WO2024089795A1 - Input protection device - Google Patents

Input protection device Download PDF

Info

Publication number
WO2024089795A1
WO2024089795A1 PCT/JP2022/039906 JP2022039906W WO2024089795A1 WO 2024089795 A1 WO2024089795 A1 WO 2024089795A1 JP 2022039906 W JP2022039906 W JP 2022039906W WO 2024089795 A1 WO2024089795 A1 WO 2024089795A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection device
input protection
limit value
unit
circuit
Prior art date
Application number
PCT/JP2022/039906
Other languages
French (fr)
Japanese (ja)
Inventor
五嶋数哉
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/039906 priority Critical patent/WO2024089795A1/en
Priority to JP2023502616A priority patent/JP7239793B1/en
Publication of WO2024089795A1 publication Critical patent/WO2024089795A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks

Definitions

  • This disclosure relates to an input protection device.
  • JP Patent Publication No. 9-56058 discloses a device that prevents inrush current from flowing from a power source to a load when the power is turned on.
  • an input protection device that limits the current supplied from a power source to a load when the power source is turned on, and includes a switch unit that is interposed between the power source and the load and is capable of switching between connection and disconnection of the power source and the load, a switch control unit that controls the switch unit to connect the power source and the load in response to an activation signal supplied from the outside, a low voltage protection unit that controls the switch unit to disconnect the power source and the load when the input voltage from the power source is equal to or lower than a predetermined voltage threshold, a current limiting unit that limits the current supplied to the load to a limit value or lower, and a limit value changing unit that increases the limit value over time after receiving the activation signal so that the input voltage does not become equal to or lower than the voltage threshold.
  • FIG. 1 is a block diagram of an electrical device.
  • FIG. 2 is a circuit diagram of the input protection device according to the first embodiment.
  • Each of FIGS. 3A to 3E is a time chart showing the change over time of each value in the reference example.
  • Each of FIGS. 4A to 4H is a time chart showing the change over time of each value of the input protection device according to the first embodiment.
  • FIG. 5 is a circuit diagram of an input protection device according to the second embodiment.
  • FIGS. 6A to 6H is a time chart showing the change over time of each value of the input protection device according to the second embodiment.
  • [1 Electrical Equipment 10] 1 is a block diagram of an electric device 10.
  • the electric device 10 (including electronic devices) has a power supply device 12, an input protection device 14, and a subsequent circuit (load) 16.
  • the input protection device 14 and the subsequent circuit 16 are formed on a single printed circuit board, for example.
  • the subsequent circuit 16 operates with power supplied by the power supply device 12.
  • the subsequent circuit 16 has a large-capacity capacitor 20 (such as an electrolytic capacitor).
  • the input protection device 14 is interposed between the power supply device 12 and the subsequent circuit 16.
  • Input voltage VIN the value of the voltage supplied from the power supply 12 to the input protection device 14.
  • Back electromotive force ⁇ VIN_R the value of the back electromotive force generated by the resistance of the cable connecting the power supply device 12 and the input protection device 14.
  • Back electromotive force ⁇ VIN_L the value of the back electromotive force generated by the inductance of the cable connecting the power supply device 12 and the input protection device 14.
  • Current Iin the value of the current supplied from the input protection device 14 to the subsequent circuit 16.
  • Current limit value ILIM′ A limit value (variable value) of the current Iin set in the input protection device 14.
  • Current limit value ILIM Upper limit value of current limit value ILIM'.
  • VIN_INT the voltage value of the capacitor 20 in the subsequent circuit 16.
  • Variable resistor Rset' the resistance value (variable value) of the resistor setting circuit 40 (FIG. 2).
  • Set resistance Rset The lower limit value of the variable resistance Rset'.
  • the input protection device 14 When an abnormality occurs in the power supplied from the power supply device 12 to the subsequent circuit 16, the input protection device 14 cuts off the power supply device 12 and the subsequent circuit 16 to protect the subsequent circuit 16.
  • the input protection device 14 has an input protection unit 22 and a limit value changing unit 24.
  • the input protection unit 22 has a switch unit 26, a switch control unit 28, a low-voltage protection unit 30, and a current limiting unit 32.
  • the switch unit 26 is interposed between the power supply device 12 and the rear circuit 16, and switches between connection and disconnection of the power supply device 12 and the rear circuit 16.
  • the switch control unit 28 controls the switch unit 26 in response to a start-up signal supplied from the outside to connect the power supply device 12 and the rear circuit 16.
  • the low-voltage protection unit 30 controls the switch unit 26 to disconnect the power supply device 12 and the rear circuit 16 when the input voltage VIN by the power supply device 12 is equal to or lower than a predetermined voltage threshold Vth. That is, the low-voltage protection unit 30 has a low-voltage protection function.
  • the current limiting unit 32 limits the current Iin supplied to the rear circuit 16 to equal to or lower than the current limit value ILIM'. That is, the current limiting unit 32 has an inrush current suppression function.
  • the limit value change unit 24 After receiving a startup signal supplied from the outside, the limit value change unit 24 increases the current limit value ILIM' used by the current limit unit 32 over time so that the input voltage VIN from the power supply device 12 does not fall below a predetermined voltage threshold Vth. By increasing the current limit value ILIM' over time, the limit value change unit 24 suppresses a sudden increase in the current Iin supplied from the input protection device 14 to the subsequent circuit 16.
  • [3-1 First embodiment] is a circuit diagram of the input protection device 14 according to the first embodiment.
  • the input protection device 14 has an electronic fuse 36, an RC low-pass filter circuit 38, and a resistance setting circuit 40.
  • the electronic fuse 36 corresponds to the input protection unit 22 shown in FIG 1.
  • the RC low-pass filter circuit 38 and the resistance setting circuit 40 correspond to the limit value changing unit 24 shown in FIG 1.
  • the electronic fuse 36 is also called an eFUSE.
  • the electronic fuse 36 is an integrated circuit having a switch element 42 and a control circuit 44.
  • the switch element 42 is, for example, a MOSFET.
  • the switch element 42 corresponds to the switch unit 26 shown in FIG. 1.
  • the control circuit 44 has electronic circuits for realizing the functions of the switch control unit 28, the low voltage protection unit 30, the current limiting unit 32, and the like shown in FIG. 1. That is, the control circuit 44 sets the voltage threshold Vth to a constant value.
  • the control circuit 44 also shuts off the switch element 42 when the input voltage VIN falls below the voltage threshold Vth.
  • the control circuit 44 also limits the current Iin to a current limit value ILIM'.
  • the control circuit 44 also changes the current limit value ILIM' according to the variable resistor Rset'.
  • the electronic fuse 36 has an input terminal 46 (INPUT), an output terminal 48 (OUTPUT), an EN terminal (enable terminal) 50, and an ILIM terminal 52.
  • the input terminal 46 and the output terminal 48 are connected to each other via a switch element 42.
  • the EN terminal 50 and the ILIM terminal 52 are each connected to a control circuit 44.
  • the input terminal 46 is connected to the power supply device 12.
  • the output terminal 48 is connected to the subsequent circuit 16.
  • the EN terminal 50 is connected to a device (not shown) that outputs a start signal.
  • the ILIM terminal 52 is connected to the resistance setting circuit 40.
  • examples of the device that outputs the start signal include a voltage monitoring device and other electrical equipment formed on a single printed circuit board together with the electronic fuse 36.
  • the voltage monitoring device and other electrical equipment output a start signal when the input voltage VIN exceeds a predetermined voltage.
  • the RC low-pass filter circuit 38 has a resistor 54 and a capacitor 56.
  • a first terminal of the resistor 54 is connected to an EN terminal 50 provided in the electronic fuse 36 and to a device (not shown) that outputs an activation signal.
  • a second terminal of the resistor 54 is connected to a first terminal of the capacitor 56 and to a gate terminal of a FET 60 provided in the resistance setting circuit 40.
  • a second terminal of the capacitor 56 is connected to ground.
  • the RC low-pass filter circuit 38 gradually increases the voltage due to the activation signal supplied from outside, and supplies it as a gate signal to the gate terminal of the FET 60 provided in the resistance setting circuit 40.
  • the resistance setting circuit 40 has a series circuit in which a fixed resistor 58 and a FET 60 are connected in series.
  • the resistance value of the fixed resistor 58 is constant.
  • a first terminal of the fixed resistor 58 is connected to the ILIM terminal 52 of the electronic fuse 36.
  • a second terminal of the fixed resistor 58 is connected to the drain terminal of the FET 60.
  • the FET 60 is, for example, a MOSFET.
  • the drain terminal of the FET 60 is connected to the second terminal of the fixed resistor 58.
  • the source terminal of the FET 60 is connected to ground.
  • the gate terminal of the FET 60 is connected to the output terminal of the RC low-pass filter circuit 38 (the second terminal of the resistor 54 and the first terminal of the capacitor 56).
  • the RC low-pass filter circuit 38 gradually increases the voltage supplied to the gate terminal of the FET 60. This gradually decreases the drain-source resistance of the FET 60. This gradually decreases the variable resistance Rset' of the resistance setting circuit 40.
