WO2024089847A1 - Propagation loss estimation method, propagation loss estimation system, propagation loss estimation device, and propagation loss estimation program - Google Patents

Propagation loss estimation method, propagation loss estimation system, propagation loss estimation device, and propagation loss estimation program Download PDF

Info

Publication number
WO2024089847A1
WO2024089847A1 PCT/JP2022/040204 JP2022040204W WO2024089847A1 WO 2024089847 A1 WO2024089847 A1 WO 2024089847A1 JP 2022040204 W JP2022040204 W JP 2022040204W WO 2024089847 A1 WO2024089847 A1 WO 2024089847A1
Authority
WO
WIPO (PCT)
Prior art keywords
propagation loss
base station
terminal
loss estimation
outdoor
Prior art date
Application number
PCT/JP2022/040204
Other languages
French (fr)
Japanese (ja)
Inventor
稔 猪又
渉 山田
伸晃 久野
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/040204 priority Critical patent/WO2024089847A1/en
Publication of WO2024089847A1 publication Critical patent/WO2024089847A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • This disclosure relates to a propagation loss estimation method, a propagation loss estimation system, a propagation loss estimation device, and a propagation loss estimation program.
  • the ray tracing method is often used to evaluate wireless coverage areas outdoors.
  • the environment in which radio waves propagate is defined as a 3D CAD model, making it possible to derive various propagation characteristics through calculations.
  • the first objective of this disclosure is to provide a propagation loss estimation method that can estimate outdoor propagation loss with high accuracy without increasing calculation time.
  • a second objective of this disclosure is to provide a propagation loss estimation system that can estimate outdoor propagation loss with high accuracy without increasing calculation time.
  • the third objective of this disclosure is to provide a propagation loss estimation device that can estimate outdoor propagation loss with high accuracy without increasing calculation time.
  • the fourth objective of this disclosure is to provide a propagation loss estimation program that can estimate outdoor propagation loss with high accuracy without increasing calculation time.
  • the first aspect of the present disclosure is a propagation loss estimation method for calculating outdoor propagation loss of radio waves for each combination of a base station and a terminal, the propagation loss estimation method comprising the steps of creating an outdoor 3D CAD model, extracting a profile of data relating to the topography and clutter between the base station and the terminal from the outdoor 3D CAD model, calculating a virtual diffraction edge based on the base station, the terminal, and the profile, and performing diffraction loss calculations for radio waves passing through the virtual diffraction edge, and preferably the virtual diffraction edge is the intersection of a straight line whose slope is maximum when the base station is the start point and each point on the profile is the end point, and a straight line whose slope is maximum when the terminal is the start point and each point on the profile is the end point.
  • a second aspect of the present disclosure is a propagation loss estimation system that calculates outdoor propagation loss of radio waves for each combination of a base station and a terminal, the propagation loss estimation system including a model creation device and a propagation loss estimation device, the model creation device configured to perform a process of creating an outdoor 3D CAD model, the propagation loss estimation device configured to perform a process of extracting a profile of data relating to the topography and clutter between the base station and the terminal from the outdoor 3D CAD, a process of calculating a virtual diffraction edge based on the base station, the terminal, and the profile, and a process of calculating diffraction loss for radio waves passing through the virtual diffraction edge, and the virtual diffraction edge is preferably the intersection of a straight line with a maximum slope when the base station is the start point and each point on the profile is the end point, and a straight line with a maximum slope when the terminal is the start point and each point on the profile is the end point.
  • a third aspect of the present disclosure is a propagation loss estimation device that calculates outdoor propagation loss of radio waves for each combination of a base station and a terminal using an outdoor 3D CAD model, and is preferably configured to perform a process of extracting a profile of data relating to the terrain and clutter between the base station and the terminal from the outdoor 3D CAD model, a process of calculating a virtual diffraction edge based on the base station, the terminal, and the profile, and a process of calculating diffraction loss for radio waves passing through the virtual diffraction edge.
  • a fourth aspect of the present disclosure is a propagation loss estimation program that is executed by a propagation loss estimation device that calculates outdoor propagation loss of radio waves for each combination of a base station and a terminal using an outdoor 3D CAD model, and preferably includes a program for causing a computer to execute the following processes: extracting a profile of data relating to the topography and clutter between the base station and the terminal from the outdoor 3D CAD model; calculating a virtual diffraction edge based on the base station, the terminal, and the profile; and calculating diffraction loss for radio waves that pass through the virtual diffraction edge.
  • outdoor propagation loss can be estimated with high accuracy without increasing calculation time.
  • FIG. 1 is a chart showing a procedure for generating an outdoor 3D CAD model according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing virtual outdoor propagation paths according to the first embodiment of the present disclosure.
  • 4 is a flowchart showing a method for estimating outdoor propagation loss according to the first embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a propagation loss estimation system according to a first embodiment of the present disclosure. 1 is a diagram illustrating a hardware configuration of a propagation loss estimation device according to a first embodiment of the present disclosure.
  • First embodiment 1 is a chart showing a procedure for generating an outdoor 3D CAD model according to the first embodiment of the present disclosure.
  • a user inputs 200 information necessary for generating the outdoor 3D CAD model.
  • the necessary information includes, for example, material, cutout range, terrain import flag, vegetation import flag, etc. This information is used in polygon data correction processing 218 or attribute information addition processing 220, which will be described later.
  • digital data input 210 Furthermore, specific digital data is input in digital data input 210.
