WO2024087497A1 - 用于采煤机惯性导航精度测评系统的轨道及测评系统 - Google Patents

用于采煤机惯性导航精度测评系统的轨道及测评系统 Download PDF

Info

Publication number
WO2024087497A1
WO2024087497A1 PCT/CN2023/083832 CN2023083832W WO2024087497A1 WO 2024087497 A1 WO2024087497 A1 WO 2024087497A1 CN 2023083832 W CN2023083832 W CN 2023083832W WO 2024087497 A1 WO2024087497 A1 WO 2024087497A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
mobile carrier
guide rail
inertial navigation
evaluation system
Prior art date
Application number
PCT/CN2023/083832
Other languages
English (en)
French (fr)
Inventor
戴建平
邱锦波
刘聪
张启志
方彤
Original Assignee
中煤科工集团上海有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中煤科工集团上海有限公司 filed Critical 中煤科工集团上海有限公司
Publication of WO2024087497A1 publication Critical patent/WO2024087497A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Definitions

  • the invention relates to the field of inertial navigation accuracy evaluation, and in particular to a track and an evaluation system for an inertial navigation accuracy evaluation system for a coal mining machine.
  • the evaluation system comprises the track for the inertial navigation accuracy evaluation system for a coal mining machine.
  • Inertial navigation technology is passive navigation.
  • the navigation equipment does not need to transmit any signals to the outside world, nor does it need to receive external signals in real time. It only needs to provide the navigation system with an initial position.
  • the navigation system can then continuously measure the position and posture of the tunnel boring machine in any external environment (such as vibration, impact, humidity, heat, fog, dust, etc.), regardless of the ups and downs and inclination of the terrain, and output information as required.
  • the inertial navigation system can provide comprehensive and autonomous navigation information, making it possible to use it in the positioning of coal mining machines in mines with very harsh production and operation environments.
  • Coal mining machines need to lay tracks when operating underground. In the actual coal mining process, the coal mining machine needs to feed at a certain angle when mining, so the track needs to be adjusted, but the actual adjustment will have errors. Since the coal mining working surface is very long, the error will continue to accumulate, making the track curved and uneven.
  • the inertial navigation of the coal mining machine can reverse the curve of the actual track by measuring the running trajectory of the coal mining machine, thereby compensating the track to maintain the dynamic balance of the track within an acceptable range.
  • the accuracy of inertial navigation of coal mining machines is particularly important for coal mining.
  • the flying car or sports car test is usually used, such as the "Accuracy Test Method of Inertial Navigation System” in "Silicon Valley” Issue 05, 2013.
  • the test uses GPS as the test benchmark.
  • the test line is not fixed, the test results will be affected when the test is repeated, and the measured data are not comparable.
  • GPS cannot accurately locate, so it cannot be used to simulate the conditions of coal mining machines when they are working underground.
  • the present invention provides a track for a coal mining machine inertial navigation accuracy evaluation system and an evaluation system including the track, thereby solving or at least alleviating one or more of the above-mentioned problems and other problems existing in the prior art.
  • a first aspect of the present invention provides a track for an inertial navigation accuracy evaluation system for a coal mining machine, wherein the inertial navigation accuracy evaluation system comprises a mobile carrier and the track, wherein the inertial navigation to be tested is arranged on the mobile carrier, and the mobile carrier can reciprocate along the track between two ends of the track, wherein the track comprises: a rigid guide rail, which simulates the running trajectory of the coal mining machine; and a support portion, which supports the guide rail and keeps the guide rail in a fixed position.
  • the track includes a single guide rail, two parallel guide rails or a plurality of parallel guide rails.
  • the support portion is a plurality of brackets distributed along the length direction of the guide rail.
  • the top end of the support portion is fixed to the guide rail, and the bottom end of the support portion is fixed to the ground.
  • the guide rail has a transverse curved section and/or a longitudinal undulating section and/or a transverse curved and longitudinal undulating section.
  • limit devices are respectively provided at the starting point and the end point of the track, and the limit devices are suitable for interacting with the limit switch of the mobile carrier to stop or reverse the mobile carrier when the mobile carrier runs to the starting point or the end point.
  • the limiting device is independently arranged outside the guide rail.
  • the limiting device at the starting point and the limiting device at the end point are respectively located on different sides of the guide rail.
  • both the top surface and the bottom surface of the guide rail are used as guiding surfaces for the moving carrier.
  • the second aspect of the present invention provides a coal mining machine inertial navigation accuracy evaluation system, wherein the inertial navigation accuracy evaluation system includes a mobile carrier and a track as described in any one of the aforementioned first aspects, the mobile carrier can reciprocate along the track between the two ends of the track, a benchmark navigation and an inertial navigation to be tested can be set on the mobile carrier, and the accuracy of the inertial navigation is evaluated by comparing the measurement trajectory of the inertial navigation with the measurement trajectory of the benchmark navigation.
  • the track for the coal mining machine inertial navigation accuracy evaluation system is a fixed track.
  • the fixed track has the following characteristics: first, the fixed track can be used to simulate the operating conditions of the coal mining machine when it is working underground; second, it can ensure that the line of each evaluation is consistent, so as to facilitate the comparison of repeated evaluation data; finally, the fixed track can be modeled to accurately determine the position of each point on the track for comparison with the data measured by inertial navigation, thereby obtaining a more accurate evaluation result.
  • the second aspect of the present invention also provides a coal mining machine inertial navigation accuracy evaluation system including the above-mentioned track, which adopts the above-mentioned track and can achieve corresponding beneficial effects and advantages. Therefore, the system can realize long-term repeated testing and repeated verification of inertial navigation, making the evaluation data more accurate and reliable.
  • FIG1 is a schematic side view of an embodiment of the inertial navigation accuracy evaluation system for a coal mining machine of the present invention, wherein a track used for the inertial navigation accuracy evaluation system for a coal mining machine is shown;
  • FIG2 is a schematic top view of the track of the embodiment of FIG1 ;
  • FIG3 is a partial enlarged schematic diagram of the track of the embodiment of FIG1 ;
  • FIG4 is a schematic top view of another embodiment of the track of the present invention.
  • FIG5 is a schematic side view of a mobile carrier of an embodiment of the coal mining machine inertial navigation accuracy evaluation system of the present invention.
  • FIG6 is a schematic side view of a mobile carrier of another embodiment of the inertial navigation accuracy evaluation system for a coal mining machine of the present invention.
  • Figure numerals 10-track; 11-support part; 11A-single bracket; 11B-double bracket; 11C-triangular bracket; 12-limiting device; 13-groove; 14-guide rail; 20-movable carrier; 21-limit switch; 22-front wheel; 23-rear wheel; 30-inertial navigation.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • a feature defined as “first” or “second” may explicitly or implicitly include at least one of the features.
  • “plurality” means at least two, such as two, three or more, unless otherwise clearly and specifically defined.
  • FIG1 is a side view schematic diagram of an embodiment of the inertial navigation accuracy evaluation system for a coal mining machine of the present invention, showing a track used for the inertial navigation accuracy evaluation system for a coal mining machine;
  • FIG2 is a top view schematic diagram of the track of the embodiment of FIG1 .
  • the inertial navigation accuracy evaluation system includes a mobile carrier 20 and a track 10, as well as a reference surveying and mapping device not shown in the figure.
  • the mobile carrier 10 is used to simulate a coal mining machine, which can reciprocate along the track 10 between the two ends of the track 10 to simulate the actual operating conditions of the coal mining machine in underground operations.
  • the inertial navigation 30 to be tested is set on the mobile carrier 20, and while the mobile carrier 20 reciprocates on the track 10, the inertial navigation 30 can monitor the running track of the mobile carrier 20. According to the monitored running track, and by comparing with the reference track measured by other surveying and mapping devices, the accuracy of the inertial navigation 30 can be evaluated.
  • the track 10 includes a guide rail 14 and a support portion 11, and the guide rail 14 simulates the running track of the coal mining machine.
  • the guide rail 14 can have both transverse bending and longitudinal undulating sections to simulate the possible undulating and curved running track of the coal mining machine when it is working underground.