  • the variable resistance Rset' is the resistance value (variable value) of the resistance setting circuit 40.
  • the control circuit 44 is configured to set the current limit value ILIM' according to the variable resistance Rset'. For this reason, the control circuit 44 increases the current limit value ILIM' as the variable resistance Rset' decreases.
  • the current limit value ILIM' is the limit value (variable value) of the current Iin set in the input protection device 14.
  • the current Iin also gradually increases.
  • the current Iin is the value of the current supplied from the input protection device 14 to the subsequent circuit 16. In this way, the RC low-pass filter circuit 38 and the resistance setting circuit 40 are provided, so the current Iin can be gradually increased.
  • One of the features of the input protection device 14 is that it is provided with a variable resistor Rset'.
  • the operation of the input protection device 14 when it is not provided with the variable resistor Rset' will be compared with the operation of the input protection device 14 when it is provided with the variable resistor Rset'.
  • FIG. 3A is a time chart of the input voltage VIN.
  • Fig. 3B is a time chart of the back electromotive force ⁇ VIN_R.
  • Fig. 3C is a time chart of the back electromotive force ⁇ VIN_L.
  • Fig. 3D is a time chart of the current Iin.
  • Fig. 3E is a time chart of the charging voltage VIN_INT.
  • Figs. 3A to 3E are deformed.
  • the input voltage VIN rises.
  • the current Iin rises suddenly to the current limit value ILIM.
  • a large back electromotive force ⁇ VIN_R is generated due to the resistance of the cable between the power supply device 12 and the input protection device 14.
  • a large back electromotive force ⁇ VIN_L is generated due to the inductance of the cable between the power supply device 12 and the input protection device 14.
  • the capacitor 20 of the rear circuit 16 is charged while the current Iin is being supplied from the input protection device 14 to the rear circuit 16. That is, as shown in FIG. 3E, the charging voltage VIN_INT rises only while the current Iin is being supplied from the input protection device 14 to the rear circuit 16.
  • the charging voltage VIN_INT becomes approximately equal to the input voltage VIN. Then, the current Iin decreases, and the back electromotive forces ⁇ VIN_R and ⁇ VIN_L decrease. Because these back electromotive forces ⁇ VIN_R and ⁇ VIN_L decrease, the fluctuation of the input voltage VIN also decreases. As a result, the input voltage VIN does not fall below the voltage threshold Vth, and the start-up of the charging voltage VIN_INT is completed. Thereafter, the current Iin increases as the consumption current increases due to the start of operation of the subsequent circuit 16.
  • the peak of the input voltage VIN becomes excessively large. This may cause damage to the components of the input protection device 14.
  • the current Iin is intermittently supplied from the input protection device 14 to the subsequent circuit 16. This means that it takes a long time for the capacitor 20 of the subsequent circuit 16 to be charged.
  • Figures 4A to 4H are time chart showing the change over time of each value of the input protection device 14 according to the first embodiment.
  • Figure 4A is a time chart of the input voltage VIN.
  • Figure 4B is a time chart of the back electromotive force ⁇ VIN_R.
  • Figure 4C is a time chart of the back electromotive force ⁇ VIN_L.
  • Figure 4D is a time chart of the current Iin.
  • Figure 4E is a time chart of the start-up signal.
  • Figure 4F is a time chart of the variable resistor Rset'.
  • Figure 4G is a time chart of the current limit value ILIM'.
  • Figure 4H is a time chart of the charging voltage VIN_INT. Note that, like Figures 3A to 3E, Figures 4A to 4H are deformed.
  • the input voltage VIN rises. Furthermore, at timing tb2 after the input voltage VIN has risen, a start-up signal is supplied. Then, the output voltage of the RC low-pass filter circuit 38 starts to rise from zero (not shown). As time passes, the output voltage of the RC low-pass filter circuit 38 gradually rises. The degree of rise in the output voltage of the RC low-pass filter circuit 38 is determined by the time constant (RC). The output voltage of the RC low-pass filter circuit 38 is supplied to the gate terminal of the FET 60. As a result, the resistance value between the drain and source of the FET 60 starts to decrease from infinity. As time passes, the resistance value between the drain and source of the FET 60 gradually decreases.
  • variable resistor Rset' starts to decrease.
  • the variable resistor Rset' gradually decreases.
  • the current limit value ILIM' starts to increase.
  • the current limit value ILIM' gradually increases.
  • the current Iin gradually increases in accordance with the increase in the current limit value ILIM'. Because the current limit value ILIM' increases gradually, the current Iin does not increase abruptly. Therefore, as shown in FIG. 4B and FIG. 4C, the magnitude of the back electromotive forces ⁇ VIN_R, ⁇ VIN_L is smaller than the magnitude of the back electromotive forces ⁇ VIN_R, ⁇ VIN_L shown in FIG. 3C. Therefore, the decrease in the input voltage VIN is also smaller. As a result, the input voltage VIN does not fall below the voltage threshold Vth.
  • variable resistance Rset' becomes equal to set resistance Rset, which is the lower limit value.
  • current limit value ILIM' becomes equal to current limit value ILIM, which is the upper limit value.
  • current Iin also becomes equal to current limit value ILIM.
  • the current Iin does not rise suddenly between timing tb1 and timing tb3. Therefore, the change in the input voltage VIN caused by the back electromotive forces ⁇ VIN_R and ⁇ VIN_L becomes small, and the input voltage VIN does not fall below the voltage threshold Vth. Therefore, according to the first embodiment, it is possible to prevent the input voltage VIN from becoming excessively large, and as a result, there is no risk of damage to the components of the input protection device 14.
  • the control circuit 44 since the input voltage VIN does not fall below the voltage threshold Vth, the control circuit 44 (low voltage protection unit 30) maintains the connection state of the switch element 42. In other words, the connection state between the power supply device 12 and the subsequent circuit 16 is maintained until the capacitor 20 of the subsequent circuit 16 is charged. Therefore, according to the first embodiment, the capacitor 20 of the subsequent circuit 16 can be quickly charged.
  • [3-2 Second embodiment] 5 is a circuit diagram of the input protection device 14 according to the second embodiment.
  • the second embodiment is an improved example of the first embodiment.
  • the basic configuration of the input protection device 14 according to the second embodiment is the same as the configuration of the input protection device 14 according to the first embodiment.
  • the variable resistor Rset' starts decreasing from infinity.
  • the current limiting unit 32 may not be able to accurately set the current limiting value ILIM due to noise or the like.
  • the resistance setting circuit 40 has a noise prevention resistor 62 that bypasses the FET 60.
  • a first terminal of the noise prevention resistor 62 is connected to the source terminal of the FET 60.
  • a first terminal of the noise prevention resistor 62 is connected to the drain terminal of the FET 60.
  • the resistance value Rset2 of the noise prevention resistor 62 is greater than the resistance value Rset1 of the fixed resistor 58.
  • Figures 6A to 6H are a time chart showing the change over time of each value of the input protection device 14 according to the second embodiment.
  • Figures 6A to 6E and 6H are the same as Figures 4A to 4E and 4H.
  • Figure 6F is a time chart of the variable resistor Rset'.
  • Figure 6G is a time chart of the current limit value ILIM'.
  • the upper limit of the variable resistor Rset' is the sum of the resistance values Rset1 and Rset2.
  • the FET 60 is bypassed by the noise prevention resistor 62, so that the variable resistor Rset' does not become excessively large. Therefore, the current limiting unit 32 can accurately set the current limiting value ILIM without being affected by noise.
  • An input protection device (14) that limits a current (Iin) supplied from a power source (12) to a load (16) when the power source is turned on includes a switch unit (26) that is interposed between the power source and the load and can switch between connection and disconnection of the power source and the load, a switch control unit (28) that controls the switch unit to connect the power source and the load in response to an activation signal supplied from the outside, a low voltage protection unit (30) that controls the switch unit to disconnect the power source and the load when an input voltage (VIN) from the power source is equal to or lower than a predetermined voltage threshold, a current limiting unit (32) that limits the current supplied to the load to a limit value (ILIM') or lower, and a limit value changing unit (24) that increases the limit value over time after receiving the activation signal so that the input voltage does not become equal to or lower than the voltage threshold.
  • a switch unit (26) that is interposed between the power source and the load and can switch between connection and disconnection of the power source and the load
  • the limit value change unit has a resistance setting circuit (40) connected to the integrated circuit and capable of lowering the resistance value (Rset') to a preset lower limit value (Rset), and the limit value may change according to the resistance value of the resistance setting circuit.
  • the resistance setting circuit may have a series circuit in which a fixed resistor (58) having a constant resistance value and a FET (60) are connected in series, and the limit value changing unit may have an output circuit that outputs a gate signal to the FET to change the resistance value of the resistance setting circuit.
  • the output circuit may further include an RC low-pass filter circuit (38) that uses the activation signal to change the resistance value of the resistance setting circuit.
  • the limit value change unit may have a noise prevention resistor (62) connected to the source terminal of the FET and the drain terminal of the FET and having a resistance value greater than that of the fixed resistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

