WO2024088675A1 - Multilayer electrode - Google Patents

Multilayer electrode Download PDF

Info

Publication number
WO2024088675A1
WO2024088675A1 PCT/EP2023/076496 EP2023076496W WO2024088675A1 WO 2024088675 A1 WO2024088675 A1 WO 2024088675A1 EP 2023076496 W EP2023076496 W EP 2023076496W WO 2024088675 A1 WO2024088675 A1 WO 2024088675A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
active material
strip
mass
electrode according
Prior art date
Application number
PCT/EP2023/076496
Other languages
French (fr)
Inventor
Julien Marbaix
Estelle DANGLARD
Cécile Tessier
Original Assignee
Saft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saft filed Critical Saft
Publication of WO2024088675A1 publication Critical patent/WO2024088675A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes

Definitions

  • the technical field of the invention is that of electrodes usable as positive electrodes (cathodes) in electrochemical elements of the lithium-ion type.
  • Documents US 2012/0328942 and US 2011/0168550 describe for example an arrangement of layers in which the active material layer furthest from the collector comprises a first type of active material particles.
  • the active material layer in contact with the current collector comprises a second type of active material particles, the layer furthest from the current collector having a greater porosity than that of the layer in contact with the current collector.
  • Document WO 2019227016 describes an electrode comprising two superimposed layers of active material in which there is a porosity gradient from one layer to the other.
  • the outer layer has a greater porosity than that of the layer in contact with the current collector.
  • the outer layer comprises a mixture of an active material and of a conductive material, the mixture being dispersed/diluted in a liquid electrolyte.
  • This outer layer is called “semi-solid”. It can take the form of a suspension, an emulsion, a gel or micelles. Using a semi-solid outer layer has certain disadvantages.
  • the choice of the liquid electrolyte used in the manufacture of the outer layer dictates the choice of the electrolyte which will subsequently be used to impregnate the electrochemical beam of the element.
  • the use of a liquid electrolyte in the external layer does not make it possible to control that the humidity level of the electrode remains below the maximum admissible limit.
  • the semi-solid electrode cannot in fact be prepared under the controlled atmosphere of a glove box.
  • an electrode comprising:
  • a strip of aluminum or aluminum alloy the strip being either covered at least partially on one or both of its faces by a coating intended to improve the electronic conductivity between a coated layer and the strip and/or to improve the adhesion of a coated layer to the strip, either having undergone a surface treatment aimed at increasing the adhesion and/or the contact surface of the coated layer to the strip;
  • each layer comprising a first active material which is a lithiated phosphate of one or more transition metals and at least one second active material, characterized in that, in a layer considered, the mass proportion of the lithiated phosphate of one or more transition metals relative to all the masses of active materials in this layer is greater than the mass proportion of lithiated phosphate of one or more transition metals in the adjacent layer further from the strip than the layer considered.
  • a current collector which is an aluminum or aluminum alloy strip covered at least partially on one or both of its faces by a coating intended to improve the electronic conductivity between the layer coated with active material and the strip and/or to improve the adhesion of the layer coated with active material to the strip.
  • the strip may have been subject to a surface treatment aimed at increasing the adhesion and/or the contact surface of the coated layer to the strip. It is then possible to obtain a positive electrode having both a high weight, good mechanical strength and good discharge or charge performance under high currents.
  • the mass proportion of the first active material increases continuously from the layer furthest from the strip to the layer in contact with the strip.
  • the lithiated phosphate of one or more transition metals is chosen from the group consisting of: i) LixFePC>4 (LFR) with 0.8 ⁇ x ⁇ 1.2; ii) LixMni-y-zFe y MzPO4 (LMFP) with 0.8 ⁇ x ⁇ 1.2;0.5 ⁇ 1-yz ⁇ 1;0 ⁇ y ⁇ 0.5;0 ⁇ z ⁇ 0.2 and M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or mixed; iii) LixVPOtF (LVPF) with 0.8 ⁇ x ⁇ 1.2, or one of its derivatives of formula Li x Vi-yMyPO4F z where 0.8 ⁇ x ⁇ 1.2;0 ⁇ y ⁇ 0.5;0.8 ⁇ z ⁇ 1.2 and M is selected from the group consisting of Ti, Al, Y, Cr, Cu, Mg, Mn, Fe, Co, Ni, and Zr,
  • the second active material is a lithiated oxide of formula LixMi.yz-wM'yM”zM'” w O 2 (LMO 2 ) where M, M', M” and M'” are chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W and Mo on the condition that at least M or M' or M” or M'” is chosen from Mn, Co, Ni, or Fe; M, M', M” and M'” being different from each other; and 0.8 ⁇ x ⁇ 1.4;0 ⁇ y ⁇ 0.5;0 ⁇ z ⁇ 0.5;0 ⁇ w ⁇ 0.2 and x+y+z+w ⁇ 2.1.
  • the lithiated oxide is chosen from: Liw(Ni x Mn y COzMt)O 2 (NMC) where 0.9 ⁇ w ⁇ 1.1;0 ⁇ x;0 ⁇ y;0 ⁇ z;0 ⁇ t; M being chosen from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La and their mixtures, and
  • the mass proportion of the first active material is in the range from 50 to 99% relative to the mass of all the active materials of the layer considered;
  • the mass proportion of the second active material is in the range from 1 to 50% relative to the mass of all the active materials of the layer considered.
  • the electrode comprises:
  • the mass proportion of the first active material is in the range from 95 to 85% relative to the mass of all the active materials of the first layer and the mass proportion of the second active material is in the range from 5 to 15% relative to the mass of all the active materials of the first layer;
  • the mass proportion of the first active material is in the range from 40 to 60% relative to the mass of all the active materials of the second layer and the mass proportion of the second active material is in the range from 60 to 40% relative to the mass of all the active materials of the second layer.
  • the first active material is a compound of formula LixMni-y-zFe y MzPO4 (LMFP) with 0.8 ⁇ x ⁇ 1.2;0.5 ⁇ 1-yz ⁇ 1;0 ⁇ y ⁇ 0.5;0 ⁇ z ⁇ 0.2 and M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or in mixture and
  • the second active material is a compound of formula Li w (Ni x Mn y Co z Mt) O2 (NMC) where 0.9 ⁇ w ⁇ 1.1;0 ⁇ x;0 ⁇ y;0 ⁇ z;0 ⁇ t; M being chosen from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La and their mixtures.
  • the lithiated phosphate of one or more transition metals has the formula Li x Mni- y -zFe y M z PO4 (LMFP) and 0.7 ⁇ 1-yz ⁇ 0.9 .
  • the second active material is a lithiated oxide of formula Li x Mi- y -z-wM' y M” z M'”wO2 (LMO2) where M, M', M” and M '” are selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W and Mo provided that 'at least M or M' or M” or M'” is the element Ni and the stoichiometric index of nickel is greater than or equal to 0.6, preferably greater than or equal to 0.8.
  • the coating intended to improve the electronic conductivity between a coated layer and the strip and/or to improve the adhesion of a coated layer to the strip comprises or is made up of carbon or graphite or carbon nanotubes, alone or in mixture.
  • the first active material is in the form of particles having a first median volume diameter Dvso 1 and the second active material is in the form of particles having a second median volume diameter Dvso 2 and the ratio Dv5o 2 / Dvso 1 is at least greater than or equal to 2.
  • the first active material is in the form of particles having a first median volume diameter Dvso 1 ranging from 0.05 to 11 pm and the second active material is in the form of particles having a second volume median diameter Dvso 2 ranging from 2 to 15 pm, the first and second median diameters being determined by laser diffraction.
  • the invention also relates to a lithium-ion electrochemical element comprising at least one positive electrode which is the electrode as described above.
  • FIG.1 schematically represents a sectional view of an electrode according to the invention comprising a current collector and two superimposed layers of active material compositions.
  • FIG.2 compares the internal resistances at the electrolyte/electrode interface of the electrodes of examples A, B, C and D.
  • FIG.3 represents the percentage of the nominal charged capacity of the electrodes of examples A, B, C and D for different charging regimes.
  • the current collector used is a strip of aluminum or an aluminum-based alloy. It can be full or openwork. It is necessarily covered at least partially on one or both of its faces with a coating intended to improve the electronic conductivity between the layer of coated active material composition and the strip and/or to improve adhesion to the strip of the layer. composition of coated active material.
  • the coating may consist of a layer of carbon or graphite or carbon fibers or carbon nanotubes, alone or in a mixture. Preferably, it is a layer of carbon.
  • the carbon coating can be obtained by coating the strip with a carbon dispersion then evaporating the solvent or by cathode sputtering.
  • one or both surfaces of the strip may have been subject to a surface treatment aimed at improving adhesion and increasing the contact surface of the active material composition layer. to the strap. This may be a surface treatment creating roughness or microroughness, for example by physical or chemical stripping or laser treatment.
  • the thickness of the strip can range from 3 to 30 ⁇ m. In a preferred embodiment, the strip is particularly thin and has a thickness ranging from 5 to 20 ⁇ m or from 10 to 16 ⁇ m.
  • the coating or surface treatment makes it possible to compensate for the increase in internal resistance induced by the presence of a significant proportion (> 50%) of lithiated phosphate in the layer in contact with the current collector. The coating or surface treatment improves on the one hand the electronic conductivity between the collector and the different layers of active material composition and on the other hand the adhesion of the layer of active material composition adjacent to the current collector.
  • composition of active materials is meant a composition comprising a first active material, a second active material and optionally one or more binders and one or more electronic conductive materials. At least one of the two faces of the current collector is coated with at least two superimposed layers of active material compositions. The two faces of the current collector can each be coated with at least two superimposed layers of active material compositions.
  • the first positive active material is a lithiated phosphate of one or more transition metals, preferably chosen from the group consisting of: i) LixFePCL (LFP) with 0.8 ⁇ x ⁇ 1.2; ii) LixMni-y-zFe y MzPO4 (LMFP) with 0.8 ⁇ x ⁇ 1.2;0.5 ⁇ 1-yz ⁇ 1;0 ⁇ y ⁇ 0.5;0 ⁇ z ⁇ 0.2 and M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or mixed; iii) LixVPCLF (LVPF) with 0.8 ⁇ x ⁇ 1.2, or one of its derivatives of formula LixVi-yMyPCLFz where 0.8 ⁇ x ⁇ 1.2;0 ⁇ y ⁇ 0.5;0.8 ⁇ z ⁇ 1.2 and M is chosen from the group consisting of Ti, Al, Y, Cr, Cu, Mg, Mn, Fe, Co, Ni, and Zr
  • the lithiated phosphate is preferably covered with a layer of carbon or carbon nanotubes or graphite or a mixture of these.
  • the lithiated phosphate is an LMFP type compound optionally covered by carbon nanotubes or by amorphous carbon.
  • the LMFP formula 0.7 ⁇ 1-y-z ⁇ 0.9 or 0.75 ⁇ 1-y-z ⁇ 0.80.
  • LMFP type lithiated phosphate examples include LiMno.sFeo ⁇ PCL, LiMnojFeo.sPCL, LiMn2/3Fei/3PO4 and LiMno.5Feo.sP04.
  • the second positive active material is not particularly limited.
  • it is a lithiated oxide of formula LixMi-yz-wM'yM” z M'”wO2 (LMO2) where M, M', M” and M'” are chosen from the group consisting of B , Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W and Mo on the condition that at least M or M' or M” or M'” is chosen from Mn, Co, Ni, or Fe; M, M', M” and M'” being different from each other; and 0.8 ⁇ x ⁇ 1.4;0 ⁇ y ⁇ 0.5;0 ⁇ z ⁇ 0.5;0 ⁇ w ⁇ 0.2 and x+y+z+w ⁇ 2.1.
  • the lithiated oxide is chosen from: Liw(NixMriyC0zMt)02 (NMC) where 0.9 ⁇ w ⁇ 1.1;0 ⁇ x;0 ⁇ y;0 ⁇ z;0 ⁇ t; M being chosen from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La and their mixtures, and
  • the NMC compound Preferably, in the NMC compound, 0.6 ⁇ x or 0.7 ⁇ x or 0.8 ⁇ x.
  • NMC type compounds are LiNii/3Mni/3Coi/3O2, LiNio,eMno,2Coo,202, LiNio,84Mno,osCoo,o802, LiNio,87Mno,o6Coo,o?02 and LiNio,89Mno,o6Coo,os02.
  • NCA type compounds are LiNio,84Coo,o8Alo,os02, LiNio,85Coo,ioAlo,os02, LiNio,87COo,06Alo,0?02 ⁇ t LiNio,89COo,06Alo,Os02.
  • Preferred mixtures of first and second active materials are:
  • a layer of active material composition may contain active materials other than the first and second active materials mentioned.
  • each layer does not comprise any active material other than the first and second active materials mentioned.
  • the active material composition layer does not comprise a compound of formula Li x Mn2-yM y O4 where 1 ⁇ x ⁇ 1.4;0 ⁇ y ⁇ 1 and M represents one or more elements selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo.
  • it does not include the compound of formula LiMn2O4.
  • the mass proportion of the lithiated phosphate of one or more transition metals, relative to all the masses of active materials in this layer, is greater than the mass proportion of lithiated phosphate of one or more transition metals in the adjacent layer further from the strip than the layer considered. This results in faster penetration of the electrolyte into the layers of the electrode, higher ionic conductivity and better performance of the element in high current discharge.
  • the number of superimposed layers is not limited. Each layer can have a thickness after calendering ranging from 10 to 200 pm or from 20 to 150 pm or from 30 to 100 pm or from 50 to 80 pm.
  • the superimposed layers can be of equal or different thicknesses.
  • the electrode comprises two superimposed layers with a thickness each ranging from 40 to 70 ⁇ m.
  • an electrode comprising a first layer in contact with the current collector comprising a mixture of LMFP and NMC in the proportions of 90%/10% and a second layer comprising a mixture of LMFP and NMC in the proportions of 50% / 50% has a speed of absorption of the electrolyte higher than that of an electrode comprising only a single layer comprising a mixture of LMFP and NMC in the proportions of 70% / 30%, while the total quantities of LFMP and NMC are identical in both electrodes.
