WO2024087757A1 - 直流断路器手车及直流开关设备 - Google Patents

直流断路器手车及直流开关设备 Download PDF

Info

Publication number
WO2024087757A1
WO2024087757A1 PCT/CN2023/108546 CN2023108546W WO2024087757A1 WO 2024087757 A1 WO2024087757 A1 WO 2024087757A1 CN 2023108546 W CN2023108546 W CN 2023108546W WO 2024087757 A1 WO2024087757 A1 WO 2024087757A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
commutation
switch
main
capacitor
Prior art date
Application number
PCT/CN2023/108546
Other languages
English (en)
French (fr)
Inventor
武宏伟
王刚
黄海波
涂占炜
吴炳昌
吴大斌
雷小强
李敏
陈奖
Original Assignee
施耐德电气工业公司
武宏伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施耐德电气工业公司, 武宏伟 filed Critical 施耐德电气工业公司
Publication of WO2024087757A1 publication Critical patent/WO2024087757A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the AC cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the AC cycle for interrupting DC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B11/00Switchgear having carriage withdrawable for isolation
    • H02B11/12Switchgear having carriage withdrawable for isolation with isolation by horizontal withdrawal
    • H02B11/167Switchgear having carriage withdrawable for isolation with isolation by horizontal withdrawal truck type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/02Bases, casings, or covers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B11/00Switchgear having carriage withdrawable for isolation
    • H02B11/02Details
    • H02B11/04Isolating-contacts, e.g. mountings or shieldings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/543Contacts shunted by static switch means third parallel branch comprising an energy absorber, e.g. MOV, PTC, Zener

