WO2024087056A1 - Polymer composite with low voc emission - Google Patents

Polymer composite with low voc emission Download PDF

Info

Publication number
WO2024087056A1
WO2024087056A1 PCT/CN2022/127699 CN2022127699W WO2024087056A1 WO 2024087056 A1 WO2024087056 A1 WO 2024087056A1 CN 2022127699 W CN2022127699 W CN 2022127699W WO 2024087056 A1 WO2024087056 A1 WO 2024087056A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic composition
composition according
thermoplastic
pbt
weak acid
Prior art date
Application number
PCT/CN2022/127699
Other languages
French (fr)
Inventor
Carmen Covelli
Jianying Chen
Original Assignee
Du Pont China Holding Company Limited, Shanghai Branch
Dupont Polymers, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont China Holding Company Limited, Shanghai Branch, Dupont Polymers, Inc. filed Critical Du Pont China Holding Company Limited, Shanghai Branch
Priority to PCT/CN2022/127699 priority Critical patent/WO2024087056A1/en
Publication of WO2024087056A1 publication Critical patent/WO2024087056A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids

Definitions

  • This invention relates to thermoplastic compositions with low VOC emission and good mechanical properties.
  • Polybutylene terephthalate is an engineering thermoplastic resin excellent in mechanical, chemical, electronic, and physical properties; and therefore, it has been used widely in various applications including automobile parts, consumer electronics, etc.
  • THF tetrahydrofuran
  • PBT-containing resins are particularly prone to emit THF within the first weeks after molding. THF outgassing is accelerated when the resin or article experiences conditions of high temperature. In consumer applications such as electronics or automobile interiors, this outgassing will not be accepted by the consumers.
  • U.S. Patent Appln. Publn. No. 2009/0039557 describes a method for production of low-emission molded articles from thermoplastic molding compositions comprising PBT, in which the mold comprises one or more vents for discharge of volatile content from the heated molding compositions.
  • European Patent No. 683201 describes a modified polybutylene terephthalate resin with a reduction in the amount of gas such as THF generated in high-temperature service. In this modification, a sulfonic acid compound is added to the PBT prior to the completion of the polycondensation.
  • the polymer composition comprises a polymer and a weak acid containing phosphorus elements.
  • the polymer comprises PBT, and the weak acid comprises a dihydrogen phosphate salt.
  • Figure 1 is a graph of THF emission level vs. the concentration of weak acid in a polymer composition of the invention.
  • the composition comprises a polymer and a weak acid containing phosphorus elements, for example a dihydrogen phosphate salt.
  • the polymer is preferably a PBT-containing polymer having esterified 1, 4-butanediol end groups.
  • 1, 4-butanediol is the product of hydrolytic de-esterification of a PBT-containing polymer to form a polymer having acid end groups.
  • the 1, 4-butanediol reacts further to form THF.
  • the weak acid protonates the hydroxyl group of the butanediol end group in the first step of a dehydration reaction to form a butenol end group.
  • the butenol end group even if removed by de-esterification, will not react further to form THF.
  • butenol does not affect the overall VOC emissions of the polymer composition.
  • Suitable polymers for use in the polymer composition include one or more polymers selected from the group consisting of Polyethylene terephthalates (PET) ; polybutylene terephthalate (PBT) ; copolyether ester elastomers having PBT or PBT segments; co-PBTs (i.e.
  • PBTs in which some of the 1, 4-butane diol is replaced with, for example, one or more other diols, such as aliphatic, cycloaliphatic (for example 1.4-cyclohexanedimethanol) , or aromatic diols (for example 2.2-bis 4- (hydroxyethoxyphenyl) -propane, or in which the terephthalate group is replaced by the residue of other diacids such as isophthalic acid or adipic acid, and blends of any two or more of these.
  • diols such as aliphatic, cycloaliphatic (for example 1.4-cyclohexanedimethanol) , or aromatic diols (for example 2.2-bis 4- (hydroxyethoxyphenyl) -propane, or in which the terephthalate group is replaced by the residue of other diacids such as isophthalic acid or adipic acid, and blends of any two or more of these.
  • Preferred polymers include one or more polymers selected from the group consisting of PBT, co-PBT, PET, PBT/PETalloy, and copolyether ester elastomers having PET or PBT segments
  • More preferred polymers include one or more polymers selected from the group consisting of PBT, co-PBT, and copolyether ester elastomers having PBT segments.
  • PBT Polybutylene terephthalate
  • Suitable PBT polymers are available commercially from DuPont Specialty Polymers USA, LLC, under the trademark.
  • Suitable PET polymers are available commercially from DuPont Specialty Polymers USA, LLC, under the trademark.
  • thermoplastic copolyetheresters are described in Intl. Patent Appln. Publn. No. WO2021/257534 by Karayianni.