  • the guide rail 14 can have only a transverse bending section or only a longitudinal undulating section.
  • the transverse bending section and/or the longitudinal undulating section can be set according to the specific environment and the content to be evaluated, and multiple transverse bending sections and/or the longitudinal undulating sections can be set to better simulate the actual operating conditions of the coal mining machine when it is working underground, so that the evaluation data can more accurately reflect the accuracy of the inertial navigation 30 actually applied to the underground operation of the coal mining machine, which is convenient for R&D personnel to debug the inertial navigation 30.
  • the guide rail 14 is a rigid guide rail
  • the support part 11 supports the guide rail 14
  • the support part 11 is distributed along the length direction of the guide rail 14, and keeps the guide rail 14 in a fixed position.
  • the rigid guide rail 14 is a fixed track.
  • the mobile carrier 20 can reciprocate along the track 10 between the two ends of the track 10 to simulate the actual operating conditions of the coal mining machine in underground operations.
  • the fixed track 10 can fix the running route of the mobile carrier 20 to reduce the impact of the running route on the accuracy evaluation of the inertial navigation 30, and then through the reciprocating operation of the mobile carrier 20, the inertial navigation 30 is repeatedly tested and verified to make the evaluation data more accurate and reliable.
  • the fixed track 10 may also be modeled to more concretely compare the accuracy of the track measured by the inertial navigation 30 .
  • the fixed track 10 is compared with the non-fixed track, which requires the RTK-GNSS or the prism of the total station to make the reference value each time and then use the inertial navigation to compare with it.
  • the fixed track in this embodiment can be reused, is easy to use and has low cost. After the experimental platform is established, it can be used repeatedly, and the error fluctuation caused by the different levels of different operators operating the RTK-GNSS or prism is avoided. In this embodiment, the fixed track will standardize the test process, have low requirements on the operator, and is conducive to obtaining more objective results.
  • the track 10 is a single guide rail 14, which has a simple structure and saves materials.
  • the mobile carrier 20 By holding the track 10 tightly with the mobile carrier 20 (see Figure 6), it can go uphill and downhill smoothly with the ups and downs of the track 10 and is not easy to roll over.
  • the inertial navigation accuracy evaluation of the coal mining machine the more smoothly the mobile carrier 20 runs, the more it can eliminate the influence of the shaking of the mobile carrier 20 on the evaluation results, so that the accuracy of the inertial navigation 30 can be evaluated more accurately.
  • the track 10 may also include two parallel rails 14 or a plurality of parallel rails 14.
  • the corresponding mobile carrier 20 may have a relatively simple wheel structure design, which is beneficial to simplifying the manufacturing difficulty and saving costs.
  • a limit device 12 is respectively provided at the starting point and the end point of the track 10, and correspondingly, a limit switch 21 is provided on the mobile carrier 20.
  • the limit device 12 is suitable for interacting with the limit switch 21 of the mobile carrier 20, so that when the mobile carrier 20 runs to the starting point or the end point, the limit device 12 triggers the corresponding limit switch 21, thereby stopping or reversing the mobile carrier 20.
  • the limit device 12 is independently arranged outside the guide rail 14, and the limit device 12 is not arranged on the guide rail 14, which can prevent the guide rail 14 from being deformed due to the setting of the limit device 12, thereby affecting the accuracy of the evaluation.
  • the limit device 12 at the starting point and the limit device 12 at the end point are respectively located on the opposite sides of the guide rail 14.
  • the limit switch 21 on the mobile carrier 20 is also arranged on the opposite sides, which can maintain the left-right balance of the mobile carrier 20, so that the mobile carrier 20 can move back and forth on the guide rail 14 more smoothly.
  • the limit device 12 can also be arranged on the guide rail 14, or the limit device 12 can be arranged on the same side of the guide rail 14, and can be specifically adjusted according to different evaluation environments and evaluation contents, as long as the mobile carrier 20 can stop or return at the starting point and the end point of the guide rail 14.
  • the reciprocating movement of the mobile carrier 20 can be automatically controlled by a control panel disposed on the mobile carrier 20, or can be remotely controlled by a mobile terminal such as a mobile phone.
  • the top surface of the guide rail 14 serves as the guide surface of the mobile carrier 20.
  • the top surface of the guide rail 14 can also cooperate with the bottom surface to serve as the guide surface of the mobile carrier 20, see Figure 6, so that the mobile carrier 20 can move back and forth smoothly on the guide rail 14.
  • the track 10 includes a guide rail 14 and a support portion 11, and the support portion 11 is a plurality of brackets distributed along the length direction of the guide rail 14.
  • Figure 3 is a partial enlarged schematic diagram of the track of the embodiment of Figure 1.
  • the brackets of the support portion 11 of the track 10 of the present invention can be in three forms: a single bracket 11A, a double bracket 11B and a triangular bracket 11C.
  • the single bracket 11A can be in the form of a single bracket at the limit device 12 in the figure; in some embodiments, the top of the single bracket 11A can be fixed to the guide rail 14, and the bottom of the single bracket 11A can be fixed vertically to the ground.
  • the bottom of the single bracket 11A can also be fixed to the ground at an angle according to the evaluation site environment, as long as it can ensure that the guide rail 14 is firmly supported on the ground.
  • the single bracket 11A is applied to the fixed limit device 12 and is arranged at both ends of the fixed limit device 12 to ensure that the height of the limit device 12 can trigger the limit switch 21 located on the mobile carrier 20 and is lower than the height of the guide rail 14 so as not to affect the movement of the mobile carrier 20 on the guide rail 14. It should be noted that in specific applications, according to the actual evaluation site conditions, the single bracket 11A can also be used to support the guide rail 14.
  • the main bracket of the double bracket 11B is the same as the single bracket, and its top end is fixed to the guide rail 14, and the bottom of the main bracket of the double bracket 11B is vertically fixed to the ground.
  • the top of the sub-bracket of the double bracket 11B is cross-fixed on the main bracket, and the lower end is fixed to the ground.
  • the double bracket 11B can be applied to the low and straight sections of the longitudinal undulating section of the fixed guide rail 14.
  • the bottom of the main bracket of the double bracket 11B can also be fixed to the ground at an angle according to the evaluation site environment, forming an angle with its sub-bracket to firmly support the track 14 on the ground. It should be noted here that in specific applications, according to the actual evaluation site conditions, the double bracket 11B can also be used to support other sections or limit devices 12 of the guide rail 14.
  • the main bracket of the triangular bracket 11C is like a single bracket, and its top end is fixed to the guide rail 14, and the bottom of the main bracket of the triangular bracket 11C is vertically fixed to the ground.
  • the top ends of the two sub-brackets of the triangular bracket 11C are cross-fixed on the main bracket, and the lower ends are fixed to the ground to form a triangular support.
  • the double bracket 11B is applied to the high part of the longitudinal undulating section of the fixed guide rail 14, which can make this section of the guide rail 14 more firmly fixed on the ground.
  • the bottom of the main bracket of the triangular bracket 11C can also be fixed to the ground at an angle according to the evaluation site environment, forming an angle with its two sub-brackets to firmly support the track 14 on the ground. It should be noted here that in specific applications, according to the actual evaluation site conditions, the triangular bracket 11C can also be used to support other sections or limit devices 12 of the guide rail 14.
  • a single bracket 11A, a double bracket 11B and/or a triangular bracket 11C can be selected according to the evaluation site environment and the evaluation content, so that each section of the guide rail 14 of the track 10 can be firmly fixed to the ground while saving materials.
  • more brackets can be used for fixing in actual use, and these brackets form an angle with each other so that the track 10 can be more firmly fixed to the ground.
  • the connection and fixing method of the above-mentioned brackets can be bolt connection, or it can be binding, riveting, welding, etc.
  • FIG4 is a schematic top view of another embodiment of the track of the present invention.
  • the track 10 includes a guide rail 14 and a limit device 12, the mobile carrier 20 runs on the guide rail 14, and the inertial navigation 30 is arranged on the mobile carrier 20 to monitor the running track of the mobile carrier 20.