Definitions

  • At least one embodiment of the present disclosure relates to a DC circuit breaker trolley and a DC switch device.
  • a DC switchgear also known as a DC cabinet
  • a DC switchgear is a distribution device that provides stable DC power supply to electrical equipment. It also serves as an operating power supply and signal alarm device, and can provide stable power supply for large and complex high and low voltage distribution systems.
  • Common DC switchgears are equipped with multiple discrete control components, which can monitor and handle power supply failures caused by circuit breakage of power supply components, overcharging of charging components, etc. Designing a DC switchgear that is easy to operate and has high safety performance is the key to achieving effective monitoring and maintenance of each power supply component.
  • At least one embodiment of the present disclosure provides a DC circuit breaker trolley and a DC switch device.
  • At least one embodiment of the present disclosure provides a DC circuit breaker trolley, comprising a support frame, a current-carrying element, a commutation element, a repulsion component, and an energy absorption element.
  • the support frame comprises a support surface.
  • the current-carrying element is located on the support surface, and comprises a main circuit breaker and an auxiliary circuit breaker electrically connected to each other.
  • the commutation element is located on the support surface, and is electrically connected to the current-carrying element, and comprises a commutation capacitor, a commutation inductor, a commutation switch component, and a commutation capacitor charger electrically connected to each other.
  • the repulsion component is configured to control the opening and closing of the main circuit breaker.
  • the energy absorption element is located on the support surface, and is electrically connected to the current-carrying element and the commutation element.
  • the support frame includes a first end and a second end opposite to each other in a first direction
  • the main circuit breaker and the auxiliary circuit breaker are located at the first end and are spaced apart along a second direction
  • the first direction and the second direction are both parallel to the support surface
  • the first direction is perpendicular to the second direction
  • the main circuit breaker includes a main switch and a first contact arm
  • the auxiliary circuit breaker includes an auxiliary switch and a second contact arm
  • the first contact arm and the second contact arm are both along the first direction
  • the first contact arm and the second contact arm extend in a direction pointing from the first end to the second end, wherein one end of the first contact arm close to the first end is connected to one end of the main switch, one end of the second contact arm close to the first end is connected to one end of the auxiliary switch, and the other end of the main switch is electrically connected to the other end of the auxiliary switch through a conductive element, and the first contact arm and the second contact arm are
  • the commutation capacitor is electrically connected to the commutation capacitor charger, and are both located on the side of the main circuit breaker close to the auxiliary circuit breaker in the second direction; the commutation capacitor charger is located at the first end and on the side of the auxiliary circuit breaker close to the support surface; the commutation capacitor is located at the second end and on the side of the auxiliary circuit breaker close to the support surface, and the orthographic projection of the commutation capacitor on the support surface at least partially overlaps with the orthographic projection of the main circuit breaker and/or the auxiliary circuit breaker on the support surface.
  • the commutation switch assembly is electrically connected to the commutation inductor and the commutation capacitor respectively, and the commutation switch assembly includes a first commutation switch assembly and a second commutation switch assembly, the first commutation switch assembly and the second commutation switch assembly are electrically connected, and are both located on the side of the commutation capacitor away from the supporting surface, the first commutation switch assembly and the second commutation switch assembly are both one-piece structures, wherein, in the third direction, the first commutation switch assembly and the second commutation switch assembly are located between the supporting surface and the first contact arm, and between the supporting surface and the second contact arm.
  • the repulsion component includes a repulsion capacitor and a repulsion capacitor charger, the repulsion capacitor charger is electrically connected to the repulsion capacitor, and the repulsion capacitor charger is configured to charge the repulsion capacitor, wherein the repulsion capacitor and the repulsion capacitor charger are both located at the first end and are located on the side of the main circuit breaker close to the auxiliary circuit breaker in the second direction, the repulsion capacitor charger is located on the side of the auxiliary circuit breaker close to the support surface in the third direction, the repulsion capacitor is located on the side of the repulsion capacitor charger away from the support surface, and the repulsion capacitor is spaced apart from the auxiliary circuit breaker in the first direction.
  • the DC circuit breaker trolley also includes a circuit breaker controller, which is configured to transmit control signals to the main circuit breaker and the auxiliary circuit breaker, wherein the circuit breaker controller is located at the first end and on the side of the main circuit breaker close to the support surface in the third direction, and is adjacent to and spaced apart from the repulsion capacitor charger in the second direction.
  • a circuit breaker controller which is configured to transmit control signals to the main circuit breaker and the auxiliary circuit breaker, wherein the circuit breaker controller is located at the first end and on the side of the main circuit breaker close to the support surface in the third direction, and is adjacent to and spaced apart from the repulsion capacitor charger in the second direction.
  • the energy absorption element includes a main lightning arrester and a commutation switch.
  • the lightning arrester is configured to absorb system energy after the main circuit breaker is opened and reduce the impact of voltage on the main circuit breaker.
  • the commutator switch lightning arrester is configured to reduce the impact of voltage on the commutator switch assembly.
  • the main lightning arrester is connected to the commutator switch lightning arrester as an integrated structure and is located at the second end and on the side of the commutator capacitor close to the main circuit breaker in the second direction.
  • the energy absorption element is located between the support surface and the main circuit breaker in the third direction.
  • the main lightning arrester includes a plurality of electrically connected main lightning arrester units, and the plurality of main lightning arrester units are arranged in an array along the first direction and the third direction to form a plurality of main lightning arrester unit rows and a plurality of main lightning arrester unit columns;
  • the commutator switch lightning arrester includes a plurality of electrically connected commutator switch lightning arrester units, the plurality of commutator switch lightning arrester units are located on a side of the plurality of main lightning arrester units away from the main circuit breaker, and the plurality of commutator switch lightning arrester units are arranged along the third direction to form a commutator switch lightning arrester unit column.
  • the orthographic projection of the second converter switch assembly on the supporting surface is in an "I" shape.
  • the DC circuit breaker trolley further includes a moving component located on a side of the support surface away from the current-carrying element, the commutation element and the energy absorption element, and the moving component is configured to drive the support frame to move.
  • the DC circuit breaker trolley also includes a moving part, and the moving control device is connected to the support frame and is configured to control the moving part so that it drives the support frame to move, wherein the moving control device is located at the first end and on the side of the main circuit breaker away from the second end in the first direction.
  • the support frame further includes at least two support beams, and the at least two support beams are connected to the support surface;
  • the DC circuit breaker trolley further includes a lifting frame, and the lifting frame is detachably connected to the at least two support beams.
  • the commutation inductor is located on a side of the commutation capacitor charger away from the support surface in the third direction, and is located between the main circuit breaker and the auxiliary circuit breaker in the second direction;
  • the DC circuit breaker trolley also includes an isolation transformer, which is electrically connected to the commutation switch assembly and is located on a side of the commutation capacitor away from the support surface, and is adjacent to and spaced apart from the commutation switch assembly.
  • At least one embodiment of the present disclosure further provides a DC switchgear, the DC switchgear comprising the DC circuit breaker trolley described in any of the above embodiments, wherein the DC switchgear comprises a first static contact A first static contact and a second static contact, wherein the first static contact is configured to be detachably connected to the main circuit breaker, and the second static contact is configured to be detachably connected to the auxiliary circuit breaker.
  • FIG. 1 is a three-dimensional view of a DC circuit breaker trolley provided by at least one embodiment of the present disclosure.
  • FIG. 2 is another stereoscopic view of a DC circuit breaker trolley provided by at least one embodiment of the present disclosure.
  • FIG3 is a three-dimensional view of a DC circuit breaker cart without components provided by at least one embodiment of the present disclosure.
  • FIG. 4 is a three-dimensional view of a support frame provided by at least one embodiment of the present disclosure.
  • FIG. 5 is a perspective view of a main circuit breaker provided by at least one embodiment of the present disclosure.
  • FIG. 6 is a perspective view of an auxiliary circuit breaker provided by at least one embodiment of the present disclosure.
  • FIG. 7A is a connection circuit diagram of a DC circuit breaker trolley provided by at least one embodiment of the present disclosure.
  • FIG. 7B is a connection circuit diagram of a DC circuit breaker trolley.
  • FIG. 8 is a perspective view of an energy absorbing element provided by at least one embodiment of the present disclosure.
  • FIG. 9 is a perspective view of a lifting frame provided by at least one embodiment of the present disclosure.
  • FIG. 10 is a three-dimensional view of a DC circuit breaker trolley provided with a lifting frame according to at least one embodiment of the present disclosure.
  • FIG. 11 is a three-dimensional view of a DC switch device provided by at least one embodiment of the present disclosure.
  • the features such as “vertical”, “parallel” and “same” used in the embodiments of the present disclosure include the features such as “vertical”, “parallel” and “same” in a strict sense, as well as the cases where “approximately vertical”, “approximately parallel” and “approximately the same” contain certain errors, taking into account the errors associated with the measurement and the measurement of specific quantities (that is, the limitations of the measurement system), and are expressed within the acceptable deviation range for a specific value determined by ordinary technicians in this field.
  • the “center” in the embodiments of the present disclosure can include a position strictly located at the geometric center and a position approximately centered within a small area around the geometric center. For example, “approximately” can mean within one or more standard deviations, or within 10% or 5% of the value.
  • DC switchgear can include DC switchgear.
  • a DC switchgear it usually includes multiple components such as circuit breakers, chargers, capacitors, inductors, switch controllers, etc., and the components are integrated together according to a specific topology circuit to realize the detection, control and maintenance of the DC power supply system.
  • the inventors of the present application found that the structure of the existing DC switch cabinet is more complicated than that of the AC switch cabinet.
  • the number of main components in the DC switch cabinet is greater than that in the AC switchgear, so the overall volume of the DC switch cabinet is larger.
  • the DC switch cabinets on the market are fixed cabinets, that is, each component is directly set in the DC switch cabinet. When assembling, transporting, inspecting and maintaining each component, the maintenance personnel need to enter the DC switch cabinet to operate, which makes the operation inconvenient and may bring safety risks.
  • At least one embodiment of the present disclosure provides a DC circuit breaker trolley and a DC switch device.
  • the DC circuit breaker trolley provided by at least one embodiment of the present disclosure includes a support frame, a current-carrying element, a commutation element, and an energy absorption element.
  • the support frame includes a support surface.
  • the current-carrying element is located on the support surface and includes a main circuit breaker and an auxiliary circuit breaker electrically connected to each other.
  • the commutation element is located on the support surface and is electrically connected to the current-carrying element and the commutation element, and includes a commutation capacitor, a commutation inductor, a commutation switch assembly, and a commutation capacitor charger electrically connected to each other.
  • the repulsion assembly is configured to control the opening and closing of the main circuit breaker.
  • the energy absorption element is located on the support surface and is electrically connected to the current-carrying element.
  • the DC circuit breaker trolley provided by at least one embodiment of the present disclosure integrates the main components in the DC cabinet on a DC trolley, which can facilitate the assembly, transportation, and inspection of multiple components in the DC cabinet. Repair and maintenance effectively improve the control convenience and safety performance of the DC cabinet.
  • Figure 1 is a stereoscopic view of a DC circuit breaker trolley provided by at least one embodiment of the present disclosure
  • Figure 2 is another stereoscopic view of a DC circuit breaker trolley provided by at least one embodiment of the present disclosure
  • Figure 3 is a stereoscopic view of a DC circuit breaker trolley without components provided by at least one embodiment of the present disclosure
  • Figure 4 is a stereoscopic view of a support frame provided by at least one embodiment of the present disclosure.
  • the DC circuit breaker trolley 01 includes a support frame 10 , a current carrying element 30 , a current conversion element 40 , a repulsive force component 33 and an energy absorbing element 50 .
  • the support frame 10 can be used as a transport carrier for the DC circuit breaker trolley 01.
  • the support frame 10 can be designed to be movable, so as to facilitate moving each component to a position that is convenient for operation in actual application.
  • some fixed frames can also be provided on the support frame 10 according to actual needs to facilitate the placement and fixation of components.
  • some movable frames can also be designed on the support frame 10 to facilitate the extraction and resetting of components arranged thereon.
  • the movable frame can be a drawer type, but is not limited thereto. The embodiments of the present disclosure do not limit the specific structure of the support frame 10.
  • the support frame 10 may be a chassis structure, and the support surface 20 may be a surface located on the chassis structure and close to one side of the plurality of components. A plurality of components may be loaded on the support surface 20.
  • the support surface 20 may not be a plane in the strict sense.
  • the support surface 20 may have a certain degree of undulation, but is not limited thereto.
  • the chassis structure may be a plate-shaped or partially hollow frame, and the embodiments of the present disclosure do not limit the material and specific shape of the support frame 10.
  • the current-carrying element 30 is located on the support surface 20 and includes a main circuit breaker 31 and an auxiliary circuit breaker 32 electrically connected to each other.
  • the repulsion component 33 is configured to control the breaking of the main circuit breaker 31.
  • the main circuit breaker 31 is connected in series with the auxiliary circuit breaker 32.
  • the main circuit breaker 31 is configured to quickly break the line fault, and the auxiliary circuit breaker 32 is configured to finally cut off the entire line.
  • the commutation element 40 is located on the support surface 20, electrically connected to the current-carrying element 30, and includes a commutation capacitor 41, a commutation inductor 43, a commutation switch assembly 44, and a commutation capacitor charger 42 electrically connected to each other.
  • the commutation capacitor 41, the commutation switch assembly 44, and the commutation inductor 43 may be sequentially connected in series, and the formed branch is connected in parallel at both ends of the main circuit breaker 31.