  • suitable thermoplastic copolyetheresters are available under the trademark (DuPont Specialty Polymers USA, LLC, of Wilmington, DE) and under the tradenames Arnitel TM (available from DSM Engineering Materials of Evansville, IN) and Riteflex TM (available from the Celanese Corporation of Florence, KY, formerly Ticona)
  • the polymer composition may include from 26.1 to 99.9 wt%of the one or more polymers; preferably, 59 to 99.7 wt%; and more preferably 69.5 to 99.7 wt%.
  • the weight percentages are based on the total weight of the polymer composition. Moreover, the weight percentages are complementary, that is, the sum of the weight percentages of the components of the polymer composition is 100 wt%.
  • the polymer composition further comprises one or more weak acids containing phosphorus elements.
  • the suitable weak acids containing phosphorus elements have a structure such as below:
  • R is selected from H, OH, optionally substituted C 1-20 alkyl, optionally substituted C 2-20 alkylene, optionally substituted C 6-10 aryl, optionally substituted C 1-20 alkyloxy, polyoxy (C 2-4 ) alkylene, and optionally substituted C 6-20 aryloxy, and wherein M is selected from cations of H, Na, K, Ca, Mg, or Al, wherein n is the charge of the cation and the number of weak acid anions in the salt. When R is OH, however, then M is not H.
  • More preferred weak acids contain phosphate elements include, without limitation, dihydrogen phosphate salts and phenylphosphonic acid salts.
  • Suitable weak acids containing phosphate elements are available commercially from a number of sources, for example, the Sigma-Aldrich Corporation of Burlington, MA.
  • the polymer composition may include from 0.5 to 5 wt%of the one or more weak acids containing phosphate elements; preferably, 1 to 3 wt%; and more preferably 1.5 to 2 wt%.
  • the weight percentages are based on the total weight of the polymer composition and are complementary with those of the other components of the polymer composition.
  • the polymer compositions disclosed herein may further comprise other additives, such as colorants, antioxidants, UV stabilizers, UV absorbers, heat stabilizers, lubricants, viscosity modifiers, nucleating agents, plasticizers, mold release agents, scratch and mar modifiers, impact modifiers, emulsifiers, optical brighteners, antistatic agents, acid adsorbents, smell adsorbents, anti-hydrolysis agents, anti-bacterial agents, density modifiers, reinforcing fillers, thermal conductive fillers, flame retardant fillers, glass fiber, electrical conductive fillers, coupling agents, end-capping reagents and combinations of two or more thereof. Based on the total weight of the polymer composition disclosed herein, such additional additive (s) may be present at a level of about 0.005-30 wt%or about 0.01-25 wt%, or about 0.02-20 wt%.
  • lubricants such as RADIA 7176, LOXIOL VPG861, LICOWAX OP and LICOLUB WE 40
  • antioxidants such as Irganox 1098 (CAS 23128-74-7) , SONGNOX 1010, ANOX 20, and BENNOX 1010 G
  • stabilizers such as glycerol propoxylate
  • flow modifiers such as LOXIOL P 861/3.5, LIONON DEH-40, VORANOL 2100 and PLASTHALL 809 etc .
  • Inorganic fillers are a preferred optional additive.
  • the inorganic fillers are preferably flame retardant fillers including, without limitation, aluminum hydroxide, magnesium hydroxide, red phosphorus, ammonium polyphosphate, zinc borate, antimony oxide and molybdenum compounds , and combinations of two or more flame-retardant fillers.
  • Glass fibers are a more preferred inorganic filler.
  • the glass fibers preferably have a length of 4 to 30mm and more preferably 4 to 7mm.
  • the glass fiber is preferred to be E-glass fiber (Alkali-free glass fiber) , C-glass fiber (Medium alkali glass fiber) , or A-glass fiber (High alkali glass fiber) .
  • E-glass fiber is more preferred.
  • the glass fibers are preferably coated by a coupling agent to increase their performance as reinforcing agents.
  • the general structural formula of some preferred coupling agents is expressed as: R-Si (OR’) 3 , where R is a functional group which will interact with the adhesive or matrix; R’ is usually methyl or ethyl, which, in use, is hydrolyzed to give a silanetriol: Si (OH) 3 .
  • Suitable coupling agents include, without limitation, KH-550, KH-560 and KH-570;
  • Suitable glass fibers are available commercially from TANSHAN FIBERGLASS CO, LTD, of Taian, Shandong, China.
  • the polymer composition may include from 5 to 50 wt%of the one or more optional inorganic fillers such as flame-retardant fillers and glass fibers; preferably, 15 to 45 wt%; and more preferably 20 to 40 wt%.
  • the weight percentages are based on the total weight of the polymer composition and are complementary with those of the other components of the polymer composition.
  • the PBT used in this invention with different viscosity.
  • the THF emission content at the same conditions is different based on different viscosity.
  • the results show that the method is effective for PBT with different viscosity.
