WO2024088094A1 - 一种风电机组叶片内腔气热循环除冰系统 - Google Patents

一种风电机组叶片内腔气热循环除冰系统 Download PDF

Info

Publication number
WO2024088094A1
WO2024088094A1 PCT/CN2023/124754 CN2023124754W WO2024088094A1 WO 2024088094 A1 WO2024088094 A1 WO 2024088094A1 CN 2023124754 W CN2023124754 W CN 2023124754W WO 2024088094 A1 WO2024088094 A1 WO 2024088094A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
inner cavity
blade
hot air
wind turbine
Prior art date
Application number
PCT/CN2023/124754
Other languages
English (en)
French (fr)
Inventor
董礼
李维
田祥
向波
李胜
张上
Original Assignee
中广核风电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核风电有限公司 filed Critical 中广核风电有限公司
Publication of WO2024088094A1 publication Critical patent/WO2024088094A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to the technical field of deicing of blades of a wind turbine generator set, and in particular to a wind turbine generator set blade inner cavity gas-heat circulation deicing system.
  • Wind power generation is an important component of modern clean energy. It meets the demand for clean energy under the background of climate change and is an indispensable source of energy for human development.
  • my country's wind power generation has maintained a high growth rate with policy support, but the high-altitude temperature in winter is below zero, and obvious icing will occur on the surface of wind turbine blades. Ice on the surface of wind turbine blades will lead to many problems such as reduced power generation efficiency (ranging from 10%-50%), unit shutdown, affected automatic control, safety accidents caused by ice shedding, etc., which directly affect the operation of wind turbines.
  • reduced power generation efficiency ranging from 10%-50%)
  • unit shutdown affected automatic control
  • safety accidents caused by ice shedding, etc. which directly affect the operation of wind turbines.
  • the prior art discloses several de-icing solutions:
  • Coating anti-icing Passive deicing method, by brushing (spraying) a hydrophobic coating on the blade surface to change the physical properties of the blade surface. Since the hydrophobic coating has anti-adhesion characteristics, it can prevent ice or water from adhering to the surface of the object to a certain extent. At present, more and more research is developing towards nano-composite coatings, which enhance the surface properties of polymers through nano-scale particles. The contact angle (hydrophobic angle) of such materials with water is very large, which can prevent or alleviate the icing of blades.
  • This technical route consists of three technical solutions: 1) Incorporating anti-icing coating into the production process of new blades (specific environmental areas); 2) Brushing anti-icing coating on old blades under the tower or manually; 3) Spraying anti-icing coating on the integrated platform of the drone;
  • the problem with this solution is that the adhesion and wear resistance of the coating are poor, the material performance deteriorates significantly, and frequent repairs are required, and the subsequent maintenance cost is high.
  • Spraying de-icing agent (de-icing agent): The operator or the automatic flight system will send a drone carrying a certain weight of de-icing agent or carrying a spraying pipeline to the vicinity of the iced blades, find the location of the ice on the blades through high-definition images, and manually or automatically trigger the agent spraying system to spray de-icing agent on the iced points. After de-icing, the drone will find the next iced location to operate until the ice on the three blades is cleared.
  • Electrode heating layer embed electric heating elements (such as heating film, carbon fiber, etc.) into the blades. When the blades are frozen, the electric heating elements increase the temperature of the blade surface, forming a water film between the ice layer and the blade surface, and throwing the ice out through centrifugal force, or start the electric heating elements when the blades are about to freeze to prevent or alleviate the ice formation of the blades, thereby achieving the effect of de-icing (anti-icing).
  • This solution is suitable for new machine projects, not for technical transformation projects; it is easy to attract lightning, and the blades must be specially treated for lightning protection; the electric heating elements have great limitations on the coverage of the blade surface, and the later maintainability is poor.
  • Inner cavity hot air (gas heating): A hot air system consisting of a heater, a ventilator, and a heat pipe is installed in the blade cavity (hub). After the blade freezes, the ventilator sends the heated air to the inside of the blade through the heat pipe, and forms a heat flow cycle to heat the entire blade evenly. The hot air system heats the blade evenly to above zero degrees, and then throws out the accumulated ice through centrifugal force, or starts the hot air system when the blade is about to freeze to prevent or alleviate the freezing of the blade, thereby achieving the effect of de-icing (anti-icing).
  • Microwave or electromagnetic induction deicing Install a microwave or electromagnetic transmitting device near the blades to emit microwaves or use electromagnetic induction to de-ice. Due to the cost and the low de-icing effect, there are currently no examples.