  • building data 202, terrain data 204, vegetation data 206, and building texture data 208 are input.
  • the building data 202 and building texture data 208 are used in the material composition calculation process 212.
  • the building data and the material composition data are linked.
  • the material composition is directly input to each piece of building data included in the building data 202.
  • the material composition is automatically determined from the building texture data 208 and assigned to each piece of building data.
  • the terrain data 204 is used in the terrain data creation process 214.
  • the terrain data is in a file format that has polygons, attributes, and a database.
  • An example of the file format is the shapefile format.
  • the vegetation data 206 is used in the vegetation data creation process 216.
  • the terrain data is in a file format that has polygons, attributes, and a database.
  • An example of the file format is the shapefile format.
  • the file is read.
  • the building and vegetation data is placed on the corresponding terrain.
  • the data is cut out to the user-specified range.
  • the type and the material are linked. Examples of types include buildings, structures, vegetation, etc. Examples of materials include concrete, wood, ground, etc., and the composition of each material.
  • the data output by the attribute information addition process 220 is intermediately output as a building + terrain + vegetation file 222 including material composition. This becomes the outdoor 3D CAD model used in this disclosure.
  • FIG. 2 is a diagram showing a virtual outdoor propagation path according to the first embodiment of the present disclosure.
  • the outdoor propagation loss is estimated for each combination of a base station (BS) and a terminal (UE) by calculation using information extracted from an outdoor 3D CAD model. Shown here is the virtual outdoor propagation path used when calculating the outdoor propagation loss.
  • terrain 6 is fine topographical undulations on the order of a few meters.
  • clutter 8 is buildings, structures, or vegetation.
  • a virtual diffraction edge 10 is defined to estimate outdoor propagation loss.
  • the virtual diffraction edge 10 is defined as the intersection of a straight line 12 starting from the base station 2 and a straight line 14 starting from the terminal 4.
  • the straight lines 12 and 14 are lines with the maximum slope when the straight lines start from the base station 2 and the terminal 4, respectively, and end at each point on the profile of the terrain 6 or the clutter 8.
  • the straight lines 12 and 14 indicate the propagation paths of radio waves that are free of obstructions and are closest to the ground.
  • the radio waves passing through the virtual diffraction edge 10 will be the radio waves with the highest signal strength among the radio waves that reach the terminal 4 from the base station 2 due to diffraction.
  • FIG. 3 is a flowchart showing a method for estimating outdoor propagation loss according to the first embodiment of the present disclosure. Here, the procedure for estimating outdoor propagation loss for each combination of a base station and a terminal is described.
  • step 100 the terrain and clutter profiles between the base station and the terminal are extracted. That is, information about the terrain 6 and clutter 8 that exist between the base station 2 and the terminal 4 is extracted from a previously generated outdoor 3D CAD model.
  • step 102 the virtual diffraction edge is calculated.
  • the straight lines with the maximum slope are extracted, starting from the base station 2 and the terminal 4 and ending at each point on the profile of the terrain 6 or clutter 8. The intersection of these two straight lines is then determined as the virtual diffraction edge 10.
  • step 104 the diffraction loss is calculated. That is, the diffraction loss is calculated for the radio wave passing through the virtual diffraction edge 10 according to the knife-edge diffraction theory.
  • outdoor propagation loss can be easily derived by defining a virtual diffraction edge and performing a diffraction calculation that traces rays that pass through the virtual diffraction edge. This allows outdoor propagation loss to be estimated with high accuracy without increasing calculation time.
  • data contained in the design condition file is referenced.
  • data contained in the outdoor 3D CAD include data on buildings, topography, and vegetation, including material composition, contained in a shapefile.
  • data contained in the design condition file include data on the coordinates of the base station and terminal, the orientation of the base station, and information on the base station and terminal device.
  • FIG. 4 is a diagram showing a propagation loss estimation system according to the first embodiment of the present disclosure.
  • the propagation loss estimation system 100 is a system that can perform the above-mentioned propagation loss estimation method in a continuous manner.
  • the propagation loss estimation system 100 includes a model creation device 50.
  • the model creation device 50 creates the outdoor 3D CAD model described in FIG. 1.
  • the propagation loss estimation system 100 also includes a propagation loss estimation device 60.
  • the propagation loss estimation device 60 estimates the propagation loss using the propagation loss estimation procedure described in FIG. 3.
  • FIG. 5 is a diagram showing a hardware configuration of a propagation loss estimation device according to the first embodiment of the present disclosure.
  • the propagation loss estimation device 60 includes a CPU 18.
  • the CPU 18 is connected to a bus line 20.
  • Memory devices such as a ROM 22, a RAM 24, and a storage 26 are connected to the bus line 20.
  • the memory device stores a propagation loss estimation program executed by the CPU 18.
  • the propagation loss estimation device 60 realizes functions unique to this embodiment by the CPU 18 executing the propagation loss estimation program.
  • a communication interface 28 is also connected to the bus line 20.
  • the propagation loss estimation device 60 communicates with the network via the communication interface 28.
  • An operation unit 30 and a display unit 32 are also connected to the bus line 20. The operation unit 30 and the display unit 32 function as a user interface for operating the propagation loss estimation device 60.
  • the propagation loss estimation method of this embodiment unlike conventional methods, makes it possible to easily derive outdoor propagation loss. This allows outdoor propagation loss to be estimated with high accuracy without increasing calculation time.
  • the propagation loss estimation device 60 executes the processing required for propagation loss estimation, but the present disclosure is not limited to this.
  • a propagation loss estimation program may be provided to a service providing PC, and the service providing PC may execute the processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

