WO2024087785A1 - 作业区域表面检测装置及清洁机器人 - Google Patents

作业区域表面检测装置及清洁机器人 Download PDF

Info

Publication number
WO2024087785A1
WO2024087785A1 PCT/CN2023/111040 CN2023111040W WO2024087785A1 WO 2024087785 A1 WO2024087785 A1 WO 2024087785A1 CN 2023111040 W CN2023111040 W CN 2023111040W WO 2024087785 A1 WO2024087785 A1 WO 2024087785A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
convex lens
working area
detection device
surface detection
Prior art date
Application number
PCT/CN2023/111040
Other languages
English (en)
French (fr)
Inventor
党亮
Original Assignee
北京石头世纪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京石头世纪科技股份有限公司 filed Critical 北京石头世纪科技股份有限公司
Publication of WO2024087785A1 publication Critical patent/WO2024087785A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/32Carpet-sweepers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor

Definitions

  • the present disclosure relates to the technical field of robots, and in particular to a working area surface detection device and a cleaning robot.
  • cleaning robots are usually equipped with special sensor devices to detect the surface to be cleaned. For example, ultrasonic waves are used to identify whether the surface to be cleaned is a carpet to avoid wetting the carpet.
  • ultrasonic sensors are large in size, high in cost and slow in response speed.
  • an embodiment of the present disclosure provides a working area surface detection device including a signal transmitting module and a signal receiving module;
  • the signal transmission module comprises a light transmitting unit and a first light path changing unit, wherein the first light path changing unit is arranged in the transmission light path of the light transmitting unit and is used to convert the light emitted by the light transmitting unit into a first light, wherein the first light is approximately parallel light inclined at a first angle toward the direction of the signal receiving module;
  • the signal receiving module includes a light receiving part, a preset distance is set between the light emitting part and the light receiving part, the light receiving part receives at least part of the second light, the second light is the first light reflected by the surface of the working area; the light intensity of at least part of the second light is used to determine the material of the surface of the working area.
  • the signal transmitting module and the signal receiving module are independent of each other.
  • the first light path changing portion comprises a first convex lens
  • the thickness of the first convex lens gradually increases from the first side of the first convex lens to the second side of the first convex lens
  • the first side of the first convex lens is a side of the first convex lens away from the second light path changing portion
  • the second side of the first convex lens is a side of the first convex lens away from the second light path changing portion.
  • a side of the lens close to the second optical path changing portion.
  • a first total reflection portion is provided on the second side of the first convex lens, and the first total reflection portion is used to totally reflect the light emitted from the first convex lens to the second side of the first convex lens to form approximately parallel output light inclined at a second angle toward the direction close to the signal receiving module.
  • the first total reflection portion includes a first plane that is gradually inclined from the first end to the second end toward the first side direction away from the first convex lens, the first end is the end of the first plane close to the light emitting portion, and the second end is the end of the first plane away from the light emitting portion.
  • a second optical path changing unit is also provided on the receiving optical path of the light receiving unit; the second optical path changing unit is used to convert the received second light into a third light so as to be received by the light receiving unit, and the third light is a light obtained by converting the second light into a light that converges toward the light receiving unit.
  • the second optical path changing portion includes a second convex lens
  • the thickness of the second convex lens gradually increases along the direction from the first side of the second convex lens to the second side of the second convex lens
  • the first side of the second convex lens is the side of the second convex lens away from the first optical path changing portion
  • the second side of the second convex lens is the side of the second convex lens close to the first optical path changing portion.
  • a second total reflection portion is provided on the second side of the second convex lens, and the second total reflection portion is used to totally reflect the light within the second convex lens and emitted to the second side of the second convex lens to form convergent light converging toward the light receiving portion.
  • the second total reflection portion includes a second plane that is gradually inclined from the third end to the fourth end toward the direction away from the first side of the second convex lens, the third end is an end of the second plane close to the light receiving portion, and the fourth end is an end of the second plane away from the light receiving portion.
  • inner walls of the light emitting part and the light receiving part are made of non-reflective material.
  • the light intensity of at least part of the second light is used to determine the material of the surface of the working area, including: when the light intensity of at least part of the second light is less than a preset light intensity, determining that the surface of the working area is made of the first material.
  • the surface of the working area is made of the second material.
  • the first material has a rough surface; and the second material has a smooth surface.
  • the rough surface is a carpet; and the smooth surface is a floor or a tile.
  • an embodiment of the present disclosure provides a cleaning robot, comprising the above-mentioned working area surface detection device.
  • a first optical path changing unit is used to convert the light emitted by the light emitting unit into a first light
  • the light receiving unit can receive at least a portion of the second light, wherein the first light is approximately parallel light inclined at a first angle toward the direction of the signal receiving module, and the second light is the light after the first light is reflected from the surface of the working area.
  • the light intensity of at least a portion of the second light can be used to determine the material of the surface of the working area, and optical elements are used for detection, which not only reduces the volume and cost of the detection device, but also improves the detection speed.
  • FIG1 is a perspective schematic diagram of a cleaning robot according to an optional embodiment of the present disclosure.
  • FIG2 is a bottom view of a cleaning robot according to an alternative embodiment of the present disclosure.
  • FIG3 is a perspective view of a wet cleaning system according to an alternative embodiment of the present disclosure.
  • FIG4 is a light path diagram of a working area surface detection device according to an optional embodiment of the present disclosure.
  • FIG. 5 is a light path diagram of a working area surface detection device according to another optional embodiment of the present disclosure.
  • 10-cleaning robot 110-main body; 111-forward part; 112-backward part; 120-sensing system; 121-position determination device; 122-buffer; 130-control module; 140-walking mechanism; 150-cleaning system; 151-dry cleaning system; 152-side brush; 153-wet cleaning system; 160-energy system; 170-human-computer interaction system; 20-signal transmitting module; 201-light transmitting part; 202-first optical path changing part; 203-first total reflection part; 30-signal receiving module; 301-light receiving part; 302-second optical path changing part; 303-second total reflection part.
  • an embodiment of the present disclosure provides a working area surface detection device, comprising a signal transmitting module 20 and a signal receiving module 30;
  • the signal transmitting module 20 comprises a light transmitting unit 201 and a first optical path changing unit 202, the first optical path changing unit 202 is arranged in the transmitting optical path of the light transmitting unit 201, and is used to convert the light emitted by the light transmitting unit 201 into a first light, and the first light is an approximately parallel light inclined at a first angle ⁇ toward the signal receiving module;
  • the signal receiving module 30 comprises a light receiving unit 301, and a preset distance is set between the light transmitting unit 201 and the light receiving unit 301.
  • the working area surface detection device or the signal receiving module comprises a processing module, and the processing module is used to determine the material of the working area surface according to the light intensity of at least part of the second light.
  • the working area surface detection device or the signal receiving module comprises a processing module, and the processing module is used to determine the material of the working area surface according to the light intensity of at least part of the second light.
  • the working area surface detection device does not include a processing module, and the operation of determining the material of the working area surface according to the light intensity of at least part of the second light is performed by a controller independent of the working area surface detection device.
  • the signal transmitting module 20 and the signal receiving module 30 are arranged side by side, that is, the vertical distance from the signal transmitting module 20 to the surface of the working area is the same as the vertical distance from the signal receiving module 30 to the surface of the working area.
  • the vertical distance between the signal transmitting module 20 and the surface of the working area and the vertical distance between the signal receiving module 30 and the surface of the working area can be set according to the type of cleaning robot. For example, if the cleaning robot is a sweeping robot, the vertical distance between the signal transmitting module 20 and the surface of the working area and the vertical distance between the signal receiving module 30 and the surface of the working area are 1 cm.
  • the first angle is determined by the vertical distance between the light emitting unit 201 and the surface of the working area and the spacing between the light emitting unit 201 and the light receiving unit 301.
  • the staff can obtain the vertical distance between the light emitting unit 201 and the surface of the working area and the spacing between the light emitting unit 201 and the light receiving unit 301 according to the installation positions of the light emitting unit 201 and the light receiving unit 301, thereby determining the value of the first angle.
  • the first angle ⁇ at which each light composing the first light is inclined toward the signal receiving module 30 is within a preset range, that is, the inclination angle of some light rays in the first light may be different from the inclination angle of other light rays, but it is within the preset range.
  • the preset range can be set by the staff according to the actual situation and is not strictly limited in this embodiment.
  • the light emitting unit 201 may be an infrared transmitter, and the light receiving unit 301 may be an infrared receiver.
  • the infrared transmitter and the infrared receiver have the advantages of long service life, small size, and strong anti-interference performance.
  • specular reflection or diffuse reflection when light is irradiated on the surface of a reflector, specular reflection or diffuse reflection will occur.