  • a Chinese patent discloses an internal circulation gas-heat deicing device (application number: CN202120914533.6), which includes at least one group of internal circulation gas-heat deicing mechanisms, and at least one group of internal circulation gas-heat deicing mechanisms is arranged in the chamber corresponding to the deicing part of the blade;
  • the internal circulation gas-heat deicing mechanism includes a first baffle, a gas-heat output component and a return air duct, the first baffle is arranged in the chamber, and is used to separate the chamber into a first chamber near the root of the blade and a second chamber near the tip of the blade, the main body of the gas-heat output component is arranged in the first chamber, and its output end is inserted into the second chamber after passing through the first baffle, and one end of the return air duct is located in the second chamber, and the other end is inserted into the first chamber after passing through the first baffle. It can effectively prevent the problem of ice on the blade surface, and can achieve energy-saving and efficient
  • a gas-heat deicing device for a wind turbine blade (application number: CN202122078013.9), comprising a blade body, a gas drive component, a heater and a heat pipe; the blade body has an inner cavity, the gas drive component, the heater and the heat pipe are all arranged in the inner cavity, and the heater is connected between the gas drive component and the heat pipe; the gas drive component blows the hot air flow generated by the heater to circulate in the heat pipe, so that the overall structure of the blade body can maintain a high temperature, can remove ice on the blade, avoid blade breakage, and can also reduce the power generation loss of the wind farm.
  • the prior art discloses some internal cavity air heating methods for deicing, the blade material itself has poor thermal conductivity, the heating coverage is incomplete, the effect is not obvious, and the hot air system is prone to aging of the internal components of the blade, requiring regular maintenance and replacement, and the subsequent maintenance cost is high.
  • an object of the present invention is to provide a wind turbine blade inner cavity air-heat cycle deicing system to solve the above-mentioned problems.
  • a wind turbine blade cavity air-heat circulation deicing system wherein a heating device is installed in each blade cavity, each heating device comprises a centrifugal fan, a heater, a hot air pipe, a baffle and a partition, the partition is placed in the blade cavity and divides the blade cavity into a hot air cavity and a reflux cavity, the baffle is installed in the middle position of the hot air cavity and divides the hot air cavity into a leading edge cavity and a root cavity, the centrifugal fan and the heater tube are both installed at the blade root position in the root cavity, the centrifugal fan is connected to the heater, the heater passes through the baffle through the hot air pipe and is connected to the leading edge cavity, the leading edge cavity is connected to the reflux cavity, and a filter is installed at the air inlet of the centrifugal fan.
  • a temperature and humidity sensor is also installed on the inner wall of the blade cavity.
  • the centrifugal fan, heater and temperature and humidity sensor are all connected to a blade root control cabinet, and the blade root control cabinet is connected to the slip ring via a power distribution box.
  • the slip rings are respectively connected to the main control cabin cabinet and the tower base cabinet, and the tower base cabinets are respectively connected to the main tower base cabinet and the box-type transformer.
  • each of the blade root control cabinets is connected via a 485 line.
  • the blade root control cabinet is installed at the root position of the blade inner cavity.
  • the tower base cabinet and the main tower base cabinet are installed at the bottom of the wind turbine base.
  • the slip ring is provided with a plurality of power supply and communication channels.
  • the power supply and communication channel includes a three-phase 690VAC blade de-icing power supply, a blade de-icing CAN communication and a 220VAC heating control power supply.
  • a plurality of groups of axial flow blades are arranged in the centrifugal fan.
  • the centrifugal fan and heater of the present invention generate hot air to heat the inner cavity of the blade, and then return to the inner cavity of the web or the inner cavity of the trailing edge through the membrane channel at the blade tip, and finally return to the fan suction port at the blade root for further circulation and heating, so that the temperature of the inner cavity of the blade is saturated.
  • the new slip ring is used to connect external electrical equipment without affecting the main power of the original system of the fan, and the fan has normal communication function and does not affect the communication of the original system.