  • the commutation capacitor charger 42 is configured to charge the commutation capacitor 41, but is not limited thereto.
  • the energy absorbing element 50 is located on the supporting surface 20 and is connected to the current carrying element 30 and the current conversion element 30.
  • the energy absorbing element 50 is electrically connected to the component 40.
  • the energy absorbing element 50 may include an arrester, a varistor, and other components to absorb the remaining energy after the line fault is broken, but is not limited thereto.
  • the energy absorbing element 50 may include a main arrester 51 and a converter switch arrester 52, the main arrester 51 being configured to absorb the system energy after the main circuit breaker 31 is broken, and reduce the impact of the voltage on the main circuit breaker 31, and the converter switch arrester 52 being configured to reduce the impact of the voltage on the converter switch assembly 44.
  • the embodiment of the present disclosure integrates the main components in the DC cabinet on the DC circuit breaker trolley 01, which can facilitate the assembly, transportation, inspection and maintenance of multiple components in the DC cabinet, and effectively improve the control convenience and safety performance of the DC cabinet.
  • the embodiments of the present disclosure reasonably plan the spatial relative positions of the components on the DC circuit breaker trolley, and optimize the shape and structure of the components, so that the components have a high degree of integration after being arranged on the DC circuit breaker trolley.
  • the weight of the DC circuit breaker trolley is reduced, and the floor space is reduced, so as to facilitate the assembly, maintenance and replacement of the components.
  • FIG. 5 is a perspective view of a main circuit breaker provided by at least one embodiment of the present disclosure
  • FIG. 6 is a perspective view of an auxiliary circuit breaker provided by at least one embodiment of the present disclosure.
  • the support frame 10 includes a first end 101 and a second end 102 that are opposite to each other in a first direction X.
  • the main circuit breaker 31 and the auxiliary circuit breaker 32 are both located at the first end 101 and are spaced apart along the second direction Y.
  • a certain component is located at the first end 101, which means that most of the structure of the component is located on the support frame 10 and close to the first end 101, and is located at the second end 102, which means that most of the structure of the component is located on the support frame 10 and close to the second end 102.
  • the main circuit breaker 31 includes a main switch 311 and a first contact arm 312 .
  • the main circuit breaker 31 may include an upper cavity 313 and a lower cavity 314 connected in the third direction Z.
  • the main switch 311 is located in the upper cavity 313.
  • a main control mechanism for controlling the switching of the main switch 311 may also be provided in the lower cavity 314.
  • An end of the first contact arm 312 close to the first end 101 is connected to an end of the main switch 311.
  • An end of the first contact arm 312 close to the second end 102 may include a first moving contact connected to the DC cabinet.
  • the auxiliary circuit breaker 32 includes an auxiliary switch 321 and a second contact arm 322.
  • the auxiliary circuit breaker 32 may include an upper cavity 323 and a lower cavity 324 connected in the third direction Z.
  • the auxiliary switch 321 is located in the upper cavity 323, and an auxiliary control mechanism for controlling the opening and closing of the auxiliary switch 321 may also be provided in the lower cavity 324.
  • One end of the second contact arm 322 close to the first end 101 is connected to one end of the auxiliary switch 321.
  • One end of the second contact arm 322 close to the second end 102 may include a contact body connected to the DC cabinet.
  • the first contact arm 312 and the second contact arm 322 both extend along the first direction X and from the first end 101 to the second end 102 .
  • the other end of the main switch 311 is electrically connected to the other end of the auxiliary switch 321 through the conductive element 45, and the first contact arm 312 and the second contact arm 322 are both farther away from the support surface 20 than the conductive element 45 in the third direction Z.
  • a space between the first contact arm 312 and the support surface 20 and a space between the second contact arm 322 and the support surface 20 can be reserved for placing other components.
  • the conductive element 45 can be a copper busbar, but is not limited thereto.
  • the first direction X and the second direction Y are both parallel to the support surface 20 , and the first direction X is perpendicular to the second direction Y, and the third direction Z is perpendicular to the first direction X, and the third direction Z is perpendicular to the second direction Y.
  • FIG. 7A is a connection circuit diagram of a DC circuit breaker trolley provided in at least one embodiment of the present disclosure
  • FIG. 7B is a connection circuit diagram of a DC circuit breaker trolley.
  • the DC cabinet in mode 1, includes a first static contact and a second static contact, the first static contact corresponds to a connection end B1, and the second static contact corresponds to a connection end B2.
  • the first moving contact of the first contact arm 312 corresponds to a connection end A1, and the corresponding connection end when the main circuit breaker 31 is connected to the conductive element 45 is A2.
  • the second moving contact of the second contact arm 322 corresponds to a connection end C1, and the corresponding connection end when the auxiliary circuit breaker 32 is connected to the conductive element 45 is C2.
  • the first moving contact and the second moving contact can be respectively connected to the corresponding first static contact and the second static contact in the DC cabinet, so that the main switch 311 of the main circuit breaker 31 and the auxiliary switch 321 of the auxiliary circuit breaker 32 can be closed (refer to FIG. 5 and FIG. 6).
  • the path formed by connecting the first static contact, the first moving contact, the main switch 311, the conductive element 45, the auxiliary switch 321, the second moving contact and the second static contact in sequence is connected (that is, the path formed by B1-A1-A2-C2-C1-B2 is connected), and the path is connected to the main circuit of the DC cabinet.
  • the DC cabinet includes a connection terminal H1 corresponding to the first static contact, a connection terminal H2 corresponding to the second static contact, a connection terminal K1 corresponding to the third static contact, and a connection terminal K2 corresponding to the fourth static contact.
  • the main switch includes a connection terminal L1 corresponding to the first moving contact and a connection terminal L2 corresponding to the third moving contact
  • the auxiliary switch includes a connection terminal M1 corresponding to the second moving contact and a connection terminal M4 corresponding to the fourth moving contact.
  • the first moving contact and the second moving contact can be connected to the corresponding first static contact and the second static contact in the DC cabinet, respectively, and the third moving contact and the fourth moving contact can be connected to the corresponding third static contact and the fourth static contact in the DC cabinet, respectively, so that the main switch and the auxiliary switch can be closed.
  • the first static contact, the first moving contact, The passage formed by connecting the main switch, the third moving contact, the third static contact, the fourth static contact, the fourth moving contact, the auxiliary switch, the second moving contact and the second static contact in sequence is connected (that is, the passage formed by H1-L1-L2-K1-K2-M2-M1-H2 is connected), and the passage is connected to the main circuit of the DC cabinet.
  • the embodiment of the present disclosure adopts the connection method in method 1.
  • this connection method realizes the short circuit between the main circuit breaker 31 and the auxiliary circuit breaker 32 far away from the DC cabinet by using the conductive element 45.
  • the main circuit breaker 31 and the auxiliary circuit breaker 32 can be connected to only one contact arm respectively, so that the size of the DC circuit breaker trolley 01 in the first direction X can be shortened, and multiple components can be arranged between the first contact arm 312 and the support surface 20, or between the second contact arm 322 and the support surface 20, so that the space utilization rate of the DC circuit breaker trolley 01 can be improved.
  • the connection structure of the circuit under this connection method is simple and easy to implement.
  • the commutation capacitor 41 is electrically connected to the commutation capacitor charger 42, and both are located on one side of the main circuit breaker 31 close to the auxiliary circuit breaker 32 in the second direction Y.
  • the commutation capacitor charger 42 is located at the first end 101, and is located on one side of the auxiliary circuit breaker 32 close to the support surface 20.
  • the commutation capacitor 41 is located at the second end 102 and at one side of the auxiliary circuit breaker 32 close to the support surface 20, and the orthographic projection of the commutation capacitor 41 on the support surface 20 at least partially overlaps with the orthographic projection of the main circuit breaker 31 on the support surface 20.
  • the orthographic projection of the commutation capacitor 41 on the support surface 20 at least partially overlaps with the orthographic projection of the auxiliary circuit breaker 32 on the support surface 20.
  • the orthographic projection of the commutation capacitor 41 on the support surface 20 at least partially overlaps with the orthographic projection of the main circuit breaker 31 on the support surface 20 and the orthographic projection of the auxiliary circuit breaker 32 on the support surface 20.
  • the dimensions of the commutation capacitor 41 and the commutation capacitor charger 42 in the second direction Y are smaller than the dimensions of the DC circuit breaker cart 01 in the second direction Y, and the two are located on the same side of the DC circuit breaker cart 01 in the second direction Y, which is conducive to the commutation capacitor charger 42 charging the commutation capacitor 41.
  • the orthographic projection of the commutation capacitor 41 on the support surface 20 at least partially overlaps with the orthographic projection of the main circuit breaker 31 on the support surface 20.
  • the orthographic projection of the commutation capacitor 41 on the support surface 20 at least partially overlaps with the orthographic projection of the auxiliary circuit breaker 32 on the support surface 20.
  • the orthographic projection of the commutation capacitor 41 on the support surface 20 at least partially overlaps with the orthographic projection of the main circuit breaker 31 on the support surface 20 and the orthographic projection of the auxiliary circuit breaker 32 on the support surface 20.
  • the space between the main circuit breaker 31 and the support surface 20, as well as the space between the auxiliary circuit breaker 32 and the support surface 20, can be effectively utilized, so that the DC circuit breaker 31 can be effectively used.
  • the spatial structure of the road device trolley 01 is more compact.
  • the commutation capacitor 41 is roughly in the shape of a rectangular parallelepiped and includes two parts stacked. One end of the commutation capacitor 41 can be connected to one end of the main circuit breaker 31 and one end of the main lightning arrester 51, and the other end of the commutation capacitor 41 can be connected to the commutation switch assembly 44 and the commutation switch lightning arrester 52 (refer to FIG2 ).
  • connection terminals are respectively provided at the opposite ends of the commutation capacitor 41 located in the first direction X, which is conducive to the electrical connection of the commutation capacitor 41 with other components, respectively, so that the multiple lines connected to the commutation capacitor 41 can maintain relative independence and reduce crosstalk between each other.
  • the number of connection terminals of the commutation capacitor 41 provided in the embodiment of the present disclosure is only exemplary. In different application scenarios, the number can be set according to different requirements, and the embodiment of the present disclosure is not limited to this.
  • the commutation capacitor 41 may be provided with a plurality of connection terminals only on one side thereof, and electrically connected to other components on the other side by directly leading out connection lines (e.g., electric wires), thereby further saving space and satisfying the convenience of electrical connection, but is not limited thereto.
  • connection lines e.g., electric wires
  • the embodiment of the present disclosure further provides two discharge connection terminals 411 on the side of the commutation capacitor 41 close to the second end 102 , and the discharge connection terminals 411 extend toward the side close to the support surface 20 and are configured to be connected to the discharge element (e.g., discharge resistor) in the DC cabinet, thereby facilitating the discharge of the commutation capacitor 41 to improve safety performance.
  • the discharge element e.g., discharge resistor
  • the commutation inductor 43 is located on a side of the commutation capacitor charger 42 away from the support surface 20 in the third direction Z, and is located between the main circuit breaker 31 and the auxiliary circuit breaker 32 in the second direction Y.
  • the commutation inductor 43 is substantially cylindrical, and while the conductive element 45 connects the main circuit breaker 31 and the auxiliary circuit breaker 32, it is surrounded by the conductive element 45 on a side of the conductive element 45 away from the second end 102, so that the commutation inductor 43 can be stably arranged, not easy to shake or fall, and is easy to be electrically connected to the commutation capacitor 41.
  • the DC circuit breaker trolley 01 further includes an isolation transformer 55.
  • the isolation transformer 55 is electrically connected to the commutation switch assembly 44, and is located on a side of the commutation capacitor 41 away from the support surface 20, and is adjacent to and spaced from the commutation switch assembly 44.
  • the volume of the isolation transformer 55 is relatively small, and is smaller than the volume of the commutation switch assembly 44.
  • the isolation transformer 55 can be connected in parallel to both ends of the commutation switch assembly 44, and can also be connected to an external power source to supply power to the commutation switch assembly 44.
  • the power supply voltage of the switch assembly 44 can be 220V, and the setting of the isolation transformer 55 can use the principle of electromagnetic induction to prevent excessive voltage on the power supply side from entering the commutation switch assembly 44 and causing damage to components.
  • the isolation transformer 55 can prevent voltages of 10 kV or more on the power supply side from entering the commutation switch assembly 44, but is not limited thereto.
  • the commutation switch component 44 is electrically connected to the commutation inductor 43 and the commutation capacitor 41 , respectively, and the commutation switch component 44 includes a first commutation switch component 441 and a second commutation switch component 442 .
  • the first commutation switch assembly 441 and the second commutation switch assembly 442 are electrically connected, and are both located on a side of the commutation capacitor 41 away from the supporting surface 20 .
  • the first commutation switch assembly 441 and the second commutation switch assembly 442 are both integrated structures.
  • the first commutation switch assembly 441 and the second commutation switch assembly 442 are located between the support surface 20 and the first contact arm 312 , and between the support surface 20 and the second contact arm 322 .
  • the commutation capacitor 41, the commutation switch assembly 44, and the commutation inductor 43 may be connected in series in sequence, and the branch may be connected in parallel with the main circuit breaker 31, and used to generate an oscillation loop and create a current zero crossing when a line fault is broken.
  • the first commutation switch assembly 441 may include a commutation switch IGCT (Integrated Gate Commutated Thyristor) assembly
  • the second commutation switch assembly 442 may include a commutation switch thyristor assembly
  • the first commutation switch assembly 441 and the second commutation switch assembly 442 are connected in series, but are not limited thereto.
  • such a configuration is conducive to achieving electrical connection between the first commutation switch assembly 441, the second commutation switch assembly 442, the commutation inductor 43 and the commutation capacitor 41.
  • the first commutation switch assembly 441 and the second commutation switch assembly 442 can also effectively utilize the space between the support surface 20 and the first contact arm 312 and the space between the support surface 20 and the second contact arm 322, thereby making the layout of the DC circuit breaker trolley 01 more reasonable.
  • the first converter switch component 441 and the second converter switch component 442 are both rectangular or approximately rectangular, but are not limited to this.
  • the orthographic projection of the second converter switch component 442 on the support surface 20 is in an "I" shape.