  • specular reflection is that light irradiated on the surface of a reflector at a certain incident angle will be reflected by the surface of the reflector along the direction of the reflection angle, that is, the light reflected by the surface of the reflector will also be emitted at the same reflection angle as the incident angle. Specular reflection occurs on smooth or polished surfaces (such as glossy surfaces or metal surfaces, etc.).
  • the principle of diffuse reflection is that light irradiated on the surface of a reflector is reflected in all directions, and diffuse reflection occurs on rough surfaces (such as fiber surfaces, etc.).
  • the light emitting unit 201 emits light toward the surface of the working area, and then the light emitted by the light emitting unit 201 is converted into a first light by the first optical path changing unit 202.
  • the first light is reflected by the surface of the working area, and the reflection may be diffuse reflection or mirror reflection, that is, the second light may be an approximately parallel light, or a divergent light reflected in all directions. If the second light is an approximately parallel light, the light receiving unit 301 can receive at least part of the second light. As shown in FIG5 , if the second line is a divergent light emitted in all directions, a very small part of the reflected light is received by the light receiving unit 301.
  • the controller can determine whether the first light is mirror reflected or diffusely reflected on the surface of the working area, thereby determining whether the working area is a rough surface. That is, if the intensity of the light signal received by the light receiving unit 301 is greater than the preset intensity, it is determined that the first light is mirror reflected on the surface of the working area. If the intensity of the light signal received by the light receiving unit 301 is less than the preset intensity, it is determined that the first light is diffusely reflected on the surface of the working area, thereby determining that the surface of the working area is a rough surface, and further determining that the working area is a carpet. In this way, it is possible to accurately identify whether the working area is a carpet.
  • the first optical path changing unit is used to convert the light emitted by the light emitting unit into a first light
  • the light receiving unit can receive at least a portion of the second light, wherein the first light is an approximately parallel light inclined at a first angle toward the direction of the signal receiving module, and the second light is the first light reflected from the surface of the working area.
  • the material of the surface of the working area can be determined based on the light intensity of at least a portion of the second light received by the light receiving unit, and detection is performed using optical elements, which not only reduces the size and cost of the detection device, but also improves the detection speed.
  • determining the material of the surface of the working area according to the light intensity of at least part of the second light received by the light receiving unit 301 includes: when the light intensity of at least part of the second light received by the light receiving unit 301 is less than a preset light intensity, determining that the surface of the working area is the first material. When the light intensity of at least part of the second light received by the light receiving unit 301 is greater than the preset light intensity, determining that the surface of the working area is the second material.
  • the preset light intensity may be determined by the staff according to the performance of the light emitting unit, and is not strictly limited in this embodiment.
  • the intensity of the light signal received by the light receiving unit 301 is greater than the preset intensity, it is determined that the first light is mirror reflected on the surface of the working area, so that it can be determined that the surface of the working area is a smooth surface; thereby determining that the surface of the working area is the first material that can produce mirror reflection.
  • the intensity of the light signal received by the light receiving unit 301 is less than the preset intensity, it is determined that the first light is diffusely reflected on the surface of the working area, and thus it can be determined that the surface of the working area is made of the second material that can undergo diffuse reflection. In this way, the surface material of the working area can be detected through optical elements, which not only reduces the size and cost of the detection device, but also improves the detection speed.
  • the first material has a rough surface; and the second material has a smooth surface.
  • the rough surface is a carpet; the second material is a floor or a tile, so that a device equipped with the work area surface detection device of the present application can accurately identify whether the work area surface is a carpet, a floor or a tile, and thus can execute corresponding strategies for different materials.
  • the signal transmitting module 20 and the signal receiving module 30 are independent of each other.
  • the signal transmitting module 20 and the signal receiving module 30 are independent of each other, which means that there is no connection between the signal transmitting module 20 and the signal receiving module 30 , and they are separate parts, so that the signal transmitting module 20 and the signal receiving module 30 can be manufactured, installed and maintained separately.
  • the first optical path changing portion 202 includes a first convex lens, and the thickness of the first convex lens gradually increases along the direction from the first side of the first convex lens to the second side of the first convex lens, the first side of the first convex lens is the side of the first convex lens away from the second optical path changing portion 302, and the second side of the first convex lens is the side of the first convex lens close to the second optical path changing portion 302.
  • the first convex lens may be a lens with an incident surface convex toward the direction close to the light emitting unit 201 and a planar exit surface, as shown in FIGS. 4 and 5 for details.
  • the thickness of the first convex lens gradually increases from the first side to the second side of the first convex lens, that is, the thickness of the second side of the first convex lens is greater than the thickness of the first side, so that the first convex lens forms an asymmetric convex lens.
  • a first total reflection portion 203 is provided on the second side of the first convex lens, and the first total reflection portion 203 is used to totally reflect the light emitted from the first convex lens to the second side of the first convex lens, so as to form approximately parallel outgoing light inclined at a second angle ⁇ toward the direction close to the signal receiving module 30.
  • the second angle ⁇ at which each light ray constituting the outgoing light ray is inclined toward the signal receiving module is within a preset range, that is, the inclination angle of some light rays in the second light ray may be different from the inclination angle of other light rays, but it is within the preset range. It is worth noting that the preset ranges where the first angle ⁇ and the second angle ⁇ are located are the same preset range.
  • the first total reflection portion 203 is utilized to totally reflect the light emitted from the first convex lens toward the second side of the first convex lens, thereby forming approximately parallel outgoing light inclined at a second angle ⁇ toward the direction close to the signal receiving module 30. This reduces the intensity of stray light and increases the intensity of the first light, thereby increasing the intensity of the second light when the first light is mirror-reflected on the surface of the working area. This increases the intensity of the second light received by the light receiving portion 301, thereby improving the accuracy of the subsequent controller's comparison and judgment of the optical signal intensity with the preset intensity, thereby improving the detection accuracy of the working area surface detection device.
  • the first total reflection portion 203 includes a first plane that is gradually inclined from the first end to the second end toward the first side direction away from the first convex lens, the first end is the end of the first plane close to the light emitting portion 201, and the second end is the end of the first plane away from the light emitting portion 201.
  • One side of the first plane is the material of the first convex lens, that is, the optically dense medium, and the medium on the other side is air, that is, the optically sparse medium.
  • the first plane forms a total reflection surface, so that the first plane can totally reflect the light emitted from the first convex lens to the second side of the first convex lens, so as to form an output light inclined at a second angle ⁇ toward the direction close to the signal receiving module 30.
  • the generation of stray light can be reduced by providing an inclined first plane, so that the structure of the first total reflection portion 203 is simpler and easier to process.
  • a second optical path changing unit 302 is provided on the receiving optical path of the optical receiving unit 301 , and the second optical path changing unit 302 is used to convert the received second light into a third light to be received by the optical receiving unit 301 , and the third light is the light converted from the second light to converge toward the optical receiving unit 301 .
  • the second light irradiates the second optical path changing part 302, and then the second optical path changing part 302 converts the reflected light into a convergent light (i.e., a third light) that converges toward the light receiving part 301, and then the third light is received by the light receiving part 301, so that the light receiving part 301 can receive the light with increased intensity, thereby making the detection result more accurate.
  • a convergent light i.e., a third light
  • the second optical path changing part 302 includes a second convex lens, and the thickness of the second convex lens gradually increases from the first side of the second convex lens to the second side of the second convex lens, the first side of the second convex lens is the side of the second convex lens away from the first optical path changing part 202, and the second side of the second convex lens is the side of the second convex lens close to the first optical path changing part 202.
  • the second convex lens may be convex on the exit surface close to the light emitting unit 201, and the incident surface may be flat.
  • the incident surface may be flat.
  • the thickness of the second convex lens gradually increases from the first side of the second convex lens to the second side of the second convex lens, that is, the thickness of the second side of the second convex lens is greater than the thickness of the first side, so that the second convex lens forms a convex lens with an asymmetric structure.
  • a second total reflection portion 303 is provided on the second side of the second convex lens, and the second total reflection portion 303 is used to totally reflect the light in the second convex lens and emitted to the second side of the second convex lens to form convergent light converging toward the light receiving portion 301.