  • the guide rail 14 is provided with a groove 13, and the groove 13 can be embedded in the wheel of the mobile carrier 20 to fix the position of the mobile carrier 20 on the guide rail 14, so that it can reciprocate smoothly on the guide rail 14.
  • a conveyor belt may be provided on the guide rail 14, and the mobile carrier 20 may be fixed on the conveyor belt to smoothly reciprocate on the guide rail 14 at the same speed.
  • Fig. 5 is a schematic side view of a mobile carrier of an embodiment of the coal mining machine inertial navigation accuracy evaluation system of the present invention. As can be seen from the figure, the mobile carrier 20 runs on the guide rail 14, and the inertial navigation 30 is arranged on the mobile carrier 20.
  • the mobile carrier 20 has a front wheel 22 and a rear wheel 23, and the front wheel 22 and the rear wheel 23 can travel along the track 10, so that the mobile carrier 20 runs along the track.
  • the front wheel 22 and the rear wheel 23 can be in the shape of round wheels on both sides and a roller in the middle, the diameter of the round wheel is slightly larger than the diameter of the roller, and the length of the roller is the same as the width of the guide rail 14.
  • the round wheels on both sides just keep the guide rail 14 in the middle, and the rollers roll against the top surface of the guide rail 14, so that the mobile carrier 20 runs more smoothly along the guide rail 14.
  • the top surface of the guide rail 14 serves as the guiding surface of the mobile carrier 20, so that the front wheel 22 and the rear wheel 23 of the mobile carrier 20 can run on the guide rail 14 along the top surface.
  • the mobile carrier 20 can reciprocate along the track 10 between the two ends of the track 10 to simulate the actual operation of the coal mining machine in the underground operation.
  • the fixed track 10 can fix the operation route of the mobile carrier 20 to reduce the impact of the operation route on the accuracy evaluation of the inertial navigation 30. Then, through the reciprocating operation of the mobile carrier 20, the inertial navigation 30 is repeatedly tested and verified, making the evaluation data more accurate and reliable.
  • the limit switches 21 of the mobile carrier 20 are arranged at the front wheels 22 and the rear wheels 23, and are arranged on opposite sides to match the position of the limit device 12 next to the guide rail 14 (as shown in Figure 2), so that when the mobile carrier 20 runs to the position of the limit device 12, it is triggered by the limit device 12, thereby causing the mobile carrier 20 to stop or reverse.
  • a motor can be installed on the front wheel 22 and the rear wheel 23 respectively.
  • the front and rear motors are turned on at the same time to guide the front wheel 22 and the rear wheel 23 to rotate to ensure that the running speed of the mobile carrier 20 is stable.
  • a wheel speed encoder may be further installed on the mobile carrier 20, and the wheel speed encoder may monitor the instantaneous speed of the mobile carrier 20 in real time.
  • the wheel speed encoder may be passively powered by a battery, so as not to hinder the movement of the mobile carrier 20 on the track 10.
  • the mobile carrier 20 may also be provided with one or more wheels of other numbers, as long as the mobile carrier 20 can be ensured to run smoothly on the track 10.
  • FIG6 is a side view schematic diagram of a mobile carrier of another embodiment of the inertial navigation accuracy evaluation system for coal mining machines of the present invention.
  • the mobile carrier 20 runs on the guide rail 14, and the inertial navigation 30 is arranged on the mobile carrier 20.
  • the mobile carrier 20 has a front wheel 22 and a rear wheel 23, and the front wheel 22 and the rear wheel 23 can move along the track 10, so that the mobile carrier 20 runs along the track.
  • the front wheel 22 is divided into two upper and lower wheels, and the rear wheel 23 is also divided into two upper and lower wheels.
  • the front wheel 22 and the rear wheel 23 can be in the shape of round wheels on both sides and a roller in the middle, the diameter of the round wheel is slightly larger than the diameter of the roller, and the length of the roller is the same as the width of the guide rail 14.
  • the round wheels on both sides just keep the guide rail 14 in the middle, the front and rear rollers located at the top roll against the top surface of the guide rail 14, and the front and rear rollers located at the bottom roll against the bottom surface of the guide rail 14.
  • the top and bottom surfaces of the guide rail 14 are used as guide surfaces of the mobile carrier 20, so that the front wheels 22 and the rear wheels 23 of the mobile carrier 20 can run along the top surface on the guide rail 14.
  • the front wheels 22 and the rear wheels 23 are arranged up and down, and while holding the guide rail 14 in the left and right directions, they can also hold the guide rail 14 in the up and down directions, so that the mobile carrier 20 is not easy to tip over during operation, so that the mobile carrier 20 can run more smoothly along the guide rail 14.
  • the mobile carrier 20 can reciprocate along the track 10 between the two ends of the track 10 to simulate the actual operation of the coal mining machine in the underground operation.
  • the fixed track 10 can fix the operation route of the mobile carrier 20 to reduce the impact of the operation route on the accuracy evaluation of the inertial navigation 20. Then, through the reciprocating operation of the mobile carrier 20, the inertial navigation 20 is repeatedly tested and verified, making the evaluation data more accurate and reliable.
  • the limit switches 21 of the mobile carrier 20 are arranged at the front wheels 22 and the rear wheels 23, and are arranged on opposite sides to match the position of the limit device 12 next to the guide rail 14 (as shown in Figure 2), so that when the mobile carrier 20 runs to the position of the limit device 12, it is triggered by the limit device 12, thereby causing the mobile carrier 20 to stop or reverse.
  • a motor can be installed on the front wheel 22 and the rear wheel 23 respectively.
  • the front and rear motors are turned on at the same time to guide the front wheel 22 and the rear wheel 23 to rotate to ensure that the running speed of the mobile carrier 20 is stable.
  • a wheel speed encoder may be further installed on the mobile carrier 20, and the wheel speed encoder may monitor the instantaneous speed of the mobile carrier 20 in real time.
  • the wheel speed encoder may be passively powered by a battery, so as not to hinder the movement of the mobile carrier 20 on the track 10.
  • the mobile carrier 20 may also be provided with one or more wheels of other numbers, as long as the mobile carrier 20 can be ensured to run smoothly on the track 10.
  • the specific form of the mobile carrier 20 is not limited.
  • it can be in the form of a trolley in the embodiments of Figures 5 and 6, including wheels and a carrier platform carried by the wheels, and various components such as inertial navigation 30, a mobile terminal of a reference surveying and mapping device (such as a mobile station of an RTK-GNSS surveying and mapping system, a prism of a total station-prism surveying and mapping system), an electric control box, a host computer, etc. can be arranged on the carrier platform.
  • the trolley can travel on the track 10 through the wheels.
  • the mobile carrier 20 may also be a box body, and the above-mentioned various components may be placed in the box body.
  • the box body may cooperate with the guide rail 14 on which a conveyor belt is installed in the above-mentioned optional embodiment.
  • the bottom of the box body is fixed to the conveyor belt, and the conveyor belt guides the mobile carrier 20 to reciprocate on the guide rail 14.
  • the present invention further provides a coal mining machine inertial navigation accuracy evaluation system including the above-mentioned track 10 and a mobile carrier 20.
  • the mobile carrier 20 of the inertial navigation accuracy evaluation system can reciprocate along the track 10 between the two ends of the track 10.
  • a reference surveying device such as a benchmark navigation
  • an inertial navigation to be tested can be set on the mobile carrier 20.
  • the accuracy of the inertial navigation 30 is evaluated by comparing the measurement track of the inertial navigation 30 with the measurement track of the reference surveying device (such as a benchmark navigation). Since the inertial navigation accuracy evaluation system adopts the above-mentioned track 10, it also has various characteristics of the above-mentioned track 10, and thus also has corresponding advantages.
  • the present invention uses a fixed track of the coal mining machine inertial navigation accuracy evaluation system to simulate the operating conditions of the coal mining machine when operating underground; at the same time, it can ensure that the line of each evaluation is consistent, so as to facilitate the comparison of repeated evaluation data; and by modeling the fixed track, the position of each point of the track can be accurately determined for comparison with the data measured by inertial navigation, so as to obtain more accurate evaluation results.
  • the present invention also provides a coal mining machine inertial navigation accuracy evaluation system including the above-mentioned track, which adopts the above-mentioned track and can achieve corresponding beneficial effects and advantages. Therefore, the system can realize long-term repeated testing and repeated verification of inertial navigation, making the evaluation data more accurate and reliable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