An input protection device according to an aspect of the present disclosure is provided with: a switch unit that is interposed between a power source and a load and that can switch connection and disconnection of the power source and the load; a switch control unit that controls the switch unit in response to a start signal supplied from the outside and connects the power source and the load to each other; a low voltage protection unit that, when an input voltage from the power source is equal to or lower than a prescribed voltage threshold value, controls the switch unit and disconnects the power source and the load from each other; a current limitation unit that limits a current supplied to the load to equal to or less than a limitation value; and a limitation-value change unit that, after receiving the start signal, causes the limitation value to increase with the elapse of time such that the input voltage does not become equal to or lower than the voltage threshold value.

Description

入力保護装置Input Protection Device
 本開示は、入力保護装置に関する。 This disclosure relates to an input protection device.
 特開平9-56058号公報には、電源投入時に電源から負荷に流れる突入電流を防止する装置が開示される。  JP Patent Publication No. 9-56058 discloses a device that prevents inrush current from flowing from a power source to a load when the power is turned on.
 より良好な入力保護装置を提供することが望まれる。 It would be desirable to provide a better input protection device.
 本開示の一態様は、電源投入時に電源から負荷に供給される電流を制限する入力保護装置であって、前記電源と前記負荷との間に介在して前記電源と前記負荷との接続と遮断とを切り替え可能なスイッチ部と、外部から供給される起動信号に応じて前記スイッチ部を制御して前記電源と前記負荷とを接続するスイッチ制御部と、前記電源による入力電圧が所定の電圧閾値以下である場合に前記スイッチ部を制御して前記電源と前記負荷とを遮断する低電圧保護部と、前記負荷に供給される電流を制限値以下に制限する電流制限部と、前記起動信号の受信後に、前記入力電圧が前記電圧閾値以下にならないように前記制限値を時間経過と共に大きくする制限値変更部と、を備える。 One aspect of the present disclosure is an input protection device that limits the current supplied from a power source to a load when the power source is turned on, and includes a switch unit that is interposed between the power source and the load and is capable of switching between connection and disconnection of the power source and the load, a switch control unit that controls the switch unit to connect the power source and the load in response to an activation signal supplied from the outside, a low voltage protection unit that controls the switch unit to disconnect the power source and the load when the input voltage from the power source is equal to or lower than a predetermined voltage threshold, a current limiting unit that limits the current supplied to the load to a limit value or lower, and a limit value changing unit that increases the limit value over time after receiving the activation signal so that the input voltage does not become equal to or lower than the voltage threshold.
図1は、電気機器のブロック図である。FIG. 1 is a block diagram of an electrical device. 図2は、第1実施形態に係る入力保護装置の回路図である。FIG. 2 is a circuit diagram of the input protection device according to the first embodiment. 図3A~図3Eの各々は、参考例の各々の値の時間変化を示すタイムチャートである。Each of FIGS. 3A to 3E is a time chart showing the change over time of each value in the reference example. 図4A~図4Hの各々は、第1実施形態に係る入力保護装置の各々の値の時間変化を示すタイムチャートである。Each of FIGS. 4A to 4H is a time chart showing the change over time of each value of the input protection device according to the first embodiment. 図5は、第2実施形態に係る入力保護装置の回路図である。FIG. 5 is a circuit diagram of an input protection device according to the second embodiment. 図6A~図6Hの各々は、第2実施形態に係る入力保護装置の各々の値の時間変化を示すタイムチャートである。Each of FIGS. 6A to 6H is a time chart showing the change over time of each value of the input protection device according to the second embodiment.
[1 電気機器10]
 図1は、電気機器10のブロック図である。電気機器10(電子機器も含む)は、電源装置12と、入力保護装置14と、後段回路(負荷)16とを有する。入力保護装置14及び後段回路16は、例えば単一のプリント基板上に形成される。後段回路16は、電源装置12によって供給される電力によって動作する。後段回路16は、大容量のコンデンサ20(電解コンデンサ等)を有する。入力保護装置14は、電源装置12と後段回路16との間に介在する。
[1 Electrical Equipment 10]
1 is a block diagram of an electric device 10. The electric device 10 (including electronic devices) has a power supply device 12, an input protection device 14, and a subsequent circuit (load) 16. The input protection device 14 and the subsequent circuit 16 are formed on a single printed circuit board, for example. The subsequent circuit 16 operates with power supplied by the power supply device 12. The subsequent circuit 16 has a large-capacity capacitor 20 (such as an electrolytic capacitor). The input protection device 14 is interposed between the power supply device 12 and the subsequent circuit 16.
 ここで、本明細書において使用する言葉を、以下のように定義する。
 入力電圧VIN:電源装置12から入力保護装置14に供給される電圧の値。
 逆起電力ΔVIN_R:電源装置12と入力保護装置14とを接続するケーブルの抵抗によって発生する逆起電力の値。
 逆起電力ΔVIN_L:電源装置12と入力保護装置14とを接続するケーブルのインダクタンスによって発生する逆起電力の値。
 電流Iin:入力保護装置14から後段回路16に供給される電流の値。
 電流制限値ILIM´:入力保護装置14に設定される電流Iinの制限値(可変値)。
 電流制限値ILIM:電流制限値ILIM´の上限値。
 充電電圧VIN_INT:後段回路16のコンデンサ20の電圧値。
 可変抵抗Rset´:抵抗設定回路40(図2)の抵抗値(可変値)。
 設定抵抗Rset:可変抵抗Rset´の下限値。
The terms used in this specification are defined as follows.
Input voltage VIN: the value of the voltage supplied from the power supply 12 to the input protection device 14.
Back electromotive force ΔVIN_R: the value of the back electromotive force generated by the resistance of the cable connecting the power supply device 12 and the input protection device 14.
Back electromotive force ΔVIN_L: the value of the back electromotive force generated by the inductance of the cable connecting the power supply device 12 and the input protection device 14.
Current Iin: the value of the current supplied from the input protection device 14 to the subsequent circuit 16.
Current limit value ILIM′: A limit value (variable value) of the current Iin set in the input protection device 14.
Current limit value ILIM: Upper limit value of current limit value ILIM'.
Charging voltage VIN_INT: the voltage value of the capacitor 20 in the subsequent circuit 16.
Variable resistor Rset': the resistance value (variable value) of the resistor setting circuit 40 (FIG. 2).
Set resistance Rset: The lower limit value of the variable resistance Rset'.
[2 入力保護装置14の構成]
 入力保護装置14は、電源装置12から後段回路16に供給される電力に異常がある場合に、電源装置12と後段回路16とを遮断して後段回路16を保護する。入力保護装置14は、入力保護部22と、制限値変更部24とを有する。
[2. Configuration of input protection device 14]
When an abnormality occurs in the power supplied from the power supply device 12 to the subsequent circuit 16, the input protection device 14 cuts off the power supply device 12 and the subsequent circuit 16 to protect the subsequent circuit 16. The input protection device 14 has an input protection unit 22 and a limit value changing unit 24.
 入力保護部22は、スイッチ部26と、スイッチ制御部28と、低電圧保護部30と、電流制限部32とを有する。スイッチ部26は、電源装置12と後段回路16との間に介在し、電源装置12と後段回路16との接続と遮断とを切り替える。スイッチ制御部28は、外部から供給される起動信号に応じてスイッチ部26を制御して電源装置12と後段回路16とを接続する。低電圧保護部30は、電源装置12による入力電圧VINが所定の電圧閾値Vth以下である場合にスイッチ部26を制御して電源装置12と後段回路16とを遮断する。すなわち、低電圧保護部30は、低電圧保護機能を備える。電流制限部32は、後段回路16に供給される電流Iinを電流制限値ILIM´以下に制限する。すなわち、電流制限部32は、突入電流抑制機能を備える。 The input protection unit 22 has a switch unit 26, a switch control unit 28, a low-voltage protection unit 30, and a current limiting unit 32. The switch unit 26 is interposed between the power supply device 12 and the rear circuit 16, and switches between connection and disconnection of the power supply device 12 and the rear circuit 16. The switch control unit 28 controls the switch unit 26 in response to a start-up signal supplied from the outside to connect the power supply device 12 and the rear circuit 16. The low-voltage protection unit 30 controls the switch unit 26 to disconnect the power supply device 12 and the rear circuit 16 when the input voltage VIN by the power supply device 12 is equal to or lower than a predetermined voltage threshold Vth. That is, the low-voltage protection unit 30 has a low-voltage protection function. The current limiting unit 32 limits the current Iin supplied to the rear circuit 16 to equal to or lower than the current limit value ILIM'. That is, the current limiting unit 32 has an inrush current suppression function.
 制限値変更部24は、外部から供給される起動信号の受信後に、電源装置12による入力電圧VINが所定の電圧閾値Vth以下にならないように、電流制限部32が使用する電流制限値ILIM´を時間の経過に応じて大きくする。制限値変更部24は、電流制限値ILIM´を時間の経過に応じて大きくすることにより、入力保護装置14から後段回路16に供給される電流Iinの急激な上昇を抑制する。 After receiving a startup signal supplied from the outside, the limit value change unit 24 increases the current limit value ILIM' used by the current limit unit 32 over time so that the input voltage VIN from the power supply device 12 does not fall below a predetermined voltage threshold Vth. By increasing the current limit value ILIM' over time, the limit value change unit 24 suppresses a sudden increase in the current Iin supplied from the input protection device 14 to the subsequent circuit 16.
[3 入力保護装置14の具体例]
[3-1 第1実施形態]
[構成]