  • the second total reflection portion 303 is utilized to totally reflect the light in the second convex lens and emitted toward the second side of the second convex lens, thereby totally reflecting the light in the second convex lens and emitted toward the second side of the second convex lens, so as to form convergent light that converges toward the light receiving portion 301, thereby reducing the intensity of stray light, and further increasing the intensity of the light signal received by the light receiving portion 301, thereby further improving the accuracy of the subsequent controller's comparison and judgment of the light signal intensity with the preset intensity, thereby further improving the detection accuracy of the surface detection device of the working area.
  • the second total reflection portion 303 includes a second plane that is gradually inclined from the third end to the fourth end toward the direction away from the first side of the second convex lens, the third end is an end of the second plane close to the light receiving portion 301, and the fourth end is an end of the second plane away from the light receiving portion 301.
  • One side of the second plane is the material of the second convex lens, that is, the light-dense medium, and the medium on the other side is air, that is, the light-sparse medium.
  • the second plane forms a full-emission surface, which can achieve total reflection of the light emitted from the second convex lens to the second side of the second convex lens to form convergent light that converges toward the light receiving part 301.
  • the generation of stray light can be reduced by providing an inclined second plane, so that the structure of the second total reflection portion 303 is simpler and easier to process.
  • the inner walls of the light emitting part 201 and the light receiving part 301 are made of non-reflective material, which can prevent interference caused by light reflection on the inner walls of the light emitting part 201 and the light receiving part 301 .
  • the non-reflective material can be made of black acrylonitrile-styrene-butadiene copolymer (ABS) material.
  • ABS black acrylonitrile-styrene-butadiene copolymer
  • an embodiment of the present disclosure provides a cleaning robot, comprising the above-mentioned working area surface detection device.
  • the specific structure of the working area surface detection device in this embodiment refers to the above embodiment. Since the cleaning robot adopts all the technical solutions of all the above embodiments, it has at least all the beneficial effects brought by the technical solutions of the above embodiments, which will not be described one by one here.
  • the cleaning robot of this embodiment may be a sweeping robot 10, a mopping robot, a floor polishing robot or a weeding robot.
  • this embodiment takes the sweeping robot 10 as an example to describe the technical solution of the present disclosure.
  • the sweeping robot 10 may include a machine body 110, a sensing module 120, a controller, a driving module, a cleaning system 150, an energy system, and a human-machine interaction module 130.
  • the machine body 110 includes a forward portion 111 and a rearward portion 112, which have an approximately circular shape (both the front and the rear are circular), and may also have other shapes, including but not limited to an approximately D-shaped shape with a front and a rear circular shape, and a rectangular or square shape with a front and a rear.
  • the sensing module 120 includes a position determination device 121 located on the machine body 110, a collision sensor disposed on a front collision structure 122 of the forward portion 111 of the machine body 110, a short-distance sensor (wall sensor) located on the side of the machine, a surface detection device for the working area disposed at the lower portion of the machine body 110, and a magnetometer, accelerometer, gyroscope, odometer and other sensing devices disposed inside the machine body 110, for providing the controller with various position information and motion state information of the machine.
  • the position determination device 121 includes but is not limited to a camera and a laser distance measuring device (LDS, full name Laser Distance Sensor).
  • the position determination device 121 (such as a camera, a laser sensor) is located on the front side of the body 110, that is, at the very front end of the forward portion 111, so as to be able to more accurately sense the environment in front of the cleaning robot and achieve precise positioning.
  • the forward part 111 of the machine body 110 can carry a front collision structure 122.
  • the front collision structure 122 detects one or more events in the driving path of the cleaning robot 10 via a sensor system arranged thereon, such as a collision sensor or a proximity sensor (infrared sensor).
  • the cleaning robot 10 can control the driving module to respond to the event, such as an obstacle or a wall, detected by the front collision structure 122, such as performing an obstacle avoidance operation away from the obstacle.
  • the controller is arranged on the circuit board in the machine body 110, and includes a computing processor, such as a central processing unit, an application processor, which communicates with a non-temporary memory, such as a hard disk, a flash memory, and a random access memory.
  • the application processor uses a positioning algorithm, such as SLAM (Simultaneous Localization And Mapping), to draw a real-time map of the environment where the cleaning robot 10 is located according to the obstacle information fed back by the laser ranging device.
  • SLAM Simultaneous Localization And Mapping
  • the distance information and speed information fed back by the sensor devices such as the sensor, the surface detection device of the working area, the magnetometer, the accelerometer, the gyroscope, and the odometer provided on the front collision structure 122 are combined to comprehensively judge the current working state and position of the cleaning robot 10, as well as the current posture of the cleaning robot 10, such as passing the threshold, being on the carpet, the dust box is full, being picked up, etc., and specific next action strategies are given for different situations, so that the cleaning robot 10 has better cleaning performance and user experience.
  • the driving module can manipulate the machine body 110 to travel across the ground based on a driving command with distance and angle information.
  • the driving module includes a main driving wheel module, which can control the left wheel 140 and the right wheel 141.
  • the main driving wheel module includes a left driving wheel module and a right driving wheel module respectively.
  • the left and right driving wheel modules are arranged along the transverse axis defined by the machine body 110.
  • the cleaning robot 10 may include one or more driven wheels 142, and the driven wheels 142 include but are not limited to universal wheels.
  • the main driving wheel module includes a driving motor and a control circuit for controlling the driving motor, and the main driving wheel module can also be connected to a circuit and an odometer for measuring the driving current.
  • the left wheel 140 and the right wheel 141 may have a biased drop suspension system, which is fastened in a movable manner, for example, attached to the machine body 110 in a rotatable manner, and receives a spring bias biased downward and away from the machine body 110.
  • the spring bias allows the drive wheels to maintain contact and traction with the ground with a certain ground force, while the cleaning elements of the cleaning robot 10 also contact the ground with a certain pressure.
  • the energy system includes rechargeable batteries, such as nickel-metal hydride batteries and lithium batteries.
  • the rechargeable batteries can be connected to a charging control circuit,
  • the battery pack charging temperature detection circuit and the battery undervoltage monitoring circuit, the charging control circuit, the battery pack charging temperature detection circuit, and the battery undervoltage monitoring circuit are connected to the single-chip control circuit.
  • the host is connected to the charging pile through the charging electrode 160 set on the side or bottom of the fuselage for charging.
  • the human-computer interaction module 130 includes buttons on the host panel, which are used by the user to select functions; it may also include a display screen and/or indicator lights and/or speakers, which display the current mode of the machine or the function selection items to the user; it may also include a mobile client program.
  • the mobile client can show the user a map of the environment where the equipment is located, as well as the location of the machine, and can provide the user with more abundant and humanized functions.
  • the cleaning robot has multiple modes, such as working mode, self-cleaning mode, etc.
  • the working mode refers to the mode in which the cleaning robot performs automatic cleaning operations
  • the self-cleaning mode refers to the mode in which the cleaning robot removes dirt from the roller brush and side brush 152 on the base, and automatically collects dirt, and/or automatically washes and dries the mop.
  • the cleaning system 150 may be a dry cleaning system 151 and/or a wet cleaning system 153 .
  • the dry cleaning system 151 may include a roller brush, a dust box, a fan, and an air outlet.
  • the roller brush that has a certain interference with the ground sweeps up the garbage on the ground and rolls it to the front of the dust suction port between the roller brush and the dust box, and then the suction gas generated by the fan and passing through the dust box is sucked into the dust box.
  • the dry cleaning system 151 may also include a side brush 152 with a rotating shaft, and the rotating shaft is at a certain angle relative to the ground to move debris into the roller brush area of the cleaning system 150.
  • the wet cleaning system 153 may include: a cleaning head 1531, a driving unit 1532, a water supply mechanism, a liquid storage tank, etc.
  • the cleaning head 1531 can be arranged below the liquid storage tank, and the cleaning liquid inside the liquid storage tank is transmitted to the cleaning head 1531 through the water supply mechanism, so that the cleaning head 1531 performs wet cleaning on the surface to be cleaned.
  • the cleaning liquid inside the liquid storage tank can also be directly sprayed onto the surface to be cleaned, and the cleaning head 1531 cleans the surface by evenly applying the cleaning liquid.
  • the cleaning head 1531 is used to clean the surface to be cleaned, and the driving unit 1532 is used to drive the cleaning head 1531 to reciprocate substantially along the target surface, which is a part of the surface to be cleaned.
  • the cleaning head 1531 reciprocates along the surface to be cleaned, and a mop is provided on the contact surface between the cleaning head 1531 and the surface to be cleaned.
  • the reciprocating motion of the mop of the cleaning head 1531 driven by the driving unit 1532 generates high-frequency friction with the surface to be cleaned, thereby removing stains on the surface to be cleaned; or the mop can be arranged to float, and always keep in contact with the cleaning surface during the cleaning process, without the need for the driving unit 1532 to drive its reciprocating motion.
  • the driving unit 1532 can also include a driving platform 1533 and a supporting platform 1534.
  • the driving platform 1533 is connected to the bottom surface of the machine body 110 to provide driving force.
  • the supporting platform 1534 is detachably connected to the driving platform 1533 to support the cleaning head 1531 and can be raised and lowered under the drive of the driving platform 1533.
  • the wet cleaning system 153 can be connected to the machine body 110 through an active lifting module.
  • the cleaning robot 10 stops at the base station to clean the cleaning head 1531 of the wet cleaning system 153 and fill the liquid storage tank with water; or when encountering a surface to be cleaned that cannot be cleaned by the wet cleaning system 153, the wet cleaning system 153 is raised through the active lifting module.