This disclosure relates to a propagation loss estimation method, a propagation loss estimation system, a propagation loss estimation device, and a propagation loss estimation program. This system is a propagation loss estimation method for calculating an outdoor propagation loss of a radio wave for each combination of a base station and a terminal. The propagation loss estimation method comprises creating an outdoor 3D CAD model, extracting a profile of data relating to terrain and clutter between the base station and the terminal from the outdoor 3D CAD model, calculating a virtual diffraction edge on the basis of the base station, the terminal, and the profile, and performing diffraction loss calculation for a radio wave passing through the virtual diffraction edge. Moreover, the virtual diffraction edge is an intersection between a straight line that has the maximum gradient when the base station is set to a start point and each point on the profile is set to an end point and a straight line that has the maximum gradient when the terminal is set to a start point and each point on the profile is set to an end point.

Description

伝搬損推定方法、伝搬損推定システム、伝搬損推定装置及び伝搬損推定プログラムPROPAGATION LOSS ESTIMATION METHOD, PROPAGATION LOSS ESTIMATION SYSTEM, PROPAGATION LOSS ESTIMATION DEVICE, AND PROPAGATION LOSS ESTIMATION PROGRAM
 本開示は、伝搬損推定方法、伝搬損推定システム、伝搬損推定装置及び伝搬損推定プログラムに関する。 This disclosure relates to a propagation loss estimation method, a propagation loss estimation system, a propagation loss estimation device, and a propagation loss estimation program.
 個別無線ネットワークの利用において、地域の企業または自治体等が、ローカル5GまたはWi-Fi(登録商標)等を用いるケースが増加している。それに伴い、農場及び建設現場など、屋外ローカルエリアにおける地形の微細な変化、あるいは植生などの詳細なクラッタ(地物)の影響を考慮した、無線エリア評価が求められている。 In the use of individual wireless networks, local businesses and local governments are increasingly using local 5G or Wi-Fi (registered trademark). As a result, there is a demand for wireless area assessments that take into account subtle changes in the topography of outdoor local areas, such as farms and construction sites, or the effects of detailed clutter (geographical features) such as vegetation.
 屋外における無線エリア評価では、レイトレーシング法が良く利用される。レイトレーシング法では、電波の伝搬する環境を3DCADモデルとして定義することで、様々な伝搬特性を計算により導出することができる。 The ray tracing method is often used to evaluate wireless coverage areas outdoors. With the ray tracing method, the environment in which radio waves propagate is defined as a 3D CAD model, making it possible to derive various propagation characteristics through calculations.
 しかし、上述の方法で解析精度を向上させるには、地形及びクラッタの3DCADモデルを細分化する必要がある。すると、各レイのトレース処理に必要となる計算量が、3DCADモデルの面数に対し、指数関数的に増大する。そのため、非常に多くの計算時間が必要となる課題があった。 However, to improve the analysis accuracy using the above method, it is necessary to subdivide the 3D CAD models of the terrain and clutter. This means that the amount of calculation required to trace each ray increases exponentially with the number of faces in the 3D CAD model. This poses the problem of requiring a very long calculation time.
 本開示は上述の問題を解決するため、計算時間を増加させることなく、屋外伝搬損を高精度に推定できる伝搬損推定方法を提供することを第一の目的とする。 In order to solve the above problems, the first objective of this disclosure is to provide a propagation loss estimation method that can estimate outdoor propagation loss with high accuracy without increasing calculation time.
 また、本開示は、計算時間を増加させることなく、屋外伝搬損を高精度に推定できる伝搬損推定システムを提供することを第二の目的とする。 A second objective of this disclosure is to provide a propagation loss estimation system that can estimate outdoor propagation loss with high accuracy without increasing calculation time.
 また、本開示は、計算時間を増加させることなく、屋外伝搬損を高精度に推定できる伝搬損推定装置を提供することを第三の目的とする。 The third objective of this disclosure is to provide a propagation loss estimation device that can estimate outdoor propagation loss with high accuracy without increasing calculation time.
 また、本開示は、計算時間を増加させることなく、屋外伝搬損を高精度に推定できる伝搬損推定プログラムを提供することを第四の目的とする。 The fourth objective of this disclosure is to provide a propagation loss estimation program that can estimate outdoor propagation loss with high accuracy without increasing calculation time.
 本開示の第一の態様は、基地局と端末の組み合わせ毎に、電波の屋外伝搬損を算出する伝搬損推定方法であって、屋外3DCADモデルを作成することと、屋外3DCADモデルから、基地局と端末の間における、地形及びクラッタに関するデータのプロファイルを抽出することと、基地局、端末及びプロファイルに基づき、仮想回折エッジを算出することと、仮想回折エッジを通過する電波について、回折損失計算を行うこととを備え、仮想回折エッジが、基地局を始点とし、プロファイルの各地点を終点とした際に、その傾きが最大となる直線と、端末を始点とし、プロファイルの各地点を終点とした際に、その傾きが最大となる直線の交点である伝搬損推定方法であることが好ましい。 The first aspect of the present disclosure is a propagation loss estimation method for calculating outdoor propagation loss of radio waves for each combination of a base station and a terminal, the propagation loss estimation method comprising the steps of creating an outdoor 3D CAD model, extracting a profile of data relating to the topography and clutter between the base station and the terminal from the outdoor 3D CAD model, calculating a virtual diffraction edge based on the base station, the terminal, and the profile, and performing diffraction loss calculations for radio waves passing through the virtual diffraction edge, and preferably the virtual diffraction edge is the intersection of a straight line whose slope is maximum when the base station is the start point and each point on the profile is the end point, and a straight line whose slope is maximum when the terminal is the start point and each point on the profile is the end point.
