WO2024087345A1 - 触控区域的定位方法、装置、终端设备和存储介质 - Google Patents

触控区域的定位方法、装置、终端设备和存储介质 Download PDF

Info

Publication number
WO2024087345A1
WO2024087345A1 PCT/CN2022/138645 CN2022138645W WO2024087345A1 WO 2024087345 A1 WO2024087345 A1 WO 2024087345A1 CN 2022138645 W CN2022138645 W CN 2022138645W WO 2024087345 A1 WO2024087345 A1 WO 2024087345A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
touch
sensing unit
touch area
differential signal
Prior art date
Application number
PCT/CN2022/138645
Other languages
English (en)
French (fr)
Inventor
徐协增
汪帅
张明华
Original Assignee
深圳市鸿合创新信息技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市鸿合创新信息技术有限责任公司 filed Critical 深圳市鸿合创新信息技术有限责任公司
Publication of WO2024087345A1 publication Critical patent/WO2024087345A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • the present application relates to the field of touch control, and in particular to a method, device, terminal equipment and storage medium for locating a touch control area.
  • the peak point positioning method is not accurate in identifying large touch points, resulting in low accuracy in the positioning results of the touch area.
  • the boundary positioning method is not easy to identify small touch points, and the recognition ability is insufficient, which also leads to low accuracy in the positioning results of the touch area.
  • embodiments of the present application provide a method, an apparatus, a terminal device, and a storage medium for locating a touch area, which can improve the accuracy of the positioning result of the touch area.
  • an embodiment of the present application provides a method for locating a touch area, comprising:
  • first touch area is an area corresponding to the first sensing unit where the differential signal is positive and greater than the touch threshold
  • second touch area is an area corresponding to the first sensing unit where the differential signal is negative and the absolute value is greater than the touch threshold
  • the third touch area and the fourth touch area are combined to obtain a target touch area.
  • the first sensing unit is located in a capacitive sensing array, and the area where the second sensing unit is located is expanded to obtain a third touch area, including:
  • the area where the second sensing unit is located is expanded to obtain an expansion area of the second sensing unit
  • the expansion of the area where the second sensing unit is located is stopped to obtain the third touch control area.
  • the differential signal corresponding to the extended area of the second sensing unit satisfies a preset stop extension condition, then the expansion of the area where the second sensing unit is located is stopped to obtain the third touch area, including:
  • the differential signal corresponding to the extended area of the second sensing unit is smaller than the touch threshold, the expansion of the area where the second sensing unit is located is stopped to obtain the third touch area.
  • the differential signal corresponding to the extended area of the second sensing unit satisfies a preset stop extension condition, then the expansion of the area where the second sensing unit is located is stopped to obtain the third touch area, including:
  • the differential signal corresponding to the extended area of the second sensing unit is greater than the touch threshold, and the extended area of the second sensing unit is located within the extended areas of other second sensing units, stop expanding the area where the second sensing unit is located to obtain the third touch area.
  • the area where the second sensing unit is located is expanded in a round-by-round manner, and if the differential signal corresponding to the expanded area of the second sensing unit is greater than the touch threshold, and the expanded area of the second sensing unit is located within the expanded area of other second sensing units, then the expansion of the area where the second sensing unit is located is stopped to obtain the third touch area, including:
  • the differential signal corresponding to the extended area of the second sensing unit is greater than the touch threshold, and the extended area of the second sensing unit is located within the extended areas of other second sensing units, and the first target differential signal is less than the second target differential signal, then stop expanding the area where the second sensing unit is located to obtain the third touch area;
  • the first target differential signal is the differential signal corresponding to the extended area of the second sensing unit in the previous round, and the second target differential signal is the differential signal corresponding to the extended area of other second sensing units in the previous round.
  • the step of merging the third touch area and the fourth touch area to obtain a target touch area includes:
  • the third touch area and the fourth touch area in the pairing group are merged to obtain a target touch area.
  • pairing the third touch region with the fourth touch region to obtain a pairing group of the third touch region and the fourth touch region includes:
  • the third touch area and the fourth touch area corresponding to the minimum distance among the distances are determined as the pairing group.
  • an embodiment of the present application provides a device for positioning a touch area, including:
  • An acquisition module used for acquiring a differential signal of the first sensing unit
  • a first determination module configured to determine a first touch area and a second touch area according to the differential signal and a preset touch threshold, wherein the first touch area is an area corresponding to the first sensing unit where the differential signal is positive and greater than the touch threshold, and the second touch area is an area corresponding to the first sensing unit where the differential signal is negative and the absolute value is greater than the touch threshold;
  • a second determining module configured to determine a second sensing unit corresponding to a maximum differential signal in the first touch control area, and expand an area where the second sensing unit is located to obtain a third touch control area, and determine a third sensing unit corresponding to a minimum differential signal in the second touch control area, and expand an area where the third sensing unit is located to obtain a fourth touch control area;
  • the merging module is used to merge the third touch area and the fourth touch area to obtain a target touch area.
  • an embodiment of the present application provides a terminal device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the computer program, the method for locating the touch area as described in any one of the first aspects is implemented.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method for locating a touch area as described in any one of the first aspects is implemented.
  • the embodiments of the present application have the following beneficial effects: the technical solution of the present application obtains the differential signal of the first sensing unit; determines the first touch area and the second touch area according to the differential signal and a preset touch threshold; determines the second sensing unit corresponding to the maximum differential signal in the first touch area, and expands the area where the second sensing unit is located to obtain the third touch area, and determines the third sensing unit corresponding to the minimum differential signal in the second touch area, and expands the area where the third sensing unit is located to obtain the fourth touch area; merges the third touch area and the fourth touch area to obtain the target touch area.
  • the first touch area and the second touch area are determined according to the differential signal of the first sensing unit and the preset touch threshold. Since the first touch area includes a first sensing unit whose differential signal is positive and greater than the touch threshold, and the second touch area includes a first sensing unit whose differential signal is negative and whose absolute value is greater than the touch threshold, it is possible to identify multiple first sensing units whose differential signals are greater than the touch threshold or whose absolute values of the differential signals are greater than the touch threshold, and the target touch area is obtained by merging the third touch area and the fourth touch area.
  • the third touch area is expanded from the second sensing unit corresponding to the maximum differential signal in the first touch area
  • the fourth touch area is expanded from the third sensing unit corresponding to the minimum differential signal in the second touch area, it is possible to respectively identify the second sensing unit corresponding to the maximum differential signal in the first touch area and the third sensing unit corresponding to the minimum differential signal in the second touch area, thereby improving the accuracy of the positioning result of the touch area.
  • FIG1 is a schematic diagram of an application scenario of a method for locating a touch area provided by an embodiment of the present application
  • FIG2 is a schematic flow chart of a method for locating a touch area provided in an embodiment of the present application
  • FIG3 is an example diagram of an acquired differential signal provided in an embodiment of the present application.
  • FIG4 is an exemplary diagram of encoding a sensing unit provided by an embodiment of the present application.
  • FIG5 is an example diagram of a row and column boundary line provided in an embodiment of the present application.
  • FIG6 is an exemplary diagram of a second sensing unit provided in an embodiment of the present application.
  • FIG. 7 is a schematic flow chart of a method for obtaining a third touch area provided in an embodiment of the present application.
  • FIG8 is an example diagram of stopping the expansion of the area where the second sensing unit is located, provided by an embodiment of the present application.
  • FIG9 is another example diagram of stopping the expansion of the area where the second sensing unit is located provided by an embodiment of the present application.
  • FIG10 is another example diagram of stopping the expansion of the area where the second sensing unit is located provided in an embodiment of the present application.
  • FIG11 is a schematic flow chart of a method for obtaining a target touch area provided in an embodiment of the present application.
  • FIG12 is an example diagram of a target touch area provided in an embodiment of the present application.
  • FIG13 is a schematic flowchart of a method for determining a pairing group provided in an embodiment of the present application.
  • FIG. 14 is an example diagram of calculating the distance between the third touch area and the fourth touch area provided in an embodiment of the present application.
  • FIG15 is an example diagram of a pairing group provided in an embodiment of the present application.
  • FIG16 is a schematic diagram of the structure of a touch area positioning device provided in an embodiment of the present application.
  • FIG. 17 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
  • references to "an embodiment of the present application” or “some embodiments” described in the specification of the present application mean that one or more embodiments of the present application include specific features, structures or characteristics described in conjunction with the embodiment. Therefore, the statements “in other embodiments”, “an embodiment of the present application”, “other embodiments of the present application”, etc. that appear in different places in the specification do not necessarily refer to the same embodiment, but mean “one or more but not all embodiments", unless otherwise specifically emphasized in other ways.
  • the terms “including”, “comprising”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized in other ways.
  • touch area a touched area in a touch screen
  • capacitive touch devices the most commonly used methods for capacitive touch devices are the peak point positioning method and the boundary positioning method.
  • the peak point positioning method is widely used.
  • the capacitance sensing signal of the sensing unit corresponding to the peak point changes the most.
  • the sensing unit corresponding to the peak point can reflect the actual capacitance sensing signal amount.
  • the peak point positioning method is used to locate the touch area, the capacitance sensing signals of multiple sensing units are obtained, and the maximum value of the multiple sensing signals is determined to determine the peak point, and the area where the peak point is located is determined as the touch area.
  • the sensing unit corresponding to the maximum sensing signal among multiple sensing signals is determined, and the touch area corresponding to the small number of sensing units can be identified with high identification accuracy.
  • the sensing signals of some of the touched sensing units are not the largest sensing signals, resulting in some of the multiple sensing units failing to be identified, thereby resulting in low identification accuracy of the touch area.
  • the capacitance sensing signals detected by all sensing units are obtained, and the area surrounded by the boundaries of the sensing units where the capacitance sensing signals exceed the touch threshold is determined as the touch area.
  • the boundary positioning method identifies the situation where multiple sensing units are touched, the capacitive sensing signals detected by all sensing units are obtained, and the area surrounded by the boundaries of the sensing units whose capacitive sensing signals exceed the touch threshold is determined as the touch area corresponding to the multiple sensing units. Since the sensing signal corresponding to each of the multiple sensing units exceeds the touch threshold, the boundary positioning method has high accuracy in identifying the overall area.
  • the boundary positioning method can only identify the overall touch area formed by a small number of touch points, but cannot identify the touch area corresponding to each touch point separately. Therefore, the boundary positioning method has low recognition accuracy for single touch areas with similar distances.
  • the present application can determine the first touch area and the second touch area according to the differential signal of the first sensing unit and the preset touch threshold, determine the second sensing unit and the third sensing unit in the first touch area and the second touch area respectively, and expand the area where the second sensing unit and the area where the third sensing unit are located respectively to obtain the third touch area and the fourth touch area, merge the third touch area and the fourth touch area to obtain the target touch area, that is, the technical solution of the present application, the first touch area and the second touch area are determined according to the differential signal of the first sensing unit and a preset touch threshold.
  • the first touch area includes a first sensing unit whose differential signal is positive and greater than the touch threshold
  • the second touch area includes a first sensing unit whose differential signal is negative and whose absolute value is greater than the touch threshold
  • the third touch area is expanded from the second sensing unit corresponding to the maximum differential signal in the first touch area
  • the fourth touch area is expanded from the third sensing unit corresponding to the minimum differential signal in the second touch area, it is possible to respectively identify the second sensing unit corresponding to the maximum differential signal in the first touch area and the third sensing unit corresponding to the minimum differential signal in the second touch area, thereby improving the accuracy of the positioning result of the touch area.
  • FIG. 1 is a schematic diagram of an application scenario of a touch area positioning method provided by an embodiment of the present application.
  • the application scenario includes, but is not limited to: a capacitive sensing array 10, a driving circuit 20, a detection circuit 30, a subtraction circuit 40 and a processing unit 50.
  • the output end of the driving circuit 20 is electrically connected to the input end of the driving circuit 20, the output end of the driving circuit 20 is electrically connected to the input end of the detection circuit 30, the output end of the detection circuit 30 is electrically connected to the input end of the subtraction circuit 40, and the input end of the subtraction circuit 40 is electrically connected to the input end of the processing unit 50.
  • the capacitive sensing array 10 includes a plurality of sensing units 11 arranged in a matrix, each sensing unit 11 includes a first electrode (e.g., a driving electrode) and a second electrode (e.g., a receiving electrode).
  • a first electrode e.g., a driving electrode
  • a second electrode e.g., a receiving electrode.
  • a voltage signal is provided to the first electrode, an electric field is generated between the first electrode and the second electrode to form a coupling capacitor.
  • the first electrode and the second electrode of the embodiment of the present application can be appropriately configured without specific restrictions, as long as a specific coupling capacitor can be formed.
  • the driving circuit 20 is a signal generator, which can send a driving signal to the first electrode of the sensing unit 11.
  • the driving signal in the embodiment of the present application can be a time-varying signal, such as a periodic signal.
  • the driving signal can be a pulse signal, such as a square wave, a triangular wave, etc., and the embodiment of the present application does not limit the type of the pulse signal.