  • Figure 1 schematically represents a sectional view of an electrode comprising a current collector (C), a first layer (L1) adjacent to the current collector and a second layer (L2) deposited on the first layer.
  • the first layer and the second layer each comprise a mixture of a first active material (MA1) and a second active material (MA2).
  • the proportion of the first active material in the first layer is greater than the proportion of the first active material in the second layer.
  • the mixture of the first and the second active material can consist of:
  • the mixture of the first and the second active material may consist of:
  • one of the faces of the current collector comprises only two layers.
  • the mixture of the first and the second active material consists of:
  • the mixture of the first and the second active material consists of:
  • the lithiated phosphate is preferably an LMFP type compound and the lithiated oxide is preferably an NMC type compound.
  • the mixture of the first and the second active material can consist of: - 90% lithiated phosphate,
  • the mixture of the first and the second active material can consist of:
  • the mass proportion of lithiated phosphate in the first layer is greater than 70% or greater than or equal to 80% or greater than or equal to 90%.
  • the mass proportion of lithiated phosphate in the second layer is greater than 30% or greater than or equal to 50% or greater than or equal to 70%.
  • the electrode comprises three superimposed layers and the mass proportion of lithiated phosphate in the third layer is less than 20% or less than or equal to 10% or less than or equal to 5%.
  • the lithiated phosphate can be in the form of either disjoint particles, called primary particles, or agglomerated particles, called secondary particles.
  • the volume median diameter Dvso 1 of the primary or secondary particles is in the range from 0.05 pm to 11 pm.
  • the primary particles can have a volume median diameter Dvso 1 ranging from 0.05 to 1.5 pm.
  • the secondary particles can have a volume median diameter Dvso 1 ranging from 2.9 to 6 pm or from 2.9 to 11 pm.
  • the volume median diameter can be measured by laser diffraction.
  • the lithiated oxide can have a volume median particle diameter Dvso 2 ranging from 2 to 15 pm.
  • the sizes of the active material particles are chosen such that the DV5O 2 / DV5O 1 ratio is at least greater than or equal to 2 or at least greater than or equal to 5 or at least greater than or equal to 7.
  • an electrode weight ranging from 15 to 80 mg/cm 2 or from 30 to 60 mg/cm 2 per side can be obtained, the weight corresponds to the mass of dry matter composition deposited per unit area and per side of the strip.
  • the binder generally used in the active material composition has the function of reinforcing the cohesion between the active material particles as well as improving the adhesion of the active material composition to the current collector.
  • the binder may contain one or more of the following compounds: polyvinylidene fluoride (PVDF) and its copolymers, polytetrafluoroethylene (PTFE) and its copolymers, polyacrylonitrile (PAN), poly(methyl)- or (butyl)methacrylate, polyvinyl chloride (PVC ), poly(vinyl formai), polyester, block polyetheramides, acrylic acid polymers, methacrylic acid, acrylamide, itaconic acid, sulfonic acid, elastomers and cellulose compounds such as carboxymethylcellulose (CMC).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • PVC poly(methyl)- or (butyl)methacrylate
  • the elastomer(s) which can be used as a binder can be chosen from styrene-butadiene (SBR), butadiene-acrylonitrile (NBR), hydrogenated butadiene-acrylonitrile (HNBR).
  • SBR styrene-butadiene
  • NBR butadiene-acrylonitrile
  • HNBR hydrogenated butadiene-acrylonitrile
  • the electronic conductive material generally used in the active material composition is generally chosen from graphite, carbon black, acetylene black, soot, graphene, carbon fibers, carbon nanotubes or a mixture of these. It can also appear in the form of a carbon coating around the active material particles. It generally represents 5% or less or 0.1 to 3% or less than 1% of the mass of the dry matter composition.
  • An ink is prepared by dispersing the first and second active materials in a solvent or in a mixture of several solvents, optionally with one or more binders and optionally one or more electronic conductive materials.
  • a solvent or in a mixture of several solvents optionally with one or more binders and optionally one or more electronic conductive materials.
  • binder(s) from 1 to 10% by mass of binder(s), or from 2 to 5%;
  • a second layer of active material composition can be prepared according to the same procedure as the first layer and be deposited on the first layer.
  • the second layer may have a thickness equal to or different from that of the first layer.
  • the coating, drying and lamination operations are repeated as many times as the desired number of layers.
  • the opposite face of the current collector not yet covered can in turn be covered with one or more layers of active material composition.
  • the current collector of the negative electrode is generally a copper strip or an alloy comprising mainly copper.
  • the strip of the negative electrode has a thickness generally between 3 and 30 ⁇ m. In a preferred embodiment, the strip is particularly thin and has a thickness ranging from 5 to 20 ⁇ m or from 10 to 15 ⁇ m. he
  • the negative active material is not particularly limited. It can be chosen from: a) metallic lithium and lithium alloys; b) compounds capable of inserting lithium into their structure, such as: i) carbon, graphite, coke, carbon black and glassy carbon; ii) tin, silicon, carbon and silicon compounds, carbon and tin compounds and carbon, tin and silicon compounds; iii) lithiated titanium oxides (LTO) of formula Lix-aM a Tiy-bM'bO4-c-dXc in which 0 ⁇ x ⁇ 3; 1 ⁇ y ⁇ 2.5;0 ⁇ a ⁇ 1;0 ⁇ b ⁇ 1;0 ⁇ c ⁇ 2 and -2.5 ⁇ d ⁇ 2.5; where M represents at least one element chosen from the group consisting of Na, K, Mg, Ca, B, Mn, Fe, Co, Cr, Ni, Al, Cu, Ag, Pr, Y and La; M' represents at least one element chosen from the group consisting of B, Mo, Mn, Ce, Sn, Zr,
  • lithiated titanium oxide examples include Ü4TisOi2 (Li4/3Tis/3O4), U2TC3, Li2TiaO7, LiTi2O4, Li x Ti2Oi4 with 0 ⁇ x ⁇ 2 and Li2Na2TieOi4.
  • Tii.yMyNb2-zM'zO 7 -c-dXc 0 ⁇ y ⁇ 1;0 ⁇ z ⁇ 2;0 ⁇ c ⁇ 2 and 0 ⁇ d ⁇ 2;0 ⁇ 1-y;0 ⁇ 2-z.
  • An example of this type of compound is TiNb2O 7 .
  • the negative electrode is prepared in a conventional manner.
  • An ink is prepared by dispersing one or more negative active materials in a solvent or in a mixture of several solvents, optionally with one or more binders and optionally one or more electronic conductive materials.
  • the binder and the electronic conductive material may be such as those described in relation to the positive electrode.
  • the current collector coated with ink is dried then laminated in order to adjust its thickness. A negative electrode is thus obtained.
  • binder(s) from 1 to 10% by mass of binder(s), or from 1 to 5%;
  • Electrolyte There is generally no electronic conductive compound except for LTO. Electrolyte:
  • the electrolyte can be liquid. It is obtained by dissolving one or more lithium salts in one or more organic solvents.
  • the solvent may be chosen from saturated cyclic carbonates, unsaturated cyclic carbonates, non-cyclic carbonates, alkyl esters, ethers, nitrile solvents and tetrahydrothiofen dioxide (sulfolane).
  • ethylene carbonate EC
  • fluoroethylene carbonate FEC
  • propylene carbonate PC
  • butylene carbonate BC
  • VC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC methyl ethyl carbonate
  • DPC dipropyl carbonate
  • alkyl esters mention may be made of methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, butyl propionate, methyl butyrate, butyrate d ethyl, propyl butyrate and mixtures thereof.
  • ethers mention may be made of dimethyl ether (DME) or diethyl ether (DEE) and mixtures thereof.
  • DME dimethyl ether
  • DEE diethyl ether
  • the lithium salt may be chosen from lithium perchlorate LiCIC>4, lithium hexafluorophosphate LiPFe, lithium tetrafluoroborate UBF4, lithium hexafluoroarsenate LiAsFe, lithium hexafluoroantimonate LiSbFe, trifluoromethanesulfonate lithium UCF3SO3, lithium bis(fluorosulfonyl)imide Li(FSC>2)2N (LiFSI), lithium bis(trifluoromethanesulfonyl)imide LiN(CF3SC>2)2 (LiTFSI), tris(fluoromethanesulfonyl)mide - lithium thylide LiC CFsSChh (LiTFSM), lithium bis(pentafluoroethylsulfonyl)imide LiN(C2FsSO2)2 (LiBETI), lithium 4,5-dicyano-2-(trifluoromethyl)imi
  • the concentration of said at least one lithium salt can range from 0.75 to 1.5 mol.L -1 . Preferably, it ranges from 1 to 1.5 mol.L -1 . More preferably, it is approximately equal to 1 mol.L -1 .
  • Certain salts are used as additives, for example UPO2F2, but also sometimes LiBOB and LIDFOB. In these cases, their quantity is expressed as a mass percentage added to 100% electrolyte. Typically, from plus 1 to plus 5% and at most plus 10%.
  • a separator is inserted between a positive electrode and a negative electrode.
  • the material of the separator can be chosen from the following materials: a polyolefin or a mixture of polyolefins, for example polypropylene PP, polyethylene PE, polyester, glass fibers bonded together by a polymer, polyimide, polyamide, polyaramide, polyamideimide and cellulose.
  • the polyester can be chosen from polyethylene terephthalate (PET) and polybutylene terephthalate (PBT).
  • the polyester or polypropylene or polyethylene contains or is coated with a material chosen from the group consisting of a metal oxide, a carbide, a nitride, a boride, a silicide and a sulfide.
  • This material can be SiC>2 or AI2O3, or boehmite.
  • the separator can be coated with an organic coating, for example comprising an acrylate or PVdF or P(VdF-HFP).
  • An electrochemical beam is formed by superimposing at least one positive electrode, at least one separator, at least one negative electrode, each positive electrode being separated from the negative electrode by a separator.
  • the format of the element can be of any type, for example prismatic, cylindrical, button or pocket.
  • the positive and negative electrodes and the separator are planar.
  • the electrochemical beam is parallelepiped and is introduced into the container.
  • the electrochemical beam is impregnated with electrolyte and the opening of the container is sealed tightly by a cover.
  • the electrochemical beam is wound into a spiral then introduced into the container. It is impregnated with electrolyte and the opening of the container is sealed tightly with a lid.
  • a positive electrode, a separator and a negative electrode are deposited on the bottom of the container.
  • the negative electrode, the positive electrode and the electrolyte separator are impregnated.
  • a cover is placed on the upper electrode. The edges of the container are crimped against the lid to seal the electrochemical element.
  • a stack of a positive electrode, a separator and a negative electrode is produced. This set comes in a soft pouch.
  • the pouch is formed by welding the edges of two multilayer films, each multilayer film comprising a metallic layer, generally aluminum, sandwiched between two layers of plastic. The pouch thus formed is filled with an electrolyte then closed tightly.
  • the manufactured element is secondary. It can be used in applications requiring high currents.
  • the electrodes were immersed in an electrolyte and the internal resistance of the interface between the electrode and the electrolyte was measured.
  • the electrolyte used consisted of a mixture of four solvents: dimethyl carbonate (DMC) / methyl ethyl carbonate (EMC) / ethylene carbonate (EC) / propylene carbonate (PC) in the respective volume proportions of 45 % / 25% / 10% / 20% in which lithium hexafluorophosphate LiPFe has been dissolved.
  • the electrolyte obtained was added with 3% vinylene carbonate (VC) and 1% ethylene monofluorocarbonate (FEC).
  • the separator used was a three-layer separator consisting of PP/PE/PP layers.
  • the internal resistance values have been represented in Figure 2. Comparison of the results obtained for electrode B with those obtained for electrode A shows that the multilayer structure does not allow it alone reduces internal resistance. Indeed, the resistance at the interface of multilayer electrode A is 290 Q, therefore greater than that of single-layer electrode B, which is 105 Q. By comparing the resistance at the interface of electrode D with that of electrode A, we note the significant benefit provided by the carbon coating. The resistance at the interface goes from 290 Q to 14 Q, i.e. a reduction in the internal resistance of the interface by a factor of 20. We conclude that the transition from the single-layer structure to the multi-layer structure does not bring any benefit. only if the current collector is coated with carbon.
  • Improving the adhesion of the layer coated with active material to the collector current between electrode A and electrode D can be evaluated at a factor of 3.
  • Comparison of the result obtained for electrode C with that of electrode D shows that the transition from a single-layer structure to a multi-layer structure allows to reduce internal resistance by approximately 30%. In fact, the internal resistance goes from approximately 18 Q for electrode C to 14 Q for electrode D. This is explained by an improvement in ionic conductivity.
  • the impregnation time of the electrode with the electrolyte is divided by a factor of 2 for electrode D in comparison with electrode C.
  • Button-type electrochemical elements comprising a positive electrode which is one of the electrodes A, B, C or D and a negative graphite electrode have been manufactured.
  • the elements were charged at different charging regimes.
  • the capacity loaded at the C/20 regime constitutes the reference capacity.
  • the capacities loaded at the regimes of C/5, C/3, C/2, 2C and 3C were expressed in relation to the reference capacity.
  • the results are shown in Figure 3.
  • the results are consistent with those shown in Figure 2, that is to say that the transition from the single-layer structure to the multi-layer structure only brings a benefit if the current collector is coated with carbon.
  • the transition from a single-layer structure (Example C) to a multi-layer structure (Example D) increases the charged capacity by approximately 10% for a charge at 3C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

