WO2024087648A1 - 压电加速度计、压电传感器及智能设备 - Google Patents

压电加速度计、压电传感器及智能设备 Download PDF

Info

Publication number
WO2024087648A1
WO2024087648A1 PCT/CN2023/099706 CN2023099706W WO2024087648A1 WO 2024087648 A1 WO2024087648 A1 WO 2024087648A1 CN 2023099706 W CN2023099706 W CN 2023099706W WO 2024087648 A1 WO2024087648 A1 WO 2024087648A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting arm
cantilever beam
mass block
piezoelectric accelerometer
piezoelectric
Prior art date
Application number
PCT/CN2023/099706
Other languages
English (en)
French (fr)
Inventor
阮盛杰
邢增平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024087648A1 publication Critical patent/WO2024087648A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices

Definitions

  • the present application relates to the field of mechanical and electronic technology, and in particular to a piezoelectric accelerometer, a piezoelectric sensor and an intelligent device.
  • piezoelectric sensors are widely used in tire pressure monitoring systems (TPMS), vibration detectors, true wireless stereo (TWS) headphones, wearable devices, stethoscopes and other smart devices.
  • TPMS tire pressure monitoring systems
  • TWS true wireless stereo
  • the embodiments of the present application provide a piezoelectric accelerometer, a piezoelectric sensor, and an intelligent device for improving the signal-to-noise ratio and reliability of the piezoelectric accelerometer.
  • a piezoelectric accelerometer is provided, and the piezoelectric accelerometer is, for example, a micro-electromechanical system piezoelectric accelerometer.
  • the piezoelectric accelerometer includes: a base, a first sensing component, a second sensing component and a connecting structure.
  • the first sensing component includes a first cantilever beam, a first mass block and a first stress detection structure; the opposite ends of the first cantilever beam are connected to the base and the first mass block, and the first stress detection structure is arranged on the surface of the first cantilever beam.
  • the second sensing component includes a second cantilever beam, a second mass block and a second stress detection structure; the opposite ends of the second cantilever beam are connected to the base and the second mass block, and the second stress detection structure is arranged on the surface of the second cantilever beam.
  • the structures of the first sensing component and the second sensing component are roughly the same, and the first sensing component and the second sensing component are arranged opposite to each other and connected by a connecting structure.
  • the connecting structure is arranged between the first sensing component and the second sensing component, and the connecting structure is respectively connected to the first mass block, the second mass block and the base.
  • the piezoelectric accelerometer provided in the embodiment of the present application is provided with a connection structure between the first sensing component and the second sensing component, and the connection structure is respectively connected to the first sensing component, the second sensing component and the base.
  • the connection structure since the first mass block and the second mass block are interconnected through the connection structure, and the connection structure is also connected to the base, when the piezoelectric accelerometer is subjected to a lateral impact in the first direction and/or the second direction, the connection structure will provide a stabilizing force to the first mass block and the second mass block.
  • the connection structure is also interconnected with a stable base, which further reduces the risk of shaking of the first mass block and the second mass block, and improves the resistance of the piezoelectric accelerometer to lateral impact force.
  • both ends of the connection structure are connected to the first mass block and the second mass block; along the second direction, at least one end of the connection structure is connected to the base; the first direction is the first sensing component The second direction intersects the first direction with the arrangement direction of the second sensing component.
  • the connecting structure is connected to the first mass block and the second mass block along the first direction to provide the piezoelectric accelerometer with lateral impact resistance in the first direction.
  • the connecting structure is connected to the base along the second direction to provide the piezoelectric accelerometer with lateral impact resistance in the second direction. The resistance force and the impact force are located in the same plane, and the resistance effect is better.
  • connection structure includes at least one first connection arm, at least one second connection arm and at least one third connection arm; the first end of the first connection arm is connected to the first mass block, and the second end of the first connection arm is connected to the second connection arm and/or the third connection arm; the first end of the second connection arm is connected to the second mass block, and the second end of the second connection arm is connected to the first connection arm and/or the third connection arm; the first end of the third connection arm is connected to the base, and the second end of the third connection arm is connected to the first connection arm and/or the second connection arm.
  • the connection structure is designed in the shape of a connection arm, which can reduce the weight of the connection structure and reduce the detection error caused by the deformation of the connection structure itself.
  • connection structure is designed in the shape of a connection arm, which can reduce the rigidity of the connection structure, so that the connection structure vibrates with the vibration of the first mass block and the second mass block, so as to reduce the obstruction of the connection structure to the vibration of the first mass block and the second mass block, and improve the sensitivity of the piezoelectric accelerometer to the external force in the third direction to improve the accuracy and sensitivity of the detection result.
  • the connecting structure also includes at least one fourth connecting arm; the first end of the fourth connecting arm is connected to the base, and the second end of the fourth connecting arm is connected to at least one of the first connecting arm, the second connecting arm, and the third connecting arm; the third connecting arm and the fourth connecting arm are arranged on opposite sides of the first connecting arm.
  • connection structure further includes a junction, and the first connection arm, the second connection arm, and the third connection arm are respectively connected to the junction.
  • the junction has an opening.
  • the packaging stress will be blocked at the opening, which is equivalent to the opening being able to release the packaging stress and prevent the packaging stress from being transmitted to the first mass block and the second mass block through the connection structure, so as to improve the accuracy and reliability of the piezoelectric accelerometer.
  • the presence of the opening can reduce the rigidity of the connection structure and improve the sensitivity of the piezoelectric accelerometer to the external force in the third direction.
  • providing an opening on the junction is easy to implement.
  • the first connecting arm is located on an extension line of the second connecting arm. In this way, the stabilizing forces provided by the first connecting arm and the second connecting arm are located on the same straight line, which helps the first mass block and the second mass block to maintain balance during a lateral impact.
  • the third connecting arm is located on an extension line of the fourth connecting arm. In this way, the stabilizing forces provided by the third connecting arm and the fourth connecting arm are located on the same straight line, which helps the first mass block and the second mass block to maintain balance during a lateral impact.
  • the extension tracks of the first connecting arm, the second connecting arm and the third connecting arm are straight lines or curves. This is a possible implementation.
  • connection structure has an opening.
  • the packaging stress will be blocked at the opening, which is equivalent to the opening being able to release the packaging stress and prevent the packaging stress from being transmitted to the first mass block and the second mass block through the connection structure, so as to improve the accuracy and reliability of the piezoelectric accelerometer.
  • the presence of the opening can reduce the rigidity of the connection structure and improve the sensitivity of the piezoelectric accelerometer to the external force in the third direction.
  • the length of the first cantilever beam is not equal to the length of the second cantilever beam.
  • the accelerometer includes a first cantilever beam and a second cantilever beam with unequal resonant frequencies.
  • the resonant frequencies will vary, which can effectively widen the resonant frequency of the piezoelectric accelerometer, widen the bandwidth of the piezoelectric accelerometer, and improve the problem of insufficient bandwidth of the piezoelectric accelerometer in related technologies.
  • the piezoelectric accelerometer includes a plurality of first cantilever beams, and the plurality of first cantilever beams are arranged side by side.
  • the piezoelectric accelerometer includes a plurality of first cantilever beams, it is equivalent to providing a plurality of stable points for the first mass block, which can improve the resistance of the first mass block to external forces in the axial direction, thereby improving the reliability of the piezoelectric accelerometer.
  • the piezoelectric accelerometer includes a plurality of second cantilever beams, and the plurality of second cantilever beams are arranged side by side.
  • the piezoelectric accelerometer includes a plurality of second cantilever beams, it is equivalent to providing a plurality of stable points for the second mass block, which can improve the resistance of the second mass block to external forces in the axial direction, thereby improving the reliability of the piezoelectric accelerometer.
  • the piezoelectric accelerometer further includes a first cover plate; the first cover plate is located on a side of the base away from the first stress detection structure, and a surface of the first cover plate facing the base has a groove; the groove is located below the first mass block and/or the second mass block; the base is disposed on the first cover plate and connected to the first cover plate.
  • the first mass block includes a first core layer, a first spacing layer, and a first connection layer stacked in sequence; the first connection layer is connected to the first cantilever beam. This is a possible structure.
  • the second mass block includes a second core layer, a second spacing layer, and a second connection layer stacked in sequence; and the second connection layer is connected to the second cantilever beam. This is a possible structure.
  • connection structure is arranged at the same layer as the first cantilever beam and the second cantilever beam. In this way, the structure is simple and easy to implement.
  • the thickness of the first cantilever beam and the second cantilever beam is 1 ⁇ m-6 ⁇ m.
  • the signal-to-noise ratio (SNR) of the piezoelectric accelerometer can be improved.
  • the first stress detection structure includes a first lower electrode, a first piezoelectric layer, a first upper electrode, and a first dielectric layer stacked in sequence in a direction away from the first cantilever beam; a projection of the first upper electrode on the first cantilever beam is located on the first cantilever beam.
  • the second stress detection structure includes a second lower electrode, a second piezoelectric layer, a second upper electrode, and a second dielectric layer stacked in sequence in a direction away from the second cantilever beam; the projection of the second upper electrode on the second cantilever beam is located on the second cantilever beam.
  • the piezoelectric accelerometer further includes an interconnecting electrode and a pad; the interconnecting electrode is disposed on the base and in the same layer as the second upper electrode; and the pad is disposed on a surface of the interconnecting electrode away from the base. This is a possible structure.
  • the piezoelectric accelerometer further includes a second cover plate, the second cover plate is located on a side of the first stress detection structure and the second stress detection structure away from the base; the second cover plate is connected to the base, and the first sensing component and the second sensing component are located between the first cover plate and the second cover plate.
  • a piezoelectric sensor comprising a piezoelectric accelerometer and a dedicated integrated circuit.
  • the circuit is a piezoelectric accelerometer coupled to a dedicated integrated circuit; the piezoelectric accelerometer is the piezoelectric accelerometer of any one of the first aspects.
  • the piezoelectric sensor provided in the embodiment of the present application includes the piezoelectric accelerometer of the first aspect, and its beneficial effects are the same as the beneficial effects of the piezoelectric accelerometer, which will not be repeated here.
  • a smart device including a piezoelectric sensor and a circuit board, wherein the piezoelectric sensor is coupled to the circuit board; the piezoelectric sensor is the piezoelectric sensor of the second aspect.
  • the smart device provided in the embodiment of the present application includes the piezoelectric accelerometer of the first aspect, and its beneficial effects are the same as the beneficial effects of the piezoelectric accelerometer, which will not be repeated here.
  • FIG1A is a schematic diagram of the structure of a smart device provided in an embodiment of the present application.
  • FIG1B is a schematic diagram of the structure of a piezoelectric sensor provided in an embodiment of the present application.
  • FIG2A is a top view of a piezoelectric accelerometer provided in an embodiment of the present application.
  • FIG2B is a cross-sectional view along the line A1-A2 in FIG2A ;
  • FIG3A is a schematic structural diagram of a first mass block, a second mass block and a base provided in an embodiment of the present application;
  • FIG3B is a three-dimensional schematic diagram of a first mass block, a second mass block and a base provided in an embodiment of the present application;
  • FIG3C is a top view of another piezoelectric accelerometer provided in an embodiment of the present application.
  • FIG4A is a schematic diagram of a connection structure provided in an embodiment of the present application.
  • FIG4B is a schematic diagram of another connection structure provided in an embodiment of the present application.
  • FIGS. 5A-5C are schematic diagrams of another connection structure provided in an embodiment of the present application.
  • FIG6 is a schematic structural diagram of another connection structure provided in an embodiment of the present application.
  • FIG7 is a schematic structural diagram of another connection structure provided in an embodiment of the present application.
  • FIGS. 8A-8E are schematic diagrams of another connection structure provided in an embodiment of the present application.
  • FIG9 is a schematic structural diagram of a first cantilever beam and a second cantilever beam provided in an embodiment of the present application;
  • FIG10 is a schematic structural diagram of another first cantilever beam and a second cantilever beam provided in an embodiment of the present application;
  • FIG11 is a schematic structural diagram of a first stress detection structure and a second stress detection structure provided in an embodiment of the present application;
  • FIG. 12 is a schematic diagram of the structure of another piezoelectric accelerometer provided in an embodiment of the present application.
  • the term “including” is interpreted as an open, inclusive meaning, that is, “including, but not limited to”.
  • the terms “one embodiment”, “some embodiments”, “exemplary embodiments”, “exemplarily” or “some examples” and the like are intended to indicate that specific features, structures, materials or characteristics associated with the embodiment or example are included in at least one embodiment or example of the present disclosure.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be included in any one or more embodiments or examples in any appropriate manner.
  • Coupled When describing some embodiments, the term “coupled” and its derivative expressions may be used. For example, when describing some embodiments, the term “coupled” may be used to indicate that two or more components are in direct physical or electrical contact. However, the term “coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other. The embodiments disclosed herein are not necessarily limited to the contents of this document.
  • exemplary embodiments are described with reference to cross-sectional views and/or plan views and/or equivalent circuit diagrams as idealized exemplary drawings.
  • the thickness of the layers and regions is magnified for clarity. Therefore, it is conceivable that the shape changes relative to the drawings are caused by, for example, manufacturing technology and/or tolerances. Therefore, the exemplary embodiments should not be interpreted as being limited to the shapes of the regions shown herein, but include shape deviations caused by, for example, manufacturing. For example, an etched region shown as a rectangle will generally have curved features. Therefore, the regions shown in the drawings are schematic in nature, and their shapes are not intended to illustrate the actual shapes of the regions of the device, and are not intended to limit the scope of the exemplary embodiments.
  • the embodiment of the present application provides a smart device, which has the function of collecting vibration signals.
  • the smart device is, for example, a consumer product, a home product, a vehicle-mounted product, a wearable product, a financial terminal product, a communication product, and a smart detection product.