Landscapes

  • Electric Vacuum Cleaner (AREA)

Abstract

一种作业区域表面检测装置及清洁机器人(10),作业区域表面检测装置包括信号发射模组(20)及信号接收模组(30);信号发射模组(20)包括光发射部(201)及第一光路改变部(202),第一光路改变部(202)设置在光发射部(201)的发射光路,用于将光发射部(201)发射的光线转换为第一光线,第一光线为向信号接收模组(30)方向倾斜第一角度(α)的近似平行光;信号接收模组(30)包括光接收部(301),光发射部(201)与光接收部(301)之间设有预设距离的间距,以使光接收部(301)接收到至少部分第二光线,第二光线为第一光线经由作业区域表面反射后的光线;至少部分第二光线的光强度用于确定作业区域表面的材质。

Description

作业区域表面检测装置及清洁机器人
相关申请的交叉引用
本申请要求于2022年10月25日递交的中国专利申请第202211309171.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及机器人技术领域,具体而言涉及一种作业区域表面检测装置及清洁机器人。
背景技术
伴随着物质生活水平和科学技术水平的不断提升,时下,越来越多的用户家庭都开始应用机器人来为人们提供相应服务,尤其是应用清洁机器人来替代人们亲自进行家庭环境或者大型场所的清扫,不仅能够减轻人们的劳作压力,更能够提升清扫效率。
目前,清洁机器人通常设置有专门的传感器装置以针对待清洁面进行探测,例如,采用超声波识别待清洁面是否为地毯,以避免将地毯打湿,但是超声波传感器的体积较大、成本较高并且响应速度较慢。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本公开的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
第一方面,本公开实施例提供了一种作业区域表面检测装置包括信号发射模组及信号接收模组;
所述信号发射模组包括光发射部及第一光路改变部,所述第一光路改变部设置在所述光发射部的发射光路,用于将所述光发射部发射的光线转换为第一光线,所述第一光线为向所述信号接收模组方向倾斜第一角度的近似平行光;
所述信号接收模组包括光接收部,所述光发射部与所述光接收部之间设有预设距离的间距,所述光接收部接收到至少部分第二光线,所述第二光线为所述第一光线经由所述作业区域表面反射后的光线;所述至少部分第二光线的光强度用于确定所述作业区域表面的材质。
可选地,所述信号发射模组及信号接收模组相互独立。
可选地,所述第一光路改变部包括第一凸透镜,所述第一凸透镜的厚度沿所述第一凸透镜的第一侧至所述第一凸透镜的第二侧的方向逐渐增加,所述第一凸透镜的第一侧为所述第一凸透镜的远离所述第二光路改变部的一侧,所述第一凸透镜的第二侧为所述第一凸 透镜的靠近所述第二光路改变部的一侧。
可选地,所述第一凸透镜的第二侧设有第一全反射部,所述第一全反射部用于将在所述第一凸透镜内射向所述第一凸透镜的第二侧的光线进行全反射,以形成向靠近所述信号接收模组方向倾斜第二角度的近似平行出射光。
可选地,所述第一全反射部包括第一端至第二端逐渐向远离所述第一凸透镜的第一侧方向倾斜的第一平面,所述第一端为所述第一平面的靠近所述光发射部的一端,所述第二端为所述第一平面的远离所述光发射部的一端。
可选地,所述光接收部的接收光路上还设有所述第二光路改变部;所述第二光路改变部用于将所接收到的所述第二光线转换为第三光线,以被所述光接收部接收,所述第三光线为将所述第二光线转换成向所述光接收部件聚拢的光线。
可选地,所述第二光路改变部包括第二凸透镜,所述第二凸透镜的厚度沿所述第二凸透镜的第一侧至所述第二凸透镜的第二侧的方向逐渐增加,所述第二凸透镜的第一侧为所述第二凸透镜的远离所述第一光路改变部的一侧,所述第二凸透镜的第二侧为所述第二凸透镜的靠近所述第一光路改变部的一侧。
可选地,所述第二凸透镜的第二侧设有第二全反射部,所述第二全反射部用于将在所述第二凸透镜内且射向所述第二凸透镜的第二侧的光线进行全反射,以形成向所述光接收部聚拢的汇聚光线。
可选地,所述第二全反射部包括第三端至第四端逐渐向远离所述第二凸透镜的第一侧方向倾斜的第二平面,所述第三端为所述第二平面的靠近所述光接收部的一端,所述第四端为所述第二平面的远离所述光接收部的一端。
可选地,所述光发射部及所述光接收部的内壁为非反光材料制成。
可选地,所述至少部分第二光线的光强度用于确定所述作业区域表面的材质包括:当所述至少部分第二光线的光强度小于预设光强时,确定所述作业区域表面为第一材质。
可选地,当所述至少部分第二光线的光强度大于预设光强时,确定所述作业区域表面为第二材质。
可选地,所述第一材质为粗糙表面;所述第二材质为光滑表面。
可选地,所述粗糙表面为地毯;所述光滑表面为地板或瓷砖。
第二方面,本公开实施例提供了一种清洁机器人,包括上述的作业区域表面检测装置。
根据本公开实施例所提供的一种作业区域表面检测装置及清洁机器人,利用第一光路改变部将光发射部发射的光线转换为第一光线,并且光接收部能够接收到至少部分第二光线,其中,第一光线为向信号接收模组方向倾斜第一角度的近似平行光,第二光线为第一光线经由作业区域表面反射后的光线,这样至少部分第二光线的光强度可用于确定所述作业区域表面的材质,并且利用光学元件进行检测,不仅降低了检测装置的体积及成本,也提高了检测速度。
附图说明
本公开的下列附图在此作为本公开实施例的一部分用于理解本公开。附图中示出了本公开的实施例及其描述,用来解释本公开的原理。
附图中:
图1为根据本公开的一个可选实施例的清洁机器人的立体示意图;
图2为根据本公开的一个可选实施例的清洁机器人的仰视图;
图3为根据本公开的一个可选实施例的湿式清洁系统的立体图;
图4为根据本公开的一个可选实施例的作业区域表面检测装置的光路图;
图5为根据本公开的另一个可选实施例的作业区域表面检测装置的光路图。
附图标记说明:
10-清洁机器人;110-主体;111-前向部分;112-后向部分;120-感知系统;121-位置
