WO2024087794A1 - Oled显示装置及其温度保护装置和方法 - Google Patents

Oled显示装置及其温度保护装置和方法 Download PDF

Info

Publication number
WO2024087794A1
WO2024087794A1 PCT/CN2023/111610 CN2023111610W WO2024087794A1 WO 2024087794 A1 WO2024087794 A1 WO 2024087794A1 CN 2023111610 W CN2023111610 W CN 2023111610W WO 2024087794 A1 WO2024087794 A1 WO 2024087794A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
voltage
light
emitting device
display device
Prior art date
Application number
PCT/CN2023/111610
Other languages
English (en)
French (fr)
Inventor
郭品彦
Original Assignee
集创北方(珠海)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 集创北方(珠海)科技有限公司 filed Critical 集创北方(珠海)科技有限公司
Publication of WO2024087794A1 publication Critical patent/WO2024087794A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element

Definitions

  • the present invention relates to the technical field of organic light emitting display, and in particular to an OLED display device and a temperature protection device and method thereof.
  • OLED Organic Light Emitting Diode
  • LCD Liquid Crystal Display
  • an object of the present invention is to provide an OLED display device and a temperature protection device and method thereof, so as to solve the technical defects mentioned in the prior art.
  • a temperature protection method in an OLED display device comprising:
  • the first voltage provided by the power supply module to the light-emitting device in the display device is adjusted by the voltage control signal.
  • the power supply module is controlled to be powered off through the voltage control signal.
  • the step before the step of sending a voltage control signal to the power supply module according to the sensed temperature signal, the step also includes: obtaining the current-voltage characteristic curve of the light-emitting device in the display device at different ambient temperatures, and importing it into the overheat protection module; establishing a temperature feedback parameter control model for the light-emitting device; and obtaining a corresponding voltage control signal according to the sensed temperature signal with reference to the temperature feedback parameter control model.
  • the temperature feedback parameter control model is a control curve of the relationship between the first voltage and temperature.
  • the slope of the relationship between the first voltage VDD and the temperature is adjusted, and the current of the light-emitting device after adjusting the first voltage is controlled to be consistent with the current during normal operation.
  • the slope of the relationship between the change of the first voltage VDD and the temperature is increased on the basis that the current of the light emitting device after adjusting the first voltage is consistent with the current during normal operation, so that the current of the light emitting device after adjusting the first voltage is controlled to be lower than the current during normal operation.
  • the predetermined range is greater than or equal to 30°C and less than or equal to 50°C, and the non-predetermined range is greater than 50°C.
  • the step of establishing the temperature feedback parameter control model of the light emitting device comprises: placing the light emitting device in different ambient temperatures in advance, and obtaining various parameters of the light emitting device when it works at different ambient temperatures.
  • a temperature protection device in an OLED display device which is used to execute the claims and comprises: a temperature detection element and an overheat protection module, wherein the temperature detection element is used to detect the ambient temperature of the light-emitting device and send the sensed temperature signal to the overheat protection module; the overheat protection module is used to send a voltage control signal to a power supply module according to the sensed temperature signal, and adjust the first voltage provided by the power supply module to the light-emitting device in the display device through the voltage control signal.
  • an OLED display device comprising the above-mentioned temperature protection device, wherein an OLED array in the OLED display device comprises any one of micro OLED and AMOLED.
  • the temperature protection method provided by the present invention obtains the current-voltage characteristic curve of the light-emitting device at different ambient temperatures in advance, and imports it into the overheat protection module, and constructs a temperature feedback parameter control model of the light-emitting device, and can refer to the temperature feedback parameter control model to obtain the corresponding voltage control signal Va at different ambient temperatures, control the voltage value of the first voltage VDD, and then control the current of the light-emitting device.
  • the slope of the relationship between the change of the first voltage VDD and the temperature in the temperature feedback parameter control model can also be changed to achieve constant current control or overcurrent control of the light-emitting device.
  • FIG1 shows a schematic structural diagram of an OLED display device according to the prior art
  • FIG. 2a shows a schematic structural diagram of an OLED display device provided according to an embodiment of the present invention
  • FIG. 2 b shows a flow chart of a temperature protection method for an OLED display device provided in an embodiment of the present invention
  • FIG3 shows a flow chart of a method for changing the voltage across a light emitting device according to an embodiment of the present invention
  • FIG4 shows a current density and voltage characteristic curve of a light emitting device according to an embodiment of the present invention
  • FIG5 shows a control model curve of a first voltage VDD varying with temperature according to an embodiment of the present invention
  • FIG. 6 is a graph showing the relationship between the current of the light emitting device and the time before and after being processed by the temperature protection device according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the relationship between the ambient temperature of the display device and time before and after the constant current control process by the temperature protection device provided by the present invention.
  • a "circuit” may include a single or multiple combined hardware circuits, programmable circuits, state machine circuits, and/or elements capable of storing instructions executed by programmable circuits.
  • an element or circuit When an element or circuit is said to be “connected to” another element or an element or circuit is said to be “connected between” two nodes, it may be directly coupled or connected to another element or there may be an intermediate element, and the connection between the elements may be physical, logical, or a combination thereof. Conversely, when an element is said to be “directly coupled to” or “directly connected to” another element, it means that there is no intermediate element between the two.
