: Service provision area identification unit 3d: Environmental change detection unit 4: Automatic driving control function database 5: Automatic driving control system evaluation unit 5a: Operation evaluation unit 5b: Operation scenario generation unit 6: Customer information input unit 7: ODD automatic definition unit 8: ODD adjustment unit 9: KPI evaluation unit 10: Automatic transport area 11: Automatic transport vehicle 12: Shelf 13: Outline Line 15: Automated transport service provision area 16: Cargo storage area 17: Forklift 18: Truck 19: Site reference coordinates 20: Passage width 21: Wi-Fi antenna 22: Surveillance camera 23a, 23b: Traceability table 24: Flowchart 25: Work site 26: Soil and sand 27: Shovel 28: Dump truck 29: Area 30: General public road environment 31: Automated driving car 32: Traffic light 33: Infrastructure equipment 34: Traceability table 35: Automated driving control function DDD S100 to S108: Step

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided are a design assistance method, a design assistance system, and a program with which it is possible to design an ODD that suppresses an increase in the cost of developing automated driving services and improves key performance indicators of business proprietors. This design assistance system acquires environmental data from an environmental measurement device for measuring the environment of a service provision area managed by a customer, and customer requirements, and outputs improved values of key performance indicators of the customer. This design assistance system is characterized by comprising: an automated driving control function database that stores programs for performing automated driving control of a vehicle traveling in the service provision area; an area environmental data generation unit that is provided with an area digital map generation unit for generating a digital map of the service provision area using the environmental data; an automated driving ODD automatic definition unit that generates and outputs an operational design domain, which constitutes environmental constraint conditions for operating an automated driving service, from information about the digital map; an ODD adjustment unit that evaluates the sufficiency of the automated driving control function specifications stored in pairs in an automated driving control program, with respect to the operational design domain output from the automated driving ODD automatic definition unit, and changes the operational design domain on the basis of the evaluation result; an automated driving control system evaluation unit that evaluates the operational design domain on the basis of the customer requirements; and a KPI evaluation unit that generates a customer requirement evaluation formula for evaluating the customer's key performance indicators, on the basis of the customer requirements, calculates the customer requirement evaluation formula on the basis of the value output from the automated driving control system evaluation unit, and outputs the operational design domain and the customer's key performance indicators. This design assistance system is further characterized in that: the ODD adjustment unit changes the operational design domain on the basis of the value of the customer requirement evaluation formula calculated and output by the KPI evaluation unit, so as to improve the value of the customer requirement evaluation formula; and the KPI evaluation unit outputs improved values of the customer's key performance indicators on the basis of the changed operational design domain.

Description

設計支援方法、設計支援システム、及びプログラムDESIGN ASSISTANCE METHOD, DESIGN ASSISTANCE SYSTEM, AND PROGRAM
 本発明は、搬送ロボット、自動車、その他作業車両を自動運転させる制御システムの運行設計領域(Operational Design Domain、以下、ODD)の設計支援方法、設計支援システム、及びプログラムに関する。 The present invention relates to a design support method, design support system, and program for the Operational Design Domain (ODD) of control systems for automatically driving transport robots, automobiles, and other work vehicles.
 近年、自動車の自動運転や、搬送ロボットや建設機械など様々な産業用車両の走行の自動を実現する制御システムが開発されている。産業用車両の自動化により、現場無人化によるコスト低減や、作業効率の均一化による現場の作業効率改善が期待される。また自動車の自動運転化により渋滞の改善や事故の低減が期待される。 In recent years, control systems have been developed to realize automated driving of automobiles and automated driving of various industrial vehicles such as transport robots and construction machinery. The automation of industrial vehicles is expected to reduce costs by making the site unmanned, and to improve work efficiency by standardizing work efficiency. In addition, automated driving of automobiles is expected to improve traffic congestion and reduce accidents.
 自動化を実現する制御システムの構成や仕様は、対象とする車両や運行する環境によって多種多様となり、その設計には車両の制御特性と環境への適用性能のすり合わせなどのノウハウを必要とすることから多大な工数を必要とする。 The configuration and specifications of the control systems that realize automation vary widely depending on the target vehicle and the environment in which it operates, and designing them requires know-how such as matching the vehicle's control characteristics with its performance to suit the environment, which requires a significant amount of work.
 特に、車両の制御特性と環境への適用性能のすり合わせには、自動運転制御システムの動作を保証する環境条件であるODDを定義する必要があるが、開発するエンジニアが自動運転車両を導入する環境を調査し、自動運転制御システムの仕様との整合性を確認するのも多大な開発コストを要する。 In particular, to align the vehicle's control characteristics with its environmental performance, it is necessary to define the ODD, which is the environmental condition that guarantees the operation of the autonomous driving control system. However, it is also costly for the development engineers to investigate the environment in which the autonomous vehicle will be introduced and confirm its compatibility with the specifications of the autonomous driving control system.
 ODDの定義及び更新方法として、特許文献1に記載の設計支援システムが知られている。特許文献1では、環境地図からデータセットを作成し、自動運転制御システムの安全評価により条件空間に対するODDを定義する技術が記載されている。また、定義したODDは追加データを受信すると更新することができる。この様な設計支援システムにより、個人のノウハウによらず環境地図から自動的にODDを定義することができるため、開発に必要な人数を削減し、開発コストを低減できる。 The design support system described in Patent Document 1 is known as a method for defining and updating an ODD. Patent Document 1 describes a technology for creating a data set from an environmental map and defining an ODD for a condition space through a safety evaluation of an autonomous driving control system. In addition, the defined ODD can be updated when additional data is received. This type of design support system makes it possible to automatically define an ODD from an environmental map without relying on individual know-how, thereby reducing the number of people required for development and lowering development costs.
WO2021147301A1号公報Publication No. WO2021147301A1
 特許文献1に記載の、環境データセットから(稼働率等の)信頼性評価を基準としてODD定義する設計支援システムによれば、自動運転サービスを提供する環境と一致するODDでは求められる自動運転制御システムが高機能になり、自動運転サービスによる事業主の示す重要業績評価指標を満足しない場合がある。例えば、開発コストの増加や稼働率の低下である。 According to the design support system described in Patent Document 1, which defines an ODD based on a reliability evaluation (such as operation rate) from an environmental data set, the ODD that matches the environment in which the autonomous driving service is provided requires an autonomous driving control system with high functionality, which may not satisfy the key performance indicators indicated by the operator of the autonomous driving service. For example, this may result in increased development costs or a decrease in operation rate.
 このことから、本発明においては、自動運転サービスの開発コスト増加の抑制と事業主の重要業績評価指標を改善するODDを設計できる設計支援方法、設計支援システム、及びプログラムを提供することを目的とする。 Therefore, the present invention aims to provide a design support method, design support system, and program that can design an ODD that suppresses increases in development costs for autonomous driving services and improves key performance indicators for business operators.
 以上のことから本発明においては、「顧客が管理するサービス提供エリアの環境を計測する環境計測装置からの環境データと、顧客要求を得て顧客の重要業績評価指標の改善値を出力する設計支援システムであって、サービス提供エリアを走行する車両を自動運転制御するためのプログラムを格納した自動運転制御機能データベースと、環境データを用いて、サービス提供エリアのデジタル地図を生成するエリアデジタル地図生成部を備えたエリア環境データ生成部と、デジタル地図の情報から自動運転サービスを運行するための環境制約条件となる運行設計領域を生成し出力する自動運転ODD自動定義部と、自動運転ODD自動定義部から出力された運行設計領域に対し、自動運転制御プログラムに対で格納されている自動運転制御機能仕様の充足を評価して評価結果に基づき運行設計領域を変更するODD調整部と、顧客要求に基づいて、運行設計領域を評価する自動運転制御システム評価部と、顧客要求に基づき顧客の重要業績評価指標を評価する顧客要求評価式を生成し、自動運転制御システム評価部から出力された値に基づき顧客要求評価式を演算し運行設計領域と顧客の重要業績評価指標とを出力するKPI評価部とを備え、ODD調整部は、KPI評価部で演算出力された顧客要求評価式の値に基づき、以前の顧客要求評価式の値よりも向上するように前記運行設計領域に変更を加え、KPI評価部は、変更された運行設計領域に基づき、顧客の重要業績評価指標の改善値を出力することを特徴とする設計支援システム。」としたものである。 In view of the above, the present invention provides a design support system that receives environmental data from an environmental measurement device that measures the environment of a service provision area managed by a customer and customer requests and outputs improvement values of the customer's key performance indicators, comprising an automatic driving control function database that stores a program for automatic driving control of vehicles traveling in the service provision area, an area environmental data generation unit that has an area digital map generation unit that uses the environmental data to generate a digital map of the service provision area, an automatic driving ODD automatic definition unit that generates and outputs an operation design area that is an environmental constraint condition for operating an automatic driving service from information on the digital map, and an automatic driving control program that generates and outputs an operation design area that is an environmental constraint condition for operating an automatic driving service for the operation design area output from the automatic driving ODD automatic definition unit. The design support system is characterized in that it includes an ODD adjustment unit that evaluates the fulfillment of the driving control function specifications and changes the operation design domain based on the evaluation results, an automatic driving control system evaluation unit that evaluates the operation design domain based on the customer requirements, and a KPI evaluation unit that generates a customer requirement evaluation formula that evaluates the customer's key performance indicators based on the customer requirements, calculates the customer requirement evaluation formula based on the value output from the automatic driving control system evaluation unit, and outputs the operation design domain and the customer's key performance indicators, and the ODD adjustment unit makes changes to the operation design domain so as to improve it over the previous value of the customer requirement evaluation formula based on the value of the customer requirement evaluation formula calculated and output by the KPI evaluation unit, and the KPI evaluation unit outputs an improvement value of the customer's key performance indicator based on the changed operation design domain.
 また本発明においては、「顧客が管理するサービス提供エリアの環境を計測する環境計測装置からの環境データと、顧客要求を得て、計算機装置を用いて顧客の重要業績評価指標の改善値を出力する設計支援方法であって、サービス提供エリアを走行する車両を自動運転制御するための自動運転制御プログラムを格納した自動運転制御機能データベースを備え、計算機装置の演算部は、環境データを用いて、サービス提供エリアのデジタル地図を生成し、デジタル地図の情報から自動運転サービスを運行するための環境制約条件となる運行設計領域を生成し、運行設計領域に対し、自動運転制御プログラムに対で格納されている自動運転制御機能仕様の充足を評価して評価結果に基づき運行設計領域を変更し、顧客要求に基づいて、運行設計領域を評価し、顧客要求に基づき顧客の重要業績評価指標を評価する顧客要求評価式を生成し、自動運転制御システム評価部から出力された値に基づき顧客要求評価式を演算し、運行設計領域と顧客の重要業績評価指標とを得るとともに、顧客要求評価式の値に基づき、以前の顧客要求評価式の値よりも向上するように運行設計領域に変更を加え、変更された運行設計領域に基づき、顧客の重要業績評価指標の改善値を得ることを特徴とする設計支援方法」としたものである。  The present invention also provides a design support method that obtains environmental data from an environmental measurement device that measures the environment of a service area managed by a customer and customer requirements, and outputs an improvement value of the customer's key performance indicators using a computer device, the design support method comprising: an automatic driving control function database that stores an automatic driving control program for automatically controlling the driving of vehicles that run in the service area; a calculation unit of the computer device uses the environmental data to generate a digital map of the service area, generates an operation design domain that is an environmental constraint condition for operating the automatic driving service from the information of the digital map, evaluates the satisfaction of the automatic driving control function specifications stored in the automatic driving control program in pairs for the operation design domain, changes the operation design domain based on the evaluation results, evaluates the operation design domain based on the customer requirements, generates a customer requirements evaluation formula that evaluates the customer's key performance indicators based on the customer requirements, calculates the customer requirements evaluation formula based on the value output from the automatic driving control system evaluation unit, obtains the operation design domain and the customer's key performance indicators, and modifies the operation design domain so as to improve it from the previous value of the customer requirements evaluation formula based on the value of the customer requirements evaluation formula, and obtains the improvement value of the customer's key performance indicators based on the modified operation design domain.
