WO2024089742A1 - Substrate processing device - Google Patents

Substrate processing device Download PDF

Info

Publication number
WO2024089742A1
WO2024089742A1 PCT/JP2022/039534 JP2022039534W WO2024089742A1 WO 2024089742 A1 WO2024089742 A1 WO 2024089742A1 JP 2022039534 W JP2022039534 W JP 2022039534W WO 2024089742 A1 WO2024089742 A1 WO 2024089742A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone gas
pipe
substrate
exhaust
chamber
Prior art date
Application number
PCT/JP2022/039534
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 高山
啓之 屋敷
紘太 谷川
晃司 大多和
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to PCT/JP2022/039534 priority Critical patent/WO2024089742A1/en
Publication of WO2024089742A1 publication Critical patent/WO2024089742A1/en

Links

Images

Definitions

  • the present invention relates to a substrate processing apparatus that performs predetermined processing on substrates (hereinafter simply referred to as substrates), such as semiconductor wafers, substrates for liquid crystal displays and organic EL (electroluminescence) display devices, glass substrates for photomasks, substrates for optical disks, substrates for magnetic disks, ceramic substrates, and substrates for solar cells.
  • substrates such as semiconductor wafers, substrates for liquid crystal displays and organic EL (electroluminescence) display devices, glass substrates for photomasks, substrates for optical disks, substrates for magnetic disks, ceramic substrates, and substrates for solar cells.
  • a photoresist film is applied to the substrate and patterned, and then an etching process is performed using the patterned photoresist film as a mask. The mask is then no longer needed, and the photoresist film is removed.
  • SPM sulfuric Hydrogen Peroxide Mixture
  • This SPM has strong oxidizing power, and the photoresist film is peeled off and removed from the surface of the substrate.
  • ions are implanted into the photoresist film, the surface of the photoresist film is hardened. Therefore, processing that involves supplying only SPM increases the amount of SPM consumed. Also, the photoresist film may not be removed well using SPM alone.
  • ozone gas O3 gas
  • O3 gas oxidize (ash) the surface of the photoresist film hardened by ion implantation, and makes it easier to peel off the photoresist film during the subsequent treatment with SPM. This reduces the consumption of SPM.
  • an apparatus for supplying ozone gas to process substrates in this manner there is one equipped with a supply mechanism that switches between SPM, nitrogen gas, pure water, and ozone gas and supplies them to the processing surface of the substrate (see, for example, Patent Document 1).
  • a supply mechanism that switches between SPM, nitrogen gas, pure water, and ozone gas and supplies them to the processing surface of the substrate
  • an ozone gas supply source that generates and supplies ozone gas is connected in communication with the supply mechanism.
  • This apparatus is equipped with a suction mechanism that sucks in various gases, such as ozone gas, from the processing space in which the substrate is placed and exhausts them outside the apparatus.
  • the supply mechanism is configured as follows:
  • first configuration that includes a first pipe, a second pipe, a first filter, a first control valve, a second control valve, and a second filter.
  • One end of the first pipe is connected to the chamber, and the other end is connected to an ozone gas supply source.
  • One end of the second pipe is connected to a branch point that is a part of the first pipe, and the other end is connected to a nitrogen gas supply source.
  • the first filter is provided in the first pipe on the chamber side of the branch point.
  • the first control valve is provided on the ozone supply source side of the branch point and controls the flow of ozone gas in the first pipe.
  • the second control valve is provided on the branch point side of the second pipe and controls the flow of nitrogen gas.
  • the second filter is provided on the nitrogen gas supply source side of the second control valve in the second pipe.
  • the chamber that closes the processing space in which the substrate is processed is equipped with a concave lower lid member that supports the lower part of the holding mechanism that holds the substrate, and an upper lid member that is configured to be able to be raised and lowered at the top of the holding mechanism and covers the lower lid member during processing.
  • a suction mechanism to suction the inside of the chamber before ozone gas processing to increase the degree of sealing of the chamber and to maintain suction during ozone gas processing so that harmful ozone gas does not leak into the surrounding area.
  • the conventional example having such a configuration has the following problems. That is, according to the first conventional configuration, a branch point is provided upstream of the first filter. Therefore, ozone gas also passes through the first filter of nitrogen gas. Therefore, when nitrogen gas is supplied from the second pipe to replace the ozone gas after the ozone gas is treated, the ozone gas remaining in the first filter is mixed into the nitrogen gas supplied to the chamber. Therefore, there is a problem that the concentration of ozone gas is difficult to decrease, and it takes time to replace the ozone gas with nitrogen gas.
  • the second pipe has one end connected to a branch point, which is a portion of the first pipe on the chamber side, and the other end connected to a nitrogen gas supply source.
  • the first control valve and the first filter are provided in that order from the branch point toward the ozone supply source.
  • the second filter and the second control valve are provided in that order from the branch point toward the nitrogen gas supply source.
  • the conventional example having such a configuration has the following problems. That is, in the conventional device, it takes, for example, about two minutes from the time when the generation of ozone gas is started in the ozone gas supply source until the supply of ozone gas of a predetermined concentration required for processing is started. Therefore, since a waiting time occurs before processing with ozone gas starts, it is difficult to shorten the processing time with ozone gas, and there is a problem that the throughput cannot be improved.
  • the conventional example having such a configuration has the following problems. That is, since the conventional apparatus has only one suction mechanism, the suction force is set to a predetermined pressure. Therefore, when the ozone gas is supplied to the chamber and the substrate is processed with the ozone gas, a large amount of the ozone gas is also exhausted. Therefore, there is a problem that the consumption of the ozone gas increases.
  • the present invention was made in consideration of these circumstances, and aims to provide a substrate processing apparatus that can replace ozone gas in a short time and prevent contamination by particles.
  • the present invention was made in consideration of these circumstances, and aims to provide a substrate processing apparatus that can shorten the processing time using ozone gas and improve throughput.
  • the present invention was made in consideration of these circumstances, and aims to provide a substrate processing apparatus that can suppress the consumption of ozone gas while preventing the leakage of ozone gas.
  • the present invention has the following configuration. That is, the invention described in claim 1 is a substrate processing apparatus for performing processing to remove a coating deposited on a substrate, the apparatus comprising: a chamber for accommodating a substrate and forming a sealed processing space; a holding mechanism for holding the substrate in the chamber; an ozone gas supply source for supplying ozone gas at a processing concentration for processing the substrate; a first pipe connecting the chamber and the ozone gas supply source in communication; a first control valve provided in the first pipe for controlling a flow of ozone gas in the first pipe; a first filter provided in the first pipe on the chamber side relative to the first control valve; and a first separator connected to the first pipe on the chamber side relative to the first filter.
  • the second pipe having one end connected to a branch point and an inert gas supplied from the other end; a second control valve provided in the second pipe and controlling the flow of the inert gas in the second pipe; a suction pipe having one end connected to a second branch point connected to the first pipe between the first filter and the first control valve and receiving suction from the other end; and a control unit that causes suction through the suction pipe when ozone gas is supplied into the chamber with the first control valve opened and the second control valve closed to supply the inert gas into the chamber after the substrate is processed by supplying ozone gas into the chamber with the first control valve opened and the second control valve closed.
  • the control unit opens the first control valve and closes the second control valve to supply ozone gas into the chamber to process the substrate, and then closes the first control valve and opens the second control valve to supply inert gas into the chamber, causing suction through the suction piping. Therefore, the first filter in which ozone gas remains and the first control valve in which particles are likely to be generated are sucked through the suction piping. Therefore, no gas flows from the second branch point to the chamber side in the first piping. As a result, it is possible to prevent ozone gas from mixing with the inert gas on the chamber side, and it is possible to shorten the replacement time of ozone gas and prevent contamination by particles.
  • the suction by the suction pipe is performed with a suction force that does not interfere with the supply of the inert gas supplied to the chamber from the second pipe (Claim 2).
  • suction is performed from the suction piping at the first branch point of the first pipe. At this time, suction from the suction piping is performed with a suction force that does not interfere with the supply of inert gas supplied from the second pipe to the chamber via the first branch point. Therefore, it is possible to reliably replace ozone gas in the chamber with inert gas.
  • the suction pipe is provided at the other end with a vacuum ejector that generates suction force by supplying compressed gas (Claim 3).
  • Vacuum ejectors are smaller and less expensive than vacuum pumps. This contributes to the miniaturization of equipment and keeps costs down.
  • the suction piping is provided with a suction control valve that controls the suction force at the second branch point and is operated by the control unit (Claim 4).
  • the second pipe is provided with a second filter between the first branch point and the second control valve (Claim 5).
  • a processing liquid chamber that accommodates a substrate and processes it with a processing liquid
  • a transport mechanism that transports the substrate, and the substrate that has been treated with ozone gas in the chamber is transported to the processing liquid chamber by the transport mechanism, and the substrate is treated with the processing liquid in the processing liquid chamber (claim 6).
  • the substrate that has been treated with ozone gas in the chamber is transported by the transport mechanism to the treatment liquid chamber, where the substrate is treated with the treatment liquid. This allows the substrate to be treated successively with gas and liquid. This makes it possible to efficiently perform pretreatment with ozone gas followed by treatment with the treatment liquid.
  • the invention described in claim 7 is a substrate processing apparatus for performing a process for removing a coating deposited on a substrate, the apparatus comprising: a chamber for accommodating a substrate and forming a sealed processing space; a holding mechanism for holding the substrate within the chamber; an ozone gas supply source for constantly generating and supplying ozone gas for processing the substrate; a supply pipe through which the ozone gas supplied from the ozone gas supply source flows; a circulation pipe connecting the supply pipe to the chamber; a control valve provided in the circulation pipe for controlling the flow of ozone gas through the circulation pipe; and an exhaust port for discharging gas and the supply pipe.
  • an auxiliary pipe that exhausts ozone gas supplied from the ozone gas supply source to the exhaust port, an exhaust valve provided in the auxiliary pipe that adjusts the flow rate of ozone gas flowing through the auxiliary pipe, and a control unit that closes the control valve and opens the exhaust valve during non-processing when ozone gas is not being supplied to the chamber, thereby exhausting ozone gas supplied from the ozone gas supply source to the exhaust port, and that opens the control valve while adjusting the flow rate through the exhaust valve during processing when ozone gas is supplied to the chamber and a substrate held by the holding mechanism is treated with ozone gas.
  • the control unit closes the control valve and opens the exhaust valve, so that ozone gas generated in the ozone gas supply source is discharged from the auxiliary piping to the exhaust port without being supplied to the chamber.
  • the control unit opens the control valve while adjusting the flow rate through the exhaust valve, so that ozone gas is supplied to the substrate held by the holding mechanism in the chamber through the circulation piping from the ozone gas supply source, which constantly generates ozone gas. Therefore, there is no waiting time for processing with ozone gas, so the processing time with ozone gas can be shortened and throughput can be improved.
  • the present invention it is preferable that there are a plurality of the chambers, a plurality of the circulation pipes, each of the circulation pipes branching off from the supply pipe and connected to each of the chambers, the control valve being provided on each of the plurality of circulation pipes, and that during the processing, at least one of the plurality of chambers is in a state in which ozone gas is being supplied (Claim 8).
  • the state in which ozone gas is being supplied to at least one of the multiple chambers is the processing state.
  • ozone gas at a processing concentration is supplied from the flow pipe to at least one chamber, and processing with ozone gas is performed.
  • control unit adjusts the flow rate by the exhaust valve in conjunction with the flow rates by the control valves so that the difference between a first flow rate, which is the flow rate of ozone gas flowing through the supply pipe, and a second flow rate, which is the sum of the flow rates of ozone gas flowing through each of the flow pipes, during the processing falls within a predetermined value (Claim 9).
  • the flow rate of ozone gas exhausted from the auxiliary pipe is adjusted by the exhaust valve according to the flow rate of ozone gas to each chamber by each control valve so that the difference between the first flow rate and the second flow rate is within a predetermined value. Therefore, a predetermined amount of reserve capacity can be left on the supply side so that the second flow rate does not exceed the first flow rate, so that ozone gas can be supplied stably to each chamber. Furthermore, by adjusting the flow rate by the exhaust valve, the amount of ozone gas supplied to multiple chambers can also be adjusted collectively.
  • the ozone gas supply source includes a first on-off valve that allows or blocks the flow of ozone gas to the supply pipe, and a first pressure adjustment mechanism that maintains the pressure of the ozone gas in the supply pipe at a first pressure
  • the auxiliary pipe includes a second on-off valve that allows or blocks the flow of ozone gas discharged to the exhaust port as the exhaust valve, and a second pressure adjustment mechanism that maintains the pressure of the ozone gas in the auxiliary pipe at a second pressure lower than the first pressure (Claim 10).
  • the second pressure adjustment mechanism maintains the second pressure of the ozone gas in the auxiliary pipe lower than the first pressure of the ozone gas in the supply pipe adjusted by the first pressure adjustment mechanism. Therefore, the pressure difference between the ozone gas supply source and the auxiliary pipe can be secured, so that the flow rate of the ozone gas supplied to each chamber can be stabilized. In addition, since the concentration of ozone gas in the auxiliary pipe can be prevented, the flow rate of ozone gas required for processing in multiple chambers can be secured. As a result, even in a configuration with multiple chambers, processing with ozone gas can be stably performed.
  • a treatment liquid chamber for accommodating a substrate and treating it with a treatment liquid
  • a transport mechanism for transporting the substrate, and the substrate treated with ozone gas in the chamber is transported to the treatment liquid chamber by the transport mechanism, and the substrate is treated with the treatment liquid in the treatment liquid chamber (Claim 11).
  • the substrate that has been treated with ozone gas in the chamber is transported by the transport mechanism to the treatment liquid chamber, where the substrate is treated with the treatment liquid. This allows the substrate to be treated successively with gas and liquid. This makes it possible to efficiently perform pretreatment with ozone gas followed by treatment with the treatment liquid.
  • the invention described in claim 12 is a substrate processing apparatus for removing a coating deposited on a substrate, the apparatus comprising: a lower cover member supporting at its lower part a holding mechanism for holding the substrate; an upper cover member abutting against the lower cover member from above to form a processing space; a chamber having a lifting mechanism for lowering the upper cover member relative to the lower cover member when processing the substrate and lifting the upper cover member from the lower cover member when the substrate is not being processed; an ozone gas supply source for supplying ozone gas at a processing concentration for processing the substrate; a first pipe connecting the ozone gas supply source to the chamber; a first control valve provided in the first pipe for controlling the flow of ozone gas through the first pipe; an exhaust pipe connected to the chamber for discharging gas in the processing space to an exhaust port outside the apparatus; and a second control valve provided in the exhaust pipe for controlling exhaust in the exhaust pipe.
  • the exhaust mechanism includes a control valve, a first exhaust means provided on the exhaust port side of the second control valve in the exhaust piping and exhausting at a first exhaust flow rate, and a second exhaust means provided on the exhaust port side of the second control valve in the exhaust piping and exhausting at a second exhaust flow rate that is smaller than the first exhaust flow rate, and a control unit that opens the second control valve, operates the first exhaust means, exhausts the inside of the chamber at a first exhaust flow rate, and seals the upper cover member against the lower cover member before supplying ozone gas from the ozone gas supply source to the chamber to perform ozone gas treatment, and stops the first exhaust means and operates the second exhaust means to exhaust the inside of the chamber at a second exhaust flow rate when operating the first control valve to supply ozone gas from the ozone gas supply source to the chamber.
  • the control unit prior to supplying ozone gas to the chamber to perform ozone gas treatment, the control unit opens the second control valve and operates the first exhaust means to exhaust the inside of the chamber at a first exhaust flow rate and seal the upper lid member to the lower lid member.
  • the control unit stops the first exhaust means and operates the second exhaust means to exhaust the inside of the chamber at a second exhaust flow rate.
  • the degree of adhesion between the upper lid member and the lower lid member is increased at the first exhaust flow rate, and when ozone gas is supplied, the exhaust flow rate is set to the second exhaust flow rate, which is smaller than the first exhaust flow rate. Therefore, it is possible to suppress consumption of ozone gas while preventing leakage of ozone gas.
  • the apparatus further includes a second pipe having one end connected to the first branch point of the first pipe and having an inert gas supplied from the other end, a third control valve for controlling the flow of the inert gas in the second pipe, an auxiliary exhaust pipe having one end connected to a second branch point in the exhaust pipe on the chamber side of the second control valve and the other end connected to the exhaust port, and a fourth control valve provided in the auxiliary exhaust pipe for controlling the flow of gas in the auxiliary exhaust pipe, and the control unit preferably operates the third control valve after the ozone gas treatment to supply the inert gas into the chamber, operates the first exhaust means instead of the second exhaust means to exhaust the chamber at a first exhaust flow rate, replaces the ozone gas in the chamber with the inert gas, stops the first exhaust means, closes the second control valve, opens the fourth control valve, and then raises the upper lid member by the lifting mechanism (Claim 13).
  • the control unit supplies inert gas into the chamber and operates the first exhaust means instead of the second exhaust means to exhaust the chamber at a first exhaust flow rate, replacing the ozone gas in the chamber with the inert gas.
  • the control unit stops the first exhaust means, closes the second control valve, and opens the fourth control valve.
  • control unit raises the upper cover member, it closes the fourth control valve, opens the second control valve, and operates the second exhaust means to exhaust the inside of the chamber at a second exhaust flow rate (Claim 14).
  • the processing space is evacuated at the second exhaust flow rate until the upper lid member rises to start processing the next substrate. Therefore, the processing space can be maintained in a clean state.
  • the first exhaust means and the second exhaust means are equipped with a vacuum ejector that exhausts by supplying compressed gas (Claim 15).
  • Vacuum ejectors are smaller and less expensive than vacuum pumps. This contributes to the miniaturization of equipment and keeps costs down.
  • a processing liquid chamber for accommodating a substrate and processing it with a processing liquid
  • a transport mechanism for transporting the substrate, and the substrate that has been treated with ozone gas in the chamber is transported to the processing liquid chamber by the transport mechanism, and the substrate is processed with the processing liquid in the processing liquid chamber (Claim 16).
  • the substrate that has been treated with ozone gas in the chamber is transported by the transport mechanism to the treatment liquid chamber, where the substrate is treated with the treatment liquid. This allows the substrate to be treated successively with gas and liquid. This makes it possible to efficiently perform pretreatment with ozone gas followed by treatment with the treatment liquid.
  • the control unit opens the first control valve and closes the second control valve to supply ozone gas into the chamber to process the substrate, and then closes the first control valve and opens the second control valve to supply inert gas into the chamber, causing suction through the suction piping. Therefore, the first filter in which ozone gas remains and the first control valve in which particles are likely to be generated are sucked through the suction piping. Therefore, no gas flows from the second branch point to the chamber side in the first piping. As a result, it is possible to prevent ozone gas from mixing with the inert gas on the chamber side, and it is possible to shorten the time required for ozone gas replacement and prevent contamination by particles.
  • the control unit closes the control valve and opens the exhaust valve, so that ozone gas generated in the ozone gas supply source is discharged from the auxiliary piping to the exhaust port without being supplied to the chamber.
  • the control unit opens the control valve while adjusting the flow rate through the exhaust valve, so that ozone gas is supplied to the substrate held by the holding mechanism in the chamber through the circulation piping from the ozone gas supply source, which constantly generates ozone gas. Therefore, there is no waiting time for processing with ozone gas, so that the processing time with ozone gas can be shortened and throughput can be improved.
  • the control unit prior to supplying ozone gas to the chamber to perform ozone gas treatment, the control unit opens the second control valve and operates the first exhaust means to exhaust the inside of the chamber at a first exhaust flow rate and seal the upper lid member to the lower lid member.
  • the control unit operates the first control valve to supply ozone gas from the ozone gas supply source to the chamber, it stops the first exhaust means and operates the second exhaust means to exhaust the inside of the chamber at a second exhaust flow rate. Therefore, before supplying ozone gas, the degree of adhesion between the upper lid member and the lower lid member is increased at the first exhaust flow rate, and when supplying ozone gas, the exhaust flow rate is set to the second exhaust flow rate, which is smaller than the first exhaust flow rate. Therefore, it is possible to suppress consumption of ozone gas while preventing leakage of ozone gas.
  • FIG. 1 is a perspective view showing an overall configuration of a substrate processing apparatus according to an embodiment; 1. This is a cross-sectional view taken along the line 101-101 in FIG. 1. This is a cross-sectional view taken along the line 103-103 in FIG.
  • FIG. 1 is a plan view illustrating a substrate processing apparatus. 4 is a graph showing a change in ozone gas concentration in an ozone gas supply unit.
  • FIG. 2 is a diagram showing an ozone gas bake unit and a gas supply system and exhaust system.
  • FIG. 13 is a diagram for explaining the state when no treatment with ozone gas is used.
  • FIG. 2 is a diagram for explaining a treatment with ozone gas.
  • 11 is a flowchart showing an example of an operation.
  • FIG. 2 is a schematic diagram illustrating a state in which ozone gas is being supplied.
  • FIG. 4 is a schematic diagram illustrating a state in which nitrogen gas is being supplied.
  • FIG. 13 is a schematic diagram illustrating weak exhaust before processing.
  • FIG. 13 is a schematic diagram for explaining strong exhaust when the upper lid is closed.
  • FIG. 2 is a schematic diagram for explaining weak exhaust during ozone gas treatment.
  • FIG. 2 is a schematic diagram for explaining strong evacuation during replacement with nitrogen gas.
  • FIG. 13 is a schematic diagram for explaining purging when the upper lid is opened.
  • FIG. 13 is a schematic diagram for explaining weak exhaust after processing.
  • FIG. 1 is a perspective view showing the overall configuration of a substrate processing apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along the line 101-101 in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line 103-103 in FIG. 1.
  • FIG. 4 is a plan view showing a schematic diagram of the substrate processing apparatus.
  • the substrate processing apparatus 1 is, for example, an apparatus that performs a process for removing a photoresist coating on a substrate W on which a photoresist coating has been formed. This is particularly useful when the photoresist coating has hardened.
  • this substrate processing apparatus 1 is suitable for carrying out an ozone gas process and an SPM process after an on-gas process, in that order, on a substrate W.
  • the substrate processing apparatus 1 includes an indexer block 3, a processing block 5, a transport block 7, a processing liquid supply block 9, an ozone gas supply unit 11, and an ozone gas decomposition unit 13.
  • the indexer block 3 transfers the substrates W to be processed between the transport block 7.
  • the transport block 7 transports the substrates W between the indexer block 3 and the processing block 5 and between the processing blocks 5.
  • the processing block 5 is equipped with a plurality of processing units 15.
  • the processing liquid supply block 9 supplies the processing block 5 with various processing liquids used in the processing block 5.
  • the ozone gas supply unit 11 supplies the ozone gas used in the processing block 5.
  • the ozone gas decomposition unit 13 takes in the ozone gas discharged from the processing block 5, renders it harmless, and discharges it.
  • the gas discharged from the ozone gas decomposition unit 13 is discharged, for example, to an exhaust port provided in a clean room. This exhaust port is connected, for example, to the exhaust equipment of the factory.
  • the substrate processing apparatus 1 is arranged with an indexer block 3, a processing block 5, a transport block 7, and a processing liquid supply block 9 arranged in this order.
  • the direction in which the indexer block 3, the processing block 5, the transport block 7, and the processing liquid supply block 9 are aligned is referred to as the "front-to-back direction X" (horizontal direction).
  • the direction from the processing block 5 and the transport block 7 toward the indexer block 3 is referred to as the "forward XF”
  • the opposite direction of the forward XF direction is referred to as the "backward XB”.
  • the direction perpendicular to the front-to-back direction X and the horizontal direction is referred to as the "width direction Y".
  • one direction of the width direction Y is appropriately referred to as the "right direction YR", and the other direction opposite the right direction YR is referred to as the "left direction YL”.
  • the vertical direction is referred to as the "up-down direction Z" (height direction, vertical direction). Note that when simply referring to "side” or “lateral direction”, it is not limited to either the front-to-back direction X or the width direction Y.
  • the indexer block 3 includes a carrier placement section 17 and an indexer robot IR.
  • the substrate processing apparatus 1 in this embodiment includes, for example, four carrier placement sections 17. Specifically, the four carrier placement sections 17 are arranged in a row in the width direction Y. A carrier C is placed on each carrier placement section 17.
  • a carrier C stores a plurality of substrates W (for example, 25 substrates W) in a stacked manner, and each carrier placement section 17 transfers the carrier C between, for example, an OHT (Overhead Hoist Transport, also known as a ceiling-traveling automated guided vehicle) not shown.
  • OHT Overhead Hoist Transport
  • An example of a carrier C is a FOUP (Front Opening Unified Pod).
  • the indexer robot IR is disposed behind the carrier placement section 17, XB.
  • the indexer robot IR transfers substrates W between the carriers C, and also transfers substrates W between the indexer block 3 and the path section 19.
  • the path section 19 is disposed between the indexer block 3 and the transport block 7 in the front-rear direction X. Only one indexer robot IR is disposed in the indexer block 3.
  • This indexer robot IR is attached at a fixed position so that its base does not move in the width direction Y.
  • the indexer robot IR is equipped with, for example, a multi-joint arm that can be raised and lowered in the vertical direction Z.
  • the indexer robot IR is configured to be able to access the four carriers C and the path section 19.
  • the path section 19 has multiple support pins (e.g., three) on a support table.
  • the path section 19 supports the substrate W by contacting it in a horizontal position. Unprocessed substrates W are placed in the path section 19 by the indexer robot IR, and processed substrates W are removed from the path section 19. Unprocessed substrates W are removed from the path section 19 by the center robot CR of the transport block 7, and processed substrates W are placed in the path section 19.
  • the path section 19 is configured in multiple stages in the vertical direction Z. Thus, multiple substrates W can be placed in the path section 19 at the same time.
  • the transport block 7, for example, includes one center robot CR.
  • the center robot CR is configured to be movable in the forward/backward direction X, and to be able to move up and down in the vertical direction Z.
  • the center robot CR is also configured to be able to rotate in a horizontal plane around an axis in the vertical direction Z.
  • the center robot CR is configured to be able to transfer substrates W between the processing blocks 5 located to the right YR and left YL in the width direction Y, based on the position of the center robot CR.
  • the center robot CR can transfer substrates W between the indexer robot IR via the path section 19.
  • the processing blocks 5 are arranged on the right YR and left YL in the width direction Y, sandwiching the transport block 7 between them.
  • the one arranged in the vertical direction Z at the front XF and left YL in a plan view is referred to as tower TW1.
  • the one arranged in the vertical direction Z at the rear XB and left YL is referred to as tower TW2.
  • the one arranged in the vertical direction Z at the front XF and right YR is referred to as tower TW3.
  • the one arranged in the vertical direction Z at the rear XB and right YR is referred to as tower TW4.
  • the towers TW1 and TW3 of the processing block 5 are configured by, for example, stacking four processing units 15 in the vertical direction Z.
  • the towers TW1 and TW3 are equipped with, for example, an ozone gas bake unit 21 (also indicated as O 3 BAKE in FIG. 2) as the processing unit 15.
  • the ozone gas bake unit 21 processes the substrate W by supplying ozone gas while heating the substrate W at a predetermined temperature. The details of the structure will be described later.
  • the ozone gas bake unit 21 cools the substrate W after the processing with ozone gas is completed.
  • the cooled substrate W is transported to the processing unit 15 of the towers TW2 and TW4 by the center robot CR.
  • the towers TW2 and TW4 of the processing block 5 are configured, for example, by stacking three processing units 15 in the vertical direction Z.
  • the towers TW2 and TW4 are equipped with, for example, an SPM unit 23 (also referred to as HT SPM in FIG. 3) as the processing unit 15.
  • the SPM unit 23 supplies SPM heated to a predetermined temperature to the substrate W for processing.
  • This SPM is SPM (Sulfuric Hydrogen Peroxide Mixture), a mixed solution of sulfuric acid and hydrogen peroxide.
  • the substrate W processed by the ozone gas bake unit 21 is transported to the SPM unit 23 by the center robot CR.
  • the substrate W processed by the SPM unit 23 has the SPM removed with pure water, and is then transported to the path section 19 by the center robot CR.
  • the SPM unit 23 corresponds to the "processing liquid chamber” in this invention, and the center robot CR corresponds to the "transport mechanism" in this invention.
  • the substrate processing apparatus 1 is equipped with two ozone gas supply units 11 and two ozone gas decomposition units 13.
  • the ozone gas supply unit 11 generates and supplies ozone at a processing concentration used in processing in the ozone gas bake unit 21.
  • the concentration of ozone gas supplied from the ozone gas supply unit changes, for example, as shown in FIG. 5.
  • FIG. 5 is a graph showing the change in ozone gas concentration in the ozone gas supply unit.
  • the ozone gas supply unit 11 has the characteristic that the treatment concentration is not reached until nearly two minutes have passed since the device was started up.
  • Ozone gas at the treatment concentration is supplied from one ozone gas supply unit 11 to the four ozone gas bake units 21 of the tower unit TW1 described above.
  • ozone gas at the treatment concentration is supplied from another ozone gas supply unit 11 to the four ozone gas bake units 21 of the tower unit TW3.
  • the ozone gas decomposition unit 13 takes in the gas containing ozone gas discharged from the ozone gas bake unit 21 and detoxifies the ozone gas.
  • the detoxified gas is exhausted, for example, to an exhaust port provided in a clean room.
  • One of the two ozone gas decomposition units 13 processes exhaust from, for example, the four ozone gas bake units 21 of tower TW1.
  • the remaining ozone gas decomposition unit 13 processes exhaust from, for example, the four ozone gas bake units 21 of tower TW3.
  • the ozone gas supply unit 11 corresponds to the "ozone gas supply source" in this invention.
  • FIG. 6 shows the ozone gas bake unit and the gas supply and exhaust systems.
  • the ozone gas bake unit 21 of tower unit TW1 will be used as an example, but the ozone gas bake unit 21 of tower unit TW3 has a similar configuration.
  • Each ozone gas bake unit 21 constituting tower unit TW1 has a chamber 32 equipped with a lower lid 25, an upper lid 27, a heat treatment plate 29, and a lifting mechanism 31.
  • the lifting mechanism 31 has a connection part that connects to the upper lid 27 and a motor that moves the connection part.
  • the lower lid 25 is disposed at the bottom in the vertical direction Z.
  • the lower lid 25 is a housing with an opening at the top.
  • the upper lid 27 is a housing with an opening at the bottom.
  • the lower lid 25 has a heat treatment plate 29.
  • the heat treatment plate 29 abuts against and supports the substrate W.
  • the heat treatment plate 29 heats the substrate W to a predetermined temperature.
  • the upper lid 27 descends and abuts against the lower lid 25.
  • the opening of the upper lid 27 and the opening of the lower lid 25 have approximately the same shape, and the upper lid 27 and the lower lid 25 can be attached and detached by a lifting mechanism 31.
  • the upper lid 27 and the lower lid 25 form a closed space inside.
  • This closed space including the heat treatment plate 29 becomes the processing space in which the substrate W is processed.
  • the upper lid 27 is raised and lowered relative to the lower lid 25 by the lifting mechanism 31.
  • the lifting mechanism 31 lowers the upper lid 27 onto the lower lid 25 when processing the substrate W.
  • the lifting mechanism 31 transfers the substrate W between the processing space, and raises the upper lid 27 above the lower lid 25 when processing is not being performed.
  • Tower unit TW1 has one exhaust main pipe 33.
  • the exhaust main pipe 33 is arranged from the bottom to the top of tower unit TW1.
  • the lower part of the exhaust main pipe 33 is connected to the ozone gas decomposition unit 13.
  • Tower unit TW1 has one supply pipe 35.
  • This supply pipe 35 is also arranged from the bottom to the top of tower unit TW1.
  • One end of the supply pipe 35 is connected to the ozone gas supply unit 11. Ozone gas at the treatment concentration is supplied to this supply pipe 35 from the ozone gas supply unit 11.
  • the heat treatment plate 29 corresponds to the "holding mechanism" in this invention.
  • Figure 7 is a diagram used to explain the situation when not using ozone gas for treatment.
  • the ozone gas supply unit 11 includes a generation pipe 41, a mass flow controller 43, an ozone gas generator 45, a filter 47, an automatic pressure regulator 49, and a control valve 51.
  • One end of the generation pipe 41 is connected to, for example, an oxygen supply source (not shown), which is one of the utilities provided in a clean room.
  • the other end of the generation pipe 41 is connected to the supply pipe 35.
  • a mass flow controller 43, an ozone gas generator 45, a filter 47, an automatic pressure regulator 49, and a control valve 51 are attached in that order from the oxygen supply source side to the supply pipe 35 side.
  • the mass flow controller 43 controls the flow rate of oxygen supplied to the generation pipe 41 to a predetermined flow rate.
  • the ozone gas generator 45 is configured, for example, by arranging four ozone gas generation modules in parallel. Each ozone gas generation module generates ozone gas from oxygen.
  • the ozone gas generated by the ozone gas generator 45 has particles and the like removed by a filter 47.
  • the ozone gas that passes through the filter 47 is adjusted to a predetermined first pressure P1 (for example, 200 kPa) by an automatic pressure regulator 49.
  • the control valve 51 controls the flow of the ozone gas adjusted to the first pressure P1 to the supply pipe 35.
  • the above-mentioned ozone gas supply unit 11 can supply ozone gas at a flow rate of, for example, a maximum of 100 liters/minute.
  • the above-mentioned automatic pressure regulator 49 has an adjustment pressure set to the first pressure P1, so that the pressure at the most downstream part of the generation pipe 41 (the part communicating with the supply pipe 35) is adjusted to the first pressure P1 (for example, 200 kPa in this embodiment).
  • the flow rate of ozone gas in the supply pipe 35 is a maximum of the first flow rate F1 (for example, 100 liters/minute) depending on the performance of the ozone gas supply unit 11.
  • the supply pipe 35 connected to the other end of the generation pipe 41 of the ozone gas supply unit 11 branches off to each ozone gas bake unit 21.
  • the ozone gas bake unit 21 is connected to a circulation pipe 53 that branches off from the supply pipe 35 to each chamber 32. Specifically, one end of the circulation pipe 53 is connected to the supply pipe 35, and the other end is connected to each chamber 32. More specifically, the other end of the circulation pipe 53 is attached to the upper lid 25, and connected to the processing space formed in the chamber 32.
  • the flow pipe 53 has a control valve 55, a mass flow controller 57, and a filter 59 arranged in that order from the supply pipe 35 toward the chamber 32.
  • the control valve 55 controls the flow of ozone gas from the supply pipe 35 to the chamber 32.
  • the mass flow controller 57 adjusts the flow rate of the ozone gas that flows through the flow pipe 53 and is supplied to the chamber 32.
  • the filter 59 removes particles and the like contained in the ozone gas flowing through the flow pipe 53.
  • the mass flow controller 57 is set to a maximum ozone gas flow rate of 20 liters/minute and a processing flow rate of 10 liters/minute.
  • the flow pipe 53 is provided with a first branch point 61 and a second branch point 63.
  • the first branch point 61 is provided in the flow pipe 53 between the chamber 32 and the filter 59.
  • the first branch point 61 is provided in the flow pipe 53 on the chamber 32 side of the filter 59.
  • the second branch point 63 is provided in the flow pipe 53 between the filter 59 and the mass flow controller 57 and the control valve 55.
  • the inert gas supply pipe 65 is connected to the first branch point 61.
  • the other end of the inert gas supply pipe 65 is connected to, for example, a nitrogen gas supply source, which is one of the utilities of the clean room.