  • FIG1 shows a schematic structural diagram of an OLED display device according to the prior art
  • the OLED display device in the prior art includes a display panel 10 and a source driving circuit and a gate driving circuit.
  • the display panel 10 includes a plurality of gate lines G1-Gm, a plurality of data lines S1-Sn, and a plurality of pixel regions 4, including an organic light emitting diode OLED;
  • the gate driver is used to provide a gate voltage to the display panel 10 through the plurality of gate lines G1-Gm in the display state;
  • the source driver is used to provide a source data voltage (also called a grayscale voltage) to the display panel 10 through the plurality of data lines in the display state.
  • the pixel regions 4 connected to the same data line can emit light of the same color. For example, light of any color of red, green, blue or another color can be emitted.
  • FIG. 2a shows a schematic structural flow chart of an OLED display device provided in an embodiment of the present invention
  • the OLED display device provided by the embodiment of the present invention includes a display panel 10 , a driving display module and a temperature protection device 20 .
  • the display panel 10 includes a plurality of gate lines G1-Gm, a plurality of data lines S1-Sn, and a plurality of pixel regions 4, wherein the plurality of pixel regions 4 include a plurality of pixel units 2, a plurality of organic light emitting diodes OLED, and a plurality of cathode electrodes (not shown in the figure) arranged corresponding to the plurality of pixel regions 4, wherein m and n are both positive integers.
  • the driving display module includes a power supply module 40, which is connected to the display panel 10 and is used to provide a first voltage VDD to the display panel 10.
  • the pixel region 4 is connected to the gate line Gm, the data line Sn, and the first voltage VDD.
  • the pixel area 4 of the display panel 10 includes an organic light emitting diode OLED and a pixel unit 2 connected to a gate line Gm and a data line Sn to control the OLED.
  • the cathode of the OLED is connected to the pixel unit 2, and the anode of the OLED is connected to the first voltage VDD.
  • the pixel unit 2 controls the amount of current supplied to the OLED in response to the data signal supplied to the data line Sn when the scan signal is supplied to the gate line Gm, and the OLED generates light of a predetermined brightness in response to the current supplied by the pixel unit 2 .
  • the display driving module is used to provide scanning signals and data signals to the display panel in the display state to drive the touch display panel to display.
  • the display driving module includes a gate driving circuit 32, which is used to provide a gate voltage to the display panel 10 in the display state; and a source driving circuit 31, which is used to provide a grayscale voltage to the display panel 10 in the display state.
  • the OLED display device provided by the present invention further includes an over-temperature compensation system 20 for automatically adjusting the first voltage VDD supplied to the display panel according to the ambient temperature of the display panel 10 .
  • the temperature protection device 20 includes a temperature detection element 21 and an overheat protection module 22;
  • the temperature detection element 21 is used to detect the ambient temperature of the light-emitting device (i.e. the above-mentioned OLED) and send a temperature signal Tsen to the overheat protection module 22.
  • the temperature detection element is, for example, a temperature-sensitive resistor, a thermocouple, a thermometer or other temperature measuring element, which is not limited in this application.
  • the overheat protection module 22 is used to provide a voltage control signal Va to the power supply module 40 according to the temperature signal Tsen, so as to control the voltage value of the first voltage VDD provided by the power supply module 40 to the display panel 10 .
  • FIG. 2 b shows a flow chart of a temperature protection method for an OLED display device provided in an embodiment of the present invention
  • the temperature detection element 21 and the overheat protection module 22 in the temperature protection device 20 perform multiple steps of the temperature protection method together. For example, during the display process of the OLED display device, the temperature protection device 20 performs steps S11 to S15 described in detail below.
  • step S11 the light emitting device operates normally.
  • the light emitting device for example, the OLED in the pixel area 4 described above, operates normally in an initial state.
  • step S12 the ambient temperature of the display device is sensed.
  • the ambient temperature of the display device is sensed by the temperature detection element 21 in the temperature protection device 20 .
  • the temperature detection element is configured on the back side of the light-emitting device packaging layer in the OLED display device to detect the ambient temperature of the display device.
  • the temperature detection element 21 is connected to the overheating protection module 22 to send the temperature signal Tsen of the above ambient temperature to the overheating protection module 22.
  • step S13 it is determined whether the ambient temperature is greater than the set temperature.
  • step S15 if the ambient temperature is less than or equal to the set temperature, it is determined that the temperature of the light-emitting device is within the predetermined range, and step S15 is executed. If the ambient temperature is greater than the predetermined temperature, it is determined that the temperature of the light-emitting device is too high and is within a non-predetermined range, for example, greater than 50°C. Working at this temperature will reduce the life of the OLED display device, and step S14 is executed.
  • step S14 the power supply module is controlled to be powered off.
  • the overheat protection module 22 sends a voltage control signal Va to the power supply module 40 according to the temperature signal Tsen.
  • the voltage control signal Va controls the power supply module 40 to cut off the power, so that the display device stops working and forces the system to enter a sleep state to ensure that the device is not damaged by the excessive current generated by the high temperature.
  • step S15 the power supply module is controlled to output a first voltage according to the ambient temperature.
  • the overheat protection module 22 sends a voltage control signal Va to the power supply module 40 according to the temperature signal Tsen.
  • the voltage control signal Va controls the power supply module 40 to output the first voltage VDD.
