WO2024087412A1 - 一种陶瓷窑炉温度智能控制系统及方法 - Google Patents

一种陶瓷窑炉温度智能控制系统及方法 Download PDF

Info

Publication number
WO2024087412A1
WO2024087412A1 PCT/CN2023/075477 CN2023075477W WO2024087412A1 WO 2024087412 A1 WO2024087412 A1 WO 2024087412A1 CN 2023075477 W CN2023075477 W CN 2023075477W WO 2024087412 A1 WO2024087412 A1 WO 2024087412A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ceramic kiln
temperature control
burner
proceed
Prior art date
Application number
PCT/CN2023/075477
Other languages
English (en)
French (fr)
Inventor
龙威舜
蓝万聪
冷元星
何卫东
Original Assignee
佛山市科达机电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市科达机电有限公司 filed Critical 佛山市科达机电有限公司
Publication of WO2024087412A1 publication Critical patent/WO2024087412A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices

Definitions

  • the invention relates to the field of ceramic sintering equipment, and in particular to an intelligent control system and method for the temperature of a ceramic kiln.
  • Ceramic kiln is an important equipment for the production of building ceramics. It uses sticks as a carrier and can continuously and uninterruptedly fire the green body. During production, the tile green body is placed on a roller. As the sticks rotate, the green body is sequentially preheated in the preheating zone, fired at high temperature in the firing zone, and cooled in the cooling zone.
  • the heating methods of ceramic kilns mainly include electric heating, gas heating, or biomass fuel heating. Among them, gas-heated ceramic kilns have less pollution and a wide range of energy sources. In particular, natural gas heating is relatively low in cost and less polluting than other methods.
  • Gas heating is limited by the insufficient stability of the gas and combustion-supporting wind volume and pressure in the main pipeline, and the control of the furnace temperature and furnace pressure of the ceramic kiln is not very stable.
  • the control requires precise control of the pressure difference and flow ratio of the combustion air and fuel gas in front of the burner.
  • most control methods use a proportional valve combined with a PID program at the control end. Due to the relatively limited accuracy of the proportional valve control and the complexity of the actual situation, the control of the furnace temperature is not accurate enough, especially at the starting and ending ends of the temperature. It is not easy to achieve stable linear control, resulting in the igniter repeatedly igniting the nozzle.
  • step (1) during each firing process, the kiln controller performs PID control on the temperature in the kiln through a PID control module according to a set temperature control curve in the kiln; step (2), after each firing, the kiln controller transmits the actual temperature data in the kiln to a PC through wireless communication; step (3), the firing worker scores and evaluates the ceramic firing result, inputs the score into the PC, and forms a sample with the actual temperature data; step (4), the PC optimizes the temperature curve in the kiln through a genetic algorithm based on these samples; step (5), the optimized temperature control curve is then transmitted by the PC to the kiln controller through wireless communication for controlling the next ceramic firing process.
  • the PID control method can only eliminate steady-state errors as much as possible, but cannot effectively control the furnace temperature close to the critical point of the temperature, which will cause the furnace temperature to be repeatedly ignited at the critical point or when the temperature fluctuates greatly, resulting in large temperature fluctuations in the furnace, which is not conducive to the quality control of the fired products.
  • One of the purposes of the present invention is to provide an intelligent temperature control system for a ceramic kiln, which solves the problem of frequent nozzle activation caused by inaccurate temperature fluctuations in the ceramic kiln.
  • a ceramic kiln temperature intelligent control system comprises a heating device, a cooling device and a temperature control device, wherein the heating device comprises a plurality of burners, and the plurality of burners are arranged in the ceramic kiln; the cooling device comprises a rapid cooling pipeline and a slow cooling pipeline, and the rapid cooling pipeline and the slow cooling pipeline are alternately arranged in the ceramic kiln; the temperature control device is used to control the heating device and the cooling device to adjust the temperature in the ceramic kiln in real time, thereby reducing the temperature fluctuation in the ceramic kiln.
  • the temperature control device includes a controller, an actuator and a temperature signal input end, the temperature signal input end is connected to the controller, and the controller is connected to the actuator, and is used to process input signals and output control signals, and control the burner via the actuator.
  • the temperature control device also includes a thermal fuse, which is arranged between the actuator and the power line and is used to provide overcurrent and overheating protection for the actuator.
  • the heating device also includes a gas main pipe, a first electric valve, a second electric valve, and a flow meter.
  • the gas main pipe is used to provide gas to the burners.
  • the first electric valve, the second electric valve and the flow meter are connected to the gas main pipe in sequence to control the flow of gas in the gas main pipe to prevent gas leakage.
  • the burner includes a nozzle, a gas valve, an igniter and a flexible pipe.
  • the nozzle and the igniter are arranged at the end of the burner.
  • One end of the flexible pipe is connected to the burner, and the other end is connected to the gas main pipe.
  • the gas valve is arranged on the flexible pipe. The gas valve can release gas quantitatively.
  • the flexible pipe facilitates the adjustment of the combustion direction of the nozzle.
  • the rapid cooling pipeline includes a first temperature sensor
  • the slow cooling pipeline includes a second temperature sensor.
  • the first temperature sensor is arranged on both side walls of the rapid cooling pipeline
  • the second temperature sensor is arranged on both side walls of the slow cooling pipeline.
  • the first temperature sensor and the second temperature sensor are both connected to the temperature control device to provide a reference for temperature setting for the temperature control device.
  • the slow cooling pipeline also includes a first gas branch pipe and a first frame.
  • the first gas branch pipe is arranged on the first frame.
  • the first frame is arranged close to the inner wall of the ceramic kiln and is used to slowly reduce the temperature in the ceramic kiln to achieve slow cooling of the ceramic tile blanks.
  • the multiple burners are divided into two rows, upper and lower, each row of multiple burners is divided into multiple groups, each group of multiple burners are controlled separately by the temperature control device, so as to realize segmented control of the temperature in the ceramic kiln.
  • the second purpose of the present invention is to provide a ceramic kiln temperature intelligent control method, which solves the problem of unstable control of the ceramic kiln temperature when the temperature fluctuates and repeated ignition of the igniter.
  • the specific steps include:
  • access detection determine whether the burner of the ceramic kiln is connected to the temperature control device of the ceramic kiln. If so, obtain the reference temperature T sv and the actual temperature T pv in the ceramic kiln and compare them, and then enter step S3; if not, exit the program;
  • step S3.1 determine whether T pv -T sv ⁇ 0 is established, if yes, proceed to step S3.2, if not, proceed to step S3.3;
  • step S3.2 determine whether T pv -T sv >T max is true, if so, proceed to step S3.4, if not, proceed to step S3.5
  • step S3.3 determine whether T min ⁇ 0 and T pv -T sv ⁇ T min are both true, if true, proceed to step S3.6, if not true, proceed to step S3.7;
  • step S3.5 determine whether T min > 0 and T pv -T sv ⁇ T min are both true, if true, proceed to step S3.6, if not true, proceed to step S3.7