  • the driving signal can couple the detection signal to the second electrode of the sensing unit 11 through the coupling capacitor.
  • the multiple driving circuits 20 may drive the sensing units 11 sequentially or in parallel.
  • the detection circuit 30 is coupled to the capacitive sensing array 10 and is used to modulate the detection signal generated by each row of the plurality of sensing units 11 to generate a modulated detection signal.
  • the modulation is used to change the amplitude, frequency or phase of the detection signal generated by the plurality of sensing units 11.
  • the subtraction circuit 40 is used to perform a subtraction operation on the modulated detection signal to generate a differential signal.
  • the capacitive sensing array 10 includes 7 rows and 7 columns, and a total of 49 sensing units 11.
  • the subtraction circuit 40 is used to subtract the difference between the modulated detection signal generated by the sensing unit 11 in the first row and the first column and the modulated detection signal generated by the sensing unit 11 in the first row and the first column from the modulated detection signal generated by the sensing unit 11 in the first row and the second column, as the differential signal of the sensing unit 11 in the first row and the first column, and to subtract the difference between the modulated detection signal generated by the sensing unit 11 in the first row and the second column and the modulated detection signal generated by the sensing unit 11 in the first row and the third column, as the differential signal of the sensing unit 11 in the first row and the second column. In this way, the differential signals of the 49 sensing units are obtained.
  • the processing unit 50 may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the processing unit 50 is used to obtain the differential signal of the first sensing unit; determine the first touch area and the second touch area according to the differential signal and a preset touch threshold; determine the second sensing unit corresponding to the maximum differential signal in the first touch area, and expand the area where the second sensing unit is located to obtain a third touch area, and determine the third sensing unit corresponding to the minimum differential signal in the second touch area, and expand the area where the third sensing unit is located to obtain a fourth touch area; merge the third touch area and the fourth touch area to obtain a target touch area.
  • FIG. 1 is only an exemplary description and cannot be interpreted as a specific limitation of the present application.
  • an analog-to-digital converter, an encoder, a decoder, etc. may also be included.
  • Figure 2 is a schematic flow chart of a method for locating a touch area provided in an embodiment of the present application.
  • the method in Figure 2 may be performed by the processing unit in Figure 1. As shown in Figure 2, the method includes: S201 to S204.
  • a processing unit obtains a differential signal from a first sensing unit.
  • the subtraction circuit inputs the generated differential signal to the processing unit, and the processing unit can obtain the differential signal of the first sensing unit.
  • the embodiment of the present application performs computation processing on the differential signal to obtain the target touch area in order to effectively eliminate external noise interference.
  • the capacitive touch sensing principle (the capacitive touch sensing principle is known, so it will not be repeated here), whether an object is close to the sensing unit is detected, that is, the charge change of the sensing unit is judged to detect whether the object (for example, but not limited to, fingers, water drops or metals, etc.) touches the sensing unit.
  • the object for example, but not limited to, fingers, water drops or metals, etc.
  • the detection signal of the sensing unit touched by the object changes the most relative to the sensing unit not touched, and the detection signal changes of the sensing units around the sensing unit touched by the object are smaller than the detection signal change of the sensing unit touched by the object.
  • FIG. 3 is an example diagram of an acquired differential signal provided in an embodiment of the present application.
  • FIG3 shows the modulated detection signals generated by the sensing units K40, K41, K42, K43, K44, K45, and K46 in the fourth row of the capacitive sensing array.
  • the height of each rectangular box in FIG3 represents the value of the detection signal.
  • the sensing unit touched by the object is K43, and the change in the detection signal of K43 is the largest, so the value of the detection signal of K43 is the smallest.
  • K40 and K41, K45 and K46 are far away from K43, so they are not affected by the object touch.
  • the detection signals of K40 and K41, K45 and K46 have not changed.
  • K42 and K44 are close to K43 and are easily affected by the object touch. Therefore, the detection signals of K42 and K44 are between the detection signal of K43 and the detection signal of K40.
  • the differential signal refers to the difference obtained by performing a subtraction operation on the detection signal, and the difference obtained by the subtraction operation is called the differential signal. Therefore, the differential signal of the first sensing unit obtained is 0 when the detection signal does not change. For example, the detection signal of K40 minus the detection signal of K41 is 0, and the detection signal of K45 minus the detection signal of K46 is 0, that is, the differential signals of K40 and K45 are both 0.
  • the differential signal of the first sensing unit obtained is a positive value
  • the differential signal of the first sensing unit obtained is a negative value
  • the differential signal of the first sensing unit obtained is a negative value
  • the detection signal of K41 minus the detection signal of K42 is +H 1
  • the detection signal of K42 minus the detection signal of K43 is +H 2
  • the detection signal of K43 minus the detection signal of K44 is -H 3
  • the detection signal of K44 minus the detection signal of K45 is -H 4. That is, the differential signal of K41 is +H 1
  • the differential signal of K42 is +H 2
  • the differential signal of K 43 is -H 3
  • the differential signal of K44 is -H 4 .
  • a reference signal is stored in the memory, and the reference signal can be called an ideal value, which represents the detection signal when the sensing unit is not touched.
  • the reference signal is any value from 0 bits to 255 bits, for example, the reference signal is 128 bits.
  • the processing unit adds a reference signal to the differential signal obtained by the subtraction circuit to obtain the differential signal of the first sensing unit.
  • the differential signal includes, but is not limited to, 128+H 1 , 128+H 2 , 128-H 3 , 128-H 4 , 128+0.
  • a reference signal is stored in the memory, and the reference signal is added to the differential signal obtained by the subtraction circuit because the processing circuit obtains a signal transmitted through a high-speed, full-duplex, synchronous communication bus (Serial Peripheral Interface, SPI), and the value of the signal transmitted by SPI is between 0 and 255 bits. If the signal transmitted by SPI is directly obtained, the processing circuit cannot identify the positive and negative nature of the signal, so the reference signal is added to the differential signal. A value greater than the reference signal indicates that the differential signal is positive, and a value less than the reference signal indicates that the differential signal is negative.
  • SPI Serial Peripheral Interface
  • a reference signal is stored in the memory, and the reference signal is added to the differential signal obtained by the subtraction circuit in order to eliminate inherent noise in the signal and improve the accuracy of the operation processing on the differential signal.
  • the “first” in the first sensing unit is only used to distinguish the first sensing unit from the sensing units in other embodiments and cannot be understood as indicating or implying relative importance.
  • S202 The processing unit determines a first touch area and a second touch area according to the differential signal and a preset touch threshold.
  • the first touch area is an area corresponding to the first sensing unit where the differential signal is positive and greater than the touch threshold
  • the second touch area is an area corresponding to the first sensing unit where the differential signal is negative and the absolute value is greater than the touch threshold
  • the method for determining the first touch area and the second touch area is:
  • a first sensing unit is determined to have a positive differential signal and a value greater than a touch threshold, and a first sensing unit is determined to have a negative differential signal and a value greater than the touch threshold.
  • the sensing unit corresponding to 128+ H1 and 128+ H2 is determined as the first sensing unit whose differential signal is positive and greater than the touch threshold.
  • the sensing units corresponding to -H3 and -H4 are determined as the first sensing units whose differential signals are negative and whose absolute values are greater than the touch threshold.
  • are calculated; if
  • the first touch area is determined according to the first sensing unit whose differential signal is positive and greater than the touch threshold
  • the second touch area is determined according to the first sensing unit whose differential signal is negative and whose absolute value is greater than the touch threshold.
  • the method for determining the first touch area is:
  • the row and column numbers of the first sensing units where the differential signals are positive and greater than the touch threshold are located are determined, and the row and column numbers of the first sensing units where the differential signals are negative and greater than the touch threshold are determined.
  • the sensing units in the sensing unit array may be encoded in advance, and reference may be made to FIG4 , which is an example diagram of encoding sensing units provided by the embodiment of the present application.
  • K11 represents the sensing unit in the first row and first column
  • K12 represents the sensing unit in the first row and second column
  • K21 represents the sensing unit in the second row and first column
  • Knm represents the sensing unit in the nth row and mth column.
  • the first sensing unit whose differential signal is positive and greater than the touch threshold is a sensing unit in region A, which is coded as K22, K23, K31, K32, K33, K42, K43, and the row and column numbers of the corresponding first sensing unit when the differential signal is positive are the second row, the third row, the fourth row, and the first column, the second column, and the third column.
  • the method for determining the row and column numbers of the first sensing unit whose differential signal is negative and whose absolute value is greater than the touch threshold is the same as the method for determining the row and column numbers of the first sensing unit whose differential signal is positive and greater than the touch threshold, and will not be repeated here.
  • the first touch area is determined according to the row and column numbers of the first sensing units where the differential signal is positive and greater than the touch threshold
  • the second touch area is determined according to the row and column numbers of the first sensing units where the differential signal is negative and the absolute value is greater than the touch threshold.
  • the spacing between the sensing units in each row and column may be the same or different.
  • the embodiment of the present application is illustrated by taking the same spacing as an example.
  • the position of the line connecting the midpoints of the spacing between adjacent sensing units can be used as the boundary line of the row and column.
  • Figure 5 is an example diagram of a row and column boundary line provided in the embodiment of the present application.
  • the column boundaries of the capacitive sensing array are determined as follows:
  • the processing unit configures each sensing unit according to the spacing
  • the midpoint positions of K11 and K12, K21 and K22, K31 and K32, etc. are calculated according to the positions of the sensing units in the first column and the second column.
  • the midpoint positions the right boundary L2 of the first column is determined.
  • the right boundary L3 of the second column and the right boundary Lm-1 of the m-1th column can be determined.
  • the left boundary of the first column and the right boundary of the mth column in Figure 5 can be determined according to the following method:
  • the processing unit calculates the distance from the right edge of the first column to the right edge of the second column according to the right edge of the first column and the right edge of the second column, and determines the left edge of the first column and the right edge of the mth column based on the distance from the right edge of the first column to the right edge of the second column.
  • the method for determining the row boundary of the capacitive sensing array is the same as the method for determining the column boundary, which will not be described in detail here.
  • the area enclosed by the row and column numbers of the first sensing unit where the differential signal is positive and greater than the touch threshold is determined as the first touch area.
  • the upper boundary of the second row is used as the upper boundary of the first touch area
  • the lower boundary of the fourth row is used as the lower boundary of the first touch area
  • the left boundary of the first column is used as the left boundary of the first touch area
  • the right boundary of the third column is used as the right boundary of the first touch area
  • the first touch area can be determined, such as area B in Figure 4.
  • the method for determining the second touch area is the same as the method for determining the first touch area, which will not be described in detail here.
  • the processing unit determines the second sensing unit corresponding to the maximum differential signal in the first touch area, and expands the area where the second sensing unit is located to obtain a third touch area, and determines the third sensing unit corresponding to the minimum differential signal in the second touch area, and expands the area where the third sensing unit is located to obtain a fourth touch area.
  • the processing unit selects a sensing unit corresponding to the maximum differential signal from the differential signals of the sensing units in the first touch control area and uses it as the second sensing unit.
  • the processing unit selects the sensing unit corresponding to the maximum differential signal from the differential signals of the sensing units in the first touch area, including selecting the first differential signal from the differential signals of the sensing units in the first touch area as the maximum differential signal, where the first differential signal is any differential signal from the differential signals of the sensing units. Randomly or sequentially select a second differential signal to compare with the first differential signal, where the second differential signal is a signal from the differential signals of the sensing units other than the first differential signal.
  • the second differential signal is used as the maximum differential signal; if the second differential signal is less than the first differential signal, the first differential signal is used as the maximum differential signal until the differential signals of all sensing units are compared.
  • FIG. 6 is an exemplary diagram of a second sensing unit provided in an embodiment of the present application.
  • B represents the first touch control area.
  • the differential signal of the second sensing unit is characterized in that the difference between the differential signal of the second sensing signal and the reference signal is greater than the difference between the sensing signal other than the second sensing signal in the first touch area and the reference signal, and is greater than the touch threshold.
  • the method for determining the third sensing unit corresponding to the minimum differential signal in the second touch area is the same as the method for determining the second sensing unit corresponding to the maximum differential signal in the first touch area, which will not be repeated here.
  • the method for determining the second sensing unit corresponding to the maximum differential signal in the first touch area and determining the third sensing unit corresponding to the minimum differential signal in the second touch area can quickly and accurately locate the touched second sensing unit in the first touch area and quickly and accurately locate the touched third sensing unit in the second touch area, further improving the efficiency and accuracy of locating the target touch area.
  • FIG7 is a schematic flow chart of a method for obtaining a third touch area provided in the embodiment of the present application.
  • the execution subject of the method in FIG7 may be the processing unit in FIG1 .
  • the method includes: S301 to S304.
  • the processing unit determines, based on the position of the second sensing unit in the capacitive sensing matrix, an expansion direction for expanding the area where the second sensing unit is located.
  • the processing unit pre-stores the position of each sensing unit in the capacitive sensing matrix. After the processing unit determines the second sensing unit, the position of the second sensing unit in the capacitive sensing matrix is determined accordingly.