  • FIG3 shows a flow chart of a method for changing the voltage across a light emitting device according to an embodiment of the present invention
  • FIG4 shows a current density and voltage characteristic curve of a light emitting device according to an embodiment of the present invention
  • the method is used, for example, in the overheat protection module 22 in the temperature protection device 20 to execute step S15 in the temperature protection method flow chart of FIG. 2 b .
  • step S21 the current-voltage characteristic curves of the light emitting device at different ambient temperatures as shown in FIG. 4 are obtained and introduced into the overheat protection module.
  • the light emitting device is placed in different ambient temperatures in advance, its various parameters at different ambient temperatures (ie, the current-voltage characteristic curve corresponding to different ambient temperatures) are obtained, and the curve is imported into the overheat protection module 22 .
  • the anode and cathode of the light-emitting device are connected to the positive and negative poles of a DC voltage-stabilized source, respectively, and placed in a test box.
  • the temperature in the box is adjusted to 30°C, 40°C and 50°C in sequence.
  • the power is turned on after keeping the temperature for one hour.
  • the voltage between the anode and cathode of the light-emitting device is adjusted from 4V to 12V with a step size of 0.1V. At each voltage, the current reading of the OLED device displayed by the voltage-stabilized source is read and recorded.
  • the current-voltage pair of the OLED device at each temperature is plotted by plotting points to obtain the current-anode and cathode voltage (I-V) characteristic curves of the light-emitting device at different ambient temperatures.
  • I-V current-anode and cathode voltage
  • the cross-voltage of the light-emitting device can be controlled so that the current of the light-emitting device remains at the state before the temperature changes, thereby reducing the heating of the light-emitting device.
  • step S22 a temperature feedback parameter control model of the light emitting device is established.
  • a temperature feedback parameter control model can be constructed based on the current-voltage characteristic curves of the above-mentioned light-emitting device at different ambient temperatures.
  • the corresponding voltage control signal Va is calculated.
  • the corresponding voltage control signal Va is calculated to adjust the current of the light-emitting device to the current during normal operation at 30 degrees Celsius by controlling the first voltage VDD.
  • the ambient temperature is 50°C, corresponding processing is performed according to the current-anode and cathode voltage (I-V) characteristic curves of the light-emitting device.
  • the corresponding voltage control signal Va can be automatically calculated by linear interpolation to establish a temperature feedback parameter control model of the light emitting device, which corresponds to the control curve of the first voltage VDD versus temperature shown in FIG5 .
  • step S23 the voltage across the light emitting device in the pixel circuit is automatically changed according to the temperature feedback parameter control model.
  • FIG5 shows a control curve of the first voltage VDD varying with temperature according to an embodiment of the present invention
  • FIG6 shows a relationship diagram of the current of the light-emitting device varying with time before and after being processed by the temperature protection device according to an embodiment of the present invention.
  • the corresponding voltage control signal Va can be obtained at different ambient temperatures with reference to the temperature feedback parameter control model to control the voltage value of the first voltage VDD and thus control the current of the light-emitting device.
  • the slope of the relationship between the change of the first voltage VDD with the temperature in the temperature feedback parameter control model can be changed, so that the current of the light-emitting device after being processed by the temperature protection device is always a constant value within the predetermined temperature range (corresponding to the horizontal dotted line in Figure 6).
  • the slope of the relationship between the change of the first voltage VDD with the temperature can be increased, so that when the temperature rises, the current of the light-emitting device is lower than the current during normal operation (corresponding to the solid line of the current change of the light-emitting device after being processed by the temperature protection device in Figure 6), thereby realizing overcurrent protection, suppressing the heating of the light-emitting device, and reducing the vicious cycle of further increase in ambient temperature and increase in current.
  • the flow chart of the method for changing the cross-voltage of the light-emitting device obtains the current-voltage characteristic curve of the light-emitting device at different ambient temperatures in advance, and imports it into the overheat protection module, and constructs the temperature feedback parameter control model of the light-emitting device, and can refer to the temperature feedback parameter control model to obtain the corresponding voltage control signal Va at different ambient temperatures, control the voltage value of the first voltage VDD, and then control the current of the light-emitting device.
  • the slope of the relationship between the change of the first voltage VDD and the temperature in the temperature feedback parameter control model can also be changed to achieve constant current control or overcurrent control of the light-emitting device.
  • FIG. 7 is a graph showing the relationship between the ambient temperature of the display device and time before and after the constant current control process by the temperature protection device provided by the present invention.
  • the ambient temperature of the display device can be stabilized within a lower range compared to before the processing, reducing the situation where the display device stops working when the ambient temperature is too high and forcing the system to enter sleep mode. While reducing the current of the light-emitting device, the power consumption of the display device is also reduced.
  • an OLED display device is further provided, and the temperature protection device is installed on the OLED display device.
  • the OLED array in the OLED display device includes any one of micro OLED and active-matrix Organic Light Emitting Diode (AMOLED).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种OLED显示装置及OLED显示装置的温度保护装置(20)和方法,温度保护方法包括:感测显示装置的环境温度;根据感测到的温度信号(Tsen)向供电模块(40)发出电压控制信号(Va);当环境温度在预定范围内时,通过电压控制信号(Va)调节供电模块(40)提供给显示装置中发光器件的第一电压(VDD)。在不同环境温度下得到相应的电压控制信号(Va),控制第一电压(VDD)的电压值,进而控制流经发光器件的电流,确保显示装置不会被高温产生的过大电流伤害。