 図2は、第1実施形態に係る入力保護装置14の回路図である。入力保護装置14は、電子ヒューズ36と、RCローパスフィルタ回路38と、抵抗設定回路40とを有する。電子ヒューズ36は、図1で示される入力保護部22に相当する。RCローパスフィルタ回路38及び抵抗設定回路40は、図1で示される制限値変更部24に相当する。
[3. Specific Examples of Input Protection Device 14]
[3-1 First embodiment]
[composition]
2 is a circuit diagram of the input protection device 14 according to the first embodiment. The input protection device 14 has an electronic fuse 36, an RC low-pass filter circuit 38, and a resistance setting circuit 40. The electronic fuse 36 corresponds to the input protection unit 22 shown in FIG 1. The RC low-pass filter circuit 38 and the resistance setting circuit 40 correspond to the limit value changing unit 24 shown in FIG 1.
 電子ヒューズ36は、eFUSEとも称される。電子ヒューズ36は、スイッチ素子42及び制御回路44を有する集積回路である。スイッチ素子42は、例えばMOSFETである。スイッチ素子42は、図1で示されるスイッチ部26に相当する。制御回路44は、図1で示されるスイッチ制御部28、低電圧保護部30、電流制限部32等の機能を実現するための電子回路を有する。すなわち、制御回路44は、電圧閾値Vthを一定値に設定する。また、制御回路44は、入力電圧VINが電圧閾値Vthを下回った場合にスイッチ素子42を遮断する。また、制御回路44は、電流Iinを電流制限値ILIM´に制限する。また、制御回路44は、電流制限値ILIM´を可変抵抗Rset´に応じて変化させる。 The electronic fuse 36 is also called an eFUSE. The electronic fuse 36 is an integrated circuit having a switch element 42 and a control circuit 44. The switch element 42 is, for example, a MOSFET. The switch element 42 corresponds to the switch unit 26 shown in FIG. 1. The control circuit 44 has electronic circuits for realizing the functions of the switch control unit 28, the low voltage protection unit 30, the current limiting unit 32, and the like shown in FIG. 1. That is, the control circuit 44 sets the voltage threshold Vth to a constant value. The control circuit 44 also shuts off the switch element 42 when the input voltage VIN falls below the voltage threshold Vth. The control circuit 44 also limits the current Iin to a current limit value ILIM'. The control circuit 44 also changes the current limit value ILIM' according to the variable resistor Rset'.
 電子ヒューズ36は、入力端子46(INPUT)と、出力端子48(OUTPUT)と、EN端子(イネーブル端子)50と、ILIM端子52とを有する。入力端子46と出力端子48とは、スイッチ素子42を介して互いに接続される。EN端子50とILIM端子52の各々は、制御回路44に接続される。入力端子46は、電源装置12に接続される。出力端子48は、後段回路16に接続される。EN端子50は、起動信号を出力する装置(不図示)に接続される。ILIM端子52は、抵抗設定回路40に接続される。なお、図示していないが、起動信号を出力する装置としては、電子ヒューズ36と共に単一のプリント基板上に形成される電圧監視装置、他の電機機器等が挙げられる。電圧監視装置及び他の電機機器等は、入力電圧VINが所定の電圧を超えた場合に起動信号を出力する。 The electronic fuse 36 has an input terminal 46 (INPUT), an output terminal 48 (OUTPUT), an EN terminal (enable terminal) 50, and an ILIM terminal 52. The input terminal 46 and the output terminal 48 are connected to each other via a switch element 42. The EN terminal 50 and the ILIM terminal 52 are each connected to a control circuit 44. The input terminal 46 is connected to the power supply device 12. The output terminal 48 is connected to the subsequent circuit 16. The EN terminal 50 is connected to a device (not shown) that outputs a start signal. The ILIM terminal 52 is connected to the resistance setting circuit 40. Although not shown, examples of the device that outputs the start signal include a voltage monitoring device and other electrical equipment formed on a single printed circuit board together with the electronic fuse 36. The voltage monitoring device and other electrical equipment output a start signal when the input voltage VIN exceeds a predetermined voltage.
 RCローパスフィルタ回路38は、抵抗54と、コンデンサ56とを有する。抵抗54の第1端子は、電子ヒューズ36に備えられたEN端子50と、起動信号を出力する装置(不図示)とに接続される。抵抗54の第2端子は、コンデンサ56の第1端子と、抵抗設定回路40に備えられたFET60のゲート端子とに接続される。コンデンサ56の第2端子は、グラウンドに接続される。RCローパスフィルタ回路38は、外部から供給される起動信号による電圧を徐々に増加させつつ、抵抗設定回路40に備えられたFET60のゲート端子にゲート信号として供給する。 The RC low-pass filter circuit 38 has a resistor 54 and a capacitor 56. A first terminal of the resistor 54 is connected to an EN terminal 50 provided in the electronic fuse 36 and to a device (not shown) that outputs an activation signal. A second terminal of the resistor 54 is connected to a first terminal of the capacitor 56 and to a gate terminal of a FET 60 provided in the resistance setting circuit 40. A second terminal of the capacitor 56 is connected to ground. The RC low-pass filter circuit 38 gradually increases the voltage due to the activation signal supplied from outside, and supplies it as a gate signal to the gate terminal of the FET 60 provided in the resistance setting circuit 40.
 抵抗設定回路40は、固定抵抗58とFET60とが直列に接続された直列回路を有する。固定抵抗58の抵抗値は一定である。固定抵抗58の第1端子は、電子ヒューズ36のILIM端子52に接続される。固定抵抗58の第2端子は、FET60のドレイン端子に接続される。FET60は、例えばMOSFETである。FET60のドレイン端子は、固定抵抗58の第2端子に接続される。FET60のソース端子は、グラウンドに接続される。FET60のゲート端子は、RCローパスフィルタ回路38の出力端子(抵抗54の第2端子及びコンデンサ56の第1端子)に接続される。 The resistance setting circuit 40 has a series circuit in which a fixed resistor 58 and a FET 60 are connected in series. The resistance value of the fixed resistor 58 is constant. A first terminal of the fixed resistor 58 is connected to the ILIM terminal 52 of the electronic fuse 36. A second terminal of the fixed resistor 58 is connected to the drain terminal of the FET 60. The FET 60 is, for example, a MOSFET. The drain terminal of the FET 60 is connected to the second terminal of the fixed resistor 58. The source terminal of the FET 60 is connected to ground. The gate terminal of the FET 60 is connected to the output terminal of the RC low-pass filter circuit 38 (the second terminal of the resistor 54 and the first terminal of the capacitor 56).
 上述したように、RCローパスフィルタ回路38は、FET60のゲート端子に供給する電圧を徐々に上昇させる。これにより、FET60のドレイン-ソース間の抵抗値は徐々に低下する。これにより、抵抗設定回路40の可変抵抗Rset´は徐々に低下する。可変抵抗Rset´は、上述したように、抵抗設定回路40の抵抗値(可変値)である。制御回路44は、可変抵抗Rset´に応じた電流制限値ILIM´を設定するように構成されている。このため、制御回路44は、可変抵抗Rset´の低下に伴い、電流制限値ILIM´を上昇させる。電流制限値ILIM´は、上述したように、入力保護装置14に設定される電流Iinの制限値(可変値)である。電流制限値ILIM´が徐々に上昇すると、電流Iinも徐々に上昇する。電流Iinは、上述したように、入力保護装置14から後段回路16に供給される電流の値である。このように、RCローパスフィルタ回路38と抵抗設定回路40とが備えられているため、電流Iinを徐々に上昇させることができる。 As described above, the RC low-pass filter circuit 38 gradually increases the voltage supplied to the gate terminal of the FET 60. This gradually decreases the drain-source resistance of the FET 60. This gradually decreases the variable resistance Rset' of the resistance setting circuit 40. As described above, the variable resistance Rset' is the resistance value (variable value) of the resistance setting circuit 40. The control circuit 44 is configured to set the current limit value ILIM' according to the variable resistance Rset'. For this reason, the control circuit 44 increases the current limit value ILIM' as the variable resistance Rset' decreases. As described above, the current limit value ILIM' is the limit value (variable value) of the current Iin set in the input protection device 14. When the current limit value ILIM' gradually increases, the current Iin also gradually increases. As described above, the current Iin is the value of the current supplied from the input protection device 14 to the subsequent circuit 16. In this way, the RC low-pass filter circuit 38 and the resistance setting circuit 40 are provided, so the current Iin can be gradually increased.
[第1実施形態と参考例との比較]
 入力保護装置14は、可変抵抗Rset´が備えられていることに1つの特徴がある。ここで、可変抵抗Rset´が備えられていない場合の入力保護装置14の動作と、可変抵抗Rset´が備えられている場合の入力保護装置14の動作とを比較する。
[Comparison between the first embodiment and the reference example]
One of the features of the input protection device 14 is that it is provided with a variable resistor Rset'. Here, the operation of the input protection device 14 when it is not provided with the variable resistor Rset' will be compared with the operation of the input protection device 14 when it is provided with the variable resistor Rset'.
[参考例の動作]
 可変抵抗Rset´が備えられていない場合の入力保護装置14を参考例とする。図3A~図3Eの各々は、参考例による入力保護装置14の各々の値の時間変化を示すタイムチャートである。図3Aは、入力電圧VINのタイムチャートである。図3Bは、逆起電力ΔVIN_Rのタイムチャートである。図3Cは、逆起電力ΔVIN_Lのタイムチャートである。図3Dは、電流Iinのタイムチャートである。図3Eは、充電電圧VIN_INTのタイムチャートである。なお、説明の便宜のために、図3A~図3Eはデフォルメされている。
[Reference Example Operation]
An input protection device 14 not including a variable resistor Rset' is taken as a reference example. Each of Figs. 3A to 3E is a time chart showing the time change of each value of the input protection device 14 according to the reference example. Fig. 3A is a time chart of the input voltage VIN. Fig. 3B is a time chart of the back electromotive force ΔVIN_R. Fig. 3C is a time chart of the back electromotive force ΔVIN_L. Fig. 3D is a time chart of the current Iin. Fig. 3E is a time chart of the charging voltage VIN_INT. For convenience of explanation, Figs. 3A to 3E are deformed.