 また本発明においては、「顧客が管理するサービス提供エリアの環境を計測する環境計測装置からの環境データと、顧客要求を得て顧客の重要業績評価指標の改善値を出力するための設計支援プログラムであって、サービス提供エリアを走行する車両を自動運転制御するための自動運転制御プログラムである自動運転制御機能プログラムと、環境データを用いて、サービス提供エリアのデジタル地図を生成するエリアデジタル地図生成部を備えたエリア環境データ生成プログラムと、デジタル地図の情報から自動運転サービスを運行するための環境制約条件となる運行設計領域を生成し出力する自動運転ODD自動定義プログラムと、運行設計領域に対し、自動運転制御プログラムに対で格納されている自動運転制御機能仕様の充足を評価して評価結果に基づき運行設計領域を変更するODD調整プログラムと、顧客要求に基づいて、運行設計領域を評価する自動運転制御システム評価プログラムと、顧客要求に基づき顧客の重要業績評価指標を評価する顧客要求評価式を生成し、自動運転制御システム評価プログラムから出力された値に基づき顧客要求評価式を演算し運行設計領域と顧客の重要業績評価指標とを出力するKPI評価プログラムとを備え、ODD調整プログラムは、KPI評価プログラムで演算出力された顧客要求評価式の値に基づき、以前の顧客要求評価式の値よりも向上するように運行設計領域に変更を加え、KPI評価プログラムは、変更された運行設計領域に基づき、顧客の重要業績評価指標の改善値を出力することを特徴とする設計支援プログラム。」としたものである。  Furthermore, in the present invention, "a design support program for receiving environmental data from an environmental measurement device that measures the environment of a service provision area managed by a customer and customer requests and outputting an improvement value of the customer's key performance indicators, comprising an automatic driving control function program which is an automatic driving control program for automatic driving control of vehicles traveling in the service provision area, an area environmental data generation program having an area digital map generation unit that generates a digital map of the service provision area using the environmental data, an automatic driving ODD automatic definition program that generates and outputs an operation design area that is an environmental constraint condition for operating an automatic driving service from information on the digital map, and an evaluation result obtained by evaluating the satisfaction of the automatic driving control function specifications stored in the automatic driving control program in pairs for the operation design area. a KPI evaluation program that generates a customer requirement evaluation formula for evaluating a customer's key performance indicators based on the customer requirements, calculates the customer requirement evaluation formula based on the value output from the automatic driving control system evaluation program, and outputs the operation design area and the customer's key performance indicators, the ODD adjustment program modifies the operation design area so as to improve it over the previous value of the customer requirement evaluation formula based on the value of the customer requirement evaluation formula calculated and output by the KPI evaluation program, and the KPI evaluation program outputs an improved value of the customer's key performance indicators based on the modified operation design area.
 本発明によれば、従来、自動運転サービスを提供する環境に基づくODD下でのみ自動運転を提供していたのに対し、事業主の重要業績評価指標を改善できるODDを自動で設計する事ができる設計支援システムを提供できる。これにより事業主の重要業績評価指標を改善する自動運転サービスを提供できる。 In contrast to the conventional method of providing autonomous driving services only under an ODD based on the environment in which the autonomous driving service is provided, the present invention provides a design support system that can automatically design an ODD that can improve the business owner's key performance indicators. This makes it possible to provide an autonomous driving service that improves the business owner's key performance indicators.
本発明の実施例1に係る設計支援システムの構成例を示す図。FIG. 1 is a diagram showing an example of the configuration of a design support system according to a first embodiment of the present invention. 貨物運搬サービスを提供する自動搬送エリアの一例を示す図。FIG. 1 is a diagram showing an example of an automated transport area providing cargo transport services. 形状デジタル地図の一例を示す図。FIG. 13 is a diagram showing an example of a shape digital map. 自動運転制御機能データベースのデータ構造の一例を示す図。FIG. 4 is a diagram showing an example of a data structure of an automatic driving control function database. 自動運転制御機能データとODD項目とKPI値との関係を示すトレーサビリティ表の一例を示す図。FIG. 13 is a diagram showing an example of a traceability table showing the relationship between autonomous driving control function data, ODD items, and KPI values. 本発明の実施例1に係る設計支援方法のフローを示す図。FIG. 2 is a flowchart showing a design support method according to the first embodiment of the present invention. 設計支援システム1の出力の活用事例を示す図。FIG. 2 is a diagram showing an example of use of the output of the design support system 1. 貨物運搬サービスを提供する作業現場の一例を示す図。FIG. 1 illustrates an example of a work site providing freight transportation services. 作業現場の環境変化後の一例を示す図。FIG. 13 is a diagram showing an example of a work site after an environment change. 貨物運搬サービスを提供する一般公道環境の一例を示す図。FIG. 1 illustrates an example of a public highway environment in which freight transportation services are provided. トレーサビリティ表の一例を示す図。FIG. 13 is a diagram showing an example of a traceability table.
 以下、本発明の実施例について、図面を用いて説明する。但し、本発明の実施例に係る設計支援方法、設計支援システム、及びプログラムを、自動搬送車両を用いた物流倉庫における貨物の自動搬送サービスの設計事例により説明するものとする。 Below, an embodiment of the present invention will be explained with reference to the drawings. However, the design support method, design support system, and program according to the embodiment of the present invention will be explained using a design example of an automated cargo transport service in a logistics warehouse using an automated transport vehicle.
 なお、本発明は、特定の環境下における自動走行可能な機械に関するサービス全般の設計に適用が可能であり、本発明の適用は自動搬送車両サービスに限定されるものではない。 The present invention can be applied to the design of all services related to machines capable of autonomous driving in specific environments, and the application of the present invention is not limited to automated guided vehicle services.
 以下、実施例1では本発明の実施例に係る設計支援方法、設計支援システムの基本構成について説明し、実施例2ではサービス提供エリアが作業現場である場合について説明し、実施例3ではサービス提供エリアが一般公道である場合について説明し、実施例4では設計支援システムのプログラムについて説明する。 In the following, in Example 1, the basic configuration of a design support method and a design support system according to an embodiment of the present invention will be described, in Example 2, the case where the service provision area is a work site will be described, in Example 3, the case where the service provision area is a general public road will be described, and in Example 4, the program of the design support system will be described.
 図1は、本発明の実施例に係る設計支援システム1の構成例を示す図である。実施例1では、自動搬送車両を用いた物流倉庫(エリア)10における貨物の自動搬送サービス構築に適用する設計支援システム1について説明する。 FIG. 1 is a diagram showing an example of the configuration of a design support system 1 according to an embodiment of the present invention. In the first embodiment, a design support system 1 is described that is applied to the creation of an automated cargo transport service in a logistics warehouse (area) 10 using automated transport vehicles.
 図1の設計支援システム1は、エリア環境データ生成部3、自動運転制御機能データベースDB、自動運転制御システム評価部5、顧客情報入力部6、自動運転ODD自動定義部7、ODD調整部8、KPI評価部9を備えており、外部の物流倉庫(エリア)10から環境計測装置2の出力と、顧客要求を取り込んで設計支援を行う。 The design support system 1 in Figure 1 includes an area environment data generation unit 3, an automatic driving control function database DB, an automatic driving control system evaluation unit 5, a customer information input unit 6, an automatic automatic driving ODD definition unit 7, an ODD adjustment unit 8, and a KPI evaluation unit 9, and provides design support by importing the output of an environmental measurement device 2 from an external logistics warehouse (area) 10 and customer requirements.
 また計算機装置で構成される設計支援システム1は、内部のROMに自動運転車両のODDを自動で設計する設計支援プログラムを保持しており、CPUにおいてプログラムに従った処理を実行することにより、設計支援方法を実現するシステムである。なおプログラムについて、実施例5で説明する。 The design support system 1, which is composed of a computer device, stores a design support program in an internal ROM for automatically designing an ODD for an autonomous vehicle, and is a system that realizes a design support method by executing processing according to the program in a CPU. The program will be described in Example 5.
 以下、図1に示す構成について詳細に説明するが、ここには太線で示す本発明部分と細線で示す既存技術部分があるので、まず細線の既存技術部分について説明する。 The configuration shown in Figure 1 will be explained in detail below. However, since the parts of the present invention are indicated by thick lines and parts of existing technology are indicated by thin lines, the parts of existing technology indicated by thin lines will be explained first.
 設計支援システム1は、環境計測装置2と信号線を介して接続され、設計支援システム1がサービスを提供するエリア10の環境情報D1を取得する。ここでサービスを提供するエリア10とは、例えば図2に示す貨物運搬サービスを提供する自動搬送エリアである。自動搬送エリア10には外部からトラック18が出入りし、トラック18と貨物置き場16との間で貨物をフォークリフト17により搬入、搬出している。また貨物置き場16の貨物は、自動搬送車両11により自動搬送サービス提供エリア15内の棚12などの障害物を避ける経路を移動して、指示された適宜の保管場所に貨物を移送される。 The design support system 1 is connected to the environmental measuring device 2 via a signal line, and acquires environmental information D1 for the area 10 for which the design support system 1 provides services. The area 10 for which the services are provided is, for example, the automated transport area for which cargo transport services are provided as shown in FIG. 2. Trucks 18 enter and leave the automated transport area 10 from the outside, and cargo is carried in and out between the trucks 18 and a cargo storage area 16 by forklifts 17. Furthermore, cargo in the cargo storage area 16 is transported by automated transport vehicle 11 to an appropriate designated storage location, moving along a route that avoids obstacles such as shelves 12 within the automated transport service provision area 15.
 自動搬送車両11は、環境計測装置2BとしてカメラやLiDARを搭載しており、またエリア10内の適宜の個所に固定の環境計測装置2AとしてカメラやLiDARを配置しており、これらによりエリア内環境を把握している。これらの環境計測装置2A、2Bで計測された環境情報D1が設計支援システム1に伝送される。 The automated guided vehicle 11 is equipped with cameras and LiDAR as environmental measurement devices 2B, and cameras and LiDAR are placed at appropriate locations within the area 10 as fixed environmental measurement devices 2A, which allow the environment within the area to be understood. Environmental information D1 measured by these environmental measurement devices 2A and 2B is transmitted to the design support system 1.
 このように環境計測装置2は、後述するエリアデータ収集部3aが指定した経路を自動搬送車両11に走行させることで自動搬送エリア10の環境情報を取得してもよいし、自動搬送エリア10内に環境計測装置2を任意の場所に設置し、自動搬送エリア10の環境情報を収集しても良い。 In this way, the environmental measuring device 2 may obtain environmental information about the automatic transport area 10 by driving the automatic transport vehicle 11 along a route specified by the area data collection unit 3a described below, or the environmental measuring device 2 may be installed at any location within the automatic transport area 10 to collect environmental information about the automatic transport area 10.
 ここで環境情報D1とは、自動搬送車両11が走行する路面や構造物の位置・形状、走行エリアの照明の明度やWiFi等のインフラの利用可否などである。従って、環境計測装置2はカメラやLiDARに限らず、電波や照明の明度の計測装置なども含むものである。また環境計測装置2は車両や設備側のいずれに設置されていてもよく、環境計測装置2と設計支援システム1との信号線は有線接続でも無線接続でもよい。 Here, the environmental information D1 refers to the road surface and structure positions and shapes on which the automated guided vehicle 11 travels, the brightness of lighting in the travel area, and the availability of infrastructure such as Wi-Fi. Therefore, the environmental measurement device 2 is not limited to cameras and LiDAR, but also includes devices for measuring radio waves and the brightness of lighting. Furthermore, the environmental measurement device 2 may be installed on either the vehicle or the equipment side, and the signal line between the environmental measurement device 2 and the design support system 1 may be a wired or wireless connection.
 環境計測装置2で計測した環境情報D1は、エリア環境データ生成部3に入力される。
エリア環境データ生成部3は、エリアデータ収集部3aとエリアデジタル地図生成部3bとサービス提供エリア特定部3cで構成される。本発明部分に関与するサービス提供エリア特定部3cについては後述する。
The environmental information D1 measured by the environmental measuring device 2 is input to the area environmental data generating unit 3.
The area environment data generating section 3 is composed of an area data collecting section 3a, an area digital map generating section 3b, and a service provision area specifying section 3c. The service provision area specifying section 3c which is involved in the present invention will be described later.
 このうちエリアデータ収集部3aでは、例えば図2に示す貨物運搬サービスを提供する自動搬送エリア10内を走行する自動搬送車両11に搭載した環境計測装置2Bから自動搬送エリア10の環境情報D1を収集する。環境計測装置2Bは、エリアデータ収集部3aが指定した経路を自動搬送車両11に走行させることで自動搬送エリア10の環境情報D1を取得してもよいし、自動搬送エリア10内に環境計測装置2を任意の場所に設置し、自動搬送エリア10の環境情報D1を収集しても良い。なお図2にはエリア内位置を定義するための現場基準座標19を併せて表記している。 Among these, the area data collection unit 3a collects environmental information D1 of the automatic transport area 10 from an environmental measurement device 2B mounted on an automatic transport vehicle 11 traveling within the automatic transport area 10 that provides cargo transport services, for example, as shown in FIG. 2. The environmental measurement device 2B may obtain the environmental information D1 of the automatic transport area 10 by having the automatic transport vehicle 11 travel along a route specified by the area data collection unit 3a, or the environmental measurement device 2 may be installed at any location within the automatic transport area 10 to collect the environmental information D1 of the automatic transport area 10. Note that FIG. 2 also shows on-site reference coordinates 19 for defining the position within the area.