  • the inert gas supply pipe 65 is equipped with a mass flow controller 67, a control valve 69, and a filter 71 in this order from the nitrogen gas supply source side toward the first branch point 61.
  • the mass flow controller 67 adjusts the flow rate of the nitrogen gas supplied to the inert gas supply pipe 65.
  • the control valve 69 controls the flow of the nitrogen gas in the inert gas supply pipe 65.
  • the filter 71 removes particles and the like contained in the nitrogen gas flowing through the inert gas supply pipe 65.
  • the inert gas supply pipe 65 is provided with a check valve, for example, between the control valve 69 and the mass flow controller 67 to prevent ozone gas from flowing in from the flow pipe 53.
  • the flow pipe 53 corresponds to the "first pipe” in this invention
  • the control valve 55 corresponds to the "first control valve” in this invention
  • the filter 59 corresponds to the "first filter” in this invention.
  • the inert gas supply pipe 65 corresponds to the "second pipe” in this invention
  • the control valve 69 corresponds to the "second control valve” in this invention
  • the filter 71 corresponds to the "second filter” in this invention.
  • the suction pipe 73 is connected to the second branch point 63.
  • the other end of the suction pipe 73 is connected to the suction port of the vacuum ejector 75.
  • the exhaust port of the vacuum ejector 75 is connected to the main exhaust pipe 33.
  • the suction pipe 73 is equipped with a control valve 74 that controls the flow of the gas being sucked in.
  • the control valve 74 corresponds to the "suction control valve" in this invention.
  • the suction from the suction pipe 73 is performed, for example, as follows.
  • the vacuum ejector 75 is smaller and less expensive than a vacuum pump, etc. This contributes to the miniaturization of the substrate processing apparatus 1 and also helps prevent increases in costs.
  • One end of an exhaust pipe 77 is connected to the chamber 32.
  • the other end of the exhaust pipe 77 is connected to the suction port of a vacuum ejector 79.
  • the exhaust port of the vacuum ejector 79 is connected to the main exhaust pipe 33.
  • One end of a first supply pipe 81 is connected to a supply port that supplies compressed air to the vacuum ejector 79 to form an exhaust flow from the suction port of the vacuum ejector 79 to the exhaust port.
  • the other end of the first supply pipe 81 is connected to, for example, a compressed air source, which is one of the utilities of a clean room.
  • the first drive tube 81 is provided with a flow control valve 83 and an on-off valve 85 in that order from the compressed air source toward the vacuum ejector 79 side.
  • the flow control valve 83 adjusts the flow rate of the compressed air so that the compressed air flows through the first drive tube 81 at a first flow rate Fa.
  • the on-off valve 85 controls the flow of the compressed air set to the first flow rate Fa in the first drive tube 81.
  • Both ends of the second drive tube 87 are connected in communication with a portion of the first drive tube 81 upstream of the flow control valve 83 and a portion of the first drive tube 81 between the on-off valve 85 and the vacuum ejector 79.
  • the second drive tube 87 is provided with a flow control valve 89 and an on-off valve 91 in that order from the compressed air source toward the vacuum ejector 79 side.
  • the flow control valve 89 adjusts the flow rate of the compressed air so that the compressed air flows through the second drive tube 87 at a second flow rate Fb.
  • the on-off valve 91 controls the flow of compressed air, which is set to a second flow rate Fb, through the second drive pipe 87.
  • the flow rate adjustment valves 83 and 89 are set so that the second flow rate Fb is smaller than the first flow rate Fa.
  • the exhaust pipe 77 is equipped with an on-off valve 93.
  • One end of a purge pipe 94 is connected between the exhaust pipe 77 and the on-off valve 93 and the chamber 32.
  • the other end of the purge pipe 94 is connected to the main exhaust pipe 33.
  • the purge pipe 94 is equipped with an on-off valve 95.
  • the on-off valve 95 controls the flow of gas in the purge pipe 94.
  • the exhaust through the exhaust pipe 77 described above is carried out as follows.
  • the vacuum ejector 79 is operated by the first flow rate Fa. This causes the gas in the chamber 32 to be strongly sucked out and strongly exhausted through the exhaust pipe 77.
  • the vacuum ejector 79 is operated by the second flow rate Fb ( ⁇ first flow rate Fa). This causes the gas in the chamber 32 to be weakly sucked out and weakly exhausted through the exhaust pipe 77.
  • the supply pipe 35 is provided with an auxiliary pipe 97.
  • One end of the auxiliary pipe 97 is connected to the supply pipe 35.
  • the other end of the auxiliary pipe 97 is connected to the exhaust main pipe 33.
  • the auxiliary pipe 97 is provided with an automatic pressure regulator 99 and a control valve 101 from the supply pipe 35 toward the exhaust main pipe 33.
  • the automatic pressure regulator 99 adjusts the pressure of the ozone gas in the auxiliary pipe 97 branched from the supply pipe 35 to a predetermined second pressure P2 (for example, 100 kPa).
  • the flow rate of the ozone gas in the supply pipe 35 is a first flow rate F1
  • the ozone gas flowing on the side of each chamber 32 in the supply pipe 35 from the auxiliary pipe 97 is a second flow rate F2.
  • the auxiliary pipe 97 flows with the flow rate of the difference ⁇ F.
  • Each ozone gas bake unit 21 is provided with an external exhaust pipe 103 that is outside the chamber 32 and exhausts gas from within the ozone gas bake unit 21.
  • the external exhaust pipe 103 exhausts gas from the chamber 32 and the surrounding areas of the various pipes and valves described above, for example, to an exhaust port provided in a clean room.
  • the substrate processing apparatus 1 includes a control unit 111.
  • the control unit 111 includes a CPU and a memory.
  • the control unit 111 performs overall control of the operation of each unit based on an operator's operation of a control console (not shown). Specifically, the control unit 111 performs transport control of the indexer robot IR in the indexer block 3, transport control of the center robot CR in the transport block 7, process control of each processing unit 15 in the processing block 5, control of the delivery of various processing liquids in the processing liquid supply block 9, and operation control of the ozone gas supply unit 11 and the ozone gas decomposition unit 13.
  • the control unit 111 operates each unit with respect to the flow rate of ozone gas, for example, as follows. It is assumed that the ozone gas supply unit 11 is already operating and in a state in which it can supply ozone gas at the treatment concentration, and the control valve 51 is open. The above-mentioned control unit 111 adjusts the flow rate of ozone gas by the mass flow controller 99 and the control valve 101 in conjunction with the flow rates by the mass flow controllers 57 and the on-off valves 55 so that the flow rate difference ⁇ F described below falls within a predetermined value.
  • each control valve 55 is closed and the control valve 101 is opened.
  • ozone gas is not supplied from the supply pipe 35 to each chamber 32.
  • the ozone gas supplied to the supply pipe 35 from the ozone gas supply unit 11 is discharged to the exhaust main pipe 33 via the auxiliary pipe 97.
  • the flow rate difference ⁇ F which is the difference between the first flow rate F1 and the second flow rate F2, is 100 liters/minute.
  • Figure 8 is a diagram used to explain the process using ozone gas.
  • ozone gas is supplied to at least one of the four chambers 32, and when processing with ozone gas is performed in that chamber 32, the control valve 55 of the chamber 32 performing the processing is opened. At this time, the control valve 101 is open, but the flow rate is adjusted.
  • the second flow rate F2 is a maximum of 80 liters/minute. Since the first flow rate F1 is 100 liters/minute, the flow rate difference ⁇ F is a minimum of 20 liters/minute. In this manner, the mass flow controller 99 and the control valve 101 are controlled so that the flow rate difference ⁇ F is within a predetermined value.
  • a predetermined amount of reserve capacity can be left on the ozone gas supply unit 11 side so that the second flow rate F2 does not exceed the first flow rate F1, so that the supply of ozone gas to each chamber 32 can be stably performed.
  • the second flow rate F2 can be increased or decreased by adjusting the flow rate difference ⁇ F with the mass flow controller 99 and the control valve 101.
  • the flow rate of ozone gas can be varied collectively for all four chambers 32. This makes it easier to control the flow rate than by operating the mass flow controllers 57 in each chamber 32.
  • FIG. 9 is a flow chart showing an example of the operation. Note that in the following explanation, only the parts related to the ozone gas processing and SPM processing will be explained in detail, and other operations will be simplified or omitted. Also, to make it easier to understand the invention, only the flow of one substrate W will be explained.
  • Step S1 The operator starts up the substrate processing apparatus 1.
  • the ozone gas supply unit 11 and the ozone gas decomposition unit 13 are also started up.
  • the ozone gas supply unit 11 starts generating ozone gas having a processing concentration. As shown in Fig. 5, it takes about 2 minutes to generate ozone gas having a processing concentration.
  • Step S2 The control unit 111 monitors whether a predetermined time has elapsed until ozone gas of a treatment concentration is generated by the ozone gas supply unit 11, and proceeds to the next step S3 at the point in time when the predetermined time has elapsed. Note that even before the concentration of ozone gas reaches the treatment concentration, all of the generated ozone gas is exhausted through the auxiliary pipe 97 and the main exhaust pipe 33, as in the case of non-treatment with ozone gas shown in FIG.
  • Step S3 An operator issues an instruction to start processing from a control console (not shown).
  • Step S4 The substrate W to be processed accommodated in the carrier C is transported to the path section 19 via the indexer block 3, and is loaded into the ozone gas bake unit 21 by the center robot CR.
  • the control section 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas to the chamber 32. Furthermore, the control section 111 operates the vacuum ejector 79 by the flow rate adjustment valve 89 and the opening/closing valve 91. As a result, the inside of the chamber 32 is weakly evacuated, and the processing space is kept clean with the inert gas.
  • Step S5 When the substrate W is accommodated in the chamber 32, the control unit 111 moves the upper lid 27 to the lower lid 25 by the lifting mechanism 31. This seals the chamber 32. At this time, the control unit 111 operates the flow rate control valve 89 and the on-off valve 91 to stop the operation of the vacuum ejector 79 by the second drive tube 81. Furthermore, the control unit 111 operates the vacuum ejector 79 by the flow rate control valve 83 and the on-off valve 85. Note that the flow rate of the suction port of the vacuum ejector 79 is greater than the flow rate of the nitrogen gas supplied from the inert gas supply pipe 65. This strongly exhausts the inside of the chamber 32, so that the processing space is under negative pressure. Therefore, the upper lid 27 is tightly attached to the lower lid 25, and the chamber 32 is completely sealed from the surroundings.
  • control unit 111 waits until the temperature of the substrate W placed on the heat treatment plate 29 rises to a predetermined temperature (e.g., 100 to 300°C). When the temperature of the substrate W reaches the predetermined temperature, the control unit 111 starts treatment with ozone gas.
  • a predetermined temperature e.g. 100 to 300°C.
  • control unit 111 operates the mass flow controller 57 and the control valve 55 so that ozone gas at the processing concentration is supplied to the chamber 32 at the required flow rate. This causes ozone gas at the processing concentration to be supplied to the processing space in which the substrate W is placed.
  • the state in which ozone gas is being supplied is as shown by the dashed line with an arrow in FIG. 10.
  • control unit 111 operates the flow rate adjustment valve 83 and the on-off valve 85 to stop the strong exhaust. Furthermore, the control unit 111 operates the flow rate adjustment valve 89 and the on-off valve 91 to switch to weak exhaust. This allows ozone gas at the treatment concentration to remain in the treatment space, allowing sufficient treatment with ozone gas to be carried out. When a predetermined ozone gas treatment time has elapsed, the control unit 111 operates the mass flow controller 57 and the control valve 55 to stop the supply of ozone gas to the chamber 32.
  • control unit 111 replaces the ozone gas in the chamber 32 with nitrogen gas. Specifically, the control unit 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas from the inert gas supply pipe 65 in FIG. 6 to the chamber 32.
  • the state in which nitrogen gas is being supplied is as shown by the dashed line with an arrow in FIG. 11.
  • the control unit 111 also operates the vacuum ejector 75 and opens the control valve 74 to perform suction of the second branch point 63 by the suction pipe 73.
  • the state in which the second branch point 63 is suctioned is as shown by the two-dot chain line with an arrow in FIG. 11.
  • the control unit 111 operates the flow rate control valve 89 and the opening/closing valve 91 to stop the weak exhaust.
  • the control unit 111 operates the flow rate control valve 83 and the opening/closing valve 85 to perform strong exhaust. Since the inside of the chamber 32 is strongly exhausted, the ozone gas in the processing space is efficiently replaced with nitrogen gas. Therefore, the time required for replacement can be shortened.
  • suction of the second branch point 63 is performed at the same time, so that the ozone remaining in the filter 59 can be prevented from being mixed into the processing space. Therefore, the efficiency of replacement with nitrogen gas can be improved. Furthermore, since the second branch point 63 is provided between the filter 59 and the mass flow meter 57 and the control valve 55, particles that are likely to be generated in the mass flow meter 57 and the control valve 55 can be prevented from flowing into the processing space. Therefore, the substrate W can be processed cleanly.
  • the suction of the suction pipe 73 is performed with a suction force that does not interfere with the supply of nitrogen gas to the chamber 32 via the first branch point 61. Therefore, the ozone gas in the chamber 32 can be reliably replaced with nitrogen gas.
  • the control unit 111 When the replacement with nitrogen gas is complete, the control unit 111 operates the flow rate adjustment valve 83 and the on-off valve 85 to stop the strong exhaust.
  • the control unit 111 opens the on-off valve 95. This allows the inert gas to be exhausted through the purge pipe 94 using only its supply pressure. At this time, the chamber 32 becomes positive pressure, allowing the lifting mechanism 31 to smoothly raise the upper lid 25. After the upper lid 25 has been raised, the control unit 111 closes the on-off valve 95 and operates the flow rate adjustment valve 89 and the on-off valve 91 to perform weak exhaust. This keeps the processing space clean with the inert gas.
  • the control unit 111 moves the substrate W to a cooling unit (not shown) to return the substrate W to room temperature.
  • Step S6 The control unit 111 operates the center robot CR to take out the substrate W from the ozone gas bake unit 21 and transport the substrate W to the SPM unit 23 .
  • Step S7 The control unit 111 supplies SPM to the surface of the substrate W while keeping the substrate W in a heated state. This causes the photoresist coating on the surface of the substrate W to be removed by the SPM. At this time, since the surface of the photoresist coating has been ashed to some extent by the pretreatment with ozone gas, even if the surface of the photoresist coating is hardened, the photoresist coating can be easily removed with a small amount of SPM. After the treatment of the substrate W with the SPM is completed, the control unit 111 performs a cleaning treatment and a drying treatment with pure water.
  • Step S8 The control unit 111 operates the center robot CR to transport the substrate W to the path unit 19, and operates the indexer robot IR to unload the substrate W and return it to the carrier C. Through this series of operations, the process of removing the photoresist coating from the substrate W is performed.
  • control unit 111 opens the control valve 55 and closes the control valve 69 to supply ozone gas into the chamber 32 to process the substrate W, and then closes the control valve 55 and opens the control valve 69 to supply nitrogen gas into the chamber 32, causing suction through the suction pipe 73. Therefore, the filter 59, mass flow controller 57, and control valve 55 in which ozone gas remains are sucked through the suction pipe 73. Therefore, no gas flows from the second branch point 63 to the chamber 32 side in the circulation pipe 53. As a result, mixing of ozone gas with nitrogen gas on the chamber 32 side can be prevented, and the ozone gas can be replaced in a short time, and contamination by particles can also be prevented.
  • a substrate processing apparatus 1 having four chambers 32 and four circulation pipes 53 has been described as an example.
  • the present invention does not require a plurality of chambers 32 and a plurality of circulation pipes 53.
  • the present invention can be applied to a substrate processing apparatus 1 having one chamber 32 and one circulation pipe 53.
  • nitrogen gas is used as the inert gas.
  • the present invention is not limited to nitrogen gas as the inert gas, and can also be applied to, for example, argon gas.
  • the suction pipe 73 is configured to be sucked by the vacuum ejector 75.
  • the present invention is not limited to this configuration.
  • the suction pipe 73 may be sucked by a suction means such as a vacuum pump.
  • the substrate processing apparatus 1 is equipped with an ozone gas decomposition unit 13, but the present invention does not require the ozone gas decomposition unit 13.
  • the substrate processing apparatus 1 is equipped with an SPM unit 23, but the present invention does not require an SPM unit 23.
  • the substrate W processed in the ozone gas bake unit 21 may be processed in an SPM unit 23 provided in another apparatus.
  • the substrate processing apparatus 1 is configured to include an indexer block 3, a transport block 7, a carrier placement section 17, a path section 19, etc., and to continuously transport and efficiently process a plurality of substrates W, but the present invention is not limited to such a configuration. In other words, the present invention can also be applied to substrate processing apparatuses that do not include a transport system, etc., and that are configured to perform processing using ozone gas at a processing concentration.
  • the ozone gas supply unit 11 has a characteristic that the target concentration is not reached until nearly two minutes have passed since the device was started. Ozone gas at a predetermined treatment concentration is supplied from the ozone gas supply unit 11 to the supply pipe 35 described above.
  • the SPM unit 23 corresponds to the "treatment liquid chamber", and the center robot CR corresponds to the "transport mechanism”.
  • the ozone gas supply unit 11 corresponds to the "ozone gas supply source”.
  • the heat treatment plate 29 corresponds to the "holding mechanism”.
  • the automatic pressure regulator 49 corresponds to the "first pressure adjustment mechanism”
  • the control valve 55 corresponds to the "control valve”
  • the control valve 51 corresponds to the "first on-off valve”.
  • the control valve 101 corresponds to the "exhaust valve”
  • the automatic pressure regulator 99 corresponds to the "second pressure adjustment mechanism”
  • the control valve 101 corresponds to the "second on-off valve”.
  • Step S1 The operator starts up the substrate processing apparatus 1.
  • the ozone gas supply unit 11 and the ozone gas decomposition unit 13 are also started up.
  • the ozone gas supply unit 11 starts generating ozone gas having a processing concentration. As shown in Fig. 5, it takes about 2 minutes to generate ozone gas having a processing concentration.
  • Step S2 The control unit 111 monitors whether a predetermined time has elapsed until ozone gas of a treatment concentration is generated by the ozone gas supply unit 11, and proceeds to the next step S3 at the point in time when the predetermined time has elapsed. Note that even before the concentration of ozone gas reaches the treatment concentration, all of the generated ozone gas is exhausted through the auxiliary pipe 97 and the main exhaust pipe 33, as in the case of non-treatment with ozone gas shown in FIG.
  • Step S3 An operator issues an instruction to start processing from a control console (not shown).
  • Step S4 The substrate W to be processed accommodated in the carrier C is transported to the path section 19 via the indexer block 3, and is loaded into the ozone gas bake unit 21 by the center robot CR.
  • the control section 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas to the chamber 32. Furthermore, the control section 111 operates the vacuum ejector 79 by the flow rate adjustment valve 89 and the opening/closing valve 91. As a result, the inside of the chamber 32 is weakly evacuated, and the processing space is kept clean with the inert gas.
  • Step S5 When the substrate W is accommodated in the chamber 32, the control unit 111 moves the upper lid 27 to the lower lid 25 by the lifting mechanism 31. This seals the chamber 32. At this time, the control unit 111 operates the flow rate control valve 89 and the on-off valve 91 to stop the operation of the vacuum ejector 79 by the second drive tube 81. Furthermore, the control unit 111 operates the vacuum ejector 79 by the flow rate control valve 83 and the on-off valve 85. Note that the flow rate of the suction port of the vacuum ejector 79 is greater than the flow rate of the nitrogen gas supplied from the inert gas supply pipe 65. This strongly exhausts the inside of the chamber 32, so that the processing space is under negative pressure. Therefore, the upper lid 27 is tightly attached to the lower lid 25, and the chamber 32 is completely sealed from the surroundings.
  • control unit 111 waits until the temperature of the substrate W placed on the heat treatment plate 29 rises to a predetermined temperature (e.g., 100 to 300°C). When the temperature of the substrate W reaches the predetermined temperature, the control unit 111 starts treatment with ozone gas.
  • a predetermined temperature e.g. 100 to 300°C.
  • control unit 111 operates the mass flow controller 57 and the control valve 55 so that ozone gas at the processing concentration is supplied to the chamber 32 at the required flow rate. Furthermore, as a result, ozone gas at the processing concentration is supplied to the processing space in which the substrate W is placed. At this time, the control unit 111 operates the flow rate adjustment valve 83 and the opening/closing valve 85 to stop strong exhaust. Furthermore, the control unit 111 operates the flow rate adjustment valve 89 and the opening/closing valve 91 to switch to weak exhaust. As a result, ozone gas at the processing concentration remains in the processing space, so that processing with the ozone gas can be performed sufficiently. When a predetermined processing time for ozone gas has elapsed, the control unit 111 operates the mass flow controller 57 and the control valve 55 to stop the supply of ozone gas to the chamber 32.
  • control unit 111 replaces the ozone gas in the chamber 32 with nitrogen gas. Specifically, the control unit 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas to the chamber 32 from the inert gas supply pipe 65 in FIG. 6. The control unit 111 also operates the vacuum ejector 75 and opens the control valve 74 to perform suction at the second branch point 63 by the suction pipe 73. Furthermore, the control unit 111 operates the flow rate control valve 89 and the opening/closing valve 91 to stop weak exhaust. At the same time, the control unit 111 operates the flow rate control valve 83 and the opening/closing valve 85 to perform strong exhaust.
  • the ozone gas in the processing space is efficiently replaced with nitrogen gas. Therefore, the time required for replacement can be shortened.
  • the second branch point 63 is simultaneously suctioned, it is possible to prevent the ozone remaining in the filter 59 from being mixed into the processing space. Therefore, the efficiency of replacement by nitrogen gas can be improved.
  • the second branch point 63 is provided between the filter 59 and the mass flow meter 57 and the control valve 55, particles that are likely to be generated in the mass flow meter 57 and the control valve 55 can be prevented from flowing into the processing space. Therefore, the substrate W can be processed cleanly.
  • the control unit 111 When the replacement with nitrogen gas is complete, the control unit 111 operates the flow rate adjustment valve 83 and the on-off valve 85 to stop the strong exhaust.
  • the control unit 111 opens the on-off valve 95. This allows the inert gas to be exhausted through the purge pipe 94 using only its supply pressure. At this time, the chamber 32 becomes positive pressure, allowing the lifting mechanism 31 to smoothly raise the upper lid 25. After the upper lid 25 has been raised, the control unit 111 closes the on-off valve 95 and operates the flow rate adjustment valve 89 and the on-off valve 91 to perform weak exhaust. This keeps the processing space clean with the inert gas.
  • the control unit 111 moves the substrate W to a cooling unit (not shown) to return the substrate W to room temperature.
  • Step S6 The control unit 111 operates the center robot CR to take out the substrate W from the ozone gas bake unit 21 and transport the substrate W to the SPM unit 23 .
  • Step S7 The control unit 111 supplies SPM to the surface of the substrate W while keeping the substrate W in a heated state. This causes the photoresist coating on the surface of the substrate W to be removed by the SPM. At this time, since the surface of the photoresist coating has been ashed to some extent by the pretreatment with ozone gas, even if the surface of the photoresist coating is hardened, the photoresist coating can be easily removed with a small amount of SPM. After the treatment of the substrate W with the SPM is completed, the control unit 111 performs a cleaning treatment and a drying treatment with pure water.
  • Step S8 The control unit 111 operates the center robot CR to transport the substrate W to the path unit 19, and operates the indexer robot IR to unload the substrate W and return it to the carrier C. Through this series of operations, the process of removing the photoresist coating from the substrate W is performed.
  • the control unit 111 when processing is not performed using ozone gas, the control unit 111 closes the control valve 55 and opens the control valve 101, so that ozone gas at the processing concentration generated by the ozone gas supply unit 11 is exhausted from the auxiliary pipe 97 to the main exhaust pipe 33 without being supplied to the chamber 32.
  • the control unit 111 opens the control valve 55 while adjusting the flow rate using the control valve 101, so that ozone gas is supplied to the substrate W held on the heat treatment plate 29 in the chamber 32 from the ozone gas supply unit 11, which constantly generates ozone gas at the processing concentration, via the flow pipe 53. Therefore, there is no waiting time for processing using ozone gas, and the processing time using ozone gas can be shortened and throughput can be improved.
  • a substrate processing apparatus 1 having four chambers 32 and four circulation pipes 53 has been described as an example.
  • the present invention does not require a plurality of chambers 32 and a plurality of circulation pipes 53.
  • the present invention can be applied to a substrate processing apparatus 1 having one chamber 32 and one circulation pipe 53.
  • the flow rate by the control valve 101 is adjusted in conjunction with the flow rates by the control valves 55 and mass flow controllers 57 so that the flow rate difference ⁇ F between the first flow rate F1 and the second flow rate F2 falls within a predetermined value.
  • the present invention does not require that the ozone gas supply unit 11 be provided with a predetermined amount of ozone gas supply capacity in this manner. Therefore, the maximum supply amount of the ozone gas supply unit 11 may be supplied to all of the chambers 32.
  • the ozone gas supply unit 11 is equipped with an automatic pressure regulator 49, and the auxiliary pipe 97 is equipped with an automatic pressure regulator 99, but this configuration is not essential to the present invention.
  • treatment with ozone gas can be stably performed even in a configuration with multiple chambers 32, so if there is only one chamber 32, or if there are a number of chambers 32 that require a supply amount that is significantly smaller in total than the maximum supply amount of the ozone gas supply unit 11, there is no need to provide such a configuration.
  • the substrate processing apparatus 1 is equipped with an ozone gas decomposition unit 13, but the present invention does not require the ozone gas decomposition unit 13.
  • the substrate processing apparatus 1 is equipped with an SPM unit 23, but the present invention does not require an SPM unit 23.
  • the substrate W processed in the ozone gas bake unit 21 may be processed in an SPM unit 23 provided in another apparatus.
  • the substrate processing apparatus 1 is configured to include an indexer block 3, a transport block 7, a carrier placement section 17, a path section 19, etc., and to continuously transport and efficiently process a plurality of substrates W, but the present invention is not limited to such a configuration. In other words, the present invention can also be applied to substrate processing apparatuses that do not include a transport system, etc., and that are configured to perform processing using ozone gas at a predetermined processing concentration.
  • the SPM unit 23 corresponds to the "treatment liquid chamber", and the center robot CR corresponds to the "transport mechanism”.
  • the ozone gas supply unit 11 corresponds to the "ozone gas supply source”.
  • the heat treatment plate 29 corresponds to the "holding mechanism”
  • the lower lid 25 corresponds to the "upper cover member”
  • the upper lid 27 corresponds to the "lower cover member”.
  • the supply pipe 53 corresponds to the "first pipe”
  • the control valve 55 corresponds to the "first control valve”
  • the inert gas supply pipe 65 corresponds to the "second pipe”
  • the on-off valve 69 and the mass flow controller 67 correspond to the "third control valve”.
  • the suction pipe 73 corresponds to the "auxiliary exhaust pipe”
  • the control valve 74 corresponds to the "fourth control valve”.
  • the exhaust pipe 77 corresponds to the "exhaust pipe” in this invention.
  • the on-off valve 93 corresponds to the "second control valve"
  • the flow rate adjustment valve 83, the on-off valve 85, and the vacuum ejector 79 correspond to the "first exhaust means”
  • the flow rate adjustment valve 89, the on-off valve 91, and the vacuum ejector 79 correspond to the "second exhaust means”
  • the flow rate adjustment valves 83, 89, the on-off valves 85, 91, and the vacuum ejector 79 correspond to the "exhaust mechanism”.
  • the first flow rate Fa corresponds to the "first exhaust flow rate”
  • the second flow rate Fb corresponds to the "second exhaust flow rate”.
  • Fig. 12 is a schematic diagram used to explain weak exhaust before processing
  • Fig. 13 is a schematic diagram used to explain strong exhaust with the upper lid closed
  • Fig. 14 is a schematic diagram used to explain weak exhaust during ozone gas processing
  • Fig. 15 is a schematic diagram used to explain strong exhaust during replacement with nitrogen gas
  • Fig. 16 is a schematic diagram used to explain purging with the upper lid open
  • Fig. 17 is a schematic diagram used to explain weak exhaust after processing.
  • Step S1 The operator starts up the substrate processing apparatus 1.
  • the ozone gas supply unit 11 and the ozone gas decomposition unit 13 are also started up.
  • the ozone gas supply unit 11 starts generating ozone gas having a processing concentration. As shown in Fig. 5, it takes about 2 minutes to generate ozone gas having a processing concentration.
  • Step S2 The control unit 111 monitors whether a predetermined time has elapsed until ozone gas of a treatment concentration is generated by the ozone gas supply unit 11, and proceeds to the next step S3 at the point in time when the predetermined time has elapsed. Note that even before the concentration of ozone gas reaches the treatment concentration, all of the generated ozone gas is exhausted through the auxiliary pipe 97 and the main exhaust pipe 33, as in the case of non-treatment with ozone gas shown in FIG.
  • Step S3 An operator issues an instruction to start processing from a control console (not shown).
  • Step S4 The substrate W to be processed accommodated in the carrier C is transported to the path section 19 via the indexer block 3, and is loaded into the ozone gas bake unit 21 by the center robot CR.
  • the control section 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas to the chamber 32. Furthermore, as shown in Fig. 12, the control section 111 operates the vacuum ejector 79 by the flow rate adjustment valve 89 and the opening/closing valve 91. As a result, the inside of the chamber 32 is weakly evacuated, and the processing space is kept clean with the inert gas.
  • Step S5 When the substrate W is accommodated in the chamber 32, the control unit 111 moves the upper lid 27 to the lower lid 25 by the lifting mechanism 31. This seals the chamber 32. At this time, the control unit 111 operates the flow rate control valve 89 and the on-off valve 91 to stop the operation of the vacuum ejector 79 by the second drive tube 81. Furthermore, as shown in FIG. 13, the control unit 111 operates the vacuum ejector 79 by the flow rate control valve 83 and the on-off valve 85. Note that the flow rate of the suction port of the vacuum ejector 79 is greater than the flow rate of the nitrogen gas supplied from the inert gas supply pipe 65. This strongly exhausts the inside of the chamber 32, so that the processing space is under negative pressure. Therefore, the upper lid 27 is tightly attached to the lower lid 25, and the chamber 32 is completely sealed from the surroundings.
  • control unit 111 waits until the temperature of the substrate W placed on the heat treatment plate 29 rises to a predetermined temperature (e.g., 100 to 300°C). When the temperature of the substrate W reaches the predetermined temperature, the control unit 111 starts treatment with ozone gas.
  • a predetermined temperature e.g. 100 to 300°C.
  • control unit 111 operates the mass flow controller 57 and the control valve 55 so that ozone gas of the processing concentration is supplied to the chamber 32 at the required flow rate. Furthermore, as a result, ozone gas of the processing concentration is supplied to the processing space in which the substrate W is placed. At this time, the control unit 111 operates the flow rate adjustment valve 83 and the opening/closing valve 85 to stop strong exhaust. Furthermore, as shown in FIG. 14, the control unit 111 operates the flow rate adjustment valve 89 and the opening/closing valve 91 to switch to weak exhaust. As a result, ozone gas of the processing concentration remains in the processing space, so that processing with the ozone gas can be performed sufficiently. When a predetermined processing time for ozone gas has elapsed, the control unit 111 operates the mass flow controller 57 and the control valve 55 to stop the supply of ozone gas to the chamber 32.
  • control unit 111 replaces the ozone gas in the chamber 32 with nitrogen gas. Specifically, the control unit 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas to the chamber 32 from the inert gas supply pipe 65 in FIG. 6. The control unit 111 also operates the vacuum ejector 75 and opens the control valve 74 to perform suction at the second branch point 63 by the suction pipe 73. Furthermore, the control unit 111 operates the flow rate control valve 89 and the opening/closing valve 91 to stop weak exhaust. At the same time, the control unit 111 operates the flow rate control valve 83 and the opening/closing valve 85 to perform strong exhaust, as shown in FIG. 15.
  • the ozone gas in the processing space is efficiently replaced with nitrogen gas. Therefore, the time required for replacement can be shortened.
  • the second branch point 63 is simultaneously suctioned, it is possible to prevent the ozone remaining in the filter 59 from being mixed into the processing space. Therefore, the efficiency of replacement by nitrogen gas can be improved.
  • the second branch point 63 is provided between the filter 59 and the mass flow meter 57 and the control valve 55, particles that are likely to be generated in the mass flow meter 57 and the control valve 55 can be prevented from flowing into the processing space. Therefore, the substrate W can be processed cleanly.
  • the control unit 111 When the replacement with nitrogen gas is completed, the control unit 111 operates the flow rate adjustment valve 83 and the on-off valve 85 to stop the strong exhaust.
  • the control unit 111 opens the on-off valve 95 as shown in FIG. 16. This allows the inert gas to be exhausted through the purge pipe 94 by its supply pressure alone. At this time, the chamber 32 becomes positive pressure, so that the lifting mechanism 31 can smoothly lift the upper lid 25. After the upper lid 25 is lifted, the control unit 111 closes the on-off valve 95 and operates the flow rate adjustment valve 89 and the on-off valve 91 as shown in FIG. 17 to perform weak exhaust. This keeps the processing space clean with the inert gas.
  • the control unit 111 moves the substrate W to a cooling unit (not shown) to return the substrate W to room temperature.
  • Step S6 The control unit 111 operates the center robot CR to take out the substrate W from the ozone gas bake unit 21 and transport the substrate W to the SPM unit 23 .
  • Step S7 The control unit 111 supplies SPM to the surface of the substrate W while keeping the substrate W in a heated state. This causes the photoresist coating on the surface of the substrate W to be removed by the SPM. At this time, since the surface of the photoresist coating has been ashed to some extent by the pretreatment with ozone gas, even if the surface of the photoresist coating is hardened, the photoresist coating can be easily removed with a small amount of SPM. After the treatment of the substrate W with the SPM is completed, the control unit 111 performs a cleaning treatment and a drying treatment with pure water.
  • Step S8 The control unit 111 operates the center robot CR to transport the substrate W to the path unit 19, and operates the indexer robot IR to unload the substrate W and return it to the carrier C. Through this series of operations, the process of removing the photoresist coating from the substrate W is performed.
  • the control unit 111 before supplying ozone gas to the chamber 32 to perform ozone gas processing, the control unit 111 opens the on-off valve 93, operates the flow rate adjustment valve 83 and the on-off valve 85 to operate the vacuum ejector 79, and strongly evacuates the chamber 32 to make the upper lid 27 adhere to the lower lid 25.
  • the control unit 111 operates the control valve 55 to supply ozone gas from the ozone gas supply unit 11 to the chamber 32, it stops the strong exhaust and operates the flow rate adjustment valve 89 and the on-off valve 91 to operate the vacuum ejector 79 to weakly evacuate the chamber 32.
  • the degree of adhesion between the upper lid 27 and the lower lid 25 is increased by strong exhaust before the supply of ozone gas, and weak exhaust is performed when ozone gas is supplied. Therefore, it is possible to suppress the consumption of ozone gas while preventing leakage of ozone gas.
  • a substrate processing apparatus 1 having four chambers 32 and four circulation pipes 53 has been described as an example.
  • the present invention does not require a plurality of chambers 32 and a plurality of circulation pipes 53.
  • the present invention can be applied to a substrate processing apparatus 1 having one chamber 32 and one circulation pipe 53.
  • a purge is performed by supplying an inert gas to the chamber 32, and the pressure inside the chamber 32 is made positive before the upper lid 27 is separated from the lower lid 25.
  • this configuration is not essential to the present invention.
  • an inert gas supply pipe 65 for supplying an inert gas and a suction pipe 73 are provided, but these are not essential to the present invention.
  • the exhaust flow rate in the exhaust pipe 77 is switched by switching between the first drive pipe 81 and the second drive pipe 87 that supply compressed air to the vacuum ejector 79.
  • this configuration is not essential to the present invention.
  • a configuration may be adopted that includes one drive pipe, an on-off valve, and a mass flow controller, and that adjusts the mass flow controller according to the exhaust flow rate.
  • exhaust and suction are performed by the vacuum ejectors 75 and 79, but this configuration is not essential to the present invention.
  • exhaust and suction may be performed by a vacuum pump.
  • the substrate processing apparatus 1 is equipped with an ozone gas decomposition unit 13, but the present invention does not require the ozone gas decomposition unit 13.
  • the substrate processing apparatus 1 is equipped with an SPM unit 23, but the present invention does not require an SPM unit 23.
  • the substrate W processed in the ozone gas bake unit 21 may be processed in an SPM unit 23 provided in another apparatus.
  • the substrate processing apparatus 1 is configured to include an indexer block 3, a transport block 7, a carrier placement section 17, a path section 19, etc., and to continuously transport and efficiently process a plurality of substrates W, but the present invention is not limited to such a configuration. In other words, the present invention can also be applied to substrate processing apparatuses that do not include a transport system, etc., and that are configured to perform processing using ozone gas at a processing concentration.
  • the present invention is suitable for substrate processing apparatus that performs a specified process using ozone gas on substrates.
  • Second branch point 65 inert gas supply pipe 73: suction pipe 77: exhaust pipe 81: first drive pipe 83, 89: flow rate control valve 85, 91: on-off valve 87: second drive pipe 94: purge pipe Fa: first flow rate Fb: second flow rate