  • the smart device is a mobile phone, a tablet computer (pad), a tire pressure monitoring system (tire pressure monitoring system, TPMS), a vibration detector, a true wireless stereo (true wireless stereo, TWS) headset, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a smart watch, a smart bracelet, a smart door lock, a stethoscope, etc.
  • TWS headphones as an example, the smart device provided in the embodiment of the present application is schematically explained.
  • the smart device mainly includes a housing and a printed circuit board (PCB), a battery, a sound pickup module, a speaker, and a Bluetooth module arranged in the housing.
  • the battery, the sound pickup module, the speaker, and the Bluetooth module (not shown in FIG1A ) located inside the housing can be reasonably divided in the housing.
  • the battery is used to power the smart device, the sound pickup module is used to pick up voice signals, the speaker is used to play voice signals, and the Bluetooth module is used to communicate voice signals with an external terminal.
  • the battery, the sound pickup module, the speaker, and the Bluetooth module are all arranged on the PCB.
  • the sound pickup module is an important component for picking up voice signals in smart devices.
  • the noise filtering function of the sound pickup module has a crucial impact on the quality of voice interaction.
  • a microphone is used as a sound pickup module to obtain the audio signal of the target subject, but the noise filtering effect of the microphone can no longer meet the needs of users.
  • a combination of bone conduction pickup of a piezoelectric sensor and voice pickup (VPU) of a microphone is used to obtain the audio signal of the target subject to improve the noise filtering effect.
  • the piezoelectric sensor and the microphone can be coupled to a PCB in a smart device, for example.
  • the piezoelectric sensor includes a piezoelectric accelerometer 1 and an application specific integrated circuit (ASIC), and the piezoelectric accelerometer 1 and the application specific integrated circuit ASIC are coupled.
  • ASIC application specific integrated circuit
  • the piezoelectric accelerometer 1 is used to receive external vibration (or external acceleration) and convert the external vibration into a charge signal.
  • the application-specific integrated circuit ASIC is used to receive the charge signal of the piezoelectric accelerometer 1, and demodulate the charge signal (convert the analog signal into a digital signal) and then output it, so that the piezoelectric sensor completes the conversion from vibration to electrical signal.
  • An embodiment of the present application provides a piezo electric accelerometer (piezo electric accelerometer) 1, and the piezoelectric accelerometer 1 is, for example, a micro electric mechanical system (MEMS) piezoelectric accelerometer.
  • piezo electric accelerometer piezo electric accelerometer
  • MEMS micro electric mechanical system
  • the piezoelectric accelerometer 1 includes a base 10 , a first sensing component 20 , a second sensing component 30 , and a connecting structure 40 .
  • the base 10 may be, for example, a hollow columnar structure, a hollow rectangular columnar structure, a hollow circular columnar structure, or any other hollow columnar structure.
  • the first sensing component 20 and the second sensing component 30 are arranged side by side in the base 10 .
  • the first sensing component 20 and the second sensing component 30 are connected to the base 10 respectively, and there is a gap between the first sensing component 20 and the second sensing component 30 .
  • connection structure 40 is disposed between the first sensing component 20 and the second sensing component 30 , and the connection structure 40 is connected to the first sensing component 20 , the second sensing component 30 and the base 10 , respectively.
  • the first sensing component 20 includes a first cantilever beam 21 , a first mass block 22 and a first stress detection structure 23 .
  • the first cantilever beam 21 has two opposite ends connected to the base 10 and the first mass block 22 , and the first stress detection structure 23 is disposed on the surface of the first cantilever beam 21 .
  • the second sensing component 30 includes a second cantilever beam 31, a second mass block 32 and a second stress detection structure 33.
  • the second cantilever beam 31 has two opposite ends connected to the base 10 and the second mass block 32, and the second stress detection structure 33 is disposed on the surface of the second cantilever beam 31.
  • connection structure 40 is disposed between the first mass block 22 and the second mass block 32 .
  • the connection structure 40 is connected to the first mass block 22 in the first sensing component 20 and to the second mass block 32 in the second sensing component 30 .
  • the base 10 , the first cantilever beam 21 , the first mass block 22 , the second cantilever beam 31 , and the second mass block 32 are made of the same substrate layer 100 .
  • the substrate layer 100 includes a first silicon layer 111, a second silicon layer 112, and an insulating layer 113 disposed between the first silicon layer 111 and the second silicon layer 112. SOI), the material of the insulating layer 113 can be a silicon dioxide. silicon.
  • the substrate layer 100 is a silicon-on-insulator (SOI) substrate.
  • SOI silicon-on-insulator
  • Two first grooves 114 , a second groove 115 , a first opening 116 and a second opening 117 are formed on the substrate layer 100 .
  • the first groove 114 and the second groove 115 penetrate the first silicon layer 111 and the insulating layer 113 .
  • the first opening 116 and the second opening 117 penetrate the first silicon layer 111 , the insulating layer 113 and the second silicon layer 112 .
  • the bottom of the first groove 114 is located in the second silicon layer 112, and the bottom of the first groove 114 serves as the first cantilever beam 21, so the shape of the first groove 114 matches the shape of the first cantilever beam 21.
  • the bottom of the second groove 115 is located in the second silicon layer 112, and the bottom of the second groove 115 serves as the second cantilever beam 31, so the shape of the second groove 115 matches the shape of the second cantilever beam 31.
  • a first closed figure is divided in the substrate layer 100, the first closed figure matches the shape of the first mass block 22 to be formed, the first opening 116 is arranged around the first closed figure, and is disconnected at the first cantilever beam 21.
  • a second closed figure is divided in the substrate layer 100, the second closed figure matches the shape of the second mass block 32 to be formed, the second opening 117 is arranged around the second closed figure, and is disconnected at the second cantilever beam 31.
  • the base 10 includes three layers: a first silicon layer 111, an insulating layer 113 and a second silicon layer 112; the first cantilever beam 21 and the second cantilever beam 31 include one second silicon layer 112; the first mass block 22 and the second mass block 32 include three layers: a first silicon layer 111, an insulating layer 113 and a second silicon layer 112.
  • the first mass block 22 includes a first core layer, a first spacer layer, and a first connection layer stacked in sequence, and the first connection layer is connected to the first cantilever beam 21 .
  • the first core layer may be the layer where the first silicon layer 111 is located
  • the first spacer layer may be the layer where the insulating layer 113 is located
  • the first connection layer may be the layer where the second silicon layer 112 is located.
  • the second mass block 32 includes a second core layer, a second spacing layer and a second connection layer which are stacked in sequence; the second connection layer is connected to the second cantilever beam 31 .
  • the second core layer may be the layer where the first silicon layer 111 is located
  • the second spacer layer may be the layer where the insulating layer 113 is located
  • the second connection layer may be the layer where the second silicon layer 112 is located.
  • connection structure 40 is connected to the base 10 , the first mass block 22 , and the second mass block 32 , respectively. In some embodiments, as shown in FIG. 3A , the connection structure 40 is connected to the first mass block 22 and the second mass block 32 , respectively, at the second silicon layer 112 .
  • connection structure 40 is disposed on the same layer as the first cantilever beam 21 and the second cantilever beam 31 .
  • connection structure 40 is located at the layer where the second silicon layer 112 is located.
  • connection structure 40 can be connected to any position of the base 10 at any angle, and this embodiment of the present application does not limit this.
  • the piezoelectric accelerometer 1 provided in the embodiment of the present application is provided with a connection structure 40 between the first sensing component 20 and the second sensing component 30, and the connection structure 40 is respectively connected to the first sensing component 20, the second sensing component 30 and the base 10.
  • the connection structure 40 since the first mass block 22 and the second mass block 32 are interconnected through the connection structure 40, and the connection structure 40 is also connected to the base 10, when the piezoelectric accelerometer 1 is subjected to a lateral impact in the first direction X and/or the second direction Y, the connection structure 40 will provide a stabilizing force to the first mass block 22 and the second mass block 32.
  • the connection structure 40 is also interconnected with the stable base 10, further reducing the first mass block 22. The risk of the second mass block 32 shaking is reduced, and the resistance of the piezoelectric accelerometer 1 to lateral impact force is improved.
  • connection mode of the connection structure 40 with the base 10 the first mass block 22 and the second mass block 32
  • both ends of the connection structure 40 are connected to the first mass block 22 and the second mass block 32
  • second direction Y one end of the connection structure 40 is connected to the base 10.
  • the first direction X is the arrangement direction of the first sensing component 20 and the second sensing component 30, or it can be understood that the first direction X is the direction from the first mass block 22 to the second mass block 32, and the second direction Y intersects with the first direction X (for example, perpendicular).
  • the connecting structure 40 is connected to the first mass block 22 and the second mass block 32 along the first direction X, providing the piezoelectric accelerometer 1 with lateral impact resistance in the first direction X.
  • the connecting structure 40 is connected to the base 10 along the second direction Y, providing the piezoelectric accelerometer 1 with lateral impact resistance in the second direction Y.
  • the resistance force and the impact force are located in the same plane, and the resistance effect is better.
  • connection structure 40 along the first direction X, two ends of the connection structure 40 are connected to the first mass block 22 and the second mass block 32 , and along the second direction Y, two ends of the connection structure 40 are connected to the base 10 , respectively.
  • connection structure 40 Both ends of the connection structure 40 are connected to the base 10 respectively, which increases the application points of the stabilizing force, can improve the stabilizing effect on the first mass block 22 and the second mass block 32, and further improve the resistance of the piezoelectric accelerometer 1 to lateral impact force.
  • connection structure 40 has an opening 411 .
  • the connection structure 40 may include one or more openings 411.
  • the connection structure 40 includes more than one opening 411, the plurality of openings 411 may be the same or different.
  • the embodiment of the present application does not limit the shape of the opening 411 , and any opening 411 of any closed or unclosed shape falls within the protection scope of the embodiment of the present application.
  • the opening 411 may penetrate the connection structure 40 , or the opening may not penetrate the connection structure 40 .
  • the packaging stress will be blocked at the opening 411, which is equivalent to the opening 411 being able to release the packaging stress and prevent the packaging stress from being transmitted to the first mass block 22 and the second mass block 32 through the connection structure 40, so as to improve the accuracy and reliability of the piezoelectric accelerometer 1.
  • the presence of the opening 411 can reduce the rigidity of the connection structure 40 and improve the sensitivity of the piezoelectric accelerometer 1 to the external force in the third direction Z.
  • the connecting structure 40 includes at least one first connecting arm 41, at least one second connecting arm 42 and at least one third connecting arm 43.
  • Figure 5A illustrates the example in which the connecting structure 40 includes a first connecting arm 41, a second connecting arm 42 and a third connecting arm 43.
  • the first end of the first connecting arm 41 is connected to the first mass block 22, and the second end of the first connecting arm 41 is connected to the second connecting arm 42 and/or the third connecting arm 43. That is, the second end of the first connecting arm 41 is connected to the second connecting arm 42, or the second end of the first connecting arm 41 is connected to the third connecting arm 43, or the second end of the first connecting arm 41 is connected to the second connecting arm 42 and the third connecting arm 43.
  • a first end of the second connecting arm 42 is connected to the second mass block 32 , and a second end of the second connecting arm 42 is connected to the first connecting arm 41 and/or the third connecting arm 43 .
  • a first end of the third connecting arm 43 is connected to the base 10 , and a second end of the third connecting arm 43 is connected to the first connecting arm 41 and/or the second connecting arm 42 .
  • connection structure 40 further includes at least one fourth connection arm 44, and the third connection arm 43 and the fourth connection arm 44 are disposed on two opposite sides of the first connection arm 41.
  • Fig. 5B takes the connection structure 40 including one fourth connection arm 44 as an example for illustration.
  • a first end of the fourth connecting arm 44 is connected to the base 10 , and a second end of the fourth connecting arm 44 is connected to at least one of the first connecting arm 41 , the second connecting arm 42 , and the third connecting arm 43 .
  • the embodiment of the present application does not limit the connection method between the first connecting arm 41, the second connecting arm 42, the third connecting arm 43, and the fourth connecting arm 44, and it is sufficient to ensure that the connecting arms are firmly connected.
  • connection structure 40 is designed in the shape of a connection arm, which can reduce the weight of the connection structure 40 and reduce the detection error caused by the deformation of the connection structure 40 itself.
  • connection structure 40 is designed in the shape of a connection arm, which can reduce the rigidity of the connection structure 40, so that the connection structure 40 vibrates with the vibration of the first mass block 22 and the second mass block 32, so as to reduce the obstruction of the connection structure 40 to the vibration of the first mass block 22 and the second mass block 32, and improve the sensitivity of the piezoelectric accelerometer 1 to the external force in the third direction Z to improve the accuracy and sensitivity of the detection result.
  • the width of the first connecting arm 41 at each position is equal.
  • the width of the second connecting arm 42 at each position is equal.
  • the width of the third connecting arm 43 at each position is equal.
  • the width of the fourth connecting arm 44 at each position is equal.
  • the direction from the first end to the second end of the connecting arm can be understood as the length direction of the connecting arm, and the direction perpendicular to the length direction of the connecting arm can be understood as the width direction of the connecting arm.
  • equal width also includes approximately equal width, and width changes within the process error range ( ⁇ 5%) all fall within the protection scope of the embodiments of the present application.
  • the widths of the first connecting arm 41 , the second connecting arm 42 , the third connecting arm 43 and the fourth connecting arm 44 may be equal, unequal, or not completely equal, which is not limited in the embodiment of the present application.
  • each connecting arm By making the width of each connecting arm equal at all locations, the process difficulty can be reduced and the preparation cost can be reduced.
  • the length of the first connecting arm 41 is equal to the length of the second connecting arm 42 .
  • the width of the first connecting arm 41 is equal to the width of the second connecting arm 42 .
  • first connecting arm 41 and the second connecting arm 42 have equal impact resistance, which helps the first mass block 22 and the second mass block 32 to maintain balance during a lateral impact.
  • the length of the third connecting arm 43 is equal to the length of the fourth connecting arm 44 .
  • the width of the third connecting arm 43 is equal to the width of the fourth connecting arm 44 .
  • the third connecting arm 43 and the fourth connecting arm 44 have equal impact resistance, which helps the first mass block 22 and the second mass block 32 to maintain balance during a lateral impact.
  • the first connecting arm 41 is located on an extension line of the second connecting arm 42 .
  • the third connecting arm 43 is located on an extension line of the fourth connecting arm 44 .
  • the stabilizing forces provided by the first connecting arm 41 and the second connecting arm 42 are located on the same straight line, and the stabilizing forces provided by the third connecting arm 43 and the fourth connecting arm 44 are located on the same straight line, which helps the first mass block 22 and the second mass block 32 maintain balance during a lateral impact.
