WO2024088129A1 - 电驱动系统的异常检测 - Google Patents
电驱动系统的异常检测 Download PDFInfo
- Publication number
- WO2024088129A1 WO2024088129A1 PCT/CN2023/125182 CN2023125182W WO2024088129A1 WO 2024088129 A1 WO2024088129 A1 WO 2024088129A1 CN 2023125182 W CN2023125182 W CN 2023125182W WO 2024088129 A1 WO2024088129 A1 WO 2024088129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric drive
- drive system
- diagnostic data
- abnormality
- vibration signal
- Prior art date
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 97
- 238000001514 detection method Methods 0.000 title claims abstract description 64
- 230000001133 acceleration Effects 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 44
- 230000002159 abnormal effect Effects 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 13
- 238000000605 extraction Methods 0.000 claims description 13
- 238000004140 cleaning Methods 0.000 claims description 8
- 238000007781 pre-processing Methods 0.000 claims description 7
- 238000012795 verification Methods 0.000 claims description 7
- 238000013496 data integrity verification Methods 0.000 claims description 6
- 238000004806 packaging method and process Methods 0.000 claims description 3
- 238000003745 diagnosis Methods 0.000 abstract description 11
- 230000005540 biological transmission Effects 0.000 description 19
- 238000012545 processing Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
Definitions
- the present application relates to the field of vehicle fault diagnosis, and more specifically, to an abnormality detection method and system for an electric drive system, a vehicle, and a computer-readable storage medium.
- the abnormal noise and vibration of the electric drive system are diagnosed by collecting and processing high-frequency vibration signals, which is common in the product offline inspection station.
- high-frequency vibration signals which is common in the product offline inspection station.
- the frequency spectrum characteristics of each vibration sensor under different working conditions can be tested by magnetically adsorbing high-precision and high-bandwidth vibration sensors at multiple key locations to confirm whether the newly produced electric drive system has abnormal noise, abnormal vibration and other problems. If the test passes, the component is released; if the test fails, it is intercepted for repair or scrapped.
- Embodiments of the present application provide an abnormality detection method and system for an electric drive system, a vehicle, and a computer-readable storage medium for determining online whether an electric drive system of a vehicle has an abnormality or potential safety hazard.
- a method for detecting abnormality of an electric drive system performed on a vehicle side comprises: collecting a vibration signal through a vibration sensor, wherein the vibration sensor is coupled to an inner housing of a motor controller in the electric drive system via an accelerometer; and generating and sending diagnostic data according to the vibration signal, so that a receiving party determines whether the electric drive system has an abnormality based on the diagnostic data.
- the vibration signal collected by the vibration sensor includes: determining whether the electric drive system enters a predetermined operating condition; and collecting the vibration signal within a predetermined time after determining that the system enters the predetermined operating condition.
- generating and sending diagnostic data based on the vibration signal includes: transmitting the vibration signal to a motor controller of the electric drive system; and preprocessing the vibration signal by the motor controller to generate the diagnostic data.
- the preprocessing includes at least one of the following: data integrity verification, data consistency verification, and feature extraction.
- generating and sending diagnostic data according to the vibration signal further includes: packaging the diagnostic data through an on-board communication terminal of the vehicle and sending the data to a recipient.
- a method for detecting an abnormality of an electric drive system executed on a cloud or server side comprises: receiving diagnostic data, wherein the diagnostic data is generated according to a vibration signal collected by a vibration sensor, and the vibration sensor is coupled to an inner housing of a motor controller in the electric drive system via an accelerometer; and determining whether the electric drive system has an abnormality according to the diagnostic data and based on an abnormality detection model, wherein the abnormality detection model is constructed at least in part according to an electric drive system known to have an abnormality and its corresponding diagnostic data.
- determining whether the electric drive system has an abnormality according to the diagnostic data and based on an abnormality detection model includes: cleaning the diagnostic data, and performing feature extraction based on the cleaned diagnostic data to determine whether the electric drive system has an abnormality.
- the abnormality detection model is constructed by at least one of: abnormality diagnosis data specified according to expert experience; and diagnostic data formed for the electric drive system with abnormalities.
- an abnormality detection system for an electric drive system comprises: a vibration sensor configured to collect a vibration signal, wherein the vibration sensor is coupled to an inner housing of a motor controller in the electric drive system via an accelerometer; and a sending unit configured to generate and send diagnostic data based on the vibration signal, so that a receiving party can determine whether the electric drive system has an abnormality based on the diagnostic data.
- the vibration sensor is configured to collect the vibration signal within a predetermined time after the electric drive system enters a predetermined operating condition.
- the system includes a motor controller of the electric drive system, which is configured to: receive the vibration signal; and pre-process the vibration signal to generate the diagnostic data.
- the preprocessing includes at least one of the following: data integrity verification, data consistency verification, and feature extraction.
- system further includes an on-board communication terminal of the vehicle, which is configured to package and send the diagnostic data.
- an abnormality detection system for an electric drive system.
- the system includes: a receiving unit configured to receive diagnostic data, wherein the diagnostic data is generated according to a vibration signal collected by a vibration sensor, and the vibration sensor is coupled to an inner housing of a motor controller in the electric drive system via an accelerometer; and a judgment unit configured to determine whether the electric drive system has an abnormality according to the diagnostic data and based on an abnormality detection model, wherein the abnormality detection model is constructed at least in part according to an electric drive system known to have an abnormality and its corresponding diagnostic data.
- the judgment unit is configured to clean the diagnostic data and perform feature extraction based on the cleaned diagnostic data to determine whether there is an abnormality in the electric drive system.
- the abnormality detection model is constructed by at least one of the following: abnormality diagnosis data specified according to expert experience; and diagnostic data formed for the electric drive system with abnormalities.
- an abnormality detection system for an electric drive system comprising: a memory configured to store instructions; and a processor configured to execute the instructions so as to perform any one of the methods described above.
- a vehicle comprising any one of the systems described above.
- a computer-readable storage medium wherein instructions are stored in the computer-readable storage medium, and wherein when the instructions are executed by a processor, the processor is caused to execute any one of the methods described above.
- FIG1 shows an electric drive system according to an embodiment of the present application
- FIG2 shows a motor controller according to an embodiment of the present application
- FIG3 shows an anomaly detection method according to an embodiment of the present application
- FIG4 shows an anomaly detection method according to an embodiment of the present application
- FIG5 shows an anomaly detection method according to an embodiment of the present application
- FIG6 shows a short-range vibration signal transmission principle according to an embodiment of the present application.
- FIG7 shows a long-distance vibration signal transmission principle according to an embodiment of the present application.
- FIG8 shows an anomaly detection system according to an embodiment of the present application.
- the abnormality detection method 40 for an electric drive system includes the following steps: collecting vibration signals through a vibration sensor in step S402; and generating and sending diagnostic data according to the vibration signal in step S404, so that the receiving party can determine whether there is an abnormality in the electric drive system based on the diagnostic data.
- method 40 can form diagnostic data and send it to a network server, such as a network server, so as to further analyze and determine whether there is an abnormality in the electric drive system.