 本開示の第二の態様は、基地局と端末の組み合わせ毎に、電波の屋外伝搬損を算出する伝搬損推定システムであって、モデル作成装置と、伝搬損推定装置を備え、モデル作成装置が、屋外3DCADモデルを作成する処理を実施するよう構成されており、伝搬損推定装置が、屋外3DCADから、基地局と端末の間における、地形及びクラッタに関するデータのプロファイルを抽出する処理と、基地局、端末及びプロファイルに基づき、仮想回折エッジを算出する処理と、仮想回折エッジを通過する電波について、回折損失計算を行う処理を実施するよう構成されており、仮想回折エッジが、基地局を始点とし、プロファイルの各地点を終点とした際に、その傾きが最大となる直線と、端末を始点とし、プロファイルの各地点を終点とした際に、その傾きが最大となる直線の交点である伝搬損推定システムであることが好ましい。 A second aspect of the present disclosure is a propagation loss estimation system that calculates outdoor propagation loss of radio waves for each combination of a base station and a terminal, the propagation loss estimation system including a model creation device and a propagation loss estimation device, the model creation device configured to perform a process of creating an outdoor 3D CAD model, the propagation loss estimation device configured to perform a process of extracting a profile of data relating to the topography and clutter between the base station and the terminal from the outdoor 3D CAD, a process of calculating a virtual diffraction edge based on the base station, the terminal, and the profile, and a process of calculating diffraction loss for radio waves passing through the virtual diffraction edge, and the virtual diffraction edge is preferably the intersection of a straight line with a maximum slope when the base station is the start point and each point on the profile is the end point, and a straight line with a maximum slope when the terminal is the start point and each point on the profile is the end point.
 本開示の第三の態様は、基地局と端末の組み合わせ毎に、電波の屋外伝搬損を、屋外3DCADモデルを用いて算出する伝搬損推定装置であって、屋外3DCADモデルから、基地局と端末の間における、地形及びクラッタに関するデータのプロファイルを抽出する処理と、基地局、端末及びプロファイルに基づき、仮想回折エッジを算出する処理と、仮想回折エッジを通過する電波について、回折損失計算を行う処理とを実施するよう構成されている伝搬損推定装置であることが好ましい。 A third aspect of the present disclosure is a propagation loss estimation device that calculates outdoor propagation loss of radio waves for each combination of a base station and a terminal using an outdoor 3D CAD model, and is preferably configured to perform a process of extracting a profile of data relating to the terrain and clutter between the base station and the terminal from the outdoor 3D CAD model, a process of calculating a virtual diffraction edge based on the base station, the terminal, and the profile, and a process of calculating diffraction loss for radio waves passing through the virtual diffraction edge.
 本開示の第四の態様は、基地局と端末の組み合わせ毎に、電波の屋外伝搬損を、屋外3DCADモデルを用いて算出する伝搬損推定装置に実行させる伝搬損推定プログラムであって、屋外3DCADモデルから、基地局と端末の間における、地形及びクラッタに関するデータのプロファイルを抽出する処理と、基地局、端末及びプロファイルに基づき、仮想回折エッジを算出する処理と、仮想回折エッジを通過する電波について、回折損失計算を行う処理をコンピュータに実施させるためのプログラムを含む伝搬損推定プログラムであることが好ましい。 A fourth aspect of the present disclosure is a propagation loss estimation program that is executed by a propagation loss estimation device that calculates outdoor propagation loss of radio waves for each combination of a base station and a terminal using an outdoor 3D CAD model, and preferably includes a program for causing a computer to execute the following processes: extracting a profile of data relating to the topography and clutter between the base station and the terminal from the outdoor 3D CAD model; calculating a virtual diffraction edge based on the base station, the terminal, and the profile; and calculating diffraction loss for radio waves that pass through the virtual diffraction edge.
 本開示の第一から第四の態様によれば、計算時間を増加させることなく、屋外伝搬損を高精度に推定できる。 According to the first to fourth aspects of the present disclosure, outdoor propagation loss can be estimated with high accuracy without increasing calculation time.
本開示の実施の形態1に係る屋外3DCADモデルの生成手順を示すチャートである。1 is a chart showing a procedure for generating an outdoor 3D CAD model according to the first embodiment of the present disclosure. 本開示の実施の形態1に係る仮想的な屋外伝搬経路を示す図である。FIG. 2 is a diagram showing virtual outdoor propagation paths according to the first embodiment of the present disclosure. 本開示の実施の形態1に係る屋外伝搬損の推定方法を示すフローチャートである。4 is a flowchart showing a method for estimating outdoor propagation loss according to the first embodiment of the present disclosure. 本開示の実施の形態1に係る伝搬損推定システムを示す図である。FIG. 1 is a diagram illustrating a propagation loss estimation system according to a first embodiment of the present disclosure. 本開示の実施の形態1に係る伝搬損推定装置のハードウェア構成を示す図である。1 is a diagram illustrating a hardware configuration of a propagation loss estimation device according to a first embodiment of the present disclosure.
実施の形態1
 図1は、本開示の実施の形態1に係る屋外3DCADモデルの生成手順を示すチャートである。屋外3DCADモデルの生成のため、まず、屋外3DCADモデルの生成に必要な情報について、ユーザ入力200が行われる。必要な情報とは、例えば、材質、切り出し範囲、地形取込フラグ、植生取込フラグ等である。これらの情報は、後述するポリゴンデータ補正処理218あるいは属性情報付加処理220で使用される。
First embodiment
1 is a chart showing a procedure for generating an outdoor 3D CAD model according to the first embodiment of the present disclosure. To generate an outdoor 3D CAD model, first, a user inputs 200 information necessary for generating the outdoor 3D CAD model. The necessary information includes, for example, material, cutout range, terrain import flag, vegetation import flag, etc. This information is used in polygon data correction processing 218 or attribute information addition processing 220, which will be described later.
 また、デジタルデータ入力210では、特定のデジタルデータが入力される。ここでは、建物データ202、地形データ204、植生データ206、建物テクスチャデータ208が入力されている。 Furthermore, specific digital data is input in digital data input 210. Here, building data 202, terrain data 204, vegetation data 206, and building texture data 208 are input.