  • the air inlet of the centrifugal fan is equipped with a filter to prevent air impurities from entering the centrifugal fan and the heater and affecting the normal operation of the centrifugal fan and the heater.
  • FIG1 is a diagram of a wind turbine blade inner cavity gas heat cycle deicing system provided by the present invention.
  • FIG2 is a schematic diagram of the internal structure of a centrifugal fan of the present invention.
  • Fig. 3 is a system schematic diagram of the present invention.
  • FIG. 4 is a structural diagram of a wind turbine generator system according to the present invention.
  • the reference numerals in the figure are: 1. blade cavity; 2. centrifugal fan; 3. heater; 4. hot air duct; 5. baffle; 6. partition; 7. hot air cavity; 8. reflux cavity; 9. root cavity; 10. leading edge cavity; 11. blade; 12. blade root control cabinet; 13. power distribution box; 14. slip ring; 15. main control cabin cabinet; 16. tower base cabinet; 17. main tower base cabinet; 18. box-type transformer; 19. wind turbine base; 20. air inlet; 21. filter; 22. axial fan blade.
  • a temperature and humidity sensor is installed on the inner wall of the blade inner cavity 1 (which can be installed on the inner wall of the reflux cavity 8).
  • centrifugal fan 2 the heater 3 and the temperature and humidity sensor are all connected to a blade root control cabinet 12
  • the blade root control cabinet 12 is connected to a slip ring 14 via a power distribution box 13 .
  • slip ring 14 is respectively connected to the main control cabin cabinet 15 and the tower base cabinet 16
  • the tower base cabinet 16 is respectively connected to the main tower base cabinet 17 and the box-type transformer 18 .
  • each of the blade root control cabinets 12 is connected via a 485 line and a CAN line.
  • the blade root control cabinet 12 is installed at the root position of the blade inner cavity 1 .
  • the tower base cabinet 16 and the main tower base cabinet 17 are installed at the bottom of the wind turbine base 19 .
  • slip ring 14 is provided with a plurality of power supply and communication channels.
  • the power supply and communication channel includes a three-phase 690VAC blade deicing power supply, a blade deicing CAN communication and a 220VAC heating control power supply.
  • the centrifugal fan 2 is provided with a plurality of axial flow blades 22.
  • the plurality of axial flow blades 22 increase the wind force, thereby increasing the heating speed, and in addition, if one of the axial flow blades is damaged, it will not affect the overall operation.
  • the centrifugal fan 2 and heater 3 of the present invention generate hot air to heat the inner cavity 1 of the blade, and then return to the inner cavity of the web or the inner cavity of the trailing edge through the membrane channel at the blade tip, and finally return to the fan suction port at the blade root for circulation heating again, so that the temperature of the inner cavity 1 of the blade is saturated by such circulation, and the external electrical equipment is connected through the slip ring 14, which does not affect the main power of the original system of the fan, has normal communication function, and does not affect the communication of the original system.
  • the air inlet pipe 20 of the centrifugal fan 2 is installed with a filter screen 21 to prevent air impurities from entering the centrifugal fan and the heater and affecting the normal operation of the centrifugal fan and the heater.
  • the baffle 5 is installed in the middle position of the hot air cavity 7 and separates the hot air cavity 7 into a leading edge cavity 10 and a root cavity 9.
  • the centrifugal fan 2 and the heater 3 are both installed in the root cavity 9 of the hot air cavity 7.
  • the centrifugal fan 2 is connected to the heater 3.
  • the heater 3 passes through the baffle 5 through the hot air duct 4 and is connected to the leading edge cavity 10.
  • the leading edge cavity 10 is connected to the reflux cavity 8.
  • the centrifugal fan 2 and the heater 3 start to work, generating hot air, which is transmitted to the leading edge cavity 10 through the hot air duct 4, then enters the return cavity 8, and then returns to the root cavity 9, always circulating to heat the blades for de-icing and anti-icing.
  • the logic and/or steps represented in the flowchart or otherwise described herein, for example, can be considered as an ordered list of executable instructions for implementing logical functions, which can be embodied in any computer-readable medium for use by an instruction execution system, apparatus or device (such as a computer-based system, a system including a processor or other system that can fetch instructions from an instruction execution system, apparatus or device and execute instructions), or used in combination with these instruction execution systems, apparatuses or devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Wind Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明公开了一种风电机组叶片内腔气热循环除冰系统,隔板置于叶片内腔内并将叶片内腔分为热气腔和回流腔,挡板安装在热气腔的中部位置并将热气腔隔开为前缘内腔和根部内腔,离心风扇和加热器管均安装在根部内腔内的叶根位置,离心风扇与加热器连接,加热器通过热气管道贯穿于挡板并与前缘内腔连通,前缘内腔与回流腔连通。本发明有益效果:本发明离心风扇、加热器产生热风对叶片内腔进行加热,再通过叶尖的合膜通道回到腹板内腔或后缘内腔,最终回到叶根风机吸入口再次进行循环加热,如此循环达到叶片内腔温度饱和,通过新型滑环外接电气设备,不影响风机原有系统主电,离心风扇设置有过滤网,避免空气杂质进入加热器内影响加热器正常工作。