一种用于采煤机惯性导航精度测评系统的轨道及测评系统,该惯性导航精度测评系统包括移动载体(20)和轨道(10),待测的惯性导航(30)设置在移动载体(20)上,并且移动载体(20)能够在轨道(10)的两端之间沿轨道(10)往复运行;该轨道(10)包括:刚性的导轨(14),导轨(14)模拟采煤机的运行轨迹;以及支撑部(11),支撑部(11)支撑导轨(14),并将导轨(14)保持在固定的位置。该系统通过固定轨道(10)实现模拟采煤机井下作业的状况;确保每次测评的线路一致,以便于对重复测评的数据进行对比;并且精确定位轨道(10)每一点的位置,用于与惯性导航测出的数据进行对比,从而得到更准确的测评结果。

Description

用于采煤机惯性导航精度测评系统的轨道及测评系统 技术领域
本发明涉及惯性导航精度测评领域,具体涉及用于采煤机惯性导航精度测评系统的轨道及测评系统,所述测评系统包括所述用于采煤机惯性导航精度测评系统的轨道。
背景技术
惯性导航技术是无源导航,导航设备不需要向外界发射任何信号,也不需要实时接收外界信号,只需要给导航系统提供一次初始的位置,导航系统就可以在任何外界环境下(比如振动、冲击、湿热、雾气、粉尘等等)连续测量掘进机的位置和姿态,无惧地形的起伏和倾斜,并根据需要按照要求进行信息输出。
惯性导航系统以其可以提供导航信息的全面性和自主性,使其在生产作业环境非常恶劣的矿井中采煤机定位上的应用成为可能。采煤机在井下作业需要铺设轨道,在实际采煤过程中,采煤机采煤时进刀需要一定的角度,因此需要对轨道进行调整,但实际的调整会有误差。由于采煤的工作面很长,该误差会不断累积,使得轨道弯曲不平。采煤机惯性导航通过测算采煤机的运行轨迹,能够反推实际轨道的曲线,从而对轨道进行补偿,以维持轨道的在可接受的范围内保持动态平衡。
因此,在采煤机惯性导航的精度对于煤矿的开采显得尤为重要。目前现有的惯性导航的精度测评中,通常采用如《硅谷》2013年第05期《惯性导航系统的精度测试方法》中的飞车或跑车试验来进行,该试验通过GPS作为测试基准。但该试验方法由于测试线路不固定,重复试验时会对于试验结果产生影响,测得的数据没有可比性。而且当有遮挡物时,GPS也不能精确的定位,因此不能以此来模拟采煤机在井下作业时的状况。
因此,亟需一种适用于采煤机惯性导航的精度测评系统。
发明内容
有鉴于此,本发明提供了用于采煤机惯性导航精度测评系统的轨道及包括其的测评系统,从而解决或者至少缓解了现有技术中存在的上述问题和其它方面的问题中的一个或多个。
为了实现前述目的,本发明的第一方面提供了一种用于采煤机惯性导航精度测评系统的轨道,所述惯性导航精度测评系统包括移动载体和所述轨道,待测的惯性导航设置在所述移动载体上,并且所述移动载体能够在所述轨道的两端之间沿所述轨道往复运行,其中,所述轨道包括:刚性的导轨,所述导轨模拟采煤机的运行轨迹;以及支撑部,所述支撑部支撑所述导轨,并将所述导轨保持在固定的位置。
在如前所述的轨道中,可选地,所述轨道包括单个所述导轨、两个平行的所述导轨或多个平行的所述导轨。
在如前所述的轨道中,可选地,所述支撑部为沿着所述导轨的长度方向分布的多个支架。
在如前所述的轨道中,可选地,所述支撑部的顶端固定于所述导轨,所述支撑部的底部固定于地面。
在如前所述的轨道中,可选地,所述导轨具有横向弯曲段和/或纵向起伏段和/或横向弯曲同时纵向起伏段。
在如前所述的轨道中,可选地,在所述轨道的起点和终点处分别设置有限位装置,所述限位装置适于与所述移动载体的限位开关相互作用,以用于在所述移动载体运行到所述起点或所述终点时使所述移动载体停止或者返向。
在如前所述的轨道中,可选地,所述限位装置独立地设置于所述导轨之外。
在如前所述的轨道中,可选地,所述起点处的限位装置与所述终点处的限位装置分别位于所述导轨的异侧。
在如前所述的轨道中,可选地,所述导轨的顶面和底面均用作所述移动载体的引导面。
为了实现前述目的,本发明的第二方面提供了一种采煤机惯性导航精度测评系统,其中,所述惯性导航精度测评系统包括移动载体以及如前述第一方面中任一项所述的轨道,所述移动载体能够在所述轨道的两端之间沿所述轨道往复运行,在所述移动载体上能够设置标杆导航及待测的惯性导航,通过将所述惯性导航的测量轨迹与所述标杆导航的测量轨迹相比较而测评所述惯性导航的精度。
本发明的第一方面提供的用于采煤机惯性导航精度测评系统的轨道为固定轨道。所述固定轨道有以下特点:首先,该固定的轨道能够用于模拟采煤机在井下作业时的运行状况;其次,能够确保每次测评的线路一致,以便于对重复测评的数据进行对比;最后,可以通过对固定轨道的建模,以精确该轨道每一点的位置,用于与惯性导航测出的数据进行对比,从而得到更准确的测评结果。
本发明的第二方面同时提供了一种包括上述轨道的采煤机惯性导航精度测评系统,该测评系统采用了上述轨道并且能够实现相应的有益效果和优点。因此,该系统可以实现惯性导航的长时间的反复测试、重复验证,使测评数据更精确、可靠。
附图说明
参照附图,本发明的公开内容将更加显然。应当了解,这些附图仅仅用于说明的目的,而并非意在对本发明的保护范围构成限制。图中:
图1为本发明的采煤机惯性导航精度测评系统的一个实施例的侧视示意图,其中示出了用于该采煤机惯性导航精度测评系统的轨道;
图2为图1的实施例的轨道的俯视示意图;
图3为图1的实施例的轨道的局部放大示意图;
图4为本发明的轨道的另一个实施例的俯视示意图;
图5为本发明的采煤机惯性导航精度测评系统的一个实施例的移动载体的侧视示意图;以及
图6为本发明的采煤机惯性导航精度测评系统的另一实施例的移动载体的侧视示意图。
附图标记:10-轨道;11-支撑部;11A-单支架;11B-双支架;11C-三角支架;12-限位装置;13-凹槽;14-导轨;20-移动载体;21-限位开关;22-前轮;23-后轮;30-惯性导航。
具体实施方式
参照附图和具体实施例,下面将以示例的方式来说明根据本发明的用于采煤机惯性导航精度测评系统的轨道及包括其的测评系统。
此外,对于在本文提及的实施例中予以描述或隐含的任意单个技术特征,或者被显示或隐含在各附图中的任意单个技术特征,本发明仍然允许在这些技术特征(或其等同物)之间继续进行任意组合或者删减而不存在任何的技术障碍,从而应当认为这些根据本发明的更多实施例也是在本文的记载范围之内。
还需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示即本发明的移动载体的前后方向的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个、三个或更多等,除非另有明确具体的限定。
图1为本发明的采煤机惯性导航精度测评系统的一个实施例的侧视示意图,其中示出了用于该采煤机惯性导航精度测评系统的轨道;图2为图1的实施例的轨道的俯视示意图。