Abstract

A control unit of the present invention (a substrate processing device which performs processing of removing a coating attached to a substrate) processes a substrate (W) by supplying an ozone gas into a chamber (32) in a state where a first control valve (55) is opened and a second control valve (69) is closed, and then closes the first control valve and opens the second control valve, thereby causing suction by a suction pipe (73) when supplying an inert gas into the chamber. Accordingly, a first filter (59) in which the ozone gas remains and the first control valve in which particles are likely to be generated are subjected to suction by the suction pipe. Therefore, in a first pipe (53), gas flow from a second branch point (63) to the chamber side will not occur. As a result, mixing of ozone gas with the inert gas in the chamber side can be prevented. Accordingly, it is possible to reduce time required for ozone gas replacement and to prevent contamination by particles.

Description

基板処理装置Substrate Processing Equipment
 本発明は、本発明は、半導体ウエハ、液晶表示器や有機EL(Electroluminescence)表示装置用基板、フォトマスク用ガラス基板、光ディスク用基板、磁気ディスク用基板、セラミック基板、太陽電池用基板などの基板(以下、単に基板と称する)に対して、所定の処理を行う基板処理装置に関する。 The present invention relates to a substrate processing apparatus that performs predetermined processing on substrates (hereinafter simply referred to as substrates), such as semiconductor wafers, substrates for liquid crystal displays and organic EL (electroluminescence) display devices, glass substrates for photomasks, substrates for optical disks, substrates for magnetic disks, ceramic substrates, and substrates for solar cells.
 基板にパターンを形成するには、例えば、フォトレジスト被膜を基板に被着してパターニングした後、パターンが形成されたフォトレジスト被膜をマスクにしてエッチング処理が行われる。その後、マスクは不要となるので、フォトレジスト被膜は除去される。フォトレジスト被膜の除去には、例えば、硫酸と過酸化水素水の混合溶液であるSPM(Sulfuric Hydrogen Peroxide Mixture)が利用される。このSPMは、強酸化力を有し、フォトレジスト被膜は基板の表面から剥離され除去される。しかしながら、例えば、フォトレジスト被膜にイオン注入がされていると、フォトレジスト被膜の表面が硬化している。そのため、SPMだけを供給することによる処理では、SPMの消費量が増大する。また、SPMだけでは、フォトレジスト被膜を良好に除去できないことがある。 To form a pattern on a substrate, for example, a photoresist film is applied to the substrate and patterned, and then an etching process is performed using the patterned photoresist film as a mask. The mask is then no longer needed, and the photoresist film is removed. To remove the photoresist film, for example, SPM (Sulfuric Hydrogen Peroxide Mixture), a mixed solution of sulfuric acid and hydrogen peroxide, is used. This SPM has strong oxidizing power, and the photoresist film is peeled off and removed from the surface of the substrate. However, for example, if ions are implanted into the photoresist film, the surface of the photoresist film is hardened. Therefore, processing that involves supplying only SPM increases the amount of SPM consumed. Also, the photoresist film may not be removed well using SPM alone.
 そこで、SPMの供給前に、オゾンガス(Oガス)をフォトレジスト被膜に供給し、その酸化力によって処理することが行われている。これにより、イオン注入により硬化したフォトレジスト被膜の表面の酸化(灰化)が可能となり、その後のSPMでの処理時におけるフォトレジスト被膜の剥離が容易となる。これにより、SPMの消費量を抑制できる。 Therefore, before the supply of SPM, ozone gas ( O3 gas) is supplied to the photoresist film, and the photoresist film is treated by its oxidizing power. This makes it possible to oxidize (ash) the surface of the photoresist film hardened by ion implantation, and makes it easier to peel off the photoresist film during the subsequent treatment with SPM. This reduces the consumption of SPM.
 このようにオゾンガスを供給して基板を処理する装置として、SPM、窒素ガス、純水、オゾンガスを切り換えて基板の処理面に供給する供給機構を備えたものがある(例えば、特許文献1参照)。この装置では、オゾンガスを生成しつつ供給するオゾンガス供給源が供給機構に対して連通接続されている。この装置は、基板が配置された処理空間から、オゾンガスなどの各種の気体を吸引して装置外部に排気する吸引機構を備えている。 As an apparatus for supplying ozone gas to process substrates in this manner, there is one equipped with a supply mechanism that switches between SPM, nitrogen gas, pure water, and ozone gas and supplies them to the processing surface of the substrate (see, for example, Patent Document 1). In this apparatus, an ozone gas supply source that generates and supplies ozone gas is connected in communication with the supply mechanism. This apparatus is equipped with a suction mechanism that sucks in various gases, such as ozone gas, from the processing space in which the substrate is placed and exhausts them outside the apparatus.
 このような装置では、オゾンガスによる処理後に、SPMでの処理を行うためにチャンバから基板を搬出する前に、窒素ガスでチャンバ内のオゾンガスを置換する。そのため、供給機構として、次のように構成されたものがある。 In such equipment, after processing with ozone gas, the ozone gas in the chamber is replaced with nitrogen gas before the substrate is removed from the chamber to be processed with SPM. For this reason, the supply mechanism is configured as follows:
 第1の配管と、第2の配管と、第1のフィルタと、第1の制御弁と、第2の制御弁と、第2のフィルタとを備えた「第1の構成」のものがある。第1の配管は、チャンバに一端側が連通接続され、他端側がオゾンガス供給源に連通接続されている。第2の配管は、第1の配管の一部位である分岐点に一端側が連通接続され、他端側が窒素ガス供給源に連通接続されている。第1のフィルタは、分岐点よりチャンバ側にあたる第1の配管に設けられている。第1の制御弁は、分岐点よりオゾン供給源側に設けられ、第1の配管におけるオゾンガスの流通を制御する。第2の制御弁は、第2の配管において分岐点側に設けられ、窒素ガスの流通を制御する。第2のフィルタは、第2の配管における第2の制御弁より窒素ガス供給源側に設けられている。 There is a "first configuration" that includes a first pipe, a second pipe, a first filter, a first control valve, a second control valve, and a second filter. One end of the first pipe is connected to the chamber, and the other end is connected to an ozone gas supply source. One end of the second pipe is connected to a branch point that is a part of the first pipe, and the other end is connected to a nitrogen gas supply source. The first filter is provided in the first pipe on the chamber side of the branch point. The first control valve is provided on the ozone supply source side of the branch point and controls the flow of ozone gas in the first pipe. The second control valve is provided on the branch point side of the second pipe and controls the flow of nitrogen gas. The second filter is provided on the nitrogen gas supply source side of the second control valve in the second pipe.
 また、オゾンガスを用いた処理を行う装置では、例えば、基板を処理する処理空間を閉塞するチャンバが、基板を保持する保持機構の下部を支持する凹状の下部蓋部材と、保持機構の上部で昇降可能に構成され、処理時に下部蓋部材を覆う上部蓋部材とを備えているものがある。このような構成の装置では、有害なオゾンガスが周囲に漏れないように、オゾンガスの処理前にチャンバ内を吸引機構で吸引してチャンバの密閉度合いを高くし、オゾンガスの処理中も吸引を維持するのが一般的である。 In addition, in some devices for processing using ozone gas, the chamber that closes the processing space in which the substrate is processed is equipped with a concave lower lid member that supports the lower part of the holding mechanism that holds the substrate, and an upper lid member that is configured to be able to be raised and lowered at the top of the holding mechanism and covers the lower lid member during processing. In devices with such a configuration, it is common to use a suction mechanism to suction the inside of the chamber before ozone gas processing to increase the degree of sealing of the chamber and to maintain suction during ozone gas processing so that harmful ozone gas does not leak into the surrounding area.
特開2008-66400号公報JP 2008-66400 A
 しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
 すなわち、従来の第1の構成によると、第1のフィルタの上流側に分岐点が設けられている。したがって、オゾンガスも窒素ガスの第1のフィルタを通過する。そのため、オゾンガスの処理後に第2の配管から窒素ガスを供給して置換を行う際に、チャンバに供給される窒素ガスには、第1のフィルタに残留しているオゾンガスが混入する。そのため、オゾンガスの濃度が低下しづらく、窒素ガスによる置換に時間を要するという問題がある。
However, the conventional example having such a configuration has the following problems.
That is, according to the first conventional configuration, a branch point is provided upstream of the first filter. Therefore, ozone gas also passes through the first filter of nitrogen gas. Therefore, when nitrogen gas is supplied from the second pipe to replace the ozone gas after the ozone gas is treated, the ozone gas remaining in the first filter is mixed into the nitrogen gas supplied to the chamber. Therefore, there is a problem that the concentration of ozone gas is difficult to decrease, and it takes time to replace the ozone gas with nitrogen gas.
 そこで、次のような「第2の構成」を採用することが考えられる。 As such, it is conceivable to adopt the following "second configuration."
 第2の配管は、第1の配管のチャンバ側における一部位である分岐点に一端側が連通接続され、他端側が窒素ガス供給源に連通接続されている。第1の制御弁と、第1のフィルタとは、その順に分岐点からオゾン供給源側に向かって設けられている。第2のフィルタと、第2の制御弁とは、その順に分岐点から窒素ガス供給源側に向かって設けられている。 The second pipe has one end connected to a branch point, which is a portion of the first pipe on the chamber side, and the other end connected to a nitrogen gas supply source. The first control valve and the first filter are provided in that order from the branch point toward the ozone supply source. The second filter and the second control valve are provided in that order from the branch point toward the nitrogen gas supply source.
 このような第2の構成によると、分岐点からチャンバまでに第1のフィルタが存在しない。そのため、第1の構成に生じる不都合は生じない。しかしながら、第1のフィルタのチャンバ側に第1の制御弁が設けられているので、第1の制御弁で生じたパーティクルが、分岐点からチャンバ側へ流通する窒素ガスの流れに吸引され、チャンバ内の基板を汚染する恐れがある。 In this second configuration, there is no first filter between the branch point and the chamber. Therefore, the inconveniences that occur in the first configuration do not occur. However, because the first control valve is provided on the chamber side of the first filter, there is a risk that particles generated in the first control valve will be sucked into the flow of nitrogen gas flowing from the branch point to the chamber side, and may contaminate the substrate in the chamber.
 また、このような構成を有する従来例の場合には、次のような問題がある。
 すなわち、従来の装置は、オゾンガス供給源においてオゾンガスの生成を開始した時点から、処理に必要な所定の濃度のオゾンガスを供給するまでに、例えば、2分程度の時間を要する。そのため、オゾンガスによる処理を開始するまでに待ち時間が生じるので、オゾンガスによる処理時間を短縮することが困難となって、スループットが向上できないという問題がある。
Furthermore, the conventional example having such a configuration has the following problems.
That is, in the conventional device, it takes, for example, about two minutes from the time when the generation of ozone gas is started in the ozone gas supply source until the supply of ozone gas of a predetermined concentration required for processing is started. Therefore, since a waiting time occurs before processing with ozone gas starts, it is difficult to shorten the processing time with ozone gas, and there is a problem that the throughput cannot be improved.
 さらに、このような構成を有する従来例の場合には、次のような問題がある。
 すなわち、従来の装置は、吸引機構が一系統しかないので、吸引力が所定圧力とされている。したがって、オゾンガスをチャンバに供給しつつオゾンガスで基板を処理する際に、オゾンガスも大量に排気される。したがって、オゾンガスの消費が増大するという問題がある。
Furthermore, the conventional example having such a configuration has the following problems.
That is, since the conventional apparatus has only one suction mechanism, the suction force is set to a predetermined pressure. Therefore, when the ozone gas is supplied to the chamber and the substrate is processed with the ozone gas, a large amount of the ozone gas is also exhausted. Therefore, there is a problem that the consumption of the ozone gas increases.
 本発明は、このような事情に鑑みてなされたものであって、オゾンガスの置換を短時間でできるとともに、パーティクルによる汚染も防止できる基板処理装置を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a substrate processing apparatus that can replace ozone gas in a short time and prevent contamination by particles.
 本発明は、このような事情に鑑みてなされたものであって、オゾンガスによる処理時間を短縮して、スループットを向上できる基板処理装置を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a substrate processing apparatus that can shorten the processing time using ozone gas and improve throughput.
 本発明は、このような事情に鑑みてなされたものであって、オゾンガスの漏れを防止しつつも、オゾンガスの消費を抑制できる基板処理装置を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a substrate processing apparatus that can suppress the consumption of ozone gas while preventing the leakage of ozone gas.
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、請求項1に記載の発明は、基板に被着された被膜を除去する処理を行う基板処理装置において、基板を収容して密閉された処理空間を形成するチャンバと、前記チャンバ内において基板を保持する保持機構と、前記基板を処理するため処理濃度のオゾンガスを供給するオゾンガス供給源と、前記チャンバと前記オゾンガス供給源とを連通接続している第1の配管と、前記第1の配管に設けられ、前記第1の配管におけるオゾンガスの流通を制御する第1の制御弁と、前記第1の配管において前記第1の制御弁よりも前記チャンバ側に設けられた第1のフィルタと、前記第1の配管の前記第1のフィルタよりも前記チャンバ側に接続する第1の分岐点に一端側が連通接続され、他端側から不活性ガスが供給される第2の配管と、前記第2の配管に設けられ、前記第2の配管における不活性ガスの流通を制御する第2の制御弁と、前記第1の配管の前記第1のフィルタと前記第1の制御弁の間に接続する第2の分岐点に一端側が連通接続され、他端側から吸引される吸引配管と、前記第1の制御弁を開放し、前記第2の制御弁を閉止した状態で前記チャンバ内にオゾンガスを供給して基板を処理した後、前記第1の制御弁を閉止し、前記第2の制御弁を開放して、前記チャンバ内に不活性ガスを供給する際に、前記吸引配管による吸引を行わせる制御部と、を備えていることを特徴とするものである。
In order to achieve the above object, the present invention has the following configuration.
That is, the invention described in claim 1 is a substrate processing apparatus for performing processing to remove a coating deposited on a substrate, the apparatus comprising: a chamber for accommodating a substrate and forming a sealed processing space; a holding mechanism for holding the substrate in the chamber; an ozone gas supply source for supplying ozone gas at a processing concentration for processing the substrate; a first pipe connecting the chamber and the ozone gas supply source in communication; a first control valve provided in the first pipe for controlling a flow of ozone gas in the first pipe; a first filter provided in the first pipe on the chamber side relative to the first control valve; and a first separator connected to the first pipe on the chamber side relative to the first filter. the second pipe having one end connected to a branch point and an inert gas supplied from the other end; a second control valve provided in the second pipe and controlling the flow of the inert gas in the second pipe; a suction pipe having one end connected to a second branch point connected to the first pipe between the first filter and the first control valve and receiving suction from the other end; and a control unit that causes suction through the suction pipe when ozone gas is supplied into the chamber with the first control valve opened and the second control valve closed to supply the inert gas into the chamber after the substrate is processed by supplying ozone gas into the chamber with the first control valve opened and the second control valve closed.
 [作用・効果]請求項1に記載の発明によれば、制御部は、第1の制御弁を開放し、第2の制御弁を閉止した状態でチャンバ内にオゾンガスを供給して基板を処理した後、第1の制御弁を閉止し、第2の制御弁を開放して、チャンバ内に不活性ガスを供給する際に、吸引配管による吸引を行わせる。そのため、オゾンガスが残留している第1のフィルタと、パーティクルが生じ易い第1の制御弁とは、吸引配管を介して吸引される。したがって、第1の配管では、第2の分岐点からチャンバ側への気体の流れが生じない。その結果、チャンバ側への不活性ガスにオゾンガスが混入することが防止できので、オゾンガスの置換を短時間できるとともに、パーティクルによる汚染も防止できる。 [Actions and Effects] According to the invention described in claim 1, the control unit opens the first control valve and closes the second control valve to supply ozone gas into the chamber to process the substrate, and then closes the first control valve and opens the second control valve to supply inert gas into the chamber, causing suction through the suction piping. Therefore, the first filter in which ozone gas remains and the first control valve in which particles are likely to be generated are sucked through the suction piping. Therefore, no gas flows from the second branch point to the chamber side in the first piping. As a result, it is possible to prevent ozone gas from mixing with the inert gas on the chamber side, and it is possible to shorten the replacement time of ozone gas and prevent contamination by particles.
 また、本発明において、前記吸引配管による吸引は、前記第2の配管から前記チャンバに供給される不活性ガスの供給が妨げられない吸引力で行われることが好ましい(請求項2)。 Furthermore, in the present invention, it is preferable that the suction by the suction pipe is performed with a suction force that does not interfere with the supply of the inert gas supplied to the chamber from the second pipe (Claim 2).
 チャンバに不活性ガスを供給する際には、第1の配管は第1の分岐点で吸引配管による吸引が行われる。このとき、第2の配管から第1の分岐点を介してチャンバに供給される不活性ガスの供給を妨げない吸引力で吸引配管からの吸引を行う。したがって、チャンバ内におけるオゾンガスの不活性ガスによる置換を確実に行うことができる。 When supplying inert gas to the chamber, suction is performed from the suction piping at the first branch point of the first pipe. At this time, suction from the suction piping is performed with a suction force that does not interfere with the supply of inert gas supplied from the second pipe to the chamber via the first branch point. Therefore, it is possible to reliably replace ozone gas in the chamber with inert gas.
 また、本発明において、前記吸引配管は、圧縮気体の供給により吸引力を生じさせる真空エジェクタを他端側に備えていることが好ましい(請求項3)。 In the present invention, it is also preferable that the suction pipe is provided at the other end with a vacuum ejector that generates suction force by supplying compressed gas (Claim 3).
 真空エジェクタは、真空ポンプに比較して小型で安価である。したがって、装置の小型化に貢献でき、コストの上昇も抑制できる。 Vacuum ejectors are smaller and less expensive than vacuum pumps. This contributes to the miniaturization of equipment and keeps costs down.
 また、本発明において、前記吸引配管は、前記第2の分岐点における吸引力の制御を行い、前記制御部により操作される吸引制御弁を備えていることが好ましい(請求項4)。 In the present invention, it is also preferable that the suction piping is provided with a suction control valve that controls the suction force at the second branch point and is operated by the control unit (Claim 4).
 吸引制御弁を操作することで、第2の分岐点における第2の配管への吸引の影響を確実に遮断できる。 By operating the suction control valve, the effect of suction on the second pipe at the second branch point can be reliably blocked.
 また、本発明において、前記第2の配管は、前記第1の分岐点と前記第2の制御弁との間に第2のフィルタを備えていることが好ましい(請求項5)。 In the present invention, it is also preferable that the second pipe is provided with a second filter between the first branch point and the second control valve (Claim 5).
 不活性ガスを供給する際に、第2の制御弁で生じたパーティクルによる悪影響を防止できる。 When supplying inert gas, adverse effects caused by particles generated in the second control valve can be prevented.
 また、本発明において、基板を収容して、処理液による処理を行う処理液チャンバと、基板を搬送する搬送機構と、をさらに備え、前記チャンバにおけるオゾンガスで処理された基板を前記搬送機構で前記処理液チャンバに搬送し、前記基板を前記処理液チャンバにおいて処理液で処理することが好ましい(請求項6)。 In addition, in the present invention, it is preferable to further include a processing liquid chamber that accommodates a substrate and processes it with a processing liquid, and a transport mechanism that transports the substrate, and the substrate that has been treated with ozone gas in the chamber is transported to the processing liquid chamber by the transport mechanism, and the substrate is treated with the processing liquid in the processing liquid chamber (claim 6).
 チャンバでオゾンガスによる処理を終えた基板を搬送機構で処理液チャンバに搬送し、基板に対して処理液による処理を行う。これにより、基板に対して気体と液体による処理を連続的に行うことができる。したがって、オゾンガスによる前処理を行ってから処理液による処理を行う処理を効率的に行うことができる。 The substrate that has been treated with ozone gas in the chamber is transported by the transport mechanism to the treatment liquid chamber, where the substrate is treated with the treatment liquid. This allows the substrate to be treated successively with gas and liquid. This makes it possible to efficiently perform pretreatment with ozone gas followed by treatment with the treatment liquid.
 すなわち、請求項7に記載の発明は、基板に被着された被膜を除去する処理を行う基板処理装置において、基板を収容して密閉された処理空間を形成するチャンバと、前記チャンバ内において基板を保持する保持機構と、前記基板を処理するためのオゾンガスを常時生成しつつ供給するオゾンガス供給源と、前記オゾンガス供給源から供給されたオゾンガスが流通される供給配管と、前記供給配管と前記チャンバとを連通接続した流通配管と、前記流通配管に設けられ、前記流通配管を流通するオゾンガスの流通を制御する制御弁と、気体を排出する排気口と前記供給配管とを連通接続し、前記オゾンガス供給源から供給されたオゾンガスを前記排気口に排出する補助配管と、前記補助配管に設けられ、前記補助配管を流通するオゾンガスの流量を調整する排気弁と、前記チャンバにオゾンガスを供給しない非処理時には、前記制御弁を閉止させて前記排気弁を開放させ、前記オゾンガス供給源から供給されるオゾンガスを前記排気口に排出させ、前記チャンバにオゾンガスを供給して前記保持機構に保持されている基板をオゾンガスで処理する処理時には、前記排気弁による流量を調整しながら前記制御弁を開放させる制御部と、を備えていることを特徴とするものである。 That is, the invention described in claim 7 is a substrate processing apparatus for performing a process for removing a coating deposited on a substrate, the apparatus comprising: a chamber for accommodating a substrate and forming a sealed processing space; a holding mechanism for holding the substrate within the chamber; an ozone gas supply source for constantly generating and supplying ozone gas for processing the substrate; a supply pipe through which the ozone gas supplied from the ozone gas supply source flows; a circulation pipe connecting the supply pipe to the chamber; a control valve provided in the circulation pipe for controlling the flow of ozone gas through the circulation pipe; and an exhaust port for discharging gas and the supply pipe. , an auxiliary pipe that exhausts ozone gas supplied from the ozone gas supply source to the exhaust port, an exhaust valve provided in the auxiliary pipe that adjusts the flow rate of ozone gas flowing through the auxiliary pipe, and a control unit that closes the control valve and opens the exhaust valve during non-processing when ozone gas is not being supplied to the chamber, thereby exhausting ozone gas supplied from the ozone gas supply source to the exhaust port, and that opens the control valve while adjusting the flow rate through the exhaust valve during processing when ozone gas is supplied to the chamber and a substrate held by the holding mechanism is treated with ozone gas.
 [作用・効果]請求項7に記載の発明によれば、非処理時には、制御部が制御弁を閉止して排気弁を開放するので、オゾンガス供給源で生成されたオゾンガスは、チャンバに供給されることなく補助配管から排気口に排出される。処理時には、制御部が排気弁による流量を調整しながら制御弁を開放させるので、チャンバ内の保持機構に保持された基板に対して、オゾンガスを常時生成しているオゾンガス供給源から流通配管を介してオゾンガスが供給される。したがって、オゾンガスによる処理に待ち時間が生じないので、オゾンガスによる処理時間を短縮でき、スループットを向上できる。 [Actions and Effects] According to the invention described in claim 7, when processing is not being performed, the control unit closes the control valve and opens the exhaust valve, so that ozone gas generated in the ozone gas supply source is discharged from the auxiliary piping to the exhaust port without being supplied to the chamber. When processing is performed, the control unit opens the control valve while adjusting the flow rate through the exhaust valve, so that ozone gas is supplied to the substrate held by the holding mechanism in the chamber through the circulation piping from the ozone gas supply source, which constantly generates ozone gas. Therefore, there is no waiting time for processing with ozone gas, so the processing time with ozone gas can be shortened and throughput can be improved.
 また、本発明において、前記チャンバが複数個であり、前記流通配管が複数本であり、前記各流通配管は、前記供給配管からそれぞれ分岐して前記各チャンバに連通接続されており、前記制御弁は、前記複数本の流通配管のそれぞれに備えられ、前記処理時は、前記複数個のチャンバのうちの少なくとも一つがオゾンガスを供給している状態であることが好ましい(請求項8)。 Furthermore, in the present invention, it is preferable that there are a plurality of the chambers, a plurality of the circulation pipes, each of the circulation pipes branching off from the supply pipe and connected to each of the chambers, the control valve being provided on each of the plurality of circulation pipes, and that during the processing, at least one of the plurality of chambers is in a state in which ozone gas is being supplied (Claim 8).
 チャンバが複数個であり、流通配管が複数本である構成では、複数個のチャンバのうちの少なくとも一つがオゾンガスを供給している状態が処理時である。これにより、処理時には、少なくとも一つのチャンバに処理濃度のオゾンガスが流通配管から供給されてオゾンガスによる処理が行われる。 In a configuration with multiple chambers and multiple flow pipes, the state in which ozone gas is being supplied to at least one of the multiple chambers is the processing state. As a result, during processing, ozone gas at a processing concentration is supplied from the flow pipe to at least one chamber, and processing with ozone gas is performed.
 また、本発明において、前記制御部は、前記処理時に、前記供給配管を流通するオゾンガスの流量である第1の流量と、前記各流通配管を流通するオゾンガスの流量の合計である第2の流量との差分が所定値内に収まるように、前記各制御弁による流量に連動して、前記排気弁による流量を調整することが好ましい(請求項9)。 Furthermore, in the present invention, it is preferable that the control unit adjusts the flow rate by the exhaust valve in conjunction with the flow rates by the control valves so that the difference between a first flow rate, which is the flow rate of ozone gas flowing through the supply pipe, and a second flow rate, which is the sum of the flow rates of ozone gas flowing through each of the flow pipes, during the processing falls within a predetermined value (Claim 9).
 第1の流量と第2の流量との流量の差分が所定値内となるように、各制御弁による各チャンバへのオゾンガスの流量に応じて、補助配管から排気されるオゾンガスの流量を排気弁により調整する。したがって、第1の流量を第2の流量が超えないように、供給側に所定値分の余力を残すことができるので、各チャンバへのオゾンガスの供給を安定して行うことができる。また、排気弁による流量を調整すると、複数個のチャンバへのオゾンガスの供給量を一括して調整することもできる。 The flow rate of ozone gas exhausted from the auxiliary pipe is adjusted by the exhaust valve according to the flow rate of ozone gas to each chamber by each control valve so that the difference between the first flow rate and the second flow rate is within a predetermined value. Therefore, a predetermined amount of reserve capacity can be left on the supply side so that the second flow rate does not exceed the first flow rate, so that ozone gas can be supplied stably to each chamber. Furthermore, by adjusting the flow rate by the exhaust valve, the amount of ozone gas supplied to multiple chambers can also be adjusted collectively.
 また、本発明において、前記オゾンガス供給源は、前記供給配管へのオゾンガスの流通を許容または遮断する第1の開閉弁と、前記供給配管におけるオゾンガスの圧力を第1の圧力に維持する第1の圧力調整機構とを備え、前記補助配管は、前記排気弁として、前記排気口に排出されるオゾンガスの流通を許容または遮断する第2の開閉弁と、前記補助配管におけるオゾンガスの圧力を、前記第1の圧力より小さな第2の圧力に維持する第2の圧力調整機構とを備えていることが好ましい(請求項10)。 Furthermore, in the present invention, it is preferable that the ozone gas supply source includes a first on-off valve that allows or blocks the flow of ozone gas to the supply pipe, and a first pressure adjustment mechanism that maintains the pressure of the ozone gas in the supply pipe at a first pressure, and the auxiliary pipe includes a second on-off valve that allows or blocks the flow of ozone gas discharged to the exhaust port as the exhaust valve, and a second pressure adjustment mechanism that maintains the pressure of the ozone gas in the auxiliary pipe at a second pressure lower than the first pressure (Claim 10).
 第2の圧力調整機構は、補助配管におけるオゾンガスの第2の圧力を、第1の圧力調整機構により調整された、供給配管におけるオゾンガスの第1の圧力よりも小さく維持する。したがって、オゾンガス供給源と補助配管との間における圧力差を確保できるので、各チャンバへ供給されるオゾンガスの流量の安定化を図ることができる。また、補助配管にオゾンガスが集中することを防止できるので、複数個のチャンバにおいて処理に必要なオゾンガスの流量を確保できる。その結果、複数個のチャンバを備える構成であっても、オゾンガスによる処理を安定して行うことができる。 The second pressure adjustment mechanism maintains the second pressure of the ozone gas in the auxiliary pipe lower than the first pressure of the ozone gas in the supply pipe adjusted by the first pressure adjustment mechanism. Therefore, the pressure difference between the ozone gas supply source and the auxiliary pipe can be secured, so that the flow rate of the ozone gas supplied to each chamber can be stabilized. In addition, since the concentration of ozone gas in the auxiliary pipe can be prevented, the flow rate of ozone gas required for processing in multiple chambers can be secured. As a result, even in a configuration with multiple chambers, processing with ozone gas can be stably performed.
 また、本発明において、基板を収容して、処理液による処理を行う処理液チャンバと、基板を搬送する搬送機構と、をさらに備え、前記チャンバにおけるオゾンガスで処理された基板を前記搬送機構で前記処理液チャンバに搬送し、前記基板を前記処理液チャンバにおいて処理液で処理を行うことが好ましい(請求項11)。 In addition, in the present invention, it is preferable to further include a treatment liquid chamber for accommodating a substrate and treating it with a treatment liquid, and a transport mechanism for transporting the substrate, and the substrate treated with ozone gas in the chamber is transported to the treatment liquid chamber by the transport mechanism, and the substrate is treated with the treatment liquid in the treatment liquid chamber (Claim 11).
 チャンバでオゾンガスによる処理を終えた基板を搬送機構で処理液チャンバに搬送し、基板に対して処理液による処理を行う。これにより、基板に対して気体と液体による処理を連続的に行うことができる。したがって、オゾンガスによる前処理を行ってから処理液による処理を行う処理を効率的に行うことができる。 The substrate that has been treated with ozone gas in the chamber is transported by the transport mechanism to the treatment liquid chamber, where the substrate is treated with the treatment liquid. This allows the substrate to be treated successively with gas and liquid. This makes it possible to efficiently perform pretreatment with ozone gas followed by treatment with the treatment liquid.
 また、請求項12に記載の発明は、基板に被着された被膜を除去する処理を行う基板処理装置において、基板を保持する保持機構を下部で支持する下部蓋部材と、前記下部蓋部材に対して上方から当接して処理空間を形成する上部蓋部材と、基板の処理時には前記上部蓋部材を前記下部蓋部材に対して下降させ、基板の非処理時には前記上部蓋部材を前記下部蓋部材から上昇させる昇降機構とを備えたチャンバと、前記基板を処理するため処理濃度のオゾンガスを供給するオゾンガス供給源と、前記オゾンガス供給源と前記チャンバとを連通接続した第1の配管と、前記第1の配管に設けられ、前記第1の配管を流通するオゾンガスの流通を制御する第1の制御弁と、前記チャンバに連通接続され、前記処理空間内の気体を装置外部の排気口に排出する排気配管と、前記排気配管に設けられ、前記排気配管における排気を制御する第2の制御弁と、前記排気配管における前記第2の制御弁より前記排気口側に設けられ、第1の排気流量で排気を行う第1の排気手段と、前記排気配管における前記第2の制御弁より前記排気口側に設けられ、前記第1の排気流量より排気流量が小さな第2の排気流量で排気を行う第2の排気手段とを備えた排気機構と、前記オゾンガス供給源から前記チャンバにオゾンガスを供給してオゾンガス処理を行うのに先立って、前記第2の制御弁を開放し、前記第1の排気手段を操作して、前記チャンバ内を第1の排気流量で排気して前記上部蓋部材を前記下部蓋部材に密着させ、前記第1の制御弁を操作して前記オゾンガス供給源からオゾンガスを前記チャンバに供給する際には、前記第1の排気手段を停止するとともに前記第2の排気手段を操作して、前記チャンバ内を第2の排気流量で排気する制御部と、を備えていることを特徴とするものである。 The invention described in claim 12 is a substrate processing apparatus for removing a coating deposited on a substrate, the apparatus comprising: a lower cover member supporting at its lower part a holding mechanism for holding the substrate; an upper cover member abutting against the lower cover member from above to form a processing space; a chamber having a lifting mechanism for lowering the upper cover member relative to the lower cover member when processing the substrate and lifting the upper cover member from the lower cover member when the substrate is not being processed; an ozone gas supply source for supplying ozone gas at a processing concentration for processing the substrate; a first pipe connecting the ozone gas supply source to the chamber; a first control valve provided in the first pipe for controlling the flow of ozone gas through the first pipe; an exhaust pipe connected to the chamber for discharging gas in the processing space to an exhaust port outside the apparatus; and a second control valve provided in the exhaust pipe for controlling exhaust in the exhaust pipe. The exhaust mechanism includes a control valve, a first exhaust means provided on the exhaust port side of the second control valve in the exhaust piping and exhausting at a first exhaust flow rate, and a second exhaust means provided on the exhaust port side of the second control valve in the exhaust piping and exhausting at a second exhaust flow rate that is smaller than the first exhaust flow rate, and a control unit that opens the second control valve, operates the first exhaust means, exhausts the inside of the chamber at a first exhaust flow rate, and seals the upper cover member against the lower cover member before supplying ozone gas from the ozone gas supply source to the chamber to perform ozone gas treatment, and stops the first exhaust means and operates the second exhaust means to exhaust the inside of the chamber at a second exhaust flow rate when operating the first control valve to supply ozone gas from the ozone gas supply source to the chamber.
 [作用・効果]請求項12に記載の発明によれば、制御部は、チャンバにオゾンガスを供給してオゾンガス処理を行うのに先立って、第2の制御弁を開放し、第1の排気手段を操作して、チャンバ内を第1の排気流量で排気して上部蓋部材を下部蓋部材に密着させる。制御部は、第1の制御弁を操作してオゾンガス供給源からオゾンガスをチャンバに供給する際には、第1の排気手段を停止するとともに第2の排気手段を操作して、チャンバ内を第2の排気流量で排気する。したがって、オゾンガスを供給するまでに上部蓋部材と下部蓋部材の密着度合いが第1の排気流量で高くされ、オゾンガスの供給時には、第1の排気流量より排気流量が小さな第2の排気流量とされている。そのため、オゾンガスの漏れを防止しつつも、オゾンガスの消費を抑制できる。 [Function and Effect] According to the invention described in claim 12, prior to supplying ozone gas to the chamber to perform ozone gas treatment, the control unit opens the second control valve and operates the first exhaust means to exhaust the inside of the chamber at a first exhaust flow rate and seal the upper lid member to the lower lid member. When operating the first control valve to supply ozone gas from the ozone gas supply source to the chamber, the control unit stops the first exhaust means and operates the second exhaust means to exhaust the inside of the chamber at a second exhaust flow rate. Therefore, before supplying ozone gas from the ozone gas supply source, the degree of adhesion between the upper lid member and the lower lid member is increased at the first exhaust flow rate, and when ozone gas is supplied, the exhaust flow rate is set to the second exhaust flow rate, which is smaller than the first exhaust flow rate. Therefore, it is possible to suppress consumption of ozone gas while preventing leakage of ozone gas.
 また、本発明において、前記第1の配管の第1の分岐点に一端側が連通接続され、他端側から不活性ガスが供給される第2の配管と、前記第2の配管における不活性ガスの流通を制御する第3の制御弁と、前記第2の制御弁より前記チャンバ側の前記排気配管における第2の分岐点に一端側が連通接続され、他端側が前記排気口に連通接続された補助排気管と、前記補助排気管に設けられ、前記補助排気管における気体の流通を制御する第4の制御弁と、をさらに備え、前記制御部は、前記オゾンガス処理の後、前記第3の制御弁を操作して、前記チャンバ内に不活性ガスを供給するとともに、前記第2の排気手段に代えて前記第1の排気手段を操作して前記チャンバ内を第1の排気流量で排気し、前記チャンバ内のオゾンガスを不活性ガスで置換した後、前記第1の排気手段を停止するとともに前記第2の制御弁を閉止し、前記第4の制御弁を開放した後、前記昇降機構により前記上部蓋部材を上昇させることが好ましい(請求項13)。 In the present invention, the apparatus further includes a second pipe having one end connected to the first branch point of the first pipe and having an inert gas supplied from the other end, a third control valve for controlling the flow of the inert gas in the second pipe, an auxiliary exhaust pipe having one end connected to a second branch point in the exhaust pipe on the chamber side of the second control valve and the other end connected to the exhaust port, and a fourth control valve provided in the auxiliary exhaust pipe for controlling the flow of gas in the auxiliary exhaust pipe, and the control unit preferably operates the third control valve after the ozone gas treatment to supply the inert gas into the chamber, operates the first exhaust means instead of the second exhaust means to exhaust the chamber at a first exhaust flow rate, replaces the ozone gas in the chamber with the inert gas, stops the first exhaust means, closes the second control valve, opens the fourth control valve, and then raises the upper lid member by the lifting mechanism (Claim 13).
 制御部は、オゾンガス処理の後、チャンバ内に不活性ガスを供給するとともに、第2の排気手段に代えて第1の排気手段を操作してチャンバ内を第1の排気流量で排気し、チャンバ内のオゾンガスを不活性ガスで置換する。その後、制御部は、第1の排気手段を停止するとともに第2の制御弁を閉止し、第4の制御弁を開放する。これにより、排気機構による排気を停止した状態で、不活性ガスによる排気口へのパージだけが行われる。したがって、処理空間が陽圧となって上部蓋部材と下部蓋部材との密着が弱くなる。その後、昇降機構により上部蓋部材を上昇させるので、容易に上部蓋部材を昇降機構で上昇させることができる。 After the ozone gas treatment, the control unit supplies inert gas into the chamber and operates the first exhaust means instead of the second exhaust means to exhaust the chamber at a first exhaust flow rate, replacing the ozone gas in the chamber with the inert gas. The control unit then stops the first exhaust means, closes the second control valve, and opens the fourth control valve. As a result, with exhaust by the exhaust mechanism stopped, only purging of the exhaust port with inert gas is performed. Therefore, the processing space becomes positive pressure, and the adhesion between the upper cover member and the lower cover member becomes weak. The upper cover member is then raised by the lifting mechanism, so that the upper cover member can be easily raised by the lifting mechanism.