Description

OLED显示装置及其温度保护装置和方法
本申请要求了申请日为2022年10月24日、申请号为202211301847.4、名称为“OLED显示装置及其温度保护装置和方法”的中国发明申请的优先权,并且通过参照上述中国发明申请的全部说明书、权利要求、附图和摘要的方式,将其引用于本申请。
技术领域
本发明涉及有机发光显示技术领域,特别涉及OLED显示装置及其温度保护装置和方法。
背景技术
在显示技术中,有机发光二极管显示器(Organic Light Emitting Diode,OLED)以其轻薄、主动发光、快响应速度、广视角、色彩丰富及高亮度、耐高低温等众多优点而被业界公认为是继液晶显示器(Liquid Crystal Display,LCD)之后的第三代显示技术。
OLED显示装置显示画面时,因发光器件对温度变化特别敏感,不同制程上的发光器件,会有不同的电流电压特性曲线,当显示装置工作温度升高时,在OLED跨压相同的条件下,OLED的电流密度越大,而当电流密度上升后,又会增强OLED显示装置的发热,进一步影响OLED显示装置的温度上升,随之特性曲线再次变化,电流再增大,因此形成电流不断升高的恶循环,不仅造成额外功耗,更会因为过大的电流降低OLED显示装置的寿命。
发明内容
鉴于上述问题,本发明的目的在于提供一种OLED显示装置及其温度保护装置和方法,从而解决现有技术中提到的技术缺陷。
根据本发明的一方面,提供一种OLED显示装置中的温度保护方法,包括:
感测所述显示装置的环境温度;
根据感测到的温度信号向供电模块发出电压控制信号;
其中,当所述环境温度在预定范围内时,通过所述电压控制信号调节所述供电模块提供给所述显示装置中发光器件的第一电压。
优选地,当所述环境温度在非预定范围内时,通过所述电压控制信号,控制所述供电模块断电。
优选地,所述根据感测到的温度信号向供电模块发出电压控制信号的步骤之前还包括:获取所述显示装置中的发光器件在不同环境温度下的电流-电压特性曲线,并将其导入过热保护模块中;建立所述发光器件的温度反馈参数控制模型;参照所述温度反馈参数控制模型,根据感测到的温度信号得到相应的电压控制信号。
优选地,所述温度反馈参数控制模型为第一电压随温度变化关系的控制曲线。
优选地,当所述环境温度在预定范围内升高时,调节所述第一电压VDD随温度的变化关系的斜率,控制所述发光器件调节第一电压后的电流与正常工作时的电流一致。
优选地,在所述发光器件调节第一电压后的电流与正常工作时的电流一致的基础上增大所述第一电压VDD随温度的变化关系的斜率,控制所述发光器件调节第一电压后的电流低于正常工作时的电流。
优选地,所述预定范围为大于等于30℃以及小于等于50℃,所述非预定范围为大于50℃。
优选地,所述建立所述发光器件的温度反馈参数控制模型的步骤包括:预先将发光器件放置在不同环境温度下,获取其在不同环境温度下工作时的各项参数。
根据本发明的另一方面,提供一种OLED显示装置中的温度保护装置,用于执行权利要求包括:温度检测元件和过热保护模块,温度检测元件,用于检测发光器件的环境温度,并将感测到的温度信号发送给所述过热保护模块;过热保护模块,用于根据所述感测到的温度信号向供电模块发出电压控制信号,通过所述电压控制信号调节所述供电模块提供给所述显示装置中发光器件的第一电压。
根据本发明的又一方面,提供一种OLED显示装置,包括上述温度保护装置,其中,所述OLED显示装置中的OLED阵列包括micro OLED、AMOLED中的任意一项。
本发明提供的温度保护方法,预先获取发光器件不同环境温度下的电流-电压特性曲线,并将其导入过热保护模块中,构建发光器件的温度反馈参数控制模型,即可参照温度反馈参数控制模型在不同环境温度下得到相应的电压控制信号Va,控制第一电压VDD的电压值,进而控制发光器件的电流。在优选的实施例中,还可以改变温度反馈参数控制模型中第一电压VDD随温度的变化关系的斜率,实现发光器件的恒流控制或过流控制。
附图说明
通过以下附图对本发明实施例的描述,本发明的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1示出了根据现有技术OLED显示装置的结构示意图;
图2a示出了根据本发明实施例提供的OLED显示装置的结构示意图;
图2b示出了根据本发明实施例提供的OLED显示装置的温度保护方法流程图;
图3示出了根据本发明实施例提供的改变发光器件跨压的方法流程图;
图4示出了根据本发明实施例提供的发光器件的电流密度与电压特性曲线图;
图5示出了根据本发明实施例提供的第一电压VDD随温度变化的控制模型曲线;
图6示出了根据本发明实施例提供的经过温度保护装置处理前后发光器件的电流随时间变化的关系图。
图7示出了根据本发明提供的经过温度保护装置恒流控制处理前后显示装置的环境温度随时间变化的关系图。
具体实施方式
以下将参照附图更详细地描述本发明的各种实施例。在各个附图中,相同的元件或者模块采用相同或类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。
应当理解,在以下的描述中,“电路”可包括单个或多个组合的硬件电路、可编程电路、状态机电路和/或能存储由可编程电路执行的指令的元件。当称元件或电路“连接到”另一元件或称元件或电路“连接在”两个节点之间时,它可以直接耦合或连接到另一元件或者可以存在中间元件,元件之间的连接可以是物理上的、逻辑上的,或者其结合。相反,当称元件“直接耦合到”或“直接连接到”另一元件时,意味着两者不存在中间元件。