 電源が投入されたタイミングta1で、入力電圧VINが上昇する。この後、タイミングta2で、電流Iinが電流制限値ILIMまで急激に上昇する。電流Iinの急激な上昇に伴い、電源装置12と入力保護装置14との間のケーブルの抵抗によって、大きな逆起電力ΔVIN_Rが発生する。また、電流Iinの急激な上昇に伴い、電源装置12と入力保護装置14との間のケーブルのインダクタンスによって、大きな逆起電力ΔVIN_Lが発生する。これらの逆起電力ΔVIN_R、ΔVIN_Lによって、入力電圧VINは大きく低下する。入力電圧VINが電圧閾値Vthを下回ると、制御回路44(低電圧保護部30)は、スイッチ素子42をオンからオフに切り換えて、電源装置12と後段回路16とを遮断する。 At time ta1 when the power is turned on, the input voltage VIN rises. After that, at time ta2, the current Iin rises suddenly to the current limit value ILIM. As the current Iin rises suddenly, a large back electromotive force ΔVIN_R is generated due to the resistance of the cable between the power supply device 12 and the input protection device 14. As the current Iin rises suddenly, a large back electromotive force ΔVIN_L is generated due to the inductance of the cable between the power supply device 12 and the input protection device 14. These back electromotive forces ΔVIN_R and ΔVIN_L cause the input voltage VIN to drop significantly. When the input voltage VIN falls below the voltage threshold Vth, the control circuit 44 (low voltage protection unit 30) switches the switch element 42 from on to off to cut off the power supply device 12 and the subsequent circuit 16.
 スイッチ素子42が切り替えられたタイミングta3で、電流Iinは急激に低下する。電流Iinの急激な低下に伴い、タイミングta2で発生した逆起電力ΔVIN_R、ΔVIN_Lとは逆方向の逆起電力ΔVIN_Lが発生する。このような逆方向の逆起電力ΔVIN_Lによって、入力電圧VINは大きく上昇する。逆起電力ΔVIN_R、ΔVIN_Lが生じていないタイミングにおいては、入力電圧VINは、タイミングta1における入力電圧VINと同等となる。このような現象は、繰り返し発生する。 At timing ta3 when the switch element 42 is switched, the current Iin drops suddenly. As the current Iin drops suddenly, a back electromotive force ΔVIN_L is generated in the opposite direction to the back electromotive forces ΔVIN_R, ΔVIN_L generated at timing ta2. This back electromotive force ΔVIN_L in the opposite direction causes the input voltage VIN to rise significantly. At timings when the back electromotive forces ΔVIN_R, ΔVIN_L are not generated, the input voltage VIN is equal to the input voltage VIN at timing ta1. This phenomenon occurs repeatedly.
 後段回路16のコンデンサ20は、入力保護装置14から後段回路16に電流Iinが供給されている間に充電される。すなわち、図3Eで示されるように、充電電圧VIN_INTは、入力保護装置14から後段回路16に電流Iinが供給されている間にのみ上昇する。 The capacitor 20 of the rear circuit 16 is charged while the current Iin is being supplied from the input protection device 14 to the rear circuit 16. That is, as shown in FIG. 3E, the charging voltage VIN_INT rises only while the current Iin is being supplied from the input protection device 14 to the rear circuit 16.
 タイミングta4で、充電電圧VIN_INTが入力電圧VINと略等しくなる。すると、電流Iinが小さくなり、逆起電力ΔVIN_R、ΔVIN_Lが小さくなる。これらの逆起電力ΔVIN_R、ΔVIN_Lが小さくなるため、入力電圧VINの変動も小さくなる。その結果、入力電圧VINが電圧閾値Vthを下回らないため、充電電圧VIN_INTの起動が完了する。その後、後段回路16の動作開始による消費電流の増加に伴い、電流Iinが増加する。 At timing ta4, the charging voltage VIN_INT becomes approximately equal to the input voltage VIN. Then, the current Iin decreases, and the back electromotive forces ΔVIN_R and ΔVIN_L decrease. Because these back electromotive forces ΔVIN_R and ΔVIN_L decrease, the fluctuation of the input voltage VIN also decreases. As a result, the input voltage VIN does not fall below the voltage threshold Vth, and the start-up of the charging voltage VIN_INT is completed. Thereafter, the current Iin increases as the consumption current increases due to the start of operation of the subsequent circuit 16.
 このように、参考例による入力保護装置14は、入力電圧VINのピークが過度に大きくなる。このため、入力保護装置14の部品が破損する虞がある。また、参考例による入力保護装置14は、入力保護装置14から後段回路16に断続的に電流Iinが供給される。このため、後段回路16のコンデンサ20が充電されるまでに長時間を要する。 As such, in the input protection device 14 of the reference example, the peak of the input voltage VIN becomes excessively large. This may cause damage to the components of the input protection device 14. Furthermore, in the input protection device 14 of the reference example, the current Iin is intermittently supplied from the input protection device 14 to the subsequent circuit 16. This means that it takes a long time for the capacitor 20 of the subsequent circuit 16 to be charged.
[第1実施形態に係る入力保護装置14の動作]
 図4A~図4Hの各々は、第1実施形態に係る入力保護装置14の各々の値の時間変化を示すタイムチャートである。図4Aは、入力電圧VINのタイムチャートである。図4Bは、逆起電力ΔVIN_Rのタイムチャートである。図4Cは、逆起電力ΔVIN_Lのタイムチャートである。図4Dは、電流Iinのタイムチャートである。図4Eは、起動信号のタイムチャートである。図4Fは、可変抵抗Rset´のタイムチャートである。図4Gは、電流制限値ILIM´のタイムチャートである。図4Hは、充電電圧VIN_INTのタイムチャートである。なお、図3A~図3Eと同様に、図4A~図4Hはデフォルメされている。
[Operation of the input protection device 14 according to the first embodiment]
Each of Figures 4A to 4H is a time chart showing the change over time of each value of the input protection device 14 according to the first embodiment. Figure 4A is a time chart of the input voltage VIN. Figure 4B is a time chart of the back electromotive force ΔVIN_R. Figure 4C is a time chart of the back electromotive force ΔVIN_L. Figure 4D is a time chart of the current Iin. Figure 4E is a time chart of the start-up signal. Figure 4F is a time chart of the variable resistor Rset'. Figure 4G is a time chart of the current limit value ILIM'. Figure 4H is a time chart of the charging voltage VIN_INT. Note that, like Figures 3A to 3E, Figures 4A to 4H are deformed.
 電源が投入されたタイミングtb1で、入力電圧VINは上昇する。更に、入力電圧VINの上昇後のタイミングtb2で、起動信号が供給される。すると、RCローパスフィルタ回路38の出力電圧はゼロから上昇を始める(不図示)。時間の経過に伴い、RCローパスフィルタ回路38の出力電圧は徐々に上昇する。RCローパスフィルタ回路38の出力電圧の上昇の度合いは、時定数(RC)によって決まる。RCローパスフィルタ回路38の出力電圧は、FET60のゲート端子に供給される。これにより、FET60のドレイン-ソース間の抵抗値が無限大から低下を始める。時間の経過に伴い、FET60のドレイン-ソース間の抵抗値は徐々に低下する。したがって、図4Fで示されるように、可変抵抗Rset´が低下を始める。時間の経過に伴い、可変抵抗Rset´は徐々に低下する。すると、図4Gで示されるように、電流制限値ILIM´は上昇を始める。時間の経過に伴い、電流制限値ILIM´は徐々に上昇する。図4Dで示されるように、電流Iinは、電流制限値ILIM´の上昇に合わせて徐々に上昇する。電流制限値ILIM´が徐々に上昇するため、電流Iinは急激に上昇しない。このため、図4B及び図4Cで示されるように、逆起電力ΔVIN_R、ΔVIN_Lの大きさは、図3Cで示される逆起電力ΔVIN_R、ΔVIN_Lの大きさよりも小さくなる。このため、入力電圧VINの低下も小さくなる。その結果、入力電圧VINは、電圧閾値Vthを下回らない。 At timing tb1 when the power is turned on, the input voltage VIN rises. Furthermore, at timing tb2 after the input voltage VIN has risen, a start-up signal is supplied. Then, the output voltage of the RC low-pass filter circuit 38 starts to rise from zero (not shown). As time passes, the output voltage of the RC low-pass filter circuit 38 gradually rises. The degree of rise in the output voltage of the RC low-pass filter circuit 38 is determined by the time constant (RC). The output voltage of the RC low-pass filter circuit 38 is supplied to the gate terminal of the FET 60. As a result, the resistance value between the drain and source of the FET 60 starts to decrease from infinity. As time passes, the resistance value between the drain and source of the FET 60 gradually decreases. Therefore, as shown in FIG. 4F, the variable resistor Rset' starts to decrease. As time passes, the variable resistor Rset' gradually decreases. Then, as shown in FIG. 4G, the current limit value ILIM' starts to increase. As time passes, the current limit value ILIM' gradually increases. As shown in FIG. 4D, the current Iin gradually increases in accordance with the increase in the current limit value ILIM'. Because the current limit value ILIM' increases gradually, the current Iin does not increase abruptly. Therefore, as shown in FIG. 4B and FIG. 4C, the magnitude of the back electromotive forces ΔVIN_R, ΔVIN_L is smaller than the magnitude of the back electromotive forces ΔVIN_R, ΔVIN_L shown in FIG. 3C. Therefore, the decrease in the input voltage VIN is also smaller. As a result, the input voltage VIN does not fall below the voltage threshold Vth.
 タイミングtb3で、FET60のドレイン-ソース間の抵抗値は略ゼロになる。図4Fで示されるように、可変抵抗Rset´は下限値である設定抵抗Rsetと等しくなる。図4Gで示されるように、電流制限値ILIM´は上限値である電流制限値ILIMになる。図4Dで示されるように、電流Iinも電流制限値ILIMと等しくなる。電流Iinの変化がなくなると、逆起電力ΔVIN_R、ΔVIN_Lが発生しなくなり、入力電圧VINの変化はなくなる。 At timing tb3, the resistance between the drain and source of FET 60 becomes approximately zero. As shown in FIG. 4F, variable resistance Rset' becomes equal to set resistance Rset, which is the lower limit value. As shown in FIG. 4G, current limit value ILIM' becomes equal to current limit value ILIM, which is the upper limit value. As shown in FIG. 4D, current Iin also becomes equal to current limit value ILIM. When current Iin stops changing, back electromotive forces ΔVIN_R and ΔVIN_L are no longer generated, and the input voltage VIN stops changing.
 第1実施形態においては、タイミングtb1からタイミングtb3までの間に、電流Iinが急激に上昇しない。このため、逆起電力ΔVIN_R及び逆起電力ΔVIN_Lに起因する入力電圧VINの変化は小さくなり、入力電圧VINが電圧閾値Vthを下回ることがなくなる。したがって、第1実施形態によれば、入力電圧VINが過度に大きくなることを防止することができ、その結果、入力保護装置14の部品が破損する虞がなくなる。 In the first embodiment, the current Iin does not rise suddenly between timing tb1 and timing tb3. Therefore, the change in the input voltage VIN caused by the back electromotive forces ΔVIN_R and ΔVIN_L becomes small, and the input voltage VIN does not fall below the voltage threshold Vth. Therefore, according to the first embodiment, it is possible to prevent the input voltage VIN from becoming excessively large, and as a result, there is no risk of damage to the components of the input protection device 14.
 また、第1実施形態においては、入力電圧VINが電圧閾値Vthを下回ることがないため、制御回路44(低電圧保護部30)は、スイッチ素子42の接続状態を維持する。つまり、後段回路16のコンデンサ20が充電されるまで、電源装置12と後段回路16との接続状態が維持される。したがって、第1実施形態によれば、後段回路16のコンデンサ20を迅速に充電することができる。 In addition, in the first embodiment, since the input voltage VIN does not fall below the voltage threshold Vth, the control circuit 44 (low voltage protection unit 30) maintains the connection state of the switch element 42. In other words, the connection state between the power supply device 12 and the subsequent circuit 16 is maintained until the capacitor 20 of the subsequent circuit 16 is charged. Therefore, according to the first embodiment, the capacitor 20 of the subsequent circuit 16 can be quickly charged.
[3-2 第2実施形態]
 図5は、第2実施形態に係る入力保護装置14の回路図である。第2実施形態は、第1実施形態の改良例である。第2実施形態に係る入力保護装置14の基本的な構成は、第1実施形態に係る入力保護装置14の構成と同じである。
[3-2 Second embodiment]
5 is a circuit diagram of the input protection device 14 according to the second embodiment. The second embodiment is an improved example of the first embodiment. The basic configuration of the input protection device 14 according to the second embodiment is the same as the configuration of the input protection device 14 according to the first embodiment.
 第1実施形態において、可変抵抗Rset´は、無限大から低下を始める。この場合、ノイズ等により電流制限部32が電流制限値ILIMを正確に設定できない場合がある。第2実施形態において、抵抗設定回路40は、FET60をバイパスするノイズ防止用抵抗62を有する。ノイズ防止用抵抗62の第1端子は、FET60のソース端子に接続される。ノイズ防止用抵抗62の第1端子は、FET60のドレイン端子に接続される。ノイズ防止用抵抗62の抵抗値Rset2は、固定抵抗58の抵抗値Rset1よりも大きい。 In the first embodiment, the variable resistor Rset' starts decreasing from infinity. In this case, the current limiting unit 32 may not be able to accurately set the current limiting value ILIM due to noise or the like. In the second embodiment, the resistance setting circuit 40 has a noise prevention resistor 62 that bypasses the FET 60. A first terminal of the noise prevention resistor 62 is connected to the source terminal of the FET 60. A first terminal of the noise prevention resistor 62 is connected to the drain terminal of the FET 60. The resistance value Rset2 of the noise prevention resistor 62 is greater than the resistance value Rset1 of the fixed resistor 58.
 図6A~図6Hの各々は、第2実施形態に係る入力保護装置14の各々の値の時間変化を示すタイムチャートである。図6A~図6E及び図6Hは、図4A~図4E及び図4Hと同じである。図6Fは、可変抵抗Rset´のタイムチャートである。図6Gは、電流制限値ILIM´のタイムチャートである。 Each of Figures 6A to 6H is a time chart showing the change over time of each value of the input protection device 14 according to the second embodiment. Figures 6A to 6E and 6H are the same as Figures 4A to 4E and 4H. Figure 6F is a time chart of the variable resistor Rset'. Figure 6G is a time chart of the current limit value ILIM'.
 図6Fで示されるように、可変抵抗Rset´の上限値は、抵抗値Rset1と抵抗値Rset2との加算値である。このように、ノイズ防止用抵抗62によってFET60がバイパスされているため、可変抵抗Rset´が過度に大きくなることはない。このため、電流制限部32は、ノイズの影響を受けることなく電流制限値ILIMを正確に設定することができる。 As shown in FIG. 6F, the upper limit of the variable resistor Rset' is the sum of the resistance values Rset1 and Rset2. In this way, the FET 60 is bypassed by the noise prevention resistor 62, so that the variable resistor Rset' does not become excessively large. Therefore, the current limiting unit 32 can accurately set the current limiting value ILIM without being affected by noise.
[3-3 その他の実施形態]
 上記実施形態においては、外部から供給される起動信号が、RCローパスフィルタ回路38を介して抵抗設定回路40に備えられたFET60のゲート端子にゲート信号として供給される場合を例に説明したが、これに限定されない。他の出力回路(例えばプロセッサ等)により出力されるゲート信号が、FET60のゲート端子に供給されてもよい。この場合、他の出力回路は、ゲート信号の大きさを徐々に大きくする。
[3-3 Other embodiments]
In the above embodiment, an example has been described in which an externally supplied activation signal is supplied as a gate signal to the gate terminal of the FET 60 provided in the resistance setting circuit 40 via the RC low-pass filter circuit 38, but this is not limiting. A gate signal output by another output circuit (e.g., a processor, etc.) may be supplied to the gate terminal of the FET 60. In this case, the other output circuit gradually increases the magnitude of the gate signal.
[4 付記]
 上記実施形態及び変形例に関し、更に以下の付記を開示する。
[4 Supplementary Note]
The following supplementary notes are further disclosed regarding the above embodiment and modified examples.
(付記1)電源投入時に電源(12)から負荷(16)に供給される電流(Iin)を制限する入力保護装置(14)は、前記電源と前記負荷との間に介在して前記電源と前記負荷との接続と遮断とを切り替え可能なスイッチ部(26)と、外部から供給される起動信号に応じて前記スイッチ部を制御して前記電源と前記負荷とを接続するスイッチ制御部(28)と、前記電源による入力電圧(VIN)が所定の電圧閾値以下である場合に前記スイッチ部を制御して前記電源と前記負荷とを遮断する低電圧保護部(30)と、前記負荷に供給される電流を制限値(ILIM´)以下に制限する電流制限部(32)と、前記起動信号の受信後に、前記入力電圧が前記電圧閾値以下にならないように前記制限値を時間経過と共に大きくする制限値変更部(24)と、を備える。 (Note 1) An input protection device (14) that limits a current (Iin) supplied from a power source (12) to a load (16) when the power source is turned on includes a switch unit (26) that is interposed between the power source and the load and can switch between connection and disconnection of the power source and the load, a switch control unit (28) that controls the switch unit to connect the power source and the load in response to an activation signal supplied from the outside, a low voltage protection unit (30) that controls the switch unit to disconnect the power source and the load when an input voltage (VIN) from the power source is equal to or lower than a predetermined voltage threshold, a current limiting unit (32) that limits the current supplied to the load to a limit value (ILIM') or lower, and a limit value changing unit (24) that increases the limit value over time after receiving the activation signal so that the input voltage does not become equal to or lower than the voltage threshold.
(付記2)付記1に記載の入力保護装置において、前記スイッチ部、前記スイッチ制御部、前記低電圧保護部及び前記電流制限部は、単一の集積回路(36)に含まれてもよい。 (Appendix 2) In the input protection device described in Appendix 1, the switch unit, the switch control unit, the low voltage protection unit, and the current limiting unit may be included in a single integrated circuit (36).
(付記3)付記2に記載の入力保護装置において、前記制限値変更部は、前記集積回路に接続され、予め設定される下限値(Rset)まで抵抗値(Rset´)を低下可能な抵抗設定回路(40)を有し、前記制限値は、前記抵抗設定回路の抵抗値に応じて変化してもよい。 (Appendix 3) In the input protection device described in Appendix 2, the limit value change unit has a resistance setting circuit (40) connected to the integrated circuit and capable of lowering the resistance value (Rset') to a preset lower limit value (Rset), and the limit value may change according to the resistance value of the resistance setting circuit.
(付記4)付記3に記載の入力保護装置において、前記抵抗設定回路は、抵抗値が一定の固定抵抗(58)とFET(60)とが直列に接続された直列回路を有し、前記制限値変更部は、前記抵抗設定回路の抵抗値を変化させるためのゲート信号を前記FETに出力する出力回路を有してもよい。 (Appendix 4) In the input protection device described in Appendix 3, the resistance setting circuit may have a series circuit in which a fixed resistor (58) having a constant resistance value and a FET (60) are connected in series, and the limit value changing unit may have an output circuit that outputs a gate signal to the FET to change the resistance value of the resistance setting circuit.
(付記5)付記4に記載の入力保護装置において、前記出力回路は、前記起動信号を用いて、前記抵抗設定回路の抵抗値を変化させるRCローパスフィルタ回路(38)を更に有してもよい。 (Appendix 5) In the input protection device described in Appendix 4, the output circuit may further include an RC low-pass filter circuit (38) that uses the activation signal to change the resistance value of the resistance setting circuit.
(付記6)付記4又は5に記載の入力保護装置において、前記制限値変更部は、前記FETのソース端子と前記FETのドレイン端子とに接続され、抵抗値が前記固定抵抗よりも大きいノイズ防止用抵抗(62)を有してもよい。 (Appendix 6) In the input protection device described in appendix 4 or 5, the limit value change unit may have a noise prevention resistor (62) connected to the source terminal of the FET and the drain terminal of the FET and having a resistance value greater than that of the fixed resistor.
 本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、又は、特許請求の範囲に記載された内容とその均等物から導き出される本開示の趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組み合わせて実施することもできる。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値又は数式が用いられている場合も同様である。 Although the present disclosure has been described in detail, the present disclosure is not limited to the individual embodiments described above. Various additions, substitutions, modifications, partial deletions, etc. are possible to these embodiments without departing from the gist of the present disclosure, or without departing from the gist of the present disclosure derived from the contents described in the claims and their equivalents. These embodiments can also be implemented in combination. For example, in the above-mentioned embodiments, the order of each operation and the order of each process are shown as examples, and are not limited to these. The same applies when numerical values or formulas are used to explain the above-mentioned embodiments.
12…電源装置(電源)          14…入力保護装置
16…後段回路(負荷)          24…制限値変更部
26…スイッチ部             28…スイッチ制御部
30…低電圧保護部            32…電流制限部
36…電子ヒューズ(集積回路)
38…RCローパスフィルタ回路      40…抵抗設定回路
58…固定抵抗              60…FET
62…ノイズ防止用抵抗
REFERENCE SIGNS LIST 12 power supply device (power supply) 14 input protection device 16 subsequent circuit (load) 24 limit value change section 26 switch section 28 switch control section 30 low voltage protection section 32 current limit section 36 electronic fuse (integrated circuit)
38 RC low-pass filter circuit 40 Resistance setting circuit 58 Fixed resistor 60 FET
62: Noise prevention resistor

Claims (6)

  1.  電源投入時に電源から負荷に供給される電流を制限する入力保護装置であって、
     前記電源と前記負荷との間に介在して前記電源と前記負荷との接続と遮断とを切り替え可能なスイッチ部と、
     外部から供給される起動信号に応じて前記スイッチ部を制御して前記電源と前記負荷とを接続するスイッチ制御部と、
     前記電源による入力電圧が所定の電圧閾値以下である場合に前記スイッチ部を制御して前記電源と前記負荷とを遮断する低電圧保護部と、
     前記負荷に供給される電流を制限値以下に制限する電流制限部と、
     前記起動信号の受信後に、前記入力電圧が前記電圧閾値以下にならないように前記制限値を時間経過と共に大きくする制限値変更部と、
     を備える、入力保護装置。
    An input protection device that limits the current supplied from a power supply to a load when the power supply is turned on,
    a switch unit interposed between the power source and the load and capable of switching between connection and disconnection between the power source and the load;
    a switch control unit that controls the switch unit in response to an externally supplied start signal to connect the power source and the load;
    a low voltage protection unit that controls the switch unit to cut off the power supply and the load when an input voltage from the power supply is equal to or lower than a predetermined voltage threshold;
    a current limiting unit that limits a current supplied to the load to a limit value or less;
    a limit value changing unit that increases the limit value over time after receiving the activation signal so that the input voltage does not become equal to or lower than the voltage threshold value;
    An input protection device comprising:
  2.  請求項1に記載の入力保護装置であって、
     前記スイッチ部、前記スイッチ制御部、前記低電圧保護部及び前記電流制限部は、単一の集積回路に含まれる、入力保護装置。
    2. An input protection device according to claim 1,
    An input protection device, wherein the switch section, the switch control section, the under-voltage protection section and the current limiting section are included in a single integrated circuit.
  3.  請求項2に記載の入力保護装置であって、
     前記制限値変更部は、前記集積回路に接続され、予め設定される下限値まで抵抗値を低下可能な抵抗設定回路を有し、
     前記制限値は、前記抵抗設定回路の抵抗値に応じて変化する、入力保護装置。
    3. An input protection device according to claim 2,
    the limit value changing unit has a resistance setting circuit connected to the integrated circuit and capable of decreasing a resistance value to a preset lower limit value;
    An input protection device, wherein the limit value varies depending on the resistance value of the resistance setting circuit.
  4.  請求項3に記載の入力保護装置であって、
     前記抵抗設定回路は、抵抗値が一定の固定抵抗とFETとが直列に接続された直列回路を有し、
     前記制限値変更部は、前記抵抗設定回路の抵抗値を変化させるためのゲート信号を前記FETに出力する出力回路を有する、入力保護装置。
    4. An input protection device according to claim 3,
    the resistance setting circuit has a series circuit in which a fixed resistor having a constant resistance value and an FET are connected in series,
    The limit value changing unit has an output circuit that outputs a gate signal to the FET for changing the resistance value of the resistance setting circuit.
  5.  請求項4に記載の入力保護装置であって、
     前記出力回路は、前記起動信号を用いて、前記抵抗設定回路の抵抗値を変化させるRCローパスフィルタ回路を更に有する、入力保護装置。
    5. An input protection device according to claim 4,
    The output circuit further includes an RC low-pass filter circuit that changes a resistance value of the resistance setting circuit using the activation signal.
  6.  請求項4又は5に記載の入力保護装置であって、
     前記制限値変更部は、前記FETのソース端子と前記FETのドレイン端子とに接続され、抵抗値が前記固定抵抗よりも大きいノイズ防止用抵抗を有する、入力保護装置。
    6. An input protection device according to claim 4 or 5,
    The limit value changing unit has a noise prevention resistor connected to a source terminal of the FET and a drain terminal of the FET, the noise prevention resistor having a resistance value greater than that of the fixed resistor.
PCT/JP2022/039906 2022-10-26 2022-10-26 Input protection device WO2024089795A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/039906 WO2024089795A1 (en) 2022-10-26 2022-10-26 Input protection device
JP2023502616A JP7239793B1 (en) 2022-10-26 2022-10-26 Input protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039906 WO2024089795A1 (en) 2022-10-26 2022-10-26 Input protection device

Publications (1)

Publication Number Publication Date
WO2024089795A1 true WO2024089795A1 (en) 2024-05-02

Family

ID=85556229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039906 WO2024089795A1 (en) 2022-10-26 2022-10-26 Input protection device

Country Status (2)

Country Link
JP (1) JP7239793B1 (en)
WO (1) WO2024089795A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289620A (en) * 2002-03-27 2003-10-10 Fujitsu Ltd Inrush current suppressor
JP2010200550A (en) * 2009-02-26 2010-09-09 Nec Corp Power supply, power supply system, control method and program
JP2012019640A (en) * 2010-07-08 2012-01-26 Canon Inc Power supply circuit
JP2017200412A (en) * 2016-04-28 2017-11-02 池上通信機株式会社 Power supply control device
JP2018102021A (en) * 2016-12-19 2018-06-28 ファナック株式会社 Rush current prevention circuit, rush current prevention method, and rush current prevention program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289620A (en) * 2002-03-27 2003-10-10 Fujitsu Ltd Inrush current suppressor
JP2010200550A (en) * 2009-02-26 2010-09-09 Nec Corp Power supply, power supply system, control method and program
JP2012019640A (en) * 2010-07-08 2012-01-26 Canon Inc Power supply circuit
JP2017200412A (en) * 2016-04-28 2017-11-02 池上通信機株式会社 Power supply control device
JP2018102021A (en) * 2016-12-19 2018-06-28 ファナック株式会社 Rush current prevention circuit, rush current prevention method, and rush current prevention program

Also Published As

Publication number Publication date
JPWO2024089795A1 (en) 2024-05-02
JP7239793B1 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
US8427849B2 (en) Start-up circuit for power converters with wide input voltage range
US7880449B2 (en) Capacitor start-up apparatus and method with fail-safe short circuit protection
US20140247523A1 (en) Switching regulator and electronic device
JP2002538751A (en) Independently adjustable dual-level current threshold
US9018931B2 (en) Control system for providing circuit protection to a power supply
CN108879591B (en) Heavy current power supply protection circuit
CN113328734A (en) Fast blocking switch
TW201143254A (en) Charge device
EP2127080A1 (en) Power supply switching apparatus with severe overload detection
EP3159994B1 (en) Bidirectional current limiter
JP2004336972A (en) Power supply and power supply control device
KR20070064447A (en) Power supply apparatus in a communication system using a direct current converter
US20120293903A1 (en) Power supply apparatus with inrush current prevention circuit
US10298008B2 (en) DC to DC boost converter
JP2011160517A (en) Overcurrent protection circuit, and switching power supply device
WO2024089795A1 (en) Input protection device
KR102322309B1 (en) Switching power supply
US20110216461A1 (en) System and Method to Limit In-Rush Current
KR20150068310A (en) Battery state monitoring circuit and battery device
JP7396240B2 (en) Overcurrent protection circuit
CN108336716A (en) A kind of power supply module
KR102001449B1 (en) Soft-start circuit with hiccup operation and power converting apparatus including the same
WO2008155600A1 (en) Improved switched-mode power converter and method
CN220692813U (en) Self-recovery overcurrent protection circuit
US20240097559A1 (en) Methods, systems, and devices for fault handling in a power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963445

Country of ref document: EP

Kind code of ref document: A1