 エリアデジタル地図生成部3bでは、エリアデータ収集部3aが収集した環境情報D1を集約し、自動搬送エリア10に設置されている棚12などの障害物を例えば3次元点の集合で表現した形状デジタル地図として構築する。 The area digital map generator 3b aggregates the environmental information D1 collected by the area data collector 3a, and constructs a shape digital map in which obstacles such as shelves 12 installed in the automatic transport area 10 are represented, for example, as a collection of three-dimensional points.
 図3には形状デジタル地図の一例として、自動搬送車両11に搭載したイメージセンサ等で取得した画像をもとに生成した棚12の形状データを示す。棚12の画像をもとに外形線13を抽出したデータであり、棚12の外形寸法等のデータ、通路幅のデータ20などを形状デジタル地図として扱う。 Figure 3 shows, as an example of a digital shape map, shape data of a shelf 12 generated based on an image acquired by an image sensor or the like mounted on an automated guided vehicle 11. This data is obtained by extracting the outline 13 based on the image of the shelf 12, and data such as the external dimensions of the shelf 12 and aisle width data 20 are treated as the digital shape map.
 なお、自動搬送エリア10におけるWiFiなどの電波に関する環境情報に関しては、無線インフラの使用可否で領域ごとに管理するなど、環境計測装置2で取得した情報をデジタル地図に格納し管理するのがよい。例えば図3の撮影領域にはWiFiアンテナ21が設置されているがこの場所での電波に関する環境情報も併せて管理しておくのがよい。 In addition, it is advisable to store and manage the information acquired by the environmental measuring device 2 in a digital map regarding environmental information related to radio waves such as Wi-Fi in the automatic transport area 10, such as managing each area according to whether or not wireless infrastructure is available. For example, a Wi-Fi antenna 21 is installed in the shooting area in FIG. 3, and it is advisable to also manage environmental information related to radio waves in this location.
 図1の自動運転制御機能データベースDBには、自動運転制御機能データD2が格納されている。自動運転制御機能データD2の一例を図4に示すように、自動運転制御機能のID(D21)、機能名称D22、機能仕様D23、機能の自動運転制御プログラムD24や、機能を実現するために要求されるセンサD25、KPI(D26、D27)等が、リレーショナルデータベースのような形式で格納されている。自動運転制御機能とは、例えば、自車両の自動搬送エリア10における位置を取得する機能や、荷物を棚12から取得するための自動搬送車両11の制御等である。 The autonomous driving control function database DB in FIG. 1 stores autonomous driving control function data D2. As shown in FIG. 4, an example of autonomous driving control function data D2 is stored in a relational database format, including the autonomous driving control function ID (D21), function name D22, function specifications D23, autonomous driving control program D24 for the function, sensors D25 required to realize the function, and KPIs (D26, D27). The autonomous driving control function is, for example, a function to acquire the position of the vehicle in the autonomous transport area 10, and control of the autonomous transport vehicle 11 to acquire luggage from the shelf 12.
 図1の自動運転制御システム評価部5は運行評価部5aを備えており、自動運転制御機能データベースDBに登録されている自動運転制御プログラムとしての自動運転制御機能のいくつかを、自動搬送車両11に搭載した際の自動搬送エリア10での自動運転性能を評価する機能を備えている。運行評価部5aは例えばコンピュータ上でシミュレーション可能な車両運動シミュレータのようなもので構成されていても良いし、自動運転制御機能データベースDBに登録されている自動運転制御機能の機能仕様をもとに評価する演算器でもよい。 The automatic driving control system evaluation unit 5 in FIG. 1 includes an operation evaluation unit 5a, and has a function of evaluating the automatic driving performance in the automatic transport area 10 when some of the automatic driving control functions as automatic driving control programs registered in the automatic driving control function database DB are installed on an automatic transport vehicle 11. The operation evaluation unit 5a may be configured, for example, as a vehicle motion simulator capable of performing simulations on a computer, or may be a computing device that performs evaluation based on the functional specifications of the automatic driving control functions registered in the automatic driving control function database DB.
 以上の細線で示す構成が、既存技術部分に関わる部分である。この前提のもとに以下、本発明部分について詳細に説明する。まず顧客情報入力部6は、サービスを提供する顧客からの要求入力にもとづき、重要業績評価指標(以下、KPI)を変数として設定する。
KPIは例えば、サービスの導入コストやランニングコスト、安全性、稼働率、単位時間あたりの貨物出荷数などである。また、顧客情報入力部6はKPIを算出する計算式も定義する。
The above configuration indicated by thin lines is related to the existing technology. Based on this premise, the present invention will be described in detail below. First, the customer information input unit 6 sets key performance indicators (hereinafter, KPIs) as variables based on request input from the customer to whom the service is provided.
The KPIs are, for example, the introduction cost and running cost of the service, safety, operation rate, the number of cargo shipments per unit time, etc. The customer information input unit 6 also defines a formula for calculating the KPIs.
 また、顧客情報入力部6は入力されたサービスへの要求から、サービスの提供エリアを特定し、サービス提供エリア特定部3cへ提供エリアの情報を出力する。例えば、顧客情報入力部6は、地図上で矩形による指定など、グラフィカルユーザーインターフェース(GUI)などを用いてエリアを特定するシステムを備えてもよい。この場合は、図2のエリア10が、サービスの提供エリアとして特定される。 The customer information input unit 6 also identifies the area in which the service is provided based on the input request for the service, and outputs information about the area to the service provision area identification unit 3c. For example, the customer information input unit 6 may be equipped with a system that identifies the area using a graphical user interface (GUI), such as by specifying a rectangle on a map. In this case, area 10 in FIG. 2 is identified as the area in which the service is provided.
 図2の自動搬送エリア10をサービスの提供エリアとする場合、GUIを用いて自動搬送サービス提供エリア15や、貨物置き場16を顧客は指定してもよい。このとき、フォークリフト17は、自動搬送サービス提供エリア15内では貨物置場16への進入のみが指定される。さらに、フォークリフト17は手動運転であること、また、フォークリフト17は貨物置き場16から貨物をトラック18へと搬送することを、顧客は指定することができる。 When the service provision area is the automatic transport area 10 in FIG. 2, the customer may use the GUI to specify the automatic transport service provision area 15 and the cargo storage area 16. At this time, the forklift 17 is specified to only enter the cargo storage area 16 within the automatic transport service provision area 15. Furthermore, the customer can specify that the forklift 17 is to be manually operated, and that the forklift 17 will transport cargo from the cargo storage area 16 to the truck 18.
 これにより図1のサービス提供エリア特定部3cでは、提供エリア10の情報を受け取り、エリアを特定する。例えば、顧客情報入力部6が備えたGUIで指定された地図上の位置から、エリアの緯度経度による位置とサイズによる一定領域指定や、複数点の緯度経度での指定による運行経路等で特定する。図2においては一例として、自動搬送サービス提供エリア15に現場基準座標19が設けられ、自動搬送サービス提供エリア15の4角の座標が現場基準座標19で指定される。 As a result, the service provision area identification unit 3c in Figure 1 receives information on the service area 10 and identifies the area. For example, the area is identified by specifying a certain area based on the area's latitude and longitude position and size from a position on a map specified by the GUI provided in the customer information input unit 6, or by specifying a route by specifying the latitude and longitude of multiple points. In Figure 2, as an example, on-site reference coordinates 19 are provided in the automatic transport service provision area 15, and the coordinates of the four corners of the automatic transport service provision area 15 are specified by the on-site reference coordinates 19.
 特定したエリア情報は、エリアデータ収集部3aに提供し、エリアデータ収集部3aはエリアの範囲内の環境情報を収集する。また、エリアデジタル地図生成部3bにもエリア情報を提供し、エリアデジタル地図生成部3bが生成するデジタル地図を生成する範囲を指定する。 The identified area information is provided to the area data collection unit 3a, which collects environmental information within the area. The area information is also provided to the area digital map generation unit 3b, and the area digital map generation unit 3b specifies the range within which the digital map is to be generated.
 これにより、エリア環境データ生成部3は、サービスを提供するエリア10の例えば現在のエリア構成(エリアデジタル地図、障害物など)とエリア内環境情報、並びにこの状態から顧客要求により運行環境について何を(どこを)、どのように変更することが要求されているのか、その要求項目とともに整理されて次段処理の自動運転ODD自動定義部7に渡すことになる。 As a result, the area environment data generation unit 3 organizes, for example, the current area configuration (area digital map, obstacles, etc.) and in-area environment information of the area 10 for which the service is provided, as well as what (where) and how the driving environment is to be changed from this state based on customer requests, along with the requested items, and passes this information to the automatic driving ODD definition unit 7 for the next stage of processing.
 図1の自動運転ODD自動定義部7は、運行環境特性抽出部7aと運行環境変更部7bを備える。運行環境特性抽出部7aはエリアデジタル地図生成部3bが生成したデジタル地図や環境情報D1をもとにODDを定義する。ODDの項目は例えば、図3の自動搬送車両11が通行する通路幅20の最小値、自動搬送車両11がWiFiを利用するために必要なWiFiアンテナ21等のインフラ設備の有無、図2の自動搬送サービス提供エリア15における作業員の有無、自動搬送エリア10の安全ルールで定義される車両の最高速度、などである。 The automated driving ODD automatic definition unit 7 in FIG. 1 includes an operational environment characteristic extraction unit 7a and an operational environment change unit 7b. The operational environment characteristic extraction unit 7a defines the ODD based on the digital map generated by the area digital map generation unit 3b and environmental information D1. Items of the ODD include, for example, the minimum width 20 of the passageway through which the automated transport vehicle 11 in FIG. 3 passes, the presence or absence of infrastructure equipment such as a WiFi antenna 21 required for the automated transport vehicle 11 to use WiFi, the presence or absence of workers in the automated transport service provision area 15 in FIG. 2, and the maximum vehicle speed defined by the safety rules of the automated transport area 10.
 運行環境変更部7bは、自動搬送エリア10にODDの項目に関わる変化があった際に、その変更を運行環境特性抽出部7aに出力する機能を備える。たとえば、自動搬送エリア10の棚12のレイアウトに変更があり、図3の通路幅20の最小値が変更された場合、その最小値を出力する。また図2の自動搬送エリア10に固定の監視カメラ2Aを設置するなど、自動搬送エリア10に変化を与えた場合にも、その変更を抽出する。固定の監視カメラ2Aの設置は、ODDの項目のインフラセンサによるサポート、すなわち自動搬送車両11の自動運転走行がインフラセンササポートを利用できることを意味し、この変更点は運行環境特性抽出部7aを通じてODDの項目のインフラセンサによるサポート有無として定義される。 The operation environment change unit 7b has a function of outputting changes related to ODD items to the operation environment characteristic extraction unit 7a when there is a change in the automatic transport area 10 related to the ODD items. For example, if there is a change in the layout of the shelves 12 in the automatic transport area 10 and the minimum value of the aisle width 20 in FIG. 3 is changed, the minimum value is output. Also, when a change is made to the automatic transport area 10, such as installing a fixed surveillance camera 2A in the automatic transport area 10 in FIG. 2, the change is extracted. The installation of a fixed surveillance camera 2A means that the ODD item's infrastructure sensor support, that is, the automatic driving of the automatic transport vehicle 11 can use infrastructure sensor support, and this change is defined as the presence or absence of infrastructure sensor support for the ODD item through the operation environment characteristic extraction unit 7a.
 さらに、運行環境変更部7bは自動搬送エリア10におけるインフラセンササポートをおこなう監視カメラ2Aのようなインフラとしてのセンサの設置候補もデジタル地図をもとに算出する機能も備える。例えば、デジタル地図をもとに、自動搬送サービス提供エリア15内で複数の自動搬送車両11が互いを棚12による死角で検出しづらい領域がある場合、その死角を消すように監視カメラ2Aなどの配置するセンサの種類やその設置位置を候補として出力する。インフラセンササポートで使用可能なセンサの種類やその使用は自動運転制御機能データベースDBに格納されている。 Furthermore, the operation environment change unit 7b also has a function to calculate, based on the digital map, candidates for installing infrastructure sensors such as the surveillance cameras 2A that provide infrastructure sensor support in the automatic transport area 10. For example, based on the digital map, if there is an area within the automatic transport service provision area 15 where multiple automatic transport vehicles 11 have difficulty detecting each other due to blind spots caused by shelves 12, the type and installation location of sensors such as the surveillance cameras 2A to be placed so as to eliminate the blind spots is output as candidates. The types of sensors that can be used for infrastructure sensor support and their use are stored in the automatic driving control function database DB.