Description

一种风电机组叶片内腔气热循环除冰系统 技术领域
本发明涉及风电机组叶片除冰技术领域,尤其是一种风电机组叶片内腔气热循环除冰系统。
背景技术
风力发电是现代清洁能源中的重要组成部分,符合气候变化背景下能源清洁化的需求,是人类发展不可缺少的能源来源。我国风力发电在政策支持下保持较高增长,但冬天高空温度均在零度以下,风电机组叶片表面会出现明显的结冰现象。风电机组叶片表面结冰会导致发电效率降低(从10%-50%不等)、机组停机、自动化控制受影响、冰块脱落导致安全事故等众多问题,从而直接影响风电机组的运行。针对上述问题,现有技术公开了几种除冰方案:
涂层防冰(涂层):被动除冰方法,通过在叶片表面刷(喷)涂疏水涂层,改变叶片表面物理属性,由于疏水涂层具有抗粘附特点,可在一定程度上防止冰或水粘附在物体表面。目前,越来越多的研究向纳米复合材料涂层发展,通过纳米级颗粒增强聚合物表面性能,此类材料与水的接触角(疏水角)非常大,可防止或缓解叶片结冰。该技术路线由三种技术方案:1)新叶片生产工艺纳入防冰涂层(特定环境地区);2)老旧叶片下塔或人工刷防冰涂层;3)无人机一体化平台喷射防冰涂层;该方案存在的问题是涂层的粘结性能和耐磨性能较差,材料性能退化明显,需频繁修复,后期维护成本高。
喷融冰剂(除冰剂):操作人员或自动飞行系统将携带一定重量融冰剂或携带喷射管路的无人机送至结冰叶片附近,通过高清图像寻找叶片覆冰位置,手动或自动触发药剂喷射系统对覆冰点进行喷射融冰剂,除冰完毕后,无人机寻找下一处覆冰位置作业,直到三支叶片覆冰清除完毕。该技术路线有三种技术方案:1)无人机一体化平台巡航喷射除冰剂;2)机舱安装除冰机喷射除冰剂除冰。3)塔筒铺设除冰剂管固定式喷淋除冰。该方案存在的问题是:人员必须到达风机附近才能操作,而结冰天气上山困难或无法上山;无人机携带的融冰剂重量有限,极端天气条件下续航时间短等。
表面加热铺层(电热):将电加热元件(如加热膜、碳纤维等)嵌入叶片,当叶片结冰时,电加热元件使叶片表面温度升高,使积冰层和叶片表面间形成一层水膜,通过离心力将积冰抛出,或在叶片将要结冰时即启动电加热元件,防止或缓解叶片结冰,从而达到除(防)冰的效果。该方案适用于新机项目,不适用于技改项目;且易引雷,必须对叶片进行特殊防雷处理;电加热元件在叶片表面覆盖局限性大,后期可维护性差。
内腔热风(气热):在叶片空腔(轮毂)内安装加热器、通风机、导热管组成的热风系统,叶片结冰后,通风机使被加热的空气通过导热管送到叶片内部,并形成热流循环,使整个叶片均匀受热,热风系统将叶片均匀地加热到零度以上,进而通过离心力将积冰抛出,或在叶片将要结冰时即启动热风系统,防止或缓解叶片结冰,从而达到除(防)冰的效果。(叶片气热除冰,鼓风机→加热器-导热管。叶片气流道导通性测试、覆冰监测)。该方案的存在的问题是叶片材质本身导热性差,加热覆盖面不全,效果不明显,且热风系统易造成叶片内部元件老化,需定期维检和更换,后期维护成本高。
微波或电磁感应除冰:通过在叶片附近安装微波或电磁发射装置,发射微波或通过电磁感应除冰,由于造价与除冰效果不明显,目前未见实例。