  • a midline of the gap between the first sensing component 20 and the second sensing component 30 parallel to the second direction Y is taken as a symmetry line, and the first connecting arm 41 and the second connecting arm 42 are symmetrically arranged along the symmetry line.
  • first connecting arm 41 and the second connecting arm 42 may also be arranged asymmetrically along the above-mentioned symmetry line.
  • a midline of the gap between the first sensing component 20 and the second sensing component 30 parallel to the first direction X is taken as a symmetry line, and the third connecting arm 43 and the fourth connecting arm 44 are symmetrically arranged along the symmetry line.
  • third connecting arm 43 and the fourth connecting arm 44 may also be arranged asymmetrically along the above-mentioned symmetry line.
  • the extension directions of the first connecting arm 41 and the second connecting arm 42 are parallel to the first direction X
  • the extension directions of the third connecting arm 43 and the fourth connecting arm 44 are parallel to the second direction Y.
  • the extension directions of the first connecting arm 41 and the second connecting arm 42 are not parallel to the first direction X, and/or the extension directions of the third connecting arm 43 and the fourth connecting arm 44 are not parallel to the second direction Y.
  • the extension trajectory of at least one of the first connecting arm 41, the second connecting arm 42, the third connecting arm 43, and the fourth connecting arm 44 is a straight line.
  • Fig. 5B takes the example that the extension trajectories of the first connecting arm 41, the second connecting arm 42, the third connecting arm 43, and the fourth connecting arm 44 are all straight lines.
  • the extension tracks of the first connecting arm 41 , the second connecting arm 42 , the third connecting arm 43 and the fourth connecting arm 44 are straight lines, and the structure is simple and easy to prepare.
  • the extension trajectory of at least one of the first connecting arm 41, the second connecting arm 42, the third connecting arm 43 and the fourth connecting arm 44 is a curve.
  • Fig. 5B is illustrated by taking the extension trajectory of the first connecting arm 41 and the second connecting arm 42 as a straight line and the extension trajectory of the third connecting arm 43 and the fourth connecting arm 44 as a curve as an example.
  • the curve may be a curve of any trajectory, and FIG. 5C is only an illustration.
  • the extension track of the connecting arm As a curve, the package stress can be released and the influence of the package stress on the measurement result can be reduced.
  • first connecting arm 41 , the second connecting arm 42 , the third connecting arm 43 and the fourth connecting arm 44 are an integrally formed structure.
  • connection structure 40 is simple and the structure is stable.
  • the connecting structure 40 also includes a confluence 45, and the second end of the first connecting arm 41, the second end of the second connecting arm 42, the second end of the third connecting arm 43 and the second end of the fourth connecting arm 44 are respectively connected to the confluence 45 to achieve interconnection between the first connecting arm 41, the second connecting arm 42, the third connecting arm 43 and the fourth connecting arm 44.
  • the confluence portion 45 is a rectangle, and by adjusting the length and width of the rectangle, the lengths of the first connecting arm 41, the second connecting arm 42, the third connecting arm 43, and the fourth connecting arm 44 can be adjusted to improve the reliability of the connection structure 40.
  • the embodiment of the present application does not limit the shape of the confluence portion 45, and the confluence portion 45 can be a figure of any shape, and FIG. 6 is only a schematic diagram.
  • the connecting structure 40 is only connected to the second end of the first connecting arm 41 , the second end of the second connecting arm 42 , the second end of the third connecting arm 43 and the second end of the fourth connecting arm 44 , and is not connected to the base 10 , the first mass block 22 and the second mass block 32 .
  • connection structure 40 By providing a junction 45 in the connection structure 40 , the difficulty of interconnecting the first connection arm 41 , the second connection arm 42 , the third connection arm 43 and the fourth connection arm 44 can be reduced.
  • the junction 45 is an integrally formed structure with the first connecting arm 41, the second connecting arm 42, the third connecting arm 43 and the fourth connecting arm 44. In this way, the preparation process of the connecting structure 40 is simple and the structure is stable.
  • the opening 411 included in the connection structure 40 is located on the junction 45 .
  • the junction 45 has an opening 411 .
  • the junction 45 has a plurality of openings 411 .
  • FIG. 8A the structure of the multiple openings 411 in FIG. 8A is merely a schematic diagram and does not constitute any limitation.
  • connection structure 40 includes a first connection arm 41 , a second connection arm 42 , a third connection arm 43 and a fourth connection arm 44 .
  • connection structure 40 includes a plurality of first connection arms 41 and a plurality of second connection arms 42 .
  • the plurality of first connecting arms 41 and the plurality of second connecting arms 42 are respectively connected to the junction 45 , the plurality of first connecting arms 41 are not interconnected, and the plurality of second connecting arms 42 are not interconnected.
  • the plurality of first connecting arms 41 and the plurality of second connecting arms 42 are respectively connected to the junction 45 , the plurality of first connecting arms 41 are interconnected, and the plurality of second connecting arms 42 are interconnected.
  • a plurality of first connecting arms 41 are arranged in parallel, and the lengths and/or widths of the plurality of first connecting arms 41 are equal or unequal.
  • a plurality of second connecting arms 42 are arranged in parallel, and the lengths and/or widths of the plurality of second connecting arms 42 are equal or unequal.
  • the number of the first connecting arms 41 is equal to the number of the second connecting arms 42 , and the plurality of first connecting arms 41 and the plurality of second connecting arms 42 are arranged in a one-to-one correspondence.
  • connection structure 40 includes a plurality of third connection arms 43 and a plurality of fourth connection arms 44 .
  • the plurality of third connecting arms 43 and the plurality of fourth connecting arms 44 are respectively connected to the junction 45 , the plurality of third connecting arms 43 are not interconnected, and the plurality of fourth connecting arms 44 are not interconnected.
  • the plurality of third connecting arms 43 and the plurality of fourth connecting arms 44 are respectively connected to the junction 45 , the plurality of third connecting arms 43 are interconnected, and the plurality of fourth connecting arms 44 are interconnected.
  • the plurality of third connecting arms 43 are arranged in parallel, and the lengths and/or widths of the plurality of third connecting arms 43 are equal or unequal.
  • the plurality of fourth connecting arms 44 are arranged in parallel, and the lengths and/or widths of the plurality of fourth connecting arms 44 are equal or unequal.
  • the number of the third connecting arms 43 is equal to the number of the fourth connecting arms 44 , and the plurality of third connecting arms 43 and the plurality of fourth connecting arms 44 are arranged in a one-to-one correspondence.
  • connection structure 40 may also include a plurality of first connection arms 41 , a plurality of second connection arms 42 , a plurality of third connection arms 43 and a plurality of fourth connection arms 44 .
  • the length L1 of the first cantilever beam 21 is not equal to the length L2 of the second cantilever beam 31 .
  • first cantilever beam 21 and the second cantilever beam 31 are designed to be asymmetrical.
  • the piezoelectric accelerometer 1 includes a first cantilever beam 21 and a second cantilever beam 31 with unequal resonant frequencies.
  • the first cantilever beam 21 and the second cantilever beam 31 each have their own resonant peak.
  • the high-resonant cantilever can suppress the resonant peak of the low-resonant cantilever, thereby widening the overall response bandwidth. This can effectively widen the resonant frequency of the piezoelectric accelerometer 1.
  • the bandwidth of the piezoelectric accelerometer 1 is widened to improve the problem of insufficient bandwidth of the piezoelectric accelerometer 1 in the related art.
  • the first cantilever beam 21 is a single beam structure, and along the second direction Y, the first cantilever beam 21 is located in the middle of the first mass block 22.
  • the second cantilever beam 31 is a single beam structure, and along the second direction Y, the second cantilever beam 31 is located in the middle of the second mass block 32.
  • the piezoelectric accelerometer 1 includes a plurality of first cantilever beams 21 , which are arranged side by side, and both ends of each first cantilever beam 21 are connected to the base 10 and the first mass block 22 , respectively.
  • the piezoelectric accelerometer 1 includes a plurality of second cantilever beams 31 , which are arranged side by side, and two ends of each second cantilever beam 31 are connected to the base 10 and the second mass block 32 respectively.
  • the piezoelectric accelerometer 1 include multiple first cantilever beams 21 and multiple second cantilever beams 31, it is equivalent to providing multiple stabilizing points for the first mass block 22 and the second mass block 32, which can improve the resistance of the first mass block 22 and the second mass block 32 to external forces in the Y-axis direction, thereby improving the reliability of the piezoelectric accelerometer 1.
  • the piezoelectric accelerometer 1 includes two first cantilever beams 21 located at two ends of a first mass block 22 .
  • the piezoelectric accelerometer 1 includes two second cantilever beams 31 located at two ends of a second mass block 32 .
  • the thickness of the first cantilever beam 21 and the second cantilever beam 31 is 1 ⁇ m-6 ⁇ m.
  • the thickness of the first cantilever beam 21 and the second cantilever beam 31 is 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m or 5.5 ⁇ m.
  • the signal-to-noise ratio (SNR) of the piezoelectric accelerometer 1 can be improved by setting the thickness of the first cantilever beam 21 and the second cantilever beam 31 to 1 ⁇ m or more.
  • SNR signal-to-noise ratio
  • the increase in the mass block requires a cantilever beam with higher stiffness to keep the resonant frequency constant, so that it can be achieved by increasing the width and thickness of the cantilever or reducing the length of the cantilever beam.
  • increasing the thickness of the cantilever beam is a more feasible solution, which also makes the process preparation easy to implement.
  • the first stress detection structure 23 and the second stress detection structure 33 may be any stress detection structure in the related art, and the embodiment of the present application does not limit this.
  • the first stress detection structure 23 includes a first lower electrode 231 , a first piezoelectric layer 232 , a first upper electrode 233 , and a first dielectric layer 234 which are sequentially stacked in a direction away from the first cantilever beam 21 .
  • the projections of the first lower electrode 231, the first piezoelectric layer 232, the first upper electrode 233 and the first dielectric layer 234 on the first cantilever beam 21 are all located on the first cantilever beam 21.
  • the structures of each membrane layer in the first stress detection structure 23 are all located above the first cantilever beam 21.
  • the first lower electrode 231 can also extend above the base 10 and the first mass block 22
  • the first piezoelectric layer 232 can also extend above the first mass block 22
  • the first dielectric layer 234 can also extend above the base 10 and the first mass block 22, as long as the first upper electrode 233 is located above the first cantilever beam 21.
  • the material of the first lower electrode 231 and the first upper electrode 233 is a conductive material, for example, the material of the first lower electrode 231 and the first upper electrode 233 is a metal.
  • the material of the first piezoelectric layer 232 is a piezoelectric material, for example, the material of the first piezoelectric layer 232 includes one or more piezoelectric materials such as lithium niobate (LiNbO3, LN), lithium tantalate (LiTaO3, LT), aluminum nitride (AlN), zinc oxide (ZnO) or quartz.
  • the material of the first dielectric layer 234 is a dielectric material, for example, the material of the first dielectric layer 234 includes organic matter, silicon oxide (SiO), silicon nitride (SiN), etc.
  • the second stress detection structure 33 includes a second lower electrode 331 , a second piezoelectric layer 332 , a second upper electrode 333 , and a second dielectric layer 334 which are sequentially stacked in a direction away from the second cantilever beam 31 .
  • the projections of the second lower electrode 331, the second piezoelectric layer 332, the second upper electrode 333 and the second dielectric layer 334 on the second cantilever beam 31 are all located on the second cantilever beam 31.
  • the structures of each membrane layer in the second stress detection structure 33 are all located above the second cantilever beam 31.
  • the second lower electrode 331 may also extend to above the base 10 and the second mass block 32
  • the second piezoelectric layer 332 may also extend to above the base 10 and the second mass block 32
  • the second dielectric layer 334 may also extend to above the base 10 and the second mass block 32
  • the second upper electrode 333 may be located above the second cantilever beam 31 .
  • the first lower electrode 231 and the second lower electrode 331 are formed synchronously using the same process
  • the first piezoelectric layer 232 and the second piezoelectric layer 332 are formed synchronously using the same process
  • the first upper electrode 233 and the second upper electrode 333 are formed synchronously using the same process
  • the first dielectric layer 234 and the second dielectric layer 334 are formed synchronously using the same process.
  • the piezoelectric accelerometer 1 further includes an interconnection electrode 51 and a pad 52 , and the pad 52 is disposed on a surface of the interconnection electrode 51 away from the base 10 .
  • the interconnection electrode 51 is used to couple with the first upper electrode 233 and the second upper electrode 333 , and is interconnected and coupled with the ASIC through the pad 52 , so as to transmit the electrical signal generated by the piezoelectric accelerometer 1 to the ASIC.
  • the interconnection electrode 51 is disposed on the base 10, and is located on the side of the second piezoelectric layer 332 away from the base 10.
  • the interconnection electrode 51 and the second upper electrode 333 are disposed on the same layer and formed simultaneously using the same process. In this case, the second dielectric layer 334 exposes the pad 52.
  • the piezoelectric accelerometer 1 further includes a first cover plate 60 and a second cover plate 70.
  • the first cover plate 60 is located on a side of the base 10 away from the first stress detection structure 23 and the second stress detection structure 33, and the first cover plate 60 is connected to the base 10.
  • the second cover plate 70 is located on a side of the first stress detection structure 23 and the second stress detection structure 33 away from the base 10, and the second cover plate 70 is connected to the base 10.
  • the second cover plate 70 is connected to the first stress detection structure 23 and the second stress detection structure 33 to realize the connection between the cover plate 70 and the base 10.
  • the first cover plate 60 and the second cover plate 70 are matched, and the base 10, the first sensing component 20, the second sensing component 30, and the connecting structure 40 are arranged between the first cover plate 60 and the second cover plate 70.
  • the base 10 is arranged on the first cover plate 60, and a circle of the base 10 is connected to the first cover plate 60, and the second cover plate 70 exposes the pad 52.
  • the materials of the first cover plate 60 and the second cover plate 70 may be, for example, glass or silicon.
  • the first cover plate 60 is connected to the base 10 through the first bonding layer 81
  • the second cover plate 60 is connected to the first stress detection structure 23 and the second stress detection structure 33 through the second bonding layer 82 . connect.
  • the surface of the first cover plate 60 facing the base 10 has a groove 61 .
  • the groove 61 is located below the first mass block 22 . And/or, in an exemplary embodiment, the groove 61 is located below the second mass block 32 .
  • FIG. 12 is only a schematic diagram.
  • the contact surface area between the first mass block 22 and the second mass block 32 and the first cover plate 60 can be reduced, so as to reduce the probability of the first mass block 22 and the second mass block 32 adhering to the first cover plate 60 and reduce the impact force in the third direction Z.
  • the working principle of the piezoelectric accelerometer 1 is: when a person speaks, the skin vibrates and is transmitted to the TWS headphones, and then the vibration is transmitted to the piezoelectric accelerometer. This introduces the vibration of the mass block, which in turn causes changes in the stress of the cantilever beam. Due to the piezoelectric effect of the piezoelectric material, the stress is converted into an electric charge, which is then read by the ASIC to form an electrical signal of acceleration.
  • the back-end algorithm compares the acceleration signal with the signal of the air microphone, and then performs algorithm processing to achieve uplink noise reduction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Gyroscopes (AREA)