 図1のODD調整部8では、運行環境特性抽出部7aからのODD項目D3と自動運転制御機能データベースDBからの自動運転制御機能データD2をもとに、提供するサービスにおける自動搬送車両11のODD項目D3と自動搬送車両11に搭載する自動運転制御機能の自動運転制御機能データD2を調整し、決定する機能を備える。調整には後述するKPI評価部9からの顧客KPI評価値を改善する様に調整する。 The ODD adjustment unit 8 in FIG. 1 has a function of adjusting and determining the ODD items D3 of the automated guided vehicles 11 in the service to be provided and the automated driving control function data D2 of the automated driving control function installed in the automated guided vehicles 11, based on the ODD items D3 from the driving environment characteristics extraction unit 7a and the automated driving control function data D2 from the automated driving control function database DB. The adjustment is made so as to improve the customer KPI evaluation value from the KPI evaluation unit 9, which will be described later.
 調整方法は例えば、図5に示す自動運転制御機能データD2とODD項目D3とKPI値D26、D27との関係を示すトレーサビリティ表23aおよび23bに示す処理にもとづき行われる。 The adjustment method is, for example, based on the process shown in traceability tables 23a and 23b, which show the relationship between the automatic driving control function data D2, ODD item D3, and KPI values D26 and D27 shown in Figure 5.
 トレーサビリティ表23aは、縦軸に自動運転制御機能データベースDBから参照した複数の自動運転制御機能(IDが1、2、3)を列挙し、横軸に対応する自動運転制御機能データD2のID(D21)、機能名称D22、KPI値D26、D27の一覧を示している。各自動運転制御機能におけるKPI値、D27はその機能を搭載したことによって生じるであろうKPI値である。例えば、D26のKPI1は機能の搭載コスト(k¥)、D27のKPI2は消費電力、サービス稼働時間(h)に与える影響等である。 Traceability table 23a lists multiple autonomous driving control functions ( IDs 1, 2, 3) referenced from the autonomous driving control function database DB on the vertical axis, and lists the ID (D21) of the autonomous driving control function data D2, function name D22, and KPI values D26, D27 on the horizontal axis. The KPI values for each autonomous driving control function, D27, are the KPI values that will arise from installing that function. For example, KPI1 in D26 is the cost of installing the function (k yen), and KPI2 in D27 is the impact on power consumption and service operation time (h), etc.
 図示の例では、自動運転制御機能データD2のID(D21)が、1、2、3のいずれの場合にも、消費電力、サービス稼働時間(h)に与える影響KPI2は0であり、機能の搭載コスト(k¥)に与える影響KPIは―4、―3、―8である。 In the illustrated example, whether the ID (D21) of the autonomous driving control function data D2 is 1, 2, or 3, the impact KPI2 on power consumption and service operation time (h) is 0, and the impact KPI on the cost of installing the function (k¥) is -4, -3, or -8.
 またトレーサビリティ表23aは、横軸に複数の自動運転制御機能(IDが1、2、3)毎のODD項目D3の一覧(ODD項目1、2、3)を示しており、ODD項目に関して、縦軸の自動運転制御機能に対しODD項目の有無や数値が影響するものとの対応付を示している。この例では、自動運転制御機能1と2に対してODD項目1、3が適用され、自動運転制御機能3に対してODD項目2が適用された事例を示している。 Traceability table 23a also shows a list of ODD items D3 ( ODD items 1, 2, 3) for multiple automatic driving control functions ( IDs 1, 2, 3) on the horizontal axis, and shows the correspondence between the ODD items and the automatic driving control functions on the vertical axis, depending on whether or not there is an ODD item and what the numerical value influences. This example shows a case where ODD items 1 and 3 are applied to automatic driving control functions 1 and 2, and ODD item 2 is applied to automatic driving control function 3.
 またトレーサビリティ表23aは、ODD項目D3に関して、ODD項目D3の変更に伴い生じるであろうKPI値(顧客KPI評価値13)を備える。この例では、ODD項目D3の変更後の機能の搭載コスト(k¥)に与える影響KPIは、ODD項目1、2、3のいずれの場合にも0であり、これは変更によるコスト増加が生じないことを意味している。これに対し、ODD項目D3の変更後の消費電力、サービス稼働時間(h)に与える影響KPI2は、ODD項目1、2、3でそれぞれ+12、+4、+12であったことを示している。 The traceability table 23a also includes, for odd item D3, KPI values (customer KPI evaluation values 13) that will arise as a result of changing odd item D3. In this example, the KPI impact on the cost of installing the function (k¥) after changing odd item D3 is 0 for all odd items 1, 2, and 3, meaning that there will be no increase in cost due to the change. In contrast, the KPI impact 2 on power consumption and service operating time (h) after changing odd item D3 is +12, +4, and +12 for odd items 1, 2, and 3, respectively.
 図5のトレーサビリティ表23aのODD項目適用後のKPI値(顧客KPI評価値13)によれば、ODD項目2による改善効果はさほど大きくないが、ODD項目1、3による改善効果が著しい。なお最終的には、この評価結果を受けて、トレーサビリティ表23bでは、自動運転制御機能2に対するODD項目2の適用を除外したことを表している。この時の新たな適用済みKPI値が顧客KPI評価値17として示されている。 According to the KPI value (customer KPI evaluation value 13) after applying the ODD items in traceability table 23a in Figure 5, the improvement effect of ODD item 2 is not so great, but the improvement effects of ODD items 1 and 3 are significant. Finally, based on this evaluation result, traceability table 23b shows that the application of ODD item 2 to autonomous driving control function 2 has been excluded. The new applied KPI value at this time is shown as customer KPI evaluation value 17.
 トレーサビリティ表23aの各項目に対するKPIは顧客情報入力部6で設定されたKPIがKPI評価部9と自動運転制御機能データベースDBを介してODD調整部8に伝達されて設定される。 The KPIs for each item in the traceability table 23a are set by transmitting the KPIs set in the customer information input unit 6 to the ODD adjustment unit 8 via the KPI evaluation unit 9 and the automatic driving control function database DB.
 図6のフローチャート24に、ODD調整部8と自動運転制御システム評価部5とKPI評価部9で実施される、顧客KPI評価値を改善するようにODD項目および自動運転制御機能の組み合わせを決定する処理の一例を示す。 Flowchart 24 in FIG. 6 shows an example of a process performed by the ODD adjustment unit 8, the automatic driving control system evaluation unit 5, and the KPI evaluation unit 9 to determine a combination of ODD items and automatic driving control functions to improve the customer KPI evaluation value.
 フローチャート24はステップS100~ステップS107からなり、ステップS100、S101、S102、S105、S106、S107がODD調整部8で処理される内容である。ステップS103は、自動運転制御システム評価部5内の処理であり、ステップS104は、KPI評価部9内の処理である。 Flowchart 24 consists of steps S100 to S107, with steps S100, S101, S102, S105, S106, and S107 being processed by ODD adjustment unit 8. Step S103 is a process within the automated driving control system evaluation unit 5, and step S104 is a process within the KPI evaluation unit 9.
 この一連処理では、まずステップS100から開始し、ステップS101でKPI評価値の一時保存変数Epを0で初期化する。ステップS102でトレーサビリティ表23の縦軸および横軸の自動運転制御機能とODD項目の組み合わせを変更する。ステップS103では自動運転制御システム評価部5にて選択されたODD項目D3および自動運転制御機能D2を評価する。ステップS104では自動運転制御システム評価部5の評価結果からKPI評価部9にて顧客KPI評価値を算出し、変数Eに代入する。顧客KPI評価値Eを算出する式は例えば次のとおりである。
[数1]
E=Σwi・Ki(i∈1…L)  (1)
 ここでKiは各KPI値であり、wiは顧客が顧客情報入力部6に入力した情報をもとに顧客情報入力部6で算出した各KPIに対する重みであり、例えば、顧客の重要度や優先度にもとづき設定される。また、重みwiは、異なる単位を持つKPI値に対して正規化するためのパラメータとして用いても良い。LはKPIの数である。
This series of processes starts from step S100, and in step S101, a temporary storage variable Ep of the KPI evaluation value is initialized to 0. In step S102, the combination of the automatic driving control function and the ODD item on the vertical and horizontal axes of the traceability table 23 is changed. In step S103, the ODD item D3 and the automatic driving control function D2 selected by the automatic driving control system evaluation unit 5 are evaluated. In step S104, the KPI evaluation unit 9 calculates a customer KPI evaluation value from the evaluation result of the automatic driving control system evaluation unit 5 and assigns it to the variable E. An example of the formula for calculating the customer KPI evaluation value E is as follows:
[Equation 1]
E = Σwi · Ki (i ∈ 1 ... L) (1)
Here, Ki is each KPI value, and wi is a weight for each KPI calculated by the customer information input unit 6 based on the information entered by the customer in the customer information input unit 6, and is set based on the importance or priority of the customer, for example. The weight wi may also be used as a parameter for normalizing KPI values having different units. L is the number of KPIs.
 ステップS105にて顧客KPI評価値が改善されており、かつ十分に収束しているかを判定し、条件が真であれば、顧客KPIを最大限改善したと判断し、その時のODD項目D3および自動運転制御機能D2の組み合わせを出力し、ステップS108にて終了する。ステップS105の条件式が偽の場合ステップS107へと進み、計算した顧客KPI評価値Eを一時保存変数Epに代入し、ステップS102に戻り、再び顧客KPI評価値D2を改善するような組み合わせを探索する。 In step S105, it is determined whether the customer KPI evaluation value has improved and converged sufficiently, and if the condition is true, it is determined that the customer KPI has been improved to the maximum extent, and the combination of ODD item D3 and automatic driving control function D2 at that time is output, and the process ends in step S108. If the conditional expression in step S105 is false, the process proceeds to step S107, the calculated customer KPI evaluation value E is substituted for the temporary saved variable Ep, and the process returns to step S102, and a combination that will improve the customer KPI evaluation value D2 is searched for again.
 なお上記の説明ではODD項目D2および自動運転制御機能D3の両方の組み合わせを調整しているが、ODD項目D2だけの変更で顧客KPI評価値Eを改善してもよい。 In the above explanation, the combination of both ODD item D2 and automatic driving control function D3 is adjusted, but the customer KPI evaluation value E may be improved by changing only ODD item D2.
 図1に戻り、図6のフローについてさらに具体的に説明する。図1に示す自動運転制御システム評価部5は、運行シナリオ生成部5bを備え、ODD調整部8から受けたODD項目D2にもとづき運行評価部5aで評価する際のテストシナリオを自動的に作成し、運行評価部5aへ送信する。 Returning to FIG. 1, the flow of FIG. 6 will be described in more detail. The automatic driving control system evaluation unit 5 shown in FIG. 1 includes an operation scenario generation unit 5b, which automatically creates a test scenario for evaluation by the operation evaluation unit 5a based on the ODD item D2 received from the ODD adjustment unit 8, and transmits the test scenario to the operation evaluation unit 5a.
 例えばODDの運行車両台数によって、テストシナリオでの運行台数を設定する。また、作業者が自動搬送サービス提供エリア15に存在する場合があると定義されたODDの場合、テストシナリオに作業者が様々な場所で歩行している際に安全に自動搬送車両11を制御できるかなどを記述し、評価する。 For example, the number of vehicles in operation in the test scenario is set according to the number of ODD vehicles in operation. In addition, in the case of an ODD defined as a situation in which a worker may be present in the automated transport service provision area 15, the test scenario describes and evaluates whether the automated transport vehicle 11 can be safely controlled when the worker is walking in various locations.
 KPI評価部9は、運行評価部5aの結果を収集し各KPI値を計算し、例えば(1)式を用いて顧客KPI評価値Eを算出する。また、ODD調整部8で十分に顧客KPI評価値Eを改善したと判定された場合、KPI評価部9は、そのODDと自動運転制御機能と顧客KPI評価値を設計支援システム1の計算結果として出力する。 The KPI evaluation unit 9 collects the results of the operation evaluation unit 5a, calculates each KPI value, and calculates the customer KPI evaluation value E using, for example, formula (1). Furthermore, if the ODD adjustment unit 8 determines that the customer KPI evaluation value E has been sufficiently improved, the KPI evaluation unit 9 outputs the ODD, the automatic driving control function, and the customer KPI evaluation value as the calculation results of the design support system 1.