从图1中可以看出,该惯性导航精度测评系统包括移动载体20和轨道10,以及图中未示出的基准测绘装置。所述移动载体10用以模拟采煤机,其能够在轨道10的两端之间沿轨道10往复运行,用以模拟采煤机在井下作业的实际运行状况。待测的惯性导航30设置在移动载体20上,并且在移动载体20往复运行于轨道10上的同时,惯性导航30能够监测该移动载体20的运行轨迹,根据该监测出的运行轨迹,并通过与其它测绘装置测得的基准轨迹比较,能够用以测评该惯性导航30的精度。
如图1和图2的实施例所示,轨道10包括导轨14和支撑部11,所述导轨14模拟采煤机的运行轨迹。所述导轨14可以同时具有横向弯曲和纵向起伏段,用以模拟采煤机在井下作业时所可能的起伏、弯曲的运行轨迹。在不同的实施例中,该导轨14可以仅具有横向弯曲段,也可以仅具有纵向起伏段。在此,并不排除轨道10具有局部的直段。在实际应用中,该横向弯曲段和/或该纵向起伏段可以根据具体环境以及需要测评的内容对进行设置,也可以设置多个横向弯曲段和/或该纵向起伏段,以更好地模拟采煤机在井下作业时的实际运行状况,从而使得测评数据能更准确地反映惯性导航30实际应用于采煤机井下作业的精度,方便研发人员对惯性导航30进行调试。
在图中的实施例中,所述导轨14为刚性的导轨,所述支撑部11支撑所述导轨14,并且支撑部11为沿着所述导轨14的长度方向分布,并将所述导轨14保持在固定的位置。如前所述,该刚性的导轨14为固定的轨道。在实际测评过程中,移动载体20能够在该轨道10的两端之间沿轨道10往复运行,用以模拟采煤机在井下作业的实际运行状况。该固定的轨道10能够固定移动载体20的运行路线,以减少运行路线对惯性导航30精度测评的影响,再通过移动载体20的往复运行,对惯性导航30的进行反复测试、重复验证,使测评数据更精确、可靠。
在实际运用中,还可以对固定轨道10进行建模,可以更具象地对比惯性导航30所测出的轨迹的精确度。
可以理解,在基准测绘装置为RTK-GNSS测绘系统或全站仪-棱镜测绘系统的情况下,该固定的轨道10相对于非固定轨道每次都要RTK-GNSS或者全站仪的棱镜去做基准数值然后用惯性导航与其对比而言,本实施例中的固定轨道,则可以重复利用,使用方便且成本低,在建立起实验平台后可以重复多次使用,并且避免了不同操作人员操作RTK-GNSS或棱镜的水平不同导致的误差波动。在本实施例中,固定轨道将把测试的过程标准化,对操作人员要求低,有利于得出更加客观的结果。
根据图中的实施例,轨道10为单个导轨14,该单个导轨结构简单、材料节省,通过移动载体20抱紧(参见图6)轨道10,其能够随着该轨道10的高低起伏平稳地上坡和下坡,不易侧翻。在采煤机惯性导航精度测评中,移动载体20运行越平稳,就越能排除移动载体20的晃动对于测评结果的影响,从而能够更精确测评出惯性导航30的精度。
在可选的实施例中,轨道10也可以包括两个平行的导轨14或多个平行的导轨14。在一些情况下,相应的移动载体20可以具有相对简单的车轮结构设计,有益于简化制造难度、节省成本。
从图中还可以看出,在轨道10的起点和终点处分别设置有限位装置12,相对应地,移动载体20上设置有限位开关21。所述限位装置12适于与移动载体20的限位开关21相互作用,以用于在移动载体20运行到起点述终点时,限位装置12触发相应的限位开关21,从而使移动载体20停止或者返向。
具体地,如图中实施例所示,限位装置12独立地设置于导轨14之外,限位装置12不设置在该导轨14上,可以防止导轨14因限位装置12的设置而产生形变,从而影响测评的准确性。并且,起点处的限位装置12与终点处的限位装置12分别位于导轨14的异侧,相应地,如图所示,在移动载体20上的限位开关21也设置成异侧,可以保持移动载体20的左右平衡,使得移动载体20能够更平稳地在导轨14上往返运动。在实际应用中,也可以将限位装置12设置在导轨14上,也可以将限位装置12设置在导轨14的同侧,可以根据不同的测评环境以及测评内容进行具体地调整,只要能够实现移动载体20在导轨14的起点和终点处停止或者返向即可。
在此需要说明的是,在实际运用中,移动载体20的往返可以通过设置在移动载体20上的控制面板进行自动控制,也可以通过例如手机等移动终端进行远程控制。
在图中的实施例中,该导轨14的顶面作为移动载体20的引导面,在可选的实施例中,该导轨14的顶面也可以和底面配合用作移动载体20的引导面,参见图6,使移动载体20能够平稳地在导轨14上往返。
从图1可以看出,所述轨道10包括导轨14和支撑部11,该支撑部11为沿着导轨14的长度方向分布的多个支架。图3为图1的实施例的轨道的局部放大示意图。从图3可以清晰地看出,本发明的轨道10的支撑部11的支架可以有三种形式:单支架11A、双支架11B以及三角支架11C。单支架11A可以呈图中限位装置12处的单支架的形式;在一些实施例中,该单支架11A的顶端可以固定于导轨14,该单支架11A的底部可以垂直固定于地面。在可选的实施例中,单支架11A的底部也可以根据测评现场环境倾斜地固定于地面,只要能够确保导轨14稳固地支撑在地面上即可。在图中的实施例中,该单支架11A应用于固定限位装置12,设置在固定限位装置12的两端,确保该限位装置12的高度能够触发位于移动载体20上的限位开关21,并且低于导轨14的高度,以免影响移动载体20在导轨14上的运动。在此需要说明的是,在具体应用中,根据实际测评现场情况,单支架11A也可以应用于支撑导轨14。
该双支架11B的主支架如同单支架,其顶端固定于导轨14,该双支架11B的主支架的底部垂直固定于地面。双支架11B的副支架的顶端交叉固定在主支架上,其下端固定于地面。在图中实施例中,双支架11B可以应用于固定导轨14的纵向起伏段的低处和直段处。在可选的实施例中,双支架11B的主支架的底部也可以根据测评现场环境倾斜地固定于地面,与其副支架形成夹角,以将轨道14稳固地支撑在地面上。在此需要说明的是,在具体应用中,根据实际测评现场情况,双支架11B也可以应用于支撑导轨14的其他段或限位装置12。
该三角支架11C的主支架如同单支架,其顶端固定于导轨14,该三角支架11C的主支架的底部垂直固定于地面。三角支架11C的两个副支架的顶端交叉固定在主支架上,其下端固定于地面,形成三角支撑。图中实施例中,双支架11B应用于固定导轨14的纵向起伏段的高处,能够使该段导轨14更稳固地固定在地面上。在可选的实施例中,三角支架11C的主支架的底部也可以根据测评现场环境倾斜地固定于地面,与其两个副支架形成夹角,以将轨道14稳固地支撑在地面上。在此需要说明的是,在具体应用中,根据实际测评现场情况,三角支架11C也可以应用于支撑导轨14的其他段或限位装置12。
综上,在具体应用中,可以根据测评现场环境以及测评内容选用单支架11A、双支架11B和/或三角支架11C,在节省材料的同时,又能使轨道10的每段导轨14牢固地固定于地面。可选地,在实际运用中也可以采用更多根支架进行固定,该些支架相互形成夹角,使轨道10能更牢固地固定在地面上。需要说明的是,上述的支架的连接和固定方式可以为螺栓连接,也可以为绑定、铆钉、焊接等。