Abstract

一种压电加速度计(1)、压电传感器及智能设备,压电加速度计(1)包括基座(10)、第一感应组件(20)、第二感应组件(30)以及连接结构(40)。第一感应组件(20)包括第一悬臂梁(21)、第一质量块(22)以及第一应力检测结构(23);第一悬臂梁(21)相对的两端与基座(10)和第一质量块(22)连接,第一应力检测结构(23)设置在第一悬臂梁(21)表面。第二感应组件(30)包括第二悬臂梁(31)、第二质量块(32)以及第二应力检测结构(33);第二悬臂梁(31)相对的两端与基座(10)和第二质量块(32)连接,第二应力检测结构(33)设置在第二悬臂梁(31)表面。连接结构(40)设置在第一感应组件(20)与第二感应组件(30)之间,连接结构(40)与第一质量块(22)、第二质量块(32)以及基座(10)分别连接。

Description

压电加速度计、压电传感器及智能设备
本申请要求于2022年10月25日提交国家知识产权局、申请号为202211312873.7、发明名称为“压电加速度计、压电传感器及智能设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及机械电子技术领域,尤其涉及一种压电加速度计、压电传感器及智能设备。
背景技术
压电传感器作为一种振动检测单元,广泛的应用于轮胎压力监测系统(tire pressure monitoring system,TPMS)、震动检测仪、真正无线立体声(true wireless stereo,TWS)耳机、穿戴设备、听诊器等智能设备中。
但是,目前的压电传感器普遍存在可靠性差的问题。
发明内容
本申请实施例提供一种压电加速度计、压电传感器及智能设备,用于提高压电加速度计的信噪比及可靠性。
为达到上述目的,本实施例采用如下技术方案:
本申请实施例的第一方面,提供一种压电加速度计,压电加速度计例如为微电机系统压电加速度计。压电加速度计包括:基座、第一感应组件、第二感应组件以及连接结构。第一感应组件包括第一悬臂梁、第一质量块以及第一应力检测结构;第一悬臂梁相对的两端与基座和第一质量块连接,第一应力检测结构设置在第一悬臂梁表面。第二感应组件包括第二悬臂梁、第二质量块以及第二应力检测结构;第二悬臂梁相对的两端与基座和第二质量块连接,第二应力检测结构设置在第二悬臂梁表面。第一感应组件与第二感应组件的结构大致相同,第一感应组件和第二感应组件相对设置,通过连接结构连接。连接结构设置在第一感应组件与第二感应组件之间,连接结构与第一质量块、第二质量块以及基座分别连接。
本申请实施例提供的压电加速度计,通过在第一感应组件和第二感应组件之间设置连接结构,且连接结构与第一感应组件、第二感应组件以及基座分别连接。这样一来,由于第一质量块和第二质量块通过连接结构互联,且连接结构还与基座连接,在压电加速度计受到第一方向,和/或,第二方向的侧向冲击时,连接结构会向第一质量块和第二质量块提供稳固力。尤其是连接结构还与稳固的基座互联,进一步降低第一质量块和第二质量块晃动的风险,提高压电加速度计对侧向冲击力的抵抗力。
在一种可能的实现方式中,沿第一方向,连接结构的两端与第一质量块和第二质量块连接;沿第二方向,连接结构的至少一端与基座连接;第一方向为第一感应组件 与第二感应组件的排布方向,第二方向与第一方向相交。连接结构与第一质量块和第二质量块沿第一方向连接,为压电加速度计提供第一方向的侧向冲击抵抗力,连接结构与基座沿第二方向连接,为压电加速度计提供第二方向的侧向冲击抵抗力,抵抗力与冲击力位于同一平面,抵抗效果更好。
在一种可能的实现方式中,连接结构包括至少一条第一连接臂、至少一条第二连接臂以及至少一条第三连接臂;第一连接臂的第一端与第一质量块连接,第一连接臂的第二端与第二连接臂和/或第三连接臂连接;第二连接臂的第一端与第二质量块连接,第二连接臂的第二端与第一连接臂和/或第三连接臂连接;第三连接臂的第一端与基座连接,第三连接臂的第二端与第一连接臂和/或第二连接臂连接。连接结构设计为连接臂形状,可以减轻连接结构的重量,降低连接结构自身变形所带来的检测误差。另外,连接结构设计为连接臂形状,可降低连接结构的刚性,使得连接结构随着第一质量块和第二质量块的振动而振动,以降低连接结构对第一质量块和第二质量块振动的阻碍,提高压电加速度计对第三方向外力的敏感度以提高检测结果的准确度和灵敏度。
在一种可能的实现方式中,连接结构还包括至少一个第四连接臂;第四连接臂的第一端与基座连接,第四连接臂的第二端与第一连接臂、第二连接臂、第三连接臂中的至少一个连接;第三连接臂与第四连接臂设置在第一连接臂相对的两侧。
在一种可能的实现方式中,连接结构还包括汇合部,第一连接臂、第二连接臂以及第三连接臂分别与汇合部连接。通过在连接结构中设备汇合部,可降低第一连接臂、第二连接臂、第三连接臂以及第四连接臂之间互联的难度。
在一种可能的实现方式中,汇合部具有开口。通过在连接结构上设置开口,封装应力会在开口处阻断,相当于开口可以对封装应力进行释放,阻挡封装应力经连接结构传递至第一质量块和第二质量块,以提高压电加速度计的准确性和可靠性。另外,开口的存在可以降低连接结构的刚性,提高压电加速度计对第三方向外力的敏感度。而且,在汇合部上设置开口,易于实现。
在一种可能的实现方式中,第一连接臂位于第二连接臂的延伸线上。这样一来,第一连接臂和第二连接臂提供的稳固力位于同一直线上,有助于第一质量块和第二质量块在侧向冲击过程中保持平衡。
在一种可能的实现方式中,第三连接臂位于第四连接臂的延伸线上。这样一来,第三连接臂和第四连接臂提供的稳固力位于同一直线上,有助于第一质量块和第二质量块在侧向冲击过程中保持平衡。
在一种可能的实现方式中,第一连接臂、第二连接臂以及第三连接臂的延伸轨迹为直线或者曲线。这是一种可能的实现方式。
在一种可能的实现方式中,连接结构具有开口。通过在连接结构上设置开口,封装应力会在开口处阻断,相当于开口可以对封装应力进行释放,阻挡封装应力经连接结构传递至第一质量块和第二质量块,以提高压电加速度计的准确性和可靠性。另外,开口的存在可以降低连接结构的刚性,提高压电加速度计对第三方向外力的敏感度。
在一种可能的实现方式中,第一悬臂梁的长度与第二悬臂梁的长度不相等。压电 加速度计包括两个谐振频率不相等的第一悬臂梁和第二悬臂梁,谐振频率会有变化,可以有效的扩宽压电加速度计的谐振频率。拉宽压电加速度计的带宽,改善相关技术中压电加速度计带宽不足的问题。
在一种可能的实现方式中,压电加速度计包括多个第一悬臂梁,多个第一悬臂梁并排设置。通过使压电加速度计包括多个第一悬臂梁,相当于为第一质量块提供多个稳固点,可以提高第一质量块对轴方向外力的抵抗力,以提高压电加速度计的可靠性。
在一种可能的实现方式中,压电加速度计包括多个第二悬臂梁,多个第二悬臂梁并排设置。通过使压电加速度计包括多个第二悬臂梁,相当于为第二质量块提供多个稳固点,可以提高第二质量块对轴方向外力的抵抗力,以提高压电加速度计的可靠性。
在一种可能的实现方式中,压电加速度计还包括第一盖板;第一盖板位于基座远离第一应力检测结构一侧,第一盖板朝向基座的表面具有凹槽;凹槽位于第一质量块和/或第二质量块的下方;基座设置在第一盖板上、与第一盖板连接。通过在第一盖板上形成凹槽,可减小第一质量块和第二质量块与第一盖板接触面的面积,以降低第一质量块和第二质量块与第一盖板60连的概率,降低第三方向的冲击力。
在一种可能的实现方式中,第一质量块包括依次层叠设置的第一核心层、第一间隔层以及第一连接层;第一连接层与第一悬臂梁连接。这是一种可能的结构。
在一种可能的实现方式中,第二质量块包括依次层叠设置的第二核心层、第二间隔层以及第二连接层;第二连接层与第二悬臂梁连接。这是一种可能的结构。
在一种可能的实现方式中,连接结构与第一悬臂梁和第二悬臂梁同层设置。这样一来,结构简单,易于实现。
在一种可能的实现方式中,第一悬臂梁和第二悬臂梁的厚度为1μm-6μm。与相关技术中第一悬臂梁和第二悬臂梁的厚度仅能设置在1μm以下相比,通过将第一悬臂梁和第二悬臂梁的厚度设置在1μm以上,可以提高压电加速度计的信噪比(signal noise ratio,SNR)。
在一种可能的实现方式中,第一应力检测结构包括沿远离第一悬臂梁的方向依次层叠设置的第一下电极、第一压电层、第一上电极以及第一介质层;第一上电极在第一悬臂梁上的投影位于第一悬臂梁上。这是一种可能的结构。
在一种可能的实现方式中,第二应力检测结构包括沿远离第二悬臂梁的方向依次层叠设置的第二下电极、第二压电层、第二上电极以及第二介质层;第二上电极在第二悬臂梁上的投影位于第二悬臂梁上。这是一种可能的结构。
在一种可能的实现方式中,压电加速度计还包括互联电极和焊盘;互联电极设置在基座上、与第二上电极同层设置;焊盘设置在互联电极远离基座的表面上。这是一种可能的结构。
在一种可能的实现方式中,压电加速度计还包括第二盖板,第二盖板位于第一应力检测结构和第二应力检测结构远离基座一侧;第二盖板与基座连接,第一感应组件和第二感应组件位于第一盖板与第二盖板之间。这是一种可能的结构。
本申请实施例的第二方面,提供一种压电传感器,包括压电加速度计和专用集成 电路,压电加速度计与专用集成电路耦接;压电加速度计为第一方面任一项的压电加速度计。
本申请实施例提供的压电传感器包括第一方面的压电加速度计,其有益效果与压电加速度计的有益效果相同,此处不再赘述。
本申请实施例的第三方面,提供一种智能设备,包括压电传感器和电路板,压电传感器与电路板耦接;压电传感器为第二方面的压电传感器。
本申请实施例提供的智能设备包括第一方面的压电加速度计,其有益效果与压电加速度计的有益效果相同,此处不再赘述。
附图说明
图1A为本申请实施例提供的一种智能设备的结构示意图;
图1B为本申请实施例提供的一种压电传感器的结构示意图;
图2A为本申请实施例提供的一种压电加速度计的俯视图;
图2B为沿图2A中A1-A2向的剖视图;
图3A为本申请实施例提供的一种第一质量块、第二质量块及基座的结构示意图;
图3B为本申请实施例提供的一种第一质量块、第二质量块及基座的立体示意图;
图3C为本申请实施例提供的另一种压电加速度计的俯视图;
图4A为本申请实施例提供的一种连接结构的结构示意图;
图4B为本申请实施例提供的另一种连接结构的结构示意图;
图5A-图5C为本申请实施例提供的又一种连接结构的结构示意图;
图6为本申请实施例提供的又一种连接结构的结构示意图;
图7为本申请实施例提供的又一种连接结构的结构示意图;
图8A-图8E为本申请实施例提供的又一种连接结构的结构示意图;
图9为本申请实施例提供的一种第一悬臂梁和第二悬臂梁的结构示意图;
图10为本申请实施例提供的另一种第一悬臂梁和第二悬臂梁的结构示意图;
图11为本申请实施例提供的一种第一应力检测结构和第二应力检测结构的结构示意图;