 このようにして最終的に求められたODDと自動運転制御機能と顧客KPI評価値が、図5のトレーサビリティ表23bであり、自動運転制御機能2に対するODD項目2の適用を除外した、他のケースを最終案として提示したものである。 The ODD, autonomous driving control function, and customer KPI evaluation value finally obtained in this way are shown in traceability table 23b in Figure 5, which presents another case as the final proposal, excluding the application of ODD item 2 to autonomous driving control function 2.
 上記一連処理を採用する本発明の効果について説明する。具体的な効果事例として、ここでは図2に示す作業現場に自動搬送車両11を新たに導入し、自動搬送エリア10内にて自動貨物運搬サービスを提供する場合を想定する。この想定事例では、自動搬送エリア10が自動搬送車両11の走行性能を十分に満たす環境条件になっているか否かが不明であるため、導入に工数を要しコストが増加する課題がある。またその様に導入コストをかけて自動貨物運搬サービスを導入したとしても、顧客が望むKPIの値を満たす性能がでるかは、導入して稼働するまで不明で、KPI値を改善するための調整にもコストが発生する。 The effects of the present invention employing the above series of processes will now be described. As a specific example of the effects, it is assumed here that an automated transport vehicle 11 is newly introduced to the work site shown in FIG. 2, and an automated cargo transport service is provided within the automated transport area 10. In this assumed example, since it is unclear whether the environmental conditions in the automated transport area 10 are sufficient to satisfy the driving performance of the automated transport vehicle 11, there is a problem that the introduction requires labor and costs increase. Furthermore, even if an automated cargo transport service is introduced at such an introduction cost, it is unclear whether the performance will meet the KPI values desired by the customer until it is introduced and operational, and adjustments to improve the KPI values also incur costs.
 しかし、本実施例では、図1に示す設計支援システム1を用いることで、自動搬送車両11を自動搬送エリア10に導入する前に、自動搬送エリア10が自動搬送車両11の走行性能を十分に満たす環境条件であるかを判断でき、また顧客が要求するKPI値を最大限満たすような自動貨物運搬サービスの性能を見積もることができるため、導入後の調整等で発生していた工数やコストを削減できる。 However, in this embodiment, by using the design support system 1 shown in FIG. 1, it is possible to determine whether the environmental conditions of the automated transport area 10 are sufficient to satisfy the driving performance of the automated transport vehicle 11 before the automated transport vehicle 11 is introduced into the automated transport area 10, and it is also possible to estimate the performance of the automated cargo transport service that maximizes the KPI values required by the customer, thereby reducing the labor and costs that would have been incurred in adjustments after introduction.
 設計支援システム1では、まず顧客に顧客情報入力部6へKPIや導入したいサービスを入力してもらうことで、エリア環境データ生成部3にて、事前に環境情報を収集し分析をする。その環境情報を元にODD自動定義部7でODDを自動で定義することができる。ODD調整部8で定義されてODDと自動運転制御機能データベースDBに格納されている自動搬送車両11に搭載可能な機能との性能充足関係を評価し、自動運転制御システム評価部5とKPI評価部9を通じて見積もられた顧客KPI評価値を元に、顧客KPI評価値を最大限満たすようなODDと自動運転制御機能の組み合わせを自動的に設計することができる。 In the design support system 1, the customer first inputs KPIs and services they wish to introduce into the customer information input unit 6, and the area environment data generation unit 3 collects and analyzes environmental information in advance. Based on that environmental information, the ODD automatic definition unit 7 can automatically define the ODD. The performance satisfaction relationship between the ODD defined in the ODD adjustment unit 8 and the functions that can be installed on the automated guided vehicle 11 stored in the automatic driving control function database DB is evaluated, and based on the customer KPI evaluation value estimated through the automatic driving control system evaluation unit 5 and the KPI evaluation unit 9, a combination of the ODD and automatic driving control function that maximizes the satisfaction of the customer KPI evaluation value can be automatically designed.
 図5のトレーサビリティ表23aと23bを用いて、顧客KPI評価値を改善する組合せを算出する一例を示す。レーサビリティ表23aの縦軸には自動運転制御機能が3種類(ID:1、2、3)記載されている。各自動運転制御機能にはそれぞれ顧客が示したKPIに対するKPI値である搭載コスト(KPI1)とサービス提供時間(KPI2)が設定されている。横軸にはODDの項目1~3とそれぞれのODD項目の考慮の有無で決まるKPI値が設定されている。縦軸と横軸の直行表には対応関係が示されている。(1)式において、重みをすべて1としてトレーサビリティ表23aの顧客KPI評価値を計算すると13という値となる。 An example of calculating a combination that improves the customer KPI evaluation value is shown using the traceability tables 23a and 23b in Figure 5. Three types of automatic driving control functions (ID: 1, 2, 3) are listed on the vertical axis of traceability table 23a. For each automatic driving control function, the KPI values for the KPIs indicated by the customer, namely installation cost (KPI1) and service provision time (KPI2), are set. On the horizontal axis, ODD items 1 to 3 and KPI values determined by whether or not each ODD item is taken into consideration are set. The orthogonal table of the vertical and horizontal axes shows the correspondence. In formula (1), if the customer KPI evaluation value of traceability table 23a is calculated with all weights set to 1, the value becomes 13.
 この顧客KPI評価値を元に、図6のフローチャート24に従い、顧客KPI評価値を改善すると、トレーサビリティ表23bのような組合せを算出できる。トレーサビリティ表23bでは、一例として、ODD項目2に着目した。ODD項目2に関するKPI2値と、ODD項目2に対応するために必要な自動運転制御機能CCCのKPI1値を比較すると、顧客KPI評価値を改善する値がマイナスであることがわかる。 By improving the customer KPI evaluation value according to the flowchart 24 in FIG. 6 based on this customer KPI evaluation value, a combination like that shown in traceability table 23b can be calculated. In traceability table 23b, attention is focused on ODD item 2 as an example. When comparing the KPI2 value related to ODD item 2 with the KPI1 value of the automatic driving control function CCC required to deal with ODD item 2, it can be seen that the value for improving the customer KPI evaluation value is negative.
 そこで、図6のフローチャート24に従い、図5のトレーサビリティ表23bのようにODD項目2を考慮しない自動貨物運搬サービスとして、自動搬送車両11に自動運転制御機能CCCを搭載しないことで、KPI2のサービス提供時間が低下するが、(1)式において重みをすべて1としてトレーサビリティ表23bの顧客KPI評価値を計算すると17となり、トレーサビリティ表23aより改善した値となる設計解が得られる。 Therefore, according to the flowchart 24 in FIG. 6, as in the traceability table 23b in FIG. 5, an automated cargo transport service that does not consider ODD item 2 is provided by not equipping the automated transport vehicle 11 with an automated driving control function CCC. This reduces the service provision time for KPI 2, but when the customer KPI evaluation value in the traceability table 23b is calculated by setting all weights to 1 in equation (1), the result is 17, which is an improved value compared to the traceability table 23a.
 このように、顧客は設計支援システム1の出力であるODDや自動運転制御機能の組み合わせをもとに自動貨物運搬サービスを立ち上げることで、今まで発生していた導入後の調整を最小限に抑制でき、かつ、顧客のKPIを最大限満たすようなサービスを速やかに立ち上げることが可能となる。例えばKPIがコストであれば、自動運転制御機能への追加機能開発や性能改善を最小限にしつつ、自動搬送エリア10内の歩行者をルールでエリア外に除外してODDを緩和するような設計解が実運用前に得られる。 In this way, by launching an automated cargo transport service based on a combination of ODD and automated driving control functions, which are the output of the design support system 1, the customer can minimize the post-implementation adjustments that have previously occurred, and can quickly launch a service that meets the customer's KPIs to the greatest extent possible. For example, if the KPI is cost, a design solution can be obtained before actual operation that alleviates ODD by excluding pedestrians within the automated transport area 10 from the area using rules, while minimizing the need for additional function development and performance improvements to the automated driving control function.
 図1に示す設計支援システム1の処理結果として、設計支援システム1からはエリア環境改善に関する各種の改善情報が提示される。このうちKPI評価部9が与える改善情報は、自動運転制御機能に関する改善情報D4、ODDに関する改善情報D5、顧客KPI(D6)であり、自動運転制御システム評価部5が与える改善情報は、センサ配置やセンサ種類に関するインフラセンサの情報D7である。 As a processing result of the design support system 1 shown in FIG. 1, various improvement information related to area environment improvement is presented from the design support system 1. Of these, the improvement information provided by the KPI evaluation unit 9 is improvement information D4 related to the autonomous driving control function, improvement information D5 related to the ODD, and customer KPI (D6), and the improvement information provided by the autonomous driving control system evaluation unit 5 is infrastructure sensor information D7 related to sensor placement and sensor type.
 図7は、設計支援システム1の出力の活用事例を示す図である。図7の上段の自動運転制御機能に関する改善情報D4は、直接自動運転車両11に与えられ、または管制システム30を介して間接的に自動運転車両11に与えられる。 FIG. 7 is a diagram showing an example of how the output of the design support system 1 is used. The improvement information D4 relating to the autonomous driving control function in the upper part of FIG. 7 is provided directly to the autonomous vehicle 11, or indirectly to the autonomous vehicle 11 via the control system 30.
 自動運転制御機能D4には制御ソフトウェアとそれに必要なセンサ仕様が含まれており、設計支援システム1からの自動運転制御機能D4を自動運転車両11に新に追加搭載する。制御ソフトウェアは自動運転車両11の演算装置11a(コントローラ等)に実装され、センサ仕様に従い自動運転車両11にセンサ11bを搭載する。 The autonomous driving control function D4 includes control software and the sensor specifications required for it, and the autonomous driving control function D4 from the design support system 1 is newly installed in the autonomous driving vehicle 11. The control software is implemented in the calculation device 11a (controller, etc.) of the autonomous driving vehicle 11, and the sensor 11b is installed in the autonomous driving vehicle 11 according to the sensor specifications.
 これに応じて自動運転車両11は、演算装置11aが自車両を自動運転制御させる制御指令値を計算し、制御指令値を制御装置11aに送り、自車両のアクチュエータ(図示せず、タイヤの回転数や操舵角)を駆動する制御信号をアクチュエータに送信する。 In response to this, the calculation device 11a of the autonomous vehicle 11 calculates a control command value for controlling the autonomous driving of the vehicle, sends the control command value to the control device 11a, and transmits a control signal to the actuator (not shown) of the vehicle (tire rotation speed and steering angle).
 管制システム30を介した間接的利用の場面では、演算装置31と制御装置11aは別々の装置に設けられても良い。例えば、演算装置31を自動運転車両11とは別の場所に設けられた装置である管制システム30に備えてもよい。管制システム30と自動運転車両11は無線通信等で信号をやりとりできる。 In the case of indirect use via the control system 30, the calculation device 31 and the control device 11a may be provided in separate devices. For example, the calculation device 31 may be provided in the control system 30, which is a device provided in a location separate from the autonomous vehicle 11. The control system 30 and the autonomous vehicle 11 can exchange signals via wireless communication, etc.
 この場合、自動運転制御機能D4の制御ソフトウェアを管制システム30の演算装置31に実装し、センサ仕様にもとづき自動運転車両11にセンサを搭載する。管制システム30の演算装置31で計算した自動運転制御させる制御指令値を、無線通信を介して自動運転車両11へ送信し、自動運転車両11の制御装置11aは制御指令値に基づき自車両のアクチュエータを駆動する制御信号をアクチュエータに送信する。センサ信号は無線通信を介して管制システム30の演算装置31に送られ、自動運転制御の演算に用いられる。 In this case, the control software for the autonomous driving control function D4 is implemented in the arithmetic device 31 of the management system 30, and a sensor is installed in the autonomous driving vehicle 11 based on the sensor specifications. A control command value for autonomous driving control calculated by the arithmetic device 31 of the management system 30 is transmitted to the autonomous driving vehicle 11 via wireless communication, and the control device 11a of the autonomous driving vehicle 11 transmits a control signal for driving the actuator of the host vehicle based on the control command value to the actuator. The sensor signal is transmitted to the arithmetic device 31 of the management system 30 via wireless communication and is used in the calculation of the autonomous driving control.
