WO2024089356A1 - Articulation à deux degrés de liberté - Google Patents

Articulation à deux degrés de liberté Download PDF

Info

Publication number
WO2024089356A1
WO2024089356A1 PCT/FR2023/051671 FR2023051671W WO2024089356A1 WO 2024089356 A1 WO2024089356 A1 WO 2024089356A1 FR 2023051671 W FR2023051671 W FR 2023051671W WO 2024089356 A1 WO2024089356 A1 WO 2024089356A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
head
rotation
active surface
joint
Prior art date
Application number
PCT/FR2023/051671
Other languages
English (en)
Inventor
Matthieu Lapeyre
Jérémy LAVILLE
Steve Nguyen
Original Assignee
Pollen Robotics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pollen Robotics filed Critical Pollen Robotics
Publication of WO2024089356A1 publication Critical patent/WO2024089356A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0258Two-dimensional joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0025Means for supplying energy to the end effector
    • B25J19/0029Means for supplying energy to the end effector arranged within the different robot elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons

Definitions

  • TITLE Joint with two degrees of freedom
  • the technical field of the invention is the joints of robotic limbs, and more particularly such joints with two degrees of freedom.
  • Robotic limbs generally use multiple joints in order to have the best possible mobility, like the limbs of a human or animal.
  • a joint involves at least one degree of freedom, usually two or three degrees of freedom.
  • degrees of freedom we mean the possibility of rotating along a predefined axis.
  • a joint allows rotation along two distinct predefined axes, generally orthogonal.
  • three degrees of freedom a joint allows rotation along three distinct predefined axes, also generally orthogonal.
  • the joint Depending on their location in the robotic limb, the joint requires a minimum number of degrees of freedom to allow it to function. It might be simpler, on the surface, to use only joints with three degrees of freedom for each of the joints in a limb. However, such joints with three degrees of freedom are heavier, more expensive and more complex to control than their counterparts with two degrees of freedom. It is therefore advantageous to have joints with two degrees of freedom in addition to joints with three degrees of freedom.
  • the subject of the invention is a parallel articulation with two degrees of freedom for a robot comprising a base and a head fixed free to rotate on the base, the head further comprises an active surface fixed free to rotate in the head so that the the axis of rotation of the active surface is included in a plane normal to the axis of rotation of the head relative to the base, the head comprising three bevel gears, a first bevel gear being carried by a first axis, a second gear bevel being carried by a second axis, a third bevel gear being integral with the active surface and being arranged so as to mesh simultaneously with the first bevel gear and the second gear, the first axis and the second axis being coaxial with each other and with the axis of rotation of the head relative to the base, the first axis being hollow, the second axis passing through the first bevel gear and the first axis, the first axis and the second axis being mechanically connected to a first motor and to a second engine, respectively.
  • the joint may include a sensor for measuring the rotation of the head relative to the base and a sensor for measuring the rotation of the active surface relative to the head.
  • the second axis can be hollow, the communication cable of the sensor measuring the rotation of the active surface relative to the head then passing through the first axis and the second axis.
  • the head may include a fixed passive surface that is free to rotate relative to the head, and including a slot at its center so that a cable can pass through the slot, the first hollow shaft and the second hollow shaft to exit into the base.
  • the first axis and the second axis can be mechanically connected to a first motor and a second motor respectively, via a gear transmission, a motor being connected to a first gear meshing with a second gear connected to the corresponding axis.
  • the first axis and the second axis can be mechanically connected to a first motor and a second motor respectively, via a transmission by pulleys and belt, one pulley being connected to a motor, the other pulley being connected to the corresponding axis, the two pulleys being connected by the belt.
  • a belt transmission may be connected to the active surface, a first pulley being connected to the active surface and a holding element, a second pulley being integrally fixed to the active surface and being fixed free rotating on the holding element, so that its position relative to the active surface is maintained, the two pulleys being connected by a belt.
  • the invention also relates to a method of controlling a joint with two degrees of freedom as described above, in which the two motors are controlled so that they rotate in different directions and at the same speed to rotate the head relative to the base and control the two motors so that they rotate in the same direction and at the same speed to rotate the active surface relative to the head.
  • Another object of the invention is a robotic limb comprising at least two segments connected together by an articulation with two degrees of freedom as described above.
  • FIG. 1 illustrates the main elements of the joint with two degrees of freedom according to the invention
  • FIG. 1 illustrates a sectional view of the joint with two degrees of freedom according to the invention
  • FIG. 3 illustrates a sectional view of the joint with two degrees of freedom according to the invention showing the arrangement of the rotation sensors
  • FIG. 4 illustrates a robotic arm comprising the articulation with two degrees of freedom according to the invention
  • FIG. 5 illustrates a first embodiment of the motorization of joint 1 with two degrees of freedom
  • FIG. 6 illustrates a first embodiment of the motorization of joint 1 with two degrees of freedom
  • FIG 7 illustrates an embodiment of offset of the mechanical output of joint 1 with two degrees of freedom.
  • the joint 1 with two degrees of freedom according to the invention is illustrated in Figure [Fig 1].
  • the joint 1 comprises a base 2 and a head 3 fixed to rotate freely on the base 2.
  • the head 3 comprises a spherical part joined with a cylindrical part.
  • the cylindrical part of the head 3 fits into a corresponding opening in the base 2.
  • the head 3 further comprises an active surface 3a and a passive surface 3b directly opposite, fixed free to rotate in the head 3, so that the axis of rotation of the active surface 3a and the passive surface 3b passes through the center of the spherical part of the head 3 and is included in a plane normal to the axis of the cylindrical part of the head 3.
  • the movement of the head 3 and the movement of the active surface 3a rely on three bevel gears 6a, 6b, 6c arranged in the head 3.
  • the first bevel gear 6a and the second bevel gear 6b are arranged one opposite the 'other.
  • the third bevel gear 6c is mechanically secured to the active surface 3a so that a rotation imparted on the third bevel gear 6c is also transmitted to the active surface 3a.
  • the third bevel gear 6c meshes simultaneously with the first bevel gear 6a and the second bevel gear 6b.
  • the joint thus formed comprises a first degree of freedom in rotation around the connection between the base 2 and the head 3 along the axis of revolution of the cylindrical part of the head 3, and a second degree of freedom in rotation around the connection between the head 3 and the active surface 3a along the axis of revolution the active surface 3a.