An electrode comprising: - a foil (C) made of aluminum or aluminum alloy, the foil either being covered at least partially on one or both faces by a coating intended to improve the electron conductivity between a coated layer and the foil and/or to improve the adhesion of a coated layer to the foil, or having been subjected to a surface treatment aimed at increasing the adhesion and/or the contact area of the coated layer with respect to the foil, - at least two superposed layers (L1, L2), each layer comprising a first active material (MA1) which is a lithiated phosphate of one or more transition metals and at least a second active material (MA2), characterized in that, in a layer in question, the weight proportion of the lithiated phosphate relative to all the active material weights of this layer is greater than the weight proportion of lithiated phosphate in the adjacent layer further away from the foil than the layer in question.

Description

Description Titre : Electrode multicouches Description Title: Multilayer electrode
Domaine technique de l’invention Technical field of the invention
[0001] Le domaine technique de l’invention est celui des électrodes utilisables comme électrodes positives (cathodes) dans des éléments électrochimiques de type lithium-ion. [0001] The technical field of the invention is that of electrodes usable as positive electrodes (cathodes) in electrochemical elements of the lithium-ion type.
Contexte de l'invention Background of the invention
[0002] Capacité massique élevée et puissance massique élevée sont deux objectifs difficiles à concilier lors de la conception d’une électrode d’un élément électrochimique. Généralement, l’obtention d’une électrode offrant une capacité massique élevée se fait au détriment de la puissance massique. En effet, obtenir une capacité massique élevée implique de déposer une quantité importante de matière active sur le collecteur de courant de l’électrode, donc de réaliser une couche épaisse contenant la matière active. Or, dans une couche épaisse, la matière active située au voisinage du collecteur de courant, en raison de son éloignement avec l’électrolyte, est moins rapidement accessible par l’électrolyte que la matière active située directement en contact avec l’électrolyte. Une couche épaisse constitue donc un frein à une bonne imprégnation de la matière active par l’électrolyte et au transport des ions lithium de l’électrolyte vers la matière active. Cet inconvénient se traduit par des performances limitées de l’élément au cours de décharges ou de charges à courant élevé. On recherche donc un moyen de déposer des couches épaisses de matière active sans sacrifier la puissance disponible. [0002] High mass capacity and high mass power are two objectives difficult to reconcile when designing an electrode of an electrochemical element. Generally, obtaining an electrode offering a high specific capacity comes at the expense of specific power. Indeed, obtaining a high mass capacity involves depositing a significant quantity of active material on the current collector of the electrode, therefore creating a thick layer containing the active material. However, in a thick layer, the active material located in the vicinity of the current collector, due to its distance from the electrolyte, is less quickly accessible by the electrolyte than the active material located directly in contact with the electrolyte. A thick layer therefore constitutes an obstacle to good impregnation of the active material by the electrolyte and to the transport of lithium ions from the electrolyte to the active material. This disadvantage results in limited performance of the element during high current discharges or charges. We are therefore looking for a way to deposit thick layers of active material without sacrificing the available power.
[0003] Afin d’améliorer l’imprégnation de la matière active par l’électrolyte dans le cas d’une couche épaisse de matière active, il est connu de superposer sur le collecteur de courant plusieurs couches de matière active, l’ensemble des couches étant caractérisé par un gradient de porosité. [0003] In order to improve the impregnation of the active material by the electrolyte in the case of a thick layer of active material, it is known to superimpose several layers of active material on the current collector, all of the layers being characterized by a porosity gradient.
[0004] Les documents US 2012/0328942 et US 2011/0168550 décrivent par exemple un arrangement de couches dans lequel, la couche de matière active la plus éloignée du collecteur comprend un premier type de particules de matière active. La couche de matière active au contact du collecteur de courant comprend un second type de particules de matière active, la couche la plus éloignée du collecteur de courant présentant une porosité supérieure à celle de la couche au contact du collecteur de courant. [0004] Documents US 2012/0328942 and US 2011/0168550 describe for example an arrangement of layers in which the active material layer furthest from the collector comprises a first type of active material particles. The active material layer in contact with the current collector comprises a second type of active material particles, the layer furthest from the current collector having a greater porosity than that of the layer in contact with the current collector.
[0005] Le document WO 2019227016 décrit une électrode comprenant deux couches de matière active superposées dans lesquelles existe un gradient de porosité d’une couche à l’autre. La couche externe présente une porosité supérieure à celle de la couche en contact avec le collecteur de courant. La couche externe comprend un mélange d’une matière active et d’un matériau conducteur, le mélange étant dispersé/dilué dans un électrolyte liquide. Cette couche externe est dite « semi-solide ». Elle peut prendre la forme d’une suspension, d’une émulsion, d’un gel ou de micelles. Le fait d’utiliser une couche externe semi- solide présente certains inconvénients. D’une part, le choix de l’électrolyte liquide utilisé dans la fabrication de la couche externe dicte le choix de l’électrolyte qui sera utilisé ultérieurement pour imprégner le faisceau électrochimique de l’élément. D’autre part, l’utilisation d’un électrolyte liquide dans la couche externe ne permet pas de contrôler que le taux d’humidité de l’électrode reste en deçà de la limite maximale admissible. L’électrode semi- solide ne peut en effet pas être préparée sous l’atmosphère contrôlée d’une boîte à gants. [0005] Document WO 2019227016 describes an electrode comprising two superimposed layers of active material in which there is a porosity gradient from one layer to the other. The outer layer has a greater porosity than that of the layer in contact with the current collector. The outer layer comprises a mixture of an active material and of a conductive material, the mixture being dispersed/diluted in a liquid electrolyte. This outer layer is called “semi-solid”. It can take the form of a suspension, an emulsion, a gel or micelles. Using a semi-solid outer layer has certain disadvantages. On the one hand, the choice of the liquid electrolyte used in the manufacture of the outer layer dictates the choice of the electrolyte which will subsequently be used to impregnate the electrochemical beam of the element. On the other hand, the use of a liquid electrolyte in the external layer does not make it possible to control that the humidity level of the electrode remains below the maximum admissible limit. The semi-solid electrode cannot in fact be prepared under the controlled atmosphere of a glove box.
[0006] On cherche de nouveaux moyens de faciliter l’imprégnation d’une couche épaisse de matière active par l’électrolyte. En particulier, on cherche un moyen de faciliter l’imprégnation par l’électrolyte d’une couche épaisse à base de phosphate lithié d’un ou de plusieurs métaux de transition. Cette électrode est destinée à être utilisée comme électrode positive d’un élément électrochimique lithium-ion. [0006] We are looking for new ways to facilitate the impregnation of a thick layer of active material with the electrolyte. In particular, we are looking for a way to facilitate the impregnation by the electrolyte of a thick layer based on lithiated phosphate of one or more transition metals. This electrode is intended to be used as the positive electrode of a lithium-ion electrochemical element.
Résumé de l'invention Summary of the invention
[0007] A cette fin, l’invention propose une électrode comprenant : [0007] To this end, the invention proposes an electrode comprising:
- un feuillard en aluminium ou en alliage d’aluminium, le feuillard étant soit recouvert au moins partiellement sur l’une ou ses deux faces par un revêtement destiné à améliorer la conductivité électronique entre une couche enduite et le feuillard et/ou à améliorer l’adhésion d’une couche enduite au feuillard, soit ayant fait l’objet d’un traitement de surface visant à augmenter l’adhésion et/ou la surface de contact de la couche enduite au feuillard ;- a strip of aluminum or aluminum alloy, the strip being either covered at least partially on one or both of its faces by a coating intended to improve the electronic conductivity between a coated layer and the strip and/or to improve the adhesion of a coated layer to the strip, either having undergone a surface treatment aimed at increasing the adhesion and/or the contact surface of the coated layer to the strip;
- au moins deux couches superposées, chaque couche comprenant une première matière active qui est un phosphate lithié d’un ou de plusieurs métaux de transition et au moins une seconde matière active, caractérisée en ce que, dans une couche considérée, la proportion massique du phosphate lithié d’un ou de plusieurs métaux de transition par rapport à l’ensemble des masses de matières actives de cette couche est supérieure à la proportion massique de phosphate lithié d’un ou de plusieurs métaux de transition dans la couche adjacente plus éloignée du feuillard que la couche considérée. - at least two superimposed layers, each layer comprising a first active material which is a lithiated phosphate of one or more transition metals and at least one second active material, characterized in that, in a layer considered, the mass proportion of the lithiated phosphate of one or more transition metals relative to all the masses of active materials in this layer is greater than the mass proportion of lithiated phosphate of one or more transition metals in the adjacent layer further from the strip than the layer considered.
[0008] Il a été découvert qu’une électrode multicouches dans laquelle la proportion de phosphate lithié allait en croissant d’une couche à l’autre dans la direction du collecteur de courant permettait d’augmenter la vitesse d’imprégnation de l’électrode par l’électrolyte. Pour permettre de fabriquer une électrode plus riche en phosphate lithié près du collecteur de courant, notamment pour les phosphates lithiés de fer et de manganèse, et de maintenir à la fois une forte densité d’électrode (soit une faible porosité) et un bon contact électronique et mécanique avec le collecteur de courant, il est nécessaire d’utiliser un collecteur de courant qui soit un feuillard en aluminium ou en alliage d’aluminium recouvert au moins partiellement sur l’une ou ses deux faces par un revêtement destiné à améliorer la conductivité électronique entre la couche enduite de matière active et le feuillard et/ou à améliorer l’adhésion de la couche enduite de matière active au feuillard. Alternativement au revêtement, le feuillard peut avoir fait l’objet d’un traitement de surface visant à augmenter l’adhésion et/ou la surface de contact de la couche enduite au feuillard. Il est alors possible d’obtenir une électrode positive présentant à la fois un grammage élevé, une bonne tenue mécanique et de bonnes performances en décharge ou en charge sous de forts courants. [0008] It was discovered that a multilayer electrode in which the proportion of lithiated phosphate increased from one layer to the other in the direction of the current collector made it possible to increase the speed of impregnation of the electrode. by the electrolyte. To make it possible to manufacture an electrode richer in lithiated phosphate near the current collector, particularly for lithiated iron and manganese phosphates, and to maintain both a high electrode density (i.e. low porosity) and good contact electronic and mechanical with the current collector, it is necessary to use a current collector which is an aluminum or aluminum alloy strip covered at least partially on one or both of its faces by a coating intended to improve the electronic conductivity between the layer coated with active material and the strip and/or to improve the adhesion of the layer coated with active material to the strip. Alternatively to the coating, the strip may have been subject to a surface treatment aimed at increasing the adhesion and/or the contact surface of the coated layer to the strip. It is then possible to obtain a positive electrode having both a high weight, good mechanical strength and good discharge or charge performance under high currents.
[0009] Selon un mode de réalisation, la proportion massique de la première matière active croît continûment de la couche la plus éloignée du feuillard jusqu’à la couche en contact avec le feuillard. [0009] According to one embodiment, the mass proportion of the first active material increases continuously from the layer furthest from the strip to the layer in contact with the strip.
[0010] Selon un mode de réalisation, le phosphate lithié d’un ou de plusieurs métaux de transition est choisi dans le groupe consistant en : i) LixFePC>4 (LFR) avec 0,8<x<1 ,2 ; ii) LixMni-y-zFeyMzPO4 (LMFP) avec 0,8<x<1 ,2 ; 0,5<1-y-z<1 ; 0<y<0,5 ; 0<z<0,2 et M est choisi dans le groupe constitué de B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange ; iii) LixVPOtF (LVPF) avec 0,8<x<1 ,2, ou l’un de ses dérivés de formule LixVi-yMyPO4Fz où 0,8<x<1 ,2 ; 0<y<0,5 ; 0,8<z<1 ,2 et M est choisi dans le groupe consistant en Ti, Al, Y, Cr, Cu, Mg, Mn, Fe, Co, Ni, et Zr, et iv) un mélange de deux ou trois des composés i) à iii). According to one embodiment, the lithiated phosphate of one or more transition metals is chosen from the group consisting of: i) LixFePC>4 (LFR) with 0.8<x<1.2; ii) LixMni-y-zFe y MzPO4 (LMFP) with 0.8<x<1.2;0.5<1-yz<1;0<y<0.5;0<z<0.2 and M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or mixed; iii) LixVPOtF (LVPF) with 0.8<x<1.2, or one of its derivatives of formula Li x Vi-yMyPO4F z where 0.8<x<1.2;0<y<0.5;0.8<z<1.2 and M is selected from the group consisting of Ti, Al, Y, Cr, Cu, Mg, Mn, Fe, Co, Ni, and Zr, and iv) a mixture of two or three of compounds i) to iii).