同时,在本专利说明书及权利要求当中使用了某些词汇来指称特定的组件。本领域普通技术人员应当可理解,硬件制造商可能会用不同的名词来称呼同一个组件。本专利说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。
此外,还需要说明的是,在本文中,诸如第一和第二之类的关系术语仅仅用来将一个实体或者操作与另一个实体或者操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
图1示出了根据现有技术OLED显示装置的结构示意图;
如图1所示,现有技术中的OLED显示装置包括显示面板10和源极驱动电路以及栅极驱动电路,显示面板10包括多条栅极线G1-Gm、多条数据线S1-Sn、多个像素区域4,其中包括有机发光二极管OLED;所述栅极驱动器用于在显示状态下通过多条栅极线G1-Gm向所述显示面板10提供栅极电压;所述源极驱动器用于在显示状态下通过多条数据线向所述显示面板10提供源极数据电压(也称为灰阶电压),在栅极电压的控制下,多个像素区域4连接同一数据线的像素区域可以发出相同颜色的光。例如,可以发出红色、绿色、蓝色或另一种颜色中的任一种颜色的光。
上述OLED显示装置工作时,因OLED对温度变化特别敏感,当OLED显示装置工作温度升高时,在OLED跨压相同的条件下,OLED的电流密度越大,而当电流密度上升后,又会增强OLED显示装置的发热,进一步影响OLED显示装置的温度上升,随之特性曲线再次变化,电流再增大,因此形成电流不断升高的恶循环,造成额外功耗,和因为过大的电流降低OLED显示装置的寿命。
图2a示出了根据本发明实施例提供的OLED显示装置的结构示意图流程图;
如图2a所示,本发明实施例提供的OLED显示装置包括显示面板10、驱动显示模块以及温度保护装置20。
所述显示面板10包括多条栅极线G1-Gm、多条数据线S1-Sn、多个像素区域4,其中所述多个像素区域4包含多个像素单元2,多个有机发光二极管OLED、以及对应于多个像素区域4设置的多个阴极电极(图中未示出),其中,m、n均为正整数。其中所述驱动显示模块包含供电模块40,所述供电模块40与所述显示面板10连接,用于向所述显示面板10提供第一电压VDD。其中,所述像素区域4连接到所述栅极线Gm、所述数据线Sn、所述第一电压VDD。
在本实施例中,所述显示面板10的像素区域4包括有机发光二极OLED,以及连接到栅极线Gm和数据线Sn以控制OLED的像素单元2。其中OLED的阴极连接到像素单元2,并且OLED的阳极连接到第一电压VDD。
其中,像素单元2响应于扫描信号供应给栅极线Gm时供应给数据线Sn的数据信号而控制供应给OLED的电流的量,OLED响应于上述像素单元2供应的电流产生预定亮度的光。
显示驱动模块用于在显示状态下向所述显示面板提供扫描信号以及数据信号以驱动触控显示面板显示。其中,驱动显示模块包括栅极驱动电路32,其用于在显示状态下向所述显示面板10提供栅极电压;以及源极驱动电路31,其用于在显示状态下向所述显示面板10提供灰阶电压。
本发明提供的OLED显示装置还包括过温补偿系统20,用于根据显示面板10的环境温度,自动调整供给显示面板的第一电压VDD。
其中,温度保护装置20包括温度检测元件21和过热保护模块22;
所述温度检测元件21用于检测发光器件(即上述OLED)的环境温度,并将温度信号Tsen发送给过热保护模块22,该温度检测元件例如为温敏电阻,热电偶、温度计等测温元件,本申请对此不做限制。
所述过热保护模块22用于根据温度信号Tsen,向供电模块40提供电压控制信号Va,控制供电模块40提供给显示面板10的第一电压VDD的电压值。
图2b示出了根据本发明实施例提供的OLED显示装置的温度保护方法流程图;
如图2b所示并参考图2a,在该实施例中,温度保护装置20中的温度检测元件21和过热保护模块22一起执行温度保护方法的多个步骤。例如,在OLED显示装置显示过程中,温度保护装置20执行以下详述的步骤S11至S15。
在步骤S11,发光器件正常工作。
在该步骤中,发光器件例如为上述像素区域4中的OLED,在初始状态下正常工作。
在步骤S12,感测显示装置的环境温度。
在该步骤中,通过温度保护装置20中的温度检测元件21对显示装置的环境温度进行感测。
在本实施例中,温度检测元件配置于所述OLED显示装置中发光器件封装层的背面,用于检测所述显示装置的环境温度,温度检测元件21与过热保护模块22连接,以实现向过热保护模块22发送上述环境温度的温度信号Tsen。
在步骤S13,判断环境温度是否大于设定温度。
在该步骤中,如果环境温度小于等于设定温度,则确定发光器件温度在预定范围内,执行步骤S15,如果环境温度大于预定温度,则确定发光器件温度过高,处于非预定范围内,例如为大于50℃,在此温度下工作会降低OLED显示装置的寿命,则执行步骤S14。
在步骤S14,控制供电模块断电。
在该步骤中,过热保护模块22根据温度信号Tsen向供电模块40发出电压控制信号Va,当环境温度过高时,电压控制信号Va控制供电模块40断电,使显示装置停止工作,强制系统进入休眠状态,以确保装置不被高温产生的过大电流伤害。
在步骤S15,根据环境温度控制供电模块输出第一电压。
在该步骤中,过热保护模块22根据温度信号Tsen向供电模块40发出电压控制信号Va,当环境温度在预定范围内时,例如为大于等于30℃以及小于等于50℃,电压控制信号Va控制供电模块40输出第一电压VDD。
需要额外说明的是,上述预定范围和非预定范围可以根据实际情况做出调整,本申请对此不做限制。
图3示出了根据本发明实施例提供的改变发光器件跨压的方法流程图;