  • the processing unit may determine the position of the second sensing unit in the capacitive sensing matrix according to the row and column numbers of the second sensing unit.
  • the position of the second sensing unit in the capacitive sensing matrix is K22.
  • four directions of the second sensing unit namely vertically upward, vertically downward, horizontally leftward, and horizontally rightward, may be determined as expansion directions.
  • the four directions of K22 vertically upward, vertically downward, horizontally left, and horizontally right can be determined as expansion directions, that is, K12 vertically upward of K22 can be used as the capacitive sensing matrix to be expanded, K32 to Kn2 vertically downward of K22 can be used as the capacitive sensing matrix to be expanded, K21 horizontally to the left of K22 can be used as the capacitive sensing matrix to be expanded, and K23 to K2m horizontally to the right of K23 can be used as the capacitive sensing matrix to be expanded.
  • S302 The processing unit expands the area where the second sensing unit is located in the expansion direction to obtain an expansion area of the second sensing unit.
  • the processing unit expands the area where the second sensing unit is located in the expansion direction
  • the expansion is performed according to the number of rounds, and the expansion area of each round in each expansion direction only includes the area where one sensing unit is located.
  • the processing unit simultaneously expands the area where the second sensing unit is located in rounds in each expansion direction.
  • the second sensing unit is K22
  • the expansion is performed in four directions at the same time, K22 is expanded to K12 in the vertical upward direction, K22 is expanded to K32 in the vertical downward direction, K22 is expanded to K21 in the horizontal left direction, and K22 is expanded to K23 in the horizontal right direction.
  • the method in which the processing unit simultaneously expands the area where the second sensing unit is located in each expansion direction in a round-by-round manner also includes:
  • the processing unit simultaneously expands the areas where the plurality of second sensing units are located in turns in each expansion direction.
  • the times when the multiple second sensing units start expanding may be the same or different.
  • the plurality of second sensing units include a second sensing unit A and a second sensing unit B.
  • the second sensing unit A and the second sensing unit B can simultaneously expand the area where the second sensing unit is located in each expansion direction at the same time, or can simultaneously expand the area where the second sensing unit is located in each expansion direction at different times.
  • the processing unit expands the area where the second sensing unit is located in each expansion direction according to a preset expansion order according to the number of rounds.
  • the preset expansion order may be vertically upward, vertically downward, horizontally to the left, and horizontally to the right.
  • the preset expansion order may also be vertically downward, vertically upward, horizontally to the left, and horizontally to the right, etc.
  • the specific order of the preset expansion order is not limited in the embodiment of the present application.
  • the embodiment of the present application is illustrated by taking the preset expansion order as vertically upward, vertically downward, horizontally leftward, and horizontally rightward.
  • the processing unit expands the area where the second sensing unit is located in each expansion direction according to a preset expansion order of vertically upward, vertically downward, horizontally left, and horizontally right according to the number of rounds.
  • the second sensing unit is K22
  • K22 expands in the vertical upward direction to K12
  • K22 expands in the vertical downward direction to K32
  • K22 expands in the horizontal left direction to K21
  • K22 expands in the horizontal right direction to K23.
  • the method in which the processing unit expands the area where the second sensing unit is located in each expansion direction according to a preset expansion order according to a number of rounds also includes:
  • the processing unit expands the areas where the multiple second sensing units are located in each expansion direction according to a preset expansion order in rounds, and the times when the multiple second sensing units start expanding can be the same or different.
  • the multiple second sensing units include: a second sensing unit A and a second sensing unit B.
  • the second sensing unit A and the second sensing unit B can expand the areas where the multiple second sensing units are located in each expansion direction according to a preset expansion order at the same time, and can also expand the areas where the multiple second sensing units are located in each expansion direction according to a preset expansion order at different times.
  • the area where the second sensing unit is located is expanded, including expanding the boundaries of the area where the second sensing unit is located. For example, the row boundaries and column boundaries of the area where the second sensing unit is located are expanded.
  • the expansion method and expansion direction of the boundaries of the area where the second sensing unit is located are the same as the expansion method and expansion direction of the area where the second sensing unit is located, and will not be repeated here. S303, if the differential signal corresponding to the expansion area of the second sensing unit meets the preset stop expansion condition, the processing unit stops expanding the area where the second sensing unit is located to obtain a third touch area.
  • a method for stopping expansion of an area where a second sensing unit is located is:
  • the differential signal corresponding to the extended area of the second sensing unit is smaller than the touch threshold, the expansion of the area where the second sensing unit is located is stopped to obtain a third touch area.
  • Fig. 8 is an example diagram of stopping the expansion of the area where the second sensing unit is located provided in an embodiment of the present application.
  • B1, B2, B3, and B4 represent the expansion area of the second sensing unit that has completed the expansion.
  • the area where the second sensing unit to be expanded is located is the area corresponding to 230.
  • the first round of expansion is performed on the area where the second sensing unit is located.
  • the upper boundary of the area where the second sensing unit is located is expanded in the next round until the differential signal in the vertical upward direction is less than the touch threshold.
  • the expansion of the upper boundary of the area where the second sensing unit is located is stopped, and the upper boundary is determined.
  • the area where the second sensing unit is located is stopped from being expanded to obtain a third touch area.
  • Figure 9 is an example diagram of stopping the expansion of the area where the second sensing unit is located, provided in an embodiment of the present application.
  • the area where the second sensing unit is located is the area corresponding to 189 (for the convenience of description, the area corresponding to 189 is recorded as area C in the embodiment of the present application) and the area corresponding to 223 (the area corresponding to 223 is recorded as area D in the embodiment of the present application).
  • the first round of expansion is performed on area C, and its lower boundary is expanded to the lower boundary of the area corresponding to 181.
  • the first round of expansion is performed on area D, and its upper boundary is expanded to the upper boundary of the area corresponding to 168.
  • the differential signal corresponding to the extended area of the second sensing unit is greater than the touch threshold, and the extended area of the second sensing unit is located within the extended area of other second sensing units, and the first target differential signal is less than the second target differential signal, then stop expanding the area where the second sensing unit is located to obtain the third touch area;
  • the first target differential signal is the differential signal corresponding to the extended area of the second sensing unit in the previous round, and the second target differential signal is the differential signal corresponding to the extended area of other second sensing units in the previous round.
  • Figure 10 is another example diagram provided by an embodiment of the present application for stopping the expansion of the area where the second sensing unit is located.
  • the second sensing area is the area corresponding to 199 (the embodiment of the present application records the area corresponding to 199 as the E area) and the area corresponding to 185 (the embodiment of the present application records the area corresponding to 185 as the F area).
  • the E area and the F area are expanded.
  • the lower boundary of the E area is expanded to the lower boundary of the area corresponding to 155
  • the upper boundary of the F area is expanded to the upper boundary of the area corresponding to 181.
  • the second round of expansion area of the E area meets the conditions that the differential signal corresponding to the expansion area of the second sensing unit is greater than the touch threshold, and the expansion area of the second sensing unit is located in the expansion area of other second sensing units, and the first target differential signal is less than the second target differential signal, and the second expansion of the area where the second sensing unit is located is stopped, and the boundary cannot be further expanded.
  • the lower boundary of the E area ends at the lower boundary of the corresponding area of 155, and the upper boundary of the F area can be expanded to the upper boundary of the corresponding area of 144 (the second round of expansion area of other second sensing units).
  • the reason why the upper boundary of the F area can be expanded to the upper boundary of the area corresponding to 144 is that the second round of expansion area of the F area is the area corresponding to 144, and the third round of expansion area of the F area is the area corresponding to 155.
  • the upper boundary of the F area can only be expanded to the area corresponding to 144.
  • the method of expanding the area where the third sensing unit is located to obtain the fourth touch area is the same as the method of expanding the area where the second sensing unit is located to obtain the third touch area, which will not be repeated here.
  • the method for expanding the area where the third sensing unit is located and the method for expanding the second sensing unit provided in the embodiments of the present application can quickly and accurately obtain the third touch area through a preset stop expansion condition and quickly and accurately obtain the fourth touch area, further improving the efficiency and accuracy of locating the target touch area.
  • S204 The processing unit merges the third touch area and the fourth touch area to obtain a target touch area.
  • the third touch area is obtained by expanding the area where the second sensing unit is located
  • the fourth touch area is obtained by expanding the area where the third sensing unit is located.
  • the differential signal corresponding to the second sensing unit is the largest differential signal (positive value) in the first touch area
  • the differential signal corresponding to the third sensing unit is the smallest differential signal (negative value) in the second touch area.
  • the differential signal obtained by the processing unit includes a positive differential signal and a negative differential signal.
  • the third touch area is determined according to the positive differential signal and the fourth touch area is determined according to the negative differential signal.
  • Each third touch area will have a fourth touch area that best matches it.
  • the third touch area and the best matching fourth touch area are combined to determine the target touch area.
  • Figure 11 is a schematic flow chart of a method for obtaining a target touch area provided by an embodiment of the present application.
  • the execution subject of the method in Figure 11 may be the processing unit in Figure 1. As shown in Figure 11, the method includes: S401 to S402.
  • S401 The processing unit pairs the third touch area with the fourth touch area to obtain a pairing group of the third touch area and the fourth touch area.
  • each third touch area is paired with multiple fourth touch areas, and the best pairing is used as the pairing group of the third touch area and the fourth touch area.
  • Figure 13 is a schematic flow chart of a method for determining a pairing group provided in an embodiment of the present application.
  • the execution subject of the method in Figure 13 may be the processing unit in Figure 1. As shown in Figure 13, the method includes: S501 to S502.
  • S501 The processing unit calculates the distance between the third touch area and each fourth touch area.
  • the processing unit first compares the upper and lower boundaries of the third touch area with the upper and lower boundaries of each fourth touch area to determine a fourth touch area having the same upper and lower boundaries as the third touch area.
  • the distance between the third touch area and each fourth touch area having the same upper and lower boundaries as the third touch area is calculated.
  • the distance in the embodiment of the present application represents the spacing between the third touch area and the fourth touch area.
  • the embodiment of the present application can calculate the distance between the third touch area and each fourth touch area based on the boundary position of the third touch area and the boundary position of the fourth touch area.
  • FIG. 14 is an example diagram of calculating the distance between the third touch area and the fourth touch area in an embodiment of the present application.
  • the G area represents the third touch area
  • H2 represents any fourth touch area in each fourth touch area.
  • the upper and lower boundaries of H2 are the same as the upper and lower boundaries of G.
  • the distance between the third touch area and the fourth touch area can be calculated according to the position of the right boundary of the G area and the position of the left boundary of the H2 area.
  • the distance between the third touch region and each fourth touch region is calculated according to the row and column numbers of the third touch region and the row and column numbers of the fourth touch region.
  • the distance between the third touch area and the fourth touch area can be calculated by calculating the spacing between the fifth column and the seventh column.
  • the spacing between the fifth column and the seventh column is only one column width, and the column width is used as the distance between the third touch area and the fourth touch area.
  • the fourth touch areas not having the same upper and lower boundaries as the third touch area will be used as alternative pairs.
  • the processing unit determines the third touch area and the fourth touch area corresponding to the minimum distance among the distances as a pairing group.
  • the method for determining the third touch area and the fourth touch area corresponding to the minimum distance among the distances as a pairing group is:
  • the fourth touch area is used as a candidate pairing of the third touch area.
  • to determine whether there is an overlapping area between the third touch area and the fourth touch area it can be determined by the distance between the third touch area and the fourth touch area. For example, if the difference between the boundary position of the third touch area and the boundary position of the fourth touch area is less than or equal to 0, then there is an overlapping area between the third touch area and the fourth touch area; otherwise, there is no overlapping area.
  • the distance between the third touch area and the fourth touch area is taken as the minimum distance, and the third touch area and the fourth touch area are determined as a pairing group.
  • the second area in each fourth touch area is randomly or sequentially selected, and if the third touch area and the second area have an overlapping area, the second area is used as an alternative pairing of the third touch area, and the third touch area and the fourth touch area are continuously determined as a pairing group.
  • the second area is any touch area in each fourth touch area except the paired fourth touch area.
  • the distance between the third touch area and the second area is calculated. If the distance between the third touch area and the second area is less than the distance between the third touch area and the paired fourth touch area, the distance between the third touch area and the second area is taken as the minimum distance, and the third touch area and the second area are determined as a pairing group. In this way, whether there is an overlapping area between each fourth touch area and the third touch area and the distance between each fourth touch area and the third touch area are compared, and finally the best pairing group is determined.
  • FIG. 15 is an example diagram of a pairing group provided in an embodiment of the present application.
  • the G area represents the third touch area
  • H1, H2, and H3 all represent the fourth touch area.
  • the upper and lower boundaries of H1, H2, and H3 are the same as the upper and lower boundaries of G, H1 and G have an overlapping area, and the distance between G and H2 is less than the distance between G and H3. Therefore, G and H2 are determined as the best pairing group.
  • the unpaired third touch area is paired with an alternative pairing to form a pairing group, or the unpaired third touch area is paired with the unpaired fourth touch area to form a pairing group.