[0011] Selon un mode de réalisation, la seconde matière active est un oxyde lithié de formule LixMi.y.z-wM’yM”zM’”wO2 (LMO2) où M, M’, M” et M’” sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W et Mo à la condition qu'au moins M ou M’ ou M” ou M’” soit choisi parmi Mn, Co, Ni, ou Fe ; M, M’, M” et M’” étant différents les uns des autres; et 0,8<x<1 ,4 ; 0<y<0,5 ; 0<z<0,5 ; 0<w<0,2 et x+y+z+w<2,1. [0011] According to one embodiment, the second active material is a lithiated oxide of formula LixMi.yz-wM'yM”zM'” w O 2 (LMO 2 ) where M, M', M” and M'” are chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W and Mo on the condition that at least M or M' or M” or M'” is chosen from Mn, Co, Ni, or Fe; M, M', M” and M'” being different from each other; and 0.8<x<1.4;0<y<0.5;0<z<0.5;0<w<0.2 and x+y+z+w<2.1.
[0012] Selon un mode de réalisation, l’oxyde lithié est choisi parmi : Liw(NixMnyCOzMt)O2 (NMC) où 0,9<w<1 ,1 ; 0<x ; 0<y ; 0<z ; 0<t ; M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La et leurs mélanges, et [0012] According to one embodiment, the lithiated oxide is chosen from: Liw(Ni x Mn y COzMt)O 2 (NMC) where 0.9<w<1.1;0<x;0<y;0<z;0<t; M being chosen from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La and their mixtures, and
Liw(NixCOyAlzMt)O2 (NCA) où 0,9<w<1 ,1 ; 0<x ; 0<y ; 0<z ; 0<t ; M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr, La et leurs mélanges. Liw(Ni x COyAl z Mt)O 2 (NCA) where 0.9<w<1.1;0<x;0<y;0<z;0<t; M being chosen from the group consisting of B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr, La and their mixtures.
[0013] Selon un mode de réalisation, dans chaque couche, [0013] According to one embodiment, in each layer,
- la proportion massique de la première matière active se situe dans la plage allant de 50 à 99 % par rapport à la masse de l’ensemble des matières actives de la couche considérée ; - la proportion massique de la seconde matière active se situe dans la plage allant de 1 à 50 % par rapport à la masse de l’ensemble des matières actives de la couche considérée. - the mass proportion of the first active material is in the range from 50 to 99% relative to the mass of all the active materials of the layer considered; - the mass proportion of the second active material is in the range from 1 to 50% relative to the mass of all the active materials of the layer considered.
[0014] Selon un mode de réalisation, l’électrode comprend : [0014] According to one embodiment, the electrode comprises:
- une première couche au contact du feuillard, dans laquelle la proportion massique de la première matière active se situe dans la plage allant de 95 à 85 % par rapport à la masse de l’ensemble des matières actives de la première couche et la proportion massique de la seconde matière active se situe dans la plage allant de 5 à 15 % par rapport à la masse de l’ensemble des matières actives de la première couche ; - a first layer in contact with the strip, in which the mass proportion of the first active material is in the range from 95 to 85% relative to the mass of all the active materials of the first layer and the mass proportion of the second active material is in the range from 5 to 15% relative to the mass of all the active materials of the first layer;
- une seconde couche au contact de la première couche, dans laquelle la proportion massique de la première matière active se situe dans la plage allant de 40 à 60 % par rapport à la masse de l’ensemble des matières actives de la seconde couche et la proportion massique de la seconde matière active se situe dans la plage allant de 60 à 40 % par rapport à la masse de l’ensemble des matières actives de la seconde couche. - a second layer in contact with the first layer, in which the mass proportion of the first active material is in the range from 40 to 60% relative to the mass of all the active materials of the second layer and the mass proportion of the second active material is in the range from 60 to 40% relative to the mass of all the active materials of the second layer.
[0015] Selon un mode de réalisation, [0015] According to one embodiment,
- la première matière active est un composé de formule LixMni-y-zFeyMzPO4 (LMFP) avec 0,8<x<1 ,2 ; 0,5<1-y-z<1 ; 0<y<0,5 ; 0<z<0,2 et M est choisi dans le groupe constitué de B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange et- the first active material is a compound of formula LixMni-y-zFe y MzPO4 (LMFP) with 0.8<x<1.2;0.5<1-yz<1;0<y<0.5;0<z<0.2 and M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or in mixture and
- la seconde matière active est un composé de formule Liw(NixMnyCozMt)O2 (NMC) où 0,9<w<1 ,1 ; 0<x ; 0<y ; 0<z ; 0<t ; M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La et leurs mélanges. - the second active material is a compound of formula Li w (Ni x Mn y Co z Mt) O2 (NMC) where 0.9<w<1.1;0<x;0<y;0<z;0<t; M being chosen from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La and their mixtures.
[0016] Selon un mode de réalisation, le phosphate lithié d’un ou de plusieurs métaux de transition a pour formule LixMni-y-zFeyMzPO4 (LMFP) et 0,7<1-y-z<0,9. [0016] According to one embodiment, the lithiated phosphate of one or more transition metals has the formula Li x Mni- y -zFe y M z PO4 (LMFP) and 0.7<1-yz<0.9 .
[0017] Selon un mode de réalisation, la seconde matière active est un oxyde lithié de formule LixMi-y-z-wM’yM”zM’”wO2 (LMO2) où M, M’, M” et M’” sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W et Mo à la condition qu'au moins M ou M’ ou M” ou M’” soit l’élément Ni et l’indice stoechiométrique du nickel est supérieur ou égal à 0,6, de préférence supérieur ou égal à 0,8. [0017] According to one embodiment, the second active material is a lithiated oxide of formula Li x Mi- y -z-wM' y M” z M'”wO2 (LMO2) where M, M', M” and M '” are selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W and Mo provided that 'at least M or M' or M” or M'” is the element Ni and the stoichiometric index of nickel is greater than or equal to 0.6, preferably greater than or equal to 0.8.
[0018] Selon un mode de réalisation, le revêtement destiné à améliorer la conductivité électronique entre une couche enduite et le feuillard et/ou à améliorer l’adhésion d’une couche enduite au feuillard comprend ou est constitué de carbone ou de graphite ou de nanotubes de carbone, seuls ou en mélange. [0018] According to one embodiment, the coating intended to improve the electronic conductivity between a coated layer and the strip and/or to improve the adhesion of a coated layer to the strip comprises or is made up of carbon or graphite or carbon nanotubes, alone or in mixture.
[0019] Selon un mode de réalisation, la première matière active se présente sous forme de particules présentant un premier diamètre médian en volume Dvso1 et la seconde matière active se présente sous forme de particules présentant un second diamètre médian en volume Dvso2 et le ratio Dv5o2/ Dvso1 est au moins supérieur ou égal à 2. [0019] According to one embodiment, the first active material is in the form of particles having a first median volume diameter Dvso 1 and the second active material is in the form of particles having a second median volume diameter Dvso 2 and the ratio Dv5o 2 / Dvso 1 is at least greater than or equal to 2.
[0020] Selon un mode de réalisation, la première matière active se présente sous forme de particules présentant un premier diamètre médian en volume Dvso1 allant de 0,05 à 11 pm et la seconde matière active se présente sous forme de particules présentant un second diamètre médian en volume Dvso2 allant de 2 à 15 pm, le premier et le second diamètres médians étant déterminés par diffraction laser. [0020] According to one embodiment, the first active material is in the form of particles having a first median volume diameter Dvso 1 ranging from 0.05 to 11 pm and the second active material is in the form of particles having a second volume median diameter Dvso 2 ranging from 2 to 15 pm, the first and second median diameters being determined by laser diffraction.
[0021] L’invention a également pour objet un élément électrochimique lithium-ion comprenant au moins une électrode positive qui est l’électrode telle que décrite ci-avant. [0021] The invention also relates to a lithium-ion electrochemical element comprising at least one positive electrode which is the electrode as described above.
Brève description des dessins Brief description of the drawings
[0022] Des modes de réalisation de l'invention sont décrits ci-dessous plus en détail avec référence aux figures jointes. [0022] Embodiments of the invention are described below in more detail with reference to the attached figures.
[0023] [Fig.1] représente schématiquement une vue en coupe d’une électrode selon l’invention comprenant un collecteur de courant et deux couches superposées de compositions de matières actives. [0023] [Fig.1] schematically represents a sectional view of an electrode according to the invention comprising a current collector and two superimposed layers of active material compositions.
[0024] [Fig.2] compare les résistances internes à l’interface électrolyte/électrode des électrodes des exemples A, B, C et D. [0024] [Fig.2] compares the internal resistances at the electrolyte/electrode interface of the electrodes of examples A, B, C and D.
[0025] [Fig.3] représente le pourcentage de la capacité nominale chargée des électrodes des exemples A, B, C et D pour différents régimes de charge. [0025] [Fig.3] represents the percentage of the nominal charged capacity of the electrodes of examples A, B, C and D for different charging regimes.
Description des modes de réalisation de l'invention Description of embodiments of the invention
Electrode positive : Positive electrode:
Collecteur de courant de l’électrode positive : Current collector of the positive electrode:
[0026] Le collecteur de courant utilisé est un feuillard en aluminium ou en alliage à base d’aluminium. Il peut être plein ou ajouré. Il est nécessairement recouvert au moins partiellement sur l’une ou ses deux faces d’un revêtement destiné à améliorer la conductivité électronique entre la couche de composition de matière active enduite et le feuillard et/ou à améliorer l’adhésion au feuillard de la couche de composition de matière active enduite. The current collector used is a strip of aluminum or an aluminum-based alloy. It can be full or openwork. It is necessarily covered at least partially on one or both of its faces with a coating intended to improve the electronic conductivity between the layer of coated active material composition and the strip and/or to improve adhesion to the strip of the layer. composition of coated active material.
[0027] Le revêtement peut être constitué d’une couche de carbone ou de graphite ou de fibres de carbone ou de nanotubes de carbone, seuls ou en mélange. De préférence, il s’agit d’une couche de carbone. Le revêtement de carbone peut être obtenu par enduction du feuillard d’une dispersion de carbone puis évaporation du solvant ou par pulvérisation cathodique. Alternativement, au lieu d’un revêtement, l’une ou les deux surfaces du feuillard peuvent avoir fait l’objet d’un traitement de surface visant à améliorer l’adhésion et augmenter la surface de contact de la couche de composition de matière active au feuillard. Ce peut être un traitement de surface créant des aspérités ou une microrugosité, par exemple par décapage physique, chimique ou un traitement laser. The coating may consist of a layer of carbon or graphite or carbon fibers or carbon nanotubes, alone or in a mixture. Preferably, it is a layer of carbon. The carbon coating can be obtained by coating the strip with a carbon dispersion then evaporating the solvent or by cathode sputtering. Alternatively, instead of a coating, one or both surfaces of the strip may have been subject to a surface treatment aimed at improving adhesion and increasing the contact surface of the active material composition layer. to the strap. This may be a surface treatment creating roughness or microroughness, for example by physical or chemical stripping or laser treatment.
[0028] L’épaisseur du feuillard peut aller de 3 à 30 pm. Dans un mode de réalisation préféré, le feuillard est particulièrement fin et présente une épaisseur allant de 5 à 20 pm ou de 10 à 16 pm. [0029] Le revêtement ou le traitement de surface permet de compenser la hausse de la résistance interne induite par la présence d’une proportion importante (> 50 %) de phosphate lithié dans la couche au contact du collecteur de courant. Le revêtement ou le traitement de surface améliore d’une part la conductivité électronique entre le collecteur et les différentes couches de composition de matières actives et d’autre part l’adhésion de la couche de composition de matières actives adjacente au collecteur de courant. The thickness of the strip can range from 3 to 30 μm. In a preferred embodiment, the strip is particularly thin and has a thickness ranging from 5 to 20 μm or from 10 to 16 μm. The coating or surface treatment makes it possible to compensate for the increase in internal resistance induced by the presence of a significant proportion (> 50%) of lithiated phosphate in the layer in contact with the current collector. The coating or surface treatment improves on the one hand the electronic conductivity between the collector and the different layers of active material composition and on the other hand the adhesion of the layer of active material composition adjacent to the current collector.
Couches de composition de matières actives positives : Layers of positive active ingredient composition:
[0030] On entend par composition de matières actives une composition comprenant une première matière active, une seconde matière active et éventuellement un ou plusieurs liants et un ou plusieurs matériaux conducteurs électroniques. L’une au moins des deux faces du collecteur de courant est revêtue d’au moins deux couches superposées de compositions de matières actives. Les deux faces du collecteur de courant peuvent être revêtues chacune d’au moins deux couches superposées de compositions de matières actives. [0030] By composition of active materials is meant a composition comprising a first active material, a second active material and optionally one or more binders and one or more electronic conductive materials. At least one of the two faces of the current collector is coated with at least two superimposed layers of active material compositions. The two faces of the current collector can each be coated with at least two superimposed layers of active material compositions.
[0031] La première matière active positive est un phosphate lithié d’un ou de plusieurs métaux de transition, de préférence choisi dans le groupe consistant en : i) LixFePCL (LFP) avec 0,8<x<1 ,2 ; ii) LixMni-y-zFeyMzPO4 (LMFP) avec 0,8<x<1 ,2 ; 0,5<1-y-z<1 ; 0<y<0,5 ; 0<z<0,2 et M est choisi dans le groupe constitué de B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange ; iii) LixVPCLF (LVPF) avec 0,8<x<1 ,2, ou l’un de ses dérivés de formule LixVi-yMyPCLFz où 0,8<x<1 ,2 ; 0<y<0,5 ; 0,8<z<1 ,2 et M est choisi dans le groupe consistant en Ti, Al, Y, Cr, Cu, Mg, Mn, Fe, Co, Ni, et Zr ; et iv) un mélange de deux ou trois des composés i) à iii). The first positive active material is a lithiated phosphate of one or more transition metals, preferably chosen from the group consisting of: i) LixFePCL (LFP) with 0.8<x<1.2; ii) LixMni-y-zFe y MzPO4 (LMFP) with 0.8<x<1.2;0.5<1-yz<1;0<y<0.5;0<z<0.2 and M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or mixed; iii) LixVPCLF (LVPF) with 0.8<x<1.2, or one of its derivatives of formula LixVi-yMyPCLFz where 0.8<x<1.2;0<y<0.5;0.8<z<1.2 and M is chosen from the group consisting of Ti, Al, Y, Cr, Cu, Mg, Mn, Fe, Co, Ni, and Zr; and iv) a mixture of two or three of compounds i) to iii).