图4为本发明的轨道的另一个实施例的俯视示意图。从图中可以看出,该轨道10包括导轨14和限位装置12,移动载体20运行在导轨14上,并且惯性导航30设置在移动载体20上,以监测移动载体20的运行轨迹。在图中的实施例中,该导轨14上设置有凹槽13,该凹槽13能够嵌入移动载体20的车轮,以固定移动载体20在导轨14上的位置,使其平稳地在导轨14上往复运动。
在可选的实施例中,导轨14上可以设置传送带,移动载体20可以固定在该传送带上,以同一速度平稳地在导轨14上往复运动。
图5为本发明的采煤机惯性导航精度测评系统的一个实施例的移动载体的侧视示意图。从图中可以看出,移动载体20在导轨14上运行,惯性导航30设置在该移动载体20上。
该移动载体20具有前轮22、后轮23,所述前轮22和所述后轮23能够沿轨道10行进,从而使得移动载体20沿轨道运行。在该实施例中,该前轮22和后轮23可以是两边为圆轮,中间为滚轴的形状,圆轮的直径略大于滚轴的直径,该滚轴的长度与导轨14的宽度相同。在移动载体20运行过程中,两边圆轮正好将导轨14保持在中间,滚轮贴合导轨14的顶面滚动,使移动载体20更平稳地沿着导轨14运行。该导轨14的顶面用作该移动载体20的引导面,使移动载体20的前轮22和后轮23能够沿着该顶面,在导轨14上运行。
该移动载体20能够在该轨道10的两端之间沿轨道10往复运行,用以模拟采煤机在井下作业的实际运行状况。该固定的轨道10能够固定移动载体20的运行路线,以减少运行路线对惯性导航30精度测评的影响,再通过移动载体20的往复运行,对惯性导航30的进行反复测试、重复验证,使测评数据更精确、可靠。
从图中还可以看出,该移动载体20的限位开关21设置于前轮22和后轮23处,并且为异侧设置,以匹配于导轨14旁的限位装置12设置的位置(如图2),从而当移动载体20运行到限位装置12的位置时,被限位装置12触发,从而使移动载体20停止或者返向。
在可选的实施例中,可以在前轮22和后轮23上各自分别安装电机,该移动载体20运行时,前后两个电机同时开启引导前轮22和后轮23转动,以保证该移动载体20运行的速度稳定。
在具体实施过程中,在该移动载体20上还可以进一步安装轮速编码器,该轮速编码器可以实时监控移动载体20的瞬时速度。该轮速编码器可以采用电池进行无源供电,从而不会对移动载体20在轨道10运行产生阻碍。在可选的实施例中,移动载体20也可以设置其它数量的一个或多个轮子,只要能够确保移动载体20在轨道10上平稳地运行即可。
图6为本发明的采煤机惯性导航精度测评系统的另一实施例的移动载体的侧视示意图。从图中可以看出,移动载体20在导轨14上运行,惯性导航30设置在该移动载体20上。该移动载体20具有前轮22、后轮23,所述前轮22和所述后轮23能够沿轨道10行进,从而使得移动载体20沿轨道运行。该前轮22分为上下两个车轮,同样后轮23也分为上下两个车轮。在该实施例中,该前轮22和后轮23可以是两边为圆轮、中间为滚轴的形状,圆轮的直径略大于滚轴的直径,该滚轴的长度与导轨14的宽度相同。在移动载体20运行过程中,两边圆轮正好将导轨14保持在中间,位于上方的前后两个滚轮贴合导轨14的顶面滚动,位于下方的前后两个滚轮贴合导轨14的底面滚动。该导轨14的顶面和底面均用作该移动载体20的引导面,使移动载体20的前轮22和后轮23能够沿着该顶面,在导轨14上运行。前轮22和后轮23的上下设置,在左右方向保持住导轨14的同时,在上下方向也能抱紧导轨14,以使移动载体20在运行过程中不易侧翻,从而使移动载体20能够更平稳地沿着导轨14运行。
该移动载体20能够在该轨道10的两端之间沿轨道10往复运行,用以模拟采煤机在井下作业的实际运行状况。该固定的轨道10能够固定移动载体20的运行路线,以减少运行路线对惯性导航20精度测评的影响,再通过移动载体20的往复运行,对惯性导航20的进行反复测试、重复验证,使测评数据更精确、可靠。
从图中还可以看出,该移动载体20的限位开关21设置于前轮22和后轮23处,并且为异侧设置,以匹配于导轨14旁的限位装置12设置的位置(如图2),从而当移动载体20运行到限位装置12的位置时,被限位装置12触发,从而使移动载体20停止或者返向。
在可选的实施例中,可以在前轮22和后轮23上各自分别安装电机,该移动载体20运行时,前后两个电机同时开启引导前轮22和后轮23转动,以保证该移动载体20运行的速度稳定。
在具体实施过程中,在该移动载体20上还可以进一步安装轮速编码器,该轮速编码器可以实时监控移动载体20的瞬时速度。该轮速编码器可以采用电池进行无源供电,从而不会对移动载体20在轨道10运行产生阻碍。在可选的实施例中,移动载体20也可以设置其它数量的一个或多个轮子,只要能够确保移动载体20在轨道10上平稳地运行即可。
在不同的实施例中,移动载体20的具体形式不限。例如可以呈图5和图6实施例中的小车的形式,包括车轮和其所承载的载体平台,各种部件如惯性导航30、基准测绘装置的移动端(例如RTK-GNSS测绘系统的移动站、全站仪-棱镜测绘系统的棱镜)、电控箱、上位机等可以布置在载体平台上。小车能够通过车轮在轨道10上行走。
在可选的实施例中,移动载体20也可以为盒体,上述各种部件可以放置在盒体内,该盒体可以与上述可选实施例中安装有传送带的导轨14配合,该盒体底部固定在该传送带,由传送带引导该移动载体20在导轨14上往复运动。
在此需要说明的是,上述图5和图6的两个移动载体20的实施例可以根据实际情况与不同的导轨14(如图1或图4)配合应用,以符合实际测评环境以及测评内容的要求,以更好地模拟采煤机在井下作业的运行状况,从而获得更可靠的监测数据,以对惯性导航的精度进行测评。
本发明同时进一步提供一种包括上述轨道10以及移动载体20的采煤机惯性导航精度测评系统,该惯性导航精度测评系统的移动载体20能够在轨道10的两端之间沿轨道10往复运行,在移动载体20上能够设置基准测绘装置(例如标杆导航)及待测的惯性导航,通过将惯性导航30的测量轨迹与基准测绘装置(例如标杆导航)的测量轨迹相比较而测评惯性导航30的精度。由于该惯性导航精度测评系统采用上述轨道10,因此也具有上述轨道10的各个特征,因而也具备相应的优点。
本发明通过采用采煤机惯性导航精度测评系统的固定轨道,以实现模拟采煤机在井下作业时的运行状况;同时能够确保每次测评的线路一致,以便于对重复测评的数据进行对比;并且可以通过对固定轨道的建模,以精确该轨道每一点的位置,用于与惯性导航测出的数据进行对比,从而得到更准确的测评结果。本发明同时提供了一种包括上述轨道的采煤机惯性导航精度测评系统,该测评系统采用了上述轨道并且能够实现相应的有益效果和优点。因此,该系统可以实现惯性导航的长时间的反复测试、重复验证,使测评数据更精确、可靠。
本发明的技术范围不仅仅局限于上述说明书中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对上述实施方式进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (10)