  • the best fourth touch area of the third touch area can be accurately matched, and a pairing can be found for the unpaired third touch area or fourth touch area to obtain a pairing group, which can improve the pairing efficiency and further improve the efficiency of locating the target touch area.
  • S402 The processing unit merges the third touch area and the fourth touch area in the pairing group to obtain a target touch area.
  • the processing unit uses the outermost boundaries of the third touch area and the fourth touch area in the pairing group as the boundaries of the target touch area, thereby completing the merging of the pairing groups.
  • FIG. 12 is an example diagram of a target touch area provided by an embodiment of the present application.
  • the processing unit uses the upper and lower boundaries of the best pairing group G area and H2 area as the upper and lower boundaries of the target touch area i area, determines the left boundary of the G area as the left boundary of the i area, and determines the right boundary of the H2 area as the right boundary of the i area, and finally determines the boundary of the i area to complete the merging of the pairing groups.
  • the pairing groups are merged using the merging method in the embodiment of the present application, since the pairing groups are merged using the boundary position, the third touch area and the fourth touch area can be merged more accurately according to the boundary position, thereby improving the accuracy of the merged area and further improving the accuracy of locating the target touch area.
  • the technical solution of the present application determines the first touch area and the second touch area according to the differential signal of the first sensing unit and the preset touch threshold, determines the second sensing unit and the third sensing unit in the first touch area and the second touch area respectively, expands the area where the second sensing unit and the area where the third sensing unit are located respectively to obtain the third touch area and the fourth touch area, merges the third touch area and the fourth touch area to obtain the target touch area, That is, in the technical solution of the present application, the first touch area and the second touch area are determined according to the differential signal of the first sensing unit and the preset touch threshold.
  • the first touch area includes a first sensing unit whose differential signal is positive and greater than the touch threshold
  • the second touch area includes a first sensing unit whose differential signal is negative and whose absolute value is greater than the touch threshold
  • the third touch area is expanded from the second sensing unit corresponding to the maximum differential signal in the first touch area
  • the fourth touch area is expanded from the third sensing unit corresponding to the minimum differential signal in the second touch area, it is possible to respectively identify the second sensing unit corresponding to the maximum differential signal in the first touch area and the third sensing unit corresponding to the minimum differential signal in the second touch area, thereby improving the accuracy of the positioning result of the touch area.
  • FIG. 16 is a schematic diagram of a structure of a touch area positioning device provided in an embodiment of the present application, the device comprising:
  • the acquisition module 61 is used to acquire the differential signal of the first sensing unit.
  • the first determination module 62 is used to determine a first touch area and a second touch area according to the differential signal and a preset touch threshold, the first touch area being an area corresponding to the first sensing unit where the differential signal is positive and greater than the touch threshold, and the second touch area being an area corresponding to the first sensing unit where the differential signal is negative and the absolute value is greater than the touch threshold.
  • the second determination module 63 is used to determine the second sensing unit corresponding to the maximum differential signal in the first touch area, and expand the area where the second sensing unit is located to obtain a third touch area, and determine the third sensing unit corresponding to the minimum differential signal in the second touch area, and expand the area where the third sensing unit is located to obtain a fourth touch area.
  • the merging module 64 is used to merge the third touch area and the fourth touch area to obtain a target touch area.
  • the second determination module 63 is further used to determine an expansion direction for expanding the area where the second sensing unit is located based on the position of the second sensing unit in the capacitive sensing matrix;
  • the area where the second sensing unit is located is expanded to obtain the expansion area of the second sensing unit
  • the extension of the area where the second sensing unit is located is stopped to obtain a third touch control area.
  • the second determining module 63 is further configured to stop expanding the area where the second sensing unit is located to obtain a third touch area if the differential signal corresponding to the extended area of the second sensing unit is smaller than the touch threshold.
  • the second determining module 63 is further configured to stop expanding the area where the second sensing unit is located if the differential signal corresponding to the extended area of the second sensing unit meets a preset stop extension condition, so as to obtain a third touch area, including:
  • the area where the second sensing unit is located is stopped from being expanded to obtain a third touch area.
  • the area where the second sensing unit is located is expanded in rounds, and the second determination module 63 is also used to stop expanding the area where the second sensing unit is located to obtain a third touch area if the differential signal corresponding to the expanded area of the second sensing unit is greater than the touch threshold, and the expanded area of the second sensing unit is located within the expanded area of other second sensing units, and the first target differential signal is less than the second target differential signal; the first target differential signal is the differential signal corresponding to the expanded area of the second sensing unit in the previous round, and the second target differential signal is the differential signal corresponding to the expanded area of other second sensing units in the previous round.
  • the merging module 64 is used to pair the third touch area with the fourth touch area to obtain a pairing group of the third touch area and the fourth touch area;
  • the third touch area and the fourth touch area in the paired group are combined to obtain a target touch area.
  • the merging module 64 is further used to calculate the distance between the third touch area and each fourth touch area;
  • the third touch area and the fourth touch area corresponding to the minimum distance among the distances are determined as a pairing group.
  • the technicians in the relevant field can clearly understand that for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example.
  • the above-mentioned function allocation can be completed by different functional units and modules as needed, that is, the internal structure of the device can be divided into different functional units or modules to complete all or part of the functions described above.