  • the suitable viscosity is from 0.5dl/gr to 1.5 dl/gr, the preferred viscosity is from 0.7 dl/gr to 1.2 dl/gr; the more preferred viscosity is from 0.8 dl/gr to 1.1 dl/gr.
  • the polymer composition may be produced by any conventional melt-blending method, such as for example in a twin-screw extruder.
  • articles comprising the polymer composition.
  • the suitable and preferred weak acids and other components of the polymer composition, suitable and preferred amounts of the weak acid and of the other components, and suitable and preferred methods for forming the polymer composition for use in the articles are as discussed above with respect to the polymer composition itself.
  • Examples of articles include, without limitation, Window lifter drive housing, Seat adjustment drive housing, Misc. switches and boxes, Steering angle sensor.
  • the articles may be formed by conventional methods, such as for example injection molding, blow molding, or extrusion methods.
  • the more preferred forming method is injection molding.
  • the method comprises the steps of providing the other components of the polymer composition and of adding a weak acid containing phosphorus elements to the other components.
  • the suitable and preferred weak acids containing phosphorus elements and other components of the polymer composition for use in this method, suitable and preferred amounts of the weak acid containing phosphorus elements and of the other components, and suitable and preferred processes for forming the polymer composition are as discussed above with respect to the polymer composition itself.
  • the weak acid containing phosphorus elements is added to the polymer composition during the compounding process.
  • VOC emissions of the polymer composition and of the article may be further reduced by collecting the VOCs, such as THF, by applying a vacuum to the molten polymer during the compounding or molding process.
  • VOCs such as THF
  • the examples and comparative examples are molded into 60x60x2mm and 60x60x1 mm plates under the following conditions:
  • THF emission from PBT can be measured using gas chromatography (GC) , for example gas chromatography-mass spectrometry (GC-MS)
  • the plates were molded, they were stored in a sealed aluminum foil bag. To conduct the analysis, the plates were removed from the bag and cut into small pieces, then tested by GC/MS following the VDA277 standard. In this method, the GC/MS settings are:
  • Carrier gas helium
  • Middle carrier gas speed approx. 22-27 cm /s.
  • BHT 6-Di-tert-butyl-4-methylphenol
  • compositions including three PBT polymers having different viscosities i.e., different molecular weights
  • PBT-1 polybutylene terephthalate having an IV of 0.7dl/gr was obtained from CHANG CHUN PLASTICS CO. LTD
  • PBT-2 polybutylene terephthalate having an IV of 0.9dl/gr was obtained from CHANG CHUN PLASTICS CO. LTD
  • PBT-3 polybutylene terephthalate having an IV of 1.0dl/gr was obtained from CHANG CHUN PLASTICS CO. LTD
  • NaH 2 PHO 4 powder was obtained from NAGASE&CO., LTD Glass fiber: was obtained from TANSHAN FIBERGLASS CO, LTD. Grade name is S-1 HM436S
  • a polymer composition (weight percentages of non-PBT components are listed in Table 1) was prepared by compounding in an extruder. The barrel temperatures were set at about 250°C and screw speed at about 350 rpm. After exiting the extruder, the blended compositions were cooled by water and cut into resin pellets, which was followed by drying for about 15h at a temperature of 90°C in an electric blast dyer.
  • the dried resin pellets obtained in comparative examples CE1-CE4 and examples E1-E8 were injection molded into 60x60x2 mm plaques with the melt temperature of 250°C; comparative example CE5 and examples E9-E10 were injection molded into 60x60x1 mm plaques with the melt temperature of 280°C; comparative example CE6 and examples E11-E12 were injection molded into 60x60x2mm plaques with the melt temperature of 280°C.
  • the emission performance of the plaques was measured and is tabulated in Table 1, Table 2, and Table 3.
  • the term “Balance” means the difference between 100 wt%and the sum of the weight percentages of the other components of the examples and comparative examples.
  • the test results of different loading of NaH 2 PO 4 are list in Table 1 (E1, E5-E8) .
  • the graph of Fig. 1 shows that the optimized range of loading is greater than 0.3wt%, greater than 0.5wt%, or about 3wt%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A thermoplastic composition includes at least one thermoplastic resin such as polybutylene terephthalate (PBT), polyethylene terephthalate (PET), a thermoplastic polyester elastomer (TPEE), or a combination of two or more of these; an additive that is a weak acid containing phosphorus elements such as a dihydrogen phosphate salt; and optionally an inorganic filler such as a reinforcing fiber. The thermoplastic composition exhibits decreased emission levels of VOCs such as tetrahydrofuran (THF) compared to the neat thermoplastic resins, especially upon heating, for example during melt processing.