 図7の上から2段目には、ODDに関する改善情報D5の活用事例を示しており、この場合、直接自動運転車両11に与えられ、または管制システム30を介して間接的に自動運転車両11に与えられる。 The second row from the top of Figure 7 shows an example of how improvement information D5 related to the ODD is used, in which the information is provided directly to the autonomous vehicle 11, or indirectly to the autonomous vehicle 11 via the control system 30.
 間接的利用の場合に、ODDに関する改善情報D5は管制システム30で用いられ、管制システム30が備えるODD逸脱判定部32はODDに関する改善情報D5と各種環境情報を元に、自動運転車両11が走行する環境(サービス提供エリア)がODDに関する改善情報D5で定義された走行可能環境条件を満たしているかを判定する。 In the case of indirect use, the ODD-related improvement information D5 is used by the control system 30, and the ODD deviation determination unit 32 provided in the control system 30 determines whether the environment (service provision area) in which the autonomous vehicle 11 is traveling satisfies the driving environment conditions defined in the ODD-related improvement information D5, based on the ODD-related improvement information D5 and various environmental information.
 管制システム30は自動運転車両11の制御装置11aと無線通信を介して信号をやり取りでき、ODD逸脱判定部32は、走行可能条件を満たしている状態では、制御装置には何も信号をおくらず、一方で、走行可能条件を満たさない場合(ODDを逸脱した場合)は自動運転車両11の制御装置11aへODD逸脱信号を送信する。 The control system 30 can exchange signals with the control device 11a of the autonomous vehicle 11 via wireless communication, and the ODD deviation determination unit 32 does not send any signal to the control device when the driving conditions are met, but sends an ODD deviation signal to the control device 11a of the autonomous vehicle 11 when the driving conditions are not met (when the vehicle deviates from the ODD).
 自動運転車両11の制御装置11aはODD逸脱信号を受信すると、例えば、自動運転状態を解除するために登場している運転者へ手動運転に切り替わる旨を通知し、あるいは自動運転状態から緊急停止状態へ遷移し、自動的に安全に車両を停車させる制御信号を生成し、アクチュエータに送信する。また、ODD逸脱判定部は自動運転自動車に搭載されていてもよい。なお、各種環境情報は天候、時刻、GNSS電波状況、道路の形状や状態、意図しない歩行者の有無等である。 When the control device 11a of the autonomous vehicle 11 receives the ODD deviation signal, it notifies the driver who is present to cancel the autonomous driving state that it will switch to manual driving, or it transitions from the autonomous driving state to an emergency stop state, generates a control signal to automatically and safely stop the vehicle, and sends it to the actuator. The ODD deviation determination unit may also be installed in the autonomous vehicle. The various environmental information includes weather, time, GNSS radio wave conditions, road shape and condition, and the presence or absence of unintended pedestrians.
 図7の上から3段目には、顧客KPI(D6)の活用事例を示している。顧客KPI評価D6(評価結果の数値等)は、表示装置40を介して顧客に顧客KPI評価結果を通知するために使用される。顧客は表示装置で通知された評価結果を受け入れる場合は、例えば、顧客は自動掘削制御機能、ODD、インフラセンサの後工程を開始指示する。評価結果を受け入れない場合は、図1の顧客要求を変更し、再度、設計支援システム1を実行する。 The third row from the top of Figure 7 shows an example of using the customer KPI (D6). The customer KPI evaluation D6 (e.g., numerical evaluation result) is used to notify the customer of the customer KPI evaluation result via the display device 40. If the customer accepts the evaluation result notified on the display device, the customer issues an instruction to start downstream processes such as the automatic excavation control function, ODD, and infrastructure sensor. If the customer does not accept the evaluation result, the customer request in Figure 1 is changed and the design support system 1 is executed again.
 図7の上から3段目には、インフラセンサの情報D7の活用事例を示している。インフラセンサ情報D7を元に、設計業者等が後工程であるサービス提供エリアにインフラセンサを設置するための詳細設計50(センサを取り付ける柱の設計等)を行い、詳細図面51を作成する。その後詳細図面51を元に施工業者がサービス提供エリアにインフラセンサを設置52する。 The third row from the top of Figure 7 shows an example of how infrastructure sensor information D7 is used. Based on the infrastructure sensor information D7, a design firm or the like performs detailed design 50 (designing the pillars on which the sensors are attached, etc.) for installing infrastructure sensors in the service provision area, which is the subsequent process, and creates detailed drawings 51. After that, a construction firm installs 52 the infrastructure sensors in the service provision area based on the detailed drawings 51.
 なお実施例1では、原則は顧客意向に従ってODD条件設定することについて説明したが、これは、サービス条件の変更の提案であってもよい。また、実装時にODDを超えた場合は、車両停止、または自動運転を停止して運転権限を運転者にわたすようにするのがよい。 In the first embodiment, the ODD conditions are set according to the customer's wishes, but this may be a proposal to change the service conditions. Also, if the ODD is exceeded during implementation, it is advisable to stop the vehicle or stop automatic driving and hand over driving authority to the driver.
 上記した本発明によれば、事業主の重要業績評価指標の最大化と信頼性の確保を両立するように調整した運行設計領域であるODDを自動で設計する事ができる設計支援システムを提供できる。これにより事業主の重要業績評価指標を改善する自動運転サービスを提供できる。 According to the present invention described above, it is possible to provide a design support system that can automatically design the ODD, which is an operational design area adjusted to balance maximizing the business owner's key performance indicators and ensuring reliability. This makes it possible to provide an automated driving service that improves the business owner's key performance indicators.
 実施例2では、サービス提供場所として図8を想定する。図8に示すような作業現場25では、日々、土砂26をショベル27が掘削し、ダンプトラック28へ積載し運搬するため環境情報の変化が頻繁に発生する。ショベル27やダンプトラック28を自動運転化する場合に、設計支援システム1では、自動運転に関わるサービスとして導入前の設計を支援するが、運用開始後の環境変化に対応してもODDを再定義し、顧客KPI評価値を維持もしくは改善することが望まれる。 In Example 2, the service provision location is assumed to be as shown in FIG. 8. At a work site 25 as shown in FIG. 8, a shovel 27 excavates soil 26 every day, and the soil is loaded onto a dump truck 28 for transport, so that environmental information changes frequently. When shovels 27 and dump trucks 28 are automated, design support system 1 supports design before implementation as a service related to automated driving, but it is desirable to redefine the ODD to accommodate environmental changes after operation begins, and to maintain or improve the customer KPI evaluation value.
 上記課題を解決するために、実施例1と異なる点および構成を、図1、8、9を用いて説明する。まず実施例2では、図1のエリアデータ収集部3a内に新たに環境変化検出部3dを備える。環境変化検出部3dは、サービスを提供するエリアの環境に変化が生じるとエリアデータ収集部3aに再度データを収集させ、エリアデジタル地図生成部3bは再度デジタル地図を生成し、設計支援システム1の一連の処理を再実行する機能を備えたことを意味する。 In order to solve the above problems, differences from the first embodiment and the configuration will be described with reference to Figures 1, 8, and 9. First, in the second embodiment, an environmental change detection unit 3d is newly provided within the area data collection unit 3a in Figure 1. The environmental change detection unit 3d means that when a change occurs in the environment of the area in which the service is provided, the area data collection unit 3a collects data again, the area digital map generation unit 3b generates a digital map again, and the design support system 1 is provided with a function of re-executing a series of processes.
 これによれば、図8の作業現場25において自動運転で稼働するショベル27が土砂26を掘り進めると、図9の領域29には土砂26がなくなり路面に残土があるような領域が発生する。そのため領域29の路面は他の領域より凹凸が多い事がある。このような凹凸の多い路面が自動運転サービス提供エリア内に存在する状態をODDとして再定義することで、自動運転のダンプトラック28が正常に領域29を走行できるかを検討し、走行するにはダンプトラック28の機能改善が必要、もしくは、領域29を他の領域同等に整地してODDを緩和するべきかをすみやかに検証する必要がある。 According to this, when an automatically operated shovel 27 digs up soil 26 at work site 25 in FIG. 8, soil 26 disappears in area 29 in FIG. 9, resulting in an area where there is residual soil on the road surface. As a result, the road surface in area 29 may be more uneven than other areas. By redefining the state where such an uneven road surface exists within an area providing an autonomous driving service as ODD, it is possible to consider whether an autonomous dump truck 28 can normally travel through area 29, and it is necessary to quickly verify whether the functionality of dump truck 28 needs to be improved in order for the dump truck 28 to travel, or whether area 29 should be leveled to the same level as other areas to alleviate ODD.
 そこで、例えばダンプトラック28に搭載した環境計測装置2からの環境情報D2を元に設計支援システム1の環境変化検出部3dが作業現場25において領域29が変化したことを検出すると、エリア環境データ生成部3、ODD自動定義部7、ODD調整部8、自動運転制御システム評価部5、および、KPI評価部9を再度実行し、顧客KPI評価値を維持もしくは改善するODDと自動運転制御機能を再設計し、出力する。 For example, when the environmental change detection unit 3d of the design support system 1 detects a change in the area 29 at the work site 25 based on the environmental information D2 from the environmental measurement device 2 mounted on the dump truck 28, the area environmental data generation unit 3, the ODD automatic definition unit 7, the ODD adjustment unit 8, the automatic driving control system evaluation unit 5, and the KPI evaluation unit 9 are executed again to redesign and output the ODD and automatic driving control function that maintains or improves the customer KPI evaluation value.
 これにより、例えば、領域29を他の領域と同等に整地してODDを緩和するなどの設計方針が日々の環境変化に対応して得られ、コストなどの顧客KPIを満足する水準で維持することができる。 This allows design policies to be developed in response to daily changes in the environment, such as leveling area 29 to the same level as other areas to mitigate ODD, and customer KPIs such as costs can be maintained at a level that satisfies them.
 実施例3では、サービス提供場所として図10を想定する。図10に示すような一般公道環境30では、自動運転自動車31は信号機32を始めとする様々な交通ルールに従い、走行する必要がある。交通ルールは走行環境と同様にODDとして定義され、自動運転自動車31は一般公道環境30が備えるODDを充足する自動運転制御機能を搭載する必要がある。 In Example 3, the location where the service is provided is assumed to be as shown in FIG. 10. In a general public road environment 30 as shown in FIG. 10, an autonomous vehicle 31 must travel in accordance with various traffic rules, including traffic lights 32. The traffic rules are defined as ODDs, just like the driving environment, and the autonomous vehicle 31 must be equipped with an autonomous driving control function that satisfies the ODDs provided in the general public road environment 30.
 このような一般公道環境30で自動運転自動車31を走らせるには多種多様な交通ルールだけでなく、天候や歩行者等の多くのODD項目に対応する必要があるため、搭載する自動運転制御機能が増大する。自動運転自動車31に搭載する自動運転制御機能を検討する際、新規で開発するか、もしくは開発済みの自動運転制御機能を採用するか、などの設計検討が必要となるが、実施例1の設計支援システム1では、自動運転制御機能データベースDBに登録されている機能でのみ検討が可能であるため、設計経験のない一般公道環境30に自動運転自動車31を提供するには設計支援システム1では適切な設計が出力されず、顧客KPIを満足する設計解が得られない課題がある。 In order to run an autonomous vehicle 31 in such a general public road environment 30, it is necessary to deal with not only a wide variety of traffic rules, but also many ODD items such as weather and pedestrians, and therefore the number of autonomous driving control functions to be installed increases. When considering the autonomous driving control functions to be installed in an autonomous vehicle 31, design considerations are required, such as whether to develop a new one or adopt an autonomous driving control function that has already been developed. However, in the design support system 1 of the first embodiment, only functions registered in the autonomous driving control function database DB can be considered, so when providing an autonomous vehicle 31 for a general public road environment 30 where there is no design experience, the design support system 1 does not output an appropriate design, and there is a problem that a design solution that satisfies the customer's KPIs cannot be obtained.
 上記課題を解決するために、実施例1と異なる点および構成を、図1を用いて説明する。実施例3では、実施例1の図1において、図1のKPI評価部9は機能の仕様を変更した自動運転制御プログラムや新たに追加した機能の自動運転制御プログラムを自動運転制御機能データベースDBに追加する機能を備えたものである。 In order to solve the above problem, the differences and configuration from the first embodiment will be explained with reference to FIG. 1. In the third embodiment, the KPI evaluation unit 9 in FIG. 1 of the first embodiment has a function of adding an automatic driving control program with modified function specifications or an automatic driving control program with a newly added function to the automatic driving control function database DB.