  • steps S1-S3 looping through steps S1-S3 to control the on/off state of the burner, so as to prevent the burner from being frequently opened and closed, thereby reducing temperature fluctuations in the ceramic kiln.
  • step S3.8 a PID temperature control method is also provided in the ceramic kiln.
  • the PID temperature control method is executed after step S3.7, and after execution, it enters step S4.
  • the PID temperature control method is used to control the opening size of the burner (11). The two methods are used in combination to stably control the temperature of the entire firing process in the ceramic kiln.
  • the ceramic kiln temperature intelligent control system controls the temperature inside the kiln by a heating device, a cooling device and a temperature control device.
  • the heating device is provided with a plurality of burners, which are divided into a plurality of groups. Each group of burners can be controlled individually to adjust the temperature inside the kiln.
  • Temperature sensors are provided on the rapid cooling pipeline and the slow cooling pipeline.
  • the reference temperature can be set by selecting sensors at different positions or by combining the temperatures of various temperature sensors. The actual temperature and the set temperature are highly consistent, thereby improving the quality of processed tiles.
  • the intelligent temperature control method of the ceramic kiln can be combined with a PID temperature control method or other temperature control methods.
  • the temperature sensing range is expanded to determine whether to open and close the igniter and the gas valve. This ensures that the igniter and the gas valve will not be frequently opened and closed when the temperature is at the upper and lower critical points or when the temperature fluctuates greatly, thereby increasing the service life of the equipment, making the temperature fluctuation in the ceramic kiln smaller and the temperature more stable, thereby improving product quality and reducing gas consumption.
  • FIG1 is a structural schematic diagram of a ceramic kiln temperature intelligent control system provided by the present invention.
  • FIG2 is a second structural schematic diagram of the intelligent control system for temperature of a ceramic kiln provided by the present invention.
  • FIG3 is a structural diagram of a quenching pipeline provided by the present invention.
  • FIG4 is a structural diagram of a slow cooling pipeline provided by the present invention.
  • FIG5 is a second structural diagram of the quenching pipeline provided by the present invention.
  • FIG6 is a third structural diagram of the intelligent control system for temperature of a ceramic kiln provided by the present invention.
  • FIG7 is a control diagram of the intelligent control system for temperature of a ceramic kiln provided by the present invention.
  • FIG8 is a circuit diagram of a temperature control device provided by the present invention.
  • FIG. 9 is a flow chart of the intelligent temperature control method of a ceramic kiln provided by the present invention.
  • Heating device Heating device; 11. Burner; 111. Nozzle; 112. Gas valve; 113. Ignitor; 114. Flexible pipe; 12. Gas transmission main pipe; 13. First electric valve; 14. Second electric valve; 15. Third electric valve; 16. Fourth electric valve; 17. Flow meter; 18. Pressure regulating device; 2. Cooling device; 21. Rapid cooling pipeline; 211. First sensor; 22. Slow cooling pipeline; 221. Second temperature sensor; 222. First gas transmission branch pipe; 223. First frame; 3. Temperature control device; 31. Controller; 32. Actuator; 33. Temperature signal input terminal; 34. Thermal fuse.
  • an intelligent temperature control system for a ceramic kiln includes a heating device 1, a cooling device 2 and a temperature control device 3.
  • the heating device 1 includes a plurality of burners 11, and the plurality of burners 11 are arranged in the ceramic kiln.
  • the cooling device 2 includes a rapid cooling pipeline 21 and a slow cooling pipeline 22, and the rapid cooling pipeline 21 and the slow cooling pipeline 22 are alternately arranged in the ceramic kiln.
  • the temperature control device 3 is used to control the heating device 1 and the cooling device 2 to adjust the temperature in the ceramic kiln in real time.
  • the temperature control device 3 includes a controller 31, an actuator 32 and a temperature signal input terminal 33.
  • the temperature signal input terminal 33 is connected to the controller 31, the controller 31 is connected to the actuator 32, and the actuator 32 is connected to a plurality of solenoid valves.
  • the solenoid valve is a proportional solenoid valve or a servo valve.
  • the proportional solenoid valve and the servo valve can adjust the opening size of the gas valve 112 according to the received signal to adjust the speed of increasing the temperature rise in the ceramic kiln, and can also adjust whether the ceramic kiln is heated or kept warm.
  • the gas valve 112 is used to control the output amount of the output combustible gas.
  • the actuator 32 is controlled by a signal from the controller 31, and can drive the solenoid valve to operate through the actuator 32, so that the controller 31 can uniformly adjust a plurality of gas valves 112 at one time.
  • One controller 31 can output a drive signal to a plurality of actuators 32, which meets the use of large-size ceramic kilns and improves the consistency of the temperature in the ceramic kiln.
  • the controller 31 is a programmable logic controller (PLC), which is a digital computing and operating electronic system suitable for industrial applications. It has a programmable memory that stores instructions for performing logical operations, sequential control, timing, counting, arithmetic operations, etc., and controls the actuator 32 to take action through the digital or analog temperature signal input terminal 33 after internal logical operations and output.
  • PLC programmable logic controller
  • the temperature control device 3 is also provided with a thermal fuse 34, which is arranged between the actuator 32 and the power cord.
  • the thermal fuse 34 is used for over-temperature and over-current protection of the actuator 32.
  • the actuator 32 drives multiple gas valves 112 to operate at the same time. Overcurrent or overtemperature may occur during operation.
  • the cost of the actuator 32 is relatively high, and it is necessary to implement a certain protection strategy for the actuator 32 to reduce the shutdown time of the ceramic kiln. Once the ceramic kiln is shut down, the furnace tiles will be scrapped.
  • the heating device 1 further comprises a gas supply pipe 12, a first electric valve 13, a second electric valve 14, and a flow meter 17.
  • the gas supply pipe 12 is used to provide gas to the plurality of burners 11.
  • the first electric valve 13, the second electric valve 14, and the flow meter 17 are used to supply gas to the plurality of burners 11.
  • the first electric valve 13 and the second electric valve 14 are used to control the gas in the gas main pipe 12 to flow to the burner 11.
  • the double switch control prevents gas leakage, improves the stability of gas supply, and prevents gas leakage when the burner 11 is closed.
  • One end of the gas main pipe 12 is connected to an external gas storage device, and the other end is connected to multiple first gas branch pipes 222.
  • the flow meter 17 is used to measure the gas flow through the gas main pipe 12.
  • the flow meter 17 can be connected to the controller 31 to feed back the gas flow data to the controller 31 to improve the accuracy of gas release.
  • a third electric valve 15, a fourth electric valve 16 and a pressure regulating device 18 are also provided on the heating device 1.
  • the third electric valve 15 and the fourth electric valve 16 are connected to the gas supply pipe 12 to strengthen the gas supply control and improve the safety of gas use.
  • the pressure regulating device 18 is composed of three pressure valves, which can detect the gas pressure in the gas supply pipe 12 and adjust it to ensure the gas supply of the burner 11. At the same time, it can also check whether the gas is leaking, thereby improving the safety of gas use.
  • the burner 11 includes a nozzle 111, a gas valve 112, an igniter 113 and a flexible pipe 114.
  • the nozzle 111 and the igniter 113 are arranged at the end of the burner 11.