 建物データ202及び建物テクスチャデータ208は、材質組成計算処理212に用いられる。材質組成計算処理212では、建物データと材質組成のデータを紐づける。例えば、建物データ202に含まれる各建物データに、材質組成を直接入力する。あるいは、建物テクスチャデータ208から、材質組成を自動判定し、各建物データに付与する。 The building data 202 and building texture data 208 are used in the material composition calculation process 212. In the material composition calculation process 212, the building data and the material composition data are linked. For example, the material composition is directly input to each piece of building data included in the building data 202. Alternatively, the material composition is automatically determined from the building texture data 208 and assigned to each piece of building data.
 地形データ204は、地形データ作成処理214に用いられる。ここで、地形データは、ポリゴン、属性及びデータベースを持つファイル形式とする。ファイル形式としては、シェープファイル形式が例示できる。 The terrain data 204 is used in the terrain data creation process 214. Here, the terrain data is in a file format that has polygons, attributes, and a database. An example of the file format is the shapefile format.
 植生データ206は、植生データ作成処理216に用いられる。ここで、地形データは、ポリゴン、属性及びデータベースを持つファイル形式とする。ファイル形式としては、シェープファイル形式が例示できる。 The vegetation data 206 is used in the vegetation data creation process 216. Here, the terrain data is in a file format that has polygons, attributes, and a database. An example of the file format is the shapefile format.
 地形データ作成処理214及び植生データ作成処理216で処理されたデータは、ユーザ入力200及びデジタルデータ入力210で入力された情報と共に、ポリゴンデータ補正処理218で使用される。まず、ファイル読み込みが行われる。次に、建物及び植生のデータが、該当する地形の上に配置される。最後に、ユーザ指定範囲で切り出しを行う。 The data processed in the terrain data creation process 214 and vegetation data creation process 216, along with the information entered in the user input 200 and digital data input 210, are used in the polygon data correction process 218. First, the file is read. Next, the building and vegetation data is placed on the corresponding terrain. Finally, the data is cut out to the user-specified range.
 ポリゴンデータ補正処理218及び材質組成計算処理212で処理されたデータは、ユーザ入力200で入力された情報と共に、属性情報付加処理220に用いられる。属性情報付加処理220では、種別と材質を紐づける。種別としては、建物、構造物、植生等が例示できる。材質としては、コンクリート、木、地面等、材質ごとの組成が例示できる。 The data processed in the polygon data correction process 218 and the material composition calculation process 212, together with the information entered in the user input 200, is used in the attribute information addition process 220. In the attribute information addition process 220, the type and the material are linked. Examples of types include buildings, structures, vegetation, etc. Examples of materials include concrete, wood, ground, etc., and the composition of each material.
 属性情報付加処理220で出力されたデータは、材質組成を含む建物+地形+植生のファイル222として中間出力される。これが、本開示で用いる屋外3DCADモデルとなる。 The data output by the attribute information addition process 220 is intermediately output as a building + terrain + vegetation file 222 including material composition. This becomes the outdoor 3D CAD model used in this disclosure.
 図2は、本開示の実施の形態1に係る仮想的な屋外伝搬経路を示す図である。本実施形態では、基地局(Base Station: BS)と端末(User Equipment: UE)の組合せ毎に、屋外3DCADモデルから抽出した情報を用いた計算により、屋外伝搬損を推定する。ここでは、その屋外伝搬損を算出する際に用いる、仮想的な屋外伝搬経路を示している。 FIG. 2 is a diagram showing a virtual outdoor propagation path according to the first embodiment of the present disclosure. In this embodiment, the outdoor propagation loss is estimated for each combination of a base station (BS) and a terminal (UE) by calculation using information extracted from an outdoor 3D CAD model. Shown here is the virtual outdoor propagation path used when calculating the outdoor propagation loss.
 基地局2と端末4の間には、電波伝搬の障害となる地形6及びクラッタ8が存在する。地形6としては、数m単位の微細な地形起伏が例示できる。クラッタ8としては、建物、構造物あるいは植生が例示できる。 Between the base station 2 and the terminal 4, there exists terrain 6 and clutter 8 that are obstacles to radio wave propagation. An example of the terrain 6 is fine topographical undulations on the order of a few meters. An example of the clutter 8 is buildings, structures, or vegetation.
 本実施形態では、屋外伝搬損を推定するため、仮想回折エッジ10を定義する。仮想回折エッジ10は、基地局2を始点とする直線12と、端末4を始点とする直線14の交点として定義される。直線12及び直線14は、基地局2及び端末4のそれぞれを始点とし、地形6またはクラッタ8のプロファイルの各地点を終点とした際に、その傾きが最大となる直線である。すなわち、直線12及び直線14が示すのは、遮蔽物がない電波の伝搬路の中で、最も地上に近い伝搬路である。 In this embodiment, a virtual diffraction edge 10 is defined to estimate outdoor propagation loss. The virtual diffraction edge 10 is defined as the intersection of a straight line 12 starting from the base station 2 and a straight line 14 starting from the terminal 4. The straight lines 12 and 14 are lines with the maximum slope when the straight lines start from the base station 2 and the terminal 4, respectively, and end at each point on the profile of the terrain 6 or the clutter 8. In other words, the straight lines 12 and 14 indicate the propagation paths of radio waves that are free of obstructions and are closest to the ground.
 上述の定義により、仮想回折エッジ10を通過する電波は、回折により基地局2から端末4に到達する電波の中で、最も信号強度が高い電波となる。 According to the above definition, the radio waves passing through the virtual diffraction edge 10 will be the radio waves with the highest signal strength among the radio waves that reach the terminal 4 from the base station 2 due to diffraction.
 図3は、本開示の実施の形態1に係る屋外伝搬損の推定方法を示すフローチャートである。ここでは、基地局と端末の組合せ毎に行う、屋外伝搬損推定の手順を述べる。 FIG. 3 is a flowchart showing a method for estimating outdoor propagation loss according to the first embodiment of the present disclosure. Here, the procedure for estimating outdoor propagation loss for each combination of a base station and a terminal is described.
 まず、ステップ100で、基地局-端末間の、地形及びクラッタのプロファイルを抽出する。すなわち、基地局2と端末4の間に存在する、地形6及びクラッタ8に関する情報を、事前に生成した屋外3DCADモデルから抽出する。 First, in step 100, the terrain and clutter profiles between the base station and the terminal are extracted. That is, information about the terrain 6 and clutter 8 that exist between the base station 2 and the terminal 4 is extracted from a previously generated outdoor 3D CAD model.