确定装置;122-缓冲器;130-控制模块;140-行走机构;150-清洁系统;151-干式清洁系统;152-边刷;153-湿式清洁系统;160-能源系统;170-人机交互系统;20-信号发射模组;201-光发射部;202-第一光路改变部;203-第一全反射部;30-信号接收模组;301-光接收部;302-第二光路改变部;303-第二全反射部。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本公开更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本公开可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本公开发生混淆,对于本领域公知的一些技术特征未进行描述。
应予以注意的是,这里所使用的术语仅是为了描述具体实施例,而非意图限制根据本公开的示例性实施例。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式。此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、整体、步骤、操作、元件和/或组件,但不排除存在或附加一个或多个其他特征、整体、步骤、操作、元件、组件和/或它们的组合。
现在,将参照附图更详细地描述根据本公开的示例性实施例。然而,这些示例性实施例可以多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施例。应当理解的是,提供这些实施例是为了使得本公开的公开彻底且完整,并且将这些示例性实施例的构思充分传达给本领域普通技术人员。
第一方面,如图4及图5所示,本公开实施例提供了一种作业区域表面检测装置,包括信号发射模组20及信号接收模组30;信号发射模组20包括光发射部201及第一光路改变部202,第一光路改变部202设置在光发射部201的发射光路,用于将光发射部201发射的光线转换为第一光线,第一光线为向信号接收模组方向倾斜第一角度α的近似平行光;信号接收模组30包括光接收部301,光发射部201与光接收部301之间设有预设距 离的间距,以使所述光接收部接收到至少部分第二光线,第二光线为第一光线经由作业区域表面反射后的光线;所述至少部分第二光线的光强度用于确定作业区域表面的材质。在一些实施例中,作业区域表面检测装置或信号接收模组内包括处理模块,所述处理模块用于根据所述至少部分第二光线的光强度确定作业区域表面的材质。在一些实施例中,作业区域表面检测装置内不包括处理模块,根据所述至少部分第二光线的光强度确定作业区域表面的材质的操作由独立于作业区域表面检测装置的控制器执行。
在具体应用中,信号发射模组20与信号接收模组30并排设置,即信号发射模组20至作业区域表面的垂直距离与信号接收模组30至作业区域表面的垂直距离相同。信号发射模组20与作业区域表面的垂直距离及信号接收模组30与作业区域表面的垂直距离可由清洁机器人的种类进行设置,例如,清洁机器人为扫地机器人,信号发射模组20与作业区域表面的垂直距离及信号接收模组30与作业区域表面的垂直距离为1cm。
第一夹角由光发射部201与作业区域表面的垂直距离及光发射部201与光接收部301之间的间距决定的。工作人员可根据光发射部201及光接收部301的安装位置,得到光发射部201与作业区域表面的垂直距离及光发射部201与光接收部301之间的间距,从而确定第一角度值。
在具体应用中,组成第一光线的各光线向信号接收模组30方向倾斜的第一夹角α在预设范围内即可,也就是说第一光线中的部分光线的倾斜角度可能与其他光线的倾斜角度不同,但是在预设范围内即可。其中,预设范围可由工作人员根据实际情况进行设置,在本实施例中不进行严格限定。
光发射部201可采用红外发射器,光接收部301可采用红外接收器,红外发射器和红外接收器具有使用寿命长,体积小,抗干扰性强的优点。
具体而言,光照射在反射物的表面会产生镜面发射或漫反射。镜面反射的原理为以一定入射角照射到反射物表面的光线会沿着反射角的方向被反射物的表面反射,也就是说照射光经由反射物表面反射后的光线也会以与入射角相同的反射角射出,镜面反射发生在光滑或者抛光的表面(例如光泽表面或金属表面等)。漫反射的原理为照射到反射物表面的光向着各个方向反射,漫反射发生在粗糙的表面(例如纤维表面等)。
基于上述漫反射及镜面反射的原理,在本实施例中,光发射部201朝着作业区域表面发射光线,然后通过第一光路改变部202将光发射部201发射的光线转换为第一光线,该第一光线被作业区域表面反射,而该反射可能是漫反射,也可能是镜面反射,也就是说第二光线可能是近似平行的光线,也可能是向着各个方向反射的发散光线,如果第二光线是近似平行的光线,则光接收部301可接收到至少部分第二光线。如图5所示,如果第二线为向着各个方向发射的发散光,则反射后的光线极少的一部分被光接收部301接收,由此控制器通过判断光接收部301所接收到至少部分第二光线的光强度,就能确定第一光线在作业区域表面发生的是镜面反射还是漫反射,从而确定作业区域是否为粗糙表面,即如果光接收部301所接收到光信号的强度大于预设强度,则确定第一光线在作业区域表面发生 的是镜面反射,从而可以确定作业区域表面是光滑表面,进而确定作业区域不是地毯;如果光接收部301所接收到光信号的强度小于预设强度,则确定第一光线在作业区域表面发生的是漫反射,从而可以确定作业区域表面是粗糙表面,进而确定作业区域是地毯,这样就能够准确识别作业区域是否为地毯。
在本实施例中,利用第一光路改变部将光发射部发射的光线转换为第一光线,并且光接收部能够接收到至少部分第二光线,其中,第一光线为向信号接收模组方向倾斜第一角度的近似平行光,第二光线为第一光线经由作业区域表面反射后的光线,这样根据光接收部接收到至少部分第二光线的光强度就能够确定作业区域表面的材质,并且利用光学元件进行检测,不仅降低了检测装置的体积及成本,也提高了检测速度。
具体而言,根据光接收部301接收到至少部分第二光线的光强度确定作业区域表面的材质包括:当光接收部301接收到至少部分第二光线的光强度小于预设光强时,确定作业区域表面为第一材质。当光接收部301接收到至少部分第二光线的光强度大于预设光强时,确定作业区域表面为第二材质。
其中,预设光强可由工作人员根据光发射部的性能进行确定,本实施例不做严格限定。
在具体应用中,如果光接收部301所接收到光信号的强度大于预设强度,则确定第一光线在作业区域表面发生的是镜面反射,从而可以确定作业区域表面是光滑表面;从而确定作业区域表面为能够发生镜面反射的第一材质。
如果光接收部301所接收到光信号的强度小于预设强度,则确定第一光线在作业区域表面发生的是漫反射,从而可以确定作业区域表面是能够发生漫反射的第二材质,这样通过光学元件就能够实现作业区域表面材质的检测,不仅降低了检测装置的体积及成本,也提高了检测速度。