  • One end of the flexible pipe 114 is connected to the burner 11, and the other end is connected to the gas supply main 12.
  • the gas valve 112 is arranged on the flexible pipe 114 to control the amount of gas finally ejected from the nozzle 111.
  • the flexible pipe 114 can be bent in any direction to adjust the direction of the flame of the nozzle 111 to prevent the flame from directly burning the ceramic tile body.
  • the nozzle 111 is made of ceramic or high-temperature resistant metal.
  • the nozzle 111 is also provided with an oxygen hole for supplying oxygen, which is used to increase the combustion rate of the gas, release heat faster, and make the temperature control in the ceramic kiln more sensitive.
  • the quenching pipeline 21 includes a first temperature sensor 211
  • the slow cooling pipeline 22 includes a second temperature sensor 221.
  • the first temperature sensor 211 is arranged on the two side walls of the quenching pipeline 21, and the second temperature sensor 221 is arranged on the two side walls of the slow cooling pipeline 22.
  • the first temperature sensor 211 and the second temperature sensor 221 are both connected to the temperature control device 3.
  • a plurality of first temperature sensors 211 are arranged in the quenching pipeline 21.
  • the temperature control table includes a plurality of first temperature sensors 211 and a plurality of second temperature sensors 221.
  • the reference temperature T sv in the ceramic kiln can be selected through the temperature control table. The selection of the reference temperature T sv is manually implemented, and the selected temperature is determined by multiple manual trials.
  • the quenching pipeline 21 is used to quickly reduce the temperature in the ceramic kiln and can quickly clear the heat in the ceramic kiln.
  • the slow cooling pipeline 22 further includes a first gas branch pipe 222 and a first frame 223.
  • the first gas branch pipe 222 is arranged on the first frame 223.
  • the first frame 223 is arranged close to the inner wall of the ceramic kiln.
  • the slow cooling pipeline 22 is used to slowly reduce the temperature in the ceramic kiln to achieve slow cooling of the ceramic tile blanks, thereby preventing the ceramic tile blanks from cracking due to a too fast temperature drop.
  • the first gas transmission branch pipe 222 is connected to the first frame 223 by self-tapping screws.
  • the first frame 223 is in the shape of a door, and the installation is convenient and quick.
  • the multiple burners 11 are divided into two rows, upper and lower rows, and the multiple burners 11 in each row are divided into multiple groups.
  • the multiple burners 11 in each group are controlled separately by the temperature control device 3.
  • the temperature control device 3 controls the heating conditions of the burners 11 in groups, reducing the pressure on the control device 3, and at the same time, it can also perform more accurate temperature adjustment on each section in the ceramic kiln.
  • a ceramic kiln temperature intelligent control method specifically includes the following steps:
  • step S2 access detection: determine whether the burner is connected to the temperature control device 3. If connected, obtain the reference temperature Tsv and the actual temperature Tpv in the ceramic kiln and compare them, and then enter step S3; if not connected, exit the program and alarm the operator for maintenance. After the maintenance is completed, enter the program manually to complete the control. Through this step, the system self-checks to prevent the temperature in the ceramic kiln from being unstable due to system errors;
  • step S3.1 determine whether T pv -T sv ⁇ 0 is established, if yes, proceed to step S3.2, if not, proceed to step S3.3;
  • step S3.2 determine whether T pv -T sv >T max is true, if so, proceed to step S3.4, if not, proceed to step S3.5
  • step S3.3 determine whether T min ⁇ 0 and T pv -T sv ⁇ T min are both true, if true, proceed to step S3.6, if not true, proceed to step S3.7;
  • step S3.5 determine whether T min > 0 and T pv -T sv ⁇ T min are both true, if true, proceed to step S3.6, if not true, proceed to step S3.7
  • steps S1-S3 looping through steps S1-S3 to control the opening and closing state of the burner, so as to prevent the burner from being opened and closed frequently and reduce the temperature fluctuation in the ceramic kiln.
  • the nozzle 111, the gas valve 112 and the igniter 113 on the burner 11 are all powered off.
  • the gas valve 112 is opened and the igniter 113 is ignited, and the heat generated by the gas increases the temperature in the ceramic kiln or achieves insulation.
  • This method expands the reaction temperature range of the burner 11 ignition by comparing the actual temperature T pv with the reference temperature T sv obtained from the ceramic kiln, so that when the temperature in the ceramic kiln fluctuates, the burner 11 will not cause a large change in the temperature in the ceramic kiln due to frequent ignition, thereby improving the stability of ceramic tile firing and insulation, thereby improving the yield of ceramic tiles and also improving the service life of the heating device 1.
  • step S3.8 also includes a PID temperature section method and a PID temperature adjustment method.
  • the PID temperature adjustment method is run after step S3.7 and then enters step S4.
  • the PID temperature adjustment method is used to control the opening size of the burner.
  • the combination of the two methods can stably control the temperature of the entire firing process in the ceramic kiln.
  • the intelligent temperature control method for a ceramic kiln also includes a PID temperature regulation method. When the burner 11 of the intelligent temperature control method for a ceramic kiln maintains its original state, the PID temperature regulation method controls the opening of the burner 11.
  • the controller 31 on the temperature control device 3 can simultaneously execute the PID regulation method and the intelligent temperature control method for the kiln.
  • the PID regulation method is the temperature control method mentioned in the background technology CN108931144A.
  • the opening of the gas valve 112 is PID-regulated to control the flame size and the amount of heat generated on the burner 11, so as to increase the temperature in the ceramic kiln or keep it warm.
  • the temperature in the ceramic kiln is controlled by combining the two. During the firing process, the temperature in the ceramic kiln can be stabilized. When the temperature approaches the critical point, the frequent starting and stopping of the igniter 113 can be reduced, thereby improving the stability of the temperature in the ceramic kiln and the service life of the equipment.
  • the PID temperature regulation method is used to heat the heating device 1 through the temperature curve, so that the actual temperature Tpv in the ceramic kiln and the firing temperature of the ceramic tiles are as close as possible and kept stable.
  • the burner 11 needs to be closed to reduce the temperature or maintain the temperature stable.
  • the ceramic kiln temperature intelligent control method is used to control it. By expanding the temperature reaction range, the frequent start and stop of the burner 11 is reduced.
  • the burner 11 needs to be opened to increase the temperature in the ceramic kiln or to keep it warm.
  • the ceramic kiln temperature intelligent control method is also used to control it. By expanding the reaction range of the lower critical point temperature, the frequent start and stop of the burner 11 is reduced.
  • the control logic of the two control methods are loaded on the controller 31 to achieve accurate control of the firing temperature in the ceramic kiln.
  • the ceramic kiln temperature intelligent control method in the second embodiment is implemented by the ceramic kiln temperature intelligent control system in the first embodiment.
  • the temperature in the ceramic kiln during the heat preservation and cooling stages can be controlled by the cooling device to achieve better
  • the effect of accurately controlling the temperature in the kiln makes the fired ceramic tiles have better dimensional stability and surface quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