Description

POLYMER COMPOSITE WITH LOW VOC EMISSION FIELD OF THE INVENTION
This invention relates to thermoplastic compositions with low VOC emission and good mechanical properties.
BACKGROUND OF THE INVENTION
Several patents, patent applications and publications are cited in this description in order to more fully describe the state of the art to which this invention pertains. The entire disclosure of each of these patents, patent applications and publications is incorporated by reference herein.
Polybutylene terephthalate (PBT) is an engineering thermoplastic resin excellent in mechanical, chemical, electronic, and physical properties; and therefore, it has been used widely in various applications including automobile parts, consumer electronics, etc.
The oligomer in the PBT resin decomposes, however, to generate tetrahydrofuran (THF) gas when heated in a molten state, for example in processing steps such a molding or extrusion. The outgassing of THF may cause issues such as voids in molded parts, which negatively impacts their mechanical properties. PBT-containing resins are particularly prone to emit THF within the first weeks after molding. THF outgassing is accelerated when the resin or article experiences conditions of high temperature. In consumer applications such as electronics or automobile interiors, this outgassing will not be accepted by the consumers.
Moreover, a number of nations have enacted legislation that mandates strict emission limits for VOCs. For compliance with these national laws and regulations, the automobile industry has developed emission requirements that depend on the results of a number of test procedures. Therefore, automotive OEMs have initiated related specifications for low VOC emissions in vehicle interiors.
For at least these reasons, the development of low THF emission PBT is important consumer comfort and for consistency with principles of environmental health and safety.
Others have attempted to decrease the VOC emissions of polymer compositions. For example, U.S. Patent Appln. Publn. No. 2009/0039557 describes a method for production of low-emission molded articles from thermoplastic molding compositions comprising PBT, in which the mold comprises one or more vents for discharge of volatile content from the heated molding compositions.
U.S. Patent No. 8,148,489, issued to Peacock et al., describes a method of reducing organic carbon emissions from PBT block-containing resins by adding a titanium-catalyst deactivating compound to the resin after polymerization.
European Patent No. 683201) describes a modified polybutylene terephthalate resin with a reduction in the amount of gas such as THF generated in high-temperature service. In this modification, a sulfonic acid compound is added to the PBT prior to the completion of the polycondensation.
Nevertheless, there remains a continuing need to reduce the VOC emission levels of polymeric materials, in particular when consumers would otherwise be exposed to harmful chemicals such as THF.
SUMMARY OF THE INVENTION
Accordingly, provided herein is a polymer composition with low VOC emission levels, for example low THF emission levels. The polymer composition comprises a polymer and a weak acid containing phosphorus elements. Preferably, the polymer comprises PBT, and the weak acid comprises a dihydrogen phosphate salt.
Further provided is a method to reduce the VOC emission level of a polymer composition, in particular THF emissions of PBT compositions, by adding a weak acid containing phosphorus elements to the composition, preferably during melt processing, for example during a compounding process.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a graph of THF emission level vs. the concentration of weak acid in a polymer composition of the invention.
DETAILED DESCRIPTION OF THE INVENTION
Described herein is a polymer composition with low THF emission levels. The composition comprises a polymer and a weak acid containing phosphorus elements, for example a dihydrogen phosphate salt. The polymer is preferably a PBT-containing polymer having esterified 1, 4-butanediol end groups.
Without wishing to be held to theory, it is hypothesized that 1, 4-butanediol is the product of hydrolytic de-esterification of a PBT-containing polymer to form a polymer having acid end groups. The 1, 4-butanediol reacts further to form THF.
Still without wishing to be held to theory, it is further hypothesized that the weak acid protonates the hydroxyl group of the butanediol end group in the first step of a dehydration reaction to form a butenol end group. The butenol end group, even if removed by de-esterification, will not react further to form THF. Moreover, as a non-volatile liquid, butenol does not affect the overall VOC emissions of the polymer composition.
Suitable polymers for use in the polymer composition include one or more polymers selected from the group consisting of Polyethylene terephthalates (PET) ; polybutylene terephthalate (PBT) ; copolyether ester elastomers having PBT or PBT segments; co-PBTs (i.e. PBTs in which some of the 1, 4-butane diol is replaced with, for example, one or more other diols, such as aliphatic, cycloaliphatic (for example 1.4-cyclohexanedimethanol) , or aromatic diols (for example 2.2-bis 4- (hydroxyethoxyphenyl) -propane, or in which the terephthalate group is replaced by the residue of other diacids such as isophthalic acid or adipic acid, and blends of any two or more of these.
Preferred polymers include one or more polymers selected from the group consisting of PBT, co-PBT, PET, PBT/PETalloy, and copolyether ester elastomers having PET or PBT segments
More preferred polymers include one or more polymers selected from the group consisting of PBT, co-PBT, and copolyether ester elastomers having PBT segments.
Polybutylene terephthalate (PBT) is a more preferred polymer. Suitable PBT polymers are described in U.S. Patent No. 8,148,489, issued to Peacock et al.
Suitable PBT polymers are available commercially from DuPont Specialty Polymers USA, LLC, under the