 また、本発明において、前記制御部は、前記上部蓋部材を上昇させた後、前記第4の制御弁を閉止するとともに、前記第2の制御弁を開放し、前記第2の排気手段を操作して前記チャンバ内を第2の排気流量で排気することが好ましい(請求項14)。 Furthermore, in the present invention, it is preferable that after the control unit raises the upper cover member, it closes the fourth control valve, opens the second control valve, and operates the second exhaust means to exhaust the inside of the chamber at a second exhaust flow rate (Claim 14).
 上部蓋部材が上昇して次の基板の処理を開始するまでの間、処理空間を第2の排気流量で排気する。したがって、処理空間を清浄な状態に維持できる。 The processing space is evacuated at the second exhaust flow rate until the upper lid member rises to start processing the next substrate. Therefore, the processing space can be maintained in a clean state.
 また、本発明において、前記第1の排気手段及び前記第2の排気手段は、圧縮気体の供給により排気を行う真空エジェクタを備えていることが好ましい(請求項15)。 Furthermore, in the present invention, it is preferable that the first exhaust means and the second exhaust means are equipped with a vacuum ejector that exhausts by supplying compressed gas (Claim 15).
 真空エジェクタは、真空ポンプに比較して小型で安価である。したがって、装置の小型化に貢献でき、コストの上昇も抑制できる。 Vacuum ejectors are smaller and less expensive than vacuum pumps. This contributes to the miniaturization of equipment and keeps costs down.
 また、本発明において、基板を収容して、処理液による処理を行う処理液チャンバと、基板を搬送する搬送機構と、をさらに備え、前記チャンバにおけるオゾンガスで処理された基板を前記搬送機構で前記処理液チャンバに搬送し、前記基板を前記処理液チャンバにおいて処理液で処理することが好ましい(請求項16)。 In addition, in the present invention, it is preferable to further include a processing liquid chamber for accommodating a substrate and processing it with a processing liquid, and a transport mechanism for transporting the substrate, and the substrate that has been treated with ozone gas in the chamber is transported to the processing liquid chamber by the transport mechanism, and the substrate is processed with the processing liquid in the processing liquid chamber (Claim 16).
 チャンバでオゾンガスによる処理を終えた基板を搬送機構で処理液チャンバに搬送し、基板に対して処理液による処理を行う。これにより、基板に対して気体と液体による処理を連続的に行うことができる。したがって、オゾンガスによる前処理を行ってから処理液による処理を行う処理を効率的に行うことができる。 The substrate that has been treated with ozone gas in the chamber is transported by the transport mechanism to the treatment liquid chamber, where the substrate is treated with the treatment liquid. This allows the substrate to be treated successively with gas and liquid. This makes it possible to efficiently perform pretreatment with ozone gas followed by treatment with the treatment liquid.
 請求項1に記載の発明によれば、制御部は、第1の制御弁を開放し、第2の制御弁を閉止した状態でチャンバ内にオゾンガスを供給して基板を処理した後、第1の制御弁を閉止し、第2の制御弁を開放して、チャンバ内に不活性ガスを供給する際に、吸引配管による吸引を行わせる。そのため、オゾンガスが残留している第1のフィルタと、パーティクルが生じ易い第1の制御弁とは、吸引配管を介して吸引される。したがって、第1の配管では、第2の分岐点からチャンバ側への気体の流れが生じない。その結果、チャンバ側への不活性ガスにオゾンガスが混入することが防止できので、オゾンガスの置換を短時間できるとともに、パーティクルによる汚染も防止できる。 According to the invention described in claim 1, the control unit opens the first control valve and closes the second control valve to supply ozone gas into the chamber to process the substrate, and then closes the first control valve and opens the second control valve to supply inert gas into the chamber, causing suction through the suction piping. Therefore, the first filter in which ozone gas remains and the first control valve in which particles are likely to be generated are sucked through the suction piping. Therefore, no gas flows from the second branch point to the chamber side in the first piping. As a result, it is possible to prevent ozone gas from mixing with the inert gas on the chamber side, and it is possible to shorten the time required for ozone gas replacement and prevent contamination by particles.
 また、請求項7に記載の発明によれば、非処理時には、制御部が制御弁を閉止して排気弁を開放するので、オゾンガス供給源で生成されたオゾンガスは、チャンバに供給されることなく補助配管から排気口に排出される。処理時には、制御部が排気弁による流量を調整しながら制御弁を開放させるので、チャンバ内の保持機構に保持された基板に対して、オゾンガスを常時生成しているオゾンガス供給源から流通配管を介してオゾンガスが供給される。したがって、オゾンガスによる処理に待ち時間が生じないので、オゾンガスによる処理時間を短縮でき、スループットを向上できる。 Furthermore, according to the invention described in claim 7, when processing is not being performed, the control unit closes the control valve and opens the exhaust valve, so that ozone gas generated in the ozone gas supply source is discharged from the auxiliary piping to the exhaust port without being supplied to the chamber. During processing, the control unit opens the control valve while adjusting the flow rate through the exhaust valve, so that ozone gas is supplied to the substrate held by the holding mechanism in the chamber through the circulation piping from the ozone gas supply source, which constantly generates ozone gas. Therefore, there is no waiting time for processing with ozone gas, so that the processing time with ozone gas can be shortened and throughput can be improved.
 また、請求項12に記載の発明によれば、制御部は、チャンバにオゾンガスを供給してオゾンガス処理を行うのに先立って、第2の制御弁を開放し、第1の排気手段を操作して、チャンバ内を第1の排気流量で排気して上部蓋部材を下部蓋部材に密着させる。制御部は、第1の制御弁を操作してオゾンガス供給源からオゾンガスをチャンバに供給する際には、第1の排気手段を停止するとともに第2の排気手段を操作して、チャンバ内を第2の排気流量で排気する。したがって、オゾンガスを供給するまでに上部蓋部材と下部蓋部材の密着度合いが第1の排気流量で高くされ、オゾンガスの供給時には、第1の排気流量より排気流量が小さな第2の排気流量とされている。そのため、オゾンガスの漏れを防止しつつも、オゾンガスの消費を抑制できる。 Furthermore, according to the invention described in claim 12, prior to supplying ozone gas to the chamber to perform ozone gas treatment, the control unit opens the second control valve and operates the first exhaust means to exhaust the inside of the chamber at a first exhaust flow rate and seal the upper lid member to the lower lid member. When the control unit operates the first control valve to supply ozone gas from the ozone gas supply source to the chamber, it stops the first exhaust means and operates the second exhaust means to exhaust the inside of the chamber at a second exhaust flow rate. Therefore, before supplying ozone gas, the degree of adhesion between the upper lid member and the lower lid member is increased at the first exhaust flow rate, and when supplying ozone gas, the exhaust flow rate is set to the second exhaust flow rate, which is smaller than the first exhaust flow rate. Therefore, it is possible to suppress consumption of ozone gas while preventing leakage of ozone gas.
実施例に係る基板処理装置の全体構成を示す斜視図である。1 is a perspective view showing an overall configuration of a substrate processing apparatus according to an embodiment; 図1における101-101矢視断面図である。1. This is a cross-sectional view taken along the line 101-101 in FIG. 図1における103-103矢視断面図である。1. This is a cross-sectional view taken along the line 103-103 in FIG. 基板処理装置を模式的に示した平面図である。FIG. 1 is a plan view illustrating a substrate processing apparatus. オゾンガス供給ユニットにおけるオゾンガス濃度の変化を示すグラフである。4 is a graph showing a change in ozone gas concentration in an ozone gas supply unit. オゾンガスベークユニット及び気体の供給系と排気系とを示した図である。FIG. 2 is a diagram showing an ozone gas bake unit and a gas supply system and exhaust system. オゾンガスによる非処理時の説明に供する図である。FIG. 13 is a diagram for explaining the state when no treatment with ozone gas is used. オゾンガスによる処理時の説明に供する図である。FIG. 2 is a diagram for explaining a treatment with ozone gas. 動作の一例を示すフローチャートである。11 is a flowchart showing an example of an operation. オゾンガスを供給している状態を説明する模式図である。FIG. 2 is a schematic diagram illustrating a state in which ozone gas is being supplied. 窒素ガスを供給している状態を説明する模式図である。FIG. 4 is a schematic diagram illustrating a state in which nitrogen gas is being supplied. 処理前における弱排気の説明に供する模式図である。FIG. 13 is a schematic diagram illustrating weak exhaust before processing. 上部リッドを閉止した状態における強排気の説明に供する模式図である。FIG. 13 is a schematic diagram for explaining strong exhaust when the upper lid is closed. オゾンガス処理中の弱排気の説明に供する模式図である。FIG. 2 is a schematic diagram for explaining weak exhaust during ozone gas treatment. 窒素ガスによる置換における強排気の説明に供する模式図である。FIG. 2 is a schematic diagram for explaining strong evacuation during replacement with nitrogen gas. 上部リッド開放におけるパージの説明に供する模式図である。FIG. 13 is a schematic diagram for explaining purging when the upper lid is opened. 処理後における弱排気の説明に供する模式図である。FIG. 13 is a schematic diagram for explaining weak exhaust after processing.
 以下に、本発明の各実施例について説明する。 Each embodiment of the present invention will be described below.
 以下、図面を参照して本発明の実施例1について説明する。 The following describes Example 1 of the present invention with reference to the drawings.
 図1は、実施例に係る基板処理装置の全体構成を示す斜視図である。図2は、図1における101-101矢視断面図である。図3は、図1における103-103矢視断面図である。図4は、基板処理装置を模式的に示した平面図である。 FIG. 1 is a perspective view showing the overall configuration of a substrate processing apparatus according to an embodiment. FIG. 2 is a cross-sectional view taken along the line 101-101 in FIG. 1. FIG. 3 is a cross-sectional view taken along the line 103-103 in FIG. 1. FIG. 4 is a plan view showing a schematic diagram of the substrate processing apparatus.
 実施例に係る基板処理装置1は、例えば、フォトレジスト被膜が形成された基板Wに対して、フォトレジスト被膜の除去処理を行う装置である。特には、フォトレジスト被膜が硬化している場合に有用である。この基板処理装置1は、具体的には、オゾンガス処理と、オンガス処理後のSPM処理とをその順に基板Wに対して実施するのに好適である。 The substrate processing apparatus 1 according to the embodiment is, for example, an apparatus that performs a process for removing a photoresist coating on a substrate W on which a photoresist coating has been formed. This is particularly useful when the photoresist coating has hardened. Specifically, this substrate processing apparatus 1 is suitable for carrying out an ozone gas process and an SPM process after an on-gas process, in that order, on a substrate W.
 基板処理装置1は、インデクサブロック3と、処理ブロック5と、搬送ブロック7と、処理液供給ブロック9と、オゾンガス供給ユニット11と、オゾンガス分解ユニット13とを備えている。 The substrate processing apparatus 1 includes an indexer block 3, a processing block 5, a transport block 7, a processing liquid supply block 9, an ozone gas supply unit 11, and an ozone gas decomposition unit 13.
 インデクサブロック3は、処理対象である基板Wを搬送ブロック7との間で受け渡す。搬送ブロック7は、インデクサブロック3と処理ブロック5との間や、処理ブロック5の間において基板Wの搬送を行う。処理ブロック5は、複数個の処理ユニット15を備えている。処理液供給ブロック9は、処理ブロック5において使用される各種の処理液を処理ブロック5に対して供給する。オゾンガス供給ユニット11は、処理ブロック5で利用されるオゾンガスを供給する。オゾンガス分解ユニット13は、処理ブロック5から排出されたオゾンガスを取り込み、無害化して排出する。オゾンガス分解ユニット13から排出された気体は、例えば、クリーンルームが備える排気口に排出される。この排気口は、例えば、工場の排気設備に連通接続されている。 The indexer block 3 transfers the substrates W to be processed between the transport block 7. The transport block 7 transports the substrates W between the indexer block 3 and the processing block 5 and between the processing blocks 5. The processing block 5 is equipped with a plurality of processing units 15. The processing liquid supply block 9 supplies the processing block 5 with various processing liquids used in the processing block 5. The ozone gas supply unit 11 supplies the ozone gas used in the processing block 5. The ozone gas decomposition unit 13 takes in the ozone gas discharged from the processing block 5, renders it harmless, and discharges it. The gas discharged from the ozone gas decomposition unit 13 is discharged, for example, to an exhaust port provided in a clean room. This exhaust port is connected, for example, to the exhaust equipment of the factory.
 基板処理装置1は、図1に示すように、インデクサブロック3と、処理ブロック5及び搬送ブロック7と、処理液供給ブロック9とがこの順番で並ぶように配置されている。 As shown in FIG. 1, the substrate processing apparatus 1 is arranged with an indexer block 3, a processing block 5, a transport block 7, and a processing liquid supply block 9 arranged in this order.
 以下の説明においては、インデクサブロック3と、処理ブロック5及び搬送ブロック7と、処理液供給ブロック9とが並ぶ方向を「前後方向X」(水平方向)とする。特に、処理ブロック5及び搬送ブロック7からインデクサブロック3へ向かう方向を「前方XF」とし、前方XF方向の反対方向を「後方XB」とする。前後方向Xと水平方向で直交する方向を「幅方向Y」とする。さらに、インデクサブロック3の正面から見た場合に、幅方向Yの一方向を適宜に「右方YR」とし、右方YRの反対の他方向を「左方YL」とする。また、垂直な方向を「上下方向Z」(高さ方向、垂直方向)とする。なお、単に「側方」や「横方向」などと記載するときは、前後方向X及び幅方向Yのいずれにも限定されない。 In the following description, the direction in which the indexer block 3, the processing block 5, the transport block 7, and the processing liquid supply block 9 are aligned is referred to as the "front-to-back direction X" (horizontal direction). In particular, the direction from the processing block 5 and the transport block 7 toward the indexer block 3 is referred to as the "forward XF", and the opposite direction of the forward XF direction is referred to as the "backward XB". The direction perpendicular to the front-to-back direction X and the horizontal direction is referred to as the "width direction Y". Furthermore, when viewed from the front of the indexer block 3, one direction of the width direction Y is appropriately referred to as the "right direction YR", and the other direction opposite the right direction YR is referred to as the "left direction YL". The vertical direction is referred to as the "up-down direction Z" (height direction, vertical direction). Note that when simply referring to "side" or "lateral direction", it is not limited to either the front-to-back direction X or the width direction Y.
 インデクサブロック3は、キャリア載置部17と、インデクサロボットIRとを備えている。本実施例における基板処理装置1は、例えば、4個のキャリア載置部17を備えている。具体的には、幅方向Yに一列に並ぶように4個のキャリア載置部17を備えている。各キャリア載置部17は、キャリアCが載置される。キャリアCは、複数枚(例えば、25枚)の基板Wを積層して収納するものであり、各キャリア載置部17は、例えば、図示しないOHT(Overhead Hoist Transport:天井走行無人搬送車とも呼ばれる)との間でキャリアCの受け渡しを行う。OHTは、クリーンルームの天井を利用してキャリアCを搬送する。キャリアCとしては、例えば、FOUP(Front Opening Unified Pod)が挙げられる。 The indexer block 3 includes a carrier placement section 17 and an indexer robot IR. The substrate processing apparatus 1 in this embodiment includes, for example, four carrier placement sections 17. Specifically, the four carrier placement sections 17 are arranged in a row in the width direction Y. A carrier C is placed on each carrier placement section 17. A carrier C stores a plurality of substrates W (for example, 25 substrates W) in a stacked manner, and each carrier placement section 17 transfers the carrier C between, for example, an OHT (Overhead Hoist Transport, also known as a ceiling-traveling automated guided vehicle) not shown. The OHT transports the carrier C by using the ceiling of the clean room. An example of a carrier C is a FOUP (Front Opening Unified Pod).
 インデクサブロック3は、キャリア載置部17の後方XBにインデクサロボットIRが配置されている。インデクサロボットIRは、キャリアCとの間で基板Wを受け渡すとともに、パス部19との間で基板Wを受け渡す。パス部19は、前後方向Xにおいて、インデクサブロック3と搬送ブロック7との間に配置されている。インデクサロボットIRは、1台だけがインデクサブロック3に配置されている。このインデクサロボットIRは、基部が幅方向Yにおいて移動しないように、位置が固定して取り付けられている。インデクサロボットIRは、例えば、上下方向Zに昇降可能な多関節アームを備えている。インデクサロボットIRは、4個のキャリアCと、パス部19対してアクセス可能に構成されている。 In the indexer block 3, the indexer robot IR is disposed behind the carrier placement section 17, XB. The indexer robot IR transfers substrates W between the carriers C, and also transfers substrates W between the indexer block 3 and the path section 19. The path section 19 is disposed between the indexer block 3 and the transport block 7 in the front-rear direction X. Only one indexer robot IR is disposed in the indexer block 3. This indexer robot IR is attached at a fixed position so that its base does not move in the width direction Y. The indexer robot IR is equipped with, for example, a multi-joint arm that can be raised and lowered in the vertical direction Z. The indexer robot IR is configured to be able to access the four carriers C and the path section 19.
 パス部19は、支持台の上に複数本の支持ピン(例えば、3本)を備えている。パス部19は、基板Wを水平姿勢で当接して支持する。パス部19は、インデクサロボットIRにより、未処理の基板Wが載置され、処理済みの基板Wが取り出される。パス部19は、搬送ブロック7のセンターロボットCRにより、未処理の基板Wが取り出され、処理済みの基板Wが載置される。パス部19は、上下方向Zに多段に構成されている。よって、パス部19は、同時に複数枚の基板Wを載置される。 The path section 19 has multiple support pins (e.g., three) on a support table. The path section 19 supports the substrate W by contacting it in a horizontal position. Unprocessed substrates W are placed in the path section 19 by the indexer robot IR, and processed substrates W are removed from the path section 19. Unprocessed substrates W are removed from the path section 19 by the center robot CR of the transport block 7, and processed substrates W are placed in the path section 19. The path section 19 is configured in multiple stages in the vertical direction Z. Thus, multiple substrates W can be placed in the path section 19 at the same time.
 搬送ブロック7は、例えば、1台のセンターロボットCRを備えている。センターロボットCRは、前後方向Xに移動可能であり、かつ上下方向Zに昇降可能に構成されている。また、センターロボットCRは、上下方向Zを軸に水平面内で旋回可能に構成されている。センターロボットCRは、センターロボットCRの位置を基準として、幅方向Yにおける右方YR及び左方YLに配置されている処理ブロック5との間で基板Wを受け渡すことができるように構成されている。センターロボットCRは、パス部19を介してインデクサロボットIRとの間で基板Wを受け渡すことができる。 The transport block 7, for example, includes one center robot CR. The center robot CR is configured to be movable in the forward/backward direction X, and to be able to move up and down in the vertical direction Z. The center robot CR is also configured to be able to rotate in a horizontal plane around an axis in the vertical direction Z. The center robot CR is configured to be able to transfer substrates W between the processing blocks 5 located to the right YR and left YL in the width direction Y, based on the position of the center robot CR. The center robot CR can transfer substrates W between the indexer robot IR via the path section 19.
 処理ブロック5は、搬送ブロック7を挟んで幅方向Yの右方YR及び左方YLにそれぞれ配置されている。ここでは、平面視にて、処理ブロック5のうち、前方XFかつ左方YLの上下方向Zに配置されているものをタワーTW1と称する。同様に、後方XBかつ左方YLの上下方向Zに配置されているものをタワーTW2と称する。さらに、前方XFかつ右方YRの上下方向Zに配置されているものをタワーTW3と称する。また、後方XBかつ右方YRの上下方向Zに配置されているものをタワーTW4と称する。 The processing blocks 5 are arranged on the right YR and left YL in the width direction Y, sandwiching the transport block 7 between them. Here, of the processing blocks 5, the one arranged in the vertical direction Z at the front XF and left YL in a plan view is referred to as tower TW1. Similarly, the one arranged in the vertical direction Z at the rear XB and left YL is referred to as tower TW2. Furthermore, the one arranged in the vertical direction Z at the front XF and right YR is referred to as tower TW3. Moreover, the one arranged in the vertical direction Z at the rear XB and right YR is referred to as tower TW4.
 処理ブロック5のタワーTW1,TW3は、例えば、上下方向Zに4個の処理ユニット15を積層配置して構成されている。タワーTW1,TW3は、処理ユニット15として、例えば、オゾンガスベークユニット21(図2では、OBAKEと併記する)を備えている。オゾンガスベークユニット21は、基板Wを所定の温度で加熱しつつ、オゾンガスを供給して基板Wに対して処理を行う。その構造の詳細については、後述する。オゾンガスベークユニット21は、オゾンガスによる処理を終えた後、基板Wを冷却する。冷却された基板Wは、センターロボットCRによりタワーTW2,TW4の処理ユニット15に搬送される。 The towers TW1 and TW3 of the processing block 5 are configured by, for example, stacking four processing units 15 in the vertical direction Z. The towers TW1 and TW3 are equipped with, for example, an ozone gas bake unit 21 (also indicated as O 3 BAKE in FIG. 2) as the processing unit 15. The ozone gas bake unit 21 processes the substrate W by supplying ozone gas while heating the substrate W at a predetermined temperature. The details of the structure will be described later. The ozone gas bake unit 21 cools the substrate W after the processing with ozone gas is completed. The cooled substrate W is transported to the processing unit 15 of the towers TW2 and TW4 by the center robot CR.
 処理ブロック5のタワーTW2,TW4は、例えば、上下方向Zに3個の処理ユニット15を積層配置して構成されている。タワーTW2,TW4は、処理ユニット15として例えば、SPMユニット23(図3では、HT SPMと併記する)を備えている。SPMユニット23は、所定温度に加熱したSPMを基板Wに対して供給して処理を行う。このSPMは、硫酸と過酸化水素水の混合溶液であるSPM(Sulfuric Hydrogen Peroxide Mixture)である。オゾンガスベークユニット21により処理された基板Wは、センターロボットCRによりSPMユニット23に搬送される。SPMユニット23で処理された基板Wは、純水によりSPMを除去された後、センターロボットCRによりパス部19に搬送される。 The towers TW2 and TW4 of the processing block 5 are configured, for example, by stacking three processing units 15 in the vertical direction Z. The towers TW2 and TW4 are equipped with, for example, an SPM unit 23 (also referred to as HT SPM in FIG. 3) as the processing unit 15. The SPM unit 23 supplies SPM heated to a predetermined temperature to the substrate W for processing. This SPM is SPM (Sulfuric Hydrogen Peroxide Mixture), a mixed solution of sulfuric acid and hydrogen peroxide. The substrate W processed by the ozone gas bake unit 21 is transported to the SPM unit 23 by the center robot CR. The substrate W processed by the SPM unit 23 has the SPM removed with pure water, and is then transported to the path section 19 by the center robot CR.
 なお、SPMユニット23が本発明における「処理液チャンバ」に相当し、センターロボットCRが本発明における「搬送機構」に相当する。 The SPM unit 23 corresponds to the "processing liquid chamber" in this invention, and the center robot CR corresponds to the "transport mechanism" in this invention.
 図4に示すように、基板処理装置1には、2台のオゾンガス供給ユニット11と、2台のオゾンガス分解ユニット13とが付設されている。オゾンガス供給ユニット11は、オゾンガスベークユニット21で処理に用いる処理濃度のオゾンを生成しつつ供給する。このオゾンガス供給ユニット11は、例えば、オゾンガスを生成していない停止状態から、目標濃度を処理濃度として装置を始動した場合、オゾンガス供給ユニットから供給されるオゾンガスの濃度は、例えば、図5に示すような変化となる。なお、図5は、オゾンガス供給ユニットにおけるオゾンガス濃度の変化を示すグラフである。 As shown in FIG. 4, the substrate processing apparatus 1 is equipped with two ozone gas supply units 11 and two ozone gas decomposition units 13. The ozone gas supply unit 11 generates and supplies ozone at a processing concentration used in processing in the ozone gas bake unit 21. For example, when the ozone gas supply unit 11 starts the apparatus from a stopped state in which no ozone gas is generated, with the target concentration set as the processing concentration, the concentration of ozone gas supplied from the ozone gas supply unit changes, for example, as shown in FIG. 5. Note that FIG. 5 is a graph showing the change in ozone gas concentration in the ozone gas supply unit.
 このようにオゾンガス供給ユニット11は、装置を起動してから2分近く経過しないと、処理濃度に達しない特性があることがわかる。上述したタワーユニットTW1の4個のオゾンガスベークユニット21に対して一つのオゾンガス供給ユニット11から処理濃度のオゾンガスが供給される。また、タワーユニットTW3の4個のオゾンガスベークユニット21に対してもう一つのオゾンガス供給ユニット11から処理濃度のオゾンガスが供給される。 As described above, it can be seen that the ozone gas supply unit 11 has the characteristic that the treatment concentration is not reached until nearly two minutes have passed since the device was started up. Ozone gas at the treatment concentration is supplied from one ozone gas supply unit 11 to the four ozone gas bake units 21 of the tower unit TW1 described above. Also, ozone gas at the treatment concentration is supplied from another ozone gas supply unit 11 to the four ozone gas bake units 21 of the tower unit TW3.
 オゾンガス分解ユニット13は、オゾンガスベークユニット21から排出されてきたオゾンガスを含む気体を取り込み、オゾンガスを無害化処理する。無害化処理された気体は、例えば、クリーンルームが備えている排気口に排気される。2台のオゾンガス分解ユニット13のうちの1台のオゾンガス分解ユニット13は、例えば、タワーTW1の4個のオゾンガスベークユニット21からの排気を処理する。残りの1台のオゾンガス分解ユニット13は、例えば、タワーTW3の4個のオゾンガスベークユニット21からの排気を処理する。 The ozone gas decomposition unit 13 takes in the gas containing ozone gas discharged from the ozone gas bake unit 21 and detoxifies the ozone gas. The detoxified gas is exhausted, for example, to an exhaust port provided in a clean room. One of the two ozone gas decomposition units 13 processes exhaust from, for example, the four ozone gas bake units 21 of tower TW1. The remaining ozone gas decomposition unit 13 processes exhaust from, for example, the four ozone gas bake units 21 of tower TW3.
 なお、オゾンガス供給ユニット11が本発明における「オゾンガス供給源」に相当する。 The ozone gas supply unit 11 corresponds to the "ozone gas supply source" in this invention.
 ここで図6を参照する。なお、図6は、オゾンガスベークユニット及び気体の供給系と排気系とを示した図である。以下の説明においては、タワーユニットTW1のオゾンガスベークユニット21を例にとって説明するが、タワーユニットTW3のオゾンガスベークユニット21も同様の構成である。 Now, reference is made to FIG. 6, which shows the ozone gas bake unit and the gas supply and exhaust systems. In the following explanation, the ozone gas bake unit 21 of tower unit TW1 will be used as an example, but the ozone gas bake unit 21 of tower unit TW3 has a similar configuration.
 タワーユニットTW1を構成している各オゾンガスベークユニット21は、下部リッド25と、上部リッド27と、熱処理プレート29と、昇降機構31とを備えたチャンバ32を備えている。昇降機構31は、上部リッド27と連結する接続部と、接続部を移動するモータとを備える。下部リッド25は、上下方向Zにおける下方に配置されている。下部リッド25は、上方に開口部を有する筐体である。上部リッド27は、下方に開口部を有する筐体である。下部リッド25は、熱処理プレート29を備えている。熱処理プレート29は、基板Wを当接して支持する。熱処理プレート29は、基板Wを所定温度に加熱する。上部リッド27は、下部リッド25に対して下降して当接する。上部リッド27の開口部と下部リッド25の開口部は、略同一形状となっており、上部リッド27と下部リッド25は昇降機構31により接離可能であり、上部リッド27と下部リッド25が接合することにより上部リッド27と下部リッド25は内部に閉鎖空間を形成する。熱処理プレート29を含む当該閉鎖空間が、基板Wが処理される処理空間となる。上部リッド27は、昇降機構31によって下部リッド25に対して昇降される。昇降機構31は、基板Wに対して処理を行う処理時には、下部リッド25に上部リッド27を下降させる。一方、昇降機構31は、処理空間との間で基板Wを受け渡し、処理を行っていない非処理時には、下部リッド25の上方に上部リッド27を上昇させる。 Each ozone gas bake unit 21 constituting tower unit TW1 has a chamber 32 equipped with a lower lid 25, an upper lid 27, a heat treatment plate 29, and a lifting mechanism 31. The lifting mechanism 31 has a connection part that connects to the upper lid 27 and a motor that moves the connection part. The lower lid 25 is disposed at the bottom in the vertical direction Z. The lower lid 25 is a housing with an opening at the top. The upper lid 27 is a housing with an opening at the bottom. The lower lid 25 has a heat treatment plate 29. The heat treatment plate 29 abuts against and supports the substrate W. The heat treatment plate 29 heats the substrate W to a predetermined temperature. The upper lid 27 descends and abuts against the lower lid 25. The opening of the upper lid 27 and the opening of the lower lid 25 have approximately the same shape, and the upper lid 27 and the lower lid 25 can be attached and detached by a lifting mechanism 31. When the upper lid 27 and the lower lid 25 are joined together, the upper lid 27 and the lower lid 25 form a closed space inside. This closed space including the heat treatment plate 29 becomes the processing space in which the substrate W is processed. The upper lid 27 is raised and lowered relative to the lower lid 25 by the lifting mechanism 31. The lifting mechanism 31 lowers the upper lid 27 onto the lower lid 25 when processing the substrate W. On the other hand, the lifting mechanism 31 transfers the substrate W between the processing space, and raises the upper lid 27 above the lower lid 25 when processing is not being performed.
 タワーユニットTW1は、一つの排気主管33を備えている。排気主管33は、タワーユニットTW1における最下層から最上層にわたって配置されている。排気主管33の下部は、オゾンガス分解ユニット13に連通接続されている。タワーユニットTW1は、一つの供給配管35を備えている。この供給配管35も、タワーユニットTW1における最下層から最上層にわたって配置されている。供給配管35は、一端側がオゾンガス供給ユニット11に連通接続されている。この供給配管35には、オゾンガス供給ユニット11から処理濃度のオゾンガスが供給される。 Tower unit TW1 has one exhaust main pipe 33. The exhaust main pipe 33 is arranged from the bottom to the top of tower unit TW1. The lower part of the exhaust main pipe 33 is connected to the ozone gas decomposition unit 13. Tower unit TW1 has one supply pipe 35. This supply pipe 35 is also arranged from the bottom to the top of tower unit TW1. One end of the supply pipe 35 is connected to the ozone gas supply unit 11. Ozone gas at the treatment concentration is supplied to this supply pipe 35 from the ozone gas supply unit 11.
 なお、熱処理プレート29が本発明における「保持機構」に相当する。 The heat treatment plate 29 corresponds to the "holding mechanism" in this invention.
 ここで、図7を参照する。なお、図7は、オゾンガスによる非処理時の説明に供する図である。 Here, we refer to Figure 7. Note that Figure 7 is a diagram used to explain the situation when not using ozone gas for treatment.
 オゾンガス供給ユニット11は、生成配管41と、マスフローコントローラ43と、オゾンガス生成器45と、フィルタ47と、自動圧力調整器49と、制御弁51とを備えている。 The ozone gas supply unit 11 includes a generation pipe 41, a mass flow controller 43, an ozone gas generator 45, a filter 47, an automatic pressure regulator 49, and a control valve 51.
 生成配管41は、その一端側が、例えば、クリーンルームが備えるユーティリティの一つである酸素供給源(不図示)に連通接続されている。生成配管41は、その他端側が供給配管35に連通接続されている。生成配管41には、酸素供給源側から供給配管35側に向かって、マスフローコントローラ43と、オゾンガス生成器45と、フィルタ47と、自動圧力調整器49と、制御弁51とがその順に取り付けられている。 One end of the generation pipe 41 is connected to, for example, an oxygen supply source (not shown), which is one of the utilities provided in a clean room. The other end of the generation pipe 41 is connected to the supply pipe 35. On the generation pipe 41, a mass flow controller 43, an ozone gas generator 45, a filter 47, an automatic pressure regulator 49, and a control valve 51 are attached in that order from the oxygen supply source side to the supply pipe 35 side.
 マスフローコントローラ43は、生成配管41に供給される酸素の流量を所定流量に制御する。オゾンガス生成器45は、例えば、4個のオゾンガス生成モジュールを並列に配置されて構成されている。各オゾンガス生成モジュールは、酸素からオゾンガスを生成させる。オゾンガス生成器45で生成されたオゾンガスは、フィルタ47によってパーティクル等が除去される。フィルタ47を通過したオゾンガスは、自動圧力調整器49により所定の第1の圧力P1(例えば、200kPa)に調整される。制御弁51は、第1の圧力P1に調整されたオゾンガスについて、供給配管35への流通を制御する。 The mass flow controller 43 controls the flow rate of oxygen supplied to the generation pipe 41 to a predetermined flow rate. The ozone gas generator 45 is configured, for example, by arranging four ozone gas generation modules in parallel. Each ozone gas generation module generates ozone gas from oxygen. The ozone gas generated by the ozone gas generator 45 has particles and the like removed by a filter 47. The ozone gas that passes through the filter 47 is adjusted to a predetermined first pressure P1 (for example, 200 kPa) by an automatic pressure regulator 49. The control valve 51 controls the flow of the ozone gas adjusted to the first pressure P1 to the supply pipe 35.
 上述したオゾンガス供給ユニット11は、例えば、最大で100リットル/分の流量でオゾンガスを供給できる。上述した自動圧力調整器49は、調整圧力が第1の圧力P1に設定されているので、生成配管41の最下流部(供給配管35との連通接続部)における圧力が第1の圧力P1(実施例では、例えば、200kPa)となるように調整される。また、供給配管35におけるオゾンガスの流量は、オゾンガス供給ユニット11の性能に応じて最大で第1の流量F1(例えば、100リットル/分)となる。 The above-mentioned ozone gas supply unit 11 can supply ozone gas at a flow rate of, for example, a maximum of 100 liters/minute. The above-mentioned automatic pressure regulator 49 has an adjustment pressure set to the first pressure P1, so that the pressure at the most downstream part of the generation pipe 41 (the part communicating with the supply pipe 35) is adjusted to the first pressure P1 (for example, 200 kPa in this embodiment). In addition, the flow rate of ozone gas in the supply pipe 35 is a maximum of the first flow rate F1 (for example, 100 liters/minute) depending on the performance of the ozone gas supply unit 11.
 図6に戻る。オゾンガス供給ユニット11の生成配管41の他端側に連通接続された供給配管35は、各オゾンガスベークユニット21に分岐されている。オゾンガスベークユニット21には、供給配管35から各チャンバ32に分岐して設けられた流通配管53が連通接続されている。具体的には、流通配管53は、一端側が供給配管35に連通接続され、他端側が各チャンバ32に連通接続されている。詳細には、流通配管53の他端側は、上部リッド25に取り付けられ、チャンバ32内に形成される処理空間に連通接続されている。 Returning to FIG. 6, the supply pipe 35 connected to the other end of the generation pipe 41 of the ozone gas supply unit 11 branches off to each ozone gas bake unit 21. The ozone gas bake unit 21 is connected to a circulation pipe 53 that branches off from the supply pipe 35 to each chamber 32. Specifically, one end of the circulation pipe 53 is connected to the supply pipe 35, and the other end is connected to each chamber 32. More specifically, the other end of the circulation pipe 53 is attached to the upper lid 25, and connected to the processing space formed in the chamber 32.
 流通配管53は、制御弁55と、マスフローコントローラ57と、フィルタ59とを供給配管35からチャンバ32に向かってその順に設けられている。制御弁55は、供給配管35からチャンバ32へのオゾンガスの流通を制御する。マスフローコントローラ57は、流通配管53を流通してチャンバ32へ供給されるオゾンガスの流量を調整する。フィルタ59は、流通配管53を流通しているオゾンガスに含まれるパーティクル等を除去する。 The flow pipe 53 has a control valve 55, a mass flow controller 57, and a filter 59 arranged in that order from the supply pipe 35 toward the chamber 32. The control valve 55 controls the flow of ozone gas from the supply pipe 35 to the chamber 32. The mass flow controller 57 adjusts the flow rate of the ozone gas that flows through the flow pipe 53 and is supplied to the chamber 32. The filter 59 removes particles and the like contained in the ozone gas flowing through the flow pipe 53.
 例えば、マスフローコントローラ57は、オゾンガスの流量が最大で20リットル/分であって、処理流量として10リットル/分に設定される。 For example, the mass flow controller 57 is set to a maximum ozone gas flow rate of 20 liters/minute and a processing flow rate of 10 liters/minute.
 流通配管53には、第1の分岐点61と、第2の分岐点63が設けられている。第1の分岐点61は、流通配管53のうち、チャンバ32とフィルタ59との間に設けられている。換言すると、第1の分岐点61は、流通配管53のうち、フィルタ59よりもチャンバ32側に設けられている。第2の分岐点63は、流通配管53のうち、フィルタ59と、マスフローコントローラ57及び制御弁55との間に設けられている。 The flow pipe 53 is provided with a first branch point 61 and a second branch point 63. The first branch point 61 is provided in the flow pipe 53 between the chamber 32 and the filter 59. In other words, the first branch point 61 is provided in the flow pipe 53 on the chamber 32 side of the filter 59. The second branch point 63 is provided in the flow pipe 53 between the filter 59 and the mass flow controller 57 and the control valve 55.
 第1の分岐点61には、不活性ガス供給配管65の一端側が連通接続されている。不活性ガス供給配管65の他端側は、例えば、クリーンルームのユーティリティの一つである窒素ガス供給源に連通接続されている。不活性ガス供給配管65は、窒素ガス供給源側から第1の分岐点61に向かって、マスフローコントローラ67と、制御弁69と、フィルタ71とをその順に取り付けられている。マスフローコントローラ67は、不活性ガス供給配管65に供給される窒素ガスの流量を調整する。制御弁69は、不活性ガス供給配管65における窒素ガスの流通を制御する。フィルタ71は、不活性ガス供給配管65を流通する窒素ガスに含まれるパーティクル等を除去する。なお、不活性ガス供給配管65は、流通配管53からオゾンガスが流入しないように、例えば、制御弁69とマスフローコントローラ67との間に逆止弁を備えていることが好ましい。 One end of the inert gas supply pipe 65 is connected to the first branch point 61. The other end of the inert gas supply pipe 65 is connected to, for example, a nitrogen gas supply source, which is one of the utilities of the clean room. The inert gas supply pipe 65 is equipped with a mass flow controller 67, a control valve 69, and a filter 71 in this order from the nitrogen gas supply source side toward the first branch point 61. The mass flow controller 67 adjusts the flow rate of the nitrogen gas supplied to the inert gas supply pipe 65. The control valve 69 controls the flow of the nitrogen gas in the inert gas supply pipe 65. The filter 71 removes particles and the like contained in the nitrogen gas flowing through the inert gas supply pipe 65. It is preferable that the inert gas supply pipe 65 is provided with a check valve, for example, between the control valve 69 and the mass flow controller 67 to prevent ozone gas from flowing in from the flow pipe 53.
 なお、流通配管53が本発明における「第1の配管」に相当し、制御弁55が本発明における「第1の制御弁」に相当し、フィルタ59が本発明における「第1のフィルタ」に相当する。また、不活性ガス供給配管65が本発明における「第2の配管」に相当し、制御弁69が本発明における「第2の制御弁」に相当し、フィルタ71が本発明における「第2のフィルタ」に相当する。 The flow pipe 53 corresponds to the "first pipe" in this invention, the control valve 55 corresponds to the "first control valve" in this invention, and the filter 59 corresponds to the "first filter" in this invention. The inert gas supply pipe 65 corresponds to the "second pipe" in this invention, the control valve 69 corresponds to the "second control valve" in this invention, and the filter 71 corresponds to the "second filter" in this invention.