如中国专利公开了一种内循环式气热除冰装置(申请号:CN202120914533.6),包括至少一组内循环式气热除冰机构,在所述叶片对应除冰部位的腔室内至少设置一组内循环式气热除冰机构;所述内循环式气热除冰机构包括第一挡板、气热输出部件和回风管,所述第一挡板设置在腔室内,用于将腔室分隔成靠近叶片根部的第一室和靠近叶片尖部的第二室,所述气热输出部件的主体设置在第一室内,而其输出端穿过第一挡板后插入第二室内,所述回风管的一端位于第二室内,而另一端穿过第一挡板后插入第一室内。可以有效地防止叶片表面发生结冰的问题,且能够实现节能高效除冰。
2、一种风机叶片的气热除冰装置(申请号:CN202122078013.9),包括叶片主体、气体驱流件、加热器以及导热管;所述叶片主体具有内腔,所述气体驱流件、加热器以及导热管均设置于所述内腔内,且所述加热器连接于所述气体驱流件和导热管之间;气体驱流件吹动加热器加热产生的热气流在导热管内流通,可以使叶片主体的整体结构保持较高的温度,能够除去叶片上的结冰,避免叶片断裂,还可以降低风电场的发电电量损失。
现有技术虽然公开了一些内腔气热方式除冰,但是叶片材质本身导热性差,加热覆盖面不全,效果不明显,且热风系统易造成叶片内部元件老化,需定期维检和更换,后期维护成本高。
因此,对于上述问题有必要提出一种风电机组叶片内腔气热循环除冰系统。
发明内容
针对上述现有技术中存在的不足,本发明的目的在于提供一种风电机组叶片内腔气热循环除冰系统,以解决上述问题。
一种风电机组叶片内腔气热循环除冰系统,其系统在每个叶片内腔内安装有加热装置,每个加热装置均包括离心风扇、加热器、热气管道、挡板和隔板,所述隔板置于叶片内腔内并将叶片内腔分为热气腔和回流腔,所述挡板安装在热气腔的中部位置并将热气腔隔开为前缘内腔和根部内腔,所述离心风扇和加热器管均安装在根部内腔内的叶根位置,所述离心风扇与加热器连接,所述加热器通过热气管道贯穿于挡板并与前缘内腔连通,所述前缘内腔与回流腔连通,所述离心风扇的进气管口安装有过滤网。
优选地,所述叶片内腔的内壁还安装有温湿度传感器。
优选地,所述离心风扇、加热器和温湿度传感器均连接于叶根控制柜,所述叶根控制柜通过电源分配箱连接滑环。
优选地,所述滑环分别连接主控机舱柜和塔基柜,所述塔基柜分别连接于主塔基柜和箱式变压器。
优选地,每个所述叶根控制柜之间通过485线连接。
优选地,所述叶根控制柜安装在叶片内腔的根部位置。
优选地,所述塔基柜和主塔基柜安装在风电机组基座的底部。
优选地,所述滑环设置有多个供电及通讯通道。
优选地,所述供电及通讯通道包括有叶片除冰电源三相690VAC、叶片除冰CAN通讯和220VAC加热控制电源。
优选地,所述离心风扇内设置有多组轴流扇叶。
与现有技术相比,本发明有益效果:本发明离心风扇、加热器产生热风对叶片内腔进行加热,再通过叶尖的合膜通道回到腹板内腔或后缘内腔,最终回到叶根风机吸入口再次进行循环加热,如此循环达到叶片内腔温度饱和,通过新型滑环外接电气设备,不影响风机原有系统主电,具有正常通讯功能,且不影响原有系统通讯;离心风扇的进气管口安装有过滤网,避免空气杂质进入离心风扇和加热器内影响离心风扇和加热器的正常工作。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明提供的风电机组叶片内腔气热循环除冰系统图;
图2是本发明的离心风扇结构内部示意图;
图3是本发明的系统原理图;
图4是本发明的风电机组结构图。