 図10の一般公道環境30は信号機32を備えるため、信号機のある環境としてODDで定義される。そのため、自動運転自動車31は信号機32の標示を認識する機能が要求される。 The general public road environment 30 in FIG. 10 includes traffic lights 32, and is therefore defined as an environment with traffic lights in the ODD. Therefore, the self-driving car 31 is required to have the functionality to recognize the signs of the traffic lights 32.
 自動運転自動車31の車載カメラで信号機32の標示を認識するには、他のODD項目である天候や照明などの条件によっては搭載コストのかかる機能となる可能性がある。そこで、インフラ設備33による認識のサポート環境を構築し、インフラサポートを利用できるODDを設ける。 Recognizing traffic light 32 signs using an onboard camera of an autonomous vehicle 31 may be a costly feature depending on other ODD items such as weather and lighting. Therefore, an environment for recognition support using infrastructure equipment 33 is created, and an ODD that can use infrastructure support is provided.
 図11に示すトレーサビリティ表34に示すODD項目4を信号機32と情報連携可能なインフラサポートを示すODDとしたとき、ODD項目4に対応する自動運転制御機能DDD35を自動運転自動車31に搭載する必要がある。この時、図6のフローチャート24に従い、顧客KPI評価値を改善した結果として、図11のトレーサビリティ表34が設計解であるとする。図1のKPI評価部9は、自動運転制御機能DDD35が新たに追加された機能である場合、自動運転制御機能データベースDBに自動運転制御機能DDD35を登録する。これにより、一般公道環境30と類似した環境下で別の自動運転サービスを提供する際に、設計支援システム1を用いた時、自動運転制御機能DDD35を用いることが選択可能となるため、新たな機能開発費用を要することなく、自動運転自動車31を提供する設計支援システム1から顧客KPIを満足する設計解が速やかに得られる。 When ODD item 4 shown in the traceability table 34 in FIG. 11 is an ODD indicating infrastructure support capable of information sharing with the traffic light 32, it is necessary to install the autonomous driving control function DDD35 corresponding to the ODD item 4 in the autonomous driving automobile 31. At this time, the traceability table 34 in FIG. 11 is assumed to be a design solution as a result of improving the customer KPI evaluation value according to the flowchart 24 in FIG. 6. If the autonomous driving control function DDD35 is a newly added function, the KPI evaluation unit 9 in FIG. 1 registers the autonomous driving control function DDD35 in the autonomous driving control function database DB. As a result, when using the design support system 1 to provide another autonomous driving service in an environment similar to the general public road environment 30, it becomes possible to select the use of the autonomous driving control function DDD35, so that a design solution that satisfies the customer KPI can be quickly obtained from the design support system 1 that provides the autonomous driving automobile 31 without incurring new function development costs.
 以上の実施例では、自動搬送車両、建設車両、自動運転自動車に本発明を適用した場合を例に挙げて説明したが、本発明はその他の自動運転車両である、例えば農作業車両や、自律作業ロボットにも適用可能である。 In the above embodiments, the present invention has been described as being applied to automated transport vehicles, construction vehicles, and autonomous automobiles, but the present invention can also be applied to other autonomous vehicles, such as agricultural vehicles and autonomous work robots.
 実施例4では設計支援システムのプログラムについて説明する。設計支援システムのプログラムは、計算機装置のROMに収納されているが、この一部は図6に示したODD調整部8、自動運転制御システム評価部5、KPI評価部9の処理を実行するプログラムである。またほかのプログラムについて、図示していないが、図1の各部演算機能の単位でプログラムを構成するのがよい。 In Example 4, the program of the design support system will be explained. The program of the design support system is stored in the ROM of the computer device, and some of these programs execute the processes of the ODD adjustment unit 8, the automatic driving control system evaluation unit 5, and the KPI evaluation unit 9 shown in Figure 6. As for the other programs, although not shown, it is preferable to configure the programs in units of the calculation functions of each unit in Figure 1.
 例えば、エリア環境データ生成部3について、これを1単位とするプログラムを形成し、この中のサブプログラムとしてエリアデータ収集部3aとエリアデジタル地図生成部3bとサービス提供エリア特定部3cの機能を実現するのがよい。この考え方は、他の各部演算機能においても適用されるのがよい。 For example, it would be good to create a program that treats the area environment data generation unit 3 as a single unit, and to realize the functions of the area data collection unit 3a, area digital map generation unit 3b, and service provision area identification unit 3c as subprograms within this program. This concept should also be applied to the calculation functions of the other units.
 具体的には例えば、サービス提供エリアを走行する車両を自動運転制御するためのプログラムである自動運転制御機能プログラムと、環境データを用いて、サービス提供エリアのデジタル地図を生成するエリアデジタル地図生成部を備えたエリア環境データ生成プログラムと、デジタル地図の情報から自動運転サービスを運行するための環境制約条件となる運行設計領域を生成し出力する自動運転ODD自動定義プログラムと、運行設計領域に対し、自動運転制御プログラムに対で格納されている自動運転制御機能仕様の充足を評価して評価結果に基づき運行設計領域を変更するODD調整プログラムと、顧客要求に基づいて、運行設計領域を評価する自動運転制御システム評価プログラムと、顧客要求に基づき顧客の重要業績評価指標を評価する顧客要求評価式を生成し、自動運転制御システム評価プログラムから出力された値に基づき顧客要求評価式を演算し運行設計領域と顧客の重要業績評価指標とを出力するKPI評価プログラムを備えるのがよい。 Specifically, for example, it is preferable to provide an automatic driving control function program, which is a program for controlling automatic driving of vehicles traveling in a service provision area; an area environmental data generation program having an area digital map generation unit that uses environmental data to generate a digital map of the service provision area; an automatic driving ODD definition program that generates and outputs an operation design area that is an environmental constraint condition for operating an automatic driving service from digital map information; an ODD adjustment program that evaluates the satisfaction of the automatic driving control function specifications stored in the automatic driving control program in pairs for the operation design area and changes the operation design area based on the evaluation results; an automatic driving control system evaluation program that evaluates the operation design area based on customer requirements; and a KPI evaluation program that generates a customer requirement evaluation formula that evaluates the customer's key performance indicators based on the customer requirements, calculates the customer requirement evaluation formula based on the values output from the automatic driving control system evaluation program, and outputs the operation design area and the customer's key performance indicators.
1:設計支援システム
2:環境計測装置
3:エリア環境データ生成部
3a:エリアデータ収集部
3b:エリアデジタル地図生成部
3c:サービス提供エリア特定部
3d:環境変化検出部
4:自動運転制御機能データベース
5:自動運転制御システム評価部
5a:運行評価部
5b:運行シナリオ生成部
6:顧客情報入力部
7:ODD自動定義部
8:ODD調整部
9:KPI評価部
10:自動搬送エリア
11:自動搬送車両
12:棚
13:外形線
15:自動搬送サービス提供エリア
16:貨物置き場
17:フォークリフト
18:トラック
19:現場基準座標
20:通路幅
21:WiFiアンテナ
22:監視カメラ
23a、23b:トレーサビリティ表
24:フローチャート
25:作業現場
26:土砂
27:ショベル
28:ダンプトラック
29:領域
30:一般公道環境
31:自動運転自動車
32:信号機
33:インフラ設備
34:トレーサビリティ表
35:自動運転制御機能DDD
S100~S108:ステップ
1: Design support system 2: Environmental measurement device 3: Area environmental data generation unit 3a: Area data collection unit 3b: Area digital map generation unit 3c: Service provision area identification unit 3d: Environmental change detection unit 4: Automatic driving control function database 5: Automatic driving control system evaluation unit 5a: Operation evaluation unit 5b: Operation scenario generation unit 6: Customer information input unit 7: ODD automatic definition unit 8: ODD adjustment unit 9: KPI evaluation unit 10: Automatic transport area 11: Automatic transport vehicle 12: Shelf 13: Outline Line 15: Automated transport service provision area 16: Cargo storage area 17: Forklift 18: Truck 19: Site reference coordinates 20: Passage width 21: Wi-Fi antenna 22: Surveillance camera 23a, 23b: Traceability table 24: Flowchart 25: Work site 26: Soil and sand 27: Shovel 28: Dump truck 29: Area 30: General public road environment 31: Automated driving car 32: Traffic light 33: Infrastructure equipment 34: Traceability table 35: Automated driving control function DDD
S100 to S108: Step

Claims (12)

  1.  顧客が管理するサービス提供エリアの環境を計測する環境計測装置からの環境データと、顧客要求を得て顧客の重要業績評価指標の改善値を出力する設計支援システムであって、
     前記サービス提供エリアを走行する車両を自動運転制御するための自動運転制御プログラムを格納した自動運転制御機能データベースと、
     前記環境データを用いて、前記サービス提供エリアのデジタル地図を生成するエリアデジタル地図生成部を備えたエリア環境データ生成部と、
     前記デジタル地図の情報から自動運転サービスを運行するための環境制約条件となる運行設計領域を生成し出力する自動運転ODD自動定義部と、
     前記自動運転ODD自動定義部から出力された運行設計領域に対し、前記自動運転制御プログラムに対で格納されている自動運転制御機能仕様の充足を評価して評価結果に基づき運行設計領域を変更するODD調整部と、
     前記顧客要求に基づいて、前記運行設計領域を評価する自動運転制御システム評価部と、
     前記顧客要求に基づき顧客の重要業績評価指標を評価する顧客要求評価式を生成し、前記自動運転制御システム評価部から出力された値に基づき前記顧客要求評価式を演算し前記運行設計領域と顧客の重要業績評価指標とを出力するKPI評価部とを備え、
     前記ODD調整部は、前記KPI評価部で演算出力された前記顧客要求評価式の値に基づき、以前の前記顧客要求評価式の値よりも向上するように前記運行設計領域に変更を加え、
     前記KPI評価部は、変更された前記運行設計領域に基づき、顧客の重要業績評価指標の改善値を出力することを特徴とする設計支援システム。
    A design support system that receives environmental data from an environmental measurement device that measures the environment of a service provision area managed by a customer and customer requirements and outputs an improvement value of a customer's key performance indicator,
    an automatic driving control function database storing an automatic driving control program for automatically controlling the driving of a vehicle traveling in the service provision area;
    an area environmental data generating unit including an area digital map generating unit that generates a digital map of the service provision area using the environmental data;
    An automatic definition unit for automatic driving ODD that generates and outputs a driving design area that is an environmental constraint condition for operating an automatic driving service from the information of the digital map;
    An ODD adjustment unit that evaluates the fulfillment of the automatic driving control function specifications stored in the automatic driving control program in pairs for the operation design domain output from the automatic driving ODD automatic definition unit and changes the operation design domain based on the evaluation result;
    an automatic driving control system evaluation unit that evaluates the operation design domain based on the customer requirements;
    a KPI evaluation unit that generates a customer requirement evaluation formula for evaluating a customer's key performance indicator based on the customer requirement, calculates the customer requirement evaluation formula based on a value output from the automatic driving control system evaluation unit, and outputs the operation design domain and the customer's key performance indicator;
    The ODD adjustment unit makes a change to the operation design domain so as to improve the value of the customer request evaluation formula based on the value of the customer request evaluation formula calculated and output by the KPI evaluation unit,
    A design support system characterized in that the KPI evaluation unit outputs an improvement value of a customer's key performance indicator based on the changed operation design area.
  2.  請求項1に記載の設計支援システムであって、
     前記自動運転ODD自動定義部は、前記車両の自動運転制御機能を生成して出力し、前記自動運転制御システム評価部は前記顧客要求に基づいて、前記車両の自動運転制御機能を評価し、前記KPI評価部は前記自動運転制御機能と顧客の重要業績評価指標とを出力することを特徴とする設計支援システム。
    2. The design support system according to claim 1,
    A design support system characterized in that the autonomous driving ODD automatic definition unit generates and outputs an autonomous driving control function of the vehicle, the autonomous driving control system evaluation unit evaluates the autonomous driving control function of the vehicle based on the customer requirements, and the KPI evaluation unit outputs the autonomous driving control function and a customer's key performance indicators.
  3.  請求項1に記載の設計支援システムであって、
     前記自動運転制御システム評価部は、前記サービス提供エリアにおける環境の改善を提示することを特徴とする設計支援システム。
    2. The design support system according to claim 1,
    A design support system characterized in that the autonomous driving control system evaluation unit presents environmental improvements in the service provision area.