[0032] Le phosphate lithié est de préférence recouvert d’une couche de carbone ou de nanotubes de carbone ou de graphite ou d’un mélange de ceux-ci. The lithiated phosphate is preferably covered with a layer of carbon or carbon nanotubes or graphite or a mixture of these.
[0033] Selon une variante, le phosphate lithié est un composé de type LMFP recouvert de manière facultative par des nanotubes de carbone ou par du carbone amorphe. Selon une variante, dans la formule de LMFP, 0,7<1-y-z<0,9 ou 0,75<1-y-z<0,80. According to a variant, the lithiated phosphate is an LMFP type compound optionally covered by carbon nanotubes or by amorphous carbon. According to a variant, in the LMFP formula, 0.7<1-y-z<0.9 or 0.75<1-y-z<0.80.
[0034] Des exemples de phosphate lithié de type LMFP sont LiMno.sFeo^PCL, LiMnojFeo.sPCL, LiMn2/3Fei/3PO4 et LiMno,5Feo,sP04. Examples of LMFP type lithiated phosphate are LiMno.sFeo^PCL, LiMnojFeo.sPCL, LiMn2/3Fei/3PO4 and LiMno.5Feo.sP04.
[0035] La seconde matière active positive n’est pas particulièrement limitée. De préférence, il s’agit d’un oxyde lithié de formule LixMi-y-z-wM’yM”zM’”wO2 (LMO2) où M, M’, M” et M’” sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W et Mo à la condition qu'au moins M ou M’ ou M” ou M’” soit choisi parmi Mn, Co, Ni, ou Fe ; M, M’, M” et M’” étant différents les uns des autres; et 0,8<x<1 ,4 ; 0<y<0,5 ; 0<z<0,5 ; 0<w<0,2 et x+y+z+w<2,1 . The second positive active material is not particularly limited. Preferably, it is a lithiated oxide of formula LixMi-yz-wM'yM” z M'”wO2 (LMO2) where M, M', M” and M'” are chosen from the group consisting of B , Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W and Mo on the condition that at least M or M' or M” or M'” is chosen from Mn, Co, Ni, or Fe; M, M', M” and M'” being different from each other; and 0.8<x<1.4;0<y<0.5;0<z<0.5;0<w<0.2 and x+y+z+w<2.1.
[0036] De préférence encore, l’oxyde lithié est choisi parmi : Liw(NixMriyC0zMt)02 (NMC) où 0,9<w<1 ,1 ; 0<x ; 0<y ; 0<z ; 0<t ; M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La et leurs mélanges, et [0036] More preferably, the lithiated oxide is chosen from: Liw(NixMriyC0zMt)02 (NMC) where 0.9<w<1.1;0<x;0<y;0<z;0<t; M being chosen from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La and their mixtures, and
Liw(NixCOyAlzMt)O2 (NCA) où 0,9<w<1 ,1 ; 0<x ; 0<y ; 0<z ; 0<t ; M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr, La et leurs mélanges. Li w (NixCOyAl z Mt)O2 (NCA) where 0.9<w<1.1;0<x;0<y;0<z;0<t; M being chosen from the group consisting of B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr, La and their mixtures.
[0037] De préférence, dans le composé NMC, 0,6<x ou 0,7<x ou 0,8<x. Preferably, in the NMC compound, 0.6<x or 0.7<x or 0.8<x.
[0038] De préférence, dans le composé NCA, 0,8<x. Preferably, in the NCA compound, 0.8<x.
Des exemples de composés de type NMC sont LiNii/3Mni/3Coi/3O2, LiNio,eMno,2Coo,202, LiNio,84Mno,osCoo,o802, LiNio,87Mno,o6Coo,o?02 et LiNio,89Mno,o6Coo,os02. Examples of NMC type compounds are LiNii/3Mni/3Coi/3O2, LiNio,eMno,2Coo,202, LiNio,84Mno,osCoo,o802, LiNio,87Mno,o6Coo,o?02 and LiNio,89Mno,o6Coo,os02.
Des exemples de composés de type NCA sont LiNio,84Coo,o8Alo,os02, LiNio,85Coo,ioAlo,os02, LiNio,87COo,06Alo,0?02 ©t LiNio,89COo,06Alo,Os02. Examples of NCA type compounds are LiNio,84Coo,o8Alo,os02, LiNio,85Coo,ioAlo,os02, LiNio,87COo,06Alo,0?02 ©t LiNio,89COo,06Alo,Os02.
[0039] Des mélanges préférés de première et de seconde matières actives sont : [0039] Preferred mixtures of first and second active materials are:
- un composé de type LFP avec un composé de type NCA ; - an LFP type compound with an NCA type compound;
- un composé de type LFP avec un composé de type NMC ; - an LFP type compound with an NMC type compound;
- un composé de type LFP avec un composé de type NCA et un composé de type NMC ;- an LFP type compound with an NCA type compound and an NMC type compound;
- un composé de type LMFP avec un composé de type NCA ; - an LMFP type compound with an NCA type compound;
- un composé de type LMFP avec un composé de type NMC ; - an LMFP type compound with an NMC type compound;
- un composé de type LMFP avec un composé de type NCA et un composé de type NMC. [0040] Une couche de composition de matière active peut contenir d’autres matières actives que la première et la seconde matière active citées. De préférence, chaque couche ne comprend pas d’autre matière active que la première et la seconde matière active citées. De préférence, la couche de composition de matière active ne comprend pas de composé de formule LixMn2-yMyO4 où 1<x<1 ,4 ; 0<y<1 et M représente un ou plusieurs éléments choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo. Par exemple, elle ne comprend pas le composé de formule LiMn2Û4. - an LMFP type compound with an NCA type compound and an NMC type compound. [0040] A layer of active material composition may contain active materials other than the first and second active materials mentioned. Preferably, each layer does not comprise any active material other than the first and second active materials mentioned. Preferably, the active material composition layer does not comprise a compound of formula Li x Mn2-yM y O4 where 1<x<1.4;0<y<1 and M represents one or more elements selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo. For example, it does not include the compound of formula LiMn2O4.
[0041] Dans chaque couche à l’exception de la couche externe, la proportion massique du phosphate lithié d’un ou de plusieurs métaux de transition, par rapport à l’ensemble des masses de matières actives de cette couche, est supérieure à la proportion massique de phosphate lithié d’un ou de plusieurs métaux de transition dans la couche adjacente plus éloignée du feuillard que la couche considérée. Il en résulte une pénétration plus rapide de l’électrolyte dans les couches de l’électrode, une conductivité ionique supérieure et de meilleures performances de l’élément en décharge sous fort courant. [0041] In each layer with the exception of the outer layer, the mass proportion of the lithiated phosphate of one or more transition metals, relative to all the masses of active materials in this layer, is greater than the mass proportion of lithiated phosphate of one or more transition metals in the adjacent layer further from the strip than the layer considered. This results in faster penetration of the electrolyte into the layers of the electrode, higher ionic conductivity and better performance of the element in high current discharge.
[0042] Le nombre de couches superposées n’est pas limité. Chaque couche peut présenter une épaisseur après calandrage allant de 10 à 200 pm ou de 20 à 150 pm ou de 30 à 100 pm ou de 50 à 80 pm. Les couches superposées peuvent être d’épaisseurs égales ou différentes. Dans un mode de réalisation préféré, l’électrode comprend deux couches superposées d’une épaisseur chacune allant de 40 à 70 pm. [0043] A quantité égale de matière active déposée sur le collecteur de courant, une électrode multicouche selon l’invention s’imprégne plus rapidement d’électrolyte qu’une électrode ne comportant qu’une seule couche. L’augmentation de la proportion de phosphate lithié au fur et à mesure que l’on se rapproche du collecteur de courant permet une imprégnation plus rapide de l’électrolyte. Par exemple, une électrode comportant une première couche au contact du collecteur de courant comprenant un mélange de LMFP et de NMC dans les proportions de 90 % / 10 % et une seconde couche comprenant un mélange de LMFP et de NMC dans les proportions de 50 % / 50 % présente une vitesse d’absorption de l’électrolyte supérieure à celle d’une électrode ne comportant qu’une seule couche comprenant un mélange de LMFP et de NMC dans les proportions de 70 % / 30 %, alors que les quantités totales de LFMP et de NMC sont identiques dans les deux électrodes. [0042] The number of superimposed layers is not limited. Each layer can have a thickness after calendering ranging from 10 to 200 pm or from 20 to 150 pm or from 30 to 100 pm or from 50 to 80 pm. The superimposed layers can be of equal or different thicknesses. In a preferred embodiment, the electrode comprises two superimposed layers with a thickness each ranging from 40 to 70 μm. [0043] For an equal quantity of active material deposited on the current collector, a multilayer electrode according to the invention is impregnated with electrolyte more quickly than an electrode comprising only a single layer. Increasing the proportion of lithiated phosphate as we get closer to the current collector allows faster impregnation of the electrolyte. For example, an electrode comprising a first layer in contact with the current collector comprising a mixture of LMFP and NMC in the proportions of 90%/10% and a second layer comprising a mixture of LMFP and NMC in the proportions of 50% / 50% has a speed of absorption of the electrolyte higher than that of an electrode comprising only a single layer comprising a mixture of LMFP and NMC in the proportions of 70% / 30%, while the total quantities of LFMP and NMC are identical in both electrodes.
[0044] La Figure 1 représente schématiquement une vue en coupe d’une électrode comportant un collecteur de courant (C), une première couche (L1) adjacente au collecteur de courant et une seconde couche (L2) déposée sur la première couche. La première couche et la seconde couche comprennent chacune un mélange d’une première matière active (MA1) et d’une seconde matière active (MA2). La proportion de la première matière active dans la première couche est supérieure à la proportion de la première matière active dans la seconde couche. [0044] Figure 1 schematically represents a sectional view of an electrode comprising a current collector (C), a first layer (L1) adjacent to the current collector and a second layer (L2) deposited on the first layer. The first layer and the second layer each comprise a mixture of a first active material (MA1) and a second active material (MA2). The proportion of the first active material in the first layer is greater than the proportion of the first active material in the second layer.
[0045] Le mélange de la première et de la seconde matière active peut être constitué : The mixture of the first and the second active material can consist of:
- de 50 à 99 % ou de 60 à 95 % ou de 70 à 90 % ou de 75 à 85 % de phosphate lithié,- from 50 to 99% or from 60 to 95% or from 70 to 90% or from 75 to 85% of lithiated phosphate,
- de 1 à 50 % ou de 5 à 40 % ou de 10 à 30 % ou de 15 à 25 % d’un ou de plusieurs oxydes lithiés. - from 1 to 50% or from 5 to 40% or from 10 to 30% or from 15 to 25% of one or more lithiated oxides.
[0046] Le mélange de la première et de la seconde matière active peut être constitué de : The mixture of the first and the second active material may consist of:
- 60 à 40 % de phosphate lithié, - 60 to 40% lithiated phosphate,
- 40 à 60 % d’un ou de plusieurs oxydes lithiés. - 40 to 60% of one or more lithiated oxides.
[0047] Dans un mode de réalisation préféré, l’une des faces du collecteur de courant comprend uniquement deux couches. Dans la couche la plus proche du collecteur de courant, le mélange de la première et de la seconde matière active est constitué de : [0047] In a preferred embodiment, one of the faces of the current collector comprises only two layers. In the layer closest to the current collector, the mixture of the first and the second active material consists of:
- 85 à 95 % de phosphate lithié, - 85 to 95% lithiated phosphate,
- 5 à 15 % d’un ou de plusieurs oxydes lithiés. - 5 to 15% of one or more lithiated oxides.
Dans la couche la plus éloignée du collecteur de courant, le mélange de la première et de la seconde matière active est constitué de : In the layer furthest from the current collector, the mixture of the first and the second active material consists of:
- 40 à 60 % ou de 45 à 55 % de phosphate lithié, - 40 to 60% or 45 to 55% lithiated phosphate,
- 60 à 40 % ou de 55 à 45 % d’un ou de plusieurs oxydes lithiés. - 60 to 40% or 55 to 45% of one or more lithiated oxides.
Dans ces exemples, le phosphate lithié est de préférence un composé de type LMFP et l’oxyde lithié est de préférence un composé de type NMC. In these examples, the lithiated phosphate is preferably an LMFP type compound and the lithiated oxide is preferably an NMC type compound.
Dans la couche la plus proche du collecteur de courant, le mélange de la première et de la seconde matière active peut être constitué de : - 90 % de phosphate lithié, In the layer closest to the current collector, the mixture of the first and the second active material can consist of: - 90% lithiated phosphate,
- 10 % d’un ou de plusieurs oxydes lithiés. - 10% of one or more lithiated oxides.
Dans la couche la plus éloignée du collecteur de courant, le mélange de la première et de la seconde matière active peut être constitué de : In the layer furthest from the current collector, the mixture of the first and the second active material can consist of:
- 50 % de phosphate lithié, - 50% lithiated phosphate,
- 50 % d’un ou de plusieurs oxydes lithiés. - 50% of one or more lithiated oxides.
[0048] Selon un mode de réalisation, la proportion massique de phosphate lithié dans la première couche est supérieure à 70% ou supérieure ou égale à 80% ou supérieure ou égale à 90%. According to one embodiment, the mass proportion of lithiated phosphate in the first layer is greater than 70% or greater than or equal to 80% or greater than or equal to 90%.
[0049] Selon un mode de réalisation, la proportion massique de phosphate lithié dans la seconde couche est supérieure à 30% ou supérieure ou égale à 50% ou supérieure ou égale à 70%. According to one embodiment, the mass proportion of lithiated phosphate in the second layer is greater than 30% or greater than or equal to 50% or greater than or equal to 70%.
[0050] Selon un mode de réalisation, l’électrode comprend trois couches superposées et la proportion massique de phosphate lithié dans la troisième couche est inférieure à 20% ou inférieure ou égale à 10% ou inférieure ou égale à 5%. According to one embodiment, the electrode comprises three superimposed layers and the mass proportion of lithiated phosphate in the third layer is less than 20% or less than or equal to 10% or less than or equal to 5%.