图中附图标记:1、叶片内腔;2、离心风扇;3、加热器;4、热气管道;5、挡板;6、隔板;7、热气腔;8、回流腔;9、根部内腔;10、前缘内腔;11、叶片;12、叶根控制柜;13、电源分配箱;14、滑环;15、主控机舱柜;16、塔基柜;17、主塔基柜;18、箱式变压器;19、风电机组基座;20、进气管口;21、过滤网;22、轴流扇叶。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
以下结合具体实施例对本发明作进一步详细描述,这些实施例不能理解为限制本发明所要求保护的范围。
如图1并结合图2至图4所示,一种风电机组叶片内腔气热循环除冰系统,其系统在每个叶片的叶片内腔1内安装有加热装置,每个加热装置均包括离心风扇2、加热器3、热气管道4、挡板5和隔板6,所述隔板6置于叶片内腔1内并将叶片内腔1分为热气腔7和回流腔8,所述挡板5安装在热气腔7的中部位置并将热气腔7隔开为前缘内腔10和根部内腔9,所述离心风扇2和加热器3均安装在根部内腔9内的叶根位置,所述离心风扇2与加热器3连接,所述加热器3通过热气管道4贯穿于挡板5并与前缘内腔10连通,所述前缘内腔10与回流腔8连通,所述离心风扇2的进气管口20安装有过滤网21。
进一步的,所述叶片内腔1的内壁(可安装在回流腔8的内壁)还安装有温湿度传感器。
进一步的,所述离心风扇2、加热器3和温湿度传感器均连接于叶根控制柜12,所述叶根控制柜12通过电源分配箱13连接滑环14。
进一步的,所述滑环14分别连接主控机舱柜15和塔基柜16,所述塔基柜16分别连接于主塔基柜17和箱式变压器18。
进一步的,每个所述叶根控制柜12之间通过485线和CAN线连接。
进一步的,所述叶根控制柜12安装在叶片内腔1的根部位置。
进一步的,所述塔基柜16和主塔基柜17安装在风电机组基座19的底部。
进一步的,所述滑环14设置有多个供电及通讯通道。
进一步的,所述供电及通讯通道包括有叶片除冰电源三相690VAC、叶片除冰CAN通讯和220VAC加热控制电源。
进一步的,所述离心风扇2内设置有多组轴流扇叶22。多组轴流扇叶22提高风力,进而提高加热速度,另外其中一轴流扇叶损坏,不会影响整体工作。
与现有技术相比,本发明有益效果:本发明离心风扇2、加热器3产生热风对叶片内腔1进行加热,再通过叶尖的合膜通道回到腹板内腔或后缘内腔,最终回到叶根风机吸入口再次进行循环加热,如此循环达到叶片内腔1温度饱和,通过滑环14外接电气设备,不影响风机原有系统主电,具有正常通讯功能,且不影响原有系统通讯,离心风扇2的进气管口20安装有过滤网21,避免空气杂质进入离心风扇和加热器内影响离心风扇和加热器的正常工作。
工作原理:挡板5安装在热气腔7的中部位置并将热气腔7隔开为前缘内腔10和根部内腔9,离心风扇2和加热器3均安装在热气腔7的根部内腔9内,离心风扇2与加热器3连接,加热器3通过热气管道4贯穿于挡板5并与前缘内腔10连通,前缘内腔10与回流腔8连通。
工作时,离心风扇2和加热器3开始工作,产生热风,通过热气管道4将热风传输至前缘内腔10,然后进入回流腔8,再返回至根部内腔9,总是循环流动,对叶片进行加热,进行除冰防冰。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现, 和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
需要说明的是,在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