- the diagnostic data can also be sent to local vehicle resources such as motor controllers, domain controllers, and central processing units for analysis.
- step S402 method 40 collects vibration signals through a vibration sensor.
- the vibration sensor is coupled to the inner housing of the motor controller in the electric drive system via an accelerometer.
- FIG1 schematically depicts a feasible construction form of the electric drive system 10.
- the electric drive system 10 is composed of a motor 101, a motor controller 102, a gearbox 103 and a differential 104.
- the mechanical rotating parts in the electric drive system 10 include a motor rotor, a motor inner bearing, a shaft, a gearbox inner bearing, a gear, a differential, etc.
- the vibration noise of the mechanical rotating parts during movement can be transmitted to its mechanical housing through the shaft teeth and bearings.
- the vibration information on the housing of the motor 101 or the housing of the gear box 103 can all be transmitted to the housing of the motor controller 102.
- the medium and low frequency vibration information on the housing of the motor 101 or the housing of the gear box 103 can be effectively transmitted to the housing of the motor controller 102 through bolts.
- the medium frequency vibration information is also sensitive enough to identify abnormal noises that are not easily noticed by people in the early stage.
- the vibration on the housing of the motor controller 102 can be transmitted to the accelerometer plate fixed to its inner housing and recorded by the vibration sensor, which will be described in detail below.
- the motor controller 102 includes a control (circuit) board 201, a drive (circuit) board 202, a power module 203, and an acceleration (circuit) board 204 disposed on the inner housing of the motor controller 102.
- the acceleration board 204 is provided with a vibration sensor such as an accelerometer, and is also provided with a peripheral processing circuit for processing acceleration signals.
- the inventors of the present application have determined through a large number of experimental verifications that arranging the accelerometer plate on the inner housing of the motor controller 102 has the following significant advantages compared to other arrangements:
- the accelerometer plate 204 (and the vibration sensor) is placed inside the motor 101 housing or the gearbox 103 housing. If the accelerometer plate 204 (and the vibration sensor) is placed inside the motor 101 housing or the gearbox 103 housing, it is necessary to package it and design connectors to connect the wiring harness, and it is also necessary to meet the requirements of high temperature resistance and oil resistance, which will greatly increase the additional cost. In addition, the space inside the motor 101 housing or the gearbox 103 housing is limited, and it is difficult to arrange the accelerometer plate 204 (and the vibration sensor). On the other hand, the low-voltage connector of the motor controller 102 also needs to be changed, and additional pins need to be added to connect the external accelerometer plate 204. (and vibration sensor).
- High-frequency vibration data transmitted through a long wire harness is also susceptible to interference and errors, so the shielding requirements of the wire harness are relatively high.
- the accelerometer 204 and vibration sensor
- the quality of vibration signal collection is relatively high, but in view of the above problems, such an arrangement should not be adopted.
- the accelerometer plate 204 (and the vibration sensor) on the outer shell of the motor controller 102. If the accelerometer plate 204 (and the vibration sensor) is placed on the outer shell of the motor controller 102, it needs to be packaged and designed with connectors to connect the wiring harness, and it also needs to meet the waterproof grade requirements, which will greatly increase the additional cost. In addition, adding an accelerometer plate 204 (and a vibration sensor) to the outer shell of the motor controller 102 will also increase the difficulty of arranging the electric drive system 10. On the other hand, the low-voltage connector of the motor controller 102 also needs to be changed, and additional pins need to be added to connect the external accelerometer plate 204 (and the vibration sensor). In this arrangement, the quality of vibration signal transmission is not affected in medium and low frequency transmission, but the quality of high-frequency signal transmission is average.
- the vibration sensor chip is placed on the control board 201 or the drive board 202. If the control board 201 or the drive board 202 is fixed to the motor controller 102 housing by stacking and isolating, there will be a thin partition with poor rigidity in the transmission path, which will lead to poor transmission quality of the vibration signal, so that only extremely low-frequency vibration signals can be effectively transmitted, which is insufficient for early noise or abnormal diagnosis of rotating parts.
- the inventor of the present application chooses to arrange an acceleration plate on the inner housing of the motor controller 102 to perform early noise or abnormality diagnosis of various rotating components.
- a typical example of a vibration sensor is a MEMS (Micro Electro Mechanical System) sensor.
- step S402 it can be determined whether the electric drive system enters a predetermined operating condition, and after it is determined that the predetermined operating condition has been entered, a vibration signal within a predetermined time is collected.
- the parameters of each rotating component can be calculated and the vibration sampling condition can be defined with reference to the bandwidth of the vibration sensor.
- the collection of vibration data can be triggered.
- the vibration sensor can collect data continuously for T seconds and store it in the pre-allocated memory of the motor controller 102 in subsequent steps.
- step S404 the method 40 generates and transmits diagnostic data according to the vibration signal, so that the receiving party determines whether there is an abnormality in the electric drive system based on the diagnostic data.
- the vibration signal collected in step S402 can be transmitted to the motor controller 102 of the electric drive system, and the vibration signal is preprocessed by the motor controller 102 to generate diagnostic data.
- preprocessing may include, but is not limited to, data integrity verification, data consistency verification, and feature extraction.
- generating diagnostic data according to the vibration signal and sending it in step S404 also includes packaging and sending the diagnostic data through the vehicle's on-board communication terminal (e.g., gateway, domain controller, etc.). For example, data transmission will be automatically triggered for diagnostic data that meets the conditions, that is, the diagnostic data in the memory of the motor controller 102 is sent to the receiver at the vehicle end through controller-side CAN communication, CANFD communication, or Ethernet communication.
- the receiver can be a server deployed in the cloud, or it can be a processing resource deployed inside the vehicle.
- an abnormality detection method 50 for an electric drive system includes the following steps: receiving diagnostic data in step S502; and determining whether the electric drive system has an abnormality based on the diagnostic data and an abnormality detection model in step S504. Through the above steps, method 50 can determine whether there is an abnormality in the electric drive system based on the received diagnostic data.
- the method 50 receives diagnostic data in step S502.
- the diagnostic data received here is generated according to the vibration signal collected by the vibration sensor, and the vibration sensor is coupled to the inner housing of the motor controller in the electric drive system via the acceleration board.
- step S504 the method 50 determines whether the electric drive system has an abnormality based on the diagnostic data received in step S502 and based on the abnormality detection model.
- the abnormality detection model is constructed in advance, and specifically, the abnormality detection model can be constructed at least partially based on the electric drive system known to have an abnormality and its corresponding diagnostic data.
- the abnormality detection model can be constructed by abnormality diagnosis data specified based on expert experience; and/or diagnostic data formed for an abnormal electric drive system. Specifically, the construction of the abnormality detection model can consider the following three approaches:
- determining whether there is an abnormality in the electric drive system according to the diagnostic data and based on the abnormality detection model in step S504 includes: cleaning the diagnostic data, and performing feature extraction based on the cleaned diagnostic data to determine whether there is an abnormality in the electric drive system.