[0051] Le phosphate lithié peut se présenter sous forme de particules soit disjointes, appelées particules primaires, soit agglomérées, appelées particules secondaires. Le diamètre médian en volume Dvso1 des particules primaires ou secondaires est compris dans l’intervalle allant de 0,05 pm à 11 pm. Les particules primaires peuvent présenter un diamètre médian en volume Dvso1 allant de 0,05 à 1 ,5 pm. Les particules secondaires peuvent présenter un diamètre médian en volume Dvso1 allant de 2,9 à 6 pm ou de 2,9 à 11 pm. Le diamètre médian en volume peut être mesuré par diffraction laser. The lithiated phosphate can be in the form of either disjoint particles, called primary particles, or agglomerated particles, called secondary particles. The volume median diameter Dvso 1 of the primary or secondary particles is in the range from 0.05 pm to 11 pm. The primary particles can have a volume median diameter Dvso 1 ranging from 0.05 to 1.5 pm. The secondary particles can have a volume median diameter Dvso 1 ranging from 2.9 to 6 pm or from 2.9 to 11 pm. The volume median diameter can be measured by laser diffraction.
[0052] L’oxyde lithié peut présenter un diamètre médian en volume de particules Dvso2 allant de 2 à 15 pm. [0052] The lithiated oxide can have a volume median particle diameter Dvso 2 ranging from 2 to 15 pm.
[0053] De préférence, les tailles des particules de matières actives sont choisies telles que le ratio DV5O2 / DV5O1 soit au moins supérieur ou égal à 2 ou au moins supérieur ou égal à 5 ou au moins supérieur ou égal à 7. Preferably, the sizes of the active material particles are chosen such that the DV5O 2 / DV5O 1 ratio is at least greater than or equal to 2 or at least greater than or equal to 5 or at least greater than or equal to 7.
[0054] Typiquement, un grammage d’électrode allant de 15 à 80 mg/cm2 ou de 30 à 60 mg/cm2 par face peut être obtenu, le grammage correspond à la masse de composition de matière sèche déposée par unité de surface et par face du feuillard. [0054] Typically, an electrode weight ranging from 15 to 80 mg/cm 2 or from 30 to 60 mg/cm 2 per side can be obtained, the weight corresponds to the mass of dry matter composition deposited per unit area and per side of the strip.
[0055] Le liant généralement utilisé dans la composition de matière active a pour fonction de renforcer la cohésion entre les particules de matières actives ainsi que d'améliorer l'adhérence de la composition de matière active au collecteur de courant. Le liant peut contenir un ou plusieurs des composés suivants : polyfluorure de vinylidène (PVDF) et ses copolymères, polytétrafluoroéthylène (PTFE) et ses copolymères, polyacrylonitrile (PAN), poly(méthyl)- ou (butyl)méthacrylate, polychlorure de vinyle (PVC), poly(vinyl formai), polyester, polyétheramides séquencés, polymères d'acide acrylique, acide méthacrylique, acrylamide, acide itaconique, acide sulfonique, élastomères et les composés cellulosiques tels que la carboxyméthylcellulose (CMC). Le ou les élastomères pouvant être utilisés comme liant peuvent être choisis parmi le styrène-butadiène (SBR), le butadiène-acryloni- trile (NBR), le butadiène-acrylonitrile hydrogéné (HNBR). The binder generally used in the active material composition has the function of reinforcing the cohesion between the active material particles as well as improving the adhesion of the active material composition to the current collector. The binder may contain one or more of the following compounds: polyvinylidene fluoride (PVDF) and its copolymers, polytetrafluoroethylene (PTFE) and its copolymers, polyacrylonitrile (PAN), poly(methyl)- or (butyl)methacrylate, polyvinyl chloride (PVC ), poly(vinyl formai), polyester, block polyetheramides, acrylic acid polymers, methacrylic acid, acrylamide, itaconic acid, sulfonic acid, elastomers and cellulose compounds such as carboxymethylcellulose (CMC). The elastomer(s) which can be used as a binder can be chosen from styrene-butadiene (SBR), butadiene-acrylonitrile (NBR), hydrogenated butadiene-acrylonitrile (HNBR).
[0056] Le matériau conducteur électronique généralement utilisé dans la composition de matière active est généralement choisi parmi le graphite, le noir de carbone, le noir d'acétylène, la suie, le graphène, les fibres de carbone, les nanotubes de carbone ou un mélange de ceux-ci. Il peut également se présenter sous la forme d’un revêtement de carbone autour des particules de matière active. Il représente généralement 5 % ou moins ou de 0,1 à 3 % ou moins de 1 % de la masse de la composition de matière sèche. The electronic conductive material generally used in the active material composition is generally chosen from graphite, carbon black, acetylene black, soot, graphene, carbon fibers, carbon nanotubes or a mixture of these. It can also appear in the form of a carbon coating around the active material particles. It generally represents 5% or less or 0.1 to 3% or less than 1% of the mass of the dry matter composition.
Préparation de l’électrode positive : Preparation of the positive electrode:
[0057] On prépare une encre en dispersant dans un solvant ou dans un mélange de plusieurs solvants la première et la seconde matière active, avec éventuellement un ou plusieurs liants et éventuellement un ou plusieurs matériaux conducteurs électroniques. En faisant varier la quantité de solvant incorporée au mélange, on peut faire varier la viscosité de l’encre avant de la déposer sur l’une des faces du collecteur de courant. Le collecteur de courant enduit d’encre est séché puis laminé afin d’ajuster son épaisseur et sa porosité. L’homme du métier saura ajuster la pression appliquée pour obtenir l’épaisseur et la porosité désirées. Après évaporation du ou des solvants, on obtient une couche de composition de matière active dont les proportions des différents constituants sont typiquement :An ink is prepared by dispersing the first and second active materials in a solvent or in a mixture of several solvents, optionally with one or more binders and optionally one or more electronic conductive materials. By varying the quantity of solvent incorporated into the mixture, we can vary the viscosity of the ink before depositing it on one of the faces of the current collector. The ink-coated current collector is dried and then laminated to adjust its thickness and porosity. A person skilled in the art will know how to adjust the pressure applied to obtain the desired thickness and porosity. After evaporation of the solvent(s), a layer of active material composition is obtained whose proportions of the different constituents are typically:
- de 75 à 98 % en masse de matière active positive ou de 90 à 95 % ; - from 75 to 98% by mass of positive active ingredient or from 90 to 95%;
- de 1 à 10 % en masse de liant(s), ou de 2 à 5 % ; - from 1 to 10% by mass of binder(s), or from 2 to 5%;
- de 1 à 10 % en masse de matériau conducteur électronique, ou de 2 à 5 %. - from 1 to 10% by mass of electronic conductive material, or from 2 to 5%.
[0058] Une seconde couche de composition de matière active peut être préparée selon la même procédure que la première couche et être déposée sur la première couche. La seconde couche peut avoir une épaisseur égale ou différente de celle de la première couche. Les opérations d’enduction, de séchage et de lamination sont répétées autant de fois que le nombre désiré de couches. [0058] A second layer of active material composition can be prepared according to the same procedure as the first layer and be deposited on the first layer. The second layer may have a thickness equal to or different from that of the first layer. The coating, drying and lamination operations are repeated as many times as the desired number of layers.
[0059] La face opposée du collecteur de courant non encore recouverte peut l’être à son tour d’une ou de plusieurs couches de composition de matières actives. The opposite face of the current collector not yet covered can in turn be covered with one or more layers of active material composition.
Electrode négative : Negative electrode:
[0060] Feuillard de l’électrode négative : [0060] Strip of the negative electrode:
Le collecteur de courant de l'électrode négative est généralement un feuillard en cuivre ou un alliage comprenant majoritairement du cuivre. Le feuillard de l’électrode négative a une épaisseur généralement comprise entre 3 et 30 pm. Dans un mode de réalisation préféré, le feuillard est particulièrement fin et présente une épaisseur allant de 5 à 20 pm ou de 10 à 15 pm. il The current collector of the negative electrode is generally a copper strip or an alloy comprising mainly copper. The strip of the negative electrode has a thickness generally between 3 and 30 μm. In a preferred embodiment, the strip is particularly thin and has a thickness ranging from 5 to 20 μm or from 10 to 15 μm. he
Matière active négative : Negative active ingredient:
[0061] La matière active négative n’est pas particulièrement limitée. Elle peut être choisie parmi : a) le lithium métallique et les alliages de lithium ; b) les composés susceptibles d’insérer du lithium dans leur structure, tels que : i) le carbone, le graphite, le coke, le noir de carbone et le carbone vitreux ; ii) l’étain, le silicium, des composés à base de carbone et de silicium, des composés à base de carbone et d’étain et les composés à base de carbone, d’étain et de silicium ; iii) les oxydes lithiés de titane (LTO) de formule Lix-aMaTiy-bM’bO4-c-dXc dans laquelle 0<x<3 ; 1 <y<2,5 ; 0<a<1 ; 0<b<1 ; 0<c<2 et -2,5<d<2,5 ; où M représente au moins un élément choisi dans le groupe constitué de Na, K, Mg, Ca, B, Mn, Fe, Co, Cr, Ni, Al, Cu, Ag, Pr, Y et La ; M’ représente au moins un élément choisi dans le groupe constitué de B, Mo, Mn, Ce, Sn, Zr, Si, W, V, Ta, Sb, Nb, Ru, Ag, Fe, Co, Ni, Zn, Al, Cr, La, Pr, Bi, Sc, Eu, Sm, Gd, Ce, Y et Eu ; X est au moins un élément choisi dans le groupe consistant en S, F, Cl et Br. [0061] The negative active material is not particularly limited. It can be chosen from: a) metallic lithium and lithium alloys; b) compounds capable of inserting lithium into their structure, such as: i) carbon, graphite, coke, carbon black and glassy carbon; ii) tin, silicon, carbon and silicon compounds, carbon and tin compounds and carbon, tin and silicon compounds; iii) lithiated titanium oxides (LTO) of formula Lix-aM a Tiy-bM'bO4-c-dXc in which 0<x<3; 1 <y<2.5;0<a<1;0<b<1;0<c<2 and -2.5<d<2.5; where M represents at least one element chosen from the group consisting of Na, K, Mg, Ca, B, Mn, Fe, Co, Cr, Ni, Al, Cu, Ag, Pr, Y and La; M' represents at least one element chosen from the group consisting of B, Mo, Mn, Ce, Sn, Zr, Si, W, V, Ta, Sb, Nb, Ru, Ag, Fe, Co, Ni, Zn, Al , Cr, La, Pr, Bi, Sc, Eu, Sm, Gd, Ce, Y and Eu; X is at least one element selected from the group consisting of S, F, Cl and Br.
Des exemples d’oxyde lithié de titane (LTO) sont Ü4TisOi2 (Li4/3Tis/3O4) , U2TC3, Li2TiaO7, LiTi2Û4, LixTi2Û4 avec 0<x<2 et Li2Na2TieOi4 . iv) les oxydes de titane et de niobium (TNO) de formule Tii.yMyNb2-zM’zO7-c-dXc où 0<y<1 ; 0<z<2 ; 0<c<2 et 0<d<2 ; 0<1-y ; 0<2-z. Un exemple de ce type de composé est TiNb2O7. Examples of lithiated titanium oxide (LTO) are Ü4TisOi2 (Li4/3Tis/3O4), U2TC3, Li2TiaO7, LiTi2O4, Li x Ti2Oi4 with 0<x<2 and Li2Na2TieOi4. iv) titanium and niobium oxides (TNO) of formula Tii.yMyNb2-zM'zO 7 -c-dXc where 0<y<1;0<z<2;0<c<2 and 0<d<2;0<1-y;0<2-z. An example of this type of compound is TiNb2O 7 .
Mode de préparation d’une électrode négative : Method of preparing a negative electrode:
[0062] L'électrode négative est préparée de manière conventionnelle. On prépare une encre en dispersant dans un solvant ou dans un mélange de plusieurs solvants une ou plusieurs matières actives négatives, avec éventuellement un ou plusieurs liants et éventuellement un ou plusieurs matériaux conducteurs électroniques. Le liant et le matériau conducteur électronique peuvent être tels que ceux décrits en relation avec l’électrode positive. The negative electrode is prepared in a conventional manner. An ink is prepared by dispersing one or more negative active materials in a solvent or in a mixture of several solvents, optionally with one or more binders and optionally one or more electronic conductive materials. The binder and the electronic conductive material may be such as those described in relation to the positive electrode.
[0063] Le collecteur de courant enduit d’encre est séché puis laminé afin d’ajuster son épaisseur. Une électrode négative est ainsi obtenue. The current collector coated with ink is dried then laminated in order to adjust its thickness. A negative electrode is thus obtained.
[0064] Les proportions typiques des composants de la couche de composition de matière active négative, après évaporation du solvant contenu dans l’encre, sont : [0064] The typical proportions of the components of the negative active material composition layer, after evaporation of the solvent contained in the ink, are:
- de 75 à 98 % en masse de matière active négative, ou de 90 à 98 % ; - from 75 to 98% by mass of negative active material, or from 90 to 98%;
- de 1 à 10 % en masse de liant(s), ou de 1 à 5 % ; - from 1 to 10% by mass of binder(s), or from 1 to 5%;
- de 0 à 5 % en masse de composé conducteur électronique, ou de 1 à 5 %. - from 0 to 5% by mass of electronic conductive compound, or from 1 to 5%.
Il n’y a généralement pas de composé conducteur électronique, sauf pour le LTO. Electrolyte : There is generally no electronic conductive compound except for LTO. Electrolyte:
[0065] L’électrolyte peut être liquide. Il est obtenu en dissolvant un ou plusieurs sels de lithium dans un ou plusieurs solvants organiques. Le solvant peut être choisi parmi les carbonates cycliques saturés, les carbonates cycliques insaturés, les carbonates non cycliques, les esters d’alkyle, les éthers, les solvants nitriles et le dioxyde de tétrahydrothiofène (sulfolane). [0065] The electrolyte can be liquid. It is obtained by dissolving one or more lithium salts in one or more organic solvents. The solvent may be chosen from saturated cyclic carbonates, unsaturated cyclic carbonates, non-cyclic carbonates, alkyl esters, ethers, nitrile solvents and tetrahydrothiofen dioxide (sulfolane).
[0066] Parmi les carbonates cycliques saturés, on peut citer le carbonate d’éthylène (EC), le carbonate de fluoroéthylène (FEC), le carbonate de propylène (PC), le carbonate de butylène (BC) et les mélanges de ceux-ci. Among the saturated cyclic carbonates, mention may be made of ethylene carbonate (EC), fluoroethylene carbonate (FEC), propylene carbonate (PC), butylene carbonate (BC) and mixtures thereof. this.
[0067] Parmi les carbonates cycliques insaturés, on peut citer le carbonate de vinylène (VC). Among the unsaturated cyclic carbonates, mention may be made of vinylene carbonate (VC).
[0068] Parmi les carbonates non cycliques, on peut citer le carbonate de diméthyle (DMC), le carbonate de diéthyle (DEC), le carbonate de méthyle éthyle (EMC), le carbonate de di- propyle (DPC) et les mélanges de ceux-ci. [0068] Among the non-cyclic carbonates, mention may be made of dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (EMC), dipropyl carbonate (DPC) and mixtures of these.