 次に、ステップ102で、仮想回折エッジを算出する。まず、基地局2及び端末4を始点とし、地形6またはクラッタ8のプロファイルの各地点を終点とした際に、その傾きが最大となる直線をそれぞれ抽出する。そして、これら2つの直線の交点を、仮想回折エッジ10に決定する。 Next, in step 102, the virtual diffraction edge is calculated. First, the straight lines with the maximum slope are extracted, starting from the base station 2 and the terminal 4 and ending at each point on the profile of the terrain 6 or clutter 8. The intersection of these two straight lines is then determined as the virtual diffraction edge 10.
 最後に、ステップ104で、回折損失計算を行う。すなわち、仮想回折エッジ10を通過する電波について、ナイフエッジ回折理論により、回折損失計算を行う。 Finally, in step 104, the diffraction loss is calculated. That is, the diffraction loss is calculated for the radio wave passing through the virtual diffraction edge 10 according to the knife-edge diffraction theory.
 上述の通り、仮想回折エッジを定義し、仮想回折エッジを通過するレイをトレースする回折計算を行うことで、屋外伝搬損を簡易に導出することができる。これにより、計算時間を増加させることなく、屋外伝搬損を高精度に推定できる。 As described above, outdoor propagation loss can be easily derived by defining a virtual diffraction edge and performing a diffraction calculation that traces rays that pass through the virtual diffraction edge. This allows outdoor propagation loss to be estimated with high accuracy without increasing calculation time.
 なお、上述の屋外伝搬損推定においては、前述した屋外3DCADに含まれるデータに加えて、設計条件ファイルに含まれるデータを参照する。屋外3DCADに含まれるデータとしては、シェープファイルに含まれている、材質組成を含む建物、地形及び植生のデータが例示できる。設計条件ファイルに含まれるデータとしては、基地及び端末の座標、基地局の向き、基地局及び端末装置の情報に関するデータが例示できる。 In addition, in the outdoor propagation loss estimation described above, in addition to the data contained in the outdoor 3D CAD described above, data contained in the design condition file is referenced. Examples of data contained in the outdoor 3D CAD include data on buildings, topography, and vegetation, including material composition, contained in a shapefile. Examples of data contained in the design condition file include data on the coordinates of the base station and terminal, the orientation of the base station, and information on the base station and terminal device.
 図4は、本開示の実施の形態1に係る伝搬損推定システムを示す図である。伝搬損推定システム100は、上述した伝搬損推定方法を、一気通貫で進行させることができるシステムである。 FIG. 4 is a diagram showing a propagation loss estimation system according to the first embodiment of the present disclosure. The propagation loss estimation system 100 is a system that can perform the above-mentioned propagation loss estimation method in a continuous manner.
 伝搬損推定システム100は、モデル作成装置50を備える。モデル作成装置50は、図1で述べた屋外3DCADモデルを作成する。 The propagation loss estimation system 100 includes a model creation device 50. The model creation device 50 creates the outdoor 3D CAD model described in FIG. 1.
 また、伝搬損推定システム100は、伝搬損推定装置60を備える。伝搬損推定装置60は、図3で述べた伝搬損推定の手順を用いて、伝搬損を推定する。 The propagation loss estimation system 100 also includes a propagation loss estimation device 60. The propagation loss estimation device 60 estimates the propagation loss using the propagation loss estimation procedure described in FIG. 3.
 図5は、本開示の実施の形態1に係る伝搬損推定装置のハードウェア構成を示す図である。伝搬損推定装置60は、CPU18を備える。CPU18は、バスライン20に接続されている。バスライン20には、ROM22、RAM24およびストレージ26のようなメモリ装置が接続されている。メモリ装置には、CPU18により実行される伝搬損推定プログラムが格納されている。伝搬損推定装置60は、CPU18が、その伝搬損推定プログラムを実行することにより、本実施形態に特有な機能を実現する。 FIG. 5 is a diagram showing a hardware configuration of a propagation loss estimation device according to the first embodiment of the present disclosure. The propagation loss estimation device 60 includes a CPU 18. The CPU 18 is connected to a bus line 20. Memory devices such as a ROM 22, a RAM 24, and a storage 26 are connected to the bus line 20. The memory device stores a propagation loss estimation program executed by the CPU 18. The propagation loss estimation device 60 realizes functions unique to this embodiment by the CPU 18 executing the propagation loss estimation program.
 バスライン20には、また、通信インターフェース28が接続されている。伝搬損推定装置60は、通信インターフェース28を介して、ネットワークとの通信を実現する。バスライン20には、更に、操作部30および表示部32が接続されている。操作部30および表示部32は、伝搬損推定装置60を取り扱うためのユーザインターフェースとして機能する。 A communication interface 28 is also connected to the bus line 20. The propagation loss estimation device 60 communicates with the network via the communication interface 28. An operation unit 30 and a display unit 32 are also connected to the bus line 20. The operation unit 30 and the display unit 32 function as a user interface for operating the propagation loss estimation device 60.
 以上説明した通り、本実施形態の伝搬損推定方法によれば、従来と異なり、屋外伝搬損を簡易に導出することができる。これにより、計算時間を増加させることなく、屋外伝搬損を高精度に推定できる。 As described above, the propagation loss estimation method of this embodiment, unlike conventional methods, makes it possible to easily derive outdoor propagation loss. This allows outdoor propagation loss to be estimated with high accuracy without increasing calculation time.
 なお、上述した実施の形態1では、伝搬損推定に必要な処理を伝搬損推定装置60が実行することとしているが、本開示はこれに限定されるものではない。例えば、伝搬損推定プログラムをサービス提供PCに提供して、サービス提供PCにその処理を実行させることとしてもよい。 In the above-described first embodiment, the propagation loss estimation device 60 executes the processing required for propagation loss estimation, but the present disclosure is not limited to this. For example, a propagation loss estimation program may be provided to a service providing PC, and the service providing PC may execute the processing.
 2 基地局
 4 端末
 6 地形
 8 クラッタ
 10 仮想回折エッジ
 12 直線
 14 直線
 50 モデル作成装置
 60 伝搬損推定装置
 100 伝搬損推定システム
Reference Signs List 2 Base station 4 Terminal 6 Terrain 8 Clutter 10 Virtual diffraction edge 12 Straight line 14 Straight line 50 Model creation device 60 Propagation loss estimation device 100 Propagation loss estimation system