图4示出了根据本发明实施例提供的发光器件的电流密度与电压特性曲线图;
如图3所示,该方法例如用于温度保护装置20中过热保护模块22,执行图2b温度保护方法流程图中的步骤S15。
在步骤S21,获取如图4所示的发光器件不同环境温度下的电流-电压特性曲线,并将其导入过热保护模块中。
在该步骤中,预先将发光器件放置在不同环境温度下,获取其在不同环境温度下的各项参数(即对应不同环境温度下的电流-电压特性曲线),并将该曲线导入过热保护模块22中。
示例性的,将发光器件阳极和阴极分别接到直流稳压源的正负两极,并放在试验箱内,将箱内温度依次调至30℃、40℃和50℃,每调一次温度保温一小时后上电,将发光器件阳极和阴极之间电压从4V调至12V,步长为0 .1V,在每一个电压下读稳压源显示的OLED器件电流示数并 记录,然后将每一个温度下的OLED器件电流‑电压对通过描点绘制,得到不同环境温度下发光器件的电流‑阳极和阴极两端电压(I‑V)特性曲线;其中上述温度节点以及电压范围与步长均可根据实际情况作出调整,本发明对此不做限制。
如图4所示,在发光器件不同环境温度下的电流-电压特性曲线中,相同温度下,发光器件的跨电压越高,发光器件的电流密度也随之越高,反之亦然。而相同发光器件的跨电压下,温度越高,发光器件的电流密度也随之越高,当显示装置的环境温度升高时,即可通过控制发光器件的跨电压,使发光器件的电流仍保持温度变化前的状态,从而减轻发光器件的发热。
在步骤S22,建立发光器件的温度反馈参数控制模型。
示例性的,根据上述发光器件不同环境温度下的电流-电压特性曲线,即可构建温度反馈参数控制模型,当显示装置的环境温度升高时,计算得到相应的电压控制信号Va,例如当环境温度升高到40℃时,计算得到相应的电压控制信号Va会通过控制第一电压VDD将发光器件的电流调整到30摄氏度正常工作时的电流,以此类推,当环境温度为50℃时,同样根据发光器件电流‑阳极和阴极两端电压(I‑V)特性曲线做相应处理。
示例性的,当环境温度为其他数值时,可通过线性内插法,自动计算出相应的电压控制信号Va,以建立发光器件的温度反馈参数控制模型。即对应图5所示的第一电压VDD随温度变化关系的控制曲线。
在步骤S23,根据所述温度反馈参数控制模型自动改变像素电路中发光器件的跨压。
图5示出了根据本发明实施例提供的第一电压VDD随温度变化的控制曲线;图6示出了根据本发明实施例提供的经过温度保护装置处理前后发光器件的电流随时间变化的关系图。
结合图5和图6来看,在建立发光器件的温度反馈参数控制模型后,即可参照温度反馈参数控制模型在不同环境温度下得到相应的电压控制信号Va,控制第一电压VDD的电压值,进而控制发光器件的电流。
示例性的,当所述环境温度在预定范围内升高时,可以通过更改温度反馈参数控制模型中第一电压VDD随温度的变化关系的斜率,使得经过温度保护装置处理后发光器件的电流在预定温度范围内始终为恒定值(对应图6中的水平虚线),进一步的,可以加大第一电压VDD随温度的变化关系的斜率,使得当温度升高时,发光器件的电流低于正常工作时的电流(对应图6中的经过温度保护装置处理后发光器件的电流变化实线),实现过电流保护,以抑制发光器件发热,减弱环境温度进一步升高同时电流再增大的恶性循环。
本实施例提供的改变发光器件跨压的方法流程图,预先获取发光器件不同环境温度下的电流-电压特性曲线,并将其导入过热保护模块中,构建发光器件的温度反馈参数控制模型,即可参照温度反馈参数控制模型在不同环境温度下得到相应的电压控制信号Va,控制第一电压VDD的电压值,进而控制发光器件的电流。在优选的实施例中,还可以改变温度反馈参数控制模型中第一电压VDD随温度的变化关系的斜率,实现发光器件的恒流控制或过流控制。
图7示出了根据本发明提供的经过温度保护装置恒流控制处理前后显示装置的环境温度随时间变化的关系图。
如图7所示,经过本发明提供的温度保护装置恒流控制处理后,相对于未处理之前,能将显示装置的环境温度稳定在一个更低的范围内,减少当环境温度过高时,显示装置停止工作,强制使系统进入休眠的情况,减小发光器件的电流的同时,也减小了显示装置的功耗。
在本发明的实施例中还提供了一种OLED显示装置,上述温度保护装置安装在该OLED显示装置上,具体的,该OLED显示装置中的OLED阵列包括 micro OLED、有源矩阵有机发光二极体(Active-matrix Organic Light Emitting Diode ,AMOLED)中的任意一项。
应当说明,本领域普通技术人员可以理解,本文中使用的与电路运行相关的词语“期间”、“当”和“当……时”不是表示在启动动作开始时立即发生的动作的严格术语,而是在其与启动动作所发起的反应动作(reaction)之间可能存在一些小的但是合理的一个或多个延迟,例如各种传输延迟等。本文中使用词语“大约”或者“基本上”意指要素值(element)具有预期接近所声明的值或位置的参数。然而,如本领域所周知的,总是存在微小的偏差使得该值或位置难以严格为所声明的值。本领域已恰当的确定了,至少百分之十(10%)(对于半导体掺杂浓度,至少百分之二十(20%))的偏差是偏离所描述的准确的理想目标的合理偏差。当结合信号状态使用时,信号的实际电压值或逻辑状态(例如“1”或“0”)取决于使用正逻辑还是负逻辑。
依照本发明的实施例如上文,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所述技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明的保护范围应当以本发明权利要求及其等效物所界定的范围为准。