本发明公开了一种陶瓷窑炉温度智能控制系统及方法,属于陶瓷烧结设备领域,包括加热装置、降温装置和控温装置,该陶瓷窑炉温度智能控制方法通过对比是温度上、下限临界点与设定值的大小,扩大温度的感应范围,来决定是启闭点火器和燃气阀门,使得点火器和燃气阀门在温度下、下限临界点或者温度波大时不会频繁启闭,提高设备的使用寿命,使得陶瓷窑内温度的变化幅度小,从而提高了产品的质量,降低了燃气的消耗。

Description

一种陶瓷窑炉温度智能控制系统及方法 技术领域
本发明涉及陶瓷烧结设备领域,具体涉及一种陶瓷窑炉温度智能控制系统及方法。
背景技术
陶瓷窑炉是建筑陶瓷生产的重要设备,它以棍棒作为运载工具,可对坯体进行连续不间断的烧制,生产时瓷砖坯体放在辊道上,随着棍棒转动,坯体依次经过预热带预热、烧成带高温烧制和冷却带降温而烧成,陶瓷窑炉的加热方式主要有用电加热、用燃气加热或用生物质燃料加热等,其中采用燃气加热陶瓷窑炉污染小来,能量来源广泛,特别是天然气加热相对其他方式成本低且污染小,采用燃气加热受限于主管道中的燃气和助燃风力的风量和压力的稳定性不足,对陶瓷窑炉的炉内温度和炉内压力的控制需要通过对给燃烧嘴前的助燃风和燃气的压差和流量比例进行精确控制,目前控制方式大多采用比例阀结合控制端的PID程序进行控制,由于比例阀控制的精度相对有限及实际情况的复杂性,对炉温的控制不够准确,特别是在温度的起止端不便于实现稳定的线性控制,导致点火器对喷口进行反复点火,对于烧制温度变化较为敏感的产品,用目前的方式较难控制质量,且频繁点火会降低设备的使用寿命,增加设备的使用维护成本,如何对温度进行准确地控制,改善产品烧制质量是目前待解决的问题。
现有公布号为CN108931144A的专利申请公开了一种陶瓷窑炉温度控制的智能优化方法,具体步骤如下:步骤(1)、每次烧制过程中,窑炉控制器根据设定的炉内温度控制曲线,对炉内温度通过PID控制模块进行PID控制;步骤(2)、每次烧制结束后,窑炉控制器将此次炉内的实际温度数据通过无线通讯传输给PC机;步骤(3)、烧制工对此次的陶瓷烧制结果进行打分评价,输入PC机,并与实际温度数据形成一个样本;步骤(4)、PC机根据这些样本,通过遗传算法对炉内温度曲线进行优化;步骤(5)、优化后的温度控制曲线,再由PC机通过无线通讯传给窑炉控制器,用于对下次陶瓷烧制过程的控制,该PID控制方法只能尽量地消除稳态误差,而对于接近温度的临界点的炉温无法得到有郊控制,会导致炉温在临界点或者温度波动大时进行反复点火,造成炉内温度波动大,不利于烧制品的质量控制。
发明内容
本发明的目的之一是提供一种陶瓷窑炉温度智能控制系统,解决了陶瓷窑内温度在出现大波动导致不准确时引起喷嘴频繁启的问题。
为实现上述发明目的,本发明采取的技术方案如下:
一种陶瓷窑炉温度智能控制系统,其包括加热装置、降温装置和控温装置,所述加热装置包括多个烧嘴,多个所述烧嘴设置在所述陶瓷窑炉内,所述降温装置包括急冷管路和缓冷管路,所述急冷管路和所述缓冷管路交替设置在所述陶瓷窑炉内,所述控温装置用于控制所述加热装置和所述降温装置对所述陶瓷窑炉内的温度进行实时调整,减少所述陶瓷窑内温度波动。
所述控温装置包括控制器、执行器和温度信号输入端,所述温度信号输入端与所述控制器相连,所述控制器与所述执行器相连,用于处理输入信号并输出控制信号,经由所述执行器对所述烧嘴进行控制。
所述控温装置还包括热熔断器,所述热熔断器设置在所述执行器与电源线之间,用于为所述执行器提供过流和过热保护。
所述加热装置还包括输气主管、第一电动阀、第二电动阀、流量计,所述输气主管用于多个给所述烧嘴提供燃气,所述第一电动阀、第二电动阀和所述流量计依次连接在所述输气主管上,用于控制所述输气主管内的燃气流动,防止燃气泄露。
所述烧嘴包括喷口、燃气阀门、点火器和柔性管道,所述喷口和所述点火器设置在所述烧嘴的端部,所述柔性管道的一端与所述烧嘴相连,另一端与所述输气主管相连,所述燃气阀门设置在所述柔性管道上,所述燃气阀门可以定量地释放燃气,所述柔性管道方便调整所述喷嘴的燃烧方向。
所述急冷管路包括第一温度传感器,所述缓冷管路包括第二温度传感器,所述第一温度传感器设置在所述急冷管路的两侧壁上,所述第二温度传感器设置在所述缓冷管路的两侧壁上,所述第一温度传感器和所述第二温度传感器均与所述控温装置相连,用于为所述控温装置提供温度设定的参考。
所述缓冷管路还包括第一输气支管和第一框架,所述第一输气支管设置在所述第一框架上,所述第一框架靠近所述陶瓷窑炉的内壁布置,用于缓慢地降低所述陶瓷窑炉内的温度,实现瓷砖砖坯的缓慢冷却。
多个所述烧嘴分成上、下两排,每排多个所述烧嘴分成多个组,每组多个所述烧嘴均由所述控温装置分别控制,可以实现对所述陶瓷窑炉内温度的分段控制。
本发明的目的之二是提供一种陶瓷窑炉温度智能控制方法,解决了陶瓷窑炉温度在温度出现波动时控制不稳定,点火器反复点火的问题。
为实现上述发明目的,本发明采取的技术方案如下:
具体包括以下步骤:
S1、参数设定:人工设定比较温度的上限Tmax和下限Tmin和选取基准温度Tsv
S2、接入检测:判断所述陶瓷窑炉的烧嘴是否接入到所述陶瓷窑炉的控温装置,若接入,则获取所述基准温度Tsv和所述陶瓷窑炉内的实际温度Tpv并进行比较,再进入到步骤S3;若未接入,则退出程序;
S3、温度判定:
S3.1、判断Tpv-Tsv≥0是否成立,若成立则进入到步骤S3.2,若不成立则进入到步骤S3.3;
S3.2、判断Tpv-Tsv>Tmax是否成立,若成立则进入到步骤S3.4,若不成立则进入到步骤S3.5
S3.3、判断Tmin<0和Tpv-Tsv<Tmin是否同时成立,若成立则进入到步骤S3.6,若不成立则进入到步骤S3.7;