 第2の分岐点63には、吸引配管73の一端側が連通接続されている。吸引配管73の他端側は、真空エジェクタ75の吸い込み口に連通接続されている。真空エジェクタ75の排出口は、排気主管33に連通接続されている。真空エジェクタ75は、供給口に圧縮空気が供給されると、吸い込み口から排出口に向かう気体の流れが形成される。吸引配管73は、吸引される気体の流通を制御する制御弁74を備えている。 One end of the suction pipe 73 is connected to the second branch point 63. The other end of the suction pipe 73 is connected to the suction port of the vacuum ejector 75. The exhaust port of the vacuum ejector 75 is connected to the main exhaust pipe 33. When compressed air is supplied to the supply port of the vacuum ejector 75, a gas flow is formed from the suction port to the exhaust port. The suction pipe 73 is equipped with a control valve 74 that controls the flow of the gas being sucked in.
 なお、制御弁74が本発明における「吸引制御弁」に相当する。 The control valve 74 corresponds to the "suction control valve" in this invention.
 上記の吸引配管73からの吸引は、例えば、次のように行われる。 The suction from the suction pipe 73 is performed, for example, as follows.
 流通配管53からオゾンガスがチャンバ32に供給された後、オゾンガスを窒素ガスで置換する処理が行われる。その際には、不活性ガス供給配管65から窒素ガスが第1の分岐点61に供給される。その際に、吸引配管73による吸引を行わせる。これにより、フィルタ59やマスフローコントローラ57内に残留したオゾンガスが窒素ガスの流れにより、チャンバ32に引き込まれないようにできる。したがって、窒素ガスによるオゾンガスの置換に要する時間を短縮できる。また、機械的動作を含むマスフローコントローラ57及び制御弁55で発生する恐れがあるパーティクルが、窒素ガスの流れに引き込まれてチャンバ32に流入することを防止できる。 After ozone gas is supplied to the chamber 32 from the flow pipe 53, a process of replacing the ozone gas with nitrogen gas is performed. At this time, nitrogen gas is supplied to the first branch point 61 from the inert gas supply pipe 65. At this time, suction is performed by the suction pipe 73. This prevents ozone gas remaining in the filter 59 and mass flow controller 57 from being drawn into the chamber 32 by the flow of nitrogen gas. Therefore, the time required to replace the ozone gas with nitrogen gas can be shortened. In addition, particles that may be generated in the mass flow controller 57 and control valve 55, which include mechanical operations, can be prevented from being drawn into the flow of nitrogen gas and flowing into the chamber 32.
 真空エジェクタ75は、真空ポンプなどに比較して小型で安価である。したがって、基板処理装置1の小型化に貢献でき、コストの上昇も抑制できる。 The vacuum ejector 75 is smaller and less expensive than a vacuum pump, etc. This contributes to the miniaturization of the substrate processing apparatus 1 and also helps prevent increases in costs.
 チャンバ32には、排気管77の一端側が連通接続されている。排気管77の他端側には、真空エジェクタ79の吸い込み口が連通接続されている。真空エジェクタ79の排出口は、排気主管33に連通接続されている。真空エジェクタ79に圧縮空気を供給して、真空エジェクタ79の吸い込み口から排出口に向かう排気流を形成するための供給口には、第1の供給管81の一端側が連通接続されている。第1の供給管81の他端側には、例えば、クリーンルームのユーティリティの一つである圧縮空気源が連通接続されている。 One end of an exhaust pipe 77 is connected to the chamber 32. The other end of the exhaust pipe 77 is connected to the suction port of a vacuum ejector 79. The exhaust port of the vacuum ejector 79 is connected to the main exhaust pipe 33. One end of a first supply pipe 81 is connected to a supply port that supplies compressed air to the vacuum ejector 79 to form an exhaust flow from the suction port of the vacuum ejector 79 to the exhaust port. The other end of the first supply pipe 81 is connected to, for example, a compressed air source, which is one of the utilities of a clean room.
 第1の駆動管81は、圧縮空気源から真空エジェクタ79側に向かって流量調整弁83と開閉弁85とがその順に設けられている。流量調整弁83は、第1の流量Faで圧縮空気が第1の駆動管81を流通するように圧縮空気の流量を調整する。開閉弁85は、第1の駆動管81における、第1の流量Faに設定された圧縮空気の流通を制御する。第1の駆動管81における流量調整弁83より上流の部位と、第1の駆動管81における開閉弁85と真空エジェクタ79との間の部位とには、第2の駆動管87の両端部が連通接続されている。第2の駆動管87は、圧縮空気源側から真空エジェクタ79側に向かって流量調整弁89と、開閉弁91とがその順に設けられている。流量調整弁89は、第2の流量Fbで圧縮空気が第2の駆動管87を流通するように圧縮空気の流量を調整する。開閉弁91は、第2の駆動管87における、第2の流量Fbに設定された圧縮空気の流通を制御する。第2の流量Fbは、第1の流量Faよりも小さくなるように、流量調整弁83,89が設定されている。 The first drive tube 81 is provided with a flow control valve 83 and an on-off valve 85 in that order from the compressed air source toward the vacuum ejector 79 side. The flow control valve 83 adjusts the flow rate of the compressed air so that the compressed air flows through the first drive tube 81 at a first flow rate Fa. The on-off valve 85 controls the flow of the compressed air set to the first flow rate Fa in the first drive tube 81. Both ends of the second drive tube 87 are connected in communication with a portion of the first drive tube 81 upstream of the flow control valve 83 and a portion of the first drive tube 81 between the on-off valve 85 and the vacuum ejector 79. The second drive tube 87 is provided with a flow control valve 89 and an on-off valve 91 in that order from the compressed air source toward the vacuum ejector 79 side. The flow control valve 89 adjusts the flow rate of the compressed air so that the compressed air flows through the second drive tube 87 at a second flow rate Fb. The on-off valve 91 controls the flow of compressed air, which is set to a second flow rate Fb, through the second drive pipe 87. The flow rate adjustment valves 83 and 89 are set so that the second flow rate Fb is smaller than the first flow rate Fa.
 排気管77は、開閉弁93を備えている。排気管77は、開閉弁93とチャンバ32との間に、パージ管94の一端側が連通接続されている。パージ管94の他端側は、排気主管33に連通接続されている。パージ管94は、開閉弁95を備えている。開閉弁95は、パージ管94における気体の流通を制御する。 The exhaust pipe 77 is equipped with an on-off valve 93. One end of a purge pipe 94 is connected between the exhaust pipe 77 and the on-off valve 93 and the chamber 32. The other end of the purge pipe 94 is connected to the main exhaust pipe 33. The purge pipe 94 is equipped with an on-off valve 95. The on-off valve 95 controls the flow of gas in the purge pipe 94.
 上述した排気管77による排気は、次のように行われる。 The exhaust through the exhaust pipe 77 described above is carried out as follows.
 開閉弁85,89,93,95のうち、開閉弁93,85だけが開放されると、第1の流量Faにより真空エジェクタ79が動作される。これにより、排気管77を介して、チャンバ32内の気体が強く吸い出されて強排気される。開閉弁91,93だけが開放されると、第2の流量Fb(<第1の流量Fa)によって真空エジェクタ79が動作される。これにより、排気管77を介して、チャンバ32内の気体が弱く吸い出されて弱排気される。不活性ガス供給配管65から窒素ガスがチャンバ32に供給されている場合に、開閉弁95だけが開放されると、排気管77及びパージ管94を介してチャンバ32内の気体が窒素ガスだけによって押し出される。 When only the on-off valves 93 and 85 of the on-off valves 85, 89, 93, and 95 are opened, the vacuum ejector 79 is operated by the first flow rate Fa. This causes the gas in the chamber 32 to be strongly sucked out and strongly exhausted through the exhaust pipe 77. When only the on-off valves 91 and 93 are opened, the vacuum ejector 79 is operated by the second flow rate Fb (<first flow rate Fa). This causes the gas in the chamber 32 to be weakly sucked out and weakly exhausted through the exhaust pipe 77. When nitrogen gas is being supplied to the chamber 32 from the inert gas supply pipe 65, when only the on-off valve 95 is opened, the gas in the chamber 32 is pushed out by only the nitrogen gas through the exhaust pipe 77 and the purge pipe 94.
 供給配管35は、補助配管97を備えている。補助配管97は、一端側が供給配管35に連通接続されている。補助配管97は、他端側が排気主管33に連通接続されている。補助配管97は、供給配管35から排気主管33に向かって、自動圧力調整器99と、制御弁101とを備えている。自動圧力調整器99は、供給配管35から分岐した補助配管97におけるオゾンガスの圧力が所定の第2の圧力P2(例えば、100kPa)に調整される。ここで、供給配管35におけるオゾンガスの流量は、第1の流量F1であり、供給配管35において補助配管97よりも各チャンバ32側に流れるオゾンガスを第2の流量F2とする。この場合、第1の流量F1と第2の流量F2との差分の流量をΔFとすると、補助配管97は、差分の流量ΔFが流通する。 The supply pipe 35 is provided with an auxiliary pipe 97. One end of the auxiliary pipe 97 is connected to the supply pipe 35. The other end of the auxiliary pipe 97 is connected to the exhaust main pipe 33. The auxiliary pipe 97 is provided with an automatic pressure regulator 99 and a control valve 101 from the supply pipe 35 toward the exhaust main pipe 33. The automatic pressure regulator 99 adjusts the pressure of the ozone gas in the auxiliary pipe 97 branched from the supply pipe 35 to a predetermined second pressure P2 (for example, 100 kPa). Here, the flow rate of the ozone gas in the supply pipe 35 is a first flow rate F1, and the ozone gas flowing on the side of each chamber 32 in the supply pipe 35 from the auxiliary pipe 97 is a second flow rate F2. In this case, if the flow rate difference between the first flow rate F1 and the second flow rate F2 is ΔF, the auxiliary pipe 97 flows with the flow rate of the difference ΔF.
 各オゾンガスベークユニット21は、チャンバ32の外部であって、各オゾンガスベークユニット21内の気体を排出する外部排気管103を備えている。外部排気管103は、チャンバ32や、上述した各種の配管や弁などの周囲の気体を、例えば、クリーンルームが備えている排気口に排気する。 Each ozone gas bake unit 21 is provided with an external exhaust pipe 103 that is outside the chamber 32 and exhausts gas from within the ozone gas bake unit 21. The external exhaust pipe 103 exhausts gas from the chamber 32 and the surrounding areas of the various pipes and valves described above, for example, to an exhaust port provided in a clean room.
 図4に示すように、基板処理装置1は、制御部111を備えている。制御部111は、CPUやメモリを備えている。制御部111は、オペレータが制御コンソール(不図示)を操作することにより、その操作に基づいて各部の動作を統括的に制御する。具体的には、制御部111は、インデクサブロック3におけるインデクサロボットIRの搬送制御、搬送ブロック7におけるセンターロボットCRの搬送制御、処理ブロック5における各処理ユニット15の処理制御、処理液供給ブロック9における各種処理液の送出制御、オゾンガス供給ユニット11及びオゾンガス分解ユニット13の動作制御を行う。 As shown in FIG. 4, the substrate processing apparatus 1 includes a control unit 111. The control unit 111 includes a CPU and a memory. The control unit 111 performs overall control of the operation of each unit based on an operator's operation of a control console (not shown). Specifically, the control unit 111 performs transport control of the indexer robot IR in the indexer block 3, transport control of the center robot CR in the transport block 7, process control of each processing unit 15 in the processing block 5, control of the delivery of various processing liquids in the processing liquid supply block 9, and operation control of the ozone gas supply unit 11 and the ozone gas decomposition unit 13.
 制御部111は、オゾンガスの流量に関して、例えば、次のように各部の操作を行う。なお、オゾンガス供給ユニット11は、既に動作して、処理濃度のオゾンガスを供給できる状態にあり、制御弁51が開放されているとする。上述した制御部111は、以下に説明する流量の差分ΔFが所定値内に収まるように、各マスフローコントローラ57及び開閉弁55による流量に連動して、マスフローコントローラ99及び制御弁101によるオゾンガスの流量を調整する。 The control unit 111 operates each unit with respect to the flow rate of ozone gas, for example, as follows. It is assumed that the ozone gas supply unit 11 is already operating and in a state in which it can supply ozone gas at the treatment concentration, and the control valve 51 is open. The above-mentioned control unit 111 adjusts the flow rate of ozone gas by the mass flow controller 99 and the control valve 101 in conjunction with the flow rates by the mass flow controllers 57 and the on-off valves 55 so that the flow rate difference ΔF described below falls within a predetermined value.
 図7に示すように、チャンバ32においてオゾンガスによる処理を行わない非処理時には、各制御弁55を閉止させるとともに、制御弁101を開放させる。これにより、供給配管35から各チャンバ32へはオゾンガスが供給されない。オゾンガス供給ユニット11から供給配管35に供給されているオゾンガスは、補助配管97を介して排気主管33に排出されている。この状態では、オゾンガス供給ユニット11の生成配管41におけるオゾンガスの圧力が第1の圧力P1(=200kPa)であり、補助配管97におけるオゾンガスの圧力が第2の圧力P2(=100kPa)である。また、流量については、例えば、生成配管41における第1の流量F1が100リットル/分であり、供給配管35における第2の流量F2が0リットル/分である。よって、第1の流量F1と第2の流量F2との差分である流量の差分ΔFが100リットル/分となる。 As shown in FIG. 7, when no treatment is being performed with ozone gas in the chamber 32, each control valve 55 is closed and the control valve 101 is opened. As a result, ozone gas is not supplied from the supply pipe 35 to each chamber 32. The ozone gas supplied to the supply pipe 35 from the ozone gas supply unit 11 is discharged to the exhaust main pipe 33 via the auxiliary pipe 97. In this state, the pressure of the ozone gas in the generation pipe 41 of the ozone gas supply unit 11 is the first pressure P1 (= 200 kPa), and the pressure of the ozone gas in the auxiliary pipe 97 is the second pressure P2 (= 100 kPa). In addition, regarding the flow rate, for example, the first flow rate F1 in the generation pipe 41 is 100 liters/minute, and the second flow rate F2 in the supply pipe 35 is 0 liters/minute. Therefore, the flow rate difference ΔF, which is the difference between the first flow rate F1 and the second flow rate F2, is 100 liters/minute.
 ここで、図8を参照する。なお、図8は、オゾンガスによる処理時の説明に供する図である。 Here, we refer to Figure 8. Note that Figure 8 is a diagram used to explain the process using ozone gas.
 チャンバ32においてオゾンガスによる処理を行う処理時、具体的には、4個のチャンバ32のうち、少なくとも1個のチャンバ32にオゾンガスを供給して、そのチャンバ32においてオゾンガスによる処理を行う処理時には、処理を行うチャンバ32の制御弁55を開放させる。このとき、制御弁101は開放されているものの、流量が調整されている。 When processing with ozone gas is performed in chamber 32, specifically, ozone gas is supplied to at least one of the four chambers 32, and when processing with ozone gas is performed in that chamber 32, the control valve 55 of the chamber 32 performing the processing is opened. At this time, the control valve 101 is open, but the flow rate is adjusted.
 例えば、4個の全てチャンバ32でオゾンガスによる処理を行う場合には、各チャンバ32における処理の所要量に応じて、最大で20リットル/分の流量でオゾンガスが供給される。したがって、第2の流量F2は、最大で80リットル/分となる。第1の流量F1は、100リットル/分であるので、流量の差分ΔFは、最小で20リットル/分となる。このように、流量の差分ΔFが所定値内となるように、マスフローコントローラ99及び制御弁101を制御する。したがって、第1の流量F1を第2の流量F2が超えないように、オゾンガス供給ユニット11側に所定値分の余力を残すことができるので、各チャンバ32へのオゾンガスの供給を安定して行うことができる。また、逆に、マスフローコントローラ99と制御弁101により流量の差分ΔFを調整することにより、第2の流量F2を加減することができる。その結果、4個のチャンバ32の全てに対して一括してオゾンガスの流量を可変することもできる。これにより、各チャンバ32におけるマスフローコントローラ57を操作するよりも、流量の制御を簡易化できる。 For example, when processing with ozone gas is performed in all four chambers 32, ozone gas is supplied at a maximum flow rate of 20 liters/minute according to the required amount of processing in each chamber 32. Therefore, the second flow rate F2 is a maximum of 80 liters/minute. Since the first flow rate F1 is 100 liters/minute, the flow rate difference ΔF is a minimum of 20 liters/minute. In this manner, the mass flow controller 99 and the control valve 101 are controlled so that the flow rate difference ΔF is within a predetermined value. Therefore, a predetermined amount of reserve capacity can be left on the ozone gas supply unit 11 side so that the second flow rate F2 does not exceed the first flow rate F1, so that the supply of ozone gas to each chamber 32 can be stably performed. Conversely, the second flow rate F2 can be increased or decreased by adjusting the flow rate difference ΔF with the mass flow controller 99 and the control valve 101. As a result, the flow rate of ozone gas can be varied collectively for all four chambers 32. This makes it easier to control the flow rate than by operating the mass flow controllers 57 in each chamber 32.
 次に、図9を参照して、上述した基板処理装置1における処理について説明する。図9は、動作の一例を示すフローチャートである。なお、以下の説明においては、オゾンガス処理及びSPM処理に係る部分についてのみ詳細に説明し、その他の動作については簡略化あるいは省略する。また、発明の理解を容易にするために、1枚の基板Wの流れについてのみ説明する。 Next, the processing in the above-mentioned substrate processing apparatus 1 will be described with reference to FIG. 9. FIG. 9 is a flow chart showing an example of the operation. Note that in the following explanation, only the parts related to the ozone gas processing and SPM processing will be explained in detail, and other operations will be simplified or omitted. Also, to make it easier to understand the invention, only the flow of one substrate W will be explained.
 ステップS1
 オペレータは、基板処理装置1を起動する。さらに、これに連動してオゾンガス供給ユニット11及びオゾンガス分解ユニット13も起動する。これにより、制御部111の制御の下、処理濃度となるオゾンガスの生成をオゾンガス供給ユニット11が開始する。図5に示したように、処理濃度のオゾンガスを生成するには約2分程度を要する。
Step S1
The operator starts up the substrate processing apparatus 1. In addition, in conjunction with this, the ozone gas supply unit 11 and the ozone gas decomposition unit 13 are also started up. As a result, under the control of the control unit 111, the ozone gas supply unit 11 starts generating ozone gas having a processing concentration. As shown in Fig. 5, it takes about 2 minutes to generate ozone gas having a processing concentration.
 ステップS2
 制御部111は、オゾンガス供給ユニット11により処理濃度のオゾンガスが生成されるまでの所定時間が経過したか否を監視し、所定時間が経過した時点で次のステップS3に移行する。なお、オゾンガスの濃度が処理濃度に達する前であっても、図7に示すオゾンガスによる非処理時と同じように、生成されたオゾンガスは全て補助配管97を介して排気主管33を介して排気される。
Step S2
The control unit 111 monitors whether a predetermined time has elapsed until ozone gas of a treatment concentration is generated by the ozone gas supply unit 11, and proceeds to the next step S3 at the point in time when the predetermined time has elapsed. Note that even before the concentration of ozone gas reaches the treatment concentration, all of the generated ozone gas is exhausted through the auxiliary pipe 97 and the main exhaust pipe 33, as in the case of non-treatment with ozone gas shown in FIG.
 ステップS3
 オペレータは、制御コンソール(不図示)から処理の開始を指示する。
Step S3
An operator issues an instruction to start processing from a control console (not shown).
 ステップS4
 キャリアCに収容されている処理対象の基板Wがインデクサブロック3を介してパス部19に搬送され、センターロボットCRによりオゾンガスベークユニット21に搬入される。なお、次のステップS5にて基板Wがチャンバ32に搬入される処理前においては、制御部111は、制御弁69及びマスフローコントローラ67を操作して、チャンバ32に窒素ガスを供給する。さらに、制御部111は、流量調整弁89と開閉弁91により、真空エジェクタ79を動作させる。これにより、チャンバ32内が弱排気され、処理空間が不活性ガスで清浄な状態に保たれる。
Step S4
The substrate W to be processed accommodated in the carrier C is transported to the path section 19 via the indexer block 3, and is loaded into the ozone gas bake unit 21 by the center robot CR. Before the substrate W is loaded into the chamber 32 for processing in the next step S5, the control section 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas to the chamber 32. Furthermore, the control section 111 operates the vacuum ejector 79 by the flow rate adjustment valve 89 and the opening/closing valve 91. As a result, the inside of the chamber 32 is weakly evacuated, and the processing space is kept clean with the inert gas.
 ステップS5
 制御部111は、基板Wがチャンバ32に収容されると、昇降機構31により上部リッド27を下部リッド25に移動させる。これにより、チャンバ32が密閉される。このとき、制御部111は、流量調整弁89と開閉弁91を操作して第2の駆動管81による真空エジェクタ79の動作を停止させる。さらに、制御部111は、流量調整弁83及び開閉弁85により、真空エジェクタ79を動作させる。なお、不活性ガス供給配管65から供給される窒素ガスの流量よりも、真空エジェクタ79の吸い込み口の流量の方が大きい。これにより、チャンバ32内が強排気されるので、処理空間が負圧となる。そのため、上部リッド27が下部リッド25に対して強く密着され、チャンバ32が周囲に対して完全に密閉される。
Step S5
When the substrate W is accommodated in the chamber 32, the control unit 111 moves the upper lid 27 to the lower lid 25 by the lifting mechanism 31. This seals the chamber 32. At this time, the control unit 111 operates the flow rate control valve 89 and the on-off valve 91 to stop the operation of the vacuum ejector 79 by the second drive tube 81. Furthermore, the control unit 111 operates the vacuum ejector 79 by the flow rate control valve 83 and the on-off valve 85. Note that the flow rate of the suction port of the vacuum ejector 79 is greater than the flow rate of the nitrogen gas supplied from the inert gas supply pipe 65. This strongly exhausts the inside of the chamber 32, so that the processing space is under negative pressure. Therefore, the upper lid 27 is tightly attached to the lower lid 25, and the chamber 32 is completely sealed from the surroundings.
 その後、制御部111は、熱処理プレート29に載置された基板Wの温度が所定温度(例えば、100~300℃)に上昇するまで待機する。基板Wの温度が所定温度に達すると、制御部111は、オゾンガスによる処理を開始する。 Then, the control unit 111 waits until the temperature of the substrate W placed on the heat treatment plate 29 rises to a predetermined temperature (e.g., 100 to 300°C). When the temperature of the substrate W reaches the predetermined temperature, the control unit 111 starts treatment with ozone gas.
 具体的には、制御部111は、チャンバ32に処理濃度のオゾンガスが所要の流量で供給されるように、マスフローコントローラ57及び制御弁55を操作する。さらに、これにより、基板Wが載置されている処理空間に処理濃度のオゾンガスが供給される。オゾンガスが供給されている状態は、図10に矢付破線で示すようなものとなる。 Specifically, the control unit 111 operates the mass flow controller 57 and the control valve 55 so that ozone gas at the processing concentration is supplied to the chamber 32 at the required flow rate. This causes ozone gas at the processing concentration to be supplied to the processing space in which the substrate W is placed. The state in which ozone gas is being supplied is as shown by the dashed line with an arrow in FIG. 10.
 このとき、制御部111は、流量調整弁83及び開閉弁85を操作して強排気を停止する。さらに、制御部111は、流量調整弁89及び開閉弁91を操作して弱排気に切り換える。これにより、処理濃度のオゾンガスが処理空間に滞留するので、オゾンガスによる処理を十分に行わせることができる。所定のオゾンガスの処理時間が経過すると、制御部111は、マスフローコントローラ57及び制御弁55を操作して、チャンバ32へのオゾンガスの供給を停止する。 At this time, the control unit 111 operates the flow rate adjustment valve 83 and the on-off valve 85 to stop the strong exhaust. Furthermore, the control unit 111 operates the flow rate adjustment valve 89 and the on-off valve 91 to switch to weak exhaust. This allows ozone gas at the treatment concentration to remain in the treatment space, allowing sufficient treatment with ozone gas to be carried out. When a predetermined ozone gas treatment time has elapsed, the control unit 111 operates the mass flow controller 57 and the control valve 55 to stop the supply of ozone gas to the chamber 32.
 次いで、制御部111は、チャンバ32内のオゾンガスを窒素ガスで置換する。具体的には、制御部111は、制御弁69及びマスフローコントローラ67を操作して、図6における不活性ガス供給配管65から窒素ガスをチャンバ32に供給する。窒素ガスが供給されている状態は、図11に矢付破線で示すようなものとなる。 Then, the control unit 111 replaces the ozone gas in the chamber 32 with nitrogen gas. Specifically, the control unit 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas from the inert gas supply pipe 65 in FIG. 6 to the chamber 32. The state in which nitrogen gas is being supplied is as shown by the dashed line with an arrow in FIG. 11.
 また、制御部111は、真空エジェクタ75を作動させるとともに、制御弁74を開放させ、吸引配管73による第2の分岐点63の吸引を行わせる。第2の分岐点63が吸引されている状態は、図11に矢付二点鎖線で示すようなものとなる。さらに、制御部111は、流量調整弁89及び開閉弁91を操作して弱排気を停止する。これとともに、制御部111は、流量調整弁83及び開閉弁85を操作して強排気にする。チャンバ32内を強排気としているので、効率的に処理空間のオゾンガスが窒素ガスで置換される。したがって、置換に要する時間を短縮できる。このとき、図11に矢付二点鎖線で示すように、第2の分岐点63の吸引を同時に行っているので、フィルタ59に残留しているオゾンが処理空間に混入することを防止できる。したがって、窒素ガスによる置換効率を向上できる。さらに、第2の分岐点63がフィルタ59とマスフローメータ57及び制御弁55との間に設けてあるので、マスフローメータ57及び制御弁55で発生しやすいパーティクルが処理空間に流入することを防止できる。したがって、基板Wを清浄に処理できる。 The control unit 111 also operates the vacuum ejector 75 and opens the control valve 74 to perform suction of the second branch point 63 by the suction pipe 73. The state in which the second branch point 63 is suctioned is as shown by the two-dot chain line with an arrow in FIG. 11. Furthermore, the control unit 111 operates the flow rate control valve 89 and the opening/closing valve 91 to stop the weak exhaust. At the same time, the control unit 111 operates the flow rate control valve 83 and the opening/closing valve 85 to perform strong exhaust. Since the inside of the chamber 32 is strongly exhausted, the ozone gas in the processing space is efficiently replaced with nitrogen gas. Therefore, the time required for replacement can be shortened. At this time, as shown by the two-dot chain line with an arrow in FIG. 11, suction of the second branch point 63 is performed at the same time, so that the ozone remaining in the filter 59 can be prevented from being mixed into the processing space. Therefore, the efficiency of replacement with nitrogen gas can be improved. Furthermore, since the second branch point 63 is provided between the filter 59 and the mass flow meter 57 and the control valve 55, particles that are likely to be generated in the mass flow meter 57 and the control valve 55 can be prevented from flowing into the processing space. Therefore, the substrate W can be processed cleanly.
 なお、吸引配管73の吸引は、第1の分岐点61を介してチャンバ32に供給される窒素ガスの供給を妨げない吸引力で行われる。したがって、チャンバ32内におけるオゾンガスの窒素ガスによる置換を確実に行うことができる。 The suction of the suction pipe 73 is performed with a suction force that does not interfere with the supply of nitrogen gas to the chamber 32 via the first branch point 61. Therefore, the ozone gas in the chamber 32 can be reliably replaced with nitrogen gas.
 窒素ガスによる置換が完了すると、制御部111は、流量調整弁83及び開閉弁85を操作して強排気を停止させる。制御部111は、開閉弁95を開放させる。これにより、不活性ガスがパージ管94を介して、その供給圧力だけで排出される。このときチャンバ32が陽圧になるので、昇降機構31による上部リッド25の上昇動作が円滑に行われる。制御部111は、上部リッド25が上昇された後、開閉弁95を閉止させるとともに、流量調整弁89及び開閉弁91を操作して弱排気とする。これにより処理空間を不活性ガスで清浄に保つ。制御部111は、図示しない冷却ユニットに基板Wを移動させて、基板Wを常温に戻す。 When the replacement with nitrogen gas is complete, the control unit 111 operates the flow rate adjustment valve 83 and the on-off valve 85 to stop the strong exhaust. The control unit 111 opens the on-off valve 95. This allows the inert gas to be exhausted through the purge pipe 94 using only its supply pressure. At this time, the chamber 32 becomes positive pressure, allowing the lifting mechanism 31 to smoothly raise the upper lid 25. After the upper lid 25 has been raised, the control unit 111 closes the on-off valve 95 and operates the flow rate adjustment valve 89 and the on-off valve 91 to perform weak exhaust. This keeps the processing space clean with the inert gas. The control unit 111 moves the substrate W to a cooling unit (not shown) to return the substrate W to room temperature.
 ステップS6
 制御部111は、センターロボットCRを操作して、オゾンガスベークユニット21から基板Wを取り出し、SPMユニット23に基板Wを搬送する。
Step S6
The control unit 111 operates the center robot CR to take out the substrate W from the ozone gas bake unit 21 and transport the substrate W to the SPM unit 23 .
 ステップS7
 制御部111は、基板Wを加熱させた状態としつつ、基板Wの表面にSPMを供給する。これにより、SPMにより基板Wの表面のフォトレジスト被膜が除去される。このとき、オゾンガスによる前処理でフォトレジスト被膜の表面をある程度灰化しているので、フォトレジスト被膜の表面が硬化していても、少ない量のSPMによりフォトレジスト被膜を容易に除去できる。制御部111は、SPMによる基板Wの処理が完了した後、純水による洗浄処理及び乾燥処理を行う。
Step S7
The control unit 111 supplies SPM to the surface of the substrate W while keeping the substrate W in a heated state. This causes the photoresist coating on the surface of the substrate W to be removed by the SPM. At this time, since the surface of the photoresist coating has been ashed to some extent by the pretreatment with ozone gas, even if the surface of the photoresist coating is hardened, the photoresist coating can be easily removed with a small amount of SPM. After the treatment of the substrate W with the SPM is completed, the control unit 111 performs a cleaning treatment and a drying treatment with pure water.
 ステップS8
 制御部111は、センターロボットCRを操作して、基板Wをパス部19に搬送し、インデクサロボットIRを操作して基板WをキャリアCに戻す搬出を行う。このような一連の動作により、基板Wに対するフォトレジスト被膜の除去処理が行われる。
Step S8
The control unit 111 operates the center robot CR to transport the substrate W to the path unit 19, and operates the indexer robot IR to unload the substrate W and return it to the carrier C. Through this series of operations, the process of removing the photoresist coating from the substrate W is performed.
 本実施例によると、制御部111は、制御弁55を開放し、制御弁69を閉止した状態でチャンバ32内にオゾンガスを供給して基板Wを処理した後、制御弁55を閉止し、制御弁69を開放して、チャンバ32内に窒素ガスを供給する際に、吸引配管73による吸引を行わせる。そのため、オゾンガスが残留しているフィルタ59と、マスフローコントローラ57と、制御弁55とは、吸引配管73を介して吸引される。したがって、流通配管53では、第2の分岐点63からチャンバ32側への気体の流れが生じない。その結果、チャンバ32側に窒素ガスにオゾンガスが混入することが防止できので、オゾンガスの置換を短時間できるとともに、パーティクルによる汚染も防止できる。 In this embodiment, the control unit 111 opens the control valve 55 and closes the control valve 69 to supply ozone gas into the chamber 32 to process the substrate W, and then closes the control valve 55 and opens the control valve 69 to supply nitrogen gas into the chamber 32, causing suction through the suction pipe 73. Therefore, the filter 59, mass flow controller 57, and control valve 55 in which ozone gas remains are sucked through the suction pipe 73. Therefore, no gas flows from the second branch point 63 to the chamber 32 side in the circulation pipe 53. As a result, mixing of ozone gas with nitrogen gas on the chamber 32 side can be prevented, and the ozone gas can be replaced in a short time, and contamination by particles can also be prevented.
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。 The present invention is not limited to the above embodiment, but can be modified as follows:
 (1)上述した実施例では、4個のチャンバ32を備え、4本の流通配管53を備えた基板処理装置1を例にとって説明した。しかしながら、本発明は、複数個のチャンバ32と複数本の流通配管53とを必須の構成とするものではない。つまり、本発明は、一つのチャンバ32と一つの流通配管53とを備えた基板処理装置1であって適用できる。 (1) In the above-described embodiment, a substrate processing apparatus 1 having four chambers 32 and four circulation pipes 53 has been described as an example. However, the present invention does not require a plurality of chambers 32 and a plurality of circulation pipes 53. In other words, the present invention can be applied to a substrate processing apparatus 1 having one chamber 32 and one circulation pipe 53.
 (2)上述した実施例では、不活性ガスとして窒素ガスを採用している。しかしながら、本発明は、不活性ガスとして窒素ガスに限定されるものではなく、例えば、アルゴンガスであっても適用できる。 (2) In the above-described embodiment, nitrogen gas is used as the inert gas. However, the present invention is not limited to nitrogen gas as the inert gas, and can also be applied to, for example, argon gas.
 (3)上述した実施例では、吸引配管73を真空エジェクタ75で吸引する構成を採用している。しかしながら、本発明は、このような構成に限定されない。例えば、吸引配管73を真空ポンプなどの吸引手段で吸引するようにしてもよい。 (3) In the above-described embodiment, the suction pipe 73 is configured to be sucked by the vacuum ejector 75. However, the present invention is not limited to this configuration. For example, the suction pipe 73 may be sucked by a suction means such as a vacuum pump.
 (4)上述した実施例では、基板処理装置1がオゾンガス分解ユニット13を備えているが、本発明は、オゾンガス分解ユニット13を必須とするものではない。 (4) In the above-described embodiment, the substrate processing apparatus 1 is equipped with an ozone gas decomposition unit 13, but the present invention does not require the ozone gas decomposition unit 13.
 (5)上述した実施例では、基板処理装置1がSPMユニット23を備えているが、本発明はSPMユニット23を必須とするものではない。例えば、オゾンガスベークユニット21で処理した基板Wを他の装置が備えているSPMユニット23で処理するようにしてもよい。 (5) In the above-described embodiment, the substrate processing apparatus 1 is equipped with an SPM unit 23, but the present invention does not require an SPM unit 23. For example, the substrate W processed in the ozone gas bake unit 21 may be processed in an SPM unit 23 provided in another apparatus.
 (6)上述した実施例では、基板処理装置1がインデクサブロック3,搬送ブロック7、キャリア載置部17、パス部19などを備え、複数枚の基板Wを連続的に搬送して効率的に処理を行う構成をとっているが、本発明はこのような構成に限定されない。つまり、本発明は、搬送系などを備えず、処理濃度のオゾンガスによる処理を行う構成を備えている基板処理装置であっても適用できる。 (6) In the above-described embodiment, the substrate processing apparatus 1 is configured to include an indexer block 3, a transport block 7, a carrier placement section 17, a path section 19, etc., and to continuously transport and efficiently process a plurality of substrates W, but the present invention is not limited to such a configuration. In other words, the present invention can also be applied to substrate processing apparatuses that do not include a transport system, etc., and that are configured to perform processing using ozone gas at a processing concentration.
 次に、図面を参照して本発明の実施例2について説明する。 Next, a second embodiment of the present invention will be described with reference to the drawings.
 上述した実施例1と共通する構成については、同符号を付すことで詳細な説明については省略する。 The same components as in the first embodiment are designated by the same reference numerals and detailed descriptions are omitted.
 図5に示したように、オゾンガス供給ユニット11は、装置を起動してから2分近く経過しないと、目標とする所定の濃度に達しない特性がある。上述した供給配管35には、オゾンガス供給ユニット11から所定の処理濃度のオゾンガスが供給される。 As shown in FIG. 5, the ozone gas supply unit 11 has a characteristic that the target concentration is not reached until nearly two minutes have passed since the device was started. Ozone gas at a predetermined treatment concentration is supplied from the ozone gas supply unit 11 to the supply pipe 35 described above.
 なお、本発明の請求項7~11における各構成との対応関係は、次のとおりである。 The correspondence between the configurations in claims 7 to 11 of the present invention is as follows:
 SPMユニット23が「処理液チャンバ」に相当し、センターロボットCRが「搬送機構」に相当する。オゾンガス供給ユニット11が「オゾンガス供給源」に相当する。熱処理プレート29が「保持機構」に相当する。自動圧力調整器49が「第1の圧力調整機構」に相当し、制御弁55が「制御弁」に相当し、制御弁51が「第1の開閉弁」に相当する。制御弁101が「排気弁」に相当し、自動圧力調整器99が「第2の圧力調整機構」に相当し、制御弁101が「第2の開閉弁」に相当する。 The SPM unit 23 corresponds to the "treatment liquid chamber", and the center robot CR corresponds to the "transport mechanism". The ozone gas supply unit 11 corresponds to the "ozone gas supply source". The heat treatment plate 29 corresponds to the "holding mechanism". The automatic pressure regulator 49 corresponds to the "first pressure adjustment mechanism", the control valve 55 corresponds to the "control valve", and the control valve 51 corresponds to the "first on-off valve". The control valve 101 corresponds to the "exhaust valve", the automatic pressure regulator 99 corresponds to the "second pressure adjustment mechanism", and the control valve 101 corresponds to the "second on-off valve".
 次に、図9を参照して、実施例2における処理について説明する。 Next, the processing in Example 2 will be explained with reference to FIG. 9.
 ステップS1
 オペレータは、基板処理装置1を起動する。さらに、これに連動してオゾンガス供給ユニット11及びオゾンガス分解ユニット13も起動する。これにより、制御部111の制御の下、処理濃度となるオゾンガスの生成をオゾンガス供給ユニット11が開始する。図5に示したように、処理濃度のオゾンガスを生成するには約2分程度を要する。
Step S1
The operator starts up the substrate processing apparatus 1. In addition, in conjunction with this, the ozone gas supply unit 11 and the ozone gas decomposition unit 13 are also started up. As a result, under the control of the control unit 111, the ozone gas supply unit 11 starts generating ozone gas having a processing concentration. As shown in Fig. 5, it takes about 2 minutes to generate ozone gas having a processing concentration.
 ステップS2
 制御部111は、オゾンガス供給ユニット11により処理濃度のオゾンガスが生成されるまでの所定時間が経過したか否を監視し、所定時間が経過した時点で次のステップS3に移行する。なお、オゾンガスの濃度が処理濃度に達する前であっても、図7に示すオゾンガスによる非処理時と同じように、生成されたオゾンガスは全て補助配管97を介して排気主管33を介して排気される。
Step S2
The control unit 111 monitors whether a predetermined time has elapsed until ozone gas of a treatment concentration is generated by the ozone gas supply unit 11, and proceeds to the next step S3 at the point in time when the predetermined time has elapsed. Note that even before the concentration of ozone gas reaches the treatment concentration, all of the generated ozone gas is exhausted through the auxiliary pipe 97 and the main exhaust pipe 33, as in the case of non-treatment with ozone gas shown in FIG.
 ステップS3
 オペレータは、制御コンソール(不図示)から処理の開始を指示する。
Step S3
An operator issues an instruction to start processing from a control console (not shown).
 ステップS4
 キャリアCに収容されている処理対象の基板Wがインデクサブロック3を介してパス部19に搬送され、センターロボットCRによりオゾンガスベークユニット21に搬入される。なお、次のステップS5にて基板Wがチャンバ32に搬入される処理前においては、制御部111は、制御弁69及びマスフローコントローラ67を操作して、チャンバ32に窒素ガスを供給する。さらに、制御部111は、流量調整弁89と開閉弁91により、真空エジェクタ79を動作させる。これにより、チャンバ32内が弱排気され、処理空間が不活性ガスで清浄な状態に保たれる。
Step S4
The substrate W to be processed accommodated in the carrier C is transported to the path section 19 via the indexer block 3, and is loaded into the ozone gas bake unit 21 by the center robot CR. Before the substrate W is loaded into the chamber 32 for processing in the next step S5, the control section 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas to the chamber 32. Furthermore, the control section 111 operates the vacuum ejector 79 by the flow rate adjustment valve 89 and the opening/closing valve 91. As a result, the inside of the chamber 32 is weakly evacuated, and the processing space is kept clean with the inert gas.