Claims (10)

  1. 一种OLED显示装置中的温度保护方法,包括:
    感测所述显示装置的环境温度;
    根据感测到的温度信号向供电模块发出电压控制信号;
    其中,当所述环境温度在预定范围内时,通过所述电压控制信号调节供电模块提供给所述显示装置中发光器件的第一电压。
  2. 根据权利要求1所述的温度保护方法,还包括:
    当所述环境温度在非预定范围内时,通过所述电压控制信号,控制
    所述供电模块断电。
  3. 根据权利要求1所述的温度保护方法,其中,所述根据感测到的温度信号向供电模块发出电压控制信号的步骤之前还包括:
    获取所述显示装置中的发光器件在不同环境温度下的电流-电压特
    性曲线,并将其导入过热保护模块中;
        建立所述发光器件的温度反馈参数控制模型;
        参照所述温度反馈参数控制模型,根据感测到的温度信号得到相应的电压控制信号。
  4. 根据权利要求3所述的温度保护方法,其中,所述温度反馈参数控制模型为第一电压随温度变化关系的控制曲线。
  5. 根据权利要求4所述的温度保护方法,其中,当所述环境温度在预定范围内升高时,调节所述第一电压随温度的变化关系的斜率,控制所述发光器件调节第一电压后的电流与正常工作时的电流一致。
  6. 根据权利要求5所述的温度保护方法,其中,在所述发光器件调节第一电压后的电流与正常工作时的电流一致的基础上增大所述第一电压随温度的变化关系的斜率,控制所述发光器件调节第一电压后的电流低于正常工作时的电流。
  7. 根据权利要求1所述的温度保护方法,其中,所述预定范围为大于等于30℃以及小于等于50℃,所述非预定范围为大于50℃。
  8. 根据权利要求3所述的温度保护方法,所述建立所述发光器件的温度反馈参数控制模型的步骤包括:预先将发光器件放置在不同环境温度下,获取其在不同环境温度下工作时的各项参数。
  9. 一种OLED显示装置中的温度保护装置,包括:温度检测元件和过热保护模块,
    温度检测元件,用于检测发光器件的环境温度,并将感测到的温度
    信号发送给所述过热保护模块;
    过热保护模块,用于根据所述感测到的温度信号向供电模块发出电压控制信号,通过所述电压控制信号调节供电模块提供给所述显示装置中发光器件的第一电压。
  10. 一种OLED显示装置,包括权利要求9所述的温度保护装置,其中,所述OLED显示装置中的OLED阵列包括micro OLED、AMOLED中的任意一项。
PCT/CN2023/111610 2022-10-24 2023-08-08 Oled显示装置及其温度保护装置和方法 WO2024087794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211301847.4A CN115662347A (zh) 2022-10-24 2022-10-24 Oled显示装置及其温度保护装置和方法
CN202211301847.4 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024087794A1 true WO2024087794A1 (zh) 2024-05-02

Family

ID=84991781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111610 WO2024087794A1 (zh) 2022-10-24 2023-08-08 Oled显示装置及其温度保护装置和方法

Country Status (2)

Country Link
CN (1) CN115662347A (zh)
WO (1) WO2024087794A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115662347A (zh) * 2022-10-24 2023-01-31 集创北方(珠海)科技有限公司 Oled显示装置及其温度保护装置和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296714A (ja) * 1990-04-17 1991-12-27 Pioneer Electron Corp 画像表示装置
US20050140606A1 (en) * 2003-11-27 2005-06-30 Wong-Sik Choi Organic electroluminescent display and driving method thereof
KR20100023083A (ko) * 2008-08-21 2010-03-04 엘지디스플레이 주식회사 유기발광 표시장치
CN102237036A (zh) * 2010-05-06 2011-11-09 三星移动显示器株式会社 有机发光显示器及其驱动方法
CN103730088A (zh) * 2012-10-15 2014-04-16 乐金显示有限公司 驱动有机发光显示装置的设备和方法
CN105792471A (zh) * 2014-12-26 2016-07-20 凹凸电子(武汉)有限公司 光源驱动电路、控制器和控制方法
CN106910461A (zh) * 2017-05-11 2017-06-30 京东方科技集团股份有限公司 一种显示面板、显示装置及显示驱动方法
CN114360455A (zh) * 2022-01-18 2022-04-15 深圳市华星光电半导体显示技术有限公司 显示装置
CN115662347A (zh) * 2022-10-24 2023-01-31 集创北方(珠海)科技有限公司 Oled显示装置及其温度保护装置和方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296714A (ja) * 1990-04-17 1991-12-27 Pioneer Electron Corp 画像表示装置
US20050140606A1 (en) * 2003-11-27 2005-06-30 Wong-Sik Choi Organic electroluminescent display and driving method thereof
KR20100023083A (ko) * 2008-08-21 2010-03-04 엘지디스플레이 주식회사 유기발광 표시장치
CN102237036A (zh) * 2010-05-06 2011-11-09 三星移动显示器株式会社 有机发光显示器及其驱动方法
CN103730088A (zh) * 2012-10-15 2014-04-16 乐金显示有限公司 驱动有机发光显示装置的设备和方法
CN105792471A (zh) * 2014-12-26 2016-07-20 凹凸电子(武汉)有限公司 光源驱动电路、控制器和控制方法
CN106910461A (zh) * 2017-05-11 2017-06-30 京东方科技集团股份有限公司 一种显示面板、显示装置及显示驱动方法
CN114360455A (zh) * 2022-01-18 2022-04-15 深圳市华星光电半导体显示技术有限公司 显示装置
CN115662347A (zh) * 2022-10-24 2023-01-31 集创北方(珠海)科技有限公司 Oled显示装置及其温度保护装置和方法

Also Published As

Publication number Publication date
CN115662347A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2024087794A1 (zh) Oled显示装置及其温度保护装置和方法
US7230596B2 (en) Active organic electroluminescence display panel module and driving module thereof
CN106910461B (zh) 一种显示面板、显示装置及显示驱动方法
US7990360B2 (en) Backlight assembly and display device having the same
WO2018126748A1 (zh) 保护电路及方法、像素电路、以及显示装置
CN101155450B (zh) Led发光装置和控制所述装置的方法
JP5080681B1 (ja) 表示装置、コンピュータプログラム、記録媒体及び温度推定方法
JP5346592B2 (ja) 発光装置及び発光装置駆動方法
US20060152454A1 (en) Temperature measurement using an OLED device
WO2018192510A1 (zh) 电致发光显示面板、其驱动方法、驱动装置以及显示装置
US20140368416A1 (en) Oled display device
KR20180127961A (ko) 데이터 전압 보상 방법, 디스플레이 구동 방법 및 디스플레이 장치
US8648791B2 (en) Backlight module and method of determining driving current thereof
WO2015096337A1 (zh) 阵列基板和显示装置
JP2002278514A (ja) 電気光学装置
JP2004524704A (ja) 発光ダイオード用電流源装置および電源供給方法
WO2019071735A1 (zh) 一种应用于显示面板的温度补偿电路、方法及显示面板
WO2021249137A1 (zh) 显示驱动电路及其驱动方法、显示装置
CN101625490A (zh) 显示面板的供热系统及其显示面板
US20210116740A1 (en) Startup control method for liquid crystal display device and liquid crystal display device
CN104599640A (zh) 一种有源矩阵有机发光二极管显示器及其温度调节方法
CN114974116B (zh) 像素驱动电路及像素驱动方法
WO2024087795A1 (zh) 显示装置及其驱动方法
CN101582237A (zh) 像素结构与有机发光二极管显示器
JP2010514128A (ja) ソリッドステート照明デバイスのための駆動信号の調節

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881380

Country of ref document: EP

Kind code of ref document: A1