  • the functional units and modules in the embodiment can be integrated in a processing unit, or each unit can exist physically separately, or two or more units can be integrated in one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or in the form of software functional units.
  • an embodiment of the present application also provides a terminal device 200, including a memory 21, a processor 22, and a computer program 23 stored in the memory 21 and executable on the processor 22.
  • the processor 22 executes the computer program 23, the touch area positioning method of the above-mentioned embodiments is implemented.
  • the processor 22 may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the memory 21 may be an internal storage unit of the terminal device 200.
  • the memory 21 may also be an external storage device of the terminal device 200, such as a plug-in hard disk, a smart media card (SMC), a secure digital (SD) card, a flash card (Flash Card), etc. equipped on the terminal device 200. Further, the memory 21 may also include both an internal storage unit of the terminal device 200 and an external storage device.
  • the memory 21 is used to store computer programs and other programs and data required by the terminal device 200.
  • the memory 21 may also be used to temporarily store data that has been output or is to be output.
  • the embodiment of the present application further provides a computer-readable storage medium, which stores a computer program.
  • the computer program is executed by a processor, the method for locating the touch area of the above embodiments is implemented.
  • An embodiment of the present application provides a computer program product.
  • the mobile terminal implements the touch area positioning method of each of the above embodiments when executing the computer program product.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the present application implements all or part of the processes in the above-mentioned embodiment method, which can be completed by instructing the relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium.
  • the computer program is executed by the processor, the steps of the above-mentioned various method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code can be in source code form, object code form, executable file or some intermediate form.
  • the computer-readable storage medium may at least include: any entity or device that can carry the computer program code to the camera/terminal device, recording medium, computer memory, read-only memory (ROM), random access memory (RAM), electric carrier signal, telecommunication signal and software distribution medium.
  • ROM read-only memory
  • RAM random access memory
  • electric carrier signal telecommunication signal and software distribution medium.
  • a USB flash drive a mobile hard disk, a magnetic disk or an optical disk.
  • computer-readable storage media cannot be electric carrier signals and telecommunication signals.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控区域的定位方法、装置、终端设备和存储介质,涉及触控领域。该方法包括:根据第一感测单元的差分信号和预设的触控阈值,确定第一触控区域和第二触控区域,在第一触控区域和第二触控区域内分别确定第二感测单元和第三感测单元,并分别对第二感测单元所在区域和第三感测单元所在区域进行扩展,得到第三触控区域和第四触控区域,合并第三触控区域和第四触控区域。该方法能够识别多个差分信号大于触控阈值或差分信号的绝对值大于触控阈值的第一感测单元,并且能够分别识别第一触控区域内最大差分信号对应的第二感测单元和第二触控区域内最小差分信号对应的第三感测单元,提高了触控区域的定位结果的准确性。

Description

触控区域的定位方法、装置、终端设备和存储介质
相关申请的交叉引用
本申请要求在2022年10月27日提交中国专利局、申请号为202211329527.X、申请名称为“触控区域的定位方法、装置、终端设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及触控领域,尤其涉及一种触控区域的定位方法、装置、终端设备和存储介质。
背景技术
现有技术中,触控区域定位方法种类繁多,电容触控设备使用最多的是峰值点定位法和边界定位法。
峰值点定位法对于大触摸点识别不准确,导致触控区域的定位结果准确性较低。边界定位法对于小触摸点不容易识别开来,识别能力不足,也会导致触控区域的定位结果的准确性较低。
发明内容
有鉴于此,本申请实施例提供一种触控区域的定位方法、装置、终端设备和存储介质,可以提高触控区域的定位结果的准确性。
第一方面,本申请实施例提供一种触控区域的定位方法,包括:
获取第一感测单元的差分信号;
根据所述差分信号和预设的触控阈值,确定第一触控区域和第二触控区域,所述第一触控区域为所述差分信号是正值且大于所述触控阈值的第一感测单元对应的区域,所述第二触控区域为所述差分信号是负值 且绝对值大于所述触控阈值的第一感测单元对应的区域;
确定所述第一触控区域内最大差分信号对应的第二感测单元,并对所述第二感测单元所在区域进行扩展,得到第三触控区域,以及确定所述第二触控区域内最小差分信号对应的第三感测单元,并对所述第三感测单元所在区域进行扩展,得到第四触控区域;
合并所述第三触控区域和所述第四触控区域,得到目标触控区域。
在第一方面的一种可能的实现方式中,所述第一感测单元位于电容感测阵列中,所述对所述第二感测单元所在区域进行扩展,得到第三触控区域,包括:
基于所述第二感测单元在所述电容感测矩阵中的位置,确定对所述第二感测单元所在区域进行扩展的扩展方向;
在所述扩展方向上,对所述第二感测单元所在区域进行扩展,得到所述第二感测单元的扩展区域;
若所述第二感测单元的扩展区域对应的差分信号满足预设的停止扩展条件,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域。
其中,所述若所述第二感测单元的扩展区域对应的差分信号满足预设的停止扩展条件,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域,包括:
若所述第二感测单元的扩展区域对应的差分信号小于所述触控阈值,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域。
其中,所述若所述第二感测单元的扩展区域对应的差分信号满足预设的停止扩展条件,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域,包括:
若所述第二感测单元的扩展区域对应的差分信号大于所述触控阈值,且所述第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域。
其中,所述第二感测单元所在区域是按轮进行扩展,所述若所述第 二感测单元的扩展区域对应的差分信号大于所述触控阈值,且所述第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域,包括:
若所述第二感测单元的扩展区域对应的差分信号大于所述触控阈值,且所述第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,且第一目标差分信号小于第二目标差分信号,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域;所述第一目标差分信号为所述第二感测单元上一轮的扩展区域对应的差分信号,所述第二目标差分信号为其他第二感测单元上一轮的扩展区域对应的差分信号。
其中,所述合并所述第三触控区域和所述第四触控区域,得到目标触控区域,包括:
对所述第三触控区域和所述第四触控区域进行配对,得到所述第三触控区域和所述第四触控区域的配对组;
合并所述配对组内的所述第三触控区域和所述第四触控区域,得到目标触控区域。
其中,所述第四触控区域有多个,所述对所述第三触控区域和所述第四触控区域进行配对,得到所述第三触控区域和所述第四触控区域的配对组,包括:
计算所述第三触控区域和各所述第四触控区域的距离;
将各所述距离中的最小距离对应的所述第三触控区域和所述第四触控区域确定为所述配对组。
第二方面,本申请实施例提供一种触控区域的定位装置,包括:
获取模块,用于获取第一感测单元的差分信号;
第一确定模块,用于根据所述差分信号和预设的触控阈值,确定第一触控区域和第二触控区域,所述第一触控区域为所述差分信号是正值且大于所述触控阈值的第一感测单元对应的区域,所述第二触控区域为所述差分信号是负值且绝对值大于所述触控阈值的第一感测单元对应的区域;
第二确定模块,用于确定所述第一触控区域内最大差分信号对应的第二感测单元,并对所述第二感测单元所在区域进行扩展,得到第三触 控区域,以及确定所述第二触控区域内最小差分信号对应的第三感测单元,并对所述第三感测单元所在区域进行扩展,得到第四触控区域;
合并模块,用于合并所述第三触控区域和所述第四触控区域,得到目标触控区域。
第三方面,本申请实施例提供一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面任一项所述的触控区域的定位方法。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面任一项所述的触控区域的定位方法。
本申请实施例与现有技术相比存在的有益效果是:本申请的技术方案,通过获取第一感测单元的差分信号;根据差分信号和预设的触控阈值,确定第一触控区域和第二触控区域;确定第一触控区域内最大差分信号对应的第二感测单元,并对第二感测单元所在区域进行扩展,得到第三触控区域,以及确定第二触控区域内最小差分信号对应的第三感测单元,并对第三感测单元所在区域进行扩展,得到第四触控区域;合并第三触控区域和第四触控区域,得到目标触控区域。即本申请的技术方案,第一触控区域和第二触控区域是根据第一感测单元的差分信号和预设的触控阈值确定的,由于第一触控区域中包含差分信号是正值且大于触控阈值的第一感测单元,第二触控区域中包含的差分信号是负值且绝对值大于触控阈值的第一感测单元,所以能够识别多个差分信号大于触控阈值或差分信号的绝对值大于触控阈值的第一感测单元,以及目标触控区域是通过合并第三触控区域和第四触控区域得到的,由于第三触控区域是由第一触控区域内最大差分信号对应的第二感测单元扩展而来,第四触控区域是由第二触控区域内最小差分信号对应的第三感测单元扩展而来,所以能够分别识别第一触控区域内最大差分信号对应的第二感测单元和第二触控区域内最小差分信号对应的第三感测单元,提高触控区域的定位结果的准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的一种触控区域的定位方法的应用场景示意图;
图2是本申请实施例提供的一种触控区域的定位方法的示意性流程图;
图3是本申请实施例提供的一种获取的差分信号的示例图;
图4是本申请实施例提供的一种对感测单元进行编码的示例图;
图5是本申请实施例中提供的一种行列边界线的示例图;
图6是本申请实施例提供的一种第二感测单元示例图;
图7是本申请实施例提供的一种得到第三触控区域的方法的示意性流程图;
图8是本申请实施例提供的一种停止对第二感测单元所在区域进行扩展的示例图;
图9是本申请实施例提供的另一种停止对第二感测单元所在区域进行扩展的示例图;
图10是本申请实施例提供的另一种停止对第二感测单元所在区域进行扩展的示例图;
图11是本申请实施例提供的一种得到目标触控区域的方法的示意性流程图;
图12是本申请实施例提供的一种目标触控区域的示例图;
图13是本申请实施例提供的一种确定配对组的方法的示意性流程图;
图14是本申请实施例提供的计算第三触控区域和第四触控区域的距离的示例图;
图15是本申请实施例提供的一种配对组的示例图;
图16是本申请实施例提供的一种触控区域的定位装置的结构示意 图;
图17是本申请一实施例提供的终端设备的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述,在其它情况中,各个实施例中的具体技术细节可以互相参考,在一个实施例中没有描述的具体系统可参考其它实施例。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
在本申请说明书中描述的参考“本申请实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在另一些实施例中”、“本申请一实施例”、“本申请其他实施例”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
现有技术中,触摸屏中被触控的区域(简称:触控区域)定位方法种类繁多,电容触控设备使用最多的是峰值点定位法和边界定位法。
一般的,峰值点定位法应用广泛,在峰值点定位法中,峰值点对应的感测单元的电容感测信号变化最大,峰值点对应的感测单元可以反映真实电容感应信号量,利用峰值点定位法定位触控区域时,获取多个感测单元的电容感测信号,确定多个感测信号中的最大值,即可确定峰值点,将峰值点所在区域确定为触控区域。
利用峰值点定位法定位触控区域时,对于少量感测单元被触控的情况,确定多个感测信号中的最大感测信号对应的感测单元,即可识别少量感测单元对应的触控区域,识别准确度高。