[0069] Parmi les esters d’alkyle, on peut citer l'acétate de méthyle, l'acétate d'éthyle, le propionate de méthyle, le propionate d'éthyle, le propionate de butyle, le butyrate de méthyle, le butyrate d'éthyle, le butyrate de propyle et les mélanges de ceux-ci. [0069] Among the alkyl esters, mention may be made of methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, butyl propionate, methyl butyrate, butyrate d ethyl, propyl butyrate and mixtures thereof.
[0070] Parmi les éthers, on peut citer l'éther de diméthyle (DME) ou de diéthyle (DEE) et les mélanges de ceux-ci. Among the ethers, mention may be made of dimethyl ether (DME) or diethyl ether (DEE) and mixtures thereof.
[0071] Le sel de lithium peut être choisi parmi le perchlorate de lithium LiCIC>4, l'hexafluorophos- phate de lithium LiPFe, le tétrafluoroborate de lithium UBF4, l’hexafluoroarsénate de lithium LiAsFe, l’hexafluoroantimonate de lithium LiSbFe, le trifluorométhanesulfonate de lithium UCF3SO3, le bis(fluorosulfonyl)imidure de lithium Li(FSC>2)2N (LiFSI), le bis(trifluoromé- thanesulfonyl)imidure de lithium LiN(CF3SC>2)2 (LiTFSI), le tris(fluorométhanesulfonyl)mé- thylure de lithium LiC CFsSChh (LiTFSM), le bis(pentafluoroéthylsulfonyl)imidure de lithium LiN(C2FsSO2)2 (LiBETI), le 4,5-dicyano-2-(trifluoromethyl) imidazolide de lithium (LiTDI), le bis(oxalato)borate de lithium (LiBOB), le difluoro(oxalato)borate de lithium (LID- FOB), le tris(pentafluoroethyl)trifluorophosphate de lithium LiPF3(CF2CF3)3 (LiFAP), le di- fluorophosphate de lithium UPO2F2 et les mélanges de ceux-ci. [0071] The lithium salt may be chosen from lithium perchlorate LiCIC>4, lithium hexafluorophosphate LiPFe, lithium tetrafluoroborate UBF4, lithium hexafluoroarsenate LiAsFe, lithium hexafluoroantimonate LiSbFe, trifluoromethanesulfonate lithium UCF3SO3, lithium bis(fluorosulfonyl)imide Li(FSC>2)2N (LiFSI), lithium bis(trifluoromethanesulfonyl)imide LiN(CF3SC>2)2 (LiTFSI), tris(fluoromethanesulfonyl)mide - lithium thylide LiC CFsSChh (LiTFSM), lithium bis(pentafluoroethylsulfonyl)imide LiN(C2FsSO2)2 (LiBETI), lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI), bis(oxalato )lithium borate (LiBOB), lithium difluoro(oxalato)borate (LID-FOB), lithium tris(pentafluoroethyl)trifluorophosphate LiPF3(CF2CF3)3 (LiFAP), lithium difluorophosphate UPO2F2 and mixtures of these.
[0072] La concentration dudit au moins un sel de lithium peut aller de 0,75 à 1 ,5 mol.L-1. De préférence, elle va de 1 à 1 ,5 mol.L-1. De préférence encore, elle est environ égale à 1 mol.L-1. [0072] The concentration of said at least one lithium salt can range from 0.75 to 1.5 mol.L -1 . Preferably, it ranges from 1 to 1.5 mol.L -1 . More preferably, it is approximately equal to 1 mol.L -1 .
[0073] Certains sels sont utilisés en additifs, par exemple UPO2F2, mais aussi parfois LiBOB et LIDFOB. Dans ces cas-là, leur quantité est exprimée en pourcentage massique ajoutée à 100 % d’électrolyte. Typiquement, de plus 1 à plus 5 % et au maximum plus 10 %. [0073] Certain salts are used as additives, for example UPO2F2, but also sometimes LiBOB and LIDFOB. In these cases, their quantity is expressed as a mass percentage added to 100% electrolyte. Typically, from plus 1 to plus 5% and at most plus 10%.
Séparateur : Separator:
[0074] Un séparateur est intercalé entre une électrode positive et une électrode négative. Le matériau du séparateur peut être choisi parmi les matériaux suivants : une polyoléfine ou un mélange de polyoléfines, par exemple le polypropylène PP, le polyéthylène PE, un polyester, des fibres de verre liées entre elles par un polymère, le polyimide, le polyamide, le po- lyaramide, le polyamideimide et la cellulose. Le polyester peut être choisi parmi le téréph- talate de polyéthylène (PET) et le téréphtalate de polybutylène (PBT). Avantageusement, le polyester ou le polypropylène ou le polyéthylène contient ou est revêtu d’un matériau choisi dans le groupe consistant en un oxyde métallique, un carbure, un nitrure, un bo- rure, un siliciure et un sulfure. Ce matériau peut être SiC>2 ou AI2O3, ou boehmite. Le séparateur peut être revêtu d’un revêtement organique, par exemple comprenant un acrylate ou PVdF ou P(VdF-HFP). [0074] A separator is inserted between a positive electrode and a negative electrode. The material of the separator can be chosen from the following materials: a polyolefin or a mixture of polyolefins, for example polypropylene PP, polyethylene PE, polyester, glass fibers bonded together by a polymer, polyimide, polyamide, polyaramide, polyamideimide and cellulose. The polyester can be chosen from polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Advantageously, the polyester or polypropylene or polyethylene contains or is coated with a material chosen from the group consisting of a metal oxide, a carbide, a nitride, a boride, a silicide and a sulfide. This material can be SiC>2 or AI2O3, or boehmite. The separator can be coated with an organic coating, for example comprising an acrylate or PVdF or P(VdF-HFP).
Fabrication de l’élément électrochimique : Manufacturing of the electrochemical element:
[0075] On constitue un faisceau électrochimique en superposant au moins une électrode positive, au moins un séparateur, au moins une électrode négative, chaque électrode positive étant séparée de l’électrode négative par un séparateur. Le format de l’élément peut être de tout type, par exemple prismatique, cylindrique, bouton ou pochette. An electrochemical beam is formed by superimposing at least one positive electrode, at least one separator, at least one negative electrode, each positive electrode being separated from the negative electrode by a separator. The format of the element can be of any type, for example prismatic, cylindrical, button or pocket.
[0076] Pour un élément de format prismatique, les électrodes positive et négative et le séparateur sont plans. Le faisceau électrochimique est parallélépipédique et est introduit dans le conteneur. Le faisceau électrochimique est imprégné d’électrolyte et l’ouverture du conteneur est obturée de manière étanche par un couvercle. [0076] For a prismatic format element, the positive and negative electrodes and the separator are planar. The electrochemical beam is parallelepiped and is introduced into the container. The electrochemical beam is impregnated with electrolyte and the opening of the container is sealed tightly by a cover.
[0077] Pour un élément de format cylindrique, le faisceau électrochimique est enroulé en spirale puis introduit dans le conteneur. Il est imprégné d’électrolyte et l’ouverture du conteneur est obturée de manière étanche par un couvercle. [0077] For an element of cylindrical format, the electrochemical beam is wound into a spiral then introduced into the container. It is impregnated with electrolyte and the opening of the container is sealed tightly with a lid.
[0078] Pour un élément de format bouton, on dépose une électrode positive, un séparateur et une électrode négative sur le fond du conteneur. On imprègne l’électrode négative, l’électrode positive et le séparateur d’électrolyte. Un couvercle est déposé sur l’électrode supérieure. Les bords du conteneur sont sertis contre le couvercle afin de rendre étanche l’élément électrochimique. [0078] For a button format element, a positive electrode, a separator and a negative electrode are deposited on the bottom of the container. The negative electrode, the positive electrode and the electrolyte separator are impregnated. A cover is placed on the upper electrode. The edges of the container are crimped against the lid to seal the electrochemical element.
[0079] Pour un élément de type pochette, on réalise un empilement d’une électrode positive, d’un séparateur et d’une électrode négative. Cet ensemble est introduit dans une pochette souple. La pochette est formée par soudure des bords de deux films multicouches, chaque film multicouche comprenant une couche métallique, généralement en aluminium, prise en sandwich entre deux couches de matière plastique. La pochette ainsi constituée est remplie d’un électrolyte puis fermée de manière étanche. [0079] For a pocket-type element, a stack of a positive electrode, a separator and a negative electrode is produced. This set comes in a soft pouch. The pouch is formed by welding the edges of two multilayer films, each multilayer film comprising a metallic layer, generally aluminum, sandwiched between two layers of plastic. The pouch thus formed is filled with an electrolyte then closed tightly.
[0080] L’élément fabriqué est secondaire. Il peut être utilisé dans des applications mettant en œuvre des courants de forte intensité. [0080] The manufactured element is secondary. It can be used in applications requiring high currents.
Exemples [0081] Quatre électrodes positives ont été fabriquées. Leur structure est résumée dans le tableau 1 ci-après. Examples [0081] Four positive electrodes were manufactured. Their structure is summarized in Table 1 below.
[Tableau 1]
Figure imgf000016_0001
hors invention
[Table 1]
Figure imgf000016_0001
excluding invention
[0082] 1. Les électrodes ont été plongées dans un électrolyte et la résistance interne de l’interface entre l’électrode et l’électrolyte a été mesurée. L’électrolyte utilisé était constitué d’un mélange de quatre solvants : carbonate de diméthyle (DMC) / carbonate de méthyle éthyle (EMC) / carbonate d’éthylène (EC) / carbonate de propylène (PC) dans les proportions volumiques respectives de 45 % / 25 % / 10 % / 20 % dans lequel de l’hexafluoro- phosphate de lithium LiPFe a été dissous. L’électrolyte obtenu a été additionné de 3 % de carbonate de vinylène (VC) et de 1 % de monofluorocarbonate d’éthylène (FEC). Le séparateur utilisé était un séparateur tricouche constitué des couches PP/PE/PP. [0082] 1. The electrodes were immersed in an electrolyte and the internal resistance of the interface between the electrode and the electrolyte was measured. The electrolyte used consisted of a mixture of four solvents: dimethyl carbonate (DMC) / methyl ethyl carbonate (EMC) / ethylene carbonate (EC) / propylene carbonate (PC) in the respective volume proportions of 45 % / 25% / 10% / 20% in which lithium hexafluorophosphate LiPFe has been dissolved. The electrolyte obtained was added with 3% vinylene carbonate (VC) and 1% ethylene monofluorocarbonate (FEC). The separator used was a three-layer separator consisting of PP/PE/PP layers.
[0083] A des fins de comparaison, les valeurs de résistance interne ont été représentées sur la Figure 2. La comparaison des résultats obtenus pour l’électrode B avec ceux obtenus pour l’électrode A montre que la structure en multicouche ne permet pas à elle seule de réduire la résistance interne. En effet, la résistance à l’interface de l’électrode A multicouche est de 290 Q, donc supérieure à celle de l’électrode B monocouche, qui est de 105 Q. En comparant la résistance à l’interface de l’électrode D avec celle de l’électrode A, on note le bénéfice significatif apporté par le revêtement de carbone. La résistance à l’interface passe de 290 Q à 14 Q, soit une diminution de la résistance interne de l’interface d’un facteur 20. On en conclut que le passage de la structure monocouche à la structure multicouche n’apporte un bénéfice que si le collecteur de courant est revêtu de carbone. L’amélioration de l’adhésion de la couche enduite de matière active au collecteur de courant entre l’électrode A et l’électrode D peut être évaluée à un facteur 3. La comparaison du résultat obtenu pour l’électrode C avec celui de l’électrode D montre que le passage d’une structure monocouche à une structure multicouche permet de réduire d’environ 30 % la résistance interne. En effet, la résistance interne passe d’environ 18 Q pour l’électrode C à 14 Q pour l’électrode D. Ceci s’explique par une amélioration de la conductivité ionique. Par ailleurs, le temps d’imprégnation de l’électrode par l’électrolyte est divisé d’un facteur 2 pour l’électrode D en comparaison avec l’électrode C. [0083] For comparison purposes, the internal resistance values have been represented in Figure 2. Comparison of the results obtained for electrode B with those obtained for electrode A shows that the multilayer structure does not allow it alone reduces internal resistance. Indeed, the resistance at the interface of multilayer electrode A is 290 Q, therefore greater than that of single-layer electrode B, which is 105 Q. By comparing the resistance at the interface of electrode D with that of electrode A, we note the significant benefit provided by the carbon coating. The resistance at the interface goes from 290 Q to 14 Q, i.e. a reduction in the internal resistance of the interface by a factor of 20. We conclude that the transition from the single-layer structure to the multi-layer structure does not bring any benefit. only if the current collector is coated with carbon. Improving the adhesion of the layer coated with active material to the collector current between electrode A and electrode D can be evaluated at a factor of 3. Comparison of the result obtained for electrode C with that of electrode D shows that the transition from a single-layer structure to a multi-layer structure allows to reduce internal resistance by approximately 30%. In fact, the internal resistance goes from approximately 18 Q for electrode C to 14 Q for electrode D. This is explained by an improvement in ionic conductivity. Furthermore, the impregnation time of the electrode with the electrolyte is divided by a factor of 2 for electrode D in comparison with electrode C.
[0084] 2. Des éléments électrochimiques de type bouton comprenant une électrode positive qui est l’une des électrodes A, B, C ou D et une électrode négative en graphite ont été fabriqués. Les éléments ont été chargés à différents régimes de charge. La capacité chargée au régime de C/20 constitue la capacité de référence. Les capacités chargées aux régimes de C/5, C/3, C/2, 2C et 3C ont été exprimées par rapport à la capacité de référence. Les résultats sont représentés à la figure 3. Les résultats sont conformes avec ceux représentés à la figure 2, c’est-à-dire que le passage de la structure monocouche à la structure multicouche n’apporte un bénéfice que si le collecteur de courant est revêtu de carbone. Le passage d’une structure monocouche (Exemple C) à une structure multicouche (Exemple D) augmente la capacité chargée d’environ 10 % pour une charge au régime de 3C. [0084] 2. Button-type electrochemical elements comprising a positive electrode which is one of the electrodes A, B, C or D and a negative graphite electrode have been manufactured. The elements were charged at different charging regimes. The capacity loaded at the C/20 regime constitutes the reference capacity. The capacities loaded at the regimes of C/5, C/3, C/2, 2C and 3C were expressed in relation to the reference capacity. The results are shown in Figure 3. The results are consistent with those shown in Figure 2, that is to say that the transition from the single-layer structure to the multi-layer structure only brings a benefit if the current collector is coated with carbon. The transition from a single-layer structure (Example C) to a multi-layer structure (Example D) increases the charged capacity by approximately 10% for a charge at 3C.