进一步地,第一材质为粗糙表面;第二材质为光滑表面。
在一些实现方式中,粗糙表面为地毯;第二材质为地板或瓷砖,从而使装载有本申请的作业区域表面检测装置的设备能够准确识别作业区域表面是地毯,还是地板或瓷砖,从而能够针对不同的材质执行相应的策略。
进一步地,如图4及图5所示,信号发射模组20及信号接收模组30相互独立。
信号发射模组20与信号接收模组30相互独立,是指信号发射模组20与信号接收模组30之间无连接关系,是分体件,这样信号发射模组20与信号接收模组30能够单独制作,安装及维护。
进一步地,第一光路改变部202包括第一凸透镜,第一凸透镜的厚度沿第一凸透镜的第一侧至第一凸透镜的第二侧的方向逐渐增加,第一凸透镜的第一侧为第一凸透镜的远离第二光路改变部302的一侧,第一凸透镜的第二侧为第一凸透镜的靠近第二光路改变部302的一侧。
在具体应用中,第一凸透镜可以为入射面向靠近光发射部201方向凸出,出射面为平面的透镜,具体可参见如图4及图5。
第一凸透镜的厚度沿第一凸透镜的第一侧至第一凸透镜的第二侧的方向逐渐增加,也就是第一凸透镜的第二侧的厚度大于第一侧的厚度,从而使第一凸透镜形成一个非对称结构的凸透镜。
进一步地,如图4及图5所示,第一凸透镜的第二侧设有第一全反射部203,第一全反射部203用于将在第一凸透镜内射向第一凸透镜的第二侧的光线进行全反射,以形成向靠近信号接收模组30方向倾斜第二角度γ的近似平行出射光。组成该出射光线的各光线向信号接收模组方向倾斜的第二角度γ在预设范围内即可,也就是说第二光线中的部分光线的倾斜角度可能与其他光线的倾斜角度不同,但是在预设范围内即可。值得注意的是,第一角度α及第二角度γ所在的预设范围为同一预设范围。
利用第一全反射部203对第一凸透镜内射向第一凸透镜的第二侧的光线进行全反射,从而形成向靠近信号接收模组30方向倾斜第二角度γ的近似平行出射光,这样就减少了杂散光的强度,增加了第一光线的强度,从而增加了第一光线在作业区域表面上发生镜面反射时第二光线的光强,这样就增加了光接收部301接收的第二光线的光强,进而提高了后续控制器对光信号强度与预设强度对比判断的准确性,也就提高了作业区域表面检测装置的检测准确性。
具体地,如图4及图5所示,第一全反射部203包括第一端至第二端逐渐向远离第一凸透镜的第一侧方向倾斜的第一平面,第一端为第一平面的靠近光发射部201的一端,第二端为第一平面的远离光发射部201的一端。
第一平面的一侧是第一凸透镜的材质,即光密介质,而另一侧的介质为空气,即光疏介质,这样第一平面就形成了全反射面,从而能够实现第一平面对第一凸透镜内射向第一凸透镜的第二侧的光线进行全反射,以形成向靠近信号接收模组30方向倾斜第二角度γ的出射光。
在本实施例中,通过设置倾斜的第一平面就能降低杂散光的产生,从而使第一全反射部203的结构更加简单,易于加工。
进一步地,如图4所示,光接收部301的接收光路上还设有第二光路改变部302,第二光路改变部302用于将所接收到的第二光线转换为第三光线,以被光接收部301接收,第三光线为将第二光线转换成向光接收部件301聚拢的光线。
如图4所示,第二光线照射至第二光路改变部302,然后通过第二光路改变部302将反射后的光线转换为向光接收部301聚拢的汇聚光线(即第三光线),之后第三光线再由光接收部301接收,从而使光接收部301能够接收到光线强度增加,进而使检测的结果更加准确。进一步地,如图4及图5所示,第二光路改变部302包括第二凸透镜,第二凸透镜的厚度沿第二凸透镜的第一侧至第二凸透镜的第二侧的方向逐渐增加,第二凸透镜的第一侧为第二凸透镜的远离第一光路改变部202的一侧,第二凸透镜的第二侧为第二凸透镜的靠近第一光路改变部202的一侧。
在具体应用中,第二凸透镜可以为出射面向靠近光发射部201方向凸出,入射面为平 面的透镜,具体可参见图4及图5。
第二凸透镜的厚度沿第二凸透镜的第一侧至第二凸透镜的第二侧的方向逐渐增加,也就是第二凸透镜的第二侧的厚度大于第一侧的厚度,从而使第二凸透镜形成一个非对称结构的凸透镜。
进一步地,如图4及图5所示,第二凸透镜的第二侧设有第二全反射部303,第二全反射部303用于将在第二凸透镜内且射向第二凸透镜的第二侧的光线进行全反射,以形成向光接收部301聚拢的汇聚光线。
利用第二全反射部303对第二凸透镜内射向第二凸透镜的第二侧的光线进行全反射,从而对第二凸透镜内且射向第二凸透镜的第二侧的光线进行全反射,以形成向光接收部301聚拢的汇聚光线,从而减少了杂散光的强度,进一步增加了光接收部301接收到的光信号强度,进而进一步地提高了后续控制器对光信号强度与预设强度对比判断的准确性,也就进一步地提高了作业区域表面检测装置的检测准确性。
具体地,如图4及图5所示,第二全反射部303包括第三端至第四端逐渐向远离第二凸透镜的第一侧方向倾斜的第二平面,第三端为第二平面的靠近光接收部301的一端,第四端为第二平面的远离光接收部301的一端。
第二平面的一侧是第二凸透镜的材质,即光密介质,而另一侧的介质为空气,即光疏介质,这样第二平面就形成了全发射面,从而能够实现对第二凸透镜内射向第二凸透镜的第二侧的光线进行全反射,以形成向光接收部301聚拢的汇聚光线。
在本实施例中,通过设置倾斜的第二平面就能降低杂散光的产生,从而使第二全反射部303的结构更加简单,易于加工。
进一步地,光发射部201及光接收部301的内壁为非反光材料制成,非反光材料能够避免在光发射部201及光接收部301的内壁产生光反射而引起干扰的情况发生。
其中,非反光材料可采用黑色的丙烯腈-苯乙烯-丁二烯共聚物(Acrylonitrile Butadiene Styrene,ABS)材料制成。
第二方面,本公开实施例提供了一种清洁机器人,包括上述的作业区域表面检测装置。
本实施例中的作业区域表面检测装置的具体结构参见上述实施例,由于本清洁机器人采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
本实施例的清洁机器人可以是扫地机器人10、拖地机器人、地面抛光机器人或除草机器人。为了便于描述,本实施例以扫地机器人10为例来描述本公开的技术方案。
进一步地,如图1和图2所示,扫地机器人10可以包括机器主体110、感知模块120、控制器、驱动模块、清洁系统150、能源系统和人机交互模块130。其中,如图1所示,机器主体110包括前向部分111和后向部分112,具有近似圆形形状(前后都为圆形),也可具有其他形状,包括但不限于前方后圆的近似D形形状及前方后方的矩形或正方形形状。