  4.  請求項1に記載の設計支援システムであって、
     前記ODD調整部は、前記KPI評価部で演算出力された前記顧客要求評価式の値に基づき、以前の前記顧客要求評価式の値よりも向上するように前記運行設計領域と前記自動運転制御プログラムとに変更を加え、
     前記KPI評価部は、変更された前記運行設計領域と前記自動運転制御プログラムとに基づき、顧客の重要業績評価指標の改善値を出力することを特徴とする設計支援システム。
    2. The design support system according to claim 1,
    The ODD adjustment unit modifies the operation design area and the automatic driving control program based on the value of the customer request evaluation formula calculated and output by the KPI evaluation unit so as to improve the value of the customer request evaluation formula from the previous value,
    A design support system characterized in that the KPI evaluation unit outputs improvement values of the customer's key performance indicators based on the changed operation design area and the automatic driving control program.
  5.  請求項1に記載の設計支援システムであって、
     前記自動運転制御システム評価部は、前記自動運転制御機能データベースに格納された自動運転制御プログラムと生成したデジタル地図とを利用して運行設計領域と自動運転制御プログラムとデジタル地図とから仮想環境にて自動運転走行をさせて自動運転制御システムと運行設計領域を評価することを特徴とする設計支援システム。
    2. The design support system according to claim 1,
    A design support system characterized in that the autonomous driving control system evaluation unit uses the autonomous driving control program stored in the autonomous driving control function database and the generated digital map to perform autonomous driving in a virtual environment based on the operation design domain, the autonomous driving control program, and the digital map to evaluate the autonomous driving control system and the operation design domain.
  6.  請求項1に記載の設計支援システムであって、
     前記自動運転制御システム評価部は、前記ODD調整部から出力された前記運行設計領域から評価する運行シナリオを生成する運行シナリオ生成部を備えたことを特徴とする設計支援システム。
    2. The design support system according to claim 1,
    A design support system characterized in that the automatic driving control system evaluation unit includes an operation scenario generation unit that generates an operation scenario to be evaluated from the operation design domain output from the ODD adjustment unit.
  7.  請求項1に記載の設計支援システムであって、
     前記自動運転ODD自動定義部は、前記デジタル地図の情報と自動運転制御プログラムから環境に設置して環境情報を収集する少なくとも1つのインフラセンサの設計情報を出力する運行環境変更部を備えたことを特徴とする設計支援システム。
    2. The design support system according to claim 1,
    A design support system characterized in that the autonomous driving ODD automatic definition unit is provided with an operating environment change unit that outputs design information for at least one infrastructure sensor that is installed in the environment to collect environmental information from the digital map information and the autonomous driving control program.
  8.  請求項7に記載の設計支援システムであって、
     前記設計支援システムは、全ての前記インフラセンサが収集した情報を集約し、前記車両へと情報を共有するインフラセンサシステムを備えたことを特徴とする設計支援システム。
    The design support system according to claim 7,
    The design support system is characterized by comprising an infrastructure sensor system that aggregates information collected by all of the infrastructure sensors and shares the information with the vehicle.
  9.  請求項1に記載の設計支援システムであって、
     前記エリア環境データ生成部は、サービスを提供するエリアの環境に変化が生じると再度データを収集し、前記エリアデジタル地図生成部に再度デジタル地図を生成し、前記設計支援システムの一連の処理を再実行する環境変化検出部を備えたことを特徴とする設計支援システム。
    2. The design support system according to claim 1,
    said area environmental data generation unit collects data again when a change occurs in the environment of the area in which the service is provided, said area digital map generation unit generates a new digital map, and said design support system further comprises an environmental change detection unit which re-executes a series of processes.
  10.  請求項1に記載の設計支援システムであって、
     前記KPI評価部は、変更した前記自動運転制御プログラムを前記自動運転制御機能データベースに追加する機能を備えたことを特徴とする設計支援システム。
    2. The design support system according to claim 1,
    A design support system characterized in that the KPI evaluation unit has a function of adding the modified autonomous driving control program to the autonomous driving control function database.
  11.  顧客が管理するサービス提供エリアの環境を計測する環境計測装置からの環境データと、顧客要求を得て、計算機装置を用いて顧客の重要業績評価指標の改善値を出力する設計支援方法であって、
     前記サービス提供エリアを走行する車両を自動運転制御するための自動運転制御プログラムを格納した自動運転制御機能データベースを備え、
     前記計算機装置の演算部は、前記環境データを用いて、前記サービス提供エリアのデジタル地図を生成し、前記デジタル地図の情報から自動運転サービスを運行するための環境制約条件となる運行設計領域を生成し、前記運行設計領域に対し、前記自動運転制御プログラムに対で格納されている自動運転制御機能仕様の充足を評価して評価結果に基づき運行設計領域を変更し、前記顧客要求に基づいて、前記運行設計領域を評価し、前記顧客要求に基づき顧客の重要業績評価指標を評価する顧客要求評価式を生成し、自動運転制御システムの評価値に基づき前記顧客要求評価式を演算し、前記運行設計領域と顧客の重要業績評価指標とを得るとともに、
     前記顧客要求評価式の値に基づき、以前の前記顧客要求評価式の値よりも向上するように前記運行設計領域に変更を加え、変更された前記運行設計領域に基づき、顧客の重要業績評価指標の改善値を得ることを特徴とする設計支援方法。
    A design support method for obtaining environmental data from an environmental measurement device that measures the environment of a service provision area managed by a customer and customer requirements, and outputting an improvement value of a key performance indicator of the customer using a computer device, comprising:
    an automatic driving control function database storing an automatic driving control program for automatically controlling the driving of a vehicle traveling in the service provision area;
    The calculation unit of the computer device uses the environmental data to generate a digital map of the service provision area, generates an operation design domain that is an environmental constraint condition for operating an autonomous driving service from information on the digital map, evaluates the satisfaction of the autonomous driving control function specifications stored in the autonomous driving control program in pairs for the operation design domain, changes the operation design domain based on the evaluation results, evaluates the operation design domain based on the customer requirements, generates a customer requirement evaluation formula that evaluates key performance indicators of the customer based on the customer requirements, calculates the customer requirement evaluation formula based on the evaluation value of the autonomous driving control system, obtains the operation design domain and the customer's key performance indicators, and
    A design support method characterized by modifying the operation design area based on the value of the customer requirement evaluation formula so as to improve the value of the customer requirement evaluation formula from a previous value, and obtaining an improved value of the customer's key performance indicator based on the modified operation design area.
  12.  顧客が管理するサービス提供エリアの環境を計測する環境計測装置からの環境データと、顧客要求を得て顧客の重要業績評価指標の改善値を出力するための設計支援プログラムであって、
     前記サービス提供エリアを走行する車両を自動運転制御するための自動運転制御プログラムである自動運転制御機能プログラムと、
     前記環境データを用いて、前記サービス提供エリアのデジタル地図を生成するエリアデジタル地図生成部を備えたエリア環境データ生成プログラムと、
     前記デジタル地図の情報から自動運転サービスを運行するための環境制約条件となる運行設計領域を生成し出力する自動運転ODD自動定義プログラムと、
     前記運行設計領域に対し、前記自動運転制御プログラムに対で格納されている自動運転制御機能仕様の充足を評価して評価結果に基づき運行設計領域を変更するODD調整プログラムと、
     前記顧客要求に基づいて、前記運行設計領域を評価する自動運転制御システム評価プログラムと、
     前記顧客要求に基づき顧客の重要業績評価指標を評価する顧客要求評価式を生成し、前記自動運転制御システム評価プログラムから出力された値に基づき前記顧客要求評価式を演算し前記運行設計領域と顧客の重要業績評価指標とを出力するKPI評価プログラムとを備え、
     前記ODD調整プログラムは、前記KPI評価プログラムで演算出力された前記顧客要求評価式の値に基づき、以前の前記顧客要求評価式の値よりも向上するように前記運行設計領域に変更を加え、
     前記KPI評価プログラムは、変更された前記運行設計領域に基づき、顧客の重要業績評価指標の改善値を出力することを特徴とする設計支援プログラム。
    A design support program for obtaining environmental data from an environmental measurement device that measures the environment of a service provision area managed by a customer and customer requirements, and outputting an improvement value of a customer's key performance indicators,
    An automatic driving control function program which is an automatic driving control program for automatically controlling the driving of a vehicle traveling in the service provision area;
    an area environmental data generating program including an area digital map generating unit that generates a digital map of the service provision area using the environmental data;
    An automatic definition program for an autonomous driving ODD that generates and outputs a driving design area that is an environmental constraint condition for operating an autonomous driving service from the information of the digital map;
    An ODD adjustment program that evaluates the fulfillment of the automatic driving control function specifications stored in the automatic driving control program in pairs for the operation design domain and changes the operation design domain based on the evaluation result;
    an automatic driving control system evaluation program for evaluating the operation design domain based on the customer requirements;
    a KPI evaluation program that generates a customer requirement evaluation formula for evaluating a customer's key performance indicator based on the customer requirement, calculates the customer requirement evaluation formula based on a value output from the automatic driving control system evaluation program, and outputs the operation design domain and the customer's key performance indicator;
    The ODD adjustment program modifies the operation design domain so as to improve the value of the customer requirement evaluation formula based on the value of the customer requirement evaluation formula calculated and output by the KPI evaluation program,
    The KPI evaluation program is a design support program characterized by outputting an improvement value of a customer's key performance indicator based on the changed operation design area.
PCT/JP2023/030842 2022-10-26 2023-08-28 Design assistance method, design assistance system, and program WO2024090004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022171652A JP2024063582A (en) 2022-10-26 2022-10-26 DESIGN ASSISTANCE METHOD, DESIGN ASSISTANCE SYSTEM, AND PROGRAM
JP2022-171652 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024090004A1 true WO2024090004A1 (en) 2024-05-02

Family

ID=90830420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030842 WO2024090004A1 (en) 2022-10-26 2023-08-28 Design assistance method, design assistance system, and program

Country Status (2)

Country Link
JP (1) JP2024063582A (en)
WO (1) WO2024090004A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166126A1 (en) * 2019-02-12 2020-08-20 株式会社日立製作所 Kpi improvement assistance system and kpi improvement assistance method
WO2020196086A1 (en) * 2019-03-28 2020-10-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Information processing method and information processing system
JP2020177416A (en) * 2019-04-17 2020-10-29 株式会社日立製作所 Machine automatic operation control method and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166126A1 (en) * 2019-02-12 2020-08-20 株式会社日立製作所 Kpi improvement assistance system and kpi improvement assistance method
WO2020196086A1 (en) * 2019-03-28 2020-10-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Information processing method and information processing system
JP2020177416A (en) * 2019-04-17 2020-10-29 株式会社日立製作所 Machine automatic operation control method and system

Also Published As

Publication number Publication date
JP2024063582A (en) 2024-05-13

Similar Documents

Publication Publication Date Title
AU2015344388B2 (en) Map creation device
US11619502B2 (en) Monitoring autonomous vehicle route conformance for improved efficiency
US9008886B2 (en) Method of modifying a worksite
US20200211376A1 (en) Systems and Methods to Enable a Transportation Network with Artificial Intelligence for Connected and Autonomous Vehicles
US20140163779A1 (en) Method of managing a worksite
US11804136B1 (en) Managing and tracking scouting tasks using autonomous vehicles
EP1782355A1 (en) Systems and methods for self-service dispatch
US11492013B2 (en) Vehicle fleet management having a hierarchy of priority factors
US11760382B2 (en) Information processing device, information processing method, and system
CN104641393A (en) Management system for mining machinery and management method for mining machinery
CN115810268A (en) Vehicle collision avoidance method and device
WO2020154670A1 (en) Vehicle routing with local and general routes
US11797015B2 (en) Method and system for determining a target vehicle speed of a vehicle operating at a worksite
WO2024090004A1 (en) Design assistance method, design assistance system, and program
EP3795798B1 (en) Positioning of mobile device in underground worksite
JP4992055B2 (en) Guided travel control device for unmanned vehicles
JP7213940B1 (en) Dynamic map delivery system
US20240035832A1 (en) Methodology for establishing time of response to map discrepancy detection event
US20230137111A1 (en) Methodology for establishing cadence-based review frequency for map segments
US11733696B2 (en) Detecting loops for autonomous vehicles
US20220406192A1 (en) Testing a scheduling system for autonomous vehicles using simulations
WO2022113548A1 (en) Movement control support device and method
WO2023208613A1 (en) A method for navigating an autonomous vehicle when driving in an area
CN118176406A (en) Optimized route planning application for servicing autonomous vehicles
CN113819920A (en) Automatic driving non-autonomous navigation method for congested road section