但是对于多个感测单元被触控的情况,部分被触控的感测单元的感测信号不是最大的感测信号,导致多个感测单元中部分感测单元未能被识别进而导致触控区域的识别准确度较低。
利用边界定位法对触控区域进行定位时,获取所有感测单元检测的电容感测信号,将电容感测信号超过触控阈值的感测单元的边界围成的区域确定为触控区域。
边界定位法对多个感测单元被触控的情况进行识别时,获取所有感测单元检测的电容感测信号,将电容感测信号超过触控阈值的感测单元的边界围成的区域确定为多个感测单元对应的触控区域。由于多个感测单元中的每个感测单元对应的感测信号均超过触控阈值,因此,边界定位法对于整体区域的识别准确性高。
但是对少量感测单元被触控的情况进行识别时,通过边界定位法仅能识别出少量触摸点形成的整体触控区域,而不能分别识别每个触摸点对应的触控区域,因此,边界定位法对于距离相近的单个触控区域的识别准确性较低。
为了解决上述缺陷,本申请的发明构思为:
本申请可以根据第一感测单元的差分信号和预设的触控阈值,确定第一触控区域和第二触控区域,在第一触控区域和第二触控区域内分别确定第二感测单元和第三感测单元,并分别对第二感测单元所在区域和第三感测单元所在区域进行扩展,得到第三触控区域和第四触控区域,合并第三触控区域和第四触控区域,得到目标触控区域,即本申请的技术方案,第一触控区域和第二触控区域是根据第一感测单元的差分信号 和预设的触控阈值确定的,由于第一触控区域中包含差分信号是正值且大于触控阈值的第一感测单元,第二触控区域中包含的差分信号是负值且绝对值大于触控阈值的第一感测单元,所以能够识别多个差分信号大于触控阈值或差分信号的绝对值大于触控阈值的第一感测单元,以及目标触控区域是通过合并第三触控区域和第四触控区域得到的,由于第三触控区域是由第一触控区域内最大差分信号对应的第二感测单元扩展而来,第四触控区域是由第二触控区域内最小差分信号对应的第三感测单元扩展而来,所以能够分别识别第一触控区域内最大差分信号对应的第二感测单元和第二触控区域内最小差分信号对应的第三感测单元,提高触控区域的定位结果的准确性。
为了说明本申请的技术方案,下面通过具体实施例来进行说明。
请参考图1,图1是本申请一实施例提供的一种触控区域的定位方法的应用场景示意图,为了方便说明,仅示出与本申请相关的部分。该应用场景包括,但不限于:电容感测阵列10、驱动电路20、检测电路30、减法电路40和处理单元50。驱动电路20的输出端与驱动电路20的输入端电性连接,驱动电路20的输出端与检测电路30的输入端电性连接,检测电路30的输出端与减法电路40的输入端电性连接,减法电路40的输入端与处理单元50的输入端电性连接。
电容感测阵列10包含多个行列式排列的感测单元11,每个感测单元11包含第一电极(例如驱动电极)和第二电极(例如接收电极),当电压信号提供至第一电极时,第一电极和第二电极间产生电场并形成耦合电容,本申请实施例的第一电极和第二电极可适当配置,并无特定限制,只要能形成特定耦合电容即可。
驱动电路20为信号产生器,其可发出驱动信号至感测单元11的第一电极。本申请实施例中的驱动信号可为时变信号,例如周期信号。在其他实施例中,驱动信号可为脉冲信号,例如方波、三角波等,本申请实施例对脉冲信号的类型不作限定。驱动信号通过耦合电容可耦合检测信号至感测单元11的第二电极。
本申请实施例中的驱动电路20可为多个,分别为电容感测阵列10的每行感测单元11提供一个驱动信号。多个驱动电路20可依序或并行 驱动感测单元11。
检测电路30,耦接电容感测阵列10,用于对每行多个感测单元11产生的检测信号进行调变,产生调变后的检测信号。调变用于对多个感测单元11产生的检测信号的振幅、频率或相位进行变更。
减法电路40,用于对调变后的检测信号进行减法运算,产生差分信号。示例性的,本申请实施例中,电容感测阵列10包含7行7列共49个感测单元11,减法电路40用于将第一行第一列的感测单元11产生的调变后的检测信号减去第一行第二列的感测单元11产生的调变后的检测信号的差值,作为第一行第一列的感测单元11的差分信号,将第一行第二列的感测单元11产生的调变后的检测信号减去第一行第三列的感测单元11产生的调变后的检测信号的差值,作为第一行第二列的感测单元11的差分信号。以此方法,获得49个感测单元的差分信号。
处理单元50,可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
处理单元50,用于获取第一感测单元的差分信号;根据差分信号和预设的触控阈值,确定第一触控区域和第二触控区域;确定第一触控区域内最大差分信号对应的第二感测单元,并对第二感测单元所在区域进行扩展,得到第三触控区域,以及确定第二触控区域内最小差分信号对应的第三感测单元,并对第三感测单元所在区域进行扩展,得到第四触控区域;合并第三触控区域和第四触控区域,得到目标触控区域。
在其他实施例中,可以包括比图1所示示例更多或更少的部件,或者组合某些部件,或者不同的部件。图1仅为示例性描述,不能解释为对本申请的具体限制。例如:还可以包括模数转换器、编码器、解码器等。
请参考图2,图2是本申请实施例提供的一种触控区域的定位方法的示意性流程图。图2中的方法的执行主体可以为图1中的处理单元。 如图2所示,该方法包括:S201至S204。
S201、处理单元获取第一感测单元的差分信号。
具体的,减法电路将产生的差分信号输入至处理单元,处理单元即可获取第一感测单元的差分信号。
本申请实施例对差分信号进行运算处理,得到目标触控区域,是为了有效的消除外界的噪声干扰。
根据电容触控感应原理(电容触控感应原理为已知,故此处不再赘述)检测物体是否靠近感测单元即判断感测单元的电荷变化来检测物体(例如,但不限于,手指、水滴或金属等)是否触碰感测单元。
物体触碰的感测单元的检测信号相对于未触碰的感测单元的变化量最大,物体触碰的感测单元的周围的感测单元的检测信号的变化量小于物体触碰的感测单元的检测信号的变化量。
示例性的,请参考图3,图3是本申请实施例提供的一种获取的差分信号的示例图。
图3示出的是电容感测阵列第四行的感测单元K40、K41、K42、K43、K44、K45、K46产生的调变后的检测信号。图3中每个矩形框的高度表示检测信号的数值。物体触碰的感测单元为K43,K43的检测信号的变化量最大,所以K43的检测信号的数值最小,K40和K41、K45和K46距离K43较远,因此,未受到物体触碰的影响,K40和K41、K45和K46的检测信号未发生变化,K42、K44距离K43较近,易受到物体触碰的影响,因此,K42、K44的检测信号位于K43的检测信号和K40的检测信号之间。
差分信号是指对检测信号进行减法运算,将减法运算获得的差值称为差分信号。因此,获取的第一感测单元的差分信号在检测信号未发生变化时为0。例如K40的检测信号减去K41的检测信号为0、K45的检测信号减去K46的检测信号为0,即,K40和K45的差分信号均为0。
在减法运算获得的差值为正值时,获取的第一感测单元的差分信号为正值,在减法运算获得的差值为负值时,获取的第一感测单元的差分信号为负值。例如K41的检测信号减去K42的检测信号为+H 1、K42的检测信号减去K43的检测信号为+H 2,K43的检测信号减去K44的检测 信号为-H 3、K44的检测信号减去K45的检测信号为-H 4。即,K41的差分信号为+H 1,K42的差分信号为+H 2,K 43的差分信号为-H 3,K44的差分信号为-H 4
在一些实施例中,在存储器中存储有基准信号,基准信号可称为理想值,该基准信号表征感测单元未被触碰时的检测信号。示例性的:基准信号为0比特至255比特中的任一数值,例如:基准信号为128比特。
在一些实施例中,处理单元在减法电路获得的差分信号的基础上加上基准信号,即可获取第一感测单元的差分信号。示例性的,差分信号包含,但不限于,128+H 1,128+H 2,128-H 3,128-H 4,128+0。
本申请实施例中,在存储器中存储有基准信号,以及在减法电路获得的差分信号的基础上加上基准信号是因为处理电路获取的是通过一种高速的、全双工、同步的通信总线(Serial Peripheral Interface,SPI)传输的信号,SPI传输的信号的数值在0至255比特之间。若直接获取SPI传输的信号,则处理电路不能识别该信号的正负性,所以在差分信号的基础上加上基准信号,大于基准信号表示差分信号为正值,小于基准信号表示差分信号为负值。
在其他实施例中,在存储器中存储有基准信号,以及在减法电路获得的差分信号的基础上加上基准信号是为了消除信号中的固有噪音,提升对差分信号进行运算处理的精度。
本申请实施例中,第一感测单元中的“第一”仅用于和其他实施例中的感测单元进行区分描述,而不能理解为指示或暗示相对重要性。
S202、处理单元根据差分信号和预设的触控阈值,确定第一触控区域和第二触控区域。
具体的,第一触控区域为差分信号是正值且大于触控阈值的第一感测单元对应的区域,第二触控区域为差分信号是负值且绝对值大于触控阈值的第一感测单元对应的区域。
本申请实施例中,确定第一触控区域和第二触控区域的方法为:
首先,确定差分信号为正值且大于触控阈值的第一感测单元,和确定差分信号为负值且绝对值大于触控阈值的第一感测单元。
具体的,本申请实施例的触控阈值为TH,示例性的TH=12,若+H 1 和+H 2大于12,则将+H 1和+H 2对应的感测单元确定为差分信号为正值且大于触控阈值的第一感测单元。
又例如:若获取的差分信号为128+H 1和128+H 2,则计算128+H 1和128+H 2与基准值128的差值128+H 1和128+H 2,若128+H 1和128+H 2大于12,则将128+H 1和128+H 2对应的感测单元确定为差分信号为正值且大于触控阈值的第一感测单元。
本申请实施例中,若|-H 3|和|-H 4|大于12,则将-H3和-H4对应的感测单元确定为差分信号为负值且绝对值大于触控阈值的第一感测单元。
又例如:若获取的差分信号为128-H 3和128-H 4,则计算128-H 3和128-H 4与基准值128的差值的绝对值|-H 3|和|-H 4|,若|-H 3|和|-H 4|大于12,则将128-H 3和128-H 4对应的感测单元确定为差分信号为负值且绝对值大于触控阈值的第一感测单元。
其次,根据差分信号为正值且大于触控阈值的第一感测单元,确定第一触控区域,以及根据差分信号为负值且绝对值大于触控阈值的第一感测单元,确定第二触控区域。
具体的,确定第一触控区域的方法为:
首先,确定差分信号为正值且大于触控阈值的第一感测单元所在的行列编号,以及确定差分信号为负值且绝对值大于触控阈值的第一感测单元所在的行列编号。
本申请实施例在确定行列编号时,可预先对感测单元阵列中的感测单元进行编码,可参考图4,图4是本申请实施例提供的一种对感测单元进行编码的示例图。在图4中,K11表征第一行第一列的感测单元,K12表征第一行第二列的感测单元,K21表征第二行第一列的感测单元,Knm表征第n行第m列的感测单元。
示例性的,差分信号为正值且大于触控阈值的第一感测单元为A区域中的感测单元,其编码为K22,K23,K31,K32,K33,K42,K43,确定的差分信号为正值时对应的第一感测单元所在的行列编号为第二行、第三行、第四行,和第一列,第二列和第三列。确定差分信号为负值且绝对值大于触控阈值的第一感测单元所在的行列编号与确定差分信号为正值且大于触控阈值的第一感测单元所在的行列编号的方法相同, 此处不再赘述。
其次,根据差分信号为正值且大于触控阈值的第一感测单元所在的行列编号,确定第一触控区域,以及根据差分信号为负值且绝对值大于触控阈值的第一感测单元所在的行列编号,确定第二触控区域。
本申请实施例中,在电容感测阵列中配置感测单元时,每行每列的感测单元间的间距可相同也可不同,本申请实施例以间距相同进行举例说明。在间距相同时,可将相邻感测单元的间距中点的连线的位置作为行列的边界线,请参考图5,图5是本申请实施例中提供的一种行列边界线的示例图。
在图5中,电容感测阵列的列边界的确定方法为:
处理单元依据间距配置每个感测单元后,根据第一列中的感测单元的位置和第二列中的感测单元的位置,计算K11和K12、K21和K22、K31和K32等的中点位置,根据中点位置,确定第一列的右边界L2,依据此方法即可确定第二列的右边界L3,第m-1的右边界Lm-1。图5中的第一列的左边界和第m列的右边界可根据以下方法确定:
处理单元根据第一列的右边界和第二列的右边界,计算第一列的右边界到第二列右边界的距离,基于第一列的右边界到第二列右边界的距离,确定第一列的左边界和第m列的右边界。
本申请实施例中,电容感测阵列的行边界的确定方法和列边界的确定方法相同,此处不再赘述。
本申请实施例中,将差分信号为正值且大于触控阈值的第一感测单元所在的行列编号所围成的区域确定为第一触控区域,示例性的,将第二行的上边界作为第一触控区域的上边界,将第四行的下边界作为第一触控区域的下边界,将第一列的左边界作为第一触控区域的左边界、将第三列的右边界作为第一触控区域的右边界,进而可以确定第一触控区域,如图4中的B区域。
本申请实施例中,确定第二触控区域与确定第一触控区域的方法相同,此处不再赘述。
S203、处理单元确定第一触控区域内最大差分信号对应的第二感测单元,并对第二感测单元所在区域进行扩展,得到第三触控区域,以及 确定第二触控区域内最小差分信号对应的第三感测单元,并对第三感测单元所在区域进行扩展,得到第四触控区域。
本申请实施例中,处理单元在第一触控区域内各感测单元的差分信号中选取最大差分信号对应的感测单元,将其作为第二感测单元。
具体的,处理单元在第一触控区域内各感测单元的差分信号中选取最大差分信号对应的感测单元,包括,选取第一触控区域内各感测单元的差分信号中的第一差分信号作为最大差分信号,第一差分信号为各感测单元的差分信号中任一差分信号。随机或依次选取第二差分信号与第一差分信号进行对比,第二差分信号为各感测单元的差分信号中除第一差分信号外的信号。
若第二差分信号大于第一差分信号,则将第二差分信号作为最大差分信号,若第二差分信号小于第一差分信号,则将第一差分信号作为最大差分信号,直至各感测单元的差分信号均被对比为止。
示例性的,请参考图6,图6是本申请实施例提供的一种第二感测单元示例图。B代表第一触控区域。
处理单元首先选取B区域内各感测单元的差分信号中的第一差分信号132作为最大差分信号。其次选取145与132进行对比,145-128=17>132-128=4,遂将145作为最大差分信号,然后选取120与145进行对比,120-128=-8<145-128=17,遂将145作为最大差分信号,依次方法,将B区域内剩余的差分信号进行对比,最终确定230为最大的差分信号。
本申请实施例中,第二感测单元的差分信号的特征是:第二感测信号的差分信号与基准信号的差值大于第一触控区域内除第二感测信号外的感测信号与基准信号的差值,且大于触控阈值。
本申请实施例中,确定第二触控区域内最小差分信号对应的第三感测单元的方法与确定第一触控区域内最大差分信号对应的第二感测单元的方法相同,此处不再赘述。
本申请实施例中提供的确定第一触控区域内最大差分信号对应的第二感测单元,以及确定第二触控区域内最小差分信号对应的第三感测单元的方法,可以快速准确的在第一触控区域内定位到被触控的第二感测单元以及快速准确的在第二触控区域内定位被触控的第三感测单元,进 一步提升了定位目标触控区域的效率和准确率。
本申请实施例中,对第二感测单元所在区域进行扩展的方法请参考图7,图7是本申请实施例提供的一种得到第三触控区域的方法的示意性流程图。图7中的方法的执行主体可以为图1中的处理单元。如图7所示,该方法包括:S301至S304。
S301、处理单元基于第二感测单元在电容感测矩阵中的位置,确定对第二感测单元所在区域进行扩展的扩展方向。
具体的,处理单元中预先存储电容感测矩阵中每个感测单元的位置,处理单元在确定了第二感测单元之后,第二感测单元在电容感测矩阵中的位置随之确定。
在一些实施例中,处理单元可根据第二感测单元的行列编号,确定第二感测单元在电容感测矩阵中的位置。
示例性的,第二感测单元在电容感测矩阵中的位置为K22。
本申请实施例中,在确定了第二感测单元在电容感测矩阵中的位置之后,可将第二感测单元的竖直向上、竖直向下、水平向左、水平向右四个方向确定为扩展方向。
示例性的,请参考图5,在确定了第二感测单元在电容感测矩阵中的位置K22之后,可将K22的竖直向上、竖直向下、水平向左、水平向右四个方向确定为扩展方向,即可将K22竖直向上的K12作为待要扩展的电容感测矩阵,将K22竖直向下的K32至Kn2作为待要扩展的电容感测矩阵,将K22水平向左的K21作为待要扩展的电容感测矩阵,将K23水平向右的K23至K2m作为待要扩展的电容感测矩阵。
S302、处理单元在扩展方向上,对第二感测单元所在区域进行扩展,得到第二感测单元的扩展区域。
具体的,处理单元在扩展方向上对第二感测单元所在区域进行扩展时,按照轮数进行扩展,各扩展方向上的每轮的扩展区域仅包含一个感测单元所在区域。在一些实施例中,处理单元在各扩展方向上同时对第二感测单元所在区域按轮进行扩展,例如:第二感测单元为K22时,在第一轮扩展时,同时在四个方向上进行扩展,K22在竖直向上的方向上扩展到K12,K22在竖直向下的方向上扩展到K32,K22在水平向左的 方向上扩展到K21,K22在水平向右的方向上扩展到K23。
第一轮扩展中,若K22在竖直向上的方向的扩展区域K12所在区域对应的差分信号满足预设的停止扩展条件,则停止K22在竖直向上的方向上进行扩展,第二轮扩展时,仅同时在竖直向下、水平向左和水平向右三个方向上进行扩展,直至四个方向均停止扩展,即可得到第二感测单元的扩展区域。
在其他实施例中,处理单元在各扩展方向上同时对第二感测单元所在区域按轮进行扩展的方法还包括:
处理单元在各扩展方向上同时对多个第二感测单元所在区域按轮进行扩展。
具体的,处理单元在各扩展方向上同时对多个第二感测单元所在区域按轮进行扩展时,多个第二感测单元开始扩展的时刻可相同也可不同。
例如:多个第二感测单元包括:第二感测单元A和第二感测单元B,第二感测单元A和第二感测单元B可在同一时刻在各扩展方向上同时对第二感测单元所在区域按轮进行扩展,也可在不同时刻在各扩展方向上同时对第二感测单元所在区域按轮进行扩展。
在一些实施例中,处理单元在各扩展方向上按预设扩展顺序对第二感测单元所在区域按照轮数进行扩展。预设扩展顺序可为竖直向上、竖直向下、水平向左、水平向右。预设扩展顺序也可为竖直向下、竖直向上、水平向左、水平向右等,本申请实施例对预设扩展顺序的具体顺序不作限定。
本申请实施例以预设扩展顺序为竖直向上、竖直向下、水平向左、水平向右进行举例说明。
示例性的,在第一轮扩展中,处理单元在各扩展方向上,按照竖直向上、竖直向下、水平向左、水平向右的预设扩展顺序对第二感测单元所在区域按照轮数进行扩展,例如:第二感测单元为K22时,首先,K22在竖直向上的方向上扩展到K12,其次,K22在竖直向下的方向上扩展到K32,然后,K22在水平向左的方向上扩展到K21,最后,K22在水平向右的方向上扩展到K23。
第一轮扩展中,若K22在竖直向上的方向的扩展区域K12所在区域 对应的差分信号满足预设的停止扩展条件,则停止K22在竖直向上的方向上进行扩展,第二轮扩展时,按照竖直向下、水平向左、水平向右的扩展顺序在三个方向上进行扩展,直至四个方向均停止扩展,即可得到第二感测单元的扩展区域。
在其他实施例中,处理单元在各扩展方向上按预设扩展顺序对第二感测单元所在区域按照轮数进行扩展的方法还包括:
处理单元在各扩展方向上按预设扩展顺序对多个第二感测单元所在区域按照轮数进行扩展,多个第二感测单元开始扩展的时刻可相同也可不同。
例如:多个第二感测单元包括:第二感测单元A和第二感测单元B,第二感测单元A和第二感测单元B可在同一时刻在各扩展方向上按预设扩展顺序对多个第二感测单元所在区域按照轮数进行扩展,也可在不同时刻在各扩展方向上按预设扩展顺序对多个第二感测单元所在区域按照轮数进行扩展。在其他实施例中,对第二感测单元所在区域进行扩展,包括对第二感测单元所在区域的边界进行扩展。例如,对第二感测单元所在区域的行边界和列边界进行扩展。对第二感测单元所在区域的边界进行扩展的扩展方式和扩展方向与对第二感测单元所在区域进行扩展的扩展方式和扩展方向相同,此处不再赘述。S303、处理单元若第二感测单元的扩展区域对应的差分信号满足预设的停止扩展条件,则停止对第二感测单元所在区域进行扩展,得到第三触控区域。
具体的,本申请实施例提供的一种停止对第二感测单元所在区域进行扩展的方法为:
若第二感测单元的扩展区域对应的差分信号小于触控阈值,则停止对第二感测单元所在区域进行扩展,得到第三触控区域。
示例性的,请参考图8,图8是本申请实施例提供的一种停止对第二感测单元所在区域进行扩展的示例图。本申请实施例的触控阈值为TH,示例性的TH=12。
图8中,B1、B2、B3、B4表示已完成扩展的第二感测单元的扩展区域,待扩展的第二感测单元所在区域为230对应的区域,对第二感测单元所在区域进行第一轮扩展,竖直向上方向上的差分信号 H=145-128=17>TH且不在其他第二感测单元的扩展区域B1的边界或扩展区域B1的相邻区域的边界的范围内,则第二感测单元所在区域的上边界进行下一轮扩展,直至竖直向上方向上的差分信号小于触控阈值,则停止对第二感测单元所在区域的上边界进行扩展,上边界确定。
竖直向下方向上的差分信号H=196-128=68>TH且不在其他第二感测单元的扩展区域B2的边界或扩展区域B2的相邻区域的边界的范围内,则第二感测单元所在区域的下边界进行下一轮扩展,直至竖直向下方向上的差分信号小于触控阈值,则停止对第二感测单元所在区域的下边界进行扩展,下边界确定。
水平向左方向上的差分信号H=156-128=28>TH且不在其他第二感测单元的扩展区域B3的边界或扩展区域B3的相邻区域的边界的范围内,则第二感测单元所在区域的左边界进行下一轮扩展,直至水平向左方向上的差分信号小于触控阈值,则停止对第二感测单元所在区域的左边界进行扩展,左边界确定。
水平向右方向上的差分信号H=70-128=-58<TH,则停止对第二感测单元所在区域的右边界进行扩展,右边界确定。
本申请实施例提供的另一种停止对第二感测单元所在区域进行扩展的方法为:
若第二感测单元的扩展区域对应的差分信号大于触控阈值,且第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,则停止对第二感测单元所在区域进行扩展,得到第三触控区域。
示例性的,请参考图9,图9是本申请实施例提供的一种停止对第二感测单元所在区域进行扩展的示例图。第二感测单元所在区域为189对应的区域(为方便描述,本申请实施例将189对应的区域记为C区域)和223对应的区域(本申请实施例将223对应区域记作D区域),对C区域进行第一轮扩展,其下边界扩展到181对应区域的下边界,对D区域进行第一轮扩展,其上边界扩展到168对应区域的上边界。
在对C区域进行第二轮扩展时,C区域的第二轮扩展区域的差分信号H=144-128=16>TH,但是第二轮扩展区域已经处于D区域的边界内,因此C区域的第二轮扩展区域的差分信号大于触控阈值,且第二感测单 元的扩展区域位于其他第二感测单元的扩展区域内,停止对C区域进行扩展,不能继续扩边界,最终C区域的下边界为181对应区域的下边界。
本申请实施例提供的另一种停止对第二感测单元所在区域进行扩展的方法为:
若第二感测单元的扩展区域对应的差分信号大于触控阈值,且第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,且第一目标差分信号小于第二目标差分信号,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域;第一目标差分信号为第二感测单元上一轮的扩展区域对应的差分信号,第二目标差分信号为其他第二感测单元上一轮的扩展区域对应的差分信号。
示例性的,请参考图10,图10是本申请实施例提供的另一种停止对第二感测单元所在区域进行扩展的示例图。第二感测区域为199对应的区域(本申请实施例将199对应区域记为E区域)和185对应的区域(本申请实施例将185对应区域记作F区域),同时对E区域和F区域进行扩展,在进行第一轮扩展,E区域的下边界扩展到155对应区域的下边界,F区域的上边界扩展到181对应区域的上边界。
在进行第二轮扩展时,先对E区域进行第二轮扩展时,E区域的第二轮扩展区域的差分信号H=144-128=16>TH,未位于F区域的第一轮扩展区域内,但是E区域的第二轮扩展区域处于F区域的第一轮扩展区域的邻区域(F区域第二轮将要扩展的区域),且E区域的第二轮扩展区域的上一轮扩展区域(E区域第一轮扩展)对应的差分信号H=155-128=27>TH,F区域的第二轮扩展区域的上一轮扩展区域(其他第二感测单元上一轮的扩展区域)对应的差分信号H=181-128=53,27<53。
所以E区域第二轮扩展区域满足第二感测单元的扩展区域对应的差分信号大于触控阈值,且第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,且第一目标差分信号小于第二目标差分信号的条件,停止对第二感测单元所在区域进行第二扩展,不能继续扩充边界。E区域的下边界截止在155对应区域的下边界,而F区域的上边界可扩充到144对应区域(其他第二感测单元第二轮的扩展区域)的上边界。
F区域的上边界可扩充到144对应区域的上边界原因为:F区域的第二轮的扩展区域为144对应的区域,F区域的第三轮的扩展区域为155对应的区域,155对应的差分信号H=155-128=27,但是155对应的区域为E区域的扩展区域,所以满足若第二感测单元的扩展区域对应的差分信号大于触控阈值,且第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,则停止对第二感测单元所在区域进行扩展,得到第三触控区域的停止扩展条件,F区域的上边界仅能扩展到144对应区域。
本申请实施例中,对第三感测单元所在区域进行扩展,得到第四触控区域的方法与对第二感测单元所在区域进行扩展,得到第三触控区域的方法相同,此处不再赘述。
本申请实施例中提供的对第三感测单元所在区域进行扩展,以及对第二感测单元进行扩展的方法,可以快速准确通过预设的停止扩展条件获得第三触控区域以及快速准确的获得第四触控区域,进一步提升了定位目标触控区域的效率和准确率。
S204、处理单元合并第三触控区域和第四触控区域,得到目标触控区域。
本申请实施例中,第三触控区域是通过对第二感测单元所在区域进行扩展获得的,第四触控区域是通过对第三感测单元所在区域进行扩展获得的,第二感测单元对应的差分信号在第一触控区域内为最大的差分信号(正值),第三感测单元对应的差分信号在第二触控区域内为最小的差分信号(负值),根据电容触控感测原理,电容感测阵列中的感测单元被触碰时,处理单元获取的差分信号包含正值差分信号和负值差分信号,根据正值差分信号确定第三触控区域以及根据负值差分信号确定第四触控区域,每个第三触控区域都会有一个与之最为匹配的第四触控区域,本申请实施例合并第三触控区域和最为匹配的第四触控区域,即可确定目标触控区域。
请参考图11,图11是本申请实施例提供的一种得到目标触控区域的方法的示意性流程图。图11中的方法的执行主体可以为图1中的处理单元。如图11所示,该方法包括:S401至S402。
S401、处理单元对第三触控区域和第四触控区域进行配对,得到第 三触控区域和第四触控区域的配对组。
具体的,电容感测阵列中的感测单元被触碰时,根据差分信号确定多个第三触控区域和多个第四触控区域,将每个第三触控区域分别与多个第四触控区域进行配对,将最佳配对作为第三触控区域和第四触控区域的配对组。
请参考图13,图13是本申请实施例提供的一种确定配对组的方法的示意性流程图。图13中的方法的执行主体可以为图1中的处理单元。如图13所示,该方法包括:S501至S502。
S501、处理单元计算第三触控区域和各第四触控区域的距离。
具体的,处理单元在对第三触控区域和各第四触控区域进行配对时,首先,对第三触控区域的上下边界与各第四触控区域的上下边界进行对比,确定与第三触控区域具有相同上下边界的第四触控区域。
其次,计算第三触控区域和与第三触控区域具有相同上下边界的各第四触控区域的距离,本申请实施例的距离表征第三触控区域与第四触控区域的间距,本申请实施例可根据第三触控区域的边界位置与第四触控区域的边界位置计算第三触控区域和与各第四触控区域的距离。
示例性的,请参考图14,图14是本申请实施例中计算第三触控区域和第四触控区域的距离的示例图,图14中,G区域表征第三触控区域,H2表征各第四触控区域中任一第四触控区域。H2的上下边界与G的上下边界相同。根据G区域的右边界的位置与H2区域的左边界的位置即可计算第三触控区域和第四触控区域的距离。
在其他实施例中,根据第三触控区域的行列编号与第四触控区域的行列编号,计算第三触控区域和与各第四触控区域的距离。
示例性的,若第三触控区域是第二行、第四行、第三列、第五列的边界围成的区域,第四触控区域是第二行、第四行、第七列和第九列的边界围成的区域,则可通过计算第五列与第七列之间的间距计算第三触控区域和第四触控区域的距离。本申请实施例中第五列与第七列之间的间距仅为一个列宽,则将该列宽作为第三触控区域和第四触控区域的距离。
在其他实施例中,若对第三触控区域和各第四触控区域进行配对时, 未能在与第三触控区域具有相同上下边界的各第四触控区域中确定与第三触控区域的最佳配对,则将与第三触控区域不具有相同上下边界的第四触控区域作为备选配对。
S502、处理单元将各距离中的最小距离对应的第三触控区域和第四触控区域确定为配对组。
本申请实施例中,将各距离中的最小距离对应的第三触控区域和第四触控区域确定为配对组的方法为:
首先,判断第三触控区域与第四触控区域是否存在重叠区域,若第三触控区域与第四触控区域存在重叠区域,则将第四触控区域作为第三触控区域的备选配对。
本申请实施例中,判断第三触控区域与第四触控区域是否存在重叠区域,可通过第三触控区域与第四触控区域的距离进行判断,例如若第三触控区域的边界位置与第四触控区域的边界位置的差值小于等于0,则第三触控区域与第四触控区域存在重叠区域,否则,不存在重叠区域。
本申请实施例中,若第三触控区域与第四触控区域不存在重叠区域,则将第三触控区域与第四触控区域的距离作为最小距离,将第三触控区域与第四触控区域确定为配对组。
本申请实施例中,在将第三触控区域与第四触控区域的距离作为最小距离时,随机或依次选取各第四触控区域中的第二区域,若第三触控区域与第二区域存在重叠区域,则将第二区域作为第三触控区域的备选配对,继续将第三触控区域与第四触控区域确定为配对组。第二区域为各第四触控区域中除已配对的第四触控区域外的任一触控区域。
本申请实施例中,若第三触控区域与第二区域未存在重叠区域,则计算第三触控区域与第二区域的距离,若第三触控区域与第二区域的距离小于第三触控区域与已配对的第四触控区域的距离,则将第三触控区域与第二区域的距离作为最小距离,将第三触控区域与第二区域确定为配对组,以此方法,将各第四触控区域与第三触控区域是否存在重叠区域以及将各第四触控区域与第三触控区域的距离进行对比,最终确定最佳配对组。
示例性的,请看图15,图15是本申请实施例提供的一种配对组的 示例图,在图15中,G区域表征第三触控区域,H1、H2、H3均表征第四触控区域。H1、H2、H3的上下边界与G的上下边界均相同,H1与G具有重叠区域,G与H2的距离小于G与H3的距离,因此,将G与H2确定为最佳配对组。
本申请实施例中,若存在第三触控区域与每个第四触控区域均未组成配对组,以及存在第四触控区域与每个第三触控区域均未组成配对组,则将该未配对的第三触控区域与备选配对组成配对组,或者将该未配对的第三触控区域与该未配对的第四触控区域组成配对组。
利用本申请实施例的配对方法,可以精准的匹配第三触控区域的最佳第四触控区域,同时为未能配对的第三触控区域或第四触控区域寻找配对,得到配对组,可以提高配对效率,进一步提高了定位目标触控区域的效率。
S402、处理单元合并配对组内的第三触控区域和第四触控区域,得到目标触控区域。
具体的,处理单元将配对组内第三触控区域和第四触控区域中最外围的边界作为目标触控区域的边界,即完成配对组的合并。
示例性的,请参考图12,图12是本申请实施例提供的一种目标触控区域的示例图。在图12,处理单元将最佳配对组G区域和H2区域的上下边界作为目标触控区域i区域的上下边界,将G区域的左边界确定为i区域的左边界,将H2区域的右边界确定为i区域的右边界,最终确定i区域的边界,完成配对组的合并。
利用本申请实施例中的合并方法对配对组进行合并时,由于是利用边界位置对配对组进行合并,可以根据边界位置更准确的对第三触控区域和第四触控区域进行合并,提高合并区域的准确度,进而提高定位目标触控区域的准确度。
综上,本申请的技术方案,根据第一感测单元的差分信号和预设的触控阈值,确定第一触控区域和第二触控区域,在第一触控区域和第二触控区域内分别确定第二感测单元和第三感测单元,并分别对第二感测单元所在区域和第三感测单元所在区域进行扩展,得到第三触控区域和第四触控区域,合并第三触控区域和第四触控区域,得到目标触控区域, 即本申请的技术方案,第一触控区域和第二触控区域是根据第一感测单元的差分信号和预设的触控阈值确定的,由于第一触控区域中包含差分信号是正值且大于触控阈值的第一感测单元,第二触控区域中包含的差分信号是负值且绝对值大于触控阈值的第一感测单元,所以能够识别多个差分信号大于触控阈值或差分信号的绝对值大于触控阈值的第一感测单元,以及目标触控区域是通过合并第三触控区域和第四触控区域得到的,由于第三触控区域是由第一触控区域内最大差分信号对应的第二感测单元扩展而来,第四触控区域是由第二触控区域内最小差分信号对应的第三感测单元扩展而来,所以能够分别识别第一触控区域内最大差分信号对应的第二感测单元和第二触控区域内最小差分信号对应的第三感测单元,提高触控区域的定位结果的准确性。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
请参考图16,图16是本申请实施例提供的一种触控区域的定位装置的结构示意图,该装置包括:
获取模块61,用于获取第一感测单元的差分信号。
第一确定模块62,用于根据差分信号和预设的触控阈值,确定第一触控区域和第二触控区域,第一触控区域为差分信号是正值且大于触控阈值的第一感测单元对应的区域,第二触控区域为差分信号是负值且绝对值大于触控阈值的第一感测单元对应的区域。
第二确定模块63,用于确定第一触控区域内最大差分信号对应的第二感测单元,并对第二感测单元所在区域进行扩展,得到第三触控区域,以及确定第二触控区域内最小差分信号对应的第三感测单元,并对第三感测单元所在区域进行扩展,得到第四触控区域。
合并模块64,用于合并第三触控区域和第四触控区域,得到目标触控区域。
其中,第二确定模块63,还用于基于第二感测单元在电容感测矩阵中的位置,确定对第二感测单元所在区域进行扩展的扩展方向;
在扩展方向上,对第二感测单元所在区域进行扩展,得到第二感测 单元的扩展区域;
若第二感测单元的扩展区域对应的差分信号满足预设的停止扩展条件,则停止对第二感测单元所在区域进行扩展,得到第三触控区域。
其中,第二确定模块63,还用于若第二感测单元的扩展区域对应的差分信号小于触控阈值,则停止对第二感测单元所在区域进行扩展,得到第三触控区域。