Figure PCTCN2022127699-appb-000001
trademark. Suitable PET polymers are available commercially from DuPont Specialty Polymers USA, LLC, under the
Figure PCTCN2022127699-appb-000002
trademark.
Suitable thermoplastic copolyetheresters are described in Intl. Patent Appln. Publn. No. WO2021/257534 by Karayianni. In addition, suitable thermoplastic copolyetheresters are available under the trademark
Figure PCTCN2022127699-appb-000003
(DuPont Specialty Polymers USA, LLC, of Wilmington, DE) and under the tradenames Arnitel TM (available from DSM Engineering Materials of Evansville, IN) and Riteflex TM (available from the Celanese Corporation of Florence, KY, formerly Ticona)
The polymer composition may include from 26.1 to 99.9 wt%of the one or more polymers; preferably, 59 to 99.7 wt%; and more preferably 69.5 to 99.7 wt%. The weight percentages are based on the total weight of the polymer composition. Moreover, the weight percentages are complementary, that is, the sum of the weight percentages of the components of the polymer composition is 100 wt%.
The polymer composition further comprises one or more weak acids containing phosphorus elements. The suitable weak acids containing phosphorus elements have a structure such as below:
Figure PCTCN2022127699-appb-000004
Wherein R is selected from H, OH, optionally substituted C 1-20 alkyl, optionally substituted C 2-20 alkylene, optionally substituted C 6-10 aryl, optionally substituted C 1-20 alkyloxy, polyoxy (C 2-4) alkylene, and optionally substituted C 6-20 aryloxy, and wherein M is selected from cations of H, Na, K, Ca, Mg, or Al, wherein n is the charge of the cation and the number of weak acid anions in the salt. When R is OH, however, then M is not H.
More preferred weak acids contain phosphate elements include, without limitation, dihydrogen phosphate salts and phenylphosphonic acid salts.
Suitable weak acids containing phosphate elements are available commercially from a number of sources, for example, the Sigma-Aldrich Corporation of Burlington, MA.
The polymer composition may include from 0.5 to 5 wt%of the one or more weak acids containing phosphate elements; preferably, 1 to 3 wt%; and more preferably 1.5 to 2 wt%. The weight percentages are based on the total weight of the polymer composition and are complementary with those of the other components of the polymer composition.
The polymer compositions disclosed herein may further comprise other additives, such as colorants, antioxidants, UV stabilizers, UV absorbers, heat stabilizers, lubricants, viscosity modifiers, nucleating agents, plasticizers, mold release agents, scratch and mar modifiers, impact modifiers, emulsifiers, optical brighteners, antistatic agents, acid adsorbents, smell adsorbents, anti-hydrolysis agents, anti-bacterial agents, density modifiers, reinforcing fillers, thermal conductive fillers, flame retardant fillers, glass fiber, electrical conductive fillers, coupling agents, end-capping reagents and combinations of two or more thereof. Based on the total weight of the polymer composition disclosed herein, such additional additive (s) may be present at a level of about 0.005-30 wt%or about 0.01-25 wt%, or about 0.02-20 wt%.
Examples of preferred optional additives include, without limitation, lubricants such as RADIA 7176, LOXIOL VPG861, LICOWAX OP and LICOLUB WE 40; antioxidants such as Irganox 1098 (CAS 23128-74-7) , SONGNOX 1010, ANOX 20, and BENNOX 1010 G; stabilizers such as glycerol propoxylate; and flow modifiers such as LOXIOL P 861/3.5, LIONON DEH-40, VORANOL 2100 and PLASTHALL 809 etc .
Inorganic fillers are a preferred optional additive. When used, the inorganic fillers are preferably flame retardant fillers including, without limitation, aluminum hydroxide, magnesium hydroxide, red phosphorus, ammonium polyphosphate, zinc borate, antimony oxide and molybdenum compounds , and combinations of two or more flame-retardant fillers.
Glass fibers are a more preferred inorganic filler. The glass fibers preferably have a length of 4 to 30mm and more preferably 4 to 7mm. The glass fiber is preferred to be E-glass fiber (Alkali-free glass fiber) , C-glass fiber (Medium alkali glass fiber) , or A-glass fiber (High alkali glass fiber) . E-glass fiber is more preferred.
The glass fibers are preferably coated by a coupling agent to increase their performance as reinforcing agents. The general structural formula of some preferred coupling agents is expressed as: R-Si (OR’)  3, where R is a functional group which will interact with the adhesive or matrix; R’ is usually methyl or ethyl, which, in use, is hydrolyzed to give a silanetriol: Si (OH)  3. Suitable coupling agents include, without limitation, KH-550, KH-560 and KH-570;
Suitable glass fibers are available commercially from TANSHAN FIBERGLASS CO, LTD, of Taian, Shandong, China.
The polymer composition may include from 5 to 50 wt%of the one or more optional inorganic fillers such as flame-retardant fillers and glass fibers; preferably, 15 to 45 wt%; and more preferably 20 to 40 wt%. The weight percentages are based on the total weight of the polymer composition and are complementary with those of the other components of the polymer composition.
The PBT used in this invention with different viscosity. The THF emission content at the same conditions is different based on different viscosity. The results show that the method is effective for PBT with different viscosity. The suitable viscosity is from 0.5dl/gr to 1.5 dl/gr, the preferred viscosity is from 0.7 dl/gr to 1.2 dl/gr; the more preferred viscosity is from 0.8 dl/gr to 1.1 dl/gr.
The polymer composition may be produced by any conventional melt-blending method, such as for example in a twin-screw extruder.
Further provided herein are articles comprising the polymer composition. The suitable and preferred weak acids and other components of the polymer composition, suitable and preferred amounts of the weak acid and of the other components, and suitable and preferred methods for forming the polymer composition for use in the articles are as discussed above with respect to the polymer composition itself.