如图1所示,感知模块120包括位于机器主体110上的位置确定装置121、设置于机器主体110的前向部分111的前撞结构122上的碰撞传感器、位于机器侧边的近距离传感器(wall sensor),设置于机器主体110下部的作业区域表面检测装置,以及设置于机器主体110内部的磁力计、加速度计、陀螺仪、里程计等传感装置,用于向控制器提供机器的各种位置信息和运动状态信息。位置确定装置121包括但不限于摄像头、激光测距装置(LDS,全称Laser Distance Sensor)。在一些较优的实现方式中,位置确定装置121(如摄像头、激光传感器)位于主体110的前侧,也就是前向部分111的最前端,以能够更加准确地感测清洁机器人前方的环境,实现精准定位。
如图1所示,机器主体110的前向部分111可承载前撞结构122,在清洁过程中驱动轮模块141推进清洁机器人10在地面行走时,前撞结构122经由设置在其上的传感器系统,例如碰撞传感器或接近度传感器(红外传感器),检测清洁机器人10的行驶路径中的一个或多个事件,清洁机器人10可通过由前撞结构122检测到的事件,例如障碍物、墙壁,而控制驱动模块使清洁机器人10来对事件做出响应,例如远离障碍物执行避障操作等。
控制器设置在机器主体110内的电路主板上,包括与非暂时性存储器,例如硬盘、快闪存储器、随机存取存储器,通信的计算处理器,例如中央处理单元、应用处理器,应用处理器根据激光测距装置反馈的障碍物信息利用定位算法,例如即时定位与地图构建(SLAM,全称Simultaneous Localization And Mapping),绘制清洁机器人10所在环境中的即时地图。并且结合前撞结构122上所设置的传感器、作业区域表面检测装置、磁力计、加速度计、陀螺仪、里程计等传感装置反馈的距离信息、速度信息综合判断清洁机器人10当前处于何种工作状态、位于何位置,以及清洁机器人10当前位姿等,如过门槛,上地毯,尘盒满,被拿起等等,还会针对不同情况给出具体的下一步动作策略,使得清洁机器人10有更好的清扫性能和用户体验。
如图2所示,驱动模块可基于具有距离和角度信息的驱动命令而操纵机器主体110跨越地面行驶。驱动模块包含主驱动轮模块,主驱动轮模块可以控制左轮140和右轮141,为了更为精确地控制机器的运动,优选主驱动轮模块分别包括左驱动轮模块和右驱动轮模块。左、右驱动轮模块沿着由机器主体110界定的横向轴设置。为了清洁机器人10能够在地面上更为稳定地运动或者更强的运动能力,清洁机器人10可以包括一个或者多个从动轮142,从动轮142包括但不限于万向轮。主驱动轮模块包括驱动马达以及控制驱动马达的控制电路,主驱动轮模块还可以连接测量驱动电流的电路和里程计。并且左轮140及右轮141可具有偏置下落式悬挂系统,以可移动方式紧固,例如以可旋转方式附接到机器主体110,且接收向下及远离机器主体110偏置的弹簧偏置。弹簧偏置允许驱动轮以一定的着地力维持与地面的接触及牵引,同时清洁机器人10的清洁元件也以一定的压力接触地面。
能源系统包括充电电池,例如镍氢电池和锂电池。充电电池可以连接有充电控制电路、 电池组充电温度检测电路和电池欠压监测电路,充电控制电路、电池组充电温度检测电路、电池欠压监测电路再与单片机控制电路相连。主机通过设置在机身侧方或者下方的充电电极160与充电桩连接进行充电。
人机交互模块130包括主机面板上的按键,按键供用户进行功能选择;还可以包括显示屏和/或指示灯和/或喇叭,显示屏、指示灯和喇叭向用户展示当前机器所处模式或者功能选择项;还可以包括手机客户端程序。对于路径导航型自动清洁机器人10,在手机客户端可以向用户展示设备所在环境的地图,以及机器所处位置,可以向用户提供更为丰富和人性化的功能项。具体地,清洁机器人具有多种模式,例如工作模式、自清洁模式等。其中,工作模式是指清洁机器人进行自动清洁作业的模式,自清洁模式是指清洁机器人在基座上去除滚刷及边刷152上的脏物,并自动收集脏物,和/或自动清洗及烘干拖布的模式。
清洁系统150可为干式清洁系统151和/或湿式清洁系统153。
如图2所示,本公开实施例所提供的干式清洁系统151可以包括滚刷、尘盒、风机、出风口。与地面具有一定干涉的滚刷将地面上的垃圾扫起并卷带到滚刷与尘盒之间的吸尘口前方,然后被风机产生并经过尘盒的有吸力的气体吸入尘盒。干式清洁系统151还可包括具有旋转轴的边刷152,旋转轴相对于地面成一定角度,以用于将碎屑移动到清洁系统150的滚刷区域中。
如图2和图3所示,本公开实施例所提供的湿式清洁系统153可以包括:清洁头1531、驱动单元1532、送水机构、储液箱等。其中,清洁头1531可以设置于储液箱下方,储液箱内部的清洁液通过送水机构传输至清洁头1531,以使清洁头1531对待清洁平面进行湿式清洁。在本公开其他实施例中,储液箱内部的清洁液也可以直接喷洒至待清洁平面,清洁头1531通过将清洁液涂抹均匀实现对平面的清洁。
其中,清洁头1531用于清洁待清洁表面,驱动单元1532用于驱动清洁头1531沿着目标面基本上往复运动,目标面为待清洁表面的一部分。清洁头1531沿待清洁表面做往复运动,清洁头1531与待清洁表面的接触面表面设有拖布,通过驱动单元1532带动清洁头1531的拖布往复运动与待清洁表面产生高频摩擦,从而去除待清洁表面上的污渍;或拖布可浮动地设置,在清洁过程中始终保持与清洁表面的接触,而不需驱动单元1532驱动其往复运动。
如图3所示,驱动单元1532还可以包括驱动平台1533和支撑平台1534,驱动平台1533连接于机器主体110底面,用于提供驱动力,支撑平台1534可拆卸地连接于驱动平台1533,用于支撑清洁头1531,且可以在驱动平台1533的驱动下实现升降。
其中,湿式清洁系统153可以通过主动式升降模组与机器主体110相连接。当湿式清洁系统153暂时不参与工作,例如,清洁机器人10停靠基站对湿式清洁系统153的清洁头1531进行清洗、对储液箱进行注水;或者遇到无法采用湿式清洁系统153进行清洁的待清洁表面时,通过主动式升降模组将湿式清洁系统153升起。
本公开已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本公开限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本公开并不局限于上述实施例,根据本公开的教导还可以做出更多种的变型和修改,这些变型和修改均落在本公开所要求保护的范围以内。本公开的保护范围由附属的权利要求书及其等效范围所界定。