  • the orthographic projection of the second converter switch component 442 on the support surface 20 extends in a direction from the first end 101 to the second end 102. In this way, compared to making the orthographic projection of the second converter switch component 442 on the support surface 20 in other shapes, such as an "L" shape, the overall volume of the second converter switch component 442 is reduced, which is conducive to miniaturization.
  • the sum of the dimensions of the first converter switch component 441 and the second converter switch component 442 in the first direction X is approximately equal to the dimension of the converter capacitor 41 in the first direction X.
  • the size of the first converter switch component 441 in the second direction Y The size is larger than the size of the second commutation switch assembly 442 in the second direction Y, and the size of the first commutation switch assembly 441 in the second direction Y is roughly equal to the size of the commutation capacitor 41 in the second direction Y, which is conducive to achieving a good layout of the DC circuit breaker trolley 01.
  • the repulsion component 33 includes a repulsion capacitor 331 and a repulsion capacitor charger 332, and the repulsion capacitor charger 332 is electrically connected to the repulsion capacitor 331 and is configured to charge the repulsion capacitor 331.
  • the repulsion component 33 may also include a repulsion switch thyristor component 333, which is configured to control the rapid opening of the main circuit breaker 31 together with the circuit breaker controller (see the relevant description of the following embodiment) when a line fault occurs.
  • the volume of the repulsion capacitor 331 is greater than the volume of the repulsion capacitor charger 332, but is not limited to this.
  • the repulsion switch thyristor component 333 can be located in the main circuit breaker 31, but is not limited to this.
  • the repulsive capacitor 331 and the repulsive capacitor charger 332 are both located at the first end 101 and on the side of the main circuit breaker 31 close to the auxiliary circuit breaker 32 in the second direction Y.
  • the repulsive capacitor 331 is located on the side of the repulsive capacitor charger 332 away from the support surface 20 and is spaced apart from the auxiliary circuit breaker 32 in the first direction X, so as to facilitate the charging of the repulsive capacitor 331 by the repulsive capacitor charger 332.
  • the repulsive capacitor charger 332 is located on the side of the auxiliary circuit breaker 32 close to the support surface 20 in the third direction Z. Such a configuration facilitates the control and maintenance of the repulsive capacitor charger 332.
  • the DC circuit breaker trolley 01 further includes a circuit breaker controller (not shown), which is configured to transmit control signals to the main circuit breaker 31 and the auxiliary circuit breaker 32.
  • the circuit breaker controller is located at the first end 101, and is located on the side of the main circuit breaker 31 close to the support surface 20 in the third direction Z, and is adjacent to and spaced from the repulsive capacitor charger 332 in the second direction Y.
  • the circuit breaker controller is located on the side of the repulsive capacitor charger 332 close to the second end 102 in the first direction, but is not limited thereto.
  • the volume of the circuit breaker controller may be smaller than the volume of the repulsion capacitor charger 332 adjacent thereto, but is not limited thereto.
  • the circuit breaker controller may include a main circuit breaker controller and an auxiliary circuit breaker controller.
  • the main circuit breaker controller may control the opening of the main circuit breaker 31 together with the repulsion switch thyristor assembly 333, and control the closing of the main circuit breaker 31.
  • the auxiliary circuit breaker controller may control the opening and closing of the auxiliary circuit breaker 32.
  • the main circuit breaker controller may be a permanent magnet controller for the main circuit breaker
  • the auxiliary circuit breaker controller may be a permanent magnet controller for the auxiliary circuit breaker.
  • a repulsion mechanism may be further provided in the main circuit breaker 31, and the repulsion mechanism may be electrically connected to the repulsion assembly 33 in the above embodiment, and together control the opening of the main circuit breaker 31.
  • the repulsion mechanism may include a repulsion coil and a repulsion disk, but is not limited thereto.
  • the control and protection system of the DC cabinet will issue an opening command, and the repulsion switch thyristor assembly 333 will control the repulsion capacitor 331 to discharge to the repulsion coil located in the main circuit breaker 31, so that the repulsion coil controls the repulsion disk to drive the main circuit breaker 31 to open, for example, the main switch 311 (refer to FIG5 ) in the main circuit breaker 31 is disconnected.
  • the permanent magnetic capacitor inside the main circuit breaker controller discharges the permanent magnetic coil to drive the main circuit breaker 31 to open.
  • the main switch 311 (refer to FIG5 ) in the main circuit breaker controller 31 can be disconnected under the joint action of the repulsion coil controller and the main circuit breaker controller.
  • the permanent magnetic capacitor inside the auxiliary circuit breaker controller discharges the permanent magnetic coil to drive the auxiliary circuit breaker 32 to open.
  • the auxiliary switch 321 (refer to FIG. 6 ) in the auxiliary circuit breaker 32 can be opened under the action of the auxiliary circuit breaker controller 32.
  • the main switch 311 (refer to FIG. 5 ) in the main circuit breaker controller 31 can be closed under the action of the main circuit breaker controller
  • the auxiliary switch 321 (refer to FIG. 6 ) in the auxiliary circuit breaker 32 can be closed under the action of the auxiliary circuit breaker controller, but is not limited thereto.
  • the main lightning arrester 51 and the commutation switch lightning arrester 52 are connected as an integrated structure and are located at the second end 102 and on a side of the commutation capacitor 41 close to the main circuit breaker 31 in the second direction Y.
  • the energy absorbing element 50 is located between the support surface 20 and the main circuit breaker 31 in the third direction Z.
  • the commutation capacitor 41 is connected in series with the first commutation switch assembly 441 and the second commutation switch assembly 442.
  • one end of the main lightning arrester 51 can be connected to one end of the commutation capacitor 41 away from the commutation switch assembly 44, and the other end of the main lightning arrester 51 is connected to one end of the second commutation switch assembly 442 away from the commutation capacitor 41.
  • the commutation switch lightning arrester 52 is connected in parallel to both ends of the commutation switch assembly 44, for example, one end of the commutation switch lightning arrester 52 is connected to one end of the commutation switch assembly 44 close to the commutation capacitor 41, and the other end of the commutation switch lightning arrester 52 is connected to one end of the second commutation switch assembly 442 away from the commutation capacitor 41.
  • Such a configuration is conducive to achieving electrical connection between the main lightning arrester 51 and the converter switch lightning arrester 52 and various components.
  • the main lightning arrester 51 and the converter switch lightning arrester 52 are designed as an integrated structure, which is conducive to reducing the occupied space and effectively utilizing the space between the support surface 20 and the main circuit breaker 31.
  • FIG. 8 is a perspective view of an energy absorbing element provided by at least one embodiment of the present disclosure.
  • the main lightning arrester 51 includes a plurality of electrically connected main lightning arrester units 511.
  • the plurality of main lightning arrester units 511 are arranged in an array along the first direction X and the third direction Z to form a plurality of main Arrester unit rows and a plurality of main arrester unit columns.
  • the converter switch arrester 52 further includes a plurality of electrically connected converter switch arrester units 521.
  • the plurality of converter switch arrester units 521 are located on a side of the plurality of main arrester units 511 away from the main circuit breaker 31, and the plurality of converter switch arrester units 521 are arranged along the third direction Z to form a converter switch arrester unit column.
  • the size of the main lightning arrester unit 511 in the second direction Y may be the same or substantially the same as the size of the converter switch lightning arrester unit 521 in the second direction Y, but is not limited thereto.
  • the main lightning arrester 51 and the converter switch lightning arrester 52 may be metal oxide variable resistor type lightning arresters, a plurality of main lightning arrester units 511 may be connected in parallel with each other, and a plurality of converter switch lightning arrester units 521 may also be connected in parallel with each other, but is not limited thereto.
  • the side of the plurality of main lightning arrester units 511 away from the main circuit breaker 31 is electrically connected to the plurality of converter switch lightning arrester units 521 to form a common electrode, and the common electrode may be electrically connected to, for example, the second converter switch assembly 442 in the converter switch assembly 44.
  • multiple main lightning arrester units 511 and multiple converter switch lightning arrester units 521 are arranged in this way, which can reduce the size of the DC circuit breaker cart 01 in the second direction Y, facilitate the reasonable layout between other components in the DC circuit breaker cart 01, and also facilitate electrical connection with adjacent components.
  • the DC circuit breaker trolley 01 further includes a moving component 70.
  • the moving component 70 is located on a side of the support surface 20 away from the current-carrying element 30, the current-converting element 40 and the energy-absorbing element 50 (see Figure 2), and the moving component 70 is configured to drive the support frame 10 to move.
  • the moving component 70 may be a moving wheel group including a plurality of moving wheels, so as to drive the support frame 10 to move, but not limited thereto.
  • the moving component 70 may include 4 or 6 moving wheels, but not limited thereto.
  • the DC circuit breaker trolley 01 also includes a mobile control device 80.
  • the mobile control device 80 is connected to the support frame 10, and is configured to control the moving component 70 to drive the support frame 10 to move.
  • the mobile control device 80 can be connected to the support frame 10 through a frame structure provided on the support frame 10, but is not limited to this.
  • the mobile control device 80 can also be directly connected to the support frame 10.
  • the mobile control device 80 may include a crank.
  • the support frame 10 can be moved by shaking the crank, but is not limited to this.
  • the embodiments of the present disclosure do not limit the type and specific shape of the mobile control device 80.
  • the mobile control device 80 is located at the first end 101 of the DC circuit breaker trolley 01 and is located on a side of the main circuit breaker 31 away from the second end 102 in the first direction X. In this way, It is advantageous to move the DC circuit breaker trolley 01 into or out of the DC cabinet by moving the control device 80, so as to facilitate operation.
  • the support frame 10 further includes at least two support beams 90. At least two support beams 90 are connected to the support surface 20.
  • the support beam 90 may have different structural forms.
  • the surface of the support beam 90 on the side away from the moving part 70 may be in or approximately in the same plane as the support surface 20, but is not limited thereto.
  • the support beam 90 may include a first support beam 901 and a second support beam 902.
  • the first support beam 901 may include two beams, which are respectively arranged at the first end 101 and the second end 102.
  • the cross-sectional area of the second support beam 902 is smaller than the cross-sectional area of the first support beam 901, and is arranged as one beam and is located between the two first support beams 901. With such an arrangement, the gravity distribution of the DC circuit breaker trolley 01 can be satisfied so as to have good structural stability.
  • FIG. 9 is a stereoscopic view of a lifting frame provided by at least one embodiment of the present disclosure
  • FIG. 10 is a stereoscopic view of a DC circuit breaker trolley provided with a lifting frame provided by at least one embodiment of the present disclosure.
  • the DC circuit breaker trolley 01 further includes a lifting frame 92.
  • the lifting frame 92 is detachably connected to at least two support beams 90.
  • the lifting frame 92 includes a plurality of fixed ends, such as a fixed end 921, a fixed end 922, a fixed end 923, and a fixed end 924.
  • the plurality of fixed ends are respectively connected to the ends of the plurality of support beams 90 of the support frame 10.
  • both sides of the same support beam are respectively connected to two opposite fixed ends of the lifting frame 92, but the invention is not limited thereto.
  • the DC circuit breaker trolley 01 can be hoisted from the top as a whole through the lifting frame 92 by a hoisting device, which is convenient for installation and transportation.
  • the support beam 90 in the support frame 10 can have different structural forms, and the multiple support beams 90 can also have different arrangement forms, and thus the design form of the lifting frame 92 (see Figure 9) can also be diversified while satisfying the connection with the support beam 90, and the embodiments of the present disclosure are not limited to this.
  • FIG. 11 is a three-dimensional view of a DC switch device provided by at least one embodiment of the present disclosure.
  • an embodiment of the present disclosure further provides a DC switch device 02.
  • the DC switch device 02 includes the DC circuit breaker trolley 01 and the DC switch cabinet 023 described in any of the above embodiments.
  • the DC switchgear 02 may include a plurality of independent working chambers, such as a trolley room for placing the DC circuit breaker trolley 01, a cable room for arranging line cables, an instrument room for arranging secondary components for monitoring, protection and measurement, and a busbar room for arranging the main busbar, etc., but not Limited to this.
  • the DC switch cabinet 023 includes a first static contact (not shown) and a second static contact 022 , wherein the first static contact is configured to be detachably connected to the main circuit breaker 31 , and the second static contact 022 is configured to be detachably connected to the auxiliary circuit breaker 32 .
  • the first static contact can be arranged in the busbar room and connected to the main busbar
  • the second static contact can be arranged in the busbar room and connected to the line cable in the cable room.
  • the DC circuit breaker trolley 01 can move in and out of the trolley room, and is connected to the first static contact through the first contact arm 312 in the main circuit breaker 31, and is connected to the second static contact through the second contact arm 322 in the auxiliary circuit breaker 32, so as to achieve the whole circuit connection.
  • the first moving contact at one end of the first contact arm 312 can be a plum blossom contact
  • the second moving contact at one end of the second contact arm 322 can also be a plum blossom contact, but not limited to this.
  • first static contact and the second static contact 022 can both be cylindrical contacts, but not limited to this.
  • first contact arm 312 and the first static contact can be connected by sliding, and the second contact arm 322 and the second static contact can also be connected by sliding, but not limited to this.
  • the main working process of the DC switchgear 02 includes:
  • the control and protection system of the DC cabinet will issue a tripping command, and the repulsion switch thyristor assembly 333 in the repulsion assembly 33 and the circuit breaker controller together control the rapid tripping of the main circuit breaker 31, and the main switch in the main circuit breaker 31 (see Figure 5) is opened, and an arc is formed between its electrodes.
  • the commutation switch assembly 44 When the electrodes reach a certain opening distance, the commutation switch assembly 44 is connected, and the commutation capacitor 41 forms an oscillation circuit through the current-carrying branch formed by connecting the current-carrying element 30 with the commutation inductor 43, and generates an oscillation current in the opposite direction to the current in the current-carrying branch, so that the arc in the main switch in the main circuit breaker 31 (see Figure 5) is extinguished when its current is forced to cross zero, and the current is transferred to the commutation branch formed by the commutation element 40.
  • the commutation capacitor 41 is reversely charged, and when the voltage of the commutation capacitor 41 exceeds the action voltage of the main lightning arrester (see Figure 2) in the energy absorption element, the current is gradually transferred to the branch where the main lightning arrester is located, until the current of the main lightning arrester crosses zero, and the line fault is disconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种直流断路器手车(01)及直流开关设备(02)。直流断路器手车(01)包括支撑架(10)、载流元件(30)、换流元件(40)、斥力组件(33)以及能量吸收元件(50)。支撑架(10)包括支撑面(20),载流元件位于支撑面(20)上且包括彼此电连接的主断路器(31)和辅助断路器(32)。换流元件(40)位于支撑面(20)上,且与载流元件(30)电连接,并包括彼此电连接的换流电容(41)、换流电感(43)、换流开关组件(44)以及换流电容充电机(42)。斥力组件(33)被配置为控制主断路器(31)的开断。能量吸收元件(50)位于支撑面(20)上,且与载流元件(30)和换流元件(40)电连接。通过将直流柜中的主要元器件集成在一个直流手车上,有利于对直流柜中的多个元器件进行装配、运输、检修以及维护,有效提升了直流柜的操控便利性及安全性能。