 ステップS5
 制御部111は、基板Wがチャンバ32に収容されると、昇降機構31により上部リッド27を下部リッド25に移動させる。これにより、チャンバ32が密閉される。このとき、制御部111は、流量調整弁89と開閉弁91を操作して第2の駆動管81による真空エジェクタ79の動作を停止させる。さらに、制御部111は、流量調整弁83及び開閉弁85により、真空エジェクタ79を動作させる。なお、不活性ガス供給配管65から供給される窒素ガスの流量よりも、真空エジェクタ79の吸い込み口の流量の方が大きい。これにより、チャンバ32内が強排気されるので、処理空間が負圧となる。そのため、上部リッド27が下部リッド25に対して強く密着され、チャンバ32が周囲に対して完全に密閉される。
Step S5
When the substrate W is accommodated in the chamber 32, the control unit 111 moves the upper lid 27 to the lower lid 25 by the lifting mechanism 31. This seals the chamber 32. At this time, the control unit 111 operates the flow rate control valve 89 and the on-off valve 91 to stop the operation of the vacuum ejector 79 by the second drive tube 81. Furthermore, the control unit 111 operates the vacuum ejector 79 by the flow rate control valve 83 and the on-off valve 85. Note that the flow rate of the suction port of the vacuum ejector 79 is greater than the flow rate of the nitrogen gas supplied from the inert gas supply pipe 65. This strongly exhausts the inside of the chamber 32, so that the processing space is under negative pressure. Therefore, the upper lid 27 is tightly attached to the lower lid 25, and the chamber 32 is completely sealed from the surroundings.
 その後、制御部111は、熱処理プレート29に載置された基板Wの温度が所定温度(例えば、100~300℃)に上昇するまで待機する。基板Wの温度が所定温度に達すると、制御部111は、オゾンガスによる処理を開始する。 Then, the control unit 111 waits until the temperature of the substrate W placed on the heat treatment plate 29 rises to a predetermined temperature (e.g., 100 to 300°C). When the temperature of the substrate W reaches the predetermined temperature, the control unit 111 starts treatment with ozone gas.
 具体的には、制御部111は、チャンバ32に処理濃度のオゾンガスが所要の流量で供給されるように、マスフローコントローラ57及び制御弁55を操作する。さらに、これにより、基板Wが載置されている処理空間に処理濃度のオゾンガスが供給される。このとき、制御部111は、流量調整弁83及び開閉弁85を操作して強排気を停止する。さらに、制御部111は、流量調整弁89及び開閉弁91を操作して弱排気に切り換える。これにより、処理濃度のオゾンガスが処理空間に滞留するので、オゾンガスによる処理を十分に行わせることができる。所定のオゾンガスの処理時間が経過すると、制御部111は、マスフローコントローラ57及び制御弁55を操作して、チャンバ32へのオゾンガスの供給を停止する。 Specifically, the control unit 111 operates the mass flow controller 57 and the control valve 55 so that ozone gas at the processing concentration is supplied to the chamber 32 at the required flow rate. Furthermore, as a result, ozone gas at the processing concentration is supplied to the processing space in which the substrate W is placed. At this time, the control unit 111 operates the flow rate adjustment valve 83 and the opening/closing valve 85 to stop strong exhaust. Furthermore, the control unit 111 operates the flow rate adjustment valve 89 and the opening/closing valve 91 to switch to weak exhaust. As a result, ozone gas at the processing concentration remains in the processing space, so that processing with the ozone gas can be performed sufficiently. When a predetermined processing time for ozone gas has elapsed, the control unit 111 operates the mass flow controller 57 and the control valve 55 to stop the supply of ozone gas to the chamber 32.
 次いで、制御部111は、チャンバ32内のオゾンガスを窒素ガスで置換する。具体的には、制御部111は、制御弁69及びマスフローコントローラ67を操作して、図6における不活性ガス供給配管65から窒素ガスをチャンバ32に供給する。また、制御部111は、真空エジェクタ75を作動させるとともに、制御弁74を開放させ、吸引配管73による第2の分岐点63の吸引を行わせる。さらに、制御部111は、流量調整弁89及び開閉弁91を操作して弱排気を停止する。これとともに、制御部111は、流量調整弁83及び開閉弁85を操作して強排気にする。チャンバ32内を強排気としているので、効率的に処理空間のオゾンガスが窒素ガスで置換される。したがって、置換に要する時間を短縮できる。このとき、第2の分岐点63の吸引を同時に行っているので、フィルタ59に残留しているオゾンが処理空間に混入することを防止できる。したがって、窒素ガスによる置換効率を向上できる。さらに、第2の分岐点63がフィルタ59とマスフローメータ57及び制御弁55との間に設けてあるので、マスフローメータ57及び制御弁55で発生しやすいパーティクルが処理空間に流入することを防止できる。したがって、基板Wを清浄に処理できる。 Then, the control unit 111 replaces the ozone gas in the chamber 32 with nitrogen gas. Specifically, the control unit 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas to the chamber 32 from the inert gas supply pipe 65 in FIG. 6. The control unit 111 also operates the vacuum ejector 75 and opens the control valve 74 to perform suction at the second branch point 63 by the suction pipe 73. Furthermore, the control unit 111 operates the flow rate control valve 89 and the opening/closing valve 91 to stop weak exhaust. At the same time, the control unit 111 operates the flow rate control valve 83 and the opening/closing valve 85 to perform strong exhaust. Since the inside of the chamber 32 is strongly exhausted, the ozone gas in the processing space is efficiently replaced with nitrogen gas. Therefore, the time required for replacement can be shortened. At this time, since the second branch point 63 is simultaneously suctioned, it is possible to prevent the ozone remaining in the filter 59 from being mixed into the processing space. Therefore, the efficiency of replacement by nitrogen gas can be improved. Furthermore, since the second branch point 63 is provided between the filter 59 and the mass flow meter 57 and the control valve 55, particles that are likely to be generated in the mass flow meter 57 and the control valve 55 can be prevented from flowing into the processing space. Therefore, the substrate W can be processed cleanly.
 窒素ガスによる置換が完了すると、制御部111は、流量調整弁83及び開閉弁85を操作して強排気を停止させる。制御部111は、開閉弁95を開放させる。これにより、不活性ガスがパージ管94を介して、その供給圧力だけで排出される。このときチャンバ32が陽圧になるので、昇降機構31による上部リッド25の上昇動作が円滑に行われる。制御部111は、上部リッド25が上昇された後、開閉弁95を閉止させるとともに、流量調整弁89及び開閉弁91を操作して弱排気とする。これにより処理空間を不活性ガスで清浄に保つ。制御部111は、図示しない冷却ユニットに基板Wを移動させて、基板Wを常温に戻す。 When the replacement with nitrogen gas is complete, the control unit 111 operates the flow rate adjustment valve 83 and the on-off valve 85 to stop the strong exhaust. The control unit 111 opens the on-off valve 95. This allows the inert gas to be exhausted through the purge pipe 94 using only its supply pressure. At this time, the chamber 32 becomes positive pressure, allowing the lifting mechanism 31 to smoothly raise the upper lid 25. After the upper lid 25 has been raised, the control unit 111 closes the on-off valve 95 and operates the flow rate adjustment valve 89 and the on-off valve 91 to perform weak exhaust. This keeps the processing space clean with the inert gas. The control unit 111 moves the substrate W to a cooling unit (not shown) to return the substrate W to room temperature.
 ステップS6
 制御部111は、センターロボットCRを操作して、オゾンガスベークユニット21から基板Wを取り出し、SPMユニット23に基板Wを搬送する。
Step S6
The control unit 111 operates the center robot CR to take out the substrate W from the ozone gas bake unit 21 and transport the substrate W to the SPM unit 23 .
 ステップS7
 制御部111は、基板Wを加熱させた状態としつつ、基板Wの表面にSPMを供給する。これにより、SPMにより基板Wの表面のフォトレジスト被膜が除去される。このとき、オゾンガスによる前処理でフォトレジスト被膜の表面をある程度灰化しているので、フォトレジスト被膜の表面が硬化していても、少ない量のSPMによりフォトレジスト被膜を容易に除去できる。制御部111は、SPMによる基板Wの処理が完了した後、純水による洗浄処理及び乾燥処理を行う。
Step S7
The control unit 111 supplies SPM to the surface of the substrate W while keeping the substrate W in a heated state. This causes the photoresist coating on the surface of the substrate W to be removed by the SPM. At this time, since the surface of the photoresist coating has been ashed to some extent by the pretreatment with ozone gas, even if the surface of the photoresist coating is hardened, the photoresist coating can be easily removed with a small amount of SPM. After the treatment of the substrate W with the SPM is completed, the control unit 111 performs a cleaning treatment and a drying treatment with pure water.
 ステップS8
 制御部111は、センターロボットCRを操作して、基板Wをパス部19に搬送し、インデクサロボットIRを操作して基板WをキャリアCに戻す搬出を行う。このような一連の動作により、基板Wに対するフォトレジスト被膜の除去処理が行われる。
Step S8
The control unit 111 operates the center robot CR to transport the substrate W to the path unit 19, and operates the indexer robot IR to unload the substrate W and return it to the carrier C. Through this series of operations, the process of removing the photoresist coating from the substrate W is performed.
 本実施例によると、オゾンガスによる非処理時には、制御部111が制御弁55を閉止して制御弁101を開放するので、オゾンガス供給ユニット11で生成された処理濃度のオゾンガスは、チャンバ32に供給されることなく、補助配管97から排気主管33に排出される。オゾンガスによる処理時には、制御部111が制御弁101による流量を調整しながら制御弁55を開放させるので、チャンバ32内の熱処理プレート29に保持された基板Wに対して、処理濃度のオゾンガスを常時生成しているオゾンガス供給ユニット11から流通配管53を介してオゾンガスが供給される。したがって、オゾンガスによる処理に待ち時間が生じないので、オゾンガスによる処理時間を短縮でき、スループットを向上できる。 In this embodiment, when processing is not performed using ozone gas, the control unit 111 closes the control valve 55 and opens the control valve 101, so that ozone gas at the processing concentration generated by the ozone gas supply unit 11 is exhausted from the auxiliary pipe 97 to the main exhaust pipe 33 without being supplied to the chamber 32. When processing is performed using ozone gas, the control unit 111 opens the control valve 55 while adjusting the flow rate using the control valve 101, so that ozone gas is supplied to the substrate W held on the heat treatment plate 29 in the chamber 32 from the ozone gas supply unit 11, which constantly generates ozone gas at the processing concentration, via the flow pipe 53. Therefore, there is no waiting time for processing using ozone gas, and the processing time using ozone gas can be shortened and throughput can be improved.
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。 The present invention is not limited to the above embodiment, but can be modified as follows:
 (1)上述した実施例では、4個のチャンバ32を備え、4本の流通配管53を備えた基板処理装置1を例にとって説明した。しかしながら、本発明は、複数個のチャンバ32と複数本の流通配管53とを必須の構成とするものではない。つまり、本発明は、一つのチャンバ32と一つの流通配管53とを備えた基板処理装置1であって適用できる。 (1) In the above-described embodiment, a substrate processing apparatus 1 having four chambers 32 and four circulation pipes 53 has been described as an example. However, the present invention does not require a plurality of chambers 32 and a plurality of circulation pipes 53. In other words, the present invention can be applied to a substrate processing apparatus 1 having one chamber 32 and one circulation pipe 53.
 (2)上述した実施例では、第1の流量F1と第2の流量F2との流量の差分ΔFが所定値以内に収まるように、各制御弁55及び各マスフローコントローラ57による流量に連動して、制御弁101による流量を調整した。しかしながら、本発明は、このようにオゾンガス供給ユニット11側に所定値分のオゾンガスの供給に係る余力を残すことを必須とするものではない。したがって、オゾンガス供給ユニット11の最大の供給量を全てのチャンバ32に供給するようにしてもよい。 (2) In the above embodiment, the flow rate by the control valve 101 is adjusted in conjunction with the flow rates by the control valves 55 and mass flow controllers 57 so that the flow rate difference ΔF between the first flow rate F1 and the second flow rate F2 falls within a predetermined value. However, the present invention does not require that the ozone gas supply unit 11 be provided with a predetermined amount of ozone gas supply capacity in this manner. Therefore, the maximum supply amount of the ozone gas supply unit 11 may be supplied to all of the chambers 32.
 (3)上述した実施例では、オゾンガス供給ユニット11が自動圧力調整器49を備え、補助配管97が自動圧力調整器99を備えているが、本発明はこの構成を必須とするものではない。すなわち、これらの構成を備えると、複数個のチャンバ32を備える構成であっても、オゾンガスによる処理を安定して行うことができるので、チャンバ32が単数あるいは、オゾンガス供給ユニット11の最大供給量に比較して、合計でも大幅に少ない供給量でよい程度の個数のチャンバ32を備えている場合には、このような構成を備える必要はない。 (3) In the above-described embodiment, the ozone gas supply unit 11 is equipped with an automatic pressure regulator 49, and the auxiliary pipe 97 is equipped with an automatic pressure regulator 99, but this configuration is not essential to the present invention. In other words, if these configurations are provided, treatment with ozone gas can be stably performed even in a configuration with multiple chambers 32, so if there is only one chamber 32, or if there are a number of chambers 32 that require a supply amount that is significantly smaller in total than the maximum supply amount of the ozone gas supply unit 11, there is no need to provide such a configuration.
 (4)上述した実施例では、基板処理装置1がオゾンガス分解ユニット13を備えているが、本発明は、オゾンガス分解ユニット13を必須とするものではない。 (4) In the above-described embodiment, the substrate processing apparatus 1 is equipped with an ozone gas decomposition unit 13, but the present invention does not require the ozone gas decomposition unit 13.
 (5)上述した実施例では、基板処理装置1がSPMユニット23を備えているが、本発明はSPMユニット23を必須とするものではない。例えば、オゾンガスベークユニット21で処理した基板Wを他の装置が備えているSPMユニット23で処理するようにしてもよい。 (5) In the above-described embodiment, the substrate processing apparatus 1 is equipped with an SPM unit 23, but the present invention does not require an SPM unit 23. For example, the substrate W processed in the ozone gas bake unit 21 may be processed in an SPM unit 23 provided in another apparatus.
 (6)上述した実施例では、基板処理装置1がインデクサブロック3,搬送ブロック7、キャリア載置部17、パス部19などを備え、複数枚の基板Wを連続的に搬送して効率的に処理を行う構成をとっているが、本発明はこのような構成に限定されない。つまり、本発明は、搬送系などを備えず、所定の処理濃度のオゾンガスによる処理を行う構成を備えている基板処理装置であっても適用できる。 (6) In the above-described embodiment, the substrate processing apparatus 1 is configured to include an indexer block 3, a transport block 7, a carrier placement section 17, a path section 19, etc., and to continuously transport and efficiently process a plurality of substrates W, but the present invention is not limited to such a configuration. In other words, the present invention can also be applied to substrate processing apparatuses that do not include a transport system, etc., and that are configured to perform processing using ozone gas at a predetermined processing concentration.
 次に、図面を参照して本発明の実施例3について説明する。 Next, we will explain the third embodiment of the present invention with reference to the drawings.
 上述した実施例1と共通する構成については、同符号を付すことで詳細な説明については省略する。 The same components as in the first embodiment are designated by the same reference numerals and detailed descriptions are omitted.
 なお、本発明の請求項12~16における各構成との対応関係は、次のとおりである。 The correspondence between the configurations in claims 12 to 16 of the present invention is as follows:
 SPMユニット23が「処理液チャンバ」に相当し、センターロボットCRが「搬送機構」に相当する。オゾンガス供給ユニット11が「オゾンガス供給源」に相当する。熱処理プレート29が「保持機構」に相当し、下部リッド25が「上部蓋部材」に相当し、上部リッド27が「下部蓋部材」に相当する。供給配管53が「第1の配管」に相当し、制御弁55が「第1の制御弁」に相当し、不活性ガス供給管65が「第2の配管」に相当し、開閉弁69及びマスフローコントローラ67が「第3の制御弁」に相当する。吸引配管73が「補助排気管」に相当し、制御弁74が「第4の制御弁」に相当する。排気管77が本発明に「排気配管」に相当する。 The SPM unit 23 corresponds to the "treatment liquid chamber", and the center robot CR corresponds to the "transport mechanism". The ozone gas supply unit 11 corresponds to the "ozone gas supply source". The heat treatment plate 29 corresponds to the "holding mechanism", the lower lid 25 corresponds to the "upper cover member", and the upper lid 27 corresponds to the "lower cover member". The supply pipe 53 corresponds to the "first pipe", the control valve 55 corresponds to the "first control valve", the inert gas supply pipe 65 corresponds to the "second pipe", and the on-off valve 69 and the mass flow controller 67 correspond to the "third control valve". The suction pipe 73 corresponds to the "auxiliary exhaust pipe", and the control valve 74 corresponds to the "fourth control valve". The exhaust pipe 77 corresponds to the "exhaust pipe" in this invention.
 開閉弁93が「第2の制御弁」に相当し、流量調整弁83と、開閉弁85と、真空エジェクタ79とが「第1の排気手段」に相当し、流量調整弁89と、開閉弁91と、真空エジェクタ79とが「第2の排気手段」に相当し、流量調整弁83,89と、開閉弁85,91と、真空エジェクタ79とが「排気機構」に相当する。第1の流量Faが「第1の排気流量」に相当し、第2の流量Fbが「第2の排気流量」に相当する。 The on-off valve 93 corresponds to the "second control valve", the flow rate adjustment valve 83, the on-off valve 85, and the vacuum ejector 79 correspond to the "first exhaust means", the flow rate adjustment valve 89, the on-off valve 91, and the vacuum ejector 79 correspond to the "second exhaust means", and the flow rate adjustment valves 83, 89, the on-off valves 85, 91, and the vacuum ejector 79 correspond to the "exhaust mechanism". The first flow rate Fa corresponds to the "first exhaust flow rate", and the second flow rate Fb corresponds to the "second exhaust flow rate".
 ここで、図9,図12~図17を参照して、実施例3における処理について説明する。図12は、処理前における弱排気の説明に供する模式図であり、図13は、上部リッドを閉止した状態における強排気の説明に供する模式図であり、図14は、オゾンガス処理中の弱排気の説明に供する模式図であり、図15は、窒素ガスによる置換における強排気の説明に供する模式図であり、図16は、上部リッド開放におけるパージの説明に供する模式図であり、図17は、処理後における弱排気の説明に供する模式図である。 Now, the processing in Example 3 will be described with reference to Fig. 9 and Fig. 12 to Fig. 17. Fig. 12 is a schematic diagram used to explain weak exhaust before processing, Fig. 13 is a schematic diagram used to explain strong exhaust with the upper lid closed, Fig. 14 is a schematic diagram used to explain weak exhaust during ozone gas processing, Fig. 15 is a schematic diagram used to explain strong exhaust during replacement with nitrogen gas, Fig. 16 is a schematic diagram used to explain purging with the upper lid open, and Fig. 17 is a schematic diagram used to explain weak exhaust after processing.
 ステップS1
 オペレータは、基板処理装置1を起動する。さらに、これに連動してオゾンガス供給ユニット11及びオゾンガス分解ユニット13も起動する。これにより、制御部111の制御の下、処理濃度となるオゾンガスの生成をオゾンガス供給ユニット11が開始する。図5に示したように、処理濃度のオゾンガスを生成するには約2分程度を要する。
Step S1
The operator starts up the substrate processing apparatus 1. In addition, in conjunction with this, the ozone gas supply unit 11 and the ozone gas decomposition unit 13 are also started up. As a result, under the control of the control unit 111, the ozone gas supply unit 11 starts generating ozone gas having a processing concentration. As shown in Fig. 5, it takes about 2 minutes to generate ozone gas having a processing concentration.
 ステップS2
 制御部111は、オゾンガス供給ユニット11により処理濃度のオゾンガスが生成されるまでの所定時間が経過したか否を監視し、所定時間が経過した時点で次のステップS3に移行する。なお、オゾンガスの濃度が処理濃度に達する前であっても、図7に示すオゾンガスによる非処理時と同じように、生成されたオゾンガスは全て補助配管97を介して排気主管33を介して排気される。
Step S2
The control unit 111 monitors whether a predetermined time has elapsed until ozone gas of a treatment concentration is generated by the ozone gas supply unit 11, and proceeds to the next step S3 at the point in time when the predetermined time has elapsed. Note that even before the concentration of ozone gas reaches the treatment concentration, all of the generated ozone gas is exhausted through the auxiliary pipe 97 and the main exhaust pipe 33, as in the case of non-treatment with ozone gas shown in FIG.
 ステップS3
 オペレータは、制御コンソール(不図示)から処理の開始を指示する。
Step S3
An operator issues an instruction to start processing from a control console (not shown).
 ステップS4
 キャリアCに収容されている処理対象の基板Wがインデクサブロック3を介してパス部19に搬送され、センターロボットCRによりオゾンガスベークユニット21に搬入される。なお、次のステップS5にて基板Wがチャンバ32に搬入される処理前においては、制御部111は、制御弁69及びマスフローコントローラ67を操作して、チャンバ32に窒素ガスを供給する。さらに、制御部111は、図12に示すように、流量調整弁89と開閉弁91により、真空エジェクタ79を動作させる。これにより、チャンバ32内が弱排気され、処理空間が不活性ガスで清浄な状態に保たれる。
Step S4
The substrate W to be processed accommodated in the carrier C is transported to the path section 19 via the indexer block 3, and is loaded into the ozone gas bake unit 21 by the center robot CR. Before the substrate W is loaded into the chamber 32 for processing in the next step S5, the control section 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas to the chamber 32. Furthermore, as shown in Fig. 12, the control section 111 operates the vacuum ejector 79 by the flow rate adjustment valve 89 and the opening/closing valve 91. As a result, the inside of the chamber 32 is weakly evacuated, and the processing space is kept clean with the inert gas.
 ステップS5
 制御部111は、基板Wがチャンバ32に収容されると、昇降機構31により上部リッド27を下部リッド25に移動させる。これにより、チャンバ32が密閉される。このとき、制御部111は、流量調整弁89と開閉弁91を操作して第2の駆動管81による真空エジェクタ79の動作を停止させる。さらに、制御部111は、図13に示すように、流量調整弁83及び開閉弁85により、真空エジェクタ79を動作させる。なお、不活性ガス供給配管65から供給される窒素ガスの流量よりも、真空エジェクタ79の吸い込み口の流量の方が大きい。これにより、チャンバ32内が強排気されるので、処理空間が負圧となる。そのため、上部リッド27が下部リッド25に対して強く密着され、チャンバ32が周囲に対して完全に密閉される。
Step S5
When the substrate W is accommodated in the chamber 32, the control unit 111 moves the upper lid 27 to the lower lid 25 by the lifting mechanism 31. This seals the chamber 32. At this time, the control unit 111 operates the flow rate control valve 89 and the on-off valve 91 to stop the operation of the vacuum ejector 79 by the second drive tube 81. Furthermore, as shown in FIG. 13, the control unit 111 operates the vacuum ejector 79 by the flow rate control valve 83 and the on-off valve 85. Note that the flow rate of the suction port of the vacuum ejector 79 is greater than the flow rate of the nitrogen gas supplied from the inert gas supply pipe 65. This strongly exhausts the inside of the chamber 32, so that the processing space is under negative pressure. Therefore, the upper lid 27 is tightly attached to the lower lid 25, and the chamber 32 is completely sealed from the surroundings.
 その後、制御部111は、熱処理プレート29に載置された基板Wの温度が所定温度(例えば、100~300℃)に上昇するまで待機する。基板Wの温度が所定温度に達すると、制御部111は、オゾンガスによる処理を開始する。 Then, the control unit 111 waits until the temperature of the substrate W placed on the heat treatment plate 29 rises to a predetermined temperature (e.g., 100 to 300°C). When the temperature of the substrate W reaches the predetermined temperature, the control unit 111 starts treatment with ozone gas.
 具体的には、制御部111は、チャンバ32に処理濃度のオゾンガスが所要の流量で供給されるように、マスフローコントローラ57及び制御弁55を操作する。さらに、これにより、基板Wが載置されている処理空間に処理濃度のオゾンガスが供給される。このとき、制御部111は、流量調整弁83及び開閉弁85を操作して強排気を停止する。さらに、制御部111は、図14に示すように、流量調整弁89及び開閉弁91を操作して弱排気に切り換える。これにより、処理濃度のオゾンガスが処理空間に滞留するので、オゾンガスによる処理を十分に行わせることができる。所定のオゾンガスの処理時間が経過すると、制御部111は、マスフローコントローラ57及び制御弁55を操作して、チャンバ32へのオゾンガスの供給を停止する。 Specifically, the control unit 111 operates the mass flow controller 57 and the control valve 55 so that ozone gas of the processing concentration is supplied to the chamber 32 at the required flow rate. Furthermore, as a result, ozone gas of the processing concentration is supplied to the processing space in which the substrate W is placed. At this time, the control unit 111 operates the flow rate adjustment valve 83 and the opening/closing valve 85 to stop strong exhaust. Furthermore, as shown in FIG. 14, the control unit 111 operates the flow rate adjustment valve 89 and the opening/closing valve 91 to switch to weak exhaust. As a result, ozone gas of the processing concentration remains in the processing space, so that processing with the ozone gas can be performed sufficiently. When a predetermined processing time for ozone gas has elapsed, the control unit 111 operates the mass flow controller 57 and the control valve 55 to stop the supply of ozone gas to the chamber 32.
 次いで、制御部111は、チャンバ32内のオゾンガスを窒素ガスで置換する。具体的には、制御部111は、制御弁69及びマスフローコントローラ67を操作して、図6における不活性ガス供給配管65から窒素ガスをチャンバ32に供給する。また、制御部111は、真空エジェクタ75を作動させるとともに、制御弁74を開放させ、吸引配管73による第2の分岐点63の吸引を行わせる。さらに、制御部111は、流量調整弁89及び開閉弁91を操作して弱排気を停止する。これとともに、制御部111は、図15に示すように、流量調整弁83及び開閉弁85を操作して強排気にする。チャンバ32内を強排気としているので、効率的に処理空間のオゾンガスが窒素ガスで置換される。したがって、置換に要する時間を短縮できる。このとき、第2の分岐点63の吸引を同時に行っているので、フィルタ59に残留しているオゾンが処理空間に混入することを防止できる。したがって、窒素ガスによる置換効率を向上できる。さらに、第2の分岐点63がフィルタ59とマスフローメータ57及び制御弁55との間に設けてあるので、マスフローメータ57及び制御弁55で発生しやすいパーティクルが処理空間に流入することを防止できる。したがって、基板Wを清浄に処理できる。 Then, the control unit 111 replaces the ozone gas in the chamber 32 with nitrogen gas. Specifically, the control unit 111 operates the control valve 69 and the mass flow controller 67 to supply nitrogen gas to the chamber 32 from the inert gas supply pipe 65 in FIG. 6. The control unit 111 also operates the vacuum ejector 75 and opens the control valve 74 to perform suction at the second branch point 63 by the suction pipe 73. Furthermore, the control unit 111 operates the flow rate control valve 89 and the opening/closing valve 91 to stop weak exhaust. At the same time, the control unit 111 operates the flow rate control valve 83 and the opening/closing valve 85 to perform strong exhaust, as shown in FIG. 15. Since the inside of the chamber 32 is strongly exhausted, the ozone gas in the processing space is efficiently replaced with nitrogen gas. Therefore, the time required for replacement can be shortened. At this time, since the second branch point 63 is simultaneously suctioned, it is possible to prevent the ozone remaining in the filter 59 from being mixed into the processing space. Therefore, the efficiency of replacement by nitrogen gas can be improved. Furthermore, since the second branch point 63 is provided between the filter 59 and the mass flow meter 57 and the control valve 55, particles that are likely to be generated in the mass flow meter 57 and the control valve 55 can be prevented from flowing into the processing space. Therefore, the substrate W can be processed cleanly.
 窒素ガスによる置換が完了すると、制御部111は、流量調整弁83及び開閉弁85を操作して強排気を停止させる。制御部111は、図16に示すように、開閉弁95を開放させる。これにより、不活性ガスがパージ管94を介して、その供給圧力だけで排出される。このときチャンバ32が陽圧になるので、昇降機構31による上部リッド25の上昇動作が円滑に行われる。制御部111は、上部リッド25が上昇された後、開閉弁95を閉止させるとともに、図17に示すように、流量調整弁89及び開閉弁91を操作して弱排気とする。これにより処理空間を不活性ガスで清浄に保つ。制御部111は、図示しない冷却ユニットに基板Wを移動させて、基板Wを常温に戻す。 When the replacement with nitrogen gas is completed, the control unit 111 operates the flow rate adjustment valve 83 and the on-off valve 85 to stop the strong exhaust. The control unit 111 opens the on-off valve 95 as shown in FIG. 16. This allows the inert gas to be exhausted through the purge pipe 94 by its supply pressure alone. At this time, the chamber 32 becomes positive pressure, so that the lifting mechanism 31 can smoothly lift the upper lid 25. After the upper lid 25 is lifted, the control unit 111 closes the on-off valve 95 and operates the flow rate adjustment valve 89 and the on-off valve 91 as shown in FIG. 17 to perform weak exhaust. This keeps the processing space clean with the inert gas. The control unit 111 moves the substrate W to a cooling unit (not shown) to return the substrate W to room temperature.
 ステップS6
 制御部111は、センターロボットCRを操作して、オゾンガスベークユニット21から基板Wを取り出し、SPMユニット23に基板Wを搬送する。
Step S6
The control unit 111 operates the center robot CR to take out the substrate W from the ozone gas bake unit 21 and transport the substrate W to the SPM unit 23 .
 ステップS7
 制御部111は、基板Wを加熱させた状態としつつ、基板Wの表面にSPMを供給する。これにより、SPMにより基板Wの表面のフォトレジスト被膜が除去される。このとき、オゾンガスによる前処理でフォトレジスト被膜の表面をある程度灰化しているので、フォトレジスト被膜の表面が硬化していても、少ない量のSPMによりフォトレジスト被膜を容易に除去できる。制御部111は、SPMによる基板Wの処理が完了した後、純水による洗浄処理及び乾燥処理を行う。
Step S7
The control unit 111 supplies SPM to the surface of the substrate W while keeping the substrate W in a heated state. This causes the photoresist coating on the surface of the substrate W to be removed by the SPM. At this time, since the surface of the photoresist coating has been ashed to some extent by the pretreatment with ozone gas, even if the surface of the photoresist coating is hardened, the photoresist coating can be easily removed with a small amount of SPM. After the treatment of the substrate W with the SPM is completed, the control unit 111 performs a cleaning treatment and a drying treatment with pure water.
 ステップS8
 制御部111は、センターロボットCRを操作して、基板Wをパス部19に搬送し、インデクサロボットIRを操作して基板WをキャリアCに戻す搬出を行う。このような一連の動作により、基板Wに対するフォトレジスト被膜の除去処理が行われる。
Step S8
The control unit 111 operates the center robot CR to transport the substrate W to the path unit 19, and operates the indexer robot IR to unload the substrate W and return it to the carrier C. Through this series of operations, the process of removing the photoresist coating from the substrate W is performed.
 本実施例によると、制御部111は、チャンバ32にオゾンガスを供給してオゾンガス処理を行うのに先立って、開閉弁93を開放し、流量調整弁83及び開閉弁85を操作して真空エジェクタ79を作動させ、チャンバ32内を強排気して上部リッド27を下部リッド25に密着させる。制御部111は、制御弁55を操作してオゾンガス供給ユニット11からオゾンガスをチャンバ32に供給する際には、強排気を停止するとともに流量調整弁89及び開閉弁91を操作して真空エジェクタ79を作動させ、チャンバ32内を弱排気する。したがって、オゾンガスを供給するまでに上部リッド27と下部リッド25の密着度合いが強排気で高くされ、オゾンガスの供給時には、弱排気とされている。そのため、オゾンガスの漏れを防止しつつも、オゾンガスの消費を抑制できる。 In this embodiment, before supplying ozone gas to the chamber 32 to perform ozone gas processing, the control unit 111 opens the on-off valve 93, operates the flow rate adjustment valve 83 and the on-off valve 85 to operate the vacuum ejector 79, and strongly evacuates the chamber 32 to make the upper lid 27 adhere to the lower lid 25. When the control unit 111 operates the control valve 55 to supply ozone gas from the ozone gas supply unit 11 to the chamber 32, it stops the strong exhaust and operates the flow rate adjustment valve 89 and the on-off valve 91 to operate the vacuum ejector 79 to weakly evacuate the chamber 32. Therefore, the degree of adhesion between the upper lid 27 and the lower lid 25 is increased by strong exhaust before the supply of ozone gas, and weak exhaust is performed when ozone gas is supplied. Therefore, it is possible to suppress the consumption of ozone gas while preventing leakage of ozone gas.
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。 The present invention is not limited to the above embodiment, but can be modified as follows:
 (1)上述した実施例では、4個のチャンバ32を備え、4本の流通配管53を備えた基板処理装置1を例にとって説明した。しかしながら、本発明は、複数個のチャンバ32と複数本の流通配管53とを必須の構成とするものではない。つまり、本発明は、一つのチャンバ32と一つの流通配管53とを備えた基板処理装置1であって適用できる。 (1) In the above-described embodiment, a substrate processing apparatus 1 having four chambers 32 and four circulation pipes 53 has been described as an example. However, the present invention does not require a plurality of chambers 32 and a plurality of circulation pipes 53. In other words, the present invention can be applied to a substrate processing apparatus 1 having one chamber 32 and one circulation pipe 53.
 (2)上述した実施例では、不活性ガスをチャンバ32に供給するパージを行って、チャンバ32内を陽圧にしてから上部リッド27を下部リッド25から離間させた。しかしながら、本発明は、この構成を必須とするものではない。また、上述した実施例では、不活性ガスを供給する不活性ガス供給配管65と、吸引配管73とを備えているが、本発明はこれらを必須とするものではない。 (2) In the above-described embodiment, a purge is performed by supplying an inert gas to the chamber 32, and the pressure inside the chamber 32 is made positive before the upper lid 27 is separated from the lower lid 25. However, this configuration is not essential to the present invention. Also, in the above-described embodiment, an inert gas supply pipe 65 for supplying an inert gas and a suction pipe 73 are provided, but these are not essential to the present invention.
 (3)上述した実施例では、真空エジェクタ79に圧縮空気を供給する第1の駆動管81と第2の駆動管87とを切り換えることにより、排気管77における排気流量を切り換えた。しかしながら、本発明は、このような構成を必須とするものではない。例えば、一つの駆動管と、開閉弁と、マスフローコントローラとを備え、排気流量に応じてマスフローコントローラを調整する構成としてもよい。また、上述した実施例では、排気や吸引を真空エジェクタ75,79により行っているが、本発明はこのような構成を必須とするものではない。例えば、排気や吸引を真空ポンプで行う構成としてもよい。 (3) In the above embodiment, the exhaust flow rate in the exhaust pipe 77 is switched by switching between the first drive pipe 81 and the second drive pipe 87 that supply compressed air to the vacuum ejector 79. However, this configuration is not essential to the present invention. For example, a configuration may be adopted that includes one drive pipe, an on-off valve, and a mass flow controller, and that adjusts the mass flow controller according to the exhaust flow rate. Also, in the above embodiment, exhaust and suction are performed by the vacuum ejectors 75 and 79, but this configuration is not essential to the present invention. For example, exhaust and suction may be performed by a vacuum pump.
 (4)上述した実施例では、基板処理装置1がオゾンガス分解ユニット13を備えているが、本発明は、オゾンガス分解ユニット13を必須とするものではない。 (4) In the above-described embodiment, the substrate processing apparatus 1 is equipped with an ozone gas decomposition unit 13, but the present invention does not require the ozone gas decomposition unit 13.
 (5)上述した実施例では、基板処理装置1がSPMユニット23を備えているが、本発明はSPMユニット23を必須とするものではない。例えば、オゾンガスベークユニット21で処理した基板Wを他の装置が備えているSPMユニット23で処理するようにしてもよい。 (5) In the above-described embodiment, the substrate processing apparatus 1 is equipped with an SPM unit 23, but the present invention does not require an SPM unit 23. For example, the substrate W processed in the ozone gas bake unit 21 may be processed in an SPM unit 23 provided in another apparatus.
 (6)上述した実施例では、基板処理装置1がインデクサブロック3,搬送ブロック7、キャリア載置部17、パス部19などを備え、複数枚の基板Wを連続的に搬送して効率的に処理を行う構成をとっているが、本発明はこのような構成に限定されない。つまり、本発明は、搬送系などを備えず、処理濃度のオゾンガスによる処理を行う構成を備えている基板処理装置であっても適用できる。 (6) In the above-described embodiment, the substrate processing apparatus 1 is configured to include an indexer block 3, a transport block 7, a carrier placement section 17, a path section 19, etc., and to continuously transport and efficiently process a plurality of substrates W, but the present invention is not limited to such a configuration. In other words, the present invention can also be applied to substrate processing apparatuses that do not include a transport system, etc., and that are configured to perform processing using ozone gas at a processing concentration.
 以上のように、本発明は、基板に対して、オゾンガスによる所定の処理を行う基板処理装置に適している。 As described above, the present invention is suitable for substrate processing apparatus that performs a specified process using ozone gas on substrates.
 1 … 基板処理装置
 W … 基板
 3 … インデクサブロック
 5 … 処理ブロック
 7 … 搬送ブロック
 9 … 処理液供給ブロック
 11 … オゾンガス供給ユニット
 13 … オゾンガス分解ユニット
 15 … 処理ユニット
 19 … パス部
 TW1~TW4 … タワー
 21 … オゾンガスベークユニット
 23 … SPMユニット
 25 … 下部リッド
 27 … 上部リッド
 29 … 熱処理プレート
 31 … 昇降機構
 32 … チャンバ
 33 … 排気主管
 35 … 供給配管
 41 … 生成配管
 43,57,67 … マスフローコントローラ
 49,99 … 自動圧力調整器
 51,55,69,74,101 … 制御弁
 53 … 流通配管
 59,71 … フィルタ
 75、79 … 真空エジェクタ
 61 … 第1の分岐点
 63 … 第2の分岐点
 65 … 不活性ガス供給配管
 73 … 吸引配管
 77 … 排気管
 81 … 第1の駆動管
 83,89 … 流量調整弁
 85,91 … 開閉弁
 87 … 第2の駆動管
 94 … パージ管
 Fa … 第1の流量
 Fb … 第2の流量
LIST OF SYMBOLS 1 ... SUBSTRATE PROCESSING APPARATUS W ... SUBSTRATE 3 ... INDEXER BLOCK 5 ... PROCESSING BLOCK 7 ... TRANSPORT BLOCK 9 ... PROCESSING LIQUID SUPPLY BLOCK 11 ... OZONE GAS SUPPLY UNIT 13 ... OZONE GAS DECOMPOSITION UNIT 15 ... PROCESSING UNIT 19 ... PATH SECTION TW1 TO TW4 ... TOWER 21 ... OZONE GAS BAKE UNIT 23 ... SPM UNIT 25 ... LOWER LID 27 ... UPPER LID 29 ... HEAT TREATMENT PLATE 31 ... ELEVATION MECHANISM 32 ... CHAMBER 33 ... EXTRACTION MAIN PIPE 35 ... SUPPLY PIPE 41 ... PRODUCTION PIPE 43, 57, 67 ... MASS FLOW CONTROLLER 49, 99 ... AUTOMATIC PRESSURE REGULATOR 51, 55, 69, 74, 101 ... CONTROL VALVE 53 ... DISTRIBUTION PIPE 59, 71 ... FILTER 75, 79 ... VACUUM EJECTOR 61 ... FIRST BRANCHING POINT 63 ... Second branch point 65: inert gas supply pipe 73: suction pipe 77: exhaust pipe 81: first drive pipe 83, 89: flow rate control valve 85, 91: on-off valve 87: second drive pipe 94: purge pipe Fa: first flow rate Fb: second flow rate