Claims (5)

  1.  基地局と端末の組み合わせ毎に、電波の屋外伝搬損を算出する伝搬損推定方法であって、
     屋外3DCADモデルを作成することと、
     前記屋外3DCADモデルから、前記基地局と前記端末の間における、地形及びクラッタに関するデータのプロファイルを抽出することと、
     前記基地局、前記端末及び前記プロファイルに基づき、仮想回折エッジを算出することと、
     前記仮想回折エッジを通過する電波について、回折損失計算を行うことと
     を備え、
     前記仮想回折エッジが、
     前記基地局を始点とし、前記プロファイルの各地点を終点とした際に、その傾きが最大となる直線と、
     前記端末を始点とし、前記プロファイルの各地点を終点とした際に、その傾きが最大となる直線
     の交点である
     伝搬損推定方法。
    A propagation loss estimation method for calculating outdoor propagation loss of radio waves for each combination of a base station and a terminal, comprising:
    Creating an outdoor 3D CAD model;
    Extracting a profile of terrain and clutter data between the base station and the terminal from the outdoor 3D CAD model;
    Calculating a virtual diffraction edge based on the base station, the terminal and the profile;
    and performing a diffraction loss calculation for the radio wave passing through the virtual diffraction edge,
    The virtual diffractive edge is
    a straight line having a maximum slope when the base station is set as a start point and each point of the profile is set as an end point;
    The propagation loss estimation method is a point of intersection of lines with a maximum slope when the terminal is the start point and each point of the profile is the end point.
  2.  前記クラッタが、
     建物、構造物及び植生のうち少なくとも一つである
     請求項1に記載の伝搬損推定方法。
    The clutter is
    The path loss estimating method according to claim 1 , wherein the obstacle is at least one of a building, a structure, and vegetation.
  3.  基地局と端末の組み合わせ毎に、電波の屋外伝搬損を算出する伝搬損推定システムであって、
     モデル作成装置と、伝搬損推定装置を備え、
     前記モデル作成装置が、
     屋外3DCADモデルを作成する処理を実施するよう構成されており、
     前記伝搬損推定装置が、
     前記屋外3DCADから、前記基地局と前記端末の間における、地形及びクラッタに関するデータのプロファイルを抽出する処理と、
     前記基地局、前記端末及び前記プロファイルに基づき、仮想回折エッジを算出する処理と、
     前記仮想回折エッジを通過する電波について、回折損失計算を行う処理と
     を実施するよう構成されており、
     前記仮想回折エッジが、
     前記基地局を始点とし、前記プロファイルの各地点を終点とした際に、その傾きが最大となる直線と、
     前記端末を始点とし、前記プロファイルの各地点を終点とした際に、その傾きが最大となる直線
     の交点である、伝搬損推定システム。
    A propagation loss estimation system that calculates outdoor propagation loss of radio waves for each combination of a base station and a terminal,
    A model creation device and a path loss estimation device are provided,
    The model creation device,
    The system is configured to perform a process for creating an outdoor 3D CAD model,
    The path loss estimation device,
    Extracting a profile of terrain and clutter data between the base station and the terminal from the outdoor 3D CAD;
    A process of calculating a virtual diffraction edge based on the base station, the terminal, and the profile;
    A process of calculating a diffraction loss for a radio wave passing through the virtual diffraction edge is performed.
    The virtual diffractive edge is
    a straight line having a maximum slope when the base station is set as a start point and each point of the profile is set as an end point;
    A propagation loss estimation system, which is the intersection of lines with the maximum slope when the terminal is the start point and each point on the profile is the end point.
  4.  基地局と端末の組み合わせ毎に、電波の屋外伝搬損を、屋外3DCADモデルを用いて算出する伝搬損推定装置であって、
     前記屋外3DCADモデルから、前記基地局と前記端末の間における、地形及びクラッタに関するデータのプロファイルを抽出する処理と、
     前記基地局、前記端末及び前記プロファイルに基づき、仮想回折エッジを算出する処理と、
     前記仮想回折エッジを通過する電波について、回折損失計算を行う処理と
     を実施するよう構成されている伝搬損推定装置。
    A propagation loss estimation device that calculates outdoor propagation loss of radio waves for each combination of a base station and a terminal using an outdoor 3D CAD model,
    Extracting a profile of terrain and clutter data between the base station and the terminal from the outdoor 3D CAD model;
    A process of calculating a virtual diffraction edge based on the base station, the terminal, and the profile;
    and a process of calculating a diffraction loss for radio waves passing through the virtual diffraction edge.
  5.  基地局と端末の組み合わせ毎に、電波の屋外伝搬損を、屋外3DCADモデルを用いて算出する伝搬損推定装置に実行させる伝搬損推定プログラムであって、
     前記屋外3DCADモデルから、前記基地局と前記端末の間における、地形及びクラッタに関するデータのプロファイルを抽出する処理と、
     前記基地局、前記端末及び前記プロファイルに基づき、仮想回折エッジを算出する処理と、
     前記仮想回折エッジを通過する電波について、回折損失計算を行う処理と
     をコンピュータに実施させるためのプログラムを含む伝搬損推定プログラム。
    A propagation loss estimation program for causing a propagation loss estimation device to calculate outdoor propagation loss of radio waves for each combination of a base station and a terminal using an outdoor 3D CAD model,
    Extracting a profile of terrain and clutter data between the base station and the terminal from the outdoor 3D CAD model;
    A process of calculating a virtual diffraction edge based on the base station, the terminal, and the profile;
    A propagation loss estimation program including a program for causing a computer to execute a process of calculating a diffraction loss for radio waves passing through the virtual diffraction edge.
PCT/JP2022/040204 2022-10-27 2022-10-27 Propagation loss estimation method, propagation loss estimation system, propagation loss estimation device, and propagation loss estimation program WO2024089847A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040204 WO2024089847A1 (en) 2022-10-27 2022-10-27 Propagation loss estimation method, propagation loss estimation system, propagation loss estimation device, and propagation loss estimation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040204 WO2024089847A1 (en) 2022-10-27 2022-10-27 Propagation loss estimation method, propagation loss estimation system, propagation loss estimation device, and propagation loss estimation program