Description

直流断路器手车及直流开关设备
本申请要求于2022年10月28日递交的中国专利申请第202211337900.6号的优先权,在此出于所有目标全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种直流断路器手车及直流开关设备。
背景技术
通常,直流开关柜又称为直流柜,是一种为用电设备提供稳定的直流供电的配电设备,同时作为操作电源和信号报警设备,可为较大且复杂的高低压配电系统提供稳定的供电。常见的直流开关柜中设置有多个分立的控制元器件,这些控制元器件可以针对由于供电元器件的断路、充电元件的过充等造成的供电故障进行监控和处理。设计一种操控便利且安全性能高的直流开关设备,是实现针对各个供电元器件进行有效监控和维护的关键。
发明内容
本公开至少一个实施例提供一种直流断路器手车及直流开关设备。
本公开至少一个实施例提供一种直流断路器手车,包括支撑架、载流元件、换流元件、斥力组件以及能量吸收元件。所述支撑架包括支撑面。所述载流元件位于所述支撑面上,包括彼此电连接的主断路器和辅助断路器。换流元件位于所述支撑面上,与所述载流元件电连接,并包括彼此电连接的换流电容、换流电感、换流开关组件以及换流电容充电机。所述斥力组件被配置为控制所述主断路器的开断。所述能量吸收元件位于所述支撑面上,且与所述载流元件和所述换流元件电连接。
例如,根据本公开的实施例,所述支撑架包括在第一方向上相对的第一端和第二端,所述主断路器和所述辅助断路器位于所述第一端,并沿第二方向间隔设置,所述第一方向和所述第二方向均平行于所述支撑面,且所述第一方向与所述第二方向垂直,所述主断路器包括主开关和第一触臂,所述辅助断路器包括辅助开关和第二触臂,所述第一触臂和所述第二触臂均沿所述第一方向且 从所述第一端指向所述第二端的方向延伸,其中,所述第一触臂的靠近所述第一端的一端与所述主开关的一端连接,所述第二触臂的靠近所述第一端的一端与所述辅助开关的一端连接,所述主开关的另一端与所述辅助开关的另一端通过导电元件电连接,所述第一触臂和所述第二触臂均比所述导电元件在第三方向上更远离所述支撑面,所述第三方向与所述第一方向垂直,且所述第三方向与所述第二方向垂直。
例如,根据本公开的实施例,所述换流电容与所述换流电容充电机电连接,并在所述第二方向上均位于所述主断路器的靠近所述辅助断路器的一侧,所述换流电容充电机位于所述第一端,并位于所述辅助断路器的靠近所述支撑面的一侧;所述换流电容位于所述第二端,并位于所述辅助断路器的靠近所述支撑面的一侧,所述换流电容在所述支撑面上的正投影与所述主断路器,和/或所述辅助断路器在所述支撑面上的正投影至少部分交叠。
例如,根据本公开的实施例,所述换流开关组件与所述换流电感和所述换流电容分别电连接,所述换流开关组件包括第一换流开关组件和第二换流开关组件,所述第一换流开关组件和所述第二换流开关组件电连接,且均位于所述换流电容的远离所述支撑面的一侧,所述第一换流开关组件和所述第二换流开关组件均为一体式结构,其中,在所述第三方向上,所述第一换流开关组件和所述第二换流开关组件位于所述支撑面与第一触臂之间,并位于所述支撑面与第二触臂之间。
例如,根据本公开的实施例,所述斥力组件包括斥力电容和斥力电容充电机,所述斥力电容充电机与所述斥力电容电连接,所述斥力电容充电机被配置为向所述斥力电容充电,其中,所述斥力电容和所述斥力电容充电机均位于所述第一端,并在所述第二方向上位于所述主断路器的靠近所述辅助断路器的一侧,所述斥力电容充电机在所述第三方向上位于所述辅助断路器的靠近所述支撑面的一侧,所述斥力电容位于所述斥力电容充电机的远离所述支撑面的一侧,所述斥力电容在所述第一方向上与所述辅助断路器间隔设置。
例如,根据本公开的实施例,直流断路器手车还包括断路控制器,被配置为向所述主断路器和所述辅助断路器传输控制信号,其中,所述断路控制器位于所述第一端,且在所述第三方向上位于所述主断路器的靠近所述支撑面的一侧,并在所述第二方向上与所述斥力电容充电机相邻且间隔设置。
例如,根据本公开的实施例,所述能量吸收元件包括主避雷器和换流开关 避雷器,所述主避雷器被配置为吸收所述主断路器开断后的系统能量,减小电压对所述主断路器的冲击,所述换流开关避雷器被配置为减小电压对所述换流开关组件的冲击,所述主避雷器与所述换流开关避雷器连接为一体式结构,且位于所述第二端,并在所述第二方向上位于所述换流电容的靠近所述主断路器的一侧,所述能量吸收元件在所述第三方向上位于所述支撑面与所述主断路器之间。
例如,根据本公开的实施例,所述主避雷器包括多个电连接的主避雷器单元,所述多个主避雷器单元沿所述第一方向和所述第三方向阵列排布,以形成多个主避雷器单元行和多个主避雷器单元列;所述换流开关避雷器包括多个电连接的换流开关避雷器单元,所述多个换流开关避雷器单元位于所述多个主避雷器单元的远离所述主断路器的一侧,且所述多个换流开关避雷器单元沿所述第三方向排布以形成换流开关避雷器单元列。
例如,根据本公开的实施例,在所述第三方向上,所述第二换流开关组件在所述支撑面上的正投影呈“I”形。
例如,根据本公开的实施例,直流断路器手车还包括移动部件,位于所述支撑面的远离所述载流元件、所述换流元件以及所述能量吸收元件的一侧,所述移动部件被配置为带动所述支撑架移动。
例如,根据本公开的实施例,直流断路器手车还包括移动部件,所述移动控制装置与所述支撑架连接,被配置为控制所述移动部件以使其带动所述支撑架移动,其中,所述移动控制装置位于所述第一端,并在所述第一方向上位于所述主断路器的远离所述第二端的一侧。
例如,根据本公开的实施例,所述支撑架还包括至少两根支撑梁,所述至少两根支撑梁与所述支撑面连接;所述直流断路器手车还包括起吊框架,所述起吊框架与所述至少两根支撑梁可拆卸连接。
例如,根据本公开的实施例,所述换流电感在所述第三方向上位于所述换流电容充电机的远离所述支撑面的一侧,并在所述第二方向上位于所述主断路器与所述辅助断路器之间;所述直流断路器手车还包括隔离变压器,所述隔离变压器与所述换流开关组件电连接,且位于所述换流电容的远离所述支撑面的一侧,并与所述换流开关组件相邻且间隔设置。
本公开的至少一个实施例还提供一种直流开关设备,该直流开关设备包括上述任一实施例所述的直流断路器手车,其中,所述直流开关柜包括第一静触 头和第二静触头,所述第一静触头被配置为与所述主断路器可拆卸连接,第二静触头被配置为与所述辅助断路器可拆卸连接。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开至少一个实施例所提供的直流断路器手车的一种立体视图。
图2为本公开至少一个实施例所提供的直流断路器手车的另一种立体视图。
图3为本公开至少一个实施例所提供的未装载元器件的直流断路器手车的立体视图。
图4为本公开至少一个实施例所提供的支撑架的一种立体视图。
图5为本公开至少一个实施例所提供的主断路器的立体视图。
图6为本公开至少一个实施例所提供的辅助断路器的立体视图。
图7A为本公开至少一个实施例所提供的直流断路器手车的连接线路图。
图7B为一种直流断路器手车的连接线路图。
图8为本公开至少一个实施例所提供的能量吸收元件的立体视图。
图9为本公开至少一个实施例所提供的起吊框架的立体视图。
图10为本公开至少一个实施例所提供的设置有起吊框架的直流断路器手车的立体视图。
图11为本公开至少一个实施例所提供的直流开关设备的立体视图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二” 以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
本公开实施例中使用的“垂直”、“平行”以及“相同”等特征均包括严格意义的“垂直”、“平行”、“相同”等特征,以及“大致垂直”、“大致平行”、“大致相同”等包含一定误差的情况,考虑到测量和与特定量的测量相关的误差(也就是,测量系统的限制),表示在本领域的普通技术人员所确定的对于特定值的可接受的偏差范围内。本公开实施例中的“中心”可以包括严格的位于几何中心的位置以及位于几何中心周围一小区域内的大致中心的位置。例如,“大致”能够表示在一个或多个标准偏差内,或者在所述值的10%或者5%内。
随着电网系统的不断升级优化,柔性直流输电作为一种新型的直流输电技术,其优势日益突显,作为其配套的直流开关设备也逐渐兴起。例如,直流开关设备可以包括直流开关柜。例如,在直流开关柜中,通常包括断路器、充电机、电容、电感、开关控制器等多个元器件,各元器件之间按照特定的拓扑电路集成在一起,以实现对直流供电系统的检测、控制及维护。
在研究中,本申请的发明人发现,相比于交流开关柜,现有的直流开关柜的结构更为复杂。直流开关柜中的主要元器件数量大于交流开关设备中的主要元器件数量,从而直流开关柜的整体体积较大。此外,市场上的直流开关柜为固定式柜,即各个元器件分别直接设置在直流开关柜中,当对各个元器件进行装配、运输、检修和维护时,检修人员需进入直流开关柜内部进行操作,因而使得操作不具便利性,并且可能带来安全风险。
本公开至少一个实施例提供一种直流断路器手车及直流开关设备。
本公开至少一个实施例提供的直流断路器手车包括支撑架、载流元件、换流元件以及能量吸收元件。支撑架包括支撑面。载流元件位于支撑面上,且包括彼此电连接的主断路器和辅助断路器。换流元件位于支撑面上,且与载流元件和换流元件电连接,并包括彼此电连接的换流电容、换流电感、换流开关组件以及换流电容充电机。斥力组件被配置为控制主断路器的开断。能量吸收元件位于支撑面上,且与载流元件电连接。
本公开至少一个实施例提供的直流断路器手车通过将直流柜中的主要元器件集成在一个直流手车上,可便于直流柜中的多个元器件的装配、运输、检 修以及维护,有效提升了直流柜的操控便利性及安全性能。
下面结合附图并通过一些实施例对直流断路器手车及直流开关设备进行说明。
图1为本公开至少一个实施例所提供的直流断路器手车的一种立体视图;图2为本公开至少一个实施例所提供的直流断路器手车的另一种立体视图;图3为本公开至少一个实施例所提供的未装载元器件的直流断路器手车的立体视图;图4为本公开至少一个实施例所提供的支撑架的一种立体视图。
参考图1和图2,直流断路器手车01包括支撑架10、载流元件30、换流元件40、斥力组件33以及能量吸收元件50。
参考图1和图3,支撑架10可以作为直流断路器手车01的运输载体。例如,支撑架10可以设计成可移动的,以利于在实际应用中将各个元器件移动至利于操作的位置。例如,支撑架10上还可以根据实际需要设置一些固定式框架,以便于元器件的放置及固定。例如,支撑架10上也可以设计一些可移动式的框架,以便于设置在其上的元器件的抽出和复位。例如,可移动式的框架可以为抽屉式,但不限于此。本公开的实施例对于支撑架10的具体结构不作限定。
参考图3和图4,支撑架10可以是底盘结构,支撑面20可以为位于底盘结构上、且靠近多个元器件的一侧的面。多个元器件可以装载在支撑面20上。例如,支撑面20可以不是严格意义上的平面。例如,支撑面20可以有一定程度的起伏,但不限于此。例如,底盘结构可以为板状或部分中空的框架,本公开的实施例对于支撑架10的材质和具体形状不作限定。
参考图1,载流元件30位于支撑面20上,且包括彼此电连接的主断路器31和辅助断路器32。斥力组件33被配置为控制主断路器31的开断。例如,主断路器31与辅助断路器32串联连接。主断路器31被配置为快速开断线路故障,辅助断路器32被配置为最后切断整个线路。
参考图1,换流元件40位于支撑面20上,与载流元件30电连接,并包括彼此电连接的换流电容41、换流电感43、换流开关组件44以及换流电容充电机42。例如,换流电容41、换流开关组件44以及换流电感43可以依次串联,且形成的支路并联在主断路器31两端。例如,换流电容充电机42被配置为对换流电容41进行充电,但不限于此。
参考图2,能量吸收元件50位于支撑面20上,且与载流元件30和换流元 件40电连接。例如,能量吸收元件50可以包括避雷器、压敏电阻等元件,以吸收在开断线路故障之后的剩余能量,但不限于此。例如,能量吸收元件50可以包括主避雷器51和换流开关避雷器52,主避雷器51被配置为吸收主断路器31开断后的系统能量,减小电压对主断路器31的冲击,换流开关避雷器52被配置为减小电压对换流开关组件44的冲击。
因此,本公开的实施例通过将直流柜中的主要元器件集成在直流断路器手车01上,可便于直流柜中的多个元器件的装配、运输、检修以及维护,有效提升了直流柜的操控便利性及安全性能。
进一步地,由于直流柜中的元器件数量较多,在满足各个元器件之间的电连接的情况下,本公开的实施例对直流断路器手车上的元器件的空间相对位置进行了合理规划,并优化了元器件的形状与结构,以使得各个元器件设置在直流断路器手车上后具有较高的集成度。直流断路器手车的重量得以减轻、占地减小,以便于各个元器件的装配、维修和更换。
图5为本公开至少一个实施例所提供的主断路器的立体视图;图6为本公开至少一个实施例所提供的辅助断路器的立体视图。
例如,参考图1和图3,支撑架10包括在第一方向X上相对的第一端101和第二端102。主断路器31和辅助断路器32均位于第一端101,并沿第二方向Y间隔设置。这里的某个元器件位于第一端101是指该元器件的大部分结构位于支撑架10上且靠近第一端101的位置,位于第二端102是指该元器件的大部分结构位于支撑架10上靠近第二端102的位置。
例如,参考图1和图5,主断路器31包括主开关311和第一触臂312。
主断路器31可以包括在第三方向Z上相连通的上腔体313和下腔体314,主开关311位于上腔体313中,下腔体314中还可以设置用于控制主开关311开断的主控制机构。第一触臂312的靠近第一端101的一端与主开关311的一端连接。第一触臂312的靠近第二端102的一端可以包括与直流柜连接的第一动触头。
例如,参考图1和图6,辅助断路器32包括辅助开关321和第二触臂322。辅助断路器32可以包括在第三方向Z上相连通的上腔体323和下腔体324,辅助开关321位于上腔体323中,下腔体324中还可以设置用于控制辅助开关321开断的辅助控制机构。第二触臂322的靠近第一端101的一端与辅助开关321的一端连接。第二触臂322的靠近第二端102的一端可以包括与直流柜连 接的第二动触头。第一触臂312和第二触臂322均沿第一方向X且从第一端101指向第二端102的方向延伸。
例如,参考图2、图5和图6,主开关311的另一端通过导电元件45与辅助开关321的另一端电连接,第一触臂312和第二触臂322均比导电元件45在第三方向Z上更远离支撑面20。从而,可以留出第一触臂312与支撑面20之间的空间以及第二触臂322与支撑面20之间的空间以用于放置其他元器件。例如,导电元件45可以为铜排,但不限于此。
例如,参考图2,第一方向X和第二方向Y均平行于支撑面20,且第一方向X与第二方向Y垂直,第三方向Z与第一方向X垂直,且第三方向Z与第二方向Y垂直。
图7A为本公开至少一个实施例所提供的直流断路器手车的连接线路图;图7B为一种直流断路器手车的连接线路图。
例如,参考图2和图7A,在方式一中,直流柜包括第一静触头和第二静触头,第一静触头对应的连接端为B1,第二静触头对应的连接端为B2。第一触臂312的第一动触头对应的连接端为A1,主断路器31与导电元件45连接时对应的连接端为A2。第二触臂322的第二动触头对应的连接端为C1,辅助断路器32与导电元件45连接时对应的连接端为C2。例如,当直流断路器手车01移动进入直流柜中时,第一动触头和第二动触头可分别与直流柜中对应的第一静触头和第二静触头连接,从而可以使得主断路器31的主开关311和辅助断路器32的辅助开关321闭合(参考图5和图6)。此时,由第一静触头、第一动触头、主开关311、导电元件45、辅助开关321、第二动触头以及第二静触头依次连接而成的通路连通(即由B1-A1-A2-C2-C1-B2形成的通路连通),且该通路与直流柜子的主回路连通。
例如,参考图2和图7B,在方式二中,直流柜包括第一静触头对应的连接端H1、第二静触头对应的连接端H2、第三静触头对应的连接端K1以及第四静触头对应的连接端K2。主开关包括第一动触头对应的连接端L1和第三动触头对应的连接端L2,辅助开关包括第二动触头对应的连接端M1和第四动触头对应的连接端M4。例如,当直流断路器手车移动进入直流柜中时,第一动触头和第二动触头可分别与直流柜中对应的第一静触头和第二静触头连接,第三动触头和第四动触头可分别与直流柜中对应的第三静触头和第四静触头连接,从而可以使得主开关和辅助开关闭合。此时,由第一静触头、第一动触头、 主开关、第三动触头、第三静触头、第四静触头、第四动触头、辅助开关、第二动触头以及第二静触头依次连接而成的通路连通(即由H1-L1-L2-K1-K2-M2-M1-H2形成的通路连通),且该通路与直流柜子的主回路连通。
例如,参考图2和图7A,本公开的实施例采用了方式一中的连接方式。相比于方式二,这种连接方式实现了利用导电元件45在远离直流柜的主断路器31和辅助断路器32之间的短接。主断路器31和辅助断路器32可以分别仅与一个触臂连接,从而可以缩短直流断路器手车01在第一方向X上的尺寸,并且可以将多个元器件设置在第一触臂312与支撑面20之间,或设置在第二触臂322与支撑面20之间,从而可以提升直流断路器手车01的空间利用率。同时,该连接方式下的电路的连接结构简单,易于实现。