Claims (10)

  1. 一种风电机组叶片内腔气热循环除冰系统,其特征在于:其系统在每个叶片的叶片内腔(1)内安装有加热装置,每个加热装置均包括离心风扇(2)、加热器(3)、热气管道(4)、挡板(5)和隔板(6),所述隔板(6)置于叶片内腔(1)内并将叶片内腔(1)分为热气腔(7)和回流腔(8),所述挡板(5)安装在热气腔(7)的中部位置并将热气腔(7)隔开为前缘内腔(10)和根部内腔(9),所述离心风扇(2)和加热器(3)均安装根部内腔(9)内的叶根位置,所述离心风扇(2)与加热器(3)连接,所述加热器(3)通过热气管道(4)贯穿于挡板(5)并与前缘内腔(10)连通,所述前缘内腔(10)与回流腔(8)连通,所述离心风扇(2)的进气管口(20)安装有过滤网(21)。
  2. 如权利要求1所述的一种风电机组叶片内腔气热循环除冰系统,其特征在于:所述叶片内腔(1)的内壁内还安装有温湿度传感器。
  3. 如权利要求1所述的一种风电机组叶片内腔气热循环除冰系统,其特征在于:所述离心风扇(2)、加热器(3)和温湿度传感器均连接于叶根控制柜(12),所述叶根控制柜(12)通过电源分配箱(13)连接滑环(14)。
  4. 如权利要求3所述的一种风电机组叶片内腔气热循环除冰系统,其特征在于:所述滑环(14)分别连接主控机舱柜(15)和塔基柜(16),所述塔基柜(16)分别连接于主塔基柜(17)和箱式变压器(18)。
  5. 如权利要求3所述的一种风电机组叶片内腔气热循环除冰系统,其特征在于:每个所述叶根控制柜(12)之间通过485线连接。
  6. 如权利要求3所述的一种风电机组叶片内腔气热循环除冰系统,其特征在于:所述叶根控制柜(12)安装在叶片内腔(1)的根部位置。
  7. 如权利要求4所述的一种风电机组叶片内腔气热循环除冰系统,其特征在于:所述塔基柜(16)和主塔基柜(17)安装在风电机组基座(19)的底部。
  8. 如权利要求3所述的一种风电机组叶片内腔气热循环除冰系统,其特征在于:所述滑环(14)设置有多个供电及通讯通道。
  9. 如权利要求8所述的一种风电机组叶片内腔气热循环除冰系统,其特征在于:所述供电及通讯通道包括有叶片除冰电源三相690VAC、叶片除冰CAN通讯和220VAC加热控制电源。
  10. 如权利要求1所述的一种风电机组叶片内腔气热循环除冰系统,其特征在于:所述离心风扇(2)内设置有多组轴流扇叶(22)。
PCT/CN2023/124754 2022-10-25 2023-10-16 一种风电机组叶片内腔气热循环除冰系统 WO2024088094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211309309.X 2022-10-25
CN202211309309.XA CN115478998A (zh) 2022-10-25 2022-10-25 一种风电机组叶片内腔气热循环除冰系统

Publications (1)

Publication Number Publication Date
WO2024088094A1 true WO2024088094A1 (zh) 2024-05-02

Family

ID=84395921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124754 WO2024088094A1 (zh) 2022-10-25 2023-10-16 一种风电机组叶片内腔气热循环除冰系统

Country Status (2)