其中,第二确定模块63,还用于若第二感测单元的扩展区域对应的差分信号满足预设的停止扩展条件,则停止对第二感测单元所在区域进行扩展,得到第三触控区域,包括:
若第二感测单元的扩展区域对应的差分信号大于触控阈值,且第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,则停止对第二感测单元所在区域进行扩展,得到第三触控区域。
其中,第二感测单元所在区域是按轮进行扩展,第二确定模块63,还用于若第二感测单元的扩展区域对应的差分信号大于触控阈值,且第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,且第一目标差分信号小于第二目标差分信号,则停止对第二感测单元所在区域进行扩展,得到第三触控区域;第一目标差分信号为第二感测单元上一轮的扩展区域对应的差分信号,第二目标差分信号为其他第二感测单元上一轮的扩展区域对应的差分信号。
其中,合并模块64,用于对第三触控区域和第四触控区域进行配对,得到第三触控区域和第四触控区域的配对组;
合并配对组内的第三触控区域和第四触控区域,得到目标触控区域。
其中,所述第四触控区域有多个,合并模块64,还用于计算第三触控区域和各第四触控区域的距离;
将各距离中的最小距离对应的第三触控区域和第四触控区域确定为配对组。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分 功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
如图17所示,本申请实施例还提供一种终端设备200,包括存储器21、处理器22以及存储在存储器21中并可在处理器22上运行的计算机程序23,处理器22执行计算机程序23时实现上述各实施例的触控区域的定位方法。
所述处理器22可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器21可以是终端设备200的内部存储单元。所述存储器21也可以是终端设备200的外部存储设备,例如终端设备200上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器21还可以既包括终端设备200的内部存储单元也包括外部存储设备。存储器21用于存储计算机程序以及终端设备200所需的其他程序和数据。存储器21还可以用于暂时地存储已经输出或者将要输出的数据。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现上述各实施例的触控区域的定位方法。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现上述各实施例的触控区域的定位方法。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读存储介质至少可以包括:能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读存储介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在 本申请的保护范围之内。

Claims (16)

  1. 一种触控区域的定位方法,其特征在于,包括:
    获取第一感测单元的差分信号;
    根据所述差分信号和预设的触控阈值,确定第一触控区域和第二触控区域,所述第一触控区域为所述差分信号是正值且大于所述触控阈值的第一感测单元对应的区域,所述第二触控区域为所述差分信号是负值且绝对值大于所述触控阈值的第一感测单元对应的区域;
    确定所述第一触控区域内最大差分信号对应的第二感测单元,并对所述第二感测单元所在区域进行扩展,得到第三触控区域,以及确定所述第二触控区域内最小差分信号对应的第三感测单元,并对所述第三感测单元所在区域进行扩展,得到第四触控区域;
    合并所述第三触控区域和所述第四触控区域,得到目标触控区域。
  2. 根据权利要求1所述的定位方法,其特征在于,所述第一感测单元位于电容感测阵列中,所述对所述第二感测单元所在区域进行扩展,得到第三触控区域,包括:
    基于所述第二感测单元在所述电容感测矩阵中的位置,确定对所述第二感测单元所在区域进行扩展的扩展方向;
    在所述扩展方向上,对所述第二感测单元所在区域进行扩展,得到所述第二感测单元的扩展区域;
    若所述第二感测单元的扩展区域对应的差分信号满足预设的停止扩展条件,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域。
  3. 根据权利要求2所述的定位方法,其特征在于,所述若所述第二感测单元的扩展区域对应的差分信号满足预设的停止扩展条件,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域,包括:
    若所述第二感测单元的扩展区域对应的差分信号小于所述触控阈值,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域。
  4. 根据权利要求2所述的定位方法,其特征在于,所述若所述第二 感测单元的扩展区域对应的差分信号满足预设的停止扩展条件,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域,包括:
    若所述第二感测单元的扩展区域对应的差分信号大于所述触控阈值,且所述第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域。
  5. 根据权利要求4所述的定位方法,其特征在于,所述第二感测单元所在区域是按轮进行扩展,所述若所述第二感测单元的扩展区域对应的差分信号大于所述触控阈值,且所述第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域,包括:
    若所述第二感测单元的扩展区域对应的差分信号大于所述触控阈值,且所述第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,且第一目标差分信号小于第二目标差分信号,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域;所述第一目标差分信号为所述第二感测单元上一轮的扩展区域对应的差分信号,所述第二目标差分信号为其他第二感测单元上一轮的扩展区域对应的差分信号。
  6. 根据权利要求1至5任一项所述的定位方法,其特征在于,所述合并所述第三触控区域和所述第四触控区域,得到目标触控区域,包括:
    对所述第三触控区域和所述第四触控区域进行配对,得到所述第三触控区域和所述第四触控区域的配对组;
    合并所述配对组内的所述第三触控区域和所述第四触控区域,得到目标触控区域。
  7. 根据权利要求6所述的定位方法,其特征在于,所述第四触控区域有多个,所述对所述第三触控区域和所述第四触控区域进行配对,得到所述第三触控区域和所述第四触控区域的配对组,包括:
    计算所述第三触控区域和各所述第四触控区域的距离;
    将各所述距离中的最小距离对应的所述第三触控区域和所述第四触控区域确定为所述配对组。
  8. 一种触控区域的定位装置,其特征在于,包括:
    获取模块,用于获取第一感测单元的差分信号;
    第一确定模块,用于根据所述差分信号和预设的触控阈值,确定第一触控区域和第二触控区域,所述第一触控区域为所述差分信号是正值且大于所述触控阈值的第一感测单元对应的区域,所述第二触控区域为所述差分信号是负值且绝对值大于所述触控阈值的第一感测单元对应的区域;
    第二确定模块,用于确定所述第一触控区域内最大差分信号对应的第二感测单元,并对所述第二感测单元所在区域进行扩展,得到第三触控区域,以及确定所述第二触控区域内最小差分信号对应的第三感测单元,并对所述第三感测单元所在区域进行扩展,得到第四触控区域;
    合并模块,用于合并所述第三触控区域和所述第四触控区域,得到目标触控区域。
  9. 根据权利要求8所述的定位装置,其特征在于,
    所述第二确定模块还用于基于第二感测单元在所述电容感测矩阵中的位置,确定对所述第二感测单元所在区域进行扩展的扩展方向;
    在所述扩展方向上,对所述第二感测单元所在区域进行扩展,得到所述第二感测单元的扩展区域;
    若所述第二感测单元的扩展区域对应的差分信号满足预设的停止扩展条件,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域。
  10. 根据权利要求9所述的定位装置,其特征在于,
    所述第二确定模块还用于若所述第二感测单元的扩展区域对应的差分信号小于触控阈值,则停止对所述第二感测单元所在区域进行扩展,得到所述第三触控区域。
  11. 根据权利要求9所述的定位装置,其特征在于,
    所述第二确定模块63还用于若第二感测单元的扩展区域对应的差分信号满足预设的停止扩展条件,则停止对第二感测单元所在区域进行扩展,得到第三触控区域,包括:
    若所述第二感测单元的扩展区域对应的差分信号大于触控阈值,且所述第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,则 停止对所述第二感测单元所在区域进行扩展,得到第三触控区域。
  12. 根据权利要求11所述的定位装置,其特征在于,第二感测单元所在区域是按轮进行扩展;
    所述第二确定模块还用于若所述第二感测单元的扩展区域对应的差分信号大于触控阈值,且所述第二感测单元的扩展区域位于其他第二感测单元的扩展区域内,且第一目标差分信号小于第二目标差分信号,则停止对所述第二感测单元所在区域进行扩展,得到第三触控区域;第一目标差分信号为所述第二感测单元上一轮的扩展区域对应的差分信号,第二目标差分信号为其他第二感测单元上一轮的扩展区域对应的差分信号。
  13. 根据权利要求8-12任意一项所述的定位装置,其特征在于,
    所述合并模块64用于对所述第三触控区域和所述第四触控区域进行配对,得到所述第三触控区域和所述第四触控区域的配对组;
    合并所述配对组内的所述第三触控区域和所述第四触控区域,得到目标触控区域。
  14. 根据权利要求13所述的定位装置,其特征在于,所述第四触控区域有多个,所述合并模块还用于计算所述第三触控区域和各所述第四触控区域的距离;
    将各所述距离中的最小距离对应的所述第三触控区域和所述第四触控区域确定为配对组。
  15. 一种终端设备,其特征在于,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述的触控区域的定位方法。
  16. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的触控区域的定位方法。
PCT/CN2022/138645 2022-10-27 2022-12-13 触控区域的定位方法、装置、终端设备和存储介质 WO2024087345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211329527.XA CN115629674A (zh) 2022-10-27 2022-10-27 触控区域的定位方法、装置、终端设备和存储介质
CN202211329527.X 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024087345A1 true WO2024087345A1 (zh) 2024-05-02

Family

ID=84905715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138645 WO2024087345A1 (zh) 2022-10-27 2022-12-13 触控区域的定位方法、装置、终端设备和存储介质

Country Status (2)

Country Link
CN (1) CN115629674A (zh)
WO (1) WO2024087345A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722285A (zh) * 2012-06-08 2012-10-10 深圳市汇顶科技有限公司 触摸检测装置检测数据中的形变噪声的消除方法及系统
CN112005201A (zh) * 2018-03-20 2020-11-27 深圳市柔宇科技股份有限公司 触控感应电路、触控面板、触控装置及触控方法
CN112905034A (zh) * 2019-12-03 2021-06-04 敦泰电子(深圳)有限公司 触控侦测方法、装置及电子设备
CN113168253A (zh) * 2018-12-19 2021-07-23 深圳市柔宇科技股份有限公司 触摸屏的触摸检测方法、触摸屏组件和显示面板组件
WO2021172646A1 (ko) * 2020-02-28 2021-09-02 주식회사 에이코닉 터치 센서 및 그의 구동 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722285A (zh) * 2012-06-08 2012-10-10 深圳市汇顶科技有限公司 触摸检测装置检测数据中的形变噪声的消除方法及系统
CN112005201A (zh) * 2018-03-20 2020-11-27 深圳市柔宇科技股份有限公司 触控感应电路、触控面板、触控装置及触控方法
CN113168253A (zh) * 2018-12-19 2021-07-23 深圳市柔宇科技股份有限公司 触摸屏的触摸检测方法、触摸屏组件和显示面板组件
CN112905034A (zh) * 2019-12-03 2021-06-04 敦泰电子(深圳)有限公司 触控侦测方法、装置及电子设备
WO2021172646A1 (ko) * 2020-02-28 2021-09-02 주식회사 에이코닉 터치 센서 및 그의 구동 방법

Also Published As

Publication number Publication date
CN115629674A (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
US20140270415A1 (en) Sensing characteristics of adjacent fingers for user authentication
CN110036362B (zh) 触摸检测方法和触摸检测装置
US9501094B2 (en) Combinational sensing type fingerprint identification device and method
WO2024087345A1 (zh) 触控区域的定位方法、装置、终端设备和存储介质
US20210397285A1 (en) Method and apparatus for determining a touch point
CN113934312B (zh) 一种基于红外触摸屏的触摸物识别方法和终端设备
US11048364B2 (en) Capacitive touch panel and method for acquiring capacitance values
CN110222490B (zh) 解锁方法、解锁装置、终端设备及计算机可读存储介质
TWI694358B (zh) 用於設定和觸控面板之連接參數的觸控處理裝置、電子系統與其觸控處理方法
US20180300470A1 (en) System, method, and apparatus for touch panel security
JP3788804B2 (ja) 並列処理装置及び並列処理方法
CN107247558A (zh) 一种终端控制方法、装置、计算机装置及可读存储介质
CN109189259B (zh) 一种触控擦除抗干扰的方法、装置及终端设备
WO2022047839A1 (zh) 一种红外触摸屏多点触摸识别方法、装置及设备
US20180203535A1 (en) Detection and updating method of touch system
US20170357377A1 (en) Touch Control Module and Tracking Method For Touch Point and Touch Sensitive Electronic Device Using Same
CN110390230B (zh) 指纹识别模块异常判定方法、装置、存储介质及电子设备
CN114691016A (zh) 一种设备容量配置方法、装置、终端设备及存储介质
TWI630560B (zh) 指紋影像的合併方法與電子裝置
US20140317328A1 (en) Serial attached scsi expander and interface expanding device with the same
WO2020097924A1 (zh) 操作响应方法、操作响应装置及移动终端
CN116360616A (zh) 检测方法及控制系统
FR3036203A1 (fr) Procede de securisation d’une comparaison de donnees lors de l’execution d’un programme
CN103677355A (zh) 触控板的多点定位方法