例如,参考图1,在直流断路器手车01中,换流电容41与换流电容充电机42电连接,并在第二方向Y上均位于主断路器31的靠近辅助断路器32的一侧。换流电容充电机42位于第一端101,并位于辅助断路器32的靠近支撑面20的一侧。
例如,参考图1,换流电容41位于第二端102,并位于辅助断路器32的靠近支撑面20的一侧,换流电容41在支撑面20上的正投影与主断路器31在支撑面20上的正投影至少部分交叠。例如,换流电容41在支撑面20上的正投影与辅助断路器32在支撑面20上的正投影至少部分交叠。又例如,换流电容41在支撑面20上的正投影与主断路器31在支撑面20上的正投影及辅助断路器32在支撑面20上的正投影均至少部分交叠。
例如,参考图1,换流电容41与换流电容充电机42在第二方向Y上的尺寸均小于直流断路器手车01在第二方向Y上的尺寸,二者位于直流断路器手车01在第二方向Y上的同一侧,有利于换流电容充电机42为换流电容41进行充电。
例如,参考图1,换流电容充电机42位于第一端101时,可便于控制和维修。例如,换流电容41在支撑面20上的正投影与主断路器31在支撑面20上的正投影至少部分交叠。例如,换流电容41在支撑面20上的正投影与辅助断路器32在支撑面20上的正投影至少部分交叠。例如,换流电容41在支撑面20上的正投影与主断路器31在支撑面20上的正投影和辅助断路器32在支撑面20上的正投影均至少部分交叠。这样,可以有效利用主断路器31与支撑面20之间的空间,以及辅助断路器32与支撑面20之间的空间,从而使得直流断 路器手车01的空间结构更加紧凑。
例如,参考图2,换流电容41大致为长方体形,且包括层叠设置的两部分。换流电容41的一端可以与主断路器31的一端及主避雷器51的一端均连接,换流电容41的另一端可以与换流开关组件44以及换流开关避雷器52(参考图2)连接。在本公开的实施例中,由于换流电容41需与多个元器件进行连接,换流电容41的位于第一方向X上的相对的两端分别设置了4个连接端,有利于换流电容41与其他元器件分别进行电连接,可以使得与换流电容41进行连接的多条线路之间保持相对独立性,减小相互之间的串扰。当然,本公开的实施例所提供的换流电容41的连接端数量仅是示例性的,在不同的应用场景中,该数量可以根据不同的需求进行设定,本公开的实施例对此不作限定。例如,换流电容41也可以仅在其一侧设置若干个连接端,而在其另一侧通过直接引出连接线(例如,电线)的形式与其他元器件实现电连接,从而可以进一步节省空间,以及满足电连接的方便性,但不限于此。
例如,参考图2,由于换流电容41的电压较高,且容量较大,若人身触及后可能会造成生命危险。对此,本公开的实施例在换流电容41的靠近第二端102的一侧还设置有两个放电连接端411,放电连接端411朝向靠近支撑面20的一侧延伸,并被配置为与直流柜中的放电元件(例如,放电电阻)进行连接,进而可便于实现换流电容41的放电,以提高安全性能。
例如,参考图1和图2,换流电感43在第三方向Z上位于换流电容充电机42的远离支撑面20的一侧,并在第二方向Y上位于主断路器31与辅助断路器32之间。换流电感43大致为柱形,并在导电元件45连接主断路器31和辅助断路器32的同时,被导电元件45围设在导电元件45的远离第二端102的一侧,从而可使得换流电感43设置稳定,不易晃动或跌落,并易于与换流电容41实现电连接。
例如,参考图1,直流断路器手车01还包括隔离变压器55。隔离变压器55与换流开关组件44电连接,且位于换流电容41的远离支撑面20的一侧,并与换流开关组件44相邻且间隔设置。例如,隔离变压器55的体积较小,并小于换流开关组件44的体积。如此设置,可以有效利用换流电容41与换流开关组件44之间的空间,并利于隔离变压器55与换流开关组件44的电连接。
例如,参考图1,隔离变压器55可以并联在换流开关组件44的两端,同时还可以与外部的电源连接,以实现对换流开关组件44的供电。例如,换流 开关组件44的供电电压可以为220V,隔离变压器55的设置可以利用电磁感应原理防止电源侧有过高的电压进入换流开关组件44,造成元器件损害。例如,隔离变压器55可以防止电源侧10千伏及其以上的电压进入换流开关组件44,但不限于此。
例如,参考图1,换流开关组件44与换流电感43和换流电容41分别电连接,换流开关组件44包括第一换流开关组件441和第二换流开关组件442。
第一换流开关组件441和第二换流开关组件442电连接,且均位于换流电容41的远离支撑面20的一侧。
例如,参考图1,第一换流开关组件441和第二换流开关组件442均为一体式结构。在第三方向Z上,第一换流开关组件441和第二换流开关组件442位于支撑面20与第一触臂312之间,并位于支撑面20与第二触臂322之间。
例如,参考图1,换流电容41、换流开关组件44以及换流电感43可以依次串联连接,且该支路可以与主断路器31并联,并用于在开断线路故障时产生振荡回路和制造电流过零点。例如,第一换流开关组件441可以包括换流开关IGCT(Integrated Gate Commutated Thyristor,集成门极换流晶闸管)组件,第二换流开关组件442可以包括换流开关晶闸管组件,第一换流开关组件441与第二换流开关组件442串联连接,但不限于此。
例如,参考图1,如此设置,有利于实现第一换流开关组件441、第二换流开关组件442、换流电感43和换流电容41之间的电连接。通过将第一换流开关组件441和第二换流开关组件442设置为一体式结构,有利于实现小型化设计,减小占用空间。此外,第一换流开关组件441和第二换流开关组件442还可以有效利用支撑面20与第一触臂312之间的空间以及支撑面20与第二触臂322之间的空间,从而使得直流断路器手车01的布局更加合理。
例如,参考图2,第一换流开关组件441和第二换流开关组件442均为长方体或大致为长方体,但不限于此。在第三方向Z上,第二换流开关组件442在支撑面20上的正投影呈“I”形。例如,第二换流开关组件442在支撑面20上的正投影沿从第一端101指向第二端102的方向延伸。这样,相比于使得第二换流开关组件442在支撑面20上的正投影呈其他形状,例如“L”形,第二换流开关组件442的整体体积减小,有利于小型化设置。此时,第一换流开关组件441和第二换流开关组件442在第一方向X上的尺寸之和与换流电容41在第一方向X上的尺寸大致相等。第一换流开关组件441在第二方向Y上的 尺寸大于第二换流开关组件442在第二方向Y上的尺寸,且第一换流开关组件441在第二方向Y上的尺寸与换流电容41在第二方向Y上的尺寸大致相等,有利于对直流断路器手车01实现良好的整理布局。
例如,参考图1,在直流断路器手车01中,斥力组件33包括斥力电容331和斥力电容充电机332,斥力电容充电机332与斥力电容331电连接,并被配置为向斥力电容331充电。例如,斥力组件33还可以包括斥力开关晶闸管组件333,被配置为当发生开断线路故障时与断路控制器(参见下述实施例的相关描述)一同控制主断路器31的快速分闸。例如,斥力电容331的体积大于斥力电容充电机332的体积,但不限于此。例如,斥力开关晶闸管组件333可以位于主断路器31中,但不限于此。
例如,参考图1,斥力电容331和斥力电容充电机332均位于第一端101,并在第二方向Y上位于主断路器31的靠近辅助断路器32的一侧。斥力电容331位于斥力电容充电机332的远离支撑面20的一侧,且在第一方向X上与辅助断路器32间隔设置,从而有利于实现斥力电容充电机332对斥力电容331的充电。同时,斥力电容充电机332在第三方向Z上位于辅助断路器32的靠近支撑面20的一侧,如此设置,便于实现斥力电容充电机332的控制和维修。
例如,参考图1,直流断路器手车01还包括断路控制器(未示出),断路控制器被配置为向主断路器31和辅助断路器32传输控制信号。断路控制器位于第一端101,且在第三方向Z上位于主断路器31的靠近支撑面20的一侧,并在第二方向Y上与斥力电容充电机332相邻且间隔设置。例如,断路控制器在第一方向上位于斥力电容充电机332的靠近第二端102的一侧,但不限于此。
例如,参考图1,断路控制器的体积可以小于与其相邻的斥力电容充电机332的体积,但不限于此。通过将断路控制器设置在第一端101,便于实现断路控制器对主断路器31和辅助断路器32的控制,以及有利于对断路控制器的控制和维修。
例如,参考图1,在本公开的一些实施例中,断路控制器可以包括主断路控制器和辅助断路控制器。例如,主断路控制器可以和斥力开关晶闸管组件333一起控制主断路器31的分闸,以及控制主断路器31的合闸。例如,辅助断路控制器可以控制辅助断路器32的分闸和合闸。例如,主断路控制器可以为主断路器永磁控制器,辅助断路控制器可以为辅助断路器永磁控制器。
例如,参考图1,主断路器31内还可以设置斥力机构,该斥力机构可以与上述实施例中的斥力组件33电连接,并一起控制主断路器31的分闸。例如,斥力机构可以包括斥力线圈和斥力盘,但不限于此。例如,当线路发生故障时,直流柜的控制保护系统将发出分闸命令,斥力开关晶闸管组件333将控制斥力电容331向位于主断路器31中的斥力线圈放电,使得该斥力线圈控制斥力盘带动主断路器31分闸,例如使得主断路器31中的主开关311(参考图5)断开。同时,主断路控制器内部的永磁电容对永磁线圈放电,以使其带动主断路器31分闸。从而,主断路控制器31中的主开关311(参考图5)可以在斥力线圈控制器与主断路控制器的共同作用下断开。例如,辅助断路控制器内部的永磁电容对永磁线圈放电,以使其带动辅助断路器32分闸。从而,辅助断路器32中的辅助开关321(参考图6)可以在辅助断路控制器32的作用下断开。例如,当直流柜的控制保护系统发出合闸命令时,主断路控制器31中的主开关311(参考图5)可以在主断路控制器的作用下闭合,辅助断路器32中的辅助开关321(参考图6)可以在辅助断路控制器的作用下闭合,但不限于此。
例如,参考图2,在能量吸收元件50中,主避雷器51与换流开关避雷器52连接为一体式结构,且位于第二端102,并在第二方向Y上位于换流电容41的靠近主断路器31的一侧。能量吸收元件50在第三方向Z上位于支撑面20与主断路器31之间。
例如,参考图2,换流电容41与第一换流开关组件441、第二换流开关组件442依次串联。例如,在该电路连接关系中,主避雷器51的一端可以与换流电容41远离换流开关组件44的一端连接,主避雷器51的另一端与第二换流开关组件442远离换流电容41的一端连接。换流开关避雷器52并联在换流开关组件44的两端,例如,换流开关避雷器52的一端与换流开关组件44的靠近换流电容41的一端连接,换流开关避雷器52的另一端与第二换流开关组件442的远离换流电容41的一端连接。
如此设置,有利于实现主避雷器51和换流开关避雷器52与各个元器件之间的电连接。同时,将主避雷器51与换流开关避雷器52设计为一体式结构,有利于减小占用空间,并有效利用支撑面20与主断路器31之间的空间。
图8为本公开至少一个实施例所提供的能量吸收元件的立体视图。
例如,参考图2和图8,主避雷器51包括多个电连接的主避雷器单元511。多个主避雷器单元511沿第一方向X和第三方向Z阵列排布,以形成多个主 避雷器单元行和多个主避雷器单元列。
例如,参考图2和图8,换流开关避雷器52还包括多个电连接的换流开关避雷器单元521。多个换流开关避雷器单元521位于多个主避雷器单元511的远离主断路器31的一侧,且多个换流开关避雷器单元521沿第三方向Z排布以形成换流开关避雷器单元列。
例如,参考图2和图8,主避雷器单元511在第二方向Y上的尺寸的可以与换流开关避雷器单元521在第二方向Y上的尺寸相同或大致相同,但不限于此。例如,主避雷器51和换流开关避雷器52可以为金属氧化物可变电阻器型避雷器,多个主避雷器单元511可以为相互并联连接,多个换流开关避雷器单元521也可以为相互并联连接,但不限于此。多个主避雷器单元511的远离主断路器31的一侧与多个换流开关避雷器单元521电连接,以形成公共电极,且该公共电极可以与换流开关组件44中的例如第二换流开关组件442电连接。
例如,参考图2和图8,多个主避雷器单元511和多个换流开关避雷器单元521如此设置,可以减小直流断路器手车01在第二方向Y上的尺寸,利于实现与直流断路器手车01中其他的元器件之间的合理布局,同时还便于与相邻元器件进行电连接。
例如,参考图1和图3,直流断路器手车01还包括移动部件70。移动部件70位于支撑面20的远离载流元件30、换流元件40以及能量吸收元件50(参见图2)的一侧,移动部件70被配置为带动支撑架10移动。
例如,参考图1和图3,移动部件70可以为包括多个移动轮的移动轮组,以便于带动支撑架10移动,但不限于此。例如,移动部件70可以包括4个或6个移动轮,但不限于此。
例如,参考图1和图3,直流断路器手车01还包括移动控制装置80。移动控制装置80与支撑架10连接,且被配置为控制移动部件70以带动支撑架10移动。例如,移动控制装置80可以通过设置在支撑架10上的框架结构,而与支撑架10实现连接,但不限于此。例如,移动控制装置80也可以与支撑架10直接连接。例如,移动控制装置80可以包括摇把。例如,通过摇动摇把可以使得支撑架10移动,但不限于此,本公开的实施例对于移动控制装置80的类型和具体形状不作限定。
例如,参考图1和图3,移动控制装置80位于直流断路器手车01的第一端101,并在第一方向X上位于主断路器31的远离第二端102的一侧。这样, 可有利于通过移动控制装置80将直流断路器手车01摇进或摇出直流柜,便于操控。
例如,参考图3和图4,支撑架10还包括至少两根支撑梁90。至少两根支撑梁90与支撑面20连接。例如,支撑梁90可以具有不同的结构形式。例如,支撑梁90的远离移动部件70的一侧的面可以与支撑面20处于或大致处于同一个面中,但不限于此。例如,支撑梁90可以包括第一支撑梁901和第二支撑梁902。第一支撑梁901可以包括两根,并分别设置在第一端101和第二端102。例如,第二支撑梁902的横截面积小于第一支撑梁901的横截面积,且设置为一根,并位于两根第一支撑梁901之间。如此设置,可以满足直流断路器手车01的重力分配,以具有良好的结构稳定性。
图9为本公开至少一个实施例所提供的起吊框架的立体视图;图10为本公开至少一个实施例所提供的设置有起吊框架的直流断路器手车的立体视图。
例如,参考图4和图9,直流断路器手车01还包括起吊框架92。起吊框架92与至少两根支撑梁90可拆卸连接。例如,起吊框架92包括多个固定端,例如固定端921、固定端922、固定端923以及固定端924。多个固定端分别与支撑架10的多根支撑梁90的端部连接。
例如,参考图9和图10,在直流断路器手车01上,同一根支撑梁的两侧分别与起吊框架92的两个相对的固定端连接,但不限于此。由此,可以通过起吊设备通过起吊框架92将直流断路器手车01从顶部整体吊起,便于安装和运输。
当然,参考图3和图4,在本公开的一些实施例中,根据直流断路器手车01的不同的设计布局,支撑架10中的支撑梁90可以具有不同的结构形式,且多根支撑梁90之间也可以具有不同的排列形式,进而起吊框架92(参件图9)的设计形式在满足与支撑梁90实现连接的情况下也可以具有多样化,本公开的实施例对此不作限定。
图11为本公开至少一个实施例所提供的直流开关设备的立体视图。
参考图11,本公开的实施例还提供一种直流开关设备02。直流开关设备02包括上述任一实施例所述的直流断路器手车01以及直流开关柜023。
例如,参考图11,直流开关设备02可以包括多个独立的工作腔室,例如用于放置直流断路器手车01的手车室、布置有线路电缆的电缆室、布置有用于监控、保护和测量的二次元件的仪表室以及布置有主母线的母线室等,但不 限于此。
参考图11,直流开关柜023包括第一静触头(未示出)和第二静触头022,第一静触头被配置为与主断路器31实现可拆卸连接,第二静触头022被配置为与辅助断路器32实现可拆卸连接。
例如,参考图11,第一静触头可以布置在母线室中并与主母线相连接,第二静触头可以布置在母线室中并与电缆室中的线路电缆相连接。直流断路器手车01能够移动进出手车室,并通过主断路器31中的第一触臂312与第一静触头连接,以及通过辅助断路器32中的第二触臂322与第二静触头连接,从而实现整个回路连通。例如,位于第一触臂312的一端的第一动触头可以为梅花触头,位于第二触臂322的一端的第二动触头也可以为梅花触头,但不限于此。例如,第一静触头和第二静触头022可以均为圆柱形触头,但不限于此。例如,第一触臂312与第一静触头之间可以为滑动连接,第二触臂322与第二静触头之间也可以为滑动连接,但不限于此。
例如,当线路出现故障时,直流开关设备02的主要工作过程包括:
参考图1和图11,直流柜的控制保护系统将发出分闸命令,斥力组件33中的斥力开关晶闸管组件333与断路控制器一同控制主断路器31的快速分闸,主断路器31中的主开关(参见图5)被打开,并在其电极间形成电弧。当电极达到一定开距时,换流开关组件44被连通,则换流电容41通过换流电感43与载流元件30连接而成的载流支路形成振荡回路,并产生与该载流支路中的电流反向的振电流,使得主断路器31中的主开关(参见图5)中的电弧在其电流由于强制过零而熄灭,并使电流转移至换流元件40连接而成的换流支路。随后,换流电容41被反向充电,当换流电容41的电压超过能量吸收元件中的主避雷器(参见图2)的动作电压时,电流逐渐转移至主避雷器所在的支路,直至主避雷器的电流过零,完成线路故障的开断。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (14)