Claims (16)

  1.  基板に被着された被膜を除去する処理を行う基板処理装置において、
     基板を収容して密閉された処理空間を形成するチャンバと、
     前記チャンバ内において基板を保持する保持機構と、
     前記基板を処理するため処理濃度のオゾンガスを供給するオゾンガス供給源と、
     前記チャンバと前記オゾンガス供給源とを連通接続している第1の配管と、
     前記第1の配管に設けられ、前記第1の配管におけるオゾンガスの流通を制御する第1の制御弁と、
     前記第1の配管において前記第1の制御弁よりも前記チャンバ側に設けられた第1のフィルタと、
     前記第1の配管の前記第1のフィルタよりも前記チャンバ側に接続する第1の分岐点に一端側が連通接続され、他端側から不活性ガスが供給される第2の配管と、
     前記第2の配管に設けられ、前記第2の配管における不活性ガスの流通を制御する第2の制御弁と、
     前記第1の配管の前記第1のフィルタと前記第1の制御弁の間に接続する第2の分岐点に一端側が連通接続され、他端側から吸引される吸引配管と、
     前記第1の制御弁を開放し、前記第2の制御弁を閉止した状態で前記チャンバ内にオゾンガスを供給して基板を処理した後、前記第1の制御弁を閉止し、前記第2の制御弁を開放して、前記チャンバ内に不活性ガスを供給する際に、前記吸引配管による吸引を行わせる制御部と、
     を備えていることを特徴とする基板処理装置。
    2. A substrate processing apparatus for performing a process for removing a coating applied to a substrate, comprising:
    a chamber for accommodating a substrate and forming a sealed processing space;
    a holding mechanism for holding a substrate within the chamber;
    an ozone gas supply source for supplying ozone gas at a treatment concentration for treating the substrate;
    a first pipe connecting the chamber and the ozone gas supply source in communication with each other;
    a first control valve provided in the first pipe and configured to control a flow of ozone gas through the first pipe;
    a first filter provided in the first pipe closer to the chamber than the first control valve;
    a second pipe having one end connected to a first branch point of the first pipe that is connected to the chamber side of the first filter, and having an inert gas supplied from the other end of the second pipe;
    a second control valve provided in the second pipe and configured to control a flow of the inert gas through the second pipe;
    a suction pipe having one end connected to a second branch point of the first pipe between the first filter and the first control valve, and having the other end to receive suction;
    a control unit that performs suction through the suction piping when, after supplying ozone gas into the chamber while opening the first control valve and closing the second control valve to process a substrate, closing the first control valve and opening the second control valve to supply an inert gas into the chamber;
    A substrate processing apparatus comprising:
  2.  請求項1に記載の基板処理装置において、
     前記吸引配管による吸引は、前記第2の配管から前記チャンバに供給される不活性ガスの供給が妨げられない吸引力で行われることを特徴とする基板処理装置。
    2. The substrate processing apparatus according to claim 1,
    suction by said suction pipe is performed with a suction force that does not interfere with the supply of inert gas to said chamber from said second pipe.
  3.  請求項1または2に記載の基板処理装置において、
     前記吸引配管は、圧縮気体の供給により吸引力を生じさせる真空エジェクタを他端側に備えていることを特徴とする基板処理装置。
    3. The substrate processing apparatus according to claim 1,
    The substrate processing apparatus is characterized in that the suction pipe is provided at the other end with a vacuum ejector that generates a suction force by supplying compressed gas.
  4.  請求項1から3のずれかに記載の基板処理装置において、
     前記吸引配管は、前記第2の分岐点における吸引力の制御を行い、前記制御部により操作される吸引制御弁を備えていることを特徴とする基板処理装置。
    4. The substrate processing apparatus according to claim 1,
    The substrate processing apparatus according to claim 1, wherein the suction pipe includes a suction control valve that controls a suction force at the second branch point and is operated by the control unit.
  5.  請求項1から4のいずれかに記載の基板処理装置において、
     前記第2の配管は、前記第1の分岐点と前記第2の制御弁との間に第2のフィルタを備えていることを特徴とする基板処理装置。
    5. The substrate processing apparatus according to claim 1,
    The substrate processing apparatus according to claim 1, wherein the second pipe includes a second filter between the first branch point and the second control valve.
  6.  請求項1から5のいずれかに記載の基板処理装置において、
     基板を収容して、処理液による処理を行う処理液チャンバと、
     基板を搬送する搬送機構と、
     をさらに備え、
     前記チャンバにおけるオゾンガスで処理された基板を前記搬送機構で前記処理液チャンバに搬送し、前記基板を前記処理液チャンバにおいて処理液で処理することを特徴とする基板処理装置。
    6. The substrate processing apparatus according to claim 1,
    a processing liquid chamber for accommodating a substrate and performing processing with a processing liquid;
    A transport mechanism for transporting the substrate;
    Further equipped with
    a transport mechanism for transporting the substrate treated with the ozone gas in the chamber to the treatment liquid chamber, and treating the substrate with the treatment liquid in the treatment liquid chamber.
  7.  基板に被着された被膜を除去する処理を行う基板処理装置において、
     基板を収容して密閉された処理空間を形成するチャンバと、
     前記チャンバ内において基板を保持する保持機構と、
     前記基板を処理するためのオゾンガスを常時生成しつつ供給するオゾンガス供給源と、
     前記オゾンガス供給源から供給されたオゾンガスが流通される供給配管と、
     前記供給配管と前記チャンバとを連通接続した流通配管と、
     前記流通配管に設けられ、前記流通配管を流通するオゾンガスの流通を制御する制御弁と、
     気体を排出する排気口と前記供給配管とを連通接続し、前記オゾンガス供給源から供給されたオゾンガスを前記排気口に排出する補助配管と、
     前記補助配管に設けられ、前記補助配管を流通するオゾンガスの流量を調整する排気弁と、
     前記チャンバにオゾンガスを供給しない非処理時には、前記制御弁を閉止させて前記排気弁を開放させ、前記オゾンガス供給源から供給されるオゾンガスを前記排気口に排出させ、前記チャンバにオゾンガスを供給して前記保持機構に保持されている基板をオゾンガスで処理する処理時には、前記排気弁による流量を調整しながら前記制御弁を開放させる制御部と、
     を備えていることを特徴とする基板処理装置。
    2. A substrate processing apparatus for performing a process for removing a coating applied to a substrate, comprising:
    a chamber for accommodating a substrate and forming a sealed processing space;
    a holding mechanism for holding a substrate within the chamber;
    an ozone gas supply source that constantly generates and supplies ozone gas for processing the substrate;
    a supply pipe through which the ozone gas supplied from the ozone gas supply source flows;
    a flow pipe that communicates and connects the supply pipe and the chamber;
    a control valve provided in the flow pipe for controlling the flow of ozone gas through the flow pipe;
    an auxiliary pipe that connects an exhaust port for discharging gas and the supply pipe and discharges the ozone gas supplied from the ozone gas supply source to the exhaust port;
    an exhaust valve provided in the auxiliary pipe for adjusting a flow rate of ozone gas flowing through the auxiliary pipe;
    a control unit that closes the control valve and opens the exhaust valve during non-processing when ozone gas is not being supplied to the chamber, and exhausts the ozone gas supplied from the ozone gas supply source to the exhaust port, and that opens the control valve while adjusting a flow rate through the exhaust valve during processing when ozone gas is supplied to the chamber and the substrate held by the holding mechanism is treated with ozone gas;
    A substrate processing apparatus comprising:
  8.  請求項7に記載の基板処理装置において、
     前記チャンバが複数個であり、
     前記流通配管が複数本であり、
     前記各流通配管は、前記供給配管からそれぞれ分岐して前記各チャンバに連通接続されており、
     前記制御弁は、前記複数本の流通配管のそれぞれに備えられ、
     前記処理時は、前記複数個のチャンバのうちの少なくとも一つがオゾンガスを供給している状態であることを特徴とする基板処理装置。
    8. The substrate processing apparatus according to claim 7,
    The chamber is a plurality of chambers,
    The flow pipe is a plurality of pipes,
    The flow pipes are branched from the supply pipes and connected to the chambers,
    The control valve is provided in each of the plurality of flow pipes,
    2. The substrate processing apparatus according to claim 1, wherein, during the processing, ozone gas is supplied to at least one of the plurality of chambers.
  9.  請求項8に記載の基板処理装置において、
     前記制御部は、前記処理時に、前記供給配管を流通するオゾンガスの流量である第1の流量と、前記各流通配管を流通するオゾンガスの流量の合計である第2の流量との差分が所定値内に収まるように、前記各制御弁による流量に連動して、前記排気弁による流量を調整することを特徴とする基板処理装置。
    9. The substrate processing apparatus according to claim 8,
    The control unit adjusts the flow rate by the exhaust valve in conjunction with the flow rates by each of the control valves so that a difference between a first flow rate, which is the flow rate of ozone gas circulating through the supply piping, and a second flow rate, which is the sum of the flow rates of ozone gas circulating through each of the circulation piping, falls within a predetermined value during the processing.
  10.  請求項8または9に記載の基板処理装置において、
     前記オゾンガス供給源は、前記供給配管へのオゾンガスの流通を許容または遮断する第1の開閉弁と、前記供給配管におけるオゾンガスの圧力を第1の圧力に維持する第1の圧力調整機構とを備え、
     前記補助配管は、前記排気弁として、前記排気口に排出されるオゾンガスの流通を許容または遮断する第2の開閉弁と、前記補助配管におけるオゾンガスの圧力を、前記第1の圧力より小さな第2の圧力に維持する第2の圧力調整機構とを備えていることを特徴とする基板処理装置。
    10. The substrate processing apparatus according to claim 8,
    the ozone gas supply source includes a first on-off valve that allows or blocks the flow of ozone gas to the supply pipe, and a first pressure adjustment mechanism that maintains the pressure of the ozone gas in the supply pipe at a first pressure;
    The auxiliary piping is characterized in that it is equipped with a second on-off valve as the exhaust valve for allowing or blocking the flow of ozone gas discharged to the exhaust port, and a second pressure adjustment mechanism for maintaining the pressure of the ozone gas in the auxiliary piping at a second pressure lower than the first pressure.
  11.  請求項7から10のいずれかに記載の基板処理装置において、
     基板を収容して、処理液による処理を行う処理液チャンバと、
     基板を搬送する搬送機構と、
     をさらに備え、
     前記チャンバにおけるオゾンガスで処理された基板を前記搬送機構で前記処理液チャンバに搬送し、前記基板を前記処理液チャンバにおいて処理液で処理することを特徴とする基板処理装置。
    11. The substrate processing apparatus according to claim 7,
    a processing liquid chamber for accommodating a substrate and performing processing with a processing liquid;
    A transport mechanism for transporting the substrate;
    Further equipped with
    a transport mechanism for transporting the substrate treated with the ozone gas in the chamber to the treatment liquid chamber, and treating the substrate with the treatment liquid in the treatment liquid chamber.
  12.  基板に被着された被膜を除去する処理を行う基板処理装置において、
     基板を保持する保持機構を下部で支持する下部蓋部材と、前記下部蓋部材に対して上方から当接して処理空間を形成する上部蓋部材と、基板の処理時には前記上部蓋部材を前記下部蓋部材に対して下降させ、基板の非処理時には前記上部蓋部材を前記下部蓋部材から上昇させる昇降機構とを備えたチャンバと、
     前記基板を処理するため処理濃度のオゾンガスを供給するオゾンガス供給源と、
     前記オゾンガス供給源と前記チャンバとを連通接続した第1の配管と、
     前記第1の配管に設けられ、前記第1の配管を流通するオゾンガスの流通を制御する第1の制御弁と、
     前記チャンバに連通接続され、前記処理空間内の気体を装置外部の排気口に排出する排気配管と、
     前記排気配管に設けられ、前記排気配管における排気を制御する第2の制御弁と、
     前記排気配管における前記第2の制御弁より前記排気口側に設けられ、第1の排気流量で排気を行う第1の排気手段と、前記排気配管における前記第2の制御弁より前記排気口側に設けられ、前記第1の排気流量より排気流量が小さな第2の排気流量で排気を行う第2の排気手段とを備えた排気機構と、
     前記オゾンガス供給源から前記チャンバにオゾンガスを供給してオゾンガス処理を行うのに先立って、前記第2の制御弁を開放し、前記第1の排気手段を操作して、前記チャンバ内を第1の排気流量で排気して前記上部蓋部材を前記下部蓋部材に密着させ、前記第1の制御弁を操作して前記オゾンガス供給源からオゾンガスを前記チャンバに供給する際には、前記第1の排気手段を停止するとともに前記第2の排気手段を操作して、前記チャンバ内を第2の排気流量で排気する制御部と、
     を備えていることを特徴とする基板処理装置。
    2. A substrate processing apparatus for performing a process for removing a coating applied to a substrate, comprising:
    a chamber including a lower lid member supporting at a lower portion a holding mechanism for holding a substrate, an upper lid member abutting against the lower lid member from above to form a processing space, and a lifting mechanism for lowering the upper lid member relative to the lower lid member when the substrate is being processed and lifting the upper lid member from the lower lid member when the substrate is not being processed;
    an ozone gas supply source for supplying ozone gas at a treatment concentration for treating the substrate;
    a first pipe connecting the ozone gas supply source and the chamber;
    a first control valve provided in the first pipe and configured to control a flow of ozone gas through the first pipe;
    an exhaust pipe connected to the chamber and configured to exhaust gas from within the processing space to an exhaust port outside the apparatus;
    a second control valve provided in the exhaust pipe for controlling exhaust in the exhaust pipe;
    an exhaust mechanism including: a first exhaust means provided on the exhaust piping closer to the exhaust port than the second control valve, and configured to exhaust at a first exhaust flow rate; and a second exhaust means provided on the exhaust piping closer to the exhaust port than the second control valve, and configured to exhaust at a second exhaust flow rate smaller than the first exhaust flow rate;
    a control unit which opens the second control valve and operates the first exhaust means to exhaust the inside of the chamber at a first exhaust flow rate and bring the upper cover member into close contact with the lower cover member, prior to supplying ozone gas from the ozone gas supply source to the chamber to perform ozone gas processing, and which stops the first exhaust means and operates the second exhaust means to exhaust the inside of the chamber at a second exhaust flow rate when operating the first control valve to supply ozone gas from the ozone gas supply source to the chamber;
    A substrate processing apparatus comprising:
  13.  請求項12に記載の基板処理装置において、
     前記第1の配管の第1の分岐点に一端側が連通接続され、他端側から不活性ガスが供給される第2の配管と、
     前記第2の配管における不活性ガスの流通を制御する第3の制御弁と、
     前記第2の制御弁より前記チャンバ側の前記排気配管における第2の分岐点に一端側が連通接続され、他端側が前記排気口に連通接続された補助排気管と、
     前記補助排気管に設けられ、前記補助排気管における気体の流通を制御する第4の制御弁と、
     をさらに備え、
     前記制御部は、前記オゾンガス処理の後、前記第3の制御弁を操作して、前記チャンバ内に不活性ガスを供給するとともに、前記第2の排気手段に代えて前記第1の排気手段を操作して前記チャンバ内を第1の排気流量で排気し、前記チャンバ内のオゾンガスを不活性ガスで置換した後、前記第1の排気手段を停止するとともに前記第2の制御弁を閉止し、前記第4の制御弁を開放した後、前記昇降機構により前記上部蓋部材を上昇させることを特徴とする基板処理装置。
    13. The substrate processing apparatus according to claim 12,
    a second pipe having one end connected to the first branch point of the first pipe and having an inert gas supplied from the other end;
    a third control valve that controls the flow of the inert gas through the second pipe;
    an auxiliary exhaust pipe, one end of which is connected to a second branch point in the exhaust pipe on the chamber side of the second control valve, and the other end of which is connected to the exhaust port;
    a fourth control valve provided in the auxiliary exhaust pipe and configured to control a flow of gas in the auxiliary exhaust pipe;
    Further equipped with
    the control unit, after the ozone gas processing, operates the third control valve to supply an inert gas into the chamber, and operates the first exhaust means instead of the second exhaust means to exhaust the inside of the chamber at a first exhaust flow rate, replaces the ozone gas in the chamber with the inert gas, and then stops the first exhaust means and closes the second control valve, opens the fourth control valve, and then lifts the upper lid member by the lifting mechanism.
  14.  請求項13に記載の基板処理装置において、
     前記制御部は、前記上部蓋部材を上昇させた後、前記第4の制御弁を閉止するとともに、前記第2の制御弁を開放し、前記第2の排気手段を操作して前記チャンバ内を第2の排気流量で排気することを特徴とする基板処理装置。
    14. The substrate processing apparatus according to claim 13,
    the control unit, after raising the upper lid member, closes the fourth control valve, opens the second control valve, and operates the second exhaust means to evacuate the chamber at a second exhaust flow rate.
  15.  請求項12から14のいずれかに記載の基板処理装置において、
     前記第1の排気手段及び前記第2の排気手段は、圧縮気体の供給により排気を行う真空エジェクタを備えていることを特徴とする基板処理装置。
    15. The substrate processing apparatus according to claim 12,
    2. The substrate processing apparatus according to claim 1, wherein the first exhaust means and the second exhaust means each include a vacuum ejector which performs exhaust by supplying compressed gas.
  16.  請求項12から15のいずれかに記載の基板処理装置において、
     基板を収容して、処理液による処理を行う処理液チャンバと、
     基板を搬送する搬送機構と、
     をさらに備え、
     前記チャンバにおけるオゾンガスで処理された基板を前記搬送機構で前記処理液チャンバに搬送し、前記基板を前記処理液チャンバにおいて処理液で処理することを特徴とする基板処理装置。
    16. The substrate processing apparatus according to claim 12,
    a processing liquid chamber for accommodating a substrate and performing processing with a processing liquid;
    A transport mechanism for transporting the substrate;
    Further equipped with
    a transport mechanism for transporting the substrate treated with the ozone gas in the chamber to the treatment liquid chamber, and treating the substrate with the treatment liquid in the treatment liquid chamber.
PCT/JP2022/039534 2022-10-24 2022-10-24 Substrate processing device WO2024089742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039534 WO2024089742A1 (en) 2022-10-24 2022-10-24 Substrate processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039534 WO2024089742A1 (en) 2022-10-24 2022-10-24 Substrate processing device