S3.4、关闭所述烧嘴,再进入到步骤S4;
S3.5、判断Tmin>0和Tpv-Tsv<Tmin是否同时成立,若成立则进入到步骤S3.6,若不成立则进入到步骤S3.7
S3.6、开启所述烧嘴,再进入到步骤S4;
S3.7、所述烧嘴维持原状;
S4、循环执行步骤S1-S3,以控制所述烧嘴的启闭状态,用于防止所述烧嘴频繁启闭,减少所述陶瓷窑炉内的温度波动。
还包括步骤S3.8、所述陶瓷窑炉内还设有PID温度调节方法,所述PID温度调节方法在步骤S3.7之后运行,执行完后进入到步骤S4,所述PID温度调节方法用于控制所述烧嘴(11)的开度大小,两种方法结合使用可以对陶瓷窑炉内的整个烧制过程进行稳定的控温。
本发明的有益效果为:
(1)该陶瓷窑炉温度智能控制系统由加热装置、降温装置和控制温装置来控制窑内温度,加热装置上设有多个烧嘴,烧嘴分成多个组,可以分对各组烧嘴进行单独控制以调节窑内温度,急冷管路和缓冷管路上设有温度传感器,可以根据选择不同位置传感器或者综合各个温度传感器的温度来设定基准温度,便得到实际温度和设定温度的一致性高,提高了加工瓷砖的质量。
(2)该陶瓷窑炉温度智能控制方法可以结合到PID控温方法或者其它控温方中使用,通过对比是温度上、下限临界点与设定值的大小,扩大温度的感应范围,来决定是启闭点火器和燃气阀门,使得点火器和燃气阀门在温度下、下限临界点上或者温度波动大时不会频繁启闭,提高了设备的使用寿命,使得陶瓷窑内温度的变化波动更小,温度更加稳定,从而提高了产品的质量,降低了燃气的消耗。
附图说明
图1为本发明提供的陶瓷窑炉温度智能控制系统的结构示意图一;
图2为本发明提供的陶瓷窑炉温度智能控制系统的结构示意图二;
图3为本发明提供的急冷管路结构图一;
图4为本发明提供的缓冷管路结构图;
图5为本发明提供的急冷管路结构图二;
图6为本发明提供的陶瓷窑炉温度智能控制系统的结构示意图三;
图7为本发明提供的陶瓷窑炉温度智能控制系统的控制图;
图8为本发明提供的控温装置的线路图;
图9为本发明提供的陶瓷窑炉温度智能控制方法的流程图。
附图标记:
1、加热装置;11、烧嘴;111、喷口;112、燃气阀门;113、点火器;114、柔性管道;
12、输气主管;13、第一电动阀;14、第二电动阀;15、第三电动阀;16、第四电动阀;17、流量计;18、压力调节装置;2、降温装置;21、急冷管路;211、第一传感器;22、缓冷管路;221、第二温度传感器;222、第一输气支管;223、第一框架;3、控温装置;31、控制器;32、执行器;33、温度信号输入端;34、热熔断器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如图1-图8所示,一种陶瓷窑炉温度智能控制系统,包括加热装置1、降温装置2和控温装置3,加热装置1包括多个烧嘴11,多烧嘴11设置在陶瓷窑内,降温装置2包括急冷管路21和缓冷管路22,急冷管路21和缓冷管路22交替设置在陶瓷窑炉内,控温装置3用于控制加热装置1和降温装置2对陶瓷窑炉内的温度进行实时调整。
进一步地,具体参见图8,控温装置3包括控制器31、执行器32和温度信号输入端33,温度信号输入端33与控制器31相连,控制器31与执行器32相连,执行器32与多个电磁阀相连,电磁阀是比例电磁阀或者伺服阀,比例电磁阀和伺服阀能够根据接收到的信号调节燃气阀门112的开度大小从而调节增加陶瓷窑炉内温度升温快慢,也能调节陶瓷窑炉内是升温还是保温,燃气阀门112用于控制输出可燃气体的输出量,执行器32受到来自控制器31的信号控制,能过执行器32驱动电磁阀动作,可以让控制器31一次性统一调节多个燃气阀门112,一个控制器31能够给多个执行器32输出驱动信号,满足大尺寸陶瓷窑炉的使用,提高了陶瓷窑炉内温度的一致性。
优选地,控制器31是可编程逻辑控制器(PLC),是一种适于工业应用的数字运算操作电子系统,具有可编程的存储器,在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,通过数字式或模拟式的温度信号输入端33经过内部逻辑运算后输出来控制执行器32进行动作。
优选地,控温装置3还设有热熔断器34,热熔断器34设置在执行器32与电源线之间,热熔断器34用于执行器32超温和过流保护,执行器32同时带动多个燃气阀门112动作,在工作中可能出现过流或者超温的情况,执行器32的成本较高,需要对执行器32实施一定的保护策略,减少陶瓷窑炉的停炉时间,一旦陶瓷窑炉发生停炉会导致炉瓷砖报废。
优选地,加热装置1还包括输气主管12、第一电动阀13、第二电动阀14、流量计17,输气主管12用于给多个烧嘴11提供燃气,第一电动阀13、第二电动阀14和流量计17依 次连接在输气主管12上,第一电动阀13和第二电动阀14用于控制输气主管12内的燃气流向烧嘴11,双重开关控制防止燃气泄露,提高燃气供给的稳定性,也能防止关闭烧嘴11处漏气,输气主管12的一端与外部储气设备相连,另一端连接着多根第一输气支管222,流量计17用于计量通过输气主管12的燃气流量,流量计17可与控制器31相连,将燃气流量数据反馈到控制器31上,提高燃气释放的精度。
优选地,在加热装置1上还设有第三电动阀15、第四电动阀16和压力调节装置18,第三电动阀15和第四电动阀16连接在输气主管12上,用于加强燃气供给控制,提高燃气使用的安全性,压力调节装置18由三个压力阀组成,可以检测输气主管12内的燃气压力,并进行调节,以保证烧嘴11的煤气供应,同时也可以检查燃气是否发生泄露,提高使用燃气的安全性。