图12为本申请实施例提供的又一种压电加速度计的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,本申请实施例中,术语“第一”、“第二”等仅用于描述方便,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例中,“上”、“下”、“左”以及“右不限于相对附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语可以是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件附图所放置的方位的变化而相应地发生 变化。
在本申请实施例中,除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例性地”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
在描述一些实施例时,可能使用了“耦接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例中参照作为理想化示例性附图的剖视图和/或平面图和/或等效电路图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本申请实施例提供一种智能设备,该智能设备具有振动信号采集的功能。该智能设备例如为消费性产品、家居式产品、车载式产品、穿戴式产品、金融终端产品、通信产品、智能检测产品。示例的,该智能设备为手机(mobile phone)、平板电脑(pad)、轮胎压力监测系统(tire pressure monitoring system,TPMS)、震动检测仪、真正无线立体声(true wireless stereo,TWS)耳机、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、智能手表、智能手环、智能门锁、听诊器等。
下面,以TWS耳机为例,对本申请实施例提供的智能设备进行示意说明。
如图1A所示,智能设备主要包括壳体以及设置在壳体内的印刷电路板(printed circuit board,PCB)、电池、拾音模块、扬声器、蓝牙模块。位于壳体内部的电池、拾音模块、扬声器以及蓝牙模块(图1A中均未示意出),电池、拾音模块、扬声器以及蓝牙模块合理的分部在壳体内即可。电池用于为智能设备供电,拾音模块用于拾取语音信号,扬声器用于播放语音信号,蓝牙模块用于与外部终端互通语音信号。示例的,电池、拾音模块、扬声器以及蓝牙模块均设置于PCB上。
在语音的交互中,时常会遇到有严重背景噪声的通话场景,例如在酒吧、会场、风雨环境等场景中。这些背景噪声的存在,会对语音交互产生干扰,严重的影响了语 音交互的质量,甚至影响正常的语音交互。
拾音模块是智能设备中拾取语音信号的重要部件,拾音模块的虑噪功能对语音交互的质量有着至关重要的影响。
在一些产品中,采用麦克风作为拾音模块来获取目标主体的音频信号,但麦克风的虑噪效果已经无法满足用户的需求。
在一些产品中,采用压电传感器的骨传导拾取和麦克风的语音拾取(voice pick up,VPU)相结合的方式来获取目标主体的音频信号,以提高虑噪效果。压电传感器和麦克风例如可以与智能设备中的PCB耦接。
示例的,如图1B所示,压电传感器包括压电加速度计1和专用集成电路(application specific integrated circuit,ASIC),压电加速度计1和专用集成电路ASIC耦接。
压电加速度计1用于接收外部振动(或者理解为是外部加速度),并将外部振动转换我电荷信号。专用集成电路ASIC用于接收压电加速度计1的电荷信号,并对电荷信号进行解调(将模拟信号转换为数字信号)后输出,以使得压电传感器完成从振动到电信号的转换。
本申请实施例提供一种压电加速度计(piezo electric accelerometer)1,压电加速度计1例如为微电机系统(micro electric mechanical system,MEMS)压电加速度计。
如图2A所示,压电加速度计1包括基座10、第一感应组件20和第二感应组件30、以及连接结构40。
基座10例如可以是中空的柱状结构,基座10例如可以是中空的矩形柱状结构,基座10也可以是中空的圆形柱状结构,基座10也可以是任意中空的其他柱状结构。
第一感应组件20和第二感应组件30并排设置在基座10内,第一感应组件20和第二感应组件30分别与基座10连接,第一感应组件20和第二感应组件30之间具有间隙。
连接结构40设置在第一感应组件20和第二感应组件30之间,连接结构40与第一感应组件20和第二感应组件30以及基座10分别连接。
如图2B所示,第一感应组件20包括第一悬臂梁21、第一质量块22以及第一应力检测结构23。第一悬臂梁21相对的两端与基座10和第一质量块22连接,第一应力检测结构23设置在第一悬臂梁21表面。
第二感应组件30包括第二悬臂梁31、第二质量块32以及第二应力检测结构33。第二悬臂梁31相对的两端与基座10和第二质量块32连接,第二应力检测结构33设置在第二悬臂梁31表面。
连接结构40设置在第一质量块22与第二质量块32之间,连接结构40与第一感应组件20中的第一质量块22连接、与第二感应组件30中的第二质量块32连接。
在一些实施例中,如图3A所示,基座10、第一悬臂梁21、第一质量块22、第二悬臂梁31以及第二质量块32是采用同一衬底层100制备而成的。
在一种实施例中,衬底层100包括第一硅层111、第二硅层112以及设置在第一硅层111与第二硅层112之间的绝缘层113。SOI),绝缘层113的材料可以是二氧化 硅。
示例的,衬底层100为绝缘体上硅(silicon-on-insulator,SOI)衬底。
在衬底层100上形成两个第一凹槽114、第二凹槽115、第一开口116以及第二开口117,第一凹槽114和第二凹槽115贯穿第一硅层111和绝缘层113,第一开口116和第二开口117贯穿第一硅层111、绝缘层113以及第二硅层112。
其中,第一凹槽114的槽底位于第二硅层112,第一凹槽114的槽底作为第一悬臂梁21,因此,第一凹槽114的形状与第一悬臂梁21的形状匹配。第二凹槽115的槽底位于第二硅层112,第二凹槽115的槽底作为第二悬臂梁31,因此,第二凹槽115的形状与和第二悬臂梁31的形状匹配。
关于第一开口116和第二开口117的轮廓,示例的,如图3B所示,在衬底层100中划分第一封闭图形,第一封闭图形与待形成的第一质量块22的形状匹配,第一开口116绕该第一封闭图形设置,在第一悬臂梁21处断开。在衬底层100中划分第二封闭图形,第二封闭图形与待形成的第二质量块32的形状匹配,第二开口117绕该第二封闭图形设置,在第二悬臂梁31处断开。
基于此,基座10包括第一硅层111、绝缘层113以及第二硅层112三层,第一悬臂梁21和第二悬臂梁31包括第二硅层112一层,第一质量块22和第二质量块32包括第一硅层111、绝缘层113以及第二硅层112三层。
在一些实施例中,第一质量块22包括依次层叠设置的第一核心层、第一间隔层以及第一连接层,第一连接层与第一悬臂梁21连接。
示例的,第一核心层可以为第一硅层111所在层,第一间隔层可以为绝缘层113所在层,第一连接层可以为第二硅层112所在层。
第二质量块32包括依次层叠设置的第二核心层、第二间隔层以及第二连接层;第二连接层与第二悬臂梁31连接。
示例的,第二核心层可以为第一硅层111所在层,第二间隔层可以为绝缘层113所在层,第二连接层可以为第二硅层112所在层。
连接结构40与基座10、第一质量块22和第二质量块32分别连接,在一些实施例中,如图3A所示,连接结构40在第二硅层112处与第一质量块22和第二质量块32分别连接。
在一些实施例中,如图3A所示,连接结构40与第一悬臂梁21和第二悬臂梁31同层设置。
例如,连接结构40位于第二硅层112所在层。
连接结构40可以以任意角度与基座10的任意位置连接,本申请实施例对此不做限定。
本申请实施例提供的压电加速度计1,通过在第一感应组件20和第二感应组件30之间设置连接结构40,且连接结构40与第一感应组件20、第二感应组件30以及基座10分别连接。这样一来,由于第一质量块22和第二质量块32通过连接结构40互联,且连接结构40还与基座10连接,在压电加速度计1受到第一方向X,和/或,第二方向Y的侧向冲击时,连接结构40会向第一质量块22和第二质量块32提供稳固力。尤其是连接结构40还与稳固的基座10互联,进一步降低第一质量块22 和第二质量块32晃动的风险,提高压电加速度计1对侧向冲击力的抵抗力。
关于连接结构40与基座10、第一质量块22和第二质量块32的连接方式,在一些实施例中,如图3B所示,沿第一方向X,连接结构40的两端与第一质量块22和第二质量块32连接,沿第二方向Y,连接结构40的一端与基座10连接。第一方向X为第一感应组件20与第二感应组件30的排布方向,或者理解为,第一方向X为从第一质量块22到第二质量块32的方向,第二方向Y与第一方向X相交(例如垂直)。
连接结构40与第一质量块22和第二质量块32沿第一方向X连接,为压电加速度计1提供第一方向X的侧向冲击抵抗力,连接结构40与基座10沿第二方向Y连接,为压电加速度计1提供第二方向Y的侧向冲击抵抗力,抵抗力与冲击力位于同一平面,抵抗效果更好。
在另一些实施例中,如图3C所示,沿第一方向X,连接结构40的两端与第一质量块22和第二质量块32连接,沿第二方向Y,连接结构40的两端与基座10分别连接。
连接结构40的两端分别与基座10连接,增加稳固力的施力点,可提高对第一质量块22和第二质量块32的稳固效果,进一步提高压电加速度计1对侧向冲击力的抵抗力。
在一些实施例中,如图4A和图4B所示,连接结构40具有开口411。
其中,连接结构40包括的开口411可以为一个,也可以为多个。在连接结构40包括的开口411为多个的情况下,多个开口411可以相同,多个开口411也可以不相同。
本申请实施例对开口411的形状不做限定,任意封闭或者不封闭形状的开口411均属于本申请实施例的保护范围。
另外,沿压电加速度计1的厚度方向(第三方向Z),开口411可以贯穿连接结构40,开口也可以不贯穿连接结构40。
通过在连接结构40上设置开口411,封装应力会在开口411处阻断,相当于开口411可以对封装应力进行释放,阻挡封装应力经连接结构40传递至第一质量块22和第二质量块32,以提高压电加速度计1的准确性和可靠性。另外,开口411的存在可以降低连接结构40的刚性,提高压电加速度计1对第三方向Z外力的敏感度。
在一些实施例中,如图5A所示,连接结构40包括至少一条第一连接臂41、至少一条第二连接臂42以及至少一条第三连接臂43,图5A中以连接结构40包括一条第一连接臂41、一条第二连接臂42以及一条第三连接臂43为例进行示意。
第一连接臂41的第一端与第一质量块22连接,第一连接臂41的第二端与第二连接臂42和/或第三连接臂43连接。即,第一连接臂41的第二端与第二连接臂42连接,或者第一连接臂41的第二端与第三连接臂43连接,或者,第一连接臂41的第二端与第二连接臂42和第三连接臂43连接。