Examples of articles include, without limitation, Window lifter drive housing, Seat adjustment drive housing, Misc. switches and boxes, Steering angle sensor.
The articles may be formed by conventional methods, such as for example injection molding, blow molding, or extrusion methods. The more preferred forming method is injection molding.
Further provided is a method to decrease the THF emission of a polymer composition. The method comprises the steps of providing the other components of the polymer composition and of adding a weak acid containing phosphorus elements to the other components. The suitable and preferred weak acids containing phosphorus elements and other components of the polymer composition for use in this method, suitable and preferred amounts of the weak acid containing phosphorus elements and of the other components, and suitable and preferred processes for forming the polymer composition are as discussed above with respect to the polymer composition itself. Preferably, the weak acid containing phosphorus elements is added to the polymer composition during the compounding process.
The VOC emissions of the polymer composition and of the article may be further reduced by collecting the VOCs, such as THF, by applying a vacuum to the molten polymer during the compounding or molding process.
The following examples are provided to describe the invention in further detail. These examples, which set forth a preferred mode presently contemplated for carrying out the invention, are intended to illustrate and not to limit the invention.
EXAMPLES OF THE INVENTION
1) Molding conditions:
The examples and comparative examples are molded into 60x60x2mm and 60x60x1 mm plates under the following conditions:
Melt temperature: 250℃, 280℃
Mold temperature: 80℃
Hold up time: 5min
2) Gas Emission test:
The extent of the emission of volatile organic substances from the tested polymer compositions was determined by the method set forth in the Verband der Automobilindustrie [The German Association of the Automotive Industry (VDA) ] standard VDA 277. In particular, it refers to the emission of THF, which generally occurs immediately after molding, extruding, or shaping a polymer composition. THF emission from PBT can be measured using gas chromatography (GC) , for example gas chromatography-mass spectrometry (GC-MS)
After the plates were molded, they were stored in a sealed aluminum foil bag. To conduct the analysis, the plates were removed from the bag and cut into small pieces, then tested by GC/MS following the VDA277 standard. In this method, the GC/MS settings are:
Stove temperature program GC: 3 minutes isotherm at 50℃
Heating at 200℃ with a rate of 12 K /min
4 minutes isotherm at 200℃
Injector temperature: 200℃
Detector temperature: 250℃
Split ratio: approx. 1: 20
Carrier gas: helium
Middle carrier gas speed: approx. 22-27 cm /s.
Calibration: 2, 6-Di-tert-butyl-4-methylphenol (BHT) must exhibit a retention time of less than 16 minutes when run under the same conditions as the emissions from the polymer compositions.
The THF emission of compositions including three PBT polymers having different viscosities (i.e., different molecular weights) was measured.
3) IV (intrinsic viscosity) of PBT was determined according to ASTM D2857
4) Materials:
PBT-1: polybutylene terephthalate having an IV of 0.7dl/gr was obtained from CHANG CHUN PLASTICS CO. LTD
PBT-2: polybutylene terephthalate having an IV of 0.9dl/gr was obtained from CHANG CHUN PLASTICS CO. LTD
PBT-3: polybutylene terephthalate having an IV of 1.0dl/gr was obtained from CHANG CHUN PLASTICS CO. LTD
NaH 2PHO 4: powder was obtained from NAGASE&CO., LTD Glass fiber: was obtained from TANSHAN FIBERGLASS CO, LTD. Grade name is S-1 HM436S
In each of the comparative examples CE1-CE6 and examples E1-E12, a polymer composition (weight percentages of non-PBT components are listed in Table 1) was prepared by compounding in an extruder. The barrel temperatures were set at about 250℃ and screw speed at about 350 rpm. After exiting the extruder, the blended compositions were cooled by water and cut into resin pellets, which was followed by drying for about 15h at a temperature of 90℃ in an electric blast dyer.
The dried resin pellets obtained in comparative examples CE1-CE4 and examples E1-E8 were injection molded into 60x60x2 mm plaques with the melt temperature of 250℃; comparative example CE5 and examples E9-E10 were injection molded into 60x60x1 mm plaques with the melt temperature of 280℃; comparative example CE6 and examples E11-E12 were injection molded into 60x60x2mm plaques with the melt temperature of 280℃. The emission performance of the plaques was measured and is tabulated in Table 1, Table 2, and Table 3. In these Tables, the term “Balance” means the difference between 100 wt%and the sum of the weight percentages of the other components of the examples and comparative examples.
Further, for each sample, the tensile stress and tensile strain at break were measured in accordance with ISO 527-2: 2012; the flexure stress was measured in accordance with ISO 178; and the N-charpy impact was measured in accordance with ISO 179-1. Results are tabulated in Table 1.
The test results of different loading of NaH 2PO 4 are list in Table 1 (E1, E5-E8) . The graph of Fig. 1 shows that the optimized range of loading is greater than 0.3wt%, greater than 0.5wt%, or about 3wt%.
Table 1
Figure PCTCN2022127699-appb-000005
Table 2
  CE5 E9 E10
PBT-3 Balance Balance Balance
Glass fiber 30 30 30
KH2PO4 0 0 0.3
NaH2PO4 0 0.3 0
Emission of THF (ppm) 208 94 93
Table 3
  CE6 E11 E12
PBT-3 Balance Balance Balance
Glass fiber 30 30 30
C6H7PO3 0 0.3 0
NaH2PO4 0 0 0.3
Emission of THF (ppm) 124 77 72
While certain of the preferred embodiments of this invention have been described and specifically exemplified above, it is not intended that the  invention be limited to such embodiments. Various modifications may be made without departing from the scope and spirit of the invention, as set forth in the following claims.