  1. 一种用于采煤机惯性导航精度测评系统的轨道,所述惯性导航精度测评系统包括移动载体和所述轨道,待测的惯性导航设置在所述移动载体上,并且所述移动载体能够在所述轨道的两端之间沿所述轨道往复运行,
    其特征在于,所述轨道包括:
    刚性的导轨,所述导轨模拟采煤机的运行轨迹;以及
    支撑部,所述支撑部支撑所述导轨,并将所述导轨保持在固定的位置。
  2. 如权利要求1所述的轨道,其中,所述轨道包括单个所述导轨、两个平行的所述导轨或多个平行的所述导轨。
  3. 如权利要求1所述的轨道,其中,所述支撑部为沿着所述导轨的长度方向分布的多个支架。
  4. 如权利要求1所述的轨道,其中,所述支撑部的顶端固定于所述导轨,所述支撑部的底部固定于地面。
  5. 如权利要求1至4中任一项所述的轨道,其中,所述导轨具有横向弯曲段和/或纵向起伏段和/或横向弯曲同时纵向起伏段。
  6. 如权利要求1所述的轨道,其中,在所述轨道的起点和终点处分别设置有限位装置,所述限位装置适于与所述移动载体的限位开关相互作用,以用于在所述移动载体运行到所述起点或所述终点时使所述移动载体停止或者返向。
  7. 如权利要求6所述的轨道,其中,所述限位装置独立地设置于所述导轨之外。
  8. 如权利要求7所述的轨道,其中,所述起点处的限位装置与所述终点处的限位装置分别位于所述导轨的异侧。
  9. 如权利要求1所述的轨道,其中,所述导轨的顶面和底面均用作所述移动载体的引导面。
  10. 一种采煤机惯性导航精度测评系统,其特征在于,所述惯性导航精度测评系统包括移动载体以及如前述权利要求1至9中任一项所述的轨道,所述移动载体能够在所述轨道的两端之间沿所述轨道往复运行,在所述移动载体上能够设置基准测绘装置及待测的惯性导航,通过将所述惯性导航的测量轨迹与所述基准测绘装置的测量轨迹相比较而测评所述惯性导航的精度。
PCT/CN2023/083832 2022-10-28 2023-03-24 用于采煤机惯性导航精度测评系统的轨道及测评系统 WO2024087497A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211338645.7A CN115560781A (zh) 2022-10-28 2022-10-28 用于采煤机惯性导航精度测评系统的轨道及测评系统
CN202211338645.7 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024087497A1 true WO2024087497A1 (zh) 2024-05-02