第二连接臂42的第一端与第二质量块32连接,第二连接臂42的第二端与第一连接臂41和/或第三连接臂43连接。
第三连接臂43的第一端与基座10连接,第三连接臂43的第二端与第一连接臂41和/或第二连接臂42连接。
在一些实施例中,如图5B所示,连接结构40还包括至少一个第四连接臂44,第三连接臂43与第四连接臂44设置在第一连接臂41相对的两侧。图5B中以连接结构40包括一个第四连接臂44为例进行示意。
第四连接臂44的第一端与基座10连接,第四连接臂44的第二端与第一连接臂41、第二连接臂42、第三连接臂43中的至少一个连接。
本申请实施例对第一连接臂41、第二连接臂42、第三连接臂43、第四连接臂44之间的连接方式不做限定,使连接臂之间稳固连接即可。
连接结构40设计为连接臂形状,可以减轻连接结构40的重量,降低连接结构40自身变形所带来的检测误差。另外,连接结构40设计为连接臂形状,可降低连接结构40的刚性,使得连接结构40随着第一质量块22和第二质量块32的振动而振动,以降低连接结构40对第一质量块22和第二质量块32振动的阻碍,提高压电加速度计1对第三方向Z外力的敏感度以提高检测结果的准确度和灵敏度。
在一些实施例中,第一连接臂41各位置处的宽度相等。
在一些实施例中,第二连接臂42各位置处的宽度相等。
在一些实施例中,第三连接臂43各位置处的宽度相等。
在一些实施例中,第四连接臂44各位置处的宽度相等。
本申请实施例中,将连接臂的从第一端到第二端的方向,可以理解为是连接臂的长度方向,与连接臂长度方向垂直的方向,可以理解为是连接臂的宽度方向。
当然,宽度相等,也包括近似相等,工艺误差范围(±5%)内的宽度变化,均属于本申请实施例的保护范围。
另外,第一连接臂41、第二连接臂42、第三连接臂43以及第四连接臂44的宽度,可以相等、也可以不相等、还可以不完全相等,本申请实施例对此不做限定。
通过使每个连接臂各处的宽度相等,可以降低工艺难度,降低制备成本。
在一些实施例中,第一连接臂41的长度与第二连接臂42的长度相等。
在一些实施例中,第一连接臂41的宽度与第二连接臂42的宽度相等。
这样一来,第一连接臂41和第二连接臂42的抗冲击能力相等,有助于第一质量块22和第二质量块32在侧向冲击过程中保持平衡。
在一些实施例中,第三连接臂43的长度与第四连接臂44的长度相等。
在一些实施例中,第三连接臂43的宽度与第四连接臂44的宽度相等。
这样一来,第三连接臂43和第四连接臂44的抗冲击能力相等,有助于第一质量块22和第二质量块32在侧向冲击过程中保持平衡。
在一些实施例中,第一连接臂41位于第二连接臂42的延伸线上。
在一些实施例中,第三连接臂43位于第四连接臂44的延伸线上。
这样一来,第一连接臂41和第二连接臂42提供的稳固力位于同一直线上,第三连接臂43和第四连接臂44提供的稳固力位于同一直线上,有助于第一质量块22和第二质量块32在侧向冲击过程中保持平衡。
在一些实施例中,以第一感应组件20和第二感应组件30之间间隙的平行于第二方向Y的中线为对称线,第一连接臂41和第二连接臂42沿上述对称线对称设置。
当然,第一连接臂41和第二连接臂42沿上述对称线也可以不对称设置。
在一些实施例中,以第一感应组件20和第二感应组件30之间间隙的平行于第一方向X的中线为对称线,第三连接臂43和第四连接臂44沿上述对称线对称设置。
当然,第三连接臂43和第四连接臂44沿上述对称线也可以不对称设置。
在一些实施例中,如图5B所示,第一连接臂41和第二连接臂42的延伸方向与第一方向X平行,第三连接臂43和第四连接臂44的延伸方向与第二方向Y平行。
当然,在另一些实施例中,第一连接臂41和第二连接臂42的延伸方向与第一方向X不平行,和/或,第三连接臂43和第四连接臂44的延伸方向与第二方向Y不平行。
在一些实施例中,如图5B所示,第一连接臂41、第二连接臂42、第三连接臂43以及第四连接臂44中至少一个的延伸轨迹为直线。图5B中以第一连接臂41、第二连接臂42、第三连接臂43以及第四连接臂44的延伸轨迹均为直线为例进行示意。
第一连接臂41、第二连接臂42、第三连接臂43以及第四连接臂44的延伸轨迹为直线,结构简单,易于制备。
在另一些实施例中,如图5C所示,第一连接臂41、第二连接臂42、第三连接臂43以及第四连接臂44中至少一个的延伸轨迹为曲线。图5B中以第一连接臂41和第二连接臂42的延伸轨迹为直线,第三连接臂43和第四连接臂44的延伸轨迹为曲线为例进行示意。
其中,曲线可以是任意轨迹的曲线,图5C中仅为一种示意。
通过将连接臂的延伸轨迹设计为曲线,可以对封装应力进行释放,降低封装应力对测量结果的影响。
在一些实施例中,第一连接臂41、第二连接臂42、第三连接臂43以及第四连接臂44为一体成型结构。
这样一来,连接结构40的制备工艺简单,结构稳固。
在一些实施例中,如图6所示,连接结构40还包括汇合部45,第一连接臂41的第二端、第二连接臂42的第二端、第三连接臂43的第二端以及第四连接臂44的第二端分别与汇合部45连接,以实现第一连接臂41、第二连接臂42、第三连接臂43以及第四连接臂44之间的互连。
示例的,汇合部45为矩形,通过调整矩形的长和宽,可以调整第一连接臂41、第二连接臂42、第三连接臂43以及第四连接臂44的长度,以提高连接结构40的可靠性。本申请实施例对汇合部45的形状不做限定,汇合部45可以是任意形状的图形,图6中仅为一种示意。
在一些实施例中,连接结构40仅与第一连接臂41的第二端、第二连接臂42的第二端、第三连接臂43的第二端以及第四连接臂44的第二端连接,不与基座10、第一质量块22以及第二质量块32连接。
通过在连接结构40中设备汇合部45,可降低第一连接臂41、第二连接臂42、第三连接臂43以及第四连接臂44之间互联的难度。
在一些实施例中,汇合部45与第一连接臂41、第二连接臂42、第三连接臂43以及第四连接臂44为一体成型结构。这样一来,连接结构40的制备工艺简单,结构 稳固。
在一些实施例中,如图7所示,连接结构40所包括的开口411位于汇合部45上。
在一些实施例中,如图7所示,汇合部45上具有一个开口411。
在另一些实施例中,如图8A所示,汇合部45具有多个开口411。
当然,图8A中多个开口411的结构仅为一种示意,不做任何限定。
上述仅是以连接结构40包括一个第一连接臂41、一个第二连接臂42、一个第三连接臂43以及一个第四连接臂44为例进行示意。
在一些实施例中,如图8B所示,连接结构40包括多个第一连接臂41和多个第二连接臂42。
示例的,如图8B所示,多个第一连接臂41和多个第二连接臂42分别与汇合部45连接,多个第一连接臂41之间不互联,多个第二连接臂42之间不互联。
或者,示例的,如图8C所示,多个第一连接臂41和多个第二连接臂42分别与汇合部45连接,多个第一连接臂41之间互联,多个第二连接臂42之间互联。
示例的,多个第一连接臂41平行设置,多个第一连接臂41的长度和/或宽度相等或者不相等。多个第二连接臂42平行设置,多个第二连接臂42的长度和/或宽度相等或者不相等。
示例的,第一连接臂41的数量与第二连接臂42的数量相等,多个第一连接臂41与多个第二连接臂42一一对应设置。
在一些实施例中,如图8D所示,连接结构40包括多个第三连接臂43和多个第四连接臂44。
示例的,如图8D所示,多个第三连接臂43和多个第四连接臂44分别与汇合部45连接,多个第三连接臂43之间不互联,多个第四连接臂44之间不互联。
或者,示例的,如图8E所示,多个第三连接臂43和多个第四连接臂44分别与汇合部45连接,多个第三连接臂43之间互联,多个第四连接臂44之间互联。
示例的,多个第三连接臂43平行设置,多个第三连接臂43的长度和/或宽度相等或者不相等。多个第四连接臂44平行设置,多个第四连接臂44的长度和/或宽度相等或者不相等。
示例的,第三连接臂43的数量与第四连接臂44的数量相等,多个第三连接臂43与多个第四连接臂44一一对应设置。
当然,也可以是连接结构40同时包括多个第一连接臂41、多个第二连接臂42、多个第三连接臂43和多个第四连接臂44。
在一些实施例中,如图9所示,第一悬臂梁21的长度L1与第二悬臂梁31的长度L2不相等。
或者理解为,第一悬臂梁21和第二悬臂梁31不对称设计。
压电加速度计1包括两个谐振频率不相等的第一悬臂梁21和第二悬臂梁31,第一悬臂梁21和第二悬臂梁31各自有自己的谐振峰。对于低谐振悬臂而言,当其发生谐振时,由于高谐振悬臂还未发生谐振,这样,高谐振悬臂可以抑制低谐振悬臂的谐振峰,从而拓宽整体的响应带宽。进而可以有效的扩宽压电加速度计1的谐振频率, 以拉宽压电加速度计1的带宽,改善相关技术中压电加速度计1带宽不足的问题。
在一些实施例中,如图9所示,第一悬臂梁21为单梁结构,沿第二方向Y,第一悬臂梁21位于第一质量块22的中间。第二悬臂梁31为单梁结构,沿第二方向Y,第二悬臂梁31位于第二质量块32的中间。
在另一些实施例中,如图10所示,压电加速度计1包括多个第一悬臂梁21,多个第一悬臂梁21并排设置,每个第一悬臂梁21的两端与基座10和第一质量块22分别连接。
压电加速度计1包括多个第二悬臂梁31,多个第二悬臂梁31并排设置,每个第二悬臂梁31的两端与基座10和第二质量块32分别连接。
通过使压电加速度计1包括多个第一悬臂梁21和多个第二悬臂梁31,相当于为第一质量块22和第二质量块32提供多个稳固点,可以提高第一质量块22和第二质量块32对Y轴方向外力的抵抗力,以提高压电加速度计1的可靠性。
在一些实施例中,如图10所示,压电加速度计1包括两个第一悬臂梁21,两个第一悬臂梁21位于第一质量块22的两端。压电加速度计1包括两个第二悬臂梁31,两个第二悬臂梁31位于第二质量块32的两端。
在一些实施例中,沿第三方向Z,第一悬臂梁21和第二悬臂梁31的厚度为1μm-6μm。
示例的,第一悬臂梁21和第二悬臂梁31的厚度为1.5μm、2μm、2.5μm、3μm、3.5μm 4μm、4.5μm、5μm或者5.5μm。
与相关技术中第一悬臂梁21和第二悬臂梁31的厚度仅能设置在1μm以下相比,通过将第一悬臂梁21和第二悬臂梁31的厚度设置在1μm及以上,从而可以提高压电加速度计1的信噪比(signal noise ratio,SNR)。对于给定的谐振频率而言,为了提升加速度计信噪比,在给定的尺寸及材料的条件下,增加质量块的质量,是最关键的措施。但是质量块的增加,需要更高刚度的悬臂梁来保持谐振频率的恒定,这样,我低着头可以通过增加悬臂的宽度,厚度或者减小悬臂梁的长度来实现。考虑到特定的场景,增加悬臂梁的厚度是较为可行的方案,也使得工艺制备容易实现。
本申请实施例中,第一应力检测结构23和第二应力检测结构33,可以是相关技术中的任一种应力检测结构,本申请实施例对此不做限定。
在一些实施例中,如图11所示,第一应力检测结构23包括沿远离第一悬臂梁21的方向依次层叠设置的第一下电极231、第一压电层232、第一上电极233以及第一介质层234。
示例的,第一下电极231、第一压电层232、第一上电极233以及第一介质层234在第一悬臂梁21上的投影均位于第一悬臂梁21上。也就是说,第一应力检测结构23中各膜层的结构均位于第一悬臂梁21的上方。
或者,示例的,如图11所示,第一下电极231还可以延伸至基座10和第一质量块22上方,第一压电层232还可以延伸至第一质量块22上方,第一介质层234还可以延伸至基座10和第一质量块22上方,只要第一上电极233位于第一悬臂梁21上方即可。
第一下电极231和第一上电极233的材料为导电材料,例如,第一下电极231和第一上电极233的材料为金属。第一压电层232的材料为压电材料,例如,第一压电层232的材料包括铌酸锂(LiNbO3,LN)、钽酸锂(LiTaO3,LT)、氮化铝(AlN)、氧化锌(ZnO)或者石英等压电材料中的一种或多种。第一介质层234的材料为介质材料,例如,第一介质层234的材料包括有机物、氧化硅(SiO)、氮化硅(SiN)等。
在一些实施例中,如图11所示,第二应力检测结构33包括沿远离第二悬臂梁31的方向依次层叠设置的第二下电极331、第二压电层332、第二上电极333以及第二介质层334。
示例的,第二下电极331、第二压电层332、第二上电极333以及第二介质层334在第二悬臂梁31上的投影均位于第二悬臂梁31上。也就是说,第二应力检测结构33中各膜层的结构均位于第二悬臂梁31的上方。
或者,示例的,如图11所示,第二下电极331还可以延伸至基座10和第二质量块32上方,第二压电层332还可以延伸至基座10和第二质量块32上方,第二介质层334还可以延伸至基座10和第二质量块32上方,第二上电极333位于第二悬臂梁31上方即可。
在一些实施例中,第一下电极231和第二下电极331采用同一次工艺同步形成,第一压电层232和第二压电层332采用同一次工艺同步形成,第一上电极233和第二上电极333采用同一次工艺同步形成,第一介质层234和第二介质层334采用同一次工艺同步形成。
在一些实施例中,压电加速度计1还包括互联电极51和焊盘52,焊盘52设置在互联电极51远离基座10的表面上。
互联电极51用于与第一上电极233和第二上电极333耦接,通过焊盘52与ASIC互联耦接,以将压电加速度计1生成的电信号传输至ASIC。
在一些实施例中,互联电极51设置在基座10上,位于第二压电层332远离基座10一侧。示例的,互联电极51与第二上电极333同层设置,采用同一次工艺同步形成,在这种情况下,第二介质层334露出焊盘52。
在一些实施例中,如图12所示,压电加速度计1还包括第一盖板60和第二盖板70。第一盖板60位于基座10远离第一应力检测结构23和第二应力检测结构33一侧,第一盖板60与基座10连接。第二盖板70位于第一应力检测结构23和第二应力检测结构33远离基座10一侧,第二盖板70与基座10连接。例如,第二盖板70与第一应力检测结构23和第二应力检测结构33连接,以实现盖板70与与基座10连接。
第一盖板60和第二盖板70对合,基座10、第一感应组件20、第二感应组件30、连接结构40设置在第一盖板60和第二盖板70之间。基座10设置在第一盖板60上,基座10的一圈均与第一盖板60连接,第二盖板70露出焊盘52。
第一盖板60和第二盖板70的材料,例如可以是玻璃或者硅等材料。
在一些实施例中,如图12所示,第一盖板60通过第一键合层81与基座10连接,第二盖板60通过第二键合层82与第一应力检测结构23和第二应力检测结构33 连接。
在一些实施例中,如图12所示,第一盖板60朝向基座10的表面具有凹槽61。
示例的,凹槽61位于第一质量块22下方。和/或,示例的,凹槽61位于第二质量块32下方。
不对凹槽61的形状和数量进行限定,图12中仅为一种示意。
通过在第一盖板60上形成凹槽61,可减小第一质量块22和第二质量块32与第一盖板60接触面的面积,以降低第一质量块22和第二质量块32与第一盖板60粘连的概率,降低第三方向Z的冲击力。
当压电加速度计1应用于耳机中时,压电加速度计1的工作原理为:当人说话的时候,带动皮肤的振动,并传递给TWS耳机,再将振动传递给该压电加速度计。从而引进质量块的振动,进而引起悬臂梁应力的变化。由于压电材料的压电效应,该应力转化为电荷,进而为ASIC所读出,形成加速度的电信号。后端算法通过比对加速度的信号与空气麦克的信号后,进行算法处理,实现上行降噪。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种压电加速度计,其特征在于,包括:
    基座;
    第一感应组件,包括第一悬臂梁、第一质量块以及第一应力检测结构;所述第一悬臂梁相对的两端与所述基座和所述第一质量块连接,所述第一应力检测结构设置在所述第一悬臂梁表面;
    第二感应组件,包括第二悬臂梁、第二质量块以及第二应力检测结构;所述第二悬臂梁相对的两端与所述基座和所述第二质量块连接,所述第二应力检测结构设置在所述第二悬臂梁表面;
    连接结构,设置在所述第一感应组件与所述第二感应组件之间,所述连接结构与所述第一质量块、所述第二质量块以及所述基座分别连接。
  2. 根据权利要求1所述的压电加速度计,其特征在于,沿第一方向,所述连接结构的两端与所述第一质量块和所述第二质量块连接;沿第二方向,所述连接结构的至少一端与所述基座连接;所述第一方向为所述第一感应组件与所述第二感应组件的排布方向,所述第二方向与所述第一方向相交。
  3. 根据权利要求1或2所述的压电加速度计,其特征在于,所述连接结构包括至少一条第一连接臂、至少一条第二连接臂以及至少一条第三连接臂;
    所述第一连接臂的第一端与所述第一质量块连接,所述第一连接臂的第二端与所述第二连接臂和/或所述第三连接臂连接;
    所述第二连接臂的第一端与所述第二质量块连接,所述第二连接臂的第二端与所述第一连接臂和/或所述第三连接臂连接;
    所述第三连接臂的第一端与所述基座连接,所述第三连接臂的第二端与所述第一连接臂和/或第二连接臂连接。
  4. 根据权利要求3所述的压电加速度计,其特征在于,所述连接结构还包括至少一个第四连接臂;
    所述第四连接臂的第一端与所述基座连接,所述第四连接臂的第二端与所述第一连接臂、所述第二连接臂、所述第三连接臂中的至少一个连接;所述第三连接臂与所述第四连接臂设置在所述第一连接臂相对的两侧。
  5. 根据权利要求3或4所述的压电加速度计,其特征在于,所述连接结构还包括汇合部,所述第一连接臂、所述第二连接臂以及所述第三连接臂分别与所述汇合部连接。
  6. 根据权利要求5所述的压电加速度计,其特征在于,所述汇合部具有开口。
  7. 根据权利要求3-6任一项所述的压电加速度计,其特征在于,所述第一连接臂位于所述第二连接臂的延伸线上;
    和/或,
    所述第三连接臂位于第四连接臂的延伸线上。
  8. 根据权利要求3-7任一项所述的压电加速度计,其特征在于,所述第一连接臂、所述第二连接臂以及所述第三连接臂的延伸轨迹为直线或者曲线。
  9. 根据权利要求1或2所述的压电加速度计,其特征在于,所述连接结构具有开口。
  10. 根据权利要求1-9任一项所述的压电加速度计,其特征在于,所述第一悬臂梁的长度与所述第二悬臂梁的长度不相等。
  11. 根据权利要求1-10任一项所述的压电加速度计,其特征在于,
    所述压电加速度计包括多个所述第一悬臂梁,多个所述第一悬臂梁并排设置;
    和/或,
    所述压电加速度计包括多个所述第二悬臂梁,多个所述第二悬臂梁并排设置。
  12. 根据权利要求1-11任一项所述的压电加速度计,其特征在于,所述压电加速度计还包括第一盖板;
    所述第一盖板位于所述基座远离所述第一应力检测结构一侧,所述第一盖板朝向所述基座的表面具有凹槽;所述凹槽位于所述第一质量块和/或所述第二质量块的下方;所述基座设置在所述第一盖板上、与所述第一盖板连接。
  13. 根据权利要求1-12任一项所述的压电加速度计,其特征在于,所述第一质量块包括依次层叠设置的第一核心层、第一间隔层以及第一连接层;所述第一连接层与所述第一悬臂梁连接;
    和/或,
    所述第二质量块包括依次层叠设置的第二核心层、第二间隔层以及第二连接层;所述第二连接层与所述第二悬臂梁连接。
  14. 根据权利要求1-13任一项所述的压电加速度计,其特征在于,所述连接结构与所述第一悬臂梁和所述第二悬臂梁同层设置。
  15. 根据权利要求1-14任一项所述的压电加速度计,其特征在于,所述第一悬臂梁和所述第二悬臂梁的厚度为1μm-6μm。
  16. 根据权利要求1-15任一项所述的压电加速度计,其特征在于,
    所述第一应力检测结构包括沿远离所述第一悬臂梁的方向依次层叠设置的第一下电极、第一压电层、第一上电极以及第一介质层;所述第一上电极在所述第一悬臂梁上的投影位于所述第一悬臂梁上;
    和/或,
    所述第二应力检测结构包括沿远离所述第二悬臂梁的方向依次层叠设置的第二下电极、第二压电层、第二上电极以及第二介质层;所述第二上电极在所述第二悬臂梁上的投影位于所述第二悬臂梁上。
  17. 根据权利要求16所述的压电加速度计,其特征在于,所述压电加速度计还包括互联电极和焊盘;所述互联电极设置在所述基座上、与所述第二上电极同层设置;所述焊盘设置在所述互联电极远离所述基座的表面上。
  18. 根据权利要求12-17任一项所述的压电加速度计,其特征在于,所述压电加速度计还包括第二盖板,所述第二盖板位于所述第一应力检测结构和所述第二应力检测结构远离所述基座一侧;
    所述第二盖板与所述基座连接,所述第一感应组件和所述第二感应组件位于所述第一盖板与所述第二盖板之间。
  19. 一种压电传感器,其特征在于,包括压电加速度计和专用集成电路,所述压电加速度计与所述专用集成电路耦接;
    所述压电加速度计为权利要求1-18任一项所述的压电加速度计。
  20. 一种智能设备,其特征在于,包括:压电传感器和电路板,所述压电传感器与所述电路板耦接;所述压电传感器为权利要求19所述的压电传感器。
PCT/CN2023/099706 2022-10-25 2023-06-12 压电加速度计、压电传感器及智能设备 WO2024087648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211312873.7A CN117929783A (zh) 2022-10-25 2022-10-25 压电加速度计、压电传感器及智能设备
CN202211312873.7 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024087648A1 true WO2024087648A1 (zh) 2024-05-02

Family

ID=90758012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099706 WO2024087648A1 (zh) 2022-10-25 2023-06-12 压电加速度计、压电传感器及智能设备

Country Status (2)

Country Link
CN (1) CN117929783A (zh)
WO (1) WO2024087648A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0953823A2 (en) * 1998-05-01 1999-11-03 Aisin Cosmos R & D Co. Ltd. Micro yaw rate sensors
CN101257266A (zh) * 2008-01-14 2008-09-03 大连理工大学 硅基压电悬臂梁式微型发电装置
US20080229824A1 (en) * 2007-03-19 2008-09-25 Seiko Epson Corporation Angular rate sensor and electronic device
CN101944860A (zh) * 2010-09-11 2011-01-12 上海交通大学 压电悬臂梁振动能量采集器及其制备方法
CN102135514A (zh) * 2011-03-30 2011-07-27 中国矿业大学 悬臂梁式压电驱动及压电检测的瓦斯传感器
CN102642801A (zh) * 2012-04-27 2012-08-22 中国科学院上海微系统与信息技术研究所 双面平行对称硅梁质量块结构及其制备方法
CN203951386U (zh) * 2014-06-18 2014-11-19 厦门大学 一种宽频带微型压电振动能量收集器
CN104297522A (zh) * 2013-07-19 2015-01-21 中国科学院地质与地球物理研究所 一种mems悬臂梁式加速度计及其制造工艺
JP2018137297A (ja) * 2017-02-21 2018-08-30 新日本無線株式会社 圧電素子
CN112816733A (zh) * 2020-12-31 2021-05-18 上海芯物科技有限公司 一种压电风速计及其制作方法
CN114348951A (zh) * 2022-01-07 2022-04-15 中国人民解放军国防科技大学 一种抗高过载硅敏感单元、微加速度计及其制备方法
US11363395B1 (en) * 2020-12-23 2022-06-14 Facebook Technologies, Llc Miniature folded transducer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0953823A2 (en) * 1998-05-01 1999-11-03 Aisin Cosmos R & D Co. Ltd. Micro yaw rate sensors
US20080229824A1 (en) * 2007-03-19 2008-09-25 Seiko Epson Corporation Angular rate sensor and electronic device
CN101257266A (zh) * 2008-01-14 2008-09-03 大连理工大学 硅基压电悬臂梁式微型发电装置
CN101944860A (zh) * 2010-09-11 2011-01-12 上海交通大学 压电悬臂梁振动能量采集器及其制备方法
CN102135514A (zh) * 2011-03-30 2011-07-27 中国矿业大学 悬臂梁式压电驱动及压电检测的瓦斯传感器
CN102642801A (zh) * 2012-04-27 2012-08-22 中国科学院上海微系统与信息技术研究所 双面平行对称硅梁质量块结构及其制备方法
CN104297522A (zh) * 2013-07-19 2015-01-21 中国科学院地质与地球物理研究所 一种mems悬臂梁式加速度计及其制造工艺
CN203951386U (zh) * 2014-06-18 2014-11-19 厦门大学 一种宽频带微型压电振动能量收集器
JP2018137297A (ja) * 2017-02-21 2018-08-30 新日本無線株式会社 圧電素子
US11363395B1 (en) * 2020-12-23 2022-06-14 Facebook Technologies, Llc Miniature folded transducer
CN112816733A (zh) * 2020-12-31 2021-05-18 上海芯物科技有限公司 一种压电风速计及其制作方法
CN114348951A (zh) * 2022-01-07 2022-04-15 中国人民解放军国防科技大学 一种抗高过载硅敏感单元、微加速度计及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU ANPING: "Improvement of AFM.IPC-208B System and Its Piezoelectric Cantilever Research", NASTER THESIS, COLLEGE OF MATHEMATICS AND PHYSICS CHONGQING UNIVERSITY, 1 October 2009 (2009-10-01), College of Mathematics and Physics Chongqing University, XP093162570 *

Also Published As

Publication number Publication date
CN117929783A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US9661411B1 (en) Integrated MEMS microphone and vibration sensor
US7400737B2 (en) Miniature condenser microphone and fabrication method therefor
US8783113B2 (en) MEMS dynamic pressure sensor, in particular for applications to microphone production
US10993043B2 (en) MEMS acoustic sensor
CN110169085B (zh) 与mems传声器组合的非声学传感器的系统
US11905164B2 (en) Micro-electro-mechanical system acoustic sensor, micro-electro-mechanical system package structure and method for manufacturing the same
WO2023202418A1 (zh) 一种麦克风组件及电子设备
CN109413554A (zh) 一种指向性mems麦克风
WO2020133352A1 (zh) Mems声音传感器、mems麦克风及电子设备
US20130136292A1 (en) Microphone unit
WO2024087648A1 (zh) 压电加速度计、压电传感器及智能设备
Gupta et al. Hermetically-encapsulated unidirectional accelerometer contact microphone for wearable applications
CN118362754A (zh) 压电加速度计、压电传感器及电子设备
US11697582B2 (en) MEMS transducer
CN219145557U (zh) 一种麦克风结构及电子设备
WO2024140310A1 (zh) 压电振膜、压电换能器及制备方法、发声装置和电子设备
CN113573218B (zh) 压电声学传感器及其制造方法
WO2023123129A1 (zh) 一种压电感应单元、压电麦克风和终端
CN216313420U (zh) 用于拾取语音的骨传导加速度计
US20220057656A1 (en) Contact lens, method for detecting a structure-borne sound with the aid of a contact lens, method for producing a contact lens
US20240035879A1 (en) Vibration detector, sound wave detector, microphone, and wearable device
US20240089668A1 (en) Fixed-fixed membrane for microelectromechanical system microphone
CN117376790A (zh) 一种压电感应装置及其使用方法、智能设备
WO2022266090A1 (en) Mems microphone
WO2022141571A1 (zh) 声换能器及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881239

Country of ref document: EP

Kind code of ref document: A1