  • Rotation according to the first degree of freedom is obtained when the first bevel gear 6a and the second bevel gear 6b rotate in opposite directions.
  • Rotation according to the second degree of freedom is obtained when the first bevel gear 6a and the second bevel gear 6b rotate in the same direction.
  • the third bevel gear 6c is then subjected to a rotation speed equal to the rotation speed of the first bevel gear 6a or the second bevel gear 6b.
  • FIG. 1 illustrates a sectional view of the joint 1 with two degrees of freedom according to the invention.
  • Figure [Fig 2] illustrates the internal structure of the base 2, the head 3 and the active surface 3a.
  • the active surface 3a has a disc shape and is mechanically connected to the third bevel gear 6c. On the other hand, it remains free to rotate relative to head 3.
  • the passive surface 3b has, similarly, a disk shape and is left free to rotate relative to the head 3.
  • a set of bearings 5 contributes to maintaining the active surface 3a and the passive surface 3b in the head 3 while allowing rotation.
  • Another set 4 of bearings makes it possible to hold the cylindrical part of the head 3 in place relative to the base 2, while allowing rotation relative to the axis of the cylindrical part of the head 3.
  • a different set 4a of bearings makes it possible to hold the cylindrical part of the head 3 in place relative to the first axis 7a, while allowing rotation relative to the axis of the cylindrical part of the head 3.
  • the first bevel gear 6a is connected to a first axis 7a connected to a first motor.
  • the second bevel gear 6b is connected to a second axis 7b connected to a second motor.
  • the first axis 7a and the second axis 7b are then coaxial so as to allow this arrangement. This is in particular achieved by producing at least the first axis 7a in the form of a hollow axis, the second axis 7b being arranged inside the first axis 7a.
  • the second axis 7b passes through the first bevel gear 6a and the second bevel gear 6b to a support bearing 8.
  • a flange 9 is disposed between the second bevel gear 6b and the support bearing 8 in order to produce a rigid coupling between the second bevel gear 6b and the second axis 7b.
  • the first bevel gear 6a is held in position by a shoulder provided in the first axis 7a and against which the first bevel gear 6a is in contact.
  • Another bearing 10 makes it possible to maintain the second axis 7b in the first axis 7a while allowing rotation.
  • the joint with two degrees of freedom 1 thus designed makes it possible to have two axes of freedom on each of which an infinite rotation can be carried out.
  • FIG. 1 illustrates the sensors arranged in a joint 1 with two degrees of freedom according to the invention.
  • a first rotation sensor 11 is arranged in the base 2 at the interface between the base 2 and the cylindrical part of the head 3.
  • the first rotation sensor 11 comprises a fixed part linked to the base 2 and a movable part linked to the cylindrical part of the head 3.
  • the fixed part is in particular a magnetic sensor configured to measure variations in the magnetic field.
  • the mobile part is in particular a magnetic ring equipped with at least one encoder. The magnetic sensor detects a variation in the magnetic field when the magnetic ring is rotated during the rotation of the head 3.
  • the magnetic sensors and magnetic element assembly are designed in size, distance, intensity and sensitivity so that the magnetic sensors can detect the magnetic element and the position of the magnetic element can be determined based on the intensity measured by each sensor.
  • the first rotation sensor 11 is provided with a connection cable 12.
  • a second rotation sensor 13 is placed in the active surface 3a of the head, so as to measure its position in relation to a rest position or in relation to a magnetic element secured to the rest of the head 3.
  • the second axis 7b is hollow like the first axis 7a, then offering a preferred path for circulating different cables.
  • This path is used in particular for the passage of a connection cable of the second rotation sensor 13.
  • This path can also be used to circulate a cable 15 connecting equipment or actuators arranged downstream of the joint 1.
  • the cable 15 then opens through a slot provided in the center of the passive face 3b.
  • Such a cable 15 makes it possible in particular to power and control the equipment or actuators located downstream. This is particularly important when the joint 1 with two degrees of freedom is used as a shoulder or elbow in a robotic arm as illustrated in Figure [Fig 4], in which at least one actuator 20, in this case a joint wrist, is arranged downstream of the joints 1 with two degrees of freedom.
  • a robotic limb can thus comprise a joint 1 with two degrees of freedom placed between two segments of the limb.
  • Figure [Fig 5] illustrates a first embodiment of the motorization of joint 1 with two degrees of freedom.
  • a first motor 21a is mechanically connected to the first axis 7a via a first set of gears 22a making it possible to carry out a reduction.
  • the second motor 21b is mechanically connected to the second axis 7b via a second set of gears 22b making it possible to achieve a reduction.
  • the two motors 2 la, 21b are thus arranged in the extension of the joint 1, which is advantageous in the case of a joint between two limbs, such as the elbow or the knee.
  • the overall dimensions of the system are reduced because the motors are integrated into the forelimb.
  • first motor 21a and the second motor 21b have the same characteristics, the two sets of gears 22a, 22b then having the same reduction ratio.
  • the first axis 7a is connected to the first motor 21a by a first set of pulleys and belt 23a.
  • the second axis 7b is connected to the second motor 21b by a second set of pulleys and belt 23b.
  • Such an arrangement makes it possible to offset the motors 2 la, 21b and to modify the center of mass or the size of the robot in the vicinity of the joint 1. This is particularly advantageous in the case of a joint 1 used for a shoulder or a hip to the extent that the motors 21a, 21b can then be arranged in the chassis (ie the torso) of the robot.
  • Figure [Fig 7] illustrates a rotational offset at the outlet of the joint.
  • the outlet of the joint corresponding to active surface 3a included in the joint head 3, is connected to a first pulley 25a.
  • a second pulley 25b is placed at the location of the rotation offset.
  • a belt 25c is arranged so as to transmit the rotation of the first pulley 25a to the level of the second pulley 25b.
  • the belt 25c can only carry out its transmission role between the two pulleys 25a, 25b if a minimum tension is applied to it.
  • the belt 25c is limited in the twist that it can accept, so that the two pulleys 25a, 25b must remain substantially in the same plane.
  • a holding element 25d is mechanically secured to bearings authorizing the rotation of the axes of the pulleys 25a, 25b.
  • a holding element 25d makes it possible to hold the pulleys 25a, 25b in relative positions suitable for driving by the belt 25c.
  • Such a holding element 25d is also integral with the head 3 of the joint so as to maintain the relative positions of the second pulley 25b and the head 3 of the joint while allowing the rotation of the active surface 3a connected to pulley 25a.
  • this embodiment has the advantage of shifting the center of mass of the system. This is advantageous for joints between a forelimb and a hindlimb such as the knee or elbow. In fact, the center of mass of the joint is then located closer to the joint between the forelimb and the torso, reducing the stress on the latter. The motors can then be used more efficiently for the same force restored or resized downwards to save weight and cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

Articulation parallèle (1) à deux degrés de liberté pour un robot comprenant une base (2) et une tête (3) fixée libre en rotation sur la base (2), la tête (3) comprend par ailleurs une surface active (3a) fixée libre en rotation dans la tête (3), la tête (3) comprenant trois engrenages coniques (6a,6b,6c), un premier engrenage conique (6a) étant porté par un premier axe (7a), un deuxième engrenage conique (6b) étant porté par un deuxième axe (7b), un troisième engrenage conique (6c) étant solidaire de la surface active (3a) et étant disposé de sorte à s'engrener simultanément avec le premier engrenage conique (6a) et le deuxième engrenage (6b), le deuxième axe (7b) traversant le premier engrenage conique (6a) et le premier axe (7a) creux, le premier axe (7a) et le deuxième axe (7b) étant coaxiaux et mécaniquement reliés à un premier moteur et à un deuxième moteur, respectivement.

Description

DESCRIPTION
TITRE : Articulation à deux degrés de liberté
Domaine technique
L’invention a pour domaine technique les articulations de membres robotiques, et plus particulièrement de telles articulations à deux degrés de liberté.
Techniques antérieures
Les membres robotiques utilisent généralement plusieurs articulations afin de disposer de la meilleure mobilité possible, à l'instar des membres d’un être humain ou d’un animal.
Une articulation implique au moins un degré de liberté, généralement deux ou trois degrés de liberté. Par degrés de liberté, on entend la possibilité de réaliser une rotation selon un axe prédéfini. Ainsi, à deux degrés de liberté, une articulation autorise la rotation selon deux axes prédéfinis distincts, en général orthogonaux. A trois degrés de liberté, une articulation autorise la rotation selon trois axes prédéfinis distincts, en général orthogonaux également.
Selon leur emplacement dans le membre robotique, l’articulation nécessite un nombre minimal de degrés de liberté pour en permettre le fonctionnement. Il pourrait être plus simple, en apparence, de n’employer que des articulations à trois degrés de liberté pour chacune des articulations d’un membre. Néanmoins, de telles articulations à trois degrés de liberté sont plus lourdes, coûteuses et plus complexes à commander que leurs homologues à deux degrés de liberté. Il est ainsi avantageux de disposer d’articulations à deux degrés de liberté en complément d’articulations à trois degrés de liberté.
De telles articulations à deux degrés de liberté sont connues de l’état de la technique. Les documents suivants illustrent différentes variations de ces articulations.
Le document Bsili R. et al. « An evolutionary approach for the optimal design of iCub mk. 3 Parallel Wrist » IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids 2018), 08/11/18, Beijing, China décrit un mécanisme pour un poignet robotique, à deux degrés de liberté ainsi que des paramètres de conception associés permettant de maximiser les angles atteignables selon chaque degré de liberté.
Le document Pencic M. et al. « Social Humanoid Robot SARA: Development of the Wrist Mechanism », IOP Conference Series Materials Science and Engineering. 294(1) :012079-l-012079-10 décrit un autre mécanisme de poignet robotique à deux degrés de liberté permettant une flexion/extension de 115° et une déviation latérale de 45°.
Le document Jager, J et al. (2017) « Joint level modelling, characterisation and torque control of the SHERPA robotic arm », MSs report, Robotics and Mechatronics, University of Twente décrit une articulation comprise dans un bras robotique disposé sur un rover. Le bras comprend sept degrés de liberté répartis entre une épaule, un coude et un poignet. L’épaule et le coude se présentent comme des articulations à deux degrés de liberté, tandis que le poignet présente trois degrés de liberté. Le document Olaru I. et al « Novel Mechanical Design of Biped Robot SHERPA Using 2 DOF Cable Differential Modular Joints » IROS: Intelligent Robots and Systems, Oct 2009, St. Louis, MO, USA. pp.4463-4468, (10.1109/IROS.2009.5354425) décrit une articulation à deux degrés de liberté ayant pour particularité de reposer sur l’association de câbles et de poulies.
Il ressort de ces différents documents que les articulations à deux degrés de liberté selon l’état de la technique sont encombrantes et coûteuses.
Le but de la présente demande est de résoudre ces problèmes techniques.
Exposé de l’invention
L’invention a pour objet une articulation parallèle à deux degrés de liberté pour un robot comprenant une base et une tête fixée libre en rotation sur la base, la tête comprend par ailleurs une surface active fixée libre en rotation dans la tête de sorte que l’axe de rotation de la surface active soit compris dans un plan normal à l’axe de rotation de la tête par rapport à la base, la tête comprenant trois engrenages coniques, un premier engrenage conique étant porté par un premier axe, un deuxième engrenage conique étant porté par un deuxième axe, un troisième engrenage conique étant solidaire de la surface active et étant disposé de sorte à s’engrener simultanément avec le premier engrenage conique et le deuxième engrenage, le premier axe et le deuxième axe étant coaxiaux entre eux et avec l’axe de rotation de la tête par rapport à la base, le premier axe étant creux, le deuxième axe traversant le premier engrenage conique et le premier axe, le premier axe et le deuxième axe étant mécaniquement reliés à un premier moteur et à un deuxième moteur, respectivement.