Family

ID=84769065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083832 WO2024087497A1 (zh) 2022-10-28 2023-03-24 用于采煤机惯性导航精度测评系统的轨道及测评系统

Country Status (2)

Country Link
CN (1) CN115560781A (zh)
WO (1) WO2024087497A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115540912A (zh) * 2022-10-28 2022-12-30 中煤科工集团上海有限公司 采煤机惯性导航精度测评系统及其精度测评方法
CN115560781A (zh) * 2022-10-28 2023-01-03 中煤科工集团上海有限公司 用于采煤机惯性导航精度测评系统的轨道及测评系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201637419U (zh) * 2009-12-18 2010-11-17 北京华航航宇科技有限公司 一种惯性测量单元动态测试设备
CN205280095U (zh) * 2015-12-01 2016-06-01 中国矿业大学 采煤机惯性导航定位误差校准装置
AU2016365012A1 (en) * 2015-12-02 2017-08-10 China University Of Mining And Technology Combined initial alignment system and alignment method for strapdown inertial navigation system of underground coal mining machine
CN109297511A (zh) * 2018-09-29 2019-02-01 中国煤炭科工集团太原研究院有限公司 一种掘进机惯性导航系统二维位置精度标定方法和系统
CN111412911A (zh) * 2020-04-07 2020-07-14 中国煤炭科工集团太原研究院有限公司 一种煤矿井下连续采煤机器人多传感器组合导航系统
CN112305570A (zh) * 2020-10-22 2021-02-02 中国人民解放军战略支援部队信息工程大学 一种导航定位设备的动态性能测试系统及测试方法
CN112881978A (zh) * 2021-01-13 2021-06-01 深圳市翌日科技有限公司 定位系统精度测量方法、装置及存储介质
CN114739425A (zh) * 2022-04-21 2022-07-12 之江实验室 基于rtk-gnss及全站仪的采煤机定位标定系统及应用方法
CN115540911A (zh) * 2022-10-28 2022-12-30 中煤科工集团上海有限公司 采煤机惯性导航精度测评系统及测评方法、移动载体
CN115540912A (zh) * 2022-10-28 2022-12-30 中煤科工集团上海有限公司 采煤机惯性导航精度测评系统及其精度测评方法
CN115560781A (zh) * 2022-10-28 2023-01-03 中煤科工集团上海有限公司 用于采煤机惯性导航精度测评系统的轨道及测评系统
CN115574843A (zh) * 2022-10-28 2023-01-06 中煤科工集团上海有限公司 采煤机惯性导航精度测评系统及测评方法、移动载体
CN115790646A (zh) * 2022-10-28 2023-03-14 中煤科工集团上海有限公司 采煤机惯性导航精度测评系统及测评方法、移动载体
CN115876223A (zh) * 2022-12-21 2023-03-31 中煤科工集团上海有限公司 采煤机惯性导航精度测评系统及测评方法、移动载体

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201637419U (zh) * 2009-12-18 2010-11-17 北京华航航宇科技有限公司 一种惯性测量单元动态测试设备
CN205280095U (zh) * 2015-12-01 2016-06-01 中国矿业大学 采煤机惯性导航定位误差校准装置
AU2016365012A1 (en) * 2015-12-02 2017-08-10 China University Of Mining And Technology Combined initial alignment system and alignment method for strapdown inertial navigation system of underground coal mining machine
CN109297511A (zh) * 2018-09-29 2019-02-01 中国煤炭科工集团太原研究院有限公司 一种掘进机惯性导航系统二维位置精度标定方法和系统
CN110160557A (zh) * 2018-09-29 2019-08-23 中国煤炭科工集团太原研究院有限公司 一种掘进机惯性导航系统二维位置精度标定方法和系统
CN111412911A (zh) * 2020-04-07 2020-07-14 中国煤炭科工集团太原研究院有限公司 一种煤矿井下连续采煤机器人多传感器组合导航系统
CN112305570A (zh) * 2020-10-22 2021-02-02 中国人民解放军战略支援部队信息工程大学 一种导航定位设备的动态性能测试系统及测试方法
CN112881978A (zh) * 2021-01-13 2021-06-01 深圳市翌日科技有限公司 定位系统精度测量方法、装置及存储介质
CN114739425A (zh) * 2022-04-21 2022-07-12 之江实验室 基于rtk-gnss及全站仪的采煤机定位标定系统及应用方法
CN115540911A (zh) * 2022-10-28 2022-12-30 中煤科工集团上海有限公司 采煤机惯性导航精度测评系统及测评方法、移动载体
CN115540912A (zh) * 2022-10-28 2022-12-30 中煤科工集团上海有限公司 采煤机惯性导航精度测评系统及其精度测评方法
CN115560781A (zh) * 2022-10-28 2023-01-03 中煤科工集团上海有限公司 用于采煤机惯性导航精度测评系统的轨道及测评系统
CN115574843A (zh) * 2022-10-28 2023-01-06 中煤科工集团上海有限公司 采煤机惯性导航精度测评系统及测评方法、移动载体
CN115790646A (zh) * 2022-10-28 2023-03-14 中煤科工集团上海有限公司 采煤机惯性导航精度测评系统及测评方法、移动载体
CN115876223A (zh) * 2022-12-21 2023-03-31 中煤科工集团上海有限公司 采煤机惯性导航精度测评系统及测评方法、移动载体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHIJIA WANG: " Dynamic zero-velocity update technology to shearer inertial navigation positioning", JOURNAL OF CHINA COAL SOCIETY, vol. 43, no. 2, 1 January 2018 (2018-01-01), pages 578 - 583, XP093164559, DOI: 10.13225/j.cnki.jccs.2017.0764 *
YICHEN DU: "Research on Position and Attitude Determination Method of Fully-mechanized Coal Winning Machine Based on Inertial Navigation", MASTER THESIS, 1 November 2021 (2021-11-01), XP093163254, Retrieved from the Internet <URL:Xijing University> *
ZHANG BO-YUAN: "Effects of initial alignment error and installation noncoincidence on the shearer positioning accuracy and calibration method", JOURNAL OF CHINA COAL SOCIETY, XUEHUI, BEIJING, CN, vol. 42, no. 3, 27 March 2017 (2017-03-27), Beijing, CN, pages 789 - 795, XP093163264, ISSN: 0253-9993, DOI: 10.13225/j.cnki.jccs.2016.0552 *

Also Published As

Publication number Publication date
CN115560781A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2024087497A1 (zh) 用于采煤机惯性导航精度测评系统的轨道及测评系统
CN205839498U (zh) 一种基于a‑ins的铁路轨道检测仪
WO2024087479A1 (zh) 采煤机惯性导航精度测评系统及测评方法、移动载体
WO2024087473A1 (zh) 采煤机惯性导航精度测评系统及测评方法、移动载体
WO2024087478A1 (zh) 采煤机惯性导航精度测评系统及测评方法、移动载体
WO2024087496A1 (zh) 采煤机惯性导航精度测评系统及其精度测评方法
CN103196416B (zh) 大坝内部变形的机器人监测方法和监测系统
CN201103084Y (zh) 一种轨道固定点及建筑限界测量装置
CN107299568A (zh) 一种轨道动态测量系统及方法
CN102337710A (zh) 一种gps轨道不平顺检测系统及其检测方法
CN115876223A (zh) 采煤机惯性导航精度测评系统及测评方法、移动载体
EP0401260A1 (en) DEVICE AND METHOD FOR DETERMINING THE LOCATION OF A RAIL.
CN104859681A (zh) 一种用于轨道几何参数测量的快速精调轨道检查仪
CN110736434B (zh) 一种煤矿巷道表面位移在线监测系统及监测方法
AU2017315963B2 (en) Inertial track measurement system and methods
CN210464365U (zh) 一种接触轨几何参数检测装置
JPH11257942A (ja) レール形状計測装置
CN103264711B (zh) 一种轨道参数测量系统
CN101289829B (zh) 轨道放样尺及其测量定位设备
CN209382013U (zh) 卫星定位与惯导一体化的轨检小车
CN201525994U (zh) 轨道几何状态激光测量仪
CN110497931A (zh) 一种岔区轨道状态检测方法
CN210526530U (zh) 用于铁路的轨检小车
CN103983256B (zh) 一种隧道内接触网下锚施工测量方法
CN201214738Y (zh) 轨道放样尺及其测量定位设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881098

Country of ref document: EP

Kind code of ref document: A1