Country Link
CN (1) CN115478998A (zh)
WO (1) WO2024088094A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478998A (zh) * 2022-10-25 2022-12-16 中广核风电有限公司 一种风电机组叶片内腔气热循环除冰系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010051295A1 (de) * 2010-11-12 2012-05-16 Nordex Energy Gmbh Rotorblatt einer Windenergieanlage
CN105626370A (zh) * 2014-10-30 2016-06-01 株洲时代新材料科技股份有限公司 一种抗冰风电叶片结构
CN107620681A (zh) * 2017-10-23 2018-01-23 北京金风科创风电设备有限公司 风力发电机组叶片的加热控制系统和方法
CN110242512A (zh) * 2019-07-16 2019-09-17 株洲时代新材料科技股份有限公司 风电叶片除冰系统及其应用方法、风力发电机组
CN209483545U (zh) * 2019-01-30 2019-10-11 湖南拓天节能控制技术股份有限公司 一种风机叶片除冰系统
CN212672003U (zh) * 2020-06-12 2021-03-09 浙江运达风电股份有限公司 一种可保温的热鼓风风电机组叶片除冰系统
CN213540634U (zh) * 2020-08-17 2021-06-25 明阳智慧能源集团股份公司 一种风力发电机组叶片加热除冰结构
CN214521398U (zh) * 2020-12-29 2021-10-29 中复连众(安阳)复合材料有限公司 一种风电叶片循环加热系统
CN214660655U (zh) * 2021-04-16 2021-11-09 中国华能集团清洁能源技术研究院有限公司 一种具有肋片式风机叶片除冰管路的系统
CN115450865A (zh) * 2022-10-27 2022-12-09 中广核风电有限公司 一种风电机组叶片防冰系统
CN115478998A (zh) * 2022-10-25 2022-12-16 中广核风电有限公司 一种风电机组叶片内腔气热循环除冰系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010051295A1 (de) * 2010-11-12 2012-05-16 Nordex Energy Gmbh Rotorblatt einer Windenergieanlage
CN105626370A (zh) * 2014-10-30 2016-06-01 株洲时代新材料科技股份有限公司 一种抗冰风电叶片结构
CN107620681A (zh) * 2017-10-23 2018-01-23 北京金风科创风电设备有限公司 风力发电机组叶片的加热控制系统和方法
CN209483545U (zh) * 2019-01-30 2019-10-11 湖南拓天节能控制技术股份有限公司 一种风机叶片除冰系统
CN110242512A (zh) * 2019-07-16 2019-09-17 株洲时代新材料科技股份有限公司 风电叶片除冰系统及其应用方法、风力发电机组
CN212672003U (zh) * 2020-06-12 2021-03-09 浙江运达风电股份有限公司 一种可保温的热鼓风风电机组叶片除冰系统
CN213540634U (zh) * 2020-08-17 2021-06-25 明阳智慧能源集团股份公司 一种风力发电机组叶片加热除冰结构
CN214521398U (zh) * 2020-12-29 2021-10-29 中复连众(安阳)复合材料有限公司 一种风电叶片循环加热系统
CN214660655U (zh) * 2021-04-16 2021-11-09 中国华能集团清洁能源技术研究院有限公司 一种具有肋片式风机叶片除冰管路的系统
CN115478998A (zh) * 2022-10-25 2022-12-16 中广核风电有限公司 一种风电机组叶片内腔气热循环除冰系统
CN115450865A (zh) * 2022-10-27 2022-12-09 中广核风电有限公司 一种风电机组叶片防冰系统

Also Published As

Publication number Publication date
CN115478998A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2024088095A1 (zh) 一种风电机组叶片防冰系统
WO2016065807A1 (zh) 一种抗冰风电叶片及叶片除冰加热方法
WO2024088094A1 (zh) 一种风电机组叶片内腔气热循环除冰系统
DK177514B1 (da) Apparat til at afise vingeprofiler eller rotorvinger
CN205330892U (zh) 一种风力发电机叶片除冰结构
CN211900886U (zh) 一种风电机组叶片气热除冰装置
WO2016037476A1 (zh) 大功率风电叶片抗冰除冰方法及装置
CN107100803B (zh) 基于空气加热的风机叶片防冰、除冰系统
CN110242512B (zh) 风电叶片除冰系统及其应用方法、风力发电机组
CN213574483U (zh) 一种风机叶片热鼓风除冰装置
WO2019233251A1 (zh) 风电机组叶片整体防冰方法及产品
CN108061015A (zh) 一种风机叶片除冰无人机
CN107676233A (zh) 一种风力发电机组及其叶片除冰系统
CN112096577A (zh) 一种风机叶片除冰装置
CN110821762A (zh) 一种风电机组叶片气热除冰装置
CN207526651U (zh) 一种风力发电机组及其叶片除冰系统
CN105221358A (zh) 一种用于风力发电机组叶片的感应加热除冰装置
CN102322405A (zh) 一种风力风电机组叶片除冰抗冻系统
CN105927481B (zh) 内设防除冰气热摇摆喷头的风力机叶片
CN107829888B (zh) 一种分区式热鼓风机加热的风力发电机组桨叶除冰方法及系统
CN207647701U (zh) 一种风力发电机组叶片热气管除冰装置
CN205117631U (zh) 一种带热辐射装置的风电安装柱
CN110374827B (zh) 一种风力发电机叶片防结冰系统及方法
CN202181995U (zh) 一种风力风电机组叶片除冰抗冻系统
CN207795484U (zh) 一种分区式热鼓风机加热的风力发电机组桨叶除冰系统