Claims (15)

  1. 一种作业区域表面检测装置,其特征在于,包括信号发射模组及信号接收模组;
    所述信号发射模组包括光发射部及第一光路改变部,所述第一光路改变部设置在所述光发射部的发射光路,用于将所述光发射部发射的光线转换为第一光线,所述第一光线为向所述信号接收模组方向倾斜第一角度的近似平行光;
    所述信号接收模组包括光接收部,所述光发射部与所述光接收部之间设有预设距离的间距,所述光接收部接收到至少部分第二光线,所述第二光线为所述第一光线经由所述作业区域表面反射后的光线;所述至少部分第二光线的光强度用于确定所述作业区域表面的材质。
  2. 根据权利要求1所述的作业区域表面检测装置,其特征在于,所述信号发射模组及信号接收模组相互独立。
  3. 根据权利要求1所述的作业区域表面检测装置,其特征在于,所述第一光路改变部包括第一凸透镜,所述第一凸透镜的厚度沿所述第一凸透镜的第一侧至所述第一凸透镜的第二侧的方向逐渐增加,所述第一凸透镜的第一侧为所述第一凸透镜的远离所述第二光路改变部的一侧,所述第一凸透镜的第二侧为所述第一凸透镜的靠近所述第二光路改变部的一侧。
  4. 根据权利要求3所述的作业区域表面检测装置,其特征在于,所述第一凸透镜的第二侧设有第一全反射部,所述第一全反射部用于将在所述第一凸透镜内射向所述第一凸透镜的第二侧的光线进行全反射,以形成向靠近所述信号接收模组方向倾斜第二角度的近似平行出射光。
  5. 根据权利要求4所述的作业区域表面检测装置,其特征在于,所述第一全反射部包括第一端至第二端逐渐向远离所述第一凸透镜的第一侧方向倾斜的第一平面,所述第一端为所述第一平面的靠近所述光发射部的一端,所述第二端为所述第一平面的远离所述光发射部的一端。
  6. 根据权利要求1所述的作业区域表面检测装置,其特征在于,所述光接收部的接收光路上还设有所述第二光路改变部;所述第二光路改变部用于将所接收到的第二光线转换为第三光线,以被所述光接收部接收,所述第三光线为将所述第二光线转换成向所述光接收部件聚拢的光线。
  7. 根据权利要求6所述的作业区域表面检测装置,其特征在于,所述第二光路改变部包括第二凸透镜,所述第二凸透镜的厚度沿所述第二凸透镜的第一侧至所述第二凸透镜的第二侧的方向逐渐增加,所述第二凸透镜的第一侧为所述第二凸透镜的远离所述第一光路改变部的一侧,所述第二凸透镜的第二侧为所述第二凸透镜的靠近所述第一光路改变部的一侧。
  8. 根据权利要求7所述的作业区域表面检测装置,其特征在于,所述第二凸透镜的第二侧设有第二全反射部,所述第二全反射部用于将在所述第二凸透镜内且射向所述第二凸 透镜的第二侧的光线进行全反射,以形成向所述光接收部聚拢的汇聚光线。
  9. 根据权利要求8所述的作业区域表面检测装置,其特征在于,所述第二全反射部包括第三端至第四端逐渐向远离所述第二凸透镜的第一侧方向倾斜的第二平面,所述第三端为所述第二平面的靠近所述光接收部的一端,所述第四端为所述第二平面的远离所述光接收部的一端。
  10. 根据权利要求9所述的作业区域表面检测装置,其特征在于,所述光发射部及所述光接收部的内壁为非反光材料制成。
  11. 根据权利要求1-10所述的作业区域表面检测装置,所述至少部分第二光线的光强度用于确定所述作业区域表面的材质包括:
    当所述至少部分第二光线的光强度小于预设光强时,确定所述作业区域表面为第一材质。
  12. 根据权利要求11所述的作业区域表面检测装置,当所述至少部分第二光线的光强度大于预设光强时,确定所述作业区域表面为第二材质。
  13. 根据权利要求13所述的作业区域表面检测装置,所述第一材质为粗糙表面;所述第二材质为光滑表面。
  14. 根据权利要求14所述的作业区域表面检测装置,所述粗糙表面为地毯;所述光滑表面为地板或瓷砖。
  15. 一种清洁机器人,其特征在于,包括如权利要求1-14任一项所述的作业区域表面检测装置。
PCT/CN2023/111040 2022-10-25 2023-08-03 作业区域表面检测装置及清洁机器人 WO2024087785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211309171.3A CN115590408A (zh) 2022-10-25 2022-10-25 作业区域表面检测装置及清洁机器人
CN202211309171.3 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024087785A1 true WO2024087785A1 (zh) 2024-05-02

Family

ID=84849553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111040 WO2024087785A1 (zh) 2022-10-25 2023-08-03 作业区域表面检测装置及清洁机器人

Country Status (2)

Country Link
CN (1) CN115590408A (zh)
WO (1) WO2024087785A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115590408A (zh) * 2022-10-25 2023-01-13 北京石头世纪科技股份有限公司(Cn) 作业区域表面检测装置及清洁机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020346A (ko) * 2013-08-12 2015-02-26 삼성전자주식회사 적외선 센서 모듈 및 이를 이용한 로봇 청소기
CN109008781A (zh) * 2018-08-31 2018-12-18 珠海格力电器股份有限公司 除尘装置的控制方法与吸尘器
CN111948661A (zh) * 2019-04-30 2020-11-17 科沃斯机器人股份有限公司 一种自移动设备及探测装置
CN212780511U (zh) * 2020-07-31 2021-03-23 深圳迈博智感科技有限公司 一种地毯探测传感器
CN216060366U (zh) * 2021-05-27 2022-03-18 沈阳中光电子有限公司 一种扫地机器人用地面识别装置
CN114578639A (zh) * 2020-12-01 2022-06-03 宁波舜宇车载光学技术有限公司 投影系统、投影方法及制造方法
CN115590408A (zh) * 2022-10-25 2023-01-13 北京石头世纪科技股份有限公司(Cn) 作业区域表面检测装置及清洁机器人
CN219021025U (zh) * 2022-10-25 2023-05-16 北京石头世纪科技股份有限公司 作业区域表面检测装置及清洁机器人

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020346A (ko) * 2013-08-12 2015-02-26 삼성전자주식회사 적외선 센서 모듈 및 이를 이용한 로봇 청소기
CN109008781A (zh) * 2018-08-31 2018-12-18 珠海格力电器股份有限公司 除尘装置的控制方法与吸尘器
CN111948661A (zh) * 2019-04-30 2020-11-17 科沃斯机器人股份有限公司 一种自移动设备及探测装置
CN212780511U (zh) * 2020-07-31 2021-03-23 深圳迈博智感科技有限公司 一种地毯探测传感器
CN114578639A (zh) * 2020-12-01 2022-06-03 宁波舜宇车载光学技术有限公司 投影系统、投影方法及制造方法
CN216060366U (zh) * 2021-05-27 2022-03-18 沈阳中光电子有限公司 一种扫地机器人用地面识别装置
CN115590408A (zh) * 2022-10-25 2023-01-13 北京石头世纪科技股份有限公司(Cn) 作业区域表面检测装置及清洁机器人
CN219021025U (zh) * 2022-10-25 2023-05-16 北京石头世纪科技股份有限公司 作业区域表面检测装置及清洁机器人

Also Published As

Publication number Publication date
CN115590408A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
TWI788700B (zh) 一種清潔機器人及其控制方法
US11013385B2 (en) Automatic cleaning device and cleaning method
TWI789625B (zh) 一種清潔機器人及其控制方法
US8761939B2 (en) Robot system and control method thereof
TWI765330B (zh) 一種清潔機器人及其控制方法
WO2023193618A1 (zh) 自动清洁设备、控制方法及存储介质
WO2024087785A1 (zh) 作业区域表面检测装置及清洁机器人
WO2022171144A1 (zh) 自动清洁设备控制方法及装置、介质及电子设备
WO2023179616A1 (zh) 清洁机器人及其返回、移出基座的方法、装置
CN111857153A (zh) 一种距离检测装置及扫地机器人
US20220047135A1 (en) Robot cleaner and method for operating same
CN219021025U (zh) 作业区域表面检测装置及清洁机器人
WO2024140376A9 (zh) 打滑状态的检测方法、设备及存储介质
WO2022048153A1 (zh) 机器人的定位方法及装置、存储介质
CN217365667U (zh) 自动清洁设备
CN210931183U (zh) 一种清洁机器人
CN117406296A (zh) 悬崖检测装置及方法、自移动设备
WO2024041366A1 (zh) 自动清洁设备及系统
CN117368889A (zh) 作业区域检测装置、清洁机器人及其作业区域的检测方法
CN117426709A (zh) 一种自移动设备及其测距方法
CN210673216U (zh) 一种滤光式机器人
CN117970356A (zh) 距离检测装置和自行走设备
US20230081449A1 (en) Mobile robot and control method therefor
WO2021098410A1 (zh) 摄像头装置及清洁机器人
CN117502976A (zh) 自移动清洁设备及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881371

Country of ref document: EP

Kind code of ref document: A1