  1. 一种直流断路器手车,包括:
    支撑架,包括支撑面;
    载流元件,位于所述支撑面上,包括彼此电连接的主断路器和辅助断路器;
    换流元件,位于所述支撑面上,与所述载流元件电连接,并包括彼此电连接的换流电容、换流电感、换流开关组件以及换流电容充电机;
    斥力组件,所述斥力组件被配置为控制所述主断路器的开断;以及
    能量吸收元件,位于所述支撑面上,且与所述载流元件和所述换流元件电连接。
  2. 根据权利要求1所述的直流断路器手车,其中,所述支撑架包括在第一方向上相对的第一端和第二端,所述主断路器和所述辅助断路器位于所述第一端,并沿第二方向间隔设置,所述第一方向和所述第二方向均平行于所述支撑面,且所述第一方向与所述第二方向垂直,
    所述主断路器包括主开关和第一触臂,所述辅助断路器包括辅助开关和第二触臂,所述第一触臂和所述第二触臂均沿所述第一方向且从所述第一端指向所述第二端的方向延伸,
    其中,所述第一触臂的靠近所述第一端的一端与所述主开关的一端连接,所述第二触臂的靠近所述第一端的一端与所述辅助开关的一端连接,所述主开关的另一端与所述辅助开关的另一端通过导电元件电连接,所述第一触臂和所述第二触臂均比所述导电元件在第三方向上更远离所述支撑面,所述第三方向与所述第一方向垂直,且所述第三方向与所述第二方向垂直。
  3. 根据权利要求2所述的直流断路器手车,其中,所述换流电容与所述换流电容充电机电连接,并在所述第二方向上均位于所述主断路器的靠近所述辅助断路器的一侧,
    所述换流电容充电机位于所述第一端,并位于所述辅助断路器的靠近所述支撑面的一侧;
    所述换流电容位于所述第二端,并位于所述辅助断路器的靠近所述支撑面的一侧,所述换流电容在所述支撑面上的正投影与所述主断路器,和/或所述辅助断路器在所述支撑面上的正投影至少部分交叠。
  4. 根据权利要求2或3所述的直流断路器手车,其中,所述换流开关组 件与所述换流电感和所述换流电容分别电连接,所述换流开关组件包括第一换流开关组件和第二换流开关组件,
    所述第一换流开关组件和所述第二换流开关组件电连接,且均位于所述换流电容的远离所述支撑面的一侧,所述第一换流开关组件和所述第二换流开关组件均为一体式结构,
    其中,在所述第三方向上,所述第一换流开关组件和所述第二换流开关组件位于所述支撑面与第一触臂之间,并位于所述支撑面与第二触臂之间。
  5. 根据权利要求2~4任一项所述的直流断路器手车,其中,所述斥力组件包括斥力电容和斥力电容充电机,所述斥力电容充电机与所述斥力电容电连接,所述斥力电容充电机被配置为向所述斥力电容充电,
    其中,所述斥力电容和所述斥力电容充电机均位于所述第一端,并在所述第二方向上位于所述主断路器的靠近所述辅助断路器的一侧,所述斥力电容充电机在所述第三方向上位于所述辅助断路器的靠近所述支撑面的一侧,所述斥力电容位于所述斥力电容充电机的远离所述支撑面的一侧,所述斥力电容在所述第一方向上与所述辅助断路器间隔设置。
  6. 根据权利要求5所述的直流断路器手车,还包括断路控制器,被配置为向所述主断路器和所述辅助断路器传输控制信号,
    其中,所述断路控制器位于所述第一端,且在所述第三方向上位于所述主断路器的靠近所述支撑面的一侧,并在所述第二方向上与所述斥力电容充电机相邻且间隔设置。
  7. 根据权利要求2~5任一项所述的直流断路器手车,其中,所述能量吸收元件包括主避雷器和换流开关避雷器,所述主避雷器被配置为吸收所述主断路器开断后的系统能量,减小电压对所述主断路器的冲击,所述换流开关避雷器被配置为减小电压对所述换流开关组件的冲击,
    所述主避雷器与所述换流开关避雷器连接为一体式结构,且位于所述第二端,并在所述第二方向上位于所述换流电容的靠近所述主断路器的一侧,所述能量吸收元件在所述第三方向上位于所述支撑面与所述主断路器之间。
  8. 根据权利要求7所述的直流断路器手车,其中,所述主避雷器包括多个电连接的主避雷器单元,所述多个主避雷器单元沿所述第一方向和所述第三方向阵列排布,以形成多个主避雷器单元行和多个主避雷器单元列;
    所述换流开关避雷器包括多个电连接的换流开关避雷器单元,所述多个换 流开关避雷器单元位于所述多个主避雷器单元的远离所述主断路器的一侧,且所述多个换流开关避雷器单元沿所述第三方向排布以形成换流开关避雷器单元列。
  9. 根据权利要求4所述的直流断路器手车,其中,在所述第三方向上,所述第二换流开关组件在所述支撑面上的正投影呈“I”形。
  10. 根据权利要求1~9任一项所述的直流断路器手车,还包括:移动部件,位于所述支撑面的远离所述载流元件、所述换流元件以及所述能量吸收元件的一侧,所述移动部件被配置为带动所述支撑架移动。
  11. 根据权利要求10所述的直流断路器手车,还包括移动控制装置,所述移动控制装置与所述支撑架连接,被配置为控制所述移动部件以使其带动所述支撑架移动,
    其中,所述移动控制装置位于所述第一端,并在所述第一方向上位于所述主断路器的远离所述第二端的一侧。
  12. 根据权利要求1~11任一项所述的直流断路器手车,其中,
    所述支撑架还包括至少两根支撑梁,所述至少两根支撑梁与所述支撑面连接;
    所述直流断路器手车还包括起吊框架,所述起吊框架与所述至少两根支撑梁可拆卸连接。
  13. 根据权利要求2~9任一项所述的直流断路器手车,其中,
    所述换流电感在所述第三方向上位于所述换流电容充电机的远离所述支撑面的一侧,并在所述第二方向上位于所述主断路器与所述辅助断路器之间;
    所述直流断路器手车还包括隔离变压器,所述隔离变压器与所述换流开关组件电连接,且位于所述换流电容的远离所述支撑面的一侧,并与所述换流开关组件相邻且间隔设置。
  14. 一种直流开关设备,包括权利要求1~13任一项所述的直流断路器手车,以及直流开关柜,
    其中,所述直流开关柜包括第一静触头和第二静触头,所述第一静触头被配置为与所述主断路器可拆卸连接,第二静触头被配置为与所述辅助断路器可拆卸连接。
PCT/CN2023/108546 2022-10-28 2023-07-21 直流断路器手车及直流开关设备 WO2024087757A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211337900.6A CN117996620A (zh) 2022-10-28 2022-10-28 直流断路器手车及直流开关设备
CN202211337900.6 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024087757A1 true WO2024087757A1 (zh) 2024-05-02