- the server side can automatically decompress the diagnostic data and perform predetermined data cleaning (screening). Data cleaning can remove obviously unreasonable diagnostic data, thereby ensuring the accuracy of subsequent abnormality judgment processes. If it is determined in step S504 that the electric drive system is abnormal, the driver, management agency, maintenance agency, etc. of the vehicle to which the electric drive system belongs can be notified to send an alarm message about the system abnormality. If no abnormality is found in step S504, the server side may not perform any operation.
- an abnormality detection method 30 for an electric drive system (hereinafter referred to as method 30) schematically describes the joint implementation of the vehicle side and the server side to realize abnormality detection for the electric drive system.
- step S302 it is first determined whether the preset specific working condition is entered. If the preset specific working condition is identified, the next step S304 is entered. If not, the execution is looped until the preset specific working condition is identified. In step S304, the collection of vibration signals will be triggered, and in step S306, it is determined whether the duration of the collection has reached the predetermined time (for example, T seconds). If the predetermined time is reached, the next step S306 is entered. If the predetermined time is not reached, the collection is continued until the predetermined time is reached. After completing the signal collection for the predetermined time, step S308 is entered. In step S308, the original signal will be processed to generate diagnostic data, and the data can be pre-processed.
- T seconds the predetermined time
- step S310 is entered, and the diagnostic data is packaged and transmitted to the server (cloud) by the T-Box on the vehicle side.
- the server cleans the received diagnostic data in step S312, and extracts the features of the diagnostic data in step S314.
- the server calculates the diagnostic data (features) based on the anomaly detection model in step S316. To determine whether there is an abnormality in the electric drive system. If there is an abnormality, the process proceeds to step S318 to notify the driver or after-sales service agency that the vehicle has a potential abnormal risk, and may also prompt that the vehicle needs to be repaired immediately. If it is determined through calculation that there is no abnormality, the process proceeds to step S320 without performing any notification/warning action.
- an abnormality detection system 80 (hereinafter referred to as system 80) includes a vibration sensor 801 and a sending unit 802. Among them, the vibration sensor 801 is configured to collect vibration signals.
- the vibration sensor 801 is coupled to the inner housing of the motor controller in the electric drive system via an accelerometer.
- vibration sensors 622 and 722 are coupled to the inner housings of motor controllers 601 and 701 via accelerometers 602 and 702, respectively.
- the sending unit 802 is configured to generate and send diagnostic data based on the vibration signal so that the receiving party determines whether the electric drive system has an abnormality based on the diagnostic data.
- the vibration sensor 801 is configured to collect vibration signals within a predetermined time after the electric drive system enters a predetermined operating condition.
- the system 80 includes a motor controller of the electric drive system (not shown in FIG. 8 ), which is configured to: receive a vibration signal; and pre-process the vibration signal to generate diagnostic data.
- the pre-processing includes at least one of the following: data integrity verification, data consistency verification, and feature extraction.
- the short-range high-frequency acceleration data transmission scheme in FIG. 6 can be selected, that is, the vibration sensor 622 and the motor controller MCU 611 directly transmit data.
- the transmission method between the two can be digital transmission (for example, using I2C or SPI protocol communication) or analog transmission (for example, using A/D analog value transmission).
- the control board 601 can supply power to the power module 621 of the accelerometer board 602.
- the long-distance transmission scheme shown in FIG. 7 may also be selected to transmit high-frequency acceleration data between the accelerometer board 702 and the control board 701.
- the vibration signal of the vibration sensor 722 may be first encoded by the encoding unit 723, and then the encoded signal may be transmitted to the decoding unit 712 of the control board 701. Subsequently, the decoding unit 712 decodes the encoded signal, and then sends the decoded signal to the motor controller MCU 711 for processing.
- the encoding and decoding may select a protocol communication suitable for long-distance transmission such as I2S, serial port, etc.
- the control board 701 may supply power to the power module 721 of the accelerometer board 702.
- the short-range high-frequency acceleration data transmission solution shown in FIG6 can be selected.
- SPI communication has a higher data transmission rate and better anti-interference ability than I2C.
- SPI/I2C communication is more suitable for online high-frequency vibration monitoring of electric drive systems because it can be configured and changed in terms of sampling frequency, vibration amplitude, filtering characteristics, and whether sampling is turned on. Considering the above aspects, SPI communication can be used to realize short-distance data transmission between the vibration sensor 622 and the motor controller MCU 611.
- the system 80 further includes a T-Box (not shown in FIG. 8 ) of the vehicle, which is configured to package and transmit the diagnostic data.
- a T-Box (not shown in FIG. 8 ) of the vehicle, which is configured to package and transmit the diagnostic data.
- an abnormality detection system 90 (hereinafter referred to as system 90) includes a receiving unit 901 and a judgment unit 902. Among them, the receiving unit 901 is configured to receive diagnostic data. The diagnostic data is generated according to the vibration signal collected by the vibration sensor, and the vibration sensor is coupled to the inner housing of the motor controller in the electric drive system via an accelerometer. The judgment unit 902 is configured to determine whether there is an abnormality in the electric drive system based on the diagnostic data and based on an abnormality detection model, wherein the abnormality detection model is at least partially constructed based on an electric drive system known to have an abnormality and its corresponding diagnostic data.
- the judgment unit 902 is configured to clean the diagnostic data and perform feature extraction based on the cleaned diagnostic data to determine whether the electric drive system has an abnormality.
- the abnormality detection model is constructed by at least one of the following: abnormal diagnostic data specified based on expert experience; and diagnostic data formed for an electric drive system with an abnormality.
- Another aspect of the present application provides an abnormality detection system for an electric drive system, wherein the system comprises: a memory configured to store instructions; and a processor configured to execute the instructions so as to perform any one of the methods described above.
- Another aspect of the present application provides a vehicle, the vehicle comprising any one of the systems described above.
- a computer-readable storage medium wherein instructions are stored.
- the processor is made to perform any abnormality detection method of the electric drive system as described above.
- the computer-readable medium referred to in this application includes various types of computer storage media, which can be any available medium that can be accessed by a general or special computer.
- the computer-readable medium may include RAM, ROM, EPROM, E2PROM , register, hard disk, removable disk, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other temporary or non-temporary medium that can be used to carry or store a desired program code unit in the form of an instruction or data structure and can be accessed by a general or special computer, or a general or special processor.
- the disk usually copies data magnetically, while the dish uses a laser to optically copy data.
- the above combination should also be included in the protection scope of the computer-readable medium.
- the exemplary storage medium is coupled to the processor so that the processor can read and write information from/to the storage medium.
- the storage medium can be integrated into the processor.
- the processor and the storage medium can reside in the ASIC.
- the ASIC can reside in the user terminal.
- the processor and the storage medium can reside in the user terminal as discrete components.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
本申请涉及电驱动系统的异常检测。电驱动系统的异常检测方法包括如下步骤:通过振动传感器采集振动信号,其中,所述振动传感器经由加速度板耦合到所述电驱动系统中的电机控制器的内壳体上;以及根据所述振动信号生成诊断数据并发送,以便接收方基于所述诊断数据确定所述电驱动系统是否存在异常。
Description
本申请涉及车辆故障诊断领域,具体而言,涉及电驱动系统的异常检测方法和系统、车辆、计算机可读存储介质。
通过采集处理高频振动信号来诊断电驱动系统的异常噪声、异常振动常见于产品下线检测工位。一般在电驱动系统生产完成下线时,可以在其多个关键部位通过磁力吸附高精度高带宽振动传感器来测试不同工况下的各个振动传感器的频谱特性,以确认新生产的电驱动系统是否存在异常噪音、异常振动等问题。如果测试通过则放行该部件,测试失败则拦截进行维修或作报废处理。
由于高精度高带宽振动传感器成本昂贵,并且用于以上异常诊断一般需要多个布置于不同位置的振动传感器。另一方面,实时高频信号采集处理传输所需要的控制器资源(包括信号采样频率、振动信号频谱分析、高频数据实时传输)通常很难满足,所以以上方法一般只用于电驱动系统下线检测。在车辆后续长时间使用过程中,如果电驱动系统发生断齿断轴、轴承保持架开裂或轴承磨损等故障时,由于没有有效的诊断手段,高速旋转的电机可能会给驾驶员带来严重的安全隐患。
有鉴于此,需要提出一种改进的早期故障诊断机制。
发明内容
本申请的实施例提供了一种电驱动系统的异常检测方法和系统、车辆、计算机可读存储介质,用于以在线方式确定车辆的电驱动系统是否存在异常或者潜在的安全隐患。
根据本申请的一方面,提供一种在车辆端执行的电驱动系统的异常检测方法。所述方法包括:通过振动传感器采集振动信号,其中,所述振动传感器经由加速度板耦合到所述电驱动系统中的电机控制器的内壳体上;以及根据所述振动信号生成诊断数据并发送,以便接收方基于所述诊断数据确定所述电驱动系统是否存在异常。
在本申请的一些实施例中,可选地,通过振动传感器采集的振动信号包括:确定所述电驱动系统是否进入预定工况;以及在确定进入所述预定工况后采集预定时间内的所述振动信号。
在本申请的一些实施例中,可选地,根据所述振动信号生成诊断数据并发送包括:将所述振动信号传输至所述电驱动系统的电机控制器;以及通过所述电机控制器对所述振动信号进行预处理以生成所述诊断数据。
在本申请的一些实施例中,可选地,所述预处理包括以下至少一种:数据完整性验证、数据一致性验证、特征提取。
在本申请的一些实施例中,可选地,根据所述振动信号生成诊断数据并发送还包括:通过车辆的车载通信终端对所述诊断数据进行打包并发送到接收方。
根据本申请的另一方面,提供一种在云端或服务器端执行的电驱动系统的异常检测方法。所述方法包括:接收诊断数据,其中,所述诊断数据根据振动传感器采集的振动信号生成,并且所述振动传感器经由加速度板耦合到所述电驱动系统中的电机控制器的内壳体上;以及根据所述诊断数据并基于异常检测模型确定所述电驱动系统是否存在异常,其中所述异常检测模型至少部分地根据已知存在异常的电驱动系统及其对应的诊断数据构建。
在本申请的一些实施例中,可选地,根据所述诊断数据并基于异常检测模型确定所述电驱动系统是否存在异常包括:对所述诊断数据进行清洗,并根据清洗后的所述诊断数据进行特征提取,以确定所述电驱动系统是否存在异常。
在本申请的一些实施例中,可选地,所述异常检测模型通过以下至少一者构建:根据专家经验指定的异常诊断数据;和对存在异常的电驱动系统所形成的诊断数据。
根据本申请的另一方面,提供一种电驱动系统的异常检测系统。所述系统包括:振动传感器,其配置成采集振动信号,其中,所述振动传感器经由加速度板耦合到所述电驱动系统中的电机控制器的内壳体上;以及发送单元,其配置成根据所述振动信号生成诊断数据并发送,以便接收方基于所述诊断数据确定所述电驱动系统是否存在异常。
在本申请的一些实施例中,可选地,所述振动传感器被配置成在所述电驱动系统是否进入预定工况后采集预定时间内的所述振动信号。
在本申请的一些实施例中,可选地,所述系统包括所述电驱动系统的电机控制器,其配置成:接收所述振动信号;以及对所述振动信号进行预处理以生成所述诊断数据。
在本申请的一些实施例中,可选地,所述预处理包括以下至少一种:数据完整性验证、数据一致性验证、特征提取。
在本申请的一些实施例中,可选地,所述系统还包括车辆的车载通信终端,其配置成对所述诊断数据进行打包并发送。
根据本申请的另一方面,提供一种电驱动系统的异常检测系统。所述系统包括:接收单元,其配置成接收诊断数据,其中,所述诊断数据根据振动传感器采集的振动信号生成,并且所述振动传感器经由加速度板耦合到所述电驱动系统中的电机控制器的内壳体上;以及判断单元,其配置成根据所述诊断数据并基于异常检测模型确定所述电驱动系统是否存在异常,其中所述异常检测模型至少部分地根据已知存在异常的电驱动系统及其对应的诊断数据构建。
在本申请的一些实施例中,可选地,所述判断单元被配置成对所述诊断数据进行清洗,并根据清洗后的所述诊断数据进行特征提取,以确定所述电驱动系统是否存在异常。
在本申请的一些实施例中,可选地,所述异常检测模型通过以下至少一者构建:根据专家经验指定的异常诊断数据;和对存在异常的电驱动系统所形成的诊断数据。
根据本申请的另一方面,提供一种电驱动系统的异常检测系统。所述系统包括:存储器,其配置成存储指令;以及处理器,其配置成执行所述指令以便执行如上文所述的任意一种方法。
根据本申请的另一方面,提供一种车辆,所述车辆包括如上文所述的任意一种系统。
根据本申请的另一方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,其特征在于,当所述指令由处理器执行时,使得所述处理器执行如上文所述的任意一种方法。
从结合附图的以下详细说明中,将会使本申请的上述和其他目的及优点更
加完整清楚,其中,相同或相似的要素采用相同的标号表示。
图1示出了根据本申请的一个实施例的电驱动系统;
图2示出了根据本申请的一个实施例的电机控制器;
图3示出了根据本申请的一个实施例的异常检测方法;
图4示出了根据本申请的一个实施例的异常检测方法;
图5示出了根据本申请的一个实施例的异常检测方法;
图6示出了根据本申请的一个实施例的近距离振动信号传输原理;
图7示出了根据本申请的一个实施例的远距离振动信号传输原理;
图8示出了根据本申请的一个实施例的异常检测系统。
出于简洁和说明性目的,本文主要参考其示范实施例来描述本申请的原理。但是,本领域技术人员将容易地认识到相同的原理可等效地应用于所有类型的电驱动系统的异常检测方法和系统、车辆、计算机可读存储介质,并且可以在其中实施这些相同或相似的原理,任何此类变化不背离本申请的真实精神和范围。
本申请的一方面提供了一种在车辆端执行的电驱动系统的异常检测方法。如图4所示,电驱动系统的异常检测方法40(以下简称方法40)包括如下步骤:在步骤S402中通过振动传感器采集振动信号;以及在步骤S404中根据振动信号生成诊断数据并发送,以便接收方基于诊断数据确定电驱动系统是否存在异常。方法40通过以上步骤能够形成诊断数据并发送到诸如网络服务器端,从而进一步分析以确定电驱动系统中是否存在异常。此外,若车辆本地具备一定的处理能力,也可以将诊断数据发送到诸如电机控制器、域控制器、中央处理器等车辆本地资源进行分析。
方法40在步骤S402中通过振动传感器采集振动信号。其中,振动传感器经由加速度板耦合到电驱动系统中的电机控制器的内壳体上。图1示意性地描绘了电驱动系统10的一种可行的构造形式。如图所示,电驱动系统10由电机101、电机控制器102、齿轮箱103和差速器104组成。电驱动系统10内的机械旋转部件包括电机转子、电机内轴承、轴、齿轮箱内轴承、齿轮、差速器等。机械旋转部件运动时的振动噪声可以通过轴齿、轴承传递到其机械壳体上。对于电机101、
电机控制器102、齿轮箱103共壳体设计的电驱动系统10而言,电机101壳体上的振动或齿轮箱103壳体上的振动信息可以全部传递到电机控制器102壳体上。对于非共壳体设计的电驱动系统10,电机101壳体上或齿轮箱103壳体上中低频的振动信息可以通过螺栓有效传递到电机控制器102壳体上。通过设定特定触发振动信号采集工况(例如,不超过8000转),中频振动信息对于识别早期不易被人察觉的异响异常也足够敏感。最后电机控制器102壳体上的振动可以传递到固定在其内壳体的加速度板上,被振动传感器记录下来,这将在下面详细叙述。
转至图2,电机控制器102包括了控制(电路)板201、驱动(电路)板202、功率模块203和设置于电机控制器102的内壳体上的加速度(电路)板204。加速度板204上设置有诸如加速度计之类的振动传感器,还设置有外围处理电路用于处理加速度信号。
本申请的发明人在通过大量实验验证的基础上确定将加速度板布置于电机控制器102的内壳体上相比于其他布置形式具有以下显著的优点:
(1)对比将加速度板204(以及振动传感器)放在电机101壳体上或齿轮箱103壳体上。若将加速度板204(以及振动传感器)放在电机101壳体或齿轮箱103壳体上,需要对其封装并设计接插件以连接线束,还需要满足防水等级要求,这将极大地增加额外成本。此外,在壳体上额外增加加速度板204(以及振动传感器)也会增加电驱动系统10布置的难度。另一方面,电机控制器102的低压接插件也需要变更,需要额外增加针脚连接外置的加速度板204(以及振动传感器)。高频振动数据通过较长线束传输也容易受干扰出错,因此对线束屏蔽要求较高。综合以上,即便将加速度板204(以及振动传感器)放在电机101壳体上或齿轮箱103壳体上振动信号采集质量相对较高,但是鉴于以上存在的问题,也不宜采用此等布置形态。
(2)对比将加速度板204(以及振动传感器)放在电机101壳体内或齿轮箱103壳体内。若将加速度板204(以及振动传感器)放在电机101壳体内或齿轮箱103壳体内,需要对其封装并设计接插件以连接线束,还需要满足耐高温耐油要求,这将极大地增加额外成本。此外,电机101壳体内或齿轮箱103壳体内空间有限,布置加速度板204(以及振动传感器)较为困难。另一方面,电机控制器102的低压接插件也需要变更,需要额外增加针脚连接外置的加速度板204
(以及振动传感器)。高频振动数据通过较长线束传输也容易受干扰出错,因此对线束屏蔽要求较高。综合以上,即便将加速度板204(以及振动传感器)放在电机101壳体内或齿轮箱103壳体内振动信号采集质量相对较高,但是鉴于以上存在的问题,也不宜采用此等布置形态。
(3)对比将加速度板204(以及振动传感器)放在电机控制器102外壳体上。若将加速度板204(以及振动传感器)放放在电机控制器102外壳体上,需要对其封装并设计接插件以连接线束,还需要满足防水等级要求,这将极大地增加额外成本。此外,在电机控制器102外壳体上额外增加加速度板204(以及振动传感器)也会增加电驱动系统10布置的难度。另一方面,电机控制器102的低压接插件也需要变更,需要额外增加针脚连接外置的加速度板204(以及振动传感器)。在此种布置方式中,振动信号传递质量在中低频传递不受影响,但是高频信号传递质量一般。
(4)对比振动传感器芯片放在控制板201上或驱动板202上。若将控制板201或驱动板202通过叠排加隔离的方式固定在电机控制器102壳体上,传递路径中将会有刚性较差的薄隔板,这会导致振动信号传递质量较差,从而只有极低频的振动信号可以有效传递,不足以进行旋转部件的早期噪声或异常诊断。
因此,本申请的发明人选择在电机控制器102的内壳体上布置加速度板进行各种旋转部件的早期噪声或异常诊断。
在一些示例中,出于成本考虑,振动传感器的典型示例为MEMS(Micro Electro Mechanical System)传感器。
在本申请的一些实施例中,在步骤S402中可以先确定电驱动系统是否进入预定工况,并且在确定进入预定工况后采集预定时间内的振动信号。具体而言,可以计算各旋转部件参数并参考振动传感器的带宽来定义振动采样工况。当车辆运行到特定的采样工况时,可以触发采集振动数据。振动传感器可以连续T秒采集数据,并在后续步骤中存储到电机控制器102的预分配内存中。
方法40在步骤S404中根据振动信号生成诊断数据并发送,以便接收方基于诊断数据确定电驱动系统是否存在异常。具体而言,在步骤S404中可以将在步骤S402中采集到的振动信号传输至电驱动系统的电机控制器102,并且通过电机控制器102对振动信号进行预处理以生成诊断数据。
在本申请的一些实施例中,预处理可以包括但不限于:数据完整性验证、数据一致性验证、特征提取。在本申请的一些实施例中,在步骤S404中根据振动信号生成诊断数据并发送还包括了通过车辆的车载通信终端(例如,网关、域控制器等)对诊断数据进行打包并发送。例如,对于满足条件的诊断数据将自动触发数据传输,即将电机控制器102的内存中的诊断数据通过控制器端CAN通信、CANFD通信或以太网通信发送到车辆端的接收方。如果接收方部署的异常检测模型是根据一些特征量来进行,则可以在电机控制器102处对数据进行相关特征提取,这样仅需传递特征量而不用传递大量高频振动数据,从而可以大大减少数据传输量。这里的接收方可以是部署于云端的服务器,也可以是车辆内部部署的处理资源。
本申请的另一方面提供了一种在云端或服务器端执行的电驱动系统的异常检测方法。如图5所示,电驱动系统的异常检测方法50(以下简称方法50)包括如下步骤:在步骤S502中接收诊断数据;以及在步骤S504中根据诊断数据并基于异常检测模型确定电驱动系统是否存在异常。方法50通过以上步骤能够根据接收的诊断数据确定电驱动系统中是否存在异常。
方法50在步骤S502中接收诊断数据。如在方法40中所详细描述的,此处接收的诊断数据根据振动传感器采集的振动信号生成,并且振动传感器经由加速度板耦合到电驱动系统中的电机控制器的内壳体上。
方法50在步骤S504中将根据在步骤S502中接收到的诊断数据并基于异常检测模型确定电驱动系统是否存在异常。其中,异常检测模型是事先构建的,具体而言,可以至少部分地根据已知存在异常的电驱动系统及其对应的诊断数据构建异常检测模型。
在本申请的一些实施例中,异常检测模型可以通过根据专家经验指定的异常诊断数据;和/或对存在异常的电驱动系统所形成的诊断数据。具体而言,异常检测模型的构建可以考虑以下三种途径:
(1)从电机控制、旋转部件运动机理出发,依靠专家经验知识,获知旋转部件运动发生异响异常对应的数据表现及对应的异响异常表现明显工况,制定相应的状态判断逻辑,并归入到云端异常检测模型中。
(2)在已存在异响异常的电驱动系统上安装振动传感器,获取其异响异
常数据及表现明显工况,通过与正常数据的对比构建单个异常检测模型,并归入到云端异常检测模型中。
(3)上面两种途径仅包含一些可预见的异常,并且异常数据的采集也受是否有异常样件的制约。在模型上线部署后,仍需要售后端不断反馈未在检测范围内的异常数据。通过对这部分异常数据的研究和采集,记录异常表现明显工况,补充新的单个异常检测模型,归入到云端异常检测模型中。
在本申请的一些实施例中,在步骤S504中根据诊断数据并基于异常检测模型确定电驱动系统是否存在异常包括:对诊断数据进行清洗,并根据清洗后的所述诊断数据进行特征提取,以确定所述电驱动系统是否存在异常。具体而言,服务器端可以自动解压诊断数据并执行预定的数据清洗(筛选)。数据清洗可以清除明显不合理地诊断数据,从而保证后续异常判断流程的准确性。若在步骤S504中确定电驱动系统存在异常,则可以通知电驱动系统所属车辆的驾驶员、管理机构、维护保养机构等以发送关于系统异常的报警信息。若在步骤S504中没有发现异常,则服务器端可以不执行任何操作。
以上方法40和方法50分别从车辆端和服务器端说明了如何分别单独实施以实现电驱动系统的异常检测,以下将通过一个实施例详细说明双方交互的过程。需要说明的是,这一实施例不应当理解为对方法40和方法50的分别实施构成限制。参考图3,电驱动系统的异常检测方法30(以下简称方法30)示意性地描述了车辆端与服务器端共同实施以实现针对电驱动系统的异常检测。
如图所示,在步骤S302中先判断是否进入预设的特定工况,若识别到满足预设的特定工况则进入下一步骤S304,若没有识别到则循环执行直至识别到预设的特定工况为止。在步骤S304中将触发振动信号的采集,并且在步骤S306中判断采集所持续的时长是否已经达到预定时间(例如,T秒)。若达到预定时间则转入下一步骤S306,若没有达到预定时间则继续采集直至达到预定时间为止。在完成预定时间的信号采集后,转入步骤S308。在步骤S308中将对原始的信号进行处理以生成诊断数据,并且可以对数据进行预处理。随后,进入步骤S310,由车辆端的T-Box对诊断数据打包传送至服务器端(云端)。服务器端在步骤S312中对接收到的诊断数据进行清洗,并在步骤S314中提取诊断数据的特征。紧接着,服务器端在步骤S316中基于异常检测模型对诊断数据(特征)进行运算,
以确定电驱动系统是否存在异常。若存在异常则进入步骤S318,通知驾驶员或者售后服务机构车辆存在潜在的异常风险,还可以提示需要立即维修车辆。若通过运算确定不存在异常则进入步骤S320,不执行任何通知/警告动作。
本申请的另一方面提供了一种电驱动系统的异常检测系统。如图8所示,异常检测系统80(以下简称系统80)包括振动传感器801和发送单元802。其中,振动传感器801被配置成采集振动信号。振动传感器801经由加速度板耦合到电驱动系统中的电机控制器的内壳体上。具体而言,如图6和图7所示,振动传感器622和722分别经由加速度板602和702耦合到电机控制器601和701的内壳体上。返回图8,发送单元802被配置成根据振动信号生成诊断数据并发送,以便接收方基于诊断数据确定电驱动系统是否存在异常。在本申请的一些实施例中,振动传感器801被配置成在电驱动系统是否进入预定工况后采集预定时间内的振动信号。
在本申请的一些实施例中,系统80包括电驱动系统的电机控制器(图8中未示出),其配置成:接收振动信号;以及对振动信号进行预处理以生成诊断数据。在本申请的一些实施例中,预处理包括以下至少一种:数据完整性验证、数据一致性验证、特征提取。
对于电机控制器内控制板601与加速度板602之间的振动信号传输,可以选择图6中的近距离高频加速度数据传输方案,即振动传感器622与电机控制器MCU 611直接进行数据传输。二者之间的传输方式可以为数字传输(例如,采用I2C或SPI协议通信),也可以为模拟传输(例如,采用A/D模拟值传递)。此外,控制板601可以为加速度板602的电源模块621供电。
在另一些示例中,也可以选择图7所示远距离传输方案在加速度板702和控制板701传输高频加速度数据。根据该方案,可以先将振动传感器722的振动信号利用编码单元723进行编码,然后将经过编码的信号传输到控制板701的译码单元712。随后,译码单元712对编码的信号进行译码,再将完成译码的信号发送到电机控制器MCU 711处理。编码译码可以选择诸如I2S,串口等适合远距离传输的协议通信,此外,控制板701可以为加速度板702的电源模块721供电。
在一些示例中,出于成本等方面考虑,可以选择图6所示的近距离高频加速度数据传输方案。通过合理布置加速度板602与控制板601的位置,以及两块
板之间的接插件位置,保证数据可以直接在振动传感器622与电机控制器MCU611之间有效传递。对于高频采样的振动信号,SPI通信比I2C有更高的数据传输速率、更好的抗干扰能力。而且SPI/I2C通信相比于A/D模拟值传输,由于在采样频率、振动幅值、滤波特性、采样是否开启等方面均可配置更改,因而更适合电驱系统在线高频振动监控使用。出于以上方面的考虑,可以采用基于SPI通信实现振动传感器622直接与电机控制器MCU 611进行近距离数据传输。
在本申请的一些实施例中,系统80还包括车辆的T-Box(图8中未示出),其配置成对诊断数据进行打包并发送。
系统80的其他方面可以参照上文中关于异常检测方法的实施例开展,相关内容一并引用于此,在此不作赘述。
本申请的另一方面提供了一种电驱动系统的异常检测系统。如图8所示,异常检测系统90(以下简称系统90)包括接收单元901和判断单元902。其中,接收单元901被配置成接收诊断数据。诊断数据根据振动传感器采集的振动信号生成,并且振动传感器经由加速度板耦合到电驱动系统中的电机控制器的内壳体上。判断单元902被配置成根据诊断数据并基于异常检测模型确定电驱动系统是否存在异常,其中异常检测模型至少部分地根据已知存在异常的电驱动系统及其对应的诊断数据构建。
在本申请的一些实施例中,判断单元902被配置成对诊断数据进行清洗,并根据清洗后的所述诊断数据进行特征提取,以确定所述电驱动系统是否存在异常。在本申请的一些实施例中,异常检测模型通过以下至少一者构建:根据专家经验指定的异常诊断数据;和对存在异常的电驱动系统所形成的诊断数据。
系统90的其他方面可以参照上文中关于异常检测方法的实施例开展,相关内容一并引用于此,在此不作赘述。
本申请的另一方面提供了一种电驱动系统的异常检测系统。系统包括:存储器,其配置成存储指令;以及处理器,其配置成执行所述指令以便执行如上文所述的任意一种方法。
本申请的另一方面提供了一种车辆,所述车辆包括如上文所述的任意一种系统。
根据本申请的另一方面,提供一种计算机可读存储介质,其中存储有指令,
当所述指令由处理器执行时,使得所述处理器执行如上文所述的任意一种电驱动系统的异常检测方法。本申请中所称的计算机可读介质包括各种类型的计算机存储介质,可以是通用或专用计算机能够存取的任何可用介质。举例而言,计算机可读介质可以包括RAM、ROM、EPROM、E2PROM、寄存器、硬盘、可移动盘、CD-ROM或其他光盘存储器、磁盘存储器或其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码单元并能够由通用或专用计算机、或者通用或专用处理器进行存取的任何其他临时性或者非临时性介质。如本文所使用的盘通常磁性地复制数据,而碟则用激光来光学地复制数据。上述的组合也应当包括在计算机可读介质的保护范围之内。示例性存储介质耦合到处理器以使得该处理器能从/向该存储介质读写信息。在替换方案中,存储介质可以被整合到处理器。处理器和存储介质可驻留在ASIC中。ASIC可驻留在用户终端中。在替换方案中,处理器和存储介质可作为分立组件驻留在用户终端中。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此。本领域的技术人员可以根据本申请所披露的技术范围想到其他可行的变化或替换,此等变化或替换皆涵盖于本申请的保护范围之中。在不冲突的情况下,本申请的实施方式及实施方式中的特征还可以相互组合。本申请的保护范围以权利要求的记载为准。
Claims (19)
- 一种电驱动系统的异常检测方法,其特征在于,所述方法包括:通过振动传感器采集振动信号,其中,所述振动传感器经由加速度板耦合到所述电驱动系统中的电机控制器的内壳体上;以及根据所述振动信号生成诊断数据并发送,以便接收方基于所述诊断数据确定所述电驱动系统是否存在异常。
- 根据权利要求1所述的方法,其中,通过振动传感器采集的振动信号包括:确定所述电驱动系统是否进入预定工况;以及在确定进入所述预定工况后采集预定时间内的所述振动信号。
- 根据权利要求1所述的方法,其中,根据所述振动信号生成诊断数据并发送包括:将所述振动信号传输至所述电驱动系统的电机控制器;以及通过所述电机控制器对所述振动信号进行预处理以生成所述诊断数据。
- 根据权利要求3所述的方法,其中,所述预处理包括以下至少一种:数据完整性验证、数据一致性验证、特征提取。
- 根据权利要求3所述的方法,其中,根据所述振动信号生成诊断数据并发送还包括:通过车辆的车载通信终端对所述诊断数据进行打包并发送。
- 一种电驱动系统的异常检测方法,其特征在于,所述方法包括:接收诊断数据,其中,所述诊断数据根据振动传感器采集的振动信号生成,并且所述振动传感器经由加速度板耦合到所述电驱动系统中的电机控制器的内壳体上;以及根据所述诊断数据并基于异常检测模型确定所述电驱动系统是否存在异常,其中所述异常检测模型至少部分地根据已知存在异常的电驱动系统及其对应的诊断数据构建。
- 根据权利要求6所述的方法,其中,根据所述诊断数据并基于异常检测模型确定所述电驱动系统是否存在异常包括:对所述诊断数据进行清洗;以及对清洗后的所述诊断数据进行特征提取,以确定所述电驱动系统是否存在异常。
- 根据权利要求6所述的方法,其中,所述异常检测模型通过以下至少一者构建:根据专家经验指定的异常诊断数据;和对存在异常的电驱动系统所形成的诊断数据。
- 一种电驱动系统的异常检测系统,其特征在于,所述系统包括:振动传感器,其配置成采集振动信号,其中,所述振动传感器经由加速度板耦合到所述电驱动系统中的电机控制器的内壳体上;以及发送单元,其配置成根据所述振动信号生成诊断数据并发送,以便接收方基于所述诊断数据确定所述电驱动系统是否存在异常。
- 根据权利要求9所述的系统,其中,所述振动传感器被配置成在所述电驱动系统是否进入预定工况后采集预定时间内的所述振动信号。
- 根据权利要求9所述的系统,其中,所述系统包括所述电驱动系统的电机控制器,其配置成:接收所述振动信号;以及对所述振动信号进行预处理以生成所述诊断数据。
- 根据权利要求11所述的系统,其中,所述预处理包括以下至少一种:数据完整性验证、数据一致性验证、特征提取。
- 根据权利要求11所述的方法,其中,所述系统还包括车辆的车载通信终端,其配置成对所述诊断数据进行打包并发送。
- 一种电驱动系统的异常检测系统,其特征在于,所述系统包括:接收单元,其配置成接收诊断数据,其中,所述诊断数据根据振动传感器采集的振动信号生成,并且所述振动传感器经由加速度板耦合到所述电驱动系统中的电机控制器的内壳体上;以及判断单元,其配置成根据所述诊断数据并基于异常检测模型确定所述电驱动系统是否存在异常,其中所述异常检测模型至少部分地根据已知存在异常的电驱动系统及其对应的诊断数据构建。
- 根据权利要求14所述的系统,其中,所述判断单元被配置成:对所述诊断数据进行清洗;以及对清洗后的所述诊断数据进行特征提取,以确定所述电驱动系统是否存在异常。
- 根据权利要求15所述的方法,其中,所述异常检测模型通过以下至少一者构建:根据专家经验指定的异常诊断数据;和对存在异常的电驱动系统所形成的诊断数据。
- 一种电驱动系统的异常检测系统,其特征在于,所述系统包括:存储器,其配置成存储指令;以及处理器,其配置成执行所述指令以便执行如权利要求1-8中任一项所述的方法。
- 一种车辆,其特征在于,所述车辆包括如权利要求9-13中任一项所述的系统。
- 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,其特征在于,当所述指令由处理器执行时,使得所述处理器执行如权利要求1-8中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211301198.8 | 2022-10-24 | ||
CN202211301198.8A CN115901285A (zh) | 2022-10-24 | 2022-10-24 | 电驱动系统的异常检测 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024088129A1 true WO2024088129A1 (zh) | 2024-05-02 |
Family
ID=86475071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/125182 WO2024088129A1 (zh) | 2022-10-24 | 2023-10-18 | 电驱动系统的异常检测 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115901285A (zh) |
WO (1) | WO2024088129A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115901285A (zh) * | 2022-10-24 | 2023-04-04 | 蔚来动力科技(合肥)有限公司 | 电驱动系统的异常检测 |
CN116796276B (zh) * | 2023-06-28 | 2024-03-22 | 深圳市前海极智创新科技有限公司 | 一种基于人工智能算法的电驱动故障诊断装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109353201A (zh) * | 2018-11-01 | 2019-02-19 | 重庆长安汽车股份有限公司 | 一种集成化电驱动系统总成及电动汽车 |
CN109367498A (zh) * | 2018-11-02 | 2019-02-22 | 重庆长安汽车股份有限公司 | 一种电动车辆、电驱动动力总成及其线束系统 |
CN111819106A (zh) * | 2018-03-08 | 2020-10-23 | 马勒国际有限公司 | 感应充电装置 |
CN212206581U (zh) * | 2020-06-11 | 2020-12-22 | 广西桂冠电力股份有限公司 | 一种电机智能检测系统 |
CN112595411A (zh) * | 2020-12-15 | 2021-04-02 | 华域麦格纳电驱动系统有限公司 | 一种电驱动系统的振动谱数据采集处理方法及装置 |
CN114371001A (zh) * | 2021-12-17 | 2022-04-19 | 中国电子科技集团公司第四十一研究所 | 一种齿轮箱故障缺陷检测系统 |
US20220200070A1 (en) * | 2020-12-23 | 2022-06-23 | Brunswick Corporation | Marine battery with water ingress and shock detection |
CN114734798A (zh) * | 2022-04-26 | 2022-07-12 | 蔚来动力科技(合肥)有限公司 | 车辆及该车辆的控制方法 |
CN115112325A (zh) * | 2022-06-30 | 2022-09-27 | 中国工商银行股份有限公司 | 硬盘振动巡检设备、系统、方法、装置和存储介质 |
CN115901285A (zh) * | 2022-10-24 | 2023-04-04 | 蔚来动力科技(合肥)有限公司 | 电驱动系统的异常检测 |
-
2022
- 2022-10-24 CN CN202211301198.8A patent/CN115901285A/zh active Pending
-
2023
- 2023-10-18 WO PCT/CN2023/125182 patent/WO2024088129A1/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111819106A (zh) * | 2018-03-08 | 2020-10-23 | 马勒国际有限公司 | 感应充电装置 |
CN109353201A (zh) * | 2018-11-01 | 2019-02-19 | 重庆长安汽车股份有限公司 | 一种集成化电驱动系统总成及电动汽车 |
CN109367498A (zh) * | 2018-11-02 | 2019-02-22 | 重庆长安汽车股份有限公司 | 一种电动车辆、电驱动动力总成及其线束系统 |
CN212206581U (zh) * | 2020-06-11 | 2020-12-22 | 广西桂冠电力股份有限公司 | 一种电机智能检测系统 |
CN112595411A (zh) * | 2020-12-15 | 2021-04-02 | 华域麦格纳电驱动系统有限公司 | 一种电驱动系统的振动谱数据采集处理方法及装置 |
US20220200070A1 (en) * | 2020-12-23 | 2022-06-23 | Brunswick Corporation | Marine battery with water ingress and shock detection |
CN114371001A (zh) * | 2021-12-17 | 2022-04-19 | 中国电子科技集团公司第四十一研究所 | 一种齿轮箱故障缺陷检测系统 |
CN114734798A (zh) * | 2022-04-26 | 2022-07-12 | 蔚来动力科技(合肥)有限公司 | 车辆及该车辆的控制方法 |
CN115112325A (zh) * | 2022-06-30 | 2022-09-27 | 中国工商银行股份有限公司 | 硬盘振动巡检设备、系统、方法、装置和存储介质 |
CN115901285A (zh) * | 2022-10-24 | 2023-04-04 | 蔚来动力科技(合肥)有限公司 | 电驱动系统的异常检测 |
Non-Patent Citations (1)
Title |
---|
WANG JIANBO: "A Comparative Study on Electromechanical Signal Diagnosis Methods for Bearing Faults of Permanent Magnet Synchronous Machine", MASTER THESIS, HUNAN UNIVERSITY, 20 April 2020 (2020-04-20), Hunan University, XP093164377 * |
Also Published As
Publication number | Publication date |
---|---|
CN115901285A (zh) | 2023-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024088129A1 (zh) | 电驱动系统的异常检测 | |
CN107345857A (zh) | 一种电主轴状态监测与故障诊断系统及其监测诊断方法 | |
CN107061183A (zh) | 一种海上风电机组的自动化故障诊断方法 | |
CA2875071C (en) | Method and system for testing operational integrity of a drilling rig | |
CN101228486A (zh) | 用于安全断开自动化设备中的负载的安全开关设备与方法 | |
CN110462352A (zh) | 振动分析器和机械部件诊断系统 | |
CN112061988A (zh) | 起重机分布式网络监测、单机监测管理系统及方法 | |
WO2022147684A1 (zh) | 用于识别机械装置或机械部件中的异常的方法及装置 | |
CN105509805A (zh) | 风力发电机组多功能数据采集系统 | |
KR20090001432A (ko) | 인터넷 기반 온라인 상태 모니터링 시스템 | |
CN113112038B (zh) | 智能监测与诊断分析系统、装置、电子设备及存储介质 | |
JP2003088178A (ja) | インバータ付きギヤモータ | |
JP7528035B2 (ja) | 機械設備の振動監視装置 | |
CN110174261A (zh) | 多退化量监测的齿轮实时剩余寿命预测方法 | |
KR102545672B1 (ko) | 기계고장 진단 방법 및 장치 | |
CN107588802A (zh) | 基于光纤传感器的起重装备减速机振动监测系统与方法 | |
CN112697267A (zh) | 一种工业设备异常振动检测装置 | |
CN106959686A (zh) | 一种智能远程诊断系统及方法 | |
CN113516023A (zh) | 设备振动异常诊断方法和系统 | |
JP6577394B2 (ja) | 風力発電設備の異常診断装置 | |
KR20220101465A (ko) | 차량용 베어링 상태 모니터링 진동 센서 장치 및 장치 운용 방법 | |
CN114993461B (zh) | 一种塔机机构电机振动的检测系统和方法 | |
CN111456915A (zh) | 风机机舱内部部件的故障诊断装置及方法 | |
CN112859725B (zh) | 一种厂房设备状态特征信号监测系统 | |
CN213928470U (zh) | 汽轮机监测保护系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23881707 Country of ref document: EP Kind code of ref document: A1 |