优选地,烧嘴11包括喷口111、燃气阀门112、点火器113和柔性管道114,喷口111和点火器113设置在烧嘴11的端部,柔性管道114的一端与烧嘴11相连,另一端与输气主管12相连,燃气阀门112设置在柔性管道114上,用于控制最终从喷口111内喷出的燃气量,柔性管道114可以朝任意方向弯折,用于调节喷口111火焰的方向,防止火焰直接烧灼瓷砖坯体,喷口111由陶瓷或者耐高温金属制成,喷口111还开有供应氧气的增加氧孔,用于提高燃气的燃烧率,更快地释放热量,让陶瓷窑内的温度控制更加灵敏。
优选地,急冷管路21包括第一温度传感器211,缓冷管路22包括第二温度传感器221,第一温度传感器211设置在急冷管路21的两侧壁上,第二温度传感器221设置在缓冷管路22的两侧壁上,第一温度传感器211和第二温度传感器221均与控温装置3相连,急冷管路21内设有多个第一温度传感器211,温控表包括多个第一温度传感器211和多个第二温度传感器221,通过温控表可以选取陶瓷窑炉内的基准温度Tsv,基准温度Tsv的选取由人工来实现,通过人工多次试难来确定选取的温度大小,也可以根据第一温度传感器211和第二温度传感器221的温度值来综合考量,根据不同的陶瓷窑炉类型和安装情况,基准温度Tsv的选取各不一样,需要经过陶瓷窑炉阶段的具体情况来设定,急冷管路21用于快速降低陶瓷窑炉内的温度,可以快速地清空陶瓷窑炉内的热量。
优选地,缓冷管路22还包括第一输气支管222和第一框架223,第一输气支管222设置在第一框架223上,第一框架223靠近陶瓷窑的内壁布置,缓冷管路22用于缓慢降低陶瓷窑炉内的温度,实现对瓷砖砖坯的缓慢冷却,防止温度下降过快造成瓷砖砖坯内部开裂, 第一输气支管222由自攻牙螺丝连接在第一框架223上,第一框架223是门字形,安装方便快捷。
优选地,多个烧嘴11分成上、下两排,每排多个烧嘴11分成多个组,每组多个烧嘴11均由控温装置3分别控制,控温装置3分组控制烧嘴11的加热情况,减轻对控制装置3的压力,同时也可以对陶瓷窑内的各段进行更加准确的温度调节。
实施例二
如图9所示,一种陶瓷窑炉温度智能控制方法,具体包括以下步骤:
S1、参数设定:人工设定比较温度的上限Tmax和下限Tmin和选取基准温度Tsv
S2、接入检测:判断烧嘴是否接入到控温装置3,若接入,则获取基准温度Tsv和陶瓷窑炉内的实际温度Tpv并进行比较,再进入到步骤S3;若未接入,则退出程序,并报警给操作人员以进行检修,检修完成后,于由人工设定进入该程序以完成控制,通过该步骤进行系自检防止系统出错而导致的陶瓷窑炉内的温度不稳定;
S3、温度判定;
S3.1、判断Tpv-Tsv≥0是否成立,若成立则进入到步骤S3.2,若不成立则进入到步骤S3.3;
S3.2、判断Tpv-Tsv>Tmax是否成立,若成立则进入到步骤S3.4,若不成立则进入到步骤S3.5
S3.3、判断Tmin<0和Tpv-Tsv<Tmin是否同时成立,若成立则进入到步骤S3.6,若不成立则进入到步骤S3.7;
S3.4、关闭烧嘴11,再进入到步骤S4;
S3.5、判断Tmin>0和Tpv-Tsv<Tmin是否同时成立,若成立则进入到步骤S3.6,若不成立则进入到步骤S3.7
S3.6、开启烧嘴,再进入到步骤S4;
S3.7、烧嘴维持原状;
S4、循环执行步骤S1-S3,以控制烧嘴的启闭状态,用于防止烧嘴频繁启闭,减少陶瓷窑炉内的温度波动。
其中,烧嘴11关闭时,烧嘴11上的喷口111、燃气阀门112和点火器113的电源均处 于关闭状态,防止在陶瓷窑内漏气或者点火器113误动作,烧嘴11开启时,燃气阀门112打开和点火器113进行点火,由燃气产生的热量提高陶瓷窑内的温度或者实现保温,该方法通过将实际温度Tpv和从陶瓷窑炉内获得到基准温度Tsv进行比对扩大控制烧嘴11点火的反应温度区间,使得陶瓷窑炉内温度出现波动时时,烧嘴11不会因频繁点火导致的陶瓷窑内温度变化大,提高了瓷砖烧制和保温的稳定性,从而提高了瓷砖的良品率,也提高加热装置1的使用寿命。
优选地,在步骤S3.8中还包括PID温度节方法和PID温度调节方法,PID温度调节方法在步骤S3.7之后运行,再进入到步骤S4,其中的PID温度调节方法用于控制烧嘴的开度大小,两种方法结合使用可以对陶瓷窑炉内的整个烧制过程进行稳定的控温。该陶瓷窑炉温度智能控制方法还包括PID温度调节方法,PID温度调节方法在陶瓷窑炉温度智能控制方法的烧嘴11维持原状时,由PID温度调节方法控制烧嘴11的开度大小,控温装置3上的控制器31可同时执行PID调节方法和窑炉温度智能控制方法,PID调节方法为背景技术CN108931144A中提到的控温方法,通过PID调节燃气阀门112的开度大小从而控制烧嘴11的上的火焰大小和产生热量的多少,以升高陶瓷窑内的温度或者保温,结合两者来控制陶瓷窑内的温度,可以在烧制过程中,稳定陶瓷窑内的温度,在温度接近临界点时,减少点火器113的频繁起停,提高陶瓷窑内温度的稳定性和设备的使用寿命。
该陶瓷窑炉温度控制的详细过程如下:
陶瓷窑炉在烘制瓷砖砖坯时,由PID温度调节方法通过温度曲线来加热装置1进行加热,使陶瓷窑炉内的实际温度Tpv和瓷砖砖坯的烧制温度尽可能的接近并保护稳定,当温度达到瓷砖烧制温度的上临界点时,需要关闭烧嘴11以降低温度或者维持温度稳定,由陶瓷窑炉温度智能控制方法来进行控制,通过扩大温度的反应区间,减少烧嘴11的频繁启停,在陶瓷窑炉内的烧制温度在到达下临界点时,需要开启烧嘴11以提高陶瓷窑炉内温度或者进行保温时,也由陶瓷窑炉温度智能控制方法来进行控制通过扩大下临界点温度的反应区间,减少烧嘴11的频繁启闭,两种控制方法的控制逻辑均加载到控制器31上,来实现对陶瓷窑炉内烧制温度的准确控制。