Publications (1)

Publication Number Publication Date
WO2024089847A1 true WO2024089847A1 (en) 2024-05-02

Family

ID=90830272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040204 WO2024089847A1 (en) 2022-10-27 2022-10-27 Propagation loss estimation method, propagation loss estimation system, propagation loss estimation device, and propagation loss estimation program

Country Status (1)

Country Link
WO (1) WO2024089847A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153867A (en) * 1995-11-30 1997-06-10 Fujitsu Ltd Radio wave transmission simulator
JP2014120990A (en) * 2012-12-18 2014-06-30 Nippon Telegr & Teleph Corp <Ntt> Propagation characteristic estimation device, propagation characteristic estimation method, and propagation characteristic estimation program
JP2021150870A (en) * 2020-03-19 2021-09-27 国立大学法人東京工業大学 Electromagnetic wave detection device, electromagnetic wave detection method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153867A (en) * 1995-11-30 1997-06-10 Fujitsu Ltd Radio wave transmission simulator
JP2014120990A (en) * 2012-12-18 2014-06-30 Nippon Telegr & Teleph Corp <Ntt> Propagation characteristic estimation device, propagation characteristic estimation method, and propagation characteristic estimation program
JP2021150870A (en) * 2020-03-19 2021-09-27 国立大学法人東京工業大学 Electromagnetic wave detection device, electromagnetic wave detection method, and program

Similar Documents

Publication Publication Date Title
LU501999A1 (en) Pumped storage power station comprehensive management method, platform and system, device and medium
CN110784883B (en) Base station construction evaluation method, device, equipment and storage medium
CN111787488B (en) User positioning method and system
CN111090712A (en) Data processing method, device and equipment and computer storage medium
KR101665324B1 (en) Integrated Method and System for Flood Disaster Response
US20170323194A1 (en) Path determination using robust optimization
Farcaş et al. Road traffic noise: GIS tools for noise mapping and a case study for Skåne region
CN109344294B (en) Feature generation method and device, electronic equipment and computer-readable storage medium
WO2024089847A1 (en) Propagation loss estimation method, propagation loss estimation system, propagation loss estimation device, and propagation loss estimation program
CN111132181B (en) Ray tracing technology method and device applied to wireless communication network
CN113723072A (en) RPA (resilient packet Access) and AI (Artificial Intelligence) combined model fusion result acquisition method and device and electronic equipment
JP5592927B2 (en) Propagation characteristic estimation device, propagation characteristic estimation method, and propagation characteristic estimation program
JP6632054B2 (en) Estimation device, estimation method and program
Tong et al. Importance sampling for option Greeks with discontinuous payoffs
CN112256811B (en) Map information representation method and device based on map structure
WO2024089845A1 (en) Propagation loss estimation method, propagation loss estimation system, propagation loss estimation device, and propagation loss estimation program
CN106612510B (en) Method and apparatus for indoor coverage design
CN112906094A (en) Bridge maintenance reconstruction method and system based on informatization
CN108491440B (en) GNSS non-real-time data tracing visualization method and system
KR100299060B1 (en) Method for generating altitude information and method for analysing propagation using contour line information radio network design system
Coons et al. Developing an ArcGIS Visualization Tool for an Integrated Urban Systems Model in Nova Scotia, Canada
Gu Dynamic data driven application system for wildfire spread simulation
US9189573B2 (en) Methods and systems to synthesize terrain elevations under overpasses
CN116452246B (en) Electromagnetic equipment performance and address selection evaluation method and device and electronic equipment
WO2022024260A1 (en) Communication quality evaluation system, communication quality evaluation method, and communication quality evaluation program