Claims (17)

  1. A thermoplastic composition comprising:
    a) at least one thermoplastic resin selected from the group consisting of polybutylene terephthalate (PBT) , polyethylene terephthalate (PET) , and a polymer which contains a copolymerized PBT component;
    b) a weak acid containing phosphorus elements having the structure:
    Figure PCTCN2022127699-appb-100001
    wherein R is selected from the group consisting of H, OH, optionally substituted C 1-20 alkyl, optionally substituted C 2-20 alkylene, optionally substituted C 6-10 aryl, optionally substituted C 1-20 alkyloxy, polyoxy (C 2-4) alkylene, and optionally substituted C 6-20 aryloxy;
    wherein M is selected from the group consisting of cations of H, Na, K, Ca, Mg, Al;
    wherein n is the charge of the cation of M; and
    with the proviso that when R is OH, M is not H; and
    c) other additives
  2. The thermoplastic composition according to claim 1, wherein the at least one thermoplastic resin comprises PBT.
  3. The thermoplastic composition according to claim 1, wherein the at least one thermoplastic resin comprises a thermoplastic copolyetherester having a copolymerized PBT component.
  4. The thermoplastic composition according to claim 1, wherein the at least one thermoplastic resin is present in an amount of from 10wt%to 99.9wt%, based on the total weight of the thermoplastic composition.
  5. The thermoplastic composition according to claim 1, wherein the weak acid comprises dihydrogen phosphate salts or phenylphosphonic acid salts.
  6. The thermoplastic composition according to claim 1, wherein the weak acid comprises sodium dihydrogen phosphate, potassium dihydrogen phosphate, or both sodium dihydrogen phosphate and potassium dihydrogen phosphate.
  7. The thermoplastic composition according to claim 1, wherein the weak acid is present in an amount of from 0.01 to about 3wt%, based on the total weight of the thermoplastic composition.
  8. The thermoplastic composition according to claim 1, wherein the weak acid is present in an amount of from 0.01 to about 2wt%, based on the total weight of the thermoplastic composition.
  9. The thermoplastic composition according to claim 1, wherein the weak acid is present in an amount of from 0.01 to about 1wt%, based on the total weight of the thermoplastic composition.
  10. The thermoplastic composition according to claim 1, wherein the at least one inorganic filler comprises a flame-retardant filler.
  11. The thermoplastic composition according to claim 1, wherein the flame-retardant filler comprises one or more fillers selected from the group consisting of aluminum hydroxide, magnesium hydroxide, red phosphorus, ammonium polyphosphate, zinc borate, antimony oxide and molybdenum compounds.
  12. The thermoplastic composition according to claim 1, wherein the optional inorganic filler is a reinforcing filler.
  13. The thermoplastic composition according to claim 13, wherein the reinforcing filler is selected from the group consisting of glass fibers, silica, talc, mica, carbon black, carbon fiber, aramid fiber, hollow glass spheres, glass flake, hollow glass beads, milled glass fiber, and combinations of two or more thereof.
  14. The thermoplastic composition according to claim 1, wherein the optional inorganic filler is present in an amount of from 0.01 to about 50wt%, based on the total weight of the thermoplastic composition.
  15. The thermoplastic composition according to claim 1, further comprising one or more other additives selected from the group consisting of lubricants; plasticizers; colorants; and antioxidants.
  16. A method of reducing the VOC emissions of a polymer composition, comprising the steps of:
    a) providing a polymer composition, said polymer composition comprising at least one thermoplastic resin selected from the group consisting of polybutylene terephthalate (PBT) , polyethylene terephthalate (PET) , and a polymer which contains a copolymerized PBT component; and optionally an inorganic filler; and
    b) adding a weak acid containing phosphorus elements to the polymer composition.
  17. The method of claim 17, further comprising the steps of:
    c) melting the polymer composition; and
    d) collecting the VOCs emitted by the molten polymer composition by applying a vacuum.
PCT/CN2022/127699 2022-10-26 2022-10-26 Polymer composite with low voc emission WO2024087056A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127699 WO2024087056A1 (en) 2022-10-26 2022-10-26 Polymer composite with low voc emission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127699 WO2024087056A1 (en) 2022-10-26 2022-10-26 Polymer composite with low voc emission

Publications (1)

Publication Number Publication Date
WO2024087056A1 true WO2024087056A1 (en) 2024-05-02

Family

ID=90829745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127699 WO2024087056A1 (en) 2022-10-26 2022-10-26 Polymer composite with low voc emission

Country Status (1)

Country Link
WO (1) WO2024087056A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070225475A1 (en) * 2006-03-24 2007-09-27 Judith Alison Peacock Thermoplastic resins containing PBT units, having reduced organic carbon emissions
CN101379135A (en) * 2006-02-06 2009-03-04 巴斯夫欧洲公司 Low-emission PBT obtained by injection moulding with a degassing device
CN102482303A (en) * 2009-09-09 2012-05-30 日产化学工业株式会社 Method For Producing Metal Phosphonate And Thermoplastic Resin Composition Containing Metal Phosphonate
JP2014028883A (en) * 2012-07-31 2014-02-13 Toyobo Co Ltd Thermoplastic polyester resin composition and molded article therefrom
CN104220523A (en) * 2012-03-30 2014-12-17 胜技高分子株式会社 Polybutylene terephthalate resin composition and molded article
CN108137796A (en) * 2015-08-28 2018-06-08 Sabic环球技术有限责任公司 Poly- (butylene terephthalate) method and compositions related and product
CN114174031A (en) * 2019-07-29 2022-03-11 朗盛德国有限责任公司 Polybutylene terephthalate with low THF content

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379135A (en) * 2006-02-06 2009-03-04 巴斯夫欧洲公司 Low-emission PBT obtained by injection moulding with a degassing device
US20070225475A1 (en) * 2006-03-24 2007-09-27 Judith Alison Peacock Thermoplastic resins containing PBT units, having reduced organic carbon emissions
CN102482303A (en) * 2009-09-09 2012-05-30 日产化学工业株式会社 Method For Producing Metal Phosphonate And Thermoplastic Resin Composition Containing Metal Phosphonate
CN104220523A (en) * 2012-03-30 2014-12-17 胜技高分子株式会社 Polybutylene terephthalate resin composition and molded article
JP2014028883A (en) * 2012-07-31 2014-02-13 Toyobo Co Ltd Thermoplastic polyester resin composition and molded article therefrom
CN108137796A (en) * 2015-08-28 2018-06-08 Sabic环球技术有限责任公司 Poly- (butylene terephthalate) method and compositions related and product
CN114174031A (en) * 2019-07-29 2022-03-11 朗盛德国有限责任公司 Polybutylene terephthalate with low THF content

Similar Documents

Publication Publication Date Title
JP6264502B2 (en) Thermoplastic polyester resin composition and molded article
TWI768067B (en) Thermoplastic polyester resin composition and its molded article
EP2832794B1 (en) Polybutylene terephthalate resin composition and molded article
CN101759982A (en) Antistatic and ultraviolet resistant PC/ASA material composition
JP6267406B2 (en) Polybutylene terephthalate resin composition
JP6115038B2 (en) Thermoplastic polyester resin composition and molded article comprising the same
JP5670188B2 (en) Polybutylene terephthalate resin composition and molded article
TWI827542B (en) Thermoplastic polyester resin composition, molded article and manufacturing method thereof
JP2016145333A (en) Polybutylene terephthalate resin composition and molded article containing the same
WO2024087056A1 (en) Polymer composite with low voc emission
WO2014178271A1 (en) Polybutylene terephthalate resin composition and molded article
JP6822163B2 (en) Thermoplastic polyester resin compositions and articles
JP2019156891A (en) Thermoplastic polyester resin composition and molding thereof
KR102103527B1 (en) Environmentally friendly polymer alloy resin composition
JP6711050B2 (en) Polybutylene terephthalate resin composition and molded article comprising the same
CN116574363A (en) Hydrolysis-resistant glass fiber reinforced PET/PBT alloy material and preparation method thereof
JPH0959495A (en) Fire retardant thermoplastic resin composition
JP2020033455A (en) Thermoplastic polyester resin composition and its molded article
JP2000072958A (en) Flame-retardant resin composition
KR20140092462A (en) Polyester Resin Composition
JP2014117873A (en) Method for producing flame-retardant resin molding