Publications (1)

Publication Number Publication Date
WO2024089742A1 true WO2024089742A1 (en) 2024-05-02

Family

ID=90830320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039534 WO2024089742A1 (en) 2022-10-24 2022-10-24 Substrate processing device

Country Status (1)

Country Link
WO (1) WO2024089742A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224102A (en) * 2002-01-30 2003-08-08 Tokyo Electron Ltd Substrate treatment equipment and substrate treatment method
JP2004031750A (en) * 2002-06-27 2004-01-29 Tokyo Electron Ltd Apparatus and method for processing substrate
JP2004134525A (en) * 2002-10-09 2004-04-30 Tokyo Electron Ltd Substrate treatment method and device thereof
JP2022041077A (en) * 2020-08-31 2022-03-11 株式会社Screenホールディングス Substrate processing method and substrate processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224102A (en) * 2002-01-30 2003-08-08 Tokyo Electron Ltd Substrate treatment equipment and substrate treatment method
JP2004031750A (en) * 2002-06-27 2004-01-29 Tokyo Electron Ltd Apparatus and method for processing substrate
JP2004134525A (en) * 2002-10-09 2004-04-30 Tokyo Electron Ltd Substrate treatment method and device thereof
JP2022041077A (en) * 2020-08-31 2022-03-11 株式会社Screenホールディングス Substrate processing method and substrate processing device

Similar Documents

Publication Publication Date Title
JP2022084631A (en) Gas delivery system for high pressure processing chamber
JP4397646B2 (en) Substrate processing apparatus and substrate processing method
KR101400157B1 (en) Apparatus, system and method for treating substrate
CN108242392B (en) Substrate, processing method, processing device, processing system, control device and manufacturing method of substrate
KR102592920B1 (en) Loadlock module and semiconductor manufacturing apparatus including the same
KR101884857B1 (en) Buffer unit and System for treating substrate with the unit
JP4927623B2 (en) Method of boosting load lock device
KR20200022682A (en) Buffer unit, Apparatus and Method for treating substrate with the unit
JP5224567B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
KR20080011903A (en) Apparatus for transfering substrates, apparatus for treating substrates, and method for cooling substrates
WO2024089742A1 (en) Substrate processing device
JP2009188411A (en) Silylation processing method, silylation processing apparatus, and etching processing system
TWI838931B (en) Substrate processing equipment
JP2022183685A (en) Wafer processing device
TWI734876B (en) Substrate processing method, substrate processing apparatus, substrate processing system, substrate processing system control device, semiconductor substrate manufacturing method, and semiconductor substrate
JP2022183684A (en) Wafer processing device
JP2022183683A (en) Wafer processing device
CN110491789B (en) Substrate processing method, substrate processing apparatus, and substrate processing system
JP2004260120A (en) Substrate processing apparatus
US20220267909A1 (en) Substrate processing method and substrate processing apparatus
KR101421547B1 (en) Vertical type device and method for treating substrate
JPH10321698A (en) Substrate treatment method and its equipment
JP2004119627A (en) Semiconductor device manufacturing apparatus
KR102318392B1 (en) Apparatus for treating substrate and method for treating substrate
JP2005353978A (en) Method and device for silylation processing