实施例三
实施例二中的陶瓷窑炉温度智能控制方法由实施例一中的陶瓷窑炉温度智能控制系统来实现,利用冷却装置可以对保温和降温阶段的陶瓷窑炉内的温度进行控制,以达到更好 地控制窑炉内温度的效果,使得烧制的瓷砖砖坯成型的尺寸稳定性和表面质量更好。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对于本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种陶瓷窑炉温度智能控制系统,其特征在于:包括加热装置(1)、降温装置(2)和控温装置(3),所述加热装置(1)包括多个烧嘴(11),多个所述烧嘴(11)设置在所述陶瓷窑炉内,所述降温装置(2)包括急冷管路(21)和缓冷管路(22),所述急冷管路(21)和所述缓冷管路(22)交替设置在所述陶瓷窑炉内,所述控温装置(3)用于控制所述加热装置(1)和所述降温装置(2)对所述陶瓷窑炉内的温度进行实时调整。
  2. 根据权利要求1所述的陶瓷窑炉温度智能控制系统,其特征在于:
    所述控温装置(3)包括控制器(31)、执行器(32)和温度信号输入端(33),所述温度信号输入端(33)与所述控制器(31)相连,所述控制器(31)与所述执行器(32)相连。
  3. 根据权利要求2所述的陶瓷窑炉温度智能控制系统,其特征在于:
    所述控温装置(3)还包括热熔断器(34),所述热熔断器(34)设置在所述执行器(32)与电源线之间。
  4. 根据权利要求2所述的陶瓷窑炉温度智能控制系统,其特征在于:
    所述加热装置(1)还包括输气主管(12)、第一电动阀(13)、第二电动阀(14)、流量计(17),所述输气主管(12)用于多个给所述烧嘴(11)提供燃气,所述第一电动阀(13)、第二电动阀(14)和所述流量计(17)依次连接在所述输气主管(12)上。
  5. 根据权利要求4所述的陶瓷窑炉温度智能控制系统,其特征在于:
    所述烧嘴(11)包括喷口(111)、燃气阀门(112)、点火器(113)和柔性管道(114),所述喷口(111)和所述点火器(113)设置在所述烧嘴(11)的端部,所述柔性管道(114)的一端与所述烧嘴(11)相连,另一端与所述输气主管(12)相连,所述燃气阀门(112)设置在所述柔性管道(114)上。
  6. 根据权利要求5所述的陶瓷窑炉温度智能控制系统,其特征在于:
    所述急冷管路(21)包括第一温度传感器(211),所述缓冷管路(22)包括第二温度传感器(221),所述第一温度传感器(211)设置在所述急冷管路(21)的两侧壁上,所述第二温度传感器(221)设置在所述缓冷管路(22)的两侧壁上,所述第一温度传感器(211)和所述第二温度传感器(221)均与所述控温装置(3)相连。
  7. 根据权利要求6所述的陶瓷窑炉温度智能控制系统,其特征在于:
    所述缓冷管路(22)还包括第一输气支管(222)和第一框架(223),所述第一输气支管(222)设置在所述第一框架(223)上,所述第一框架(223)靠近所述陶瓷窑炉的内壁布置。
  8. 根据权利要求1所述的陶瓷窑炉温度智能控制系统,其特征在于:
    多个所述烧嘴(11)分成上、下两排,每排多个所述烧嘴(11)分成多个组,每组多个所述烧嘴(11)均由所述控温装置(3)分别控制。
  9. 一种陶瓷窑炉温度智能控制方法,其特征在于,具体包括以下步骤:
    S1、参数设定:人工设定比较温度的上限Tmax和下限Tmin和选取基准温度Tsv
    S2、接入检测:判断所述陶瓷窑炉的烧嘴(11)是否接入到所述陶瓷窑炉的控温装置(3),若接入,则获取所述基准温度Tsv和所述陶瓷窑炉内的实际温度Tpv并进行比较,再进入到步骤S3;若未接入,则退出程序;
    S3、温度判定:
    S3.1、判断Tpv-Tsv≥0是否成立,若成立则进入到步骤S3.2,若不成立则进入到步骤S3.3;
    S3.2、判断Tpv-Tsv>Tmax是否成立,若成立则进入到步骤S3.4,若不成立则进入到步骤S3.5
    S3.3、判断Tmin<0和Tpv-Tsv<Tmin是否同时成立,若成立则进入到步骤S3.6,若不成立则进入到步骤S3.7;
    S3.4、关闭所述烧嘴(11),再进入到步骤S4;
    S3.5、判断Tmin>0和Tpv-Tsv<Tmin是否同时成立,若成立则进入到步骤S3.6,若不成立则进入到步骤S3.7
    S3.6、开启所述烧嘴(11),再进入到步骤S4;
    S3.7、所述烧嘴(11)维持原状;
    S4、循环执行步骤S1-S3,以控制所述烧嘴(11)的启闭状态。
  10. 根据权利要求9所述的一种陶瓷窑炉温度智能控制方法,其特征在于:
    还包括步骤S3.8、所述陶瓷窑炉内还设有PID温度调节方法,所述PID温度调节方法在步骤S3.7之后运行,再进入到步骤S4,所述PID温度调节方法用于控制所述烧嘴(11) 的开度大小。
PCT/CN2023/075477 2022-10-27 2023-02-10 一种陶瓷窑炉温度智能控制系统及方法 WO2024087412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211328565.3 2022-10-27
CN202211328565.3A CN115507666A (zh) 2022-10-27 2022-10-27 一种陶瓷窑炉温度智能控制系统及方法