Claims

Revendications Claims
[Revendication 1] Electrode comprenant : [Claim 1] Electrode comprising:
- un feuillard (C) en aluminium ou en alliage d’aluminium, - a strip (C) made of aluminum or aluminum alloy,
- au moins deux couches superposées (L1 , L2), déposées sur l’une des faces du feuillard, chaque couche comprenant une première matière active (MA1) qui est un phosphate lithié d’un ou de plusieurs métaux de transition et au moins une seconde matière active (MA2), caractérisée en ce que, dans une couche considérée, la proportion massique du phosphate lithié d’un ou de plusieurs métaux de transition (MA1) par rapport à l’ensemble des masses de matières actives de cette couche (MA1 , MA2) est supérieure à la proportion massique de phosphate lithié d’un ou de plusieurs métaux de transition dans la couche adjacente plus éloignée du feuillard que la couche considérée, le feuillard étant recouvert au moins partiellement sur l’une ou ses deux faces par un revêtement destiné à améliorer la conductivité électronique entre le feuillard et la couche avec laquelle le feuillard est en contact et/ou à améliorer l’adhésion de ladite couche au feuillard. - at least two superimposed layers (L1, L2), deposited on one of the faces of the strip, each layer comprising a first active material (MA1) which is a lithiated phosphate of one or more transition metals and at least one second active material (MA2), characterized in that, in a layer considered, the mass proportion of the lithiated phosphate of one or more transition metals (MA1) relative to all the masses of active materials of this layer ( MA1, MA2) is greater than the mass proportion of lithiated phosphate of one or more transition metals in the adjacent layer further from the strip than the layer considered, the strip being covered at least partially on one or both of its faces by a coating intended to improve the electronic conductivity between the strip and the layer with which the strip is in contact and/or to improve the adhesion of said layer to the strip.
[Revendication 2] Electrode selon la revendication 1 , dans laquelle, dans chaque couche à l’exception de la couche externe, la proportion massique du phosphate lithié d’un ou de plusieurs métaux de transition (MA1) par rapport à l’ensemble des masses de matières actives de cette couche (MA1 , MA2) est supérieure à la proportion massique de phosphate lithié d’un ou de plusieurs métaux de transition dans la couche adjacente plus éloignée du feuillard que la couche considérée. [Claim 2] Electrode according to claim 1, in which, in each layer with the exception of the outer layer, the mass proportion of the lithiated phosphate of one or more transition metals (MA1) relative to all of the masses of active materials of this layer (MA1, MA2) is greater than the mass proportion of lithiated phosphate of one or more transition metals in the adjacent layer further from the strip than the layer considered.
[Revendication 3] Electrode selon l’une des revendications précédentes, dans laquelle le phosphate lithié d’un ou de plusieurs métaux de transition est choisi dans le groupe consistant en : i) LixFePO4 (LFR) avec 0,8<x<1 ,2 ; ii) LixMni-y-zFeyMzPO4 (LMFP) avec 0,8<x<1 ,2 ; 0,5<1-y-z<1 ; 0<y<0,5 ; 0<z<0,2 et M est choisi dans le groupe constitué de B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange ; iii) LixVPOtF (LVPF) avec 0,8<x<1 ,2, ou l’un de ses dérivés de formule LixVi.yMyPO4Fz où 0,8<x<1 ,2 ; 0<y<0,5 ; 0,8<z<1 ,2 et M est choisi dans le groupe consistant en Ti, Al, Y, Cr, Cu, Mg, Mn, Fe, Co, Ni, et Zr, et iv) un mélange de deux ou trois des composés i) à iii). [Revendication 4] Electrode selon l’une des revendications précédentes, dans laquelle la seconde matière active (MA2) est un oxyde lithié de formule LixMi-y-z-wM’yM”zM”’wO2 (LMO2) où M, M’, M” et M’” sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W et Mo à la condition qu'au moins M ou M’ ou M” ou M’” soit choisi parmi Mn, Co, Ni, ou Fe ; M, M’, M” et M’” étant différents les uns des autres; et 0,8<x<1 ,[Claim 3] Electrode according to one of the preceding claims, in which the lithiated phosphate of one or more transition metals is chosen from the group consisting of: i) Li x FePO4 (LFR) with 0.8<x<1,2; ii) LixMni-y-zFe y MzPO4 (LMFP) with 0.8<x<1.2;0.5<1-yz<1;0<y<0.5;0<z<0.2 and M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or mixed; iii) LixVPOtF (LVPF) with 0.8<x<1.2, or one of its derivatives of formula Li x Vi.yMyPO 4 Fz where 0.8<x<1.2;0<y<0.5;0.8<z<1.2 and M is selected from the group consisting of Ti, Al, Y, Cr, Cu, Mg, Mn, Fe, Co, Ni, and Zr, and iv) a mixture of two or three of compounds i) to iii). [Claim 4] Electrode according to one of the preceding claims, in which the second active material (MA2) is a lithiated oxide of formula Li x Mi-yz-wM'yM”zM”'wO2 (LMO2) where M, M' , M” and M'” are selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W and Mo on the condition that at least M or M' or M” or M'” is chosen from Mn, Co, Ni, or Fe; M, M', M” and M'” being different from each other; and 0.8<x<1,
4 ; 0<y<0,5 ; 0<z<0,5 ; 0<w<0,2 et x+y+z+w<2, 1 . 4; 0<y<0.5; 0<z<0.5; 0<w<0.2 and x+y+z+w<2, 1.
[Revendication 5] Electrode selon la revendication 4, dans laquelle l’oxyde lithié est choisi parmi : Liw(NixMnyCOzMt)O2 (NMC) où 0,9<w<1 ,1 ; 0<x ; 0<y ; 0<z ; 0<t ; M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La et leurs mélanges, et Liw(NixCOyAlzMt)O2 (NCA) où 0,9<w<1 ,1 ; 0<x ; 0<y ; 0<z ; 0<t ; M étant choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr, La et leurs mélanges. [Claim 5] Electrode according to claim 4, in which the lithiated oxide is chosen from: Liw(Ni x Mn y COzMt)O2 (NMC) where 0.9<w<1.1;0<x;0<y;0<z;0<t; M being chosen from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La and their mixtures, and Li w (NixCOyAl z Mt) O2 (NCA) where 0.9<w<1.1;0<x;0<y;0<z;0<t; M being chosen from the group consisting of B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr, La and their mixtures.
[Revendication 6] Electrode selon l’une des revendications précédentes, dans laquelle dans chaque couche, [Claim 6] Electrode according to one of the preceding claims, in which in each layer,
- la proportion massique de la première matière active (MA1) se situe dans la plage allant de 50 à 99 % par rapport à la masse de l’ensemble des matières actives (MA1 , MA2) de la couche considérée ; - the mass proportion of the first active material (MA1) is in the range from 50 to 99% relative to the mass of all the active materials (MA1, MA2) of the layer considered;
- la proportion massique de la seconde matière active (MA2) se situe dans la plage allant de 1 à 50 % par rapport à la masse de l’ensemble des matières actives (MA1 , MA2) de la couche considérée. - the mass proportion of the second active material (MA2) is in the range from 1 to 50% relative to the mass of all the active materials (MA1, MA2) of the layer considered.
[Revendication 7] Electrode selon l’une des revendications 1 à 5, comprenant : [Claim 7] Electrode according to one of claims 1 to 5, comprising:
- une première couche (L1) au contact du feuillard (C), dans laquelle la proportion massique de la première matière active (MA1) se situe dans la plage allant de 95 à 85 % par rapport à la masse de l’ensemble (MA1 , MA2) des matières actives de la première couche et la proportion massique de la seconde matière active (MA2) se situe dans la plage allant de 5 à 15 % par rapport à la masse de l’ensemble (MA1 , MA2) des matières actives de la première couche ;- a first layer (L1) in contact with the strip (C), in which the mass proportion of the first active material (MA1) is in the range from 95 to 85% relative to the mass of the assembly (MA1 , MA2) of the active materials of the first layer and the mass proportion of the second active material (MA2) is in the range from 5 to 15% relative to the mass of all (MA1, MA2) of the active materials of the first layer;
- une seconde couche (L2) au contact de la première couche (L1), dans laquelle la proportion massique de la première matière active (MA1) se situe dans la plage allant de 40 à 60 % par rapport à la masse de l’ensemble (MA1 , MA2) des matières actives de la seconde couche et la proportion massique de la seconde matière active (MA2) se situe dans la plage allant de 60 à 40 % par rapport à la masse de l’ensemble (MA1 , MA2) des matières actives de la seconde couche. - a second layer (L2) in contact with the first layer (L1), in which the mass proportion of the first active material (MA1) is in the range from 40 to 60% relative to the mass of the assembly (MA1, MA2) of the active materials of the second layer and the mass proportion of the second active material (MA2) is in the range from 60 to 40% relative to the mass of all (MA1, MA2) of the active materials of the second layer.
[Revendication 8] Electrode selon l’une des revendications précédentes, dans laquelle ; [Claim 8] Electrode according to one of the preceding claims, in which;
- la première matière active (MA1) est un composé de formule LixMni-y-zFeyMzP04 (LMFP) avec 0,8<x<1 ,2 ; 0,5<1-y-z<1 ; 0<y<0,5 ; 0<z<0,2 et M est choisi dans le groupe constitué de B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, pris seuls ou en mélange et - the first active ingredient (MA1) is a compound of formula Li x Mni-y-zFe y MzP04 (LMFP) with 0.8<x<1.2;0.5<1-yz<1;0<y<0.5;0<z<0.2 and M is chosen from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, taken alone or in mixture and
- la seconde matière active (MA2) est un composé de formule Liw(NixMnyCOzMt)O2 (NMC) où 0,9<w<1 ,1 ; 0<x ; 0<y ; 0<z ; 0<t ; M étant choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La et leurs mélanges. - the second active material (MA2) is a compound of formula Liw(Ni x Mn y COzMt)O2 (NMC) where 0.9<w<1.1;0<x;0<y;0<z;0<t; M being chosen from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La and their mixtures.
[Revendication 9] Electrode selon l’une des revendications 3 à 8, dans laquelle le phosphate lithié d’un ou de plusieurs métaux de transition a pour formule LixMni-y-zFeyMzPO4 (LMFP) et 0,7<1-y-z<0,9. [Claim 9] Electrode according to one of claims 3 to 8, in which the lithiated phosphate of one or more transition metals has the formula Li x Mni- y -zFe y M z PO4 (LMFP) and 0.7 <1-yz<0.9.
[Revendication 10] Electrode selon l’une des revendications 4 à 9, dans laquelle la seconde matière active (MA2) est un oxyde lithié de formule LixMi-y-z-wM’yM”zM’”wO2 (LMO2) où M, M’, M” et M’” sont choisis dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W et Mo à la condition qu'au moins M ou M’ ou M” ou M’” soit l’élément Ni et l’indice stoechiométrique du nickel est supérieur ou égal à 0,6, de préférence supérieur ou égal à 0,8. [Claim 10] Electrode according to one of claims 4 to 9, in which the second active material (MA2) is a lithiated oxide of formula LixMi- y -z-wM' y M” z M'”wO2 (LMO2) where M, M', M” and M'” are selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, W and Mo on the condition that at least M or M' or M” or M'” is the element Ni and the stoichiometric index of nickel is greater than or equal to 0.6, preferably greater than or equal to 0.8.
[Revendication 11] Electrode selon l’une des revendications précédentes, dans laquelle le revêtement destiné à améliorer la conductivité électronique entre une couche enduite et le feuillard et/ou à améliorer l’adhésion d’une couche enduite au feuillard comprend ou est constitué de carbone ou de graphite ou de nanotubes de carbone, seuls ou en mélange. [Claim 11] Electrode according to one of the preceding claims, in which the coating intended to improve the electronic conductivity between a coated layer and the strip and/or to improve the adhesion of a coated layer to the strip comprises or consists of carbon or graphite or carbon nanotubes, alone or in a mixture.
[Revendication 12] Electrode selon l’une des revendications précédentes, dans laquelle la première matière active se présente sous forme de particules présentant un premier diamètre médian en volume Dvso1 et la seconde matière active se présente sous forme de particules présentant un second diamètre médian en volume Dvso2 et le ratio Dv5o2/ Dvso1 est au moins supérieur ou égal à 2. [Claim 12] Electrode according to one of the preceding claims, in which the first active material is in the form of particles having a first median volume diameter Dvso 1 and the second active material is in the form of particles having a second median diameter in volume Dvso 2 and the ratio Dv5o 2 / Dvso 1 is at least greater than or equal to 2.
[Revendication 13] Electrode selon l’une des revendications précédentes, dans laquelle la première matière active se présente sous forme de particules présentant un premier diamètre médian en volume Dvso1 allant de 0,05 à 11 pm et la seconde matière active se présente sous forme de particules présentant un second diamètre médian en volume Dvso2 allant de 2 à 15 pm, le premier et le second diamètres médians étant déterminés par diffraction laser. [Claim 13] Electrode according to one of the preceding claims, in which the first active material is in the form of particles having a first volume median diameter Dvso 1 ranging from 0.05 to 11 pm and the second active material is in shape of particles having a second volume median diameter Dvso 2 ranging from 2 to 15 pm, the first and second median diameters being determined by laser diffraction.
[Revendication 14] Elément électrochimique lithium-ion comprenant au moins une électrode positive qui est l’électrode selon l’une des revendications précédentes. [Claim 14] Lithium-ion electrochemical element comprising at least one positive electrode which is the electrode according to one of the preceding claims.
PCT/EP2023/076496 2022-10-27 2023-09-26 Multilayer electrode WO2024088675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2211204A FR3141561A1 (en) 2022-10-27 2022-10-27 Multilayer electrode
FRFR2211204 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024088675A1 true WO2024088675A1 (en) 2024-05-02

Family

ID=85037157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/076496 WO2024088675A1 (en) 2022-10-27 2023-09-26 Multilayer electrode

Country Status (2)

Country Link
FR (1) FR3141561A1 (en)
WO (1) WO2024088675A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168550A1 (en) 2010-01-13 2011-07-14 Applied Materials, Inc. Graded electrode technologies for high energy lithium-ion batteries
US20120328942A1 (en) 2010-03-05 2012-12-27 A123 Systems, Inc. Design and fabrication of electrodes with gradients
CN107528050A (en) * 2017-08-08 2017-12-29 上海华普汽车有限公司 Active substance of lithium ion battery anode, positive electrode, positive electrode slurry, positive plate, its preparation method and lithium ion battery
WO2019227016A1 (en) 2018-05-24 2019-11-28 24M Technologies, Inc. High energy-density composition-gradient electrodes and methods of making the same
US20200144605A1 (en) * 2018-11-05 2020-05-07 Ningde Amperex Technology Limited Cathode, electrochemical device and electronic device comprising same
CN113948673A (en) * 2021-10-13 2022-01-18 天津市捷威动力工业有限公司 Lithium ion battery positive plate and preparation method thereof and lithium ion battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113074B1 (en) * 2009-06-08 2012-02-16 주식회사 엘지화학 Cathode active material, and cathode, lithium secondary battery comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168550A1 (en) 2010-01-13 2011-07-14 Applied Materials, Inc. Graded electrode technologies for high energy lithium-ion batteries
US20120328942A1 (en) 2010-03-05 2012-12-27 A123 Systems, Inc. Design and fabrication of electrodes with gradients
CN107528050A (en) * 2017-08-08 2017-12-29 上海华普汽车有限公司 Active substance of lithium ion battery anode, positive electrode, positive electrode slurry, positive plate, its preparation method and lithium ion battery
WO2019227016A1 (en) 2018-05-24 2019-11-28 24M Technologies, Inc. High energy-density composition-gradient electrodes and methods of making the same
US20200144605A1 (en) * 2018-11-05 2020-05-07 Ningde Amperex Technology Limited Cathode, electrochemical device and electronic device comprising same
CN113948673A (en) * 2021-10-13 2022-01-18 天津市捷威动力工业有限公司 Lithium ion battery positive plate and preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
FR3141561A1 (en) 2024-05-03

Similar Documents

Publication Publication Date Title
CA2914039C (en) Anode for high-energy batteries
US7309548B2 (en) Lithium secondary battery
CN101207191B (en) Anode and battery
JP4655976B2 (en) Negative electrode and battery
JP2002117844A (en) Solid electrolyte battery
CN102593528A (en) Battery
KR20080103438A (en) Current collector, anode, and battery
EP3298644B1 (en) Positive electrode for a lithium electrochemical generator
EP2939296B1 (en) Positive electrode for lithium accumulator
JP7182305B2 (en) Positive electrode for secondary battery, secondary battery, and method for manufacturing positive electrode for secondary battery
WO2020184502A1 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2005209377A (en) Battery
EP3100315A1 (en) Method for regenerating the capacity of an electrochemical lithium battery, and associated battery housing and battery
JP2009170146A (en) Electrolyte solution and secondary battery
CN101540421A (en) Electrolytic solution and secondary battery
JP2019153557A (en) Lithium ion secondary battery electrode, manufacturing method thereof, and lithium ion secondary battery
WO2024088675A1 (en) Multilayer electrode
EP3692585B1 (en) Lithium ion electrochemical element operating at a high temperature
KR20210132402A (en) Anode Coated with Lithiophillic Material for Lithium Secondary Battery and Manufacturing Method Thereof
JP6876879B2 (en) Method for manufacturing electrodes for lithium ion secondary batteries, lithium ion secondary batteries and electrodes for lithium ion secondary batteries
EP4287290A1 (en) Lithium secondary cell and method for manufacturing same
US20220367916A1 (en) Electrolyte and lithium metal secondary battery comprising same
WO2023078611A1 (en) Lithium-ion type electrochemical element
FR3127331A1 (en) Formulation of a cathode composition comprising an active material operating at high potential
FR3129780A3 (en) Lithium-ion electrochemical cell