L’articulation peut comprendre un capteur de mesure de la rotation de la tête par rapport à la base et un capteur de mesure de la rotation de la surface active par rapport à la tête.
Le deuxième axe peut être creux, le câble de communication du capteur de mesure de la rotation de la surface active par rapport à la tête passant alors à travers le premier axe et le deuxième axe.
La tête peut comprendre une surface passive fixée libre en rotation par rapport à la tête, et comprenant une lumière en son centre de sorte qu’un câble puisse traverser la lumière, le premier axe creux et le deuxième axe creux pour ressortir dans la base.
Le premier axe et le deuxième axe peuvent être mécaniquement reliés à un premier moteur et un deuxième moteur respectivement, par l’intermédiaire d’une transmission par engrenages, un moteur étant connecté à un premier engrenage s’engrenant dans un deuxième engrenage connecté à l’axe correspondant.
Le premier axe et le deuxième axe peuvent être mécaniquement reliés à un premier moteur et un deuxième moteur respectivement, par l’intermédiaire d’une transmission par poulies et courroie, une poulie étant connectée à un moteur, l’autre poulie étant connectée à l’axe correspondant, les deux poulies étant connectées par la courroie.
Une transmission par courroie peut être connectée à la surface active, une première poulie étant connectée à la surface active et à un élément de maintien, une deuxième poulie étant fixée de manière solidaire à la surface active et étant fixée libre en rotation sur l’élément de maintien, de sorte que sa position par rapport à la surface active soit maintenue, les deux poulies étant connectées par une courroie.
L’invention a également pour objet un procédé de commande d’une articulation à deux degrés de liberté telle que décrit ci-dessus, dans lequel on commande les deux moteurs de sorte qu’ils tournent dans des directions différentes et à la même vitesse pour faire tourner la tête par rapport à la base et on commande les deux moteurs de sorte qu’ils tournent dans la même direction et à la même vitesse pour faire tourner la surface active par rapport à la tête.
Un autre objet de l’invention est un membre robotique comprenant au moins deux segments reliés ensemble par une articulation à deux degrés de liberté telle que décrite plus haut.
Brève description des dessins
D’autres buts, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d’exemple non limitatif et faite en référence aux dessins annexés sur lesquels :
- la figure [Fig 1] illustre les principaux éléments de l’articulation à deux degrés de liberté selon l’invention,
- la figure [Fig 2] illustre une vue en coupe de l’articulation à deux degrés de liberté selon l’invention,
- la figure [Fig 3] illustre une vue en coupe de l’articulation à deux degrés de liberté selon l’invention montrant la disposition des capteurs de rotation,
- la figure [Fig 4] illustre un bras robotisé comprenant l’articulation à deux degrés de liberté selon l’invention,
- la figure [Fig 5] illustre un premier mode de réalisation quant à la motorisation de l’articulation 1 à deux degrés de liberté,
- la figure [Fig 6] illustre un premier mode de réalisation quant à la motorisation de l’articulation 1 à deux degrés de liberté, et
- la figure [Fig 7] illustre un mode de réalisation de déport de la sortie mécanique de l’articulation 1 à deux degrés de liberté.
Description détaillée
Afin de résoudre le problème technique et de disposer d’une articulation à deux degrés de liberté, la demanderesse a remarqué que l’utilisation de deux axes moteurs imbriqués permettait de façon fort surprenante, de disposer d’une articulation à deux degrés de liberté dont les moteurs sont disposés d’un même coté, améliorant ainsi la compacité de l’articulation ainsi que la répartition des masses dans un membre robotique.
L’articulation 1 à deux degrés de liberté selon l’invention est illustrée par la figure [Fig 1]. L’articulation 1 comprend une base 2 et une tête 3 fixée libre en rotation sur la base 2.
La tête 3 comprend une partie sphérique jointe avec une partie cylindrique. La partie cylindrique de la tête 3 s’insère dans une ouverture correspondante de la base 2.
La tête 3 comprend par ailleurs une surface active 3a et une surface passive 3b directement opposées, fixées libres en rotation dans la tête 3, de sorte que l’axe de rotation de la surface active 3a et de la surface passive 3b passe par le centre de la partie sphérique de la tête 3 et soit compris dans un plan normal à l’axe de la partie cylindrique de la tête 3.
Le mouvement de la tête 3 et le mouvement de la surface active 3a reposent sur trois engrenages coniques 6a, 6b, 6c disposés dans la tête 3. Le premier engrenage conique 6a et le deuxième engrenage conique 6b sont disposés l’un en face de l’autre.
Le troisième engrenage conique 6c est mécaniquement solidaire de la surface active 3a de sorte qu’une rotation impartie sur le troisième engrenage conique 6c est également transmise à la surface active 3a. Le troisième engrenage conique 6c s’engraine simultanément avec le premier engrenage conique 6a et le deuxième engrenage conique 6b.
L’articulation ainsi formée comprend un premier degré de liberté en rotation autour de la liaison entre la base 2 et la tête 3 selon l’axe de révolution de la partie cylindrique de la tête 3, et un deuxième degré de liberté en rotation autour de la liaison entre la tête 3 et la surface active 3a selon l’axe de révolution la surface active 3a.
Une rotation selon le premier degré de liberté est obtenue lorsque le premier engrenage conique 6a et le deuxième engrenage conique 6b tournent en sens opposé.
Une rotation selon le deuxième degré de liberté est obtenue lorsque le premier engrenage conique 6a et le deuxième engrenage conique 6b tournent dans le même sens. Le troisième engrenage conique 6c est alors soumis à une vitesse de rotation égale à la vitesse de rotation du premier engrenage conique 6a ou du deuxième engrenage conique 6b.
La figure [Fig 2] illustre une vue en coupe de l’articulation 1 à deux degrés de liberté selon l’invention.
En plus des éléments principaux décrits ci-dessus, la figure [Fig 2] illustre la structure interne de la base 2, de la tête 3 et de la surface active 3a.
La surface active 3a présente une forme de disque et est mécaniquement connectée au troisième engrenage conique 6c. Elle demeure par contre libre en rotation par rapport à la tête 3.
La surface passive 3b présente, de façon similaire, une forme de disque et est laissée libre en rotation par rapport à la tête 3.
Un ensemble de paliers 5 contribue au maintien de la surface active 3a et de la surface passive 3b dans la tête 3 tout en autorisant la rotation.
Un autre ensemble 4 de paliers permet de maintenir en place la partie cylindrique de la tête 3 par rapport à la base 2, tout en permettant la rotation par rapport à l’axe de la partie cylindrique de la tête 3. De manière similaire, un ensemble différent 4a de paliers permet de maintenir en place la partie cylindrique de la tête 3 par rapport au premier axe 7a, tout en permettant la rotation par rapport à l’axe de la partie cylindrique de la tête 3.
Le premier engrenage conique 6a est relié à un premier axe 7a connecté à un premier moteur. Le deuxième engrenage conique 6b est relié à un deuxième axe 7b connecté à un deuxième moteur.
Le premier axe 7a et le deuxième axe 7b sont alors coaxiaux de manière à permettre cette disposition. Cela est notamment réalisé en réalisant au moins le premier axe 7a sous la forme d’un axe creux, le deuxième axe 7b étant disposé à l’intérieur du premier axe 7a. Le deuxième axe 7b traverse le premier engrenage conique 6a et le deuxième engrenage conique 6b jusqu’ à un palier de support 8. Une bride 9 est disposée entre le deuxième engrenage conique 6b et le palier de support 8 afin de réaliser un accouplement rigide entre le deuxième engrenage conique 6b et le deuxième axe 7b. Le premier engrenage conique 6a est quant à lui maintenu en position par un épaulement ménagé dans le premier axe 7a et contre lequel le premier engrenage conique 6a est en contact. Un autre palier 10 permet de maintenir le deuxième axe 7b dans le premier axe 7a tout en autorisant la rotation.
La conception en axes concentriques et la disposition traversante du deuxième axe 7b par rapport au premier engrenage conique 6a et au deuxième engrenage conique 6b permet de disposer les deux moteurs du même côté de l’articulation. Cette configuration est très avantageuse pour une utilisation au sein d’un bras robotique puisque les deux moteurs peuvent alors se situer du côté du bâti supportant la base 2. On comprendra que, par conception, les deux axes sont maintenus coaxiaux l’un par rapport à l’autre par les différents paliers ou roulements. De plus, leurs diamètres sont choisis de sorte que les frottements entre les tubes soient absents.
L’articulation à deux degrés de liberté 1 ainsi conçue permet de disposer de deux axes de liberté sur chacun desquels on peut réaliser une rotation infinie.
La figure [Fig 3] illustre les capteurs disposés dans une articulation 1 à deux degrés de liberté selon l’invention.
Un premier capteur de rotation 11 est disposé dans la base 2 au niveau de l’interface entre la base 2 et la partie cylindrique de la tête 3. Le premier capteur de rotation 11 comprend une partie fixe liée à la base 2 et une partie mobile liée à la partie cylindrique de la tête 3. La partie fixe est notamment un capteur magnétique configuré pour mesurer les variations de champ magnétique. La partie mobile est notamment un anneau magnétique muni d’au moins un encodeur. Le capteur magnétique détecte une variation de champ magnétique lorsque l’anneau magnétique est mis en rotation lors de la rotation de la tête 3.
L’ensemble capteurs magnétiques et élément magnétique est conçu en taille, distance, intensité et sensibilité de sorte que les capteurs magnétiques puissent détecter l’élément magnétique et que la position de l’élément magnétique puisse être déterminée en fonction de l’intensité mesurée par chaque capteur. Le premier capteur de rotation 11 est muni d’un câble de connexion 12.
Un deuxième capteur de rotation 13 est disposé dans la surface active 3a de la tête, de sorte à en mesurer la position par rapport à une position de repos ou par rapport à un élément magnétique solidaire du reste de la tête 3.
Lorsque l’articulation 1 à deux degrés de rotation est munie de ces capteurs, il est ainsi possible de déterminer la position absolue ou relative de chaque partie de l’articulation 1 de sorte qu’une commande en boucle fermée de chaque degré de liberté est possible.
Dans un mode de réalisation particulier, le deuxième axe 7b est creux comme le premier axe 7a, offrant alors un chemin privilégié pour faire circuler différents câbles. Ce chemin est notamment employé pour le passage d’un câble de connexion du deuxième capteur de rotation 13. Ce chemin peut également être employé pour faire circuler un câble 15 connectant des équipements ou actionneurs disposés en aval de l’articulation 1. Le câble 15 débouche alors par une lumière ménagée au centre de la face passive 3b. Un tel câble 15 permet notamment d’alimenter et de commander les équipements ou actionneurs disposés en aval. Cela est particulièrement important lorsque l’articulation 1 à deux degrés de liberté est employée comme épaule ou coude dans un bras robotisé tel qu’illustré par la figure [Fig 4], dans lequel au moins un actionneur 20, en l’occurrence une articulation de poignet, est disposé en aval des articulations 1 à deux degrés de liberté. L’articulation 1 à deux degrés de liberté disposée dans le coude est située également en aval de l’articulation à deux degrés de liberté disposée dans l’épaule et bénéficie d’une circulation de son câble d’alimentation et de commande à l’intérieur des axes creux de cette articulation d’épaule. De façon générale, un membre robotique peut ainsi comprendre une articulation 1 à deux degrés de liberté disposé entre deux segments du membre.
On comprendra également l’importance des paliers 5 entre la tête 3 et la face passive 3b. En effet, lors de son intégration dans un membre robotique tel que celui illustré par la figure [Fig 4], le segment de membre suivant une articulation 1 à deux degrés de liberté est fixé à la surface active 3a. Ce segment de membre est également fixé à la surface passive 3b afin de partager les efforts de support et d’éviter que la seule surface active 3a ne les supporte. Dès lors que le segment de membre est fixé à la surface passive 3b, celle-ci doit être munie d’une liberté de rotation de sorte à suivre le mouvement de rotation imprimé par la surface active 3a au segment de membre. La présence de paliers 5 permet de réaliser cela.
L’interfaçage amont et aval de l’articulation va maintenant être abordé.
La figure [Fig 5] illustre un premier mode de réalisation quant à la motorisation de l’articulation 1 à deux degrés de liberté.
Un premier moteur 21a est mécaniquement connecté au premier axe 7 a par l’intermédiaire d’un premier ensemble d’engrenages 22a permettant de réaliser une réduction.
De façon similaire, le deuxième moteur 21b est mécaniquement connecté au deuxième axe 7b par l’intermédiaire d’un deuxième ensemble d’engrenages 22b permettant de réaliser une réduction.
Des deux moteurs 2 la, 21b sont ainsi disposés dans le prolongement de l’articulation 1, ce qui est avantageux dans le cas d’une articulation entre deux membres, tels que le coude ou le genou. U’ encombrement du système est réduit car les moteurs sont intégrés dans le membre antérieur.
Dans un mode de réalisation particulier, le premier moteur 21a et le deuxième moteur 21b présentent les mêmes caractéristiques, les deux ensembles d’engrenages 22a, 22b, présentant alors un même ratio de réduction.
Dans un deuxième mode de réalisation quant à la motorisation de l’articulation 1 à deux degrés de liberté, illustrée par la figure [Fig 6], le premier axe 7a est connecté au premier moteur 21a par un premier ensemble de poulies et courroie 23a. De façon similaire, le deuxième axe 7b est connecté au deuxième moteur 21b par un deuxième ensemble de poulies et courroie 23b. Un tel agencement permet de déporter les moteurs 2 la, 21b et de modifier le centre de masse ou l’encombrement du robot au voisinage de l’articulation 1. Cela est notamment avantageux dans le cas d’une articulation 1 employée pour une épaule ou une hanche dans la mesure où les moteurs 21a, 21b peuvent alors être disposés dans le châssis (i.e. le buste) du robot.
La figure [Fig 7] illustre un déport de rotation en sortie de l’articulation. Dans un tel mode de réalisation la sortie de l’articulation, correspondant à surface active 3a comprise dans la tête 3 d’articulation est connectée à une première poulie 25a. Une deuxième poulie 25b est disposée à l’endroit du déport de rotation. Une courroie 25c est disposée de sorte à transmettre la rotation de la première poulie 25a au niveau de la deuxième poulie 25b.
La courroie 25c ne peut réaliser son rôle de transmission entre les deux poulies 25a, 25b que si une tension minimale lui est appliquée. De plus, la courroie 25c est limitée dans la torsion qu’elle peut accepter, de sorte que les deux poulies 25a, 25b doivent rester sensiblement dans le même plan. Afin de satisfaire ces contraintes, un élément 25d de maintien est mécaniquement solidaire de paliers autorisant la rotation des axes des poulies 25a, 25b. Un élément 25d de maintien permet de maintenir les poulies 25a, 25b dans des positions relatives appropriées pour l’entrainement par la courroie 25c. Un tel élément de maintien 25d est également solidaire de la tête 3 de l’articulation de sorte à maintenir les positions relatives de la deuxième poulie 25b et de la tête 3 de l’articulation tout en autorisant la rotation de la surface active 3a connectée à la poulie 25a.
Comme pour le mode de réalisation illustré par la figure [Fig 6], ce mode de réalisation présente l’avantage de déporter le centre de masse du système. Ceci est avantageux pour les articulations entre un membre antérieur et un membre postérieur telles que le genou ou le coude. En effet, le centre de masse de l’articulation est alors situé plus près de l’articulation entre le membre antérieur et le buste, réduisant les contraintes sur cette dernière. Les motorisations peuvent alors être utilisées de façon plus efficace pour la même force restituée ou redimensionnées à la baisse pour un gain de masse et de cout.

Claims

REVENDICATIONS
1. Articulation parallèle (1) à deux degrés de liberté pour un robot comprenant deux moteurs (5a, 5b), une base (2) et une tête (3) fixée libre en rotation sur la base (2), la tête (3) comprend par ailleurs une surface active (3a) fixée libre en rotation dans la tête (3) de sorte que l’axe de rotation de la surface active (3a) soit compris dans un plan normal à l’axe de rotation de la tête (3) par rapport à la base (2), la tête (3) comprenant trois engrenages coniques (6a, 6b, 6c), un premier engrenage conique (6a) étant porté par un premier axe (7a), un deuxième engrenage conique (6b) étant porté par un deuxième axe (7b), un troisième engrenage conique (6c) étant solidaire de la surface active (3a) et étant disposé de sorte à s’engrener simultanément avec le premier engrenage conique (6a) et le deuxième engrenage (6b), le premier axe (7a) et le deuxième axe (7b) étant coaxiaux entre eux et avec l’axe de rotation de la tête (3) par rapport à la base (2), le premier axe (7a) étant creux, le deuxième axe (7b) traversant le premier engrenage conique (6a) et le premier axe (7a), le premier axe (7a) et le deuxième axe (7b) étant mécaniquement reliés au premier moteur (5a) et au deuxième moteur (5b), respectivement.
2. Articulation selon la revendication 1, comprenant un capteur de mesure de la rotation de la tête (3) par rapport à la base (2) et un capteur de mesure de la rotation de la surface active (3a) par rapport à la tête (3).
3. Articulation selon la revendication 2, dans laquelle le deuxième axe (7b) est creux, le câble de communication du capteur de mesure de la rotation de la surface active par rapport à la tête passant alors à travers le premier axe (7a) et le deuxième axe (7b).
4. Articulation selon la revendication 3, dans laquelle la tête (3) comprend une surface passive (3b) fixée libre en rotation par rapport à la tête (3), et comprenant une lumière en son centre de sorte qu’un câble puisse traverser la lumière, le premier axe creux (7a) et le deuxième axe creux (7b) pour ressortir dans la base (2).
5. Articulation selon l’une quelconque des revendications 1 à 4, dans laquelle le premier axe (7a) et le deuxième axe (7b) sont mécaniquement reliés au premier moteur (5a) et au deuxième moteur (5b) respectivement, par l’intermédiaire d’une transmission par engrenages, un desdits moteurs étant connecté à un premier engrenage s’engrenant dans un deuxième engrenage connecté à l’axe correspondant.
6. Articulation selon l’une quelconque des revendications 1 à 4, dans laquelle le premier axe (7a) et le deuxième axe (7b) sont mécaniquement reliés au premier moteur (5a) et au deuxième moteur (5b) respectivement, par l’intermédiaire d’une transmission par poulies et courroie, une poulie étant connectée à un desdits moteurs, l’autre poulie étant connectée à l’axe correspondant, les deux poulies étant connectées par la courroie.
7. Articulation selon l’une quelconque des revendications 1 à 6, dans laquelle une transmission par courroie est connectée à la surface active (3a), une première poulie (25a) étant connectée à la surface active (3a) et fixée libre en rotation sur un élément de maintien (25d), une deuxième poulie (25b) étant fixée de manière solidaire à une surface active déportée (3ab) et étant fixée libre en rotation sur l’élément de maintien (25d), de sorte que sa position par rapport à la surface active (3a) soit maintenue, les deux poulies étant connectées par une courroie (25c).
8. Procédé de commande d’ une articulation ( 1 ) à deux degrés de liberté selon l’une quelconque des revendications 1 à 7, dans lequel on commande les deux moteurs de sorte qu’ils entrainent les axes (7a, 7b) afin qu’ils tournent dans des directions différentes et à la même vitesse pour faire tourner la tête (3) par rapport à la base (2) et on commande les deux moteurs de sorte qu’ils entrainent les axes (7a, 7b) afin qu’ils tournent dans la même direction et à la même vitesse pour faire tourner la surface active (3a) par rapport à la tête (3).
9. Membre robotique comprenant au moins deux segments reliés ensemble par une articulation (1) à deux degrés de liberté selon l’une quelconque des revendications 1 à 7.
PCT/FR2023/051671 2022-10-28 2023-10-25 Articulation à deux degrés de liberté WO2024089356A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2211299A FR3141362A1 (fr) 2022-10-28 2022-10-28 Articulation à deux degrés de liberté
FRFR2211299 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024089356A1 true WO2024089356A1 (fr) 2024-05-02

Family

ID=85176029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051671 WO2024089356A1 (fr) 2022-10-28 2023-10-25 Articulation à deux degrés de liberté

Country Status (2)

Country Link
FR (1) FR3141362A1 (fr)
WO (1) WO2024089356A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200009747A1 (en) * 2018-07-04 2020-01-09 Fanuc Corporation Robot wrist structure
US20200276720A1 (en) * 2019-03-01 2020-09-03 Cloudminds (Beijing) Technologies Co., Ltd. Robot wrist structure and robot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200009747A1 (en) * 2018-07-04 2020-01-09 Fanuc Corporation Robot wrist structure
US20200276720A1 (en) * 2019-03-01 2020-09-03 Cloudminds (Beijing) Technologies Co., Ltd. Robot wrist structure and robot

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BSILI R. ET AL.: "An evolutionary approach for the optimal design of iCub mk. 3 Parallel Wrist", IEEE-RAS 18TH INTERNATIONAL CONFÉRENCE ON HUMANOID ROBOTS (HUMANOIDS 2018), 08/11/18, BEIJING, CHINA
JAGER, J ET AL.: "MSs report, Robotics and Mechatronics", 2017, UNIVERSITY OF TWENTE, article "Joint level modelling, characterisation and torque control of the SHERPA robotic arm"
OLARU I. ET AL.: "Novel Mechanical Design of Biped Robot SHERPA Using 2 DOF Cable Differential Modular Joints", IROS: INTELLIGENT ROBOTS AND SYSTEMS, October 2009 (2009-10-01), pages 4463 - 4468, XP031580785
PENCIC M. ET AL.: "Social Humanoid Robot SARA: Development of the Wrist Mechanism", IOP CONFÉRENCE SERIES MATERIALS SCIENCE AND ENGINEERING, vol. 294, no. 1, pages 012079 - 1,012079-10

Also Published As

Publication number Publication date
FR3141362A1 (fr) 2024-05-03

Similar Documents

Publication Publication Date Title
EP0362342B1 (fr) Dispositif articule, notamment utilisable dans le domaine de la robotique
EP2288477B1 (fr) Articulation motorisee a deux liaisons pivots et robot humanoide mettant en oeuvre l'articulation
US4702668A (en) Direct drive robotic system
US5064340A (en) Precision arm mechanism
EP2164432B1 (fr) Mecanisme de rotation d'avant-bras et orthese comportant un tel mecanisme
FR2993333A1 (fr) Dispositif de transmission de mouvement a reducteur epicycloidal, reducteur epicycloidal et bras de manipulation
EP2483040A1 (fr) Structure de robot ou d'interface haptique a bras en parallele
WO2010101203A1 (fr) Unité d'articulation pour robot et robot
FR3070062B1 (fr) Anti-rotation a cables
FR2937269A1 (fr) Structure articulee de robot multi-axes et robot comprenant une telle structure.
EP2643127A1 (fr) Robot parallele a deux degres de liberte presentant deux chaines cinematiques dont la raideur en flexion est maximisee
FR2900591A1 (fr) Structure de robot de type scara, et robot correspondant
FR2634848A1 (fr) Transmission a variation continue a courroie plate
EP2768635B1 (fr) Dispositif d'anti-rotation asymétrique et vérin à vis comportant un tel dispositif
JP2002523687A (ja) ナット/ネジジャッキ連結構成部品及びロボットアームへの適用
WO2024089356A1 (fr) Articulation à deux degrés de liberté
EP2247406A2 (fr) Tete de fraisage comportant une articulation de type cardan
FR3021575A1 (fr) Manipulateur cobotique
FR2880575A1 (fr) Robot parallele incluant des moyens de compensation de charge
CH699897A2 (fr) Robot parallèle du type SCARA.
FR2670424A1 (fr) Dispositif manipulateur pour deplacer un objet, dans l'espace, parallelement a lui-meme.
WO2011026621A1 (fr) Verin a cable et dispositif d'assistance aux personnes integrant un tel verin
FR2632037A1 (fr) Transmission a variation continue a courroie plate
WO2009016229A1 (fr) Dispositif articule a pantographes
WO2024089357A1 (fr) Articulation à trois degrés de liberté avec renvoi d'efforts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23805641

Country of ref document: EP

Kind code of ref document: A1