Publications (1)

Publication Number Publication Date
WO2024087412A1 true WO2024087412A1 (zh) 2024-05-02

Family

ID=84512058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075477 WO2024087412A1 (zh) 2022-10-27 2023-02-10 一种陶瓷窑炉温度智能控制系统及方法

Country Status (2)

Country Link
CN (1) CN115507666A (zh)
WO (1) WO2024087412A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115507666A (zh) * 2022-10-27 2022-12-23 佛山市科达机电有限公司 一种陶瓷窑炉温度智能控制系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201517887U (zh) * 2009-10-23 2010-06-30 中国建筑材料科学研究总院 陶瓷烧成窑炉
CN101949642A (zh) * 2010-08-17 2011-01-19 柳丹 一种用于焙烧渗花砖的宽体辊道窑
CN201772748U (zh) * 2010-08-17 2011-03-23 柳丹 一种用于焙烧渗花砖的宽体辊道窑
CN202675857U (zh) * 2012-07-26 2013-01-16 福建省佳美集团公司 一种宽体节能环保隧道窑
JP2017095756A (ja) * 2015-11-24 2017-06-01 住友電工焼結合金株式会社 シンターハードニング方法およびシンターハードニング用の焼結炉
CN110487071A (zh) * 2019-08-28 2019-11-22 佛山市德力泰科技有限公司 一种节能型双通道辊道窑的冷却区结构
CN210663858U (zh) * 2019-08-28 2020-06-02 佛山市德力泰科技有限公司 一种节能型双通道辊道窑的冷却区结构
CN211178004U (zh) * 2019-12-13 2020-08-04 福建宇科新型节能窑炉有限公司 一种陶瓷窑炉燃烧控制装置
WO2021031772A1 (zh) * 2019-08-19 2021-02-25 科达制造股份有限公司 一种辊道窑装置及包含该装置的生产系统
CN115507666A (zh) * 2022-10-27 2022-12-23 佛山市科达机电有限公司 一种陶瓷窑炉温度智能控制系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201517887U (zh) * 2009-10-23 2010-06-30 中国建筑材料科学研究总院 陶瓷烧成窑炉
CN101949642A (zh) * 2010-08-17 2011-01-19 柳丹 一种用于焙烧渗花砖的宽体辊道窑
CN201772748U (zh) * 2010-08-17 2011-03-23 柳丹 一种用于焙烧渗花砖的宽体辊道窑
CN202675857U (zh) * 2012-07-26 2013-01-16 福建省佳美集团公司 一种宽体节能环保隧道窑
JP2017095756A (ja) * 2015-11-24 2017-06-01 住友電工焼結合金株式会社 シンターハードニング方法およびシンターハードニング用の焼結炉
WO2021031772A1 (zh) * 2019-08-19 2021-02-25 科达制造股份有限公司 一种辊道窑装置及包含该装置的生产系统
CN110487071A (zh) * 2019-08-28 2019-11-22 佛山市德力泰科技有限公司 一种节能型双通道辊道窑的冷却区结构
CN210663858U (zh) * 2019-08-28 2020-06-02 佛山市德力泰科技有限公司 一种节能型双通道辊道窑的冷却区结构
CN211178004U (zh) * 2019-12-13 2020-08-04 福建宇科新型节能窑炉有限公司 一种陶瓷窑炉燃烧控制装置
CN115507666A (zh) * 2022-10-27 2022-12-23 佛山市科达机电有限公司 一种陶瓷窑炉温度智能控制系统及方法

Also Published As

Publication number Publication date
CN115507666A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN101762154B (zh) 一种节能型陶瓷隧道窑
WO2024087412A1 (zh) 一种陶瓷窑炉温度智能控制系统及方法
CN104456618B (zh) 一种蓄热式燃烧控制系统及其控制方法
CN103557534A (zh) 工业炉高精度脉冲燃烧控制方法
CN105864819B (zh) 多段位脉冲燃烧控制系统及方法
CN101701533B (zh) 用于大型汽轮机快速冷却的高温空气生产方法与装置
CN201251357Y (zh) 泡沫陶瓷高温辊道窑
CN2890658Y (zh) 数字化高温低氧空气脉冲燃烧装置
CN218673186U (zh) 一种陶瓷窑炉温度智能控制系统
CN207584816U (zh) 窑炉的空气过剩系数管理系统
CN202007261U (zh) 一种卷取炉的燃烧系统
CN101929736A (zh) 一种基于蓄热式烧嘴的加热炉温度控制方法
CN111006517A (zh) 一种焙烧炉控制系统
CN102607288A (zh) 脉冲式炉窑温度动态控制方法
CN114350877B (zh) 热风炉烘炉方法
CN105648130A (zh) 一种热风炉烧炉自动点火控制系统及方法
CN107560446B (zh) 一种连续性生产窑炉的全自动控制系统及其控制方法
EA018777B1 (ru) Способ газификации отходов
CN203550639U (zh) 全自动梭式窑控制系统
CN112695193B (zh) 一种保证热轧加热炉烧嘴高效工作的协调控制方法
CN201662083U (zh) 铸石辊道窑脉冲比例燃烧控制系统
CN204329061U (zh) 蓄热式燃烧控制系统
JP7156227B2 (ja) 連続式加熱炉の炉内圧力制御装置及び炉内圧力制御方法
Voicu et al. Digital Control Systems for Thermal Regimes in Industrial Furnaces.
CN115218679A (zh) 一种脉冲加热炉的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881018

Country of ref document: EP

Kind code of ref document: A1