Family

ID=88315801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108546 WO2024087757A1 (zh) 2022-10-28 2023-07-21 直流断路器手车及直流开关设备

Country Status (4)

Country Link
US (1) US20240145185A1 (zh)
EP (1) EP4362053A1 (zh)
CN (1) CN117996620A (zh)
WO (1) WO2024087757A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118942956B (zh) * 2024-08-28 2025-02-25 国网湖北省电力有限公司建始县供电公司 一种用于保护和控制配电系统的真空断路器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815579B2 (ja) * 1996-12-17 2006-08-30 富士電機システムズ株式会社 直流遮断装置
US20080259531A1 (en) * 2007-02-08 2008-10-23 Masato Suzuki Dc switchgear provided with a commutation-type dc circuit breaker
US20100208392A1 (en) * 2009-02-19 2010-08-19 Hitachi, Ltd. Commutation type dc breaker
CN109326984A (zh) * 2017-07-31 2019-02-12 平高集团有限公司 直流快速开关手车及使用该手车的直流断路器柜
CN109390867A (zh) * 2017-08-04 2019-02-26 平高集团有限公司 一种手车式直流隔离开关柜及其手车

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114467161B (zh) * 2019-11-29 2024-03-08 株式会社东芝 直流断路器
CN114640051A (zh) * 2021-12-24 2022-06-17 平高集团有限公司 一种直流限流器及其快速开关手车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815579B2 (ja) * 1996-12-17 2006-08-30 富士電機システムズ株式会社 直流遮断装置
US20080259531A1 (en) * 2007-02-08 2008-10-23 Masato Suzuki Dc switchgear provided with a commutation-type dc circuit breaker
US20100208392A1 (en) * 2009-02-19 2010-08-19 Hitachi, Ltd. Commutation type dc breaker
CN109326984A (zh) * 2017-07-31 2019-02-12 平高集团有限公司 直流快速开关手车及使用该手车的直流断路器柜
CN109390867A (zh) * 2017-08-04 2019-02-26 平高集团有限公司 一种手车式直流隔离开关柜及其手车

Also Published As

Publication number Publication date
EP4362053A1 (en) 2024-05-01
US20240145185A1 (en) 2024-05-02
CN117996620A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2024087757A1 (zh) 直流断路器手车及直流开关设备
CN103219666A (zh) 一种模块化固体绝缘环网柜
WO2025138915A1 (zh) 一种断路器以及电力设备
CN202050184U (zh) 充气式高压模块化真空断路器柜
JP5026537B2 (ja) スイッチギヤ
CN113168989B (zh) 直流断路器
CN202333588U (zh) 铠装式交流金属封闭开关设备
KR101073591B1 (ko) 직류 차단기
CN112007758A (zh) 一种电除尘器相邻电场互冗供电系统及方法
WO2019223701A1 (zh) 一种新型户内高压智能真空断路器
CN106486914A (zh) 空气绝缘开关柜
CN113991501B (zh) 一种手车式中压直流断路器
CN205195065U (zh) 一种新型小型化断路一体化开关柜
CN111585205B (zh) 一种磁耦合型配网机械式负荷开关柜
CN207353820U (zh) 一种直流断路器紧凑布局结构
CN210325639U (zh) 一种隔离开关安全控制装置及供电系统
CN210443915U (zh) 一种断路器手车
CN203588919U (zh) 用于电力控制的低压真空接触器
CN111585206A (zh) 一种配网机械式直流开关柜
CN1185668C (zh) 一种光控模块式高压真空开关
CN214956720U (zh) 断路器储能合闸一体化联动电路
CN215185450U (zh) 储能集装箱
CN206602308U (zh) 一种新型直流越区负荷开关装置
CN206353669U (zh) 空气绝缘开关柜
CN105610080B (zh) 一种可移动式gis设备和一种gis车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE