WO2024084729A1 - Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather - Google Patents

Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather Download PDF

Info

Publication number
WO2024084729A1
WO2024084729A1 PCT/JP2023/019460 JP2023019460W WO2024084729A1 WO 2024084729 A1 WO2024084729 A1 WO 2024084729A1 JP 2023019460 W JP2023019460 W JP 2023019460W WO 2024084729 A1 WO2024084729 A1 WO 2024084729A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
hot melt
parts
moisture
resin composition
Prior art date
Application number
PCT/JP2023/019460
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 千々和
善典 金川
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2024536474A priority Critical patent/JPWO2024084729A1/ja
Publication of WO2024084729A1 publication Critical patent/WO2024084729A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes

Definitions

  • the present invention relates to a moisture-curable polyurethane hot melt resin composition, an adhesive, and synthetic leather.
  • Synthetic leather uses polyurethane (PU), polyvinyl chloride (PVC), olefin-based thermoplastic elastomer (TPO), etc. as the surface material, and these surface materials are generally bonded to a base fabric such as cloth or nonwoven fabric with an adhesive (see, for example, Patent Document 1).
  • solvent-based adhesives have been the most widespread and commonly used up until now, but as part of environmental efforts, regions, countries, and companies are calling for a reduction in VOCs, and it is becoming necessary to replace solvent-based with water-based or solvent-free adhesives.
  • the problem that the present invention aims to solve is to provide a moisture-curable polyurethane hot melt resin composition that has excellent adhesion, low-temperature flexibility, and flame retardancy.
  • the present invention provides a moisture-curable polyurethane hot-melt resin composition containing a hot-melt urethane prepolymer (A) having an isocyanate group and a flame retardant (B), characterized in that the hot-melt prepolymer (A) is made from a polyol (a) containing 50 mass% or more of a polyether polyol (a1), and the content of the flame retardant (B) is more than 15 mass parts per 100 mass parts of the hot-melt urethane prepolymer (A).
  • the present invention also provides an adhesive that contains the moisture-curable polyurethane hot melt resin composition.
  • the present invention also provides synthetic leather that has at least a thermoplastic resin layer and the adhesive layer.
  • the moisture-curable polyurethane hot melt resin composition of the present invention has excellent adhesion, low-temperature flexibility, and flame retardancy. Therefore, the moisture-curable polyurethane hot melt resin composition of the present invention can be particularly suitably used in the manufacture of synthetic leather that uses a thermoplastic resin as the skin material.
  • the moisture-curable polyurethane hot melt resin composition of the present invention contains a hot melt urethane prepolymer (A) having an isocyanate group, which is made from a specific polyol (a), and a specific amount of a flame retardant (B).
  • A hot melt urethane prepolymer having an isocyanate group, which is made from a specific polyol (a), and a specific amount of a flame retardant (B).
  • the hot melt urethane prepolymer (A) having isocyanate groups is made from polyol (a) containing 50% by mass or more of polyether polyol (a1).
  • the amount of polyether polyol (a1) used is preferably 50 to 90% by mass, and more preferably 55 to 70% by mass, of the polyol (a) in order to obtain even better low-temperature flexibility.
  • polyether polyol (a1) for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyoxyethylene polyoxypropylene glycol, polyoxyethylene polyoxytetramethylene glycol, polyoxypropylene polyoxytetramethylene glycol, etc. can be used. These polyols may be used alone or in combination of two or more. Among these, polypropylene glycol and/or polytetramethylene glycol are preferred because they provide even better low-temperature flexibility, and polytetramethylene glycol is more preferred because they provide even better heat resistance and wet heat resistance.
  • the polyether polyol may be derived from a plant.
  • plant-derived polyether polyol for example, "Bio PTMG” manufactured by Mitsubishi Chemical Corporation, “Bio PTG” manufactured by Hodogaya Chemical Co., Ltd., biomass polypropylene glycol manufactured by Vithal Castor Polyols, etc. can be obtained as commercially available products.
  • polyol (a) other polyols can be used in combination with the polyether polyol (a).
  • other polyols for example, commercially available polyols such as polyester polyols, polycarbonate polyols, polybutadiene polyols, silicone diols, and acrylic diols can be used. These polyols may be used alone or in combination of two or more, and may be derived from petroleum or plants.
  • polyester polyols are preferred because they provide even better adhesion.
  • the number average molecular weight of the polyol (a) is preferably 500 to 10,000, and more preferably 1,000 to 6,000, in order to obtain even better adhesion, low-temperature flexibility, and mechanical strength.
  • the number average molecular weight of the polyol (a) is a value measured by gel permeation chromatography (GPC).
  • the hot melt urethane prepolymer (A) having an isocyanate group can be, for example, a reaction product of the polyol (a) and the polyisocyanate (b).
  • polyisocyanate (b) for example, aromatic polyisocyanates such as polymethylene polyphenyl polyisocyanate, diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate isocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; aliphatic or alicyclic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate can be used.
  • aromatic polyisocyanates such as polymethylene polyphenyl polyisocyanate, diphenylmethane diisocyanate, carbodiimide-modified diphen
  • polyisocyanates may be used alone or in combination of two or more, and may be derived from petroleum or plants.
  • aromatic polyisocyanates are preferred, and diphenylmethane diisocyanate is more preferred, in that they provide even better reactivity and adhesion.
  • the hot melt urethane prepolymer (A) has isocyanate groups at the polymer terminals or within the molecule that can react with moisture present in the air or in the substrate or adherend to which the urethane prepolymer is applied to form a crosslinked structure.
  • the hot melt urethane prepolymer (A) can be produced, for example, by dropping the polyol (a) into a reaction vessel containing the polyisocyanate (b), heating the vessel, and reacting the polyisocyanate (b) under conditions in which the isocyanate groups of the polyisocyanate (b) are in excess of the hydroxyl groups of the polyol (a).
  • the molar ratio [NCO/OH] of the hydroxyl groups in the polyol (a) to the isocyanate groups in the polyisocyanate (b) is preferably 1.3 to 2.5, and more preferably 1.5 to 2.0, in order to obtain even better hot melt properties, adhesive properties, and low-temperature flexibility.
  • the isocyanate group content (hereinafter abbreviated as "NCO%) of the hot melt urethane prepolymer (A) is preferably 1.2 to 5.0 mass%, more preferably 1.7 to 3.5 mass%, in order to obtain even better hot melt properties, adhesion, and low-temperature flexibility.
  • the NCO% of the hot melt urethane prepolymer (A) is a value measured by potentiometric titration in accordance with JIS K1603-1:2007.
  • the flame retardant (B) is an essential component for obtaining excellent flame retardancy, and its content must exceed 15 parts by mass per 100 parts by mass of the hot-melt urethane prepolymer (A).
  • the content of the flame retardant (B) is preferably 17.5 to 55 parts by mass per 100 parts by mass of the hot-melt urethane prepolymer (A) in order to maintain a high level of low-temperature flexibility and adhesion and obtain even better flame retardancy.
  • the flame retardant (B) may be, for example, a phosphate ester, a phosphate-containing flame retardant, red phosphorus, a bromine-containing flame retardant, a boron-containing flame retardant, an antimony-containing flame retardant, a metal hydroxide, graphite, a phosphorus-boron compound, a vinyl polymer, or the like.
  • These flame retardants may be used alone or in combination of two or more.
  • a phosphate ester having three or more aromatic rings is preferred, and a phosphate ester having four or more aromatic rings is more preferred, in that it maintains a high level of low-temperature flexibility and adhesion, and provides even more excellent flame retardancy.
  • the moisture-curable polyurethane hot-melt resin composition of the present invention contains the hot-melt urethane prepolymer (A) and the flame retardant (B) as essential components, but may contain other additives as necessary.
  • additives examples include urethane catalysts, neutralizing agents, crosslinking agents, silane coupling agents, thickeners, fillers, thixotropic agents, tackifiers, waxes, heat stabilizers, light resistance stabilizers, fluorescent whitening agents, foaming agents, pigments, dyes, conductivity agents, antistatic agents, moisture permeability enhancers, water repellents, oil repellents, hollow foams, water absorbents, moisture absorbents, deodorizers, foam stabilizers, plasticizers, antiblocking agents, hydrolysis inhibitors, etc. These additives may be used alone or in combination of two or more.
  • the moisture-curable polyurethane hot melt resin composition of the present invention has excellent adhesion, low-temperature flexibility, and flame retardancy. Therefore, the moisture-curable polyurethane hot melt resin composition of the present invention can be particularly suitably used in the manufacture of synthetic leather that uses a thermoplastic resin as the skin material.
  • the synthetic leather has at least a thermoplastic resin layer and an adhesive layer containing the moisture-curable polyurethane hot melt resin composition, and may be, for example, a layer of a substrate, the adhesive layer, and a thermoplastic resin layer laminated in that order.
  • the substrate may be, for example, a nonwoven fabric, woven fabric, or knitted fabric made of polyester fiber, polyethylene fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, polylactic acid fiber, cotton, hemp, silk, wool, glass fiber, carbon fiber, or a blend of these fibers.
  • the thermoplastic resin layer may be formed from, for example, known polyvinyl chloride, polyvinyl acetate, polyvinylidene chloride, polystyrene, TPO (thermoplastic olefinic elastomer), thermoplastic ester elastomer, thermoplastic polyurethane, etc.
  • TPO thermoplastic olefinic elastomer
  • thermoplastic ester elastomer thermoplastic polyurethane
  • thermoplastic polyurethane etc.
  • it has excellent adhesion and low-temperature flexibility, and in particular, for polyvinyl chloride, which is difficult to adhere to, it has excellent adhesion and low-temperature flexibility whether it is foamed or unfoamed.
  • the adhesive layer is formed from the moisture-curable polyurethane hot melt resin composition of the present invention, and examples of the method for forming the adhesive layer include a method in which the moisture-curable polyurethane hot melt resin composition is melted at 100 to 140°C, and then coated onto the thermoplastic resin layer or the substrate using a coater method such as a roll coater, spray coater, T-die coater, knife coater, or comma coater; a precision method such as a dispenser, inkjet printing, screen printing, or offset printing; or a nozzle coater, and then the layers are bonded together.
  • a coater method such as a roll coater, spray coater, T-die coater, knife coater, or comma coater
  • a precision method such as a dispenser, inkjet printing, screen printing, or offset printing
  • a nozzle coater a method in which the moisture-curable polyurethane hot melt resin composition is melted at 100 to 140°C, and then coated onto the thermoplastic resin
  • the adhesive can be dried and cured as necessary using known methods.
  • the synthetic leather may further have a surface treatment layer on top of the thermoplastic resin layer.
  • the surface treatment layer may be formed from, for example, a known solvent-based urethane resin, water-based urethane resin, solvent-based acrylic resin, water-based acrylic resin, etc.
  • Example 1 A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 171 parts by mass of polytetramethylene glycol (number average molecular weight: 2,000, hereinafter abbreviated as "PEt-1”), 78 parts by mass of polyester polyol (residued by reacting 1,6-hexanediol and orthophthalic acid, number average molecular weight: 2,000, hereinafter abbreviated as "PEs-1”), and 62 parts by mass of polyester polyol (residued by reacting 1,6-hexanediol and sebacic acid, number average molecular weight: 3,500, hereinafter abbreviated as "PEs-2”), mixed, and heated at 100°C under reduced pressure to dehydrate the water in the flask until the water content was 0.05% by mass or less.
  • PEt-1 polytetramethylene glycol
  • PET
  • MDI 4,4'-diphenylmethane diisocyanate
  • Example 2 In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 74 parts by mass of PEt-1, 31 parts by mass of PEs-1, and 18 parts by mass of PEs-2 were added, mixed, and heated under reduced pressure at 100 ° C., and the moisture in the flask was dehydrated until it was 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 27 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C.
  • Example 3 In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 48 parts by mass of polypropylene glycol (number average molecular weight: 2,000, hereinafter abbreviated as "PEt-2”), 17 parts by mass of PEs-1, and 22 parts by mass of polyester polyol (ethylene glycol, neopentyl glycol, 16-hexanediol, and adipic acid reacted, number average molecular weight: 5,500, hereinafter abbreviated as "PEs-3”) were placed, mixed, and heated under reduced pressure at 100 ° C.
  • PEt-2 polypropylene glycol
  • polyester polyol ethylene glycol, neopentyl glycol, 16-hexanediol, and adipic acid reacted, number average molecular weight: 5,500
  • Example 4 A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 133 parts by mass of PEt-1, 56 parts by mass of PEs-1, and 33 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 49 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 30 parts by mass of flame retardant (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (4).
  • B1 flame retardant
  • Example 5 A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 139 parts by mass of PEt-2, 32 parts by mass of PEs-1, and 43 parts by mass of PEs-3, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 47 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 35 parts by mass of flame retardant (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (5).
  • Example 6 In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 83 parts by mass of PEt-1, 19 parts by mass of PEs-1, and 26 parts by mass of PEs-3 were added, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 26 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 40 parts by mass of flame retardant (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (6).
  • B1 flame retardant
  • Example 7 A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 121 parts by mass of PEt-1, 121 parts by mass of PEt-2, 81 parts by mass of PEs-1, and 81 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 87 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C.
  • Example 8 A moisture-curable polyurethane hot melt resin composition (8) was obtained in the same manner as in Example 1, except that PEt-1 was replaced with biomass polytetramethylene glycol ("Bio PTMG” manufactured by Mitsubishi Chemical Corporation, number average molecular weight: 2,000).
  • the number average molecular weights of the polyols used in the examples and comparative examples are values measured by gel permeation column chromatography (GPC) under the following conditions.
  • Measurement device High-speed GPC device ("HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were used, connected in series. "TSKgel G5000” (7.8mm I.D. x 30cm) x 1 "TSKgel G4000” (7.8mm I.D. x 30cm) x 1 "TSKgel G3000” (7.8mm I.D. x 30cm) x 1 "TSKgel G2000" (7.8mm I.D.
  • Test pieces that did not ignite or self-extinguished before the A-marked line, those that self-extinguished within a burning distance of 51 mm (and within 60 seconds), and those with a burning rate of 102 mm/min or less were marked as " ⁇ ", and those that did not were marked as " ⁇ ".
  • Examples 1 to 8 which are moisture-curable polyurethane hot melt resin compositions of the present invention, have excellent adhesion, low-temperature flexibility, and flame retardancy.
  • Comparative Example 2 is an embodiment in which flame retardant (B) is not used, but the flame retardancy was poor.
  • Comparative examples 3 and 4 are examples in which the amount of polyether polyol (a1) used is below the range specified in the present invention, but the low-temperature flexibility and other properties were poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The present invention provides a moisture-curable polyurethane hot melt resin composition which contains (A) a hot melt urethane prepolymer having an isocyanate group and (B) a flame retardant, and which is characterized in that: the hot melt prepolymer (A) uses, as a starting material, a polyol (a) that contains 50% by mass or more of a polyether polyol (a1); and the content of the flame retardant (B) is more than 15 parts by mass relative to 100 parts by mass of the hot melt urethane prepolymer (A). In addition, the present invention provides an adhesive which is characterized by containing the moisture-curable polyurethane hot melt resin composition. It is preferable that the flame retardant (B) is a phosphoric acid ester that has three or more aromatic rings.

Description

湿気硬化型ポリウレタンホットメルト樹脂組成物、接着剤、及び、合成皮革Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather
 本発明は、湿気硬化型ポリウレタンホットメルト樹脂組成物、接着剤、及び、合成皮革に関する。 The present invention relates to a moisture-curable polyurethane hot melt resin composition, an adhesive, and synthetic leather.
 合成皮革には、表皮材としてポリウレタン(PU)、ポリ塩化ビニル(PVC)、オレフィン系熱可塑性エラストマー(TPO)等が使用されており、これらの表皮材を布地や不織布などの基布と接着剤で貼り合せた物が一般的に使用されている(例えば、特許文献1を参照。)。中でも接着剤はこれまで溶剤系のものが広く普及し一般的に使用されてきたが、環境に向けた取り組みとして地域・国・企業からVOCの低減が求められており、溶剤系から水系や無溶剤の接着剤への置き換えが必要となっている。 Synthetic leather uses polyurethane (PU), polyvinyl chloride (PVC), olefin-based thermoplastic elastomer (TPO), etc. as the surface material, and these surface materials are generally bonded to a base fabric such as cloth or nonwoven fabric with an adhesive (see, for example, Patent Document 1). Among these, solvent-based adhesives have been the most widespread and commonly used up until now, but as part of environmental efforts, regions, countries, and companies are calling for a reduction in VOCs, and it is becoming necessary to replace solvent-based with water-based or solvent-free adhesives.
 一方で車輛内装材や屋内用家具に用いられる合成皮革には防炎上の観点から難燃性が要求されているが、寒冷地域での使用を想定した低温での屈曲性の要求レベルも上がっている。しかしながら、これらの特性を全て兼ね備える材料は未だ見出されていない。 On the other hand, synthetic leather used in vehicle interior materials and indoor furniture is required to be flame retardant from a fire prevention perspective, but the level of flexibility required at low temperatures is also increasing in anticipation of use in cold regions. However, a material that combines all of these properties has yet to be found.
特表2008-514403号公報JP 2008-514403 A
 本発明が解決しようとする課題は、接着性、低温屈曲性、及び、難燃性に優れる湿気硬化型ポリウレタンホットメルト樹脂組成物を提供することである。 The problem that the present invention aims to solve is to provide a moisture-curable polyurethane hot melt resin composition that has excellent adhesion, low-temperature flexibility, and flame retardancy.
 本発明は、イソシアネート基を有するホットメルトウレタンプレポリマー(A)、及び、難燃剤(B)を含有する湿気硬化型ポリウレタンホットメルト樹脂組成物であって、前記ホットメルトプレポリマー(A)が、ポリエーテルポリオール(a1)を50質量%以上含むポリオール(a)を原料とするものであり、前記難燃剤(B)の含有量が、前記ホットメルトウレタンプレポリマー(A)100質量部に対して、15質量部を超えるものであることを特徴とする湿気硬化型ポリウレタンホットメルト樹脂組成物を提供するものである。 The present invention provides a moisture-curable polyurethane hot-melt resin composition containing a hot-melt urethane prepolymer (A) having an isocyanate group and a flame retardant (B), characterized in that the hot-melt prepolymer (A) is made from a polyol (a) containing 50 mass% or more of a polyether polyol (a1), and the content of the flame retardant (B) is more than 15 mass parts per 100 mass parts of the hot-melt urethane prepolymer (A).
 また、本発明は、前記湿気硬化型ポリウレタンホットメルト樹脂組成物を含有することを特徴とする接着剤を提供するものである。また、本発明は、少なくとも、熱可塑性樹脂層、及び、前記接着剤層とを有することを特徴とする合成皮革を提供するものである。 The present invention also provides an adhesive that contains the moisture-curable polyurethane hot melt resin composition. The present invention also provides synthetic leather that has at least a thermoplastic resin layer and the adhesive layer.
 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、接着性、低温屈曲性、及び、難燃性に優れるものである。よって、本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、熱可塑性樹脂を表皮材とする合成皮革の製造に特に好適に用いることができる。 The moisture-curable polyurethane hot melt resin composition of the present invention has excellent adhesion, low-temperature flexibility, and flame retardancy. Therefore, the moisture-curable polyurethane hot melt resin composition of the present invention can be particularly suitably used in the manufacture of synthetic leather that uses a thermoplastic resin as the skin material.
 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、特定のポリオール(a)を原料とするイソシアネート基を有するホットメルトウレタンプレポリマー(A)、及び、特定量の難燃剤(B)を含有するものである。 The moisture-curable polyurethane hot melt resin composition of the present invention contains a hot melt urethane prepolymer (A) having an isocyanate group, which is made from a specific polyol (a), and a specific amount of a flame retardant (B).
 前記イソシアネート基を有するホットメルトウレタンプレポリマー(A)は、優れた低温屈曲性を得るうえで、ポリエーテルポリオール(a1)を50質量%以上含むポリオール(a)を原料とすることが必須である。このように設計することで、接着剤をガラス転移温度を低下させることができるため、優れた低温屈曲性を得ることができる。前記ポリエーテルポリオール(a1)の使用量としては、より一層優れた低温屈曲性が得られる点から、ポリオール(a)中50~90質量%が好ましく、55~70質量%がより好ましい。 In order to obtain excellent low-temperature flexibility, it is essential that the hot melt urethane prepolymer (A) having isocyanate groups is made from polyol (a) containing 50% by mass or more of polyether polyol (a1). By designing in this way, the glass transition temperature of the adhesive can be lowered, and therefore excellent low-temperature flexibility can be obtained. The amount of polyether polyol (a1) used is preferably 50 to 90% by mass, and more preferably 55 to 70% by mass, of the polyol (a) in order to obtain even better low-temperature flexibility.
 前記ポリエーテルポリオール(a1)としては、例えば、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンポリオキシテトラメチレングリコール、ポリオキシプロピレンポリオキシテトラメチレングリコール等を用いることができる。これらのポリオールは単独でも2種以上を併用してもよい。これらの中でも、より一層優れた低温屈曲性が得られる点から、ポリプロピレングリコール及び/又はポリテトラメチレングリコールが好ましく、更により一層優れた耐熱性及び湿熱性が得られる点から、ポリテトラメチレングリコールがより好ましい。なお、前記ポリエーテルポリオールとしては、植物由来のものを用いてもよい。前記植物由来のポリエーテルポリオールとしては、例えば、三菱ケミカル株式会社製「Bio PTMG」、保土ヶ谷化学社製「バイオ PTG」、Vithal Castor Polyols社製のバイオマスポリポリプロピレングリコール等を市販品として入手することができる。 As the polyether polyol (a1), for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyoxyethylene polyoxypropylene glycol, polyoxyethylene polyoxytetramethylene glycol, polyoxypropylene polyoxytetramethylene glycol, etc. can be used. These polyols may be used alone or in combination of two or more. Among these, polypropylene glycol and/or polytetramethylene glycol are preferred because they provide even better low-temperature flexibility, and polytetramethylene glycol is more preferred because they provide even better heat resistance and wet heat resistance. The polyether polyol may be derived from a plant. As the plant-derived polyether polyol, for example, "Bio PTMG" manufactured by Mitsubishi Chemical Corporation, "Bio PTG" manufactured by Hodogaya Chemical Co., Ltd., biomass polypropylene glycol manufactured by Vithal Castor Polyols, etc. can be obtained as commercially available products.
 前記ポリオール(a)としては、前記ポリエーテルポリオール(a)以外にもその他のポリオールを併用することができる。前記その他のポリオールとしては、例えば、ポリエステルポリオール、ポリカーボネートポリオール、ポリブタジエンポリオール、シリコンジオール、アクリルジオールなど市販のポリオールを用いることができる。これらのポリオールは単独でも2種以上を併用してもよく、石油由来のものでも、植物由来のものでもよい。前記その他のポリオールとしては、より一層優れた接着性が得られる点から、ポリエステルポリオールが好ましい。 As the polyol (a), other polyols can be used in combination with the polyether polyol (a). As the other polyols, for example, commercially available polyols such as polyester polyols, polycarbonate polyols, polybutadiene polyols, silicone diols, and acrylic diols can be used. These polyols may be used alone or in combination of two or more, and may be derived from petroleum or plants. As the other polyols, polyester polyols are preferred because they provide even better adhesion.
 前記ポリオール(a)の数平均分子量としては、より一層優れた接着性、低温屈曲性、及び、機械的強度が得られる点から、それぞれ500~10,000が好ましく、1,000~6,000がより好ましい。なお、前記ポリオール(a)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 The number average molecular weight of the polyol (a) is preferably 500 to 10,000, and more preferably 1,000 to 6,000, in order to obtain even better adhesion, low-temperature flexibility, and mechanical strength. The number average molecular weight of the polyol (a) is a value measured by gel permeation chromatography (GPC).
 前記イソシアネート基を有するホットメルトウレタンプレポリマー(A)は、例えば、前記ポリオール(a)及びポリイソシアネート(b)との反応物を用いることができる。 The hot melt urethane prepolymer (A) having an isocyanate group can be, for example, a reaction product of the polyol (a) and the polyisocyanate (b).
 前記ポリイソシアネート(b)としては、例えば、ポリメチレンポリフェニルポリイソシアネート、ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネートイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族又は脂環族ポリイソシアネートなどを用いることができる。これらのポリ伊孑志はネートは単独でも2種以上を併用してもよく、石油由来のものでも、植物由来のものでもよい。これらの中でも、より一層優れた反応性および接着性が得られる点から、芳香族ポリイソシアネートが好ましく、ジフェニルメタンジイソシアネートがより好ましい。 As the polyisocyanate (b), for example, aromatic polyisocyanates such as polymethylene polyphenyl polyisocyanate, diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate isocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; aliphatic or alicyclic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate can be used. These polyisocyanates may be used alone or in combination of two or more, and may be derived from petroleum or plants. Among these, aromatic polyisocyanates are preferred, and diphenylmethane diisocyanate is more preferred, in that they provide even better reactivity and adhesion.
 前記ホットメルトウレタンプレポリマー(A)は、空気中やウレタンプレポリマーが塗布される基材や被着体中に存在する水分と反応して架橋構造を形成しうるイソシアネート基をポリマー末端や分子内に有するものである。 The hot melt urethane prepolymer (A) has isocyanate groups at the polymer terminals or within the molecule that can react with moisture present in the air or in the substrate or adherend to which the urethane prepolymer is applied to form a crosslinked structure.
 前記ホットメルトウレタンプレポリマー(A)の製造方法としては、例えば、前記ポリイソシアネート(b)の入った反応容器に、前記ポリオール(a)を滴下した後に加熱し、前記ポリイソシアネート(b)の有するイソシアネート基が、前記ポリオール(a)の有する水酸基に対して過剰となる条件で反応させることによって製造することができる。 The hot melt urethane prepolymer (A) can be produced, for example, by dropping the polyol (a) into a reaction vessel containing the polyisocyanate (b), heating the vessel, and reacting the polyisocyanate (b) under conditions in which the isocyanate groups of the polyisocyanate (b) are in excess of the hydroxyl groups of the polyol (a).
  前記ポリオール(a)及び前記ポリイソシアネート(b)を反応させる際の、前記ポリオール(a)が有する水酸基と、前記ポリイソシアネート(b)含有するイソシアネート基とのモル比[NCO/OH]としては、より一層優れたホットメルト性、接着性、及び、低温屈曲性が得られる点から、1.3~2.5が好ましく、1.5~2.0がより好ましい。 When reacting the polyol (a) and the polyisocyanate (b), the molar ratio [NCO/OH] of the hydroxyl groups in the polyol (a) to the isocyanate groups in the polyisocyanate (b) is preferably 1.3 to 2.5, and more preferably 1.5 to 2.0, in order to obtain even better hot melt properties, adhesive properties, and low-temperature flexibility.
 前記ホットメルトウレタンプレポリマー(A)のイソシアネート基含有率(以下、「NCO%」と略記する。)としては、より一層優れたホットメルト性、接着性、及び、低温屈曲性が得られる点から、1.2~5.0質量%が好ましく、1.7~3.5質量%がより好ましい。なお、前記ホットメルトウレタンプレポリマー(A)のNCO%は、JISK1603-1:2007に準拠し、電位差滴定法により測定した値を示す。 The isocyanate group content (hereinafter abbreviated as "NCO%) of the hot melt urethane prepolymer (A) is preferably 1.2 to 5.0 mass%, more preferably 1.7 to 3.5 mass%, in order to obtain even better hot melt properties, adhesion, and low-temperature flexibility. The NCO% of the hot melt urethane prepolymer (A) is a value measured by potentiometric titration in accordance with JIS K1603-1:2007.
 前記難燃剤(B)は優れた難燃性を得るうえで必須の成分であり、かつ、その含有量が、前記ホットメルトウレタンプレポリマー(A)100質量部に対して、15質量部を超えるものであることが必須である。前記難燃剤(B)の含有量としては、低温屈曲性、及び、接着性を高いレベルで維持し、かつ、より一層優れた難燃性を得る上で、前記ホットメルトウレタンプレポリマー(A)100質量部に対して、17.5~55質量部が好ましい。 The flame retardant (B) is an essential component for obtaining excellent flame retardancy, and its content must exceed 15 parts by mass per 100 parts by mass of the hot-melt urethane prepolymer (A). The content of the flame retardant (B) is preferably 17.5 to 55 parts by mass per 100 parts by mass of the hot-melt urethane prepolymer (A) in order to maintain a high level of low-temperature flexibility and adhesion and obtain even better flame retardancy.
 前記難燃剤(B)としては、例えば、リン酸エステル、リン酸塩含有難燃剤、赤リン、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤、金属水酸化物、黒鉛、リン・ホウ素系化合物、ビニル重合体等を用いることができる。これらの難燃剤は単独で用いても2種以上を併用してもよい。これらの中でも、低温屈曲性、及び、接着性を高いレベルで維持し、かつ、より一層優れた難燃性が得られる点から、芳香環を3つ以上有するリン酸エステルが好ましく、芳香環を4つ以上有するリン酸エステルがより好ましい。 The flame retardant (B) may be, for example, a phosphate ester, a phosphate-containing flame retardant, red phosphorus, a bromine-containing flame retardant, a boron-containing flame retardant, an antimony-containing flame retardant, a metal hydroxide, graphite, a phosphorus-boron compound, a vinyl polymer, or the like. These flame retardants may be used alone or in combination of two or more. Among these, a phosphate ester having three or more aromatic rings is preferred, and a phosphate ester having four or more aromatic rings is more preferred, in that it maintains a high level of low-temperature flexibility and adhesion, and provides even more excellent flame retardancy.
 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、前記ホットメルトウレタンプレポリマー(A)及び前記難燃剤(B)を必須成分として含有するが、必要に応じてその他の添加剤を含有してもよい。 The moisture-curable polyurethane hot-melt resin composition of the present invention contains the hot-melt urethane prepolymer (A) and the flame retardant (B) as essential components, but may contain other additives as necessary.
 前記その他の添加剤としては、例えば、ウレタン化触媒、中和剤、架橋剤、シランカップリング剤、増粘剤、充填剤、チキソ付与剤、粘着付与剤、ワックス、熱安定剤、耐光安定剤、蛍光増白剤、発泡剤、顔料、染料、導電性付与剤、帯電防止剤、透湿性向上剤、撥水剤、撥油剤、中空発泡体、吸水剤、吸湿剤、消臭剤、整泡剤、可塑剤、ブロッキング防止剤、加水分解防止剤等を用いることができる。これらの添加剤は単独で用いても2種以上を併用してもよい。 Examples of the other additives that can be used include urethane catalysts, neutralizing agents, crosslinking agents, silane coupling agents, thickeners, fillers, thixotropic agents, tackifiers, waxes, heat stabilizers, light resistance stabilizers, fluorescent whitening agents, foaming agents, pigments, dyes, conductivity agents, antistatic agents, moisture permeability enhancers, water repellents, oil repellents, hollow foams, water absorbents, moisture absorbents, deodorizers, foam stabilizers, plasticizers, antiblocking agents, hydrolysis inhibitors, etc. These additives may be used alone or in combination of two or more.
 以上、本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、接着性、低温屈曲性、及び、難燃性に優れるものである。よって、本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、熱可塑性樹脂を表皮材とする合成皮革の製造に特に好適に用いることができる。 As described above, the moisture-curable polyurethane hot melt resin composition of the present invention has excellent adhesion, low-temperature flexibility, and flame retardancy. Therefore, the moisture-curable polyurethane hot melt resin composition of the present invention can be particularly suitably used in the manufacture of synthetic leather that uses a thermoplastic resin as the skin material.
 次に、本発明の合成皮革について説明する。 Next, we will explain the synthetic leather of the present invention.
 前記合成皮革は、少なくとも熱可塑性樹脂層、及び、前記の湿気硬化型ポリウレタンホットメルト樹脂組成物を含有する接着剤層を有するものであり、例えば、基材、前記接着剤層、及び、熱可塑性樹脂層を順次積層したものが挙げられる。 The synthetic leather has at least a thermoplastic resin layer and an adhesive layer containing the moisture-curable polyurethane hot melt resin composition, and may be, for example, a layer of a substrate, the adhesive layer, and a thermoplastic resin layer laminated in that order.
 前記基材としては、例えば、ポリエステル繊維、ポリエチレン繊維、ナイロン繊維、アクリル繊維、ポリウレタン繊維、アセテート繊維、レーヨン繊維、ポリ乳酸繊維、綿、麻、絹、羊毛、グラスファイバー、炭素繊維、それらの混紡繊維等による不織布、織布、編み物などを用いることができる。 The substrate may be, for example, a nonwoven fabric, woven fabric, or knitted fabric made of polyester fiber, polyethylene fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, polylactic acid fiber, cotton, hemp, silk, wool, glass fiber, carbon fiber, or a blend of these fibers.
 前記熱可塑性樹脂層としては、例えば、公知のポリ塩化ビニル、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリスチレン、TPO(Thermoplastic Olefinic Elastomer)、熱可塑性エステル系エラストマー、熱可塑性ポリウレタン等により形成されたものを用いることができる。本発明においては、前記熱可塑性樹脂として、ポリ塩化ビニル、TPO、熱可塑性エステル系エラストマー、熱可塑性ポリウレタンを用いた場合であっても優れた接着性、及び、低温屈曲性を有し、特に、難密着であるポリ塩化ビニルについては、発泡体でも未発泡体であっても優れた接着性、及び、低温屈曲性を有する。 The thermoplastic resin layer may be formed from, for example, known polyvinyl chloride, polyvinyl acetate, polyvinylidene chloride, polystyrene, TPO (thermoplastic olefinic elastomer), thermoplastic ester elastomer, thermoplastic polyurethane, etc. In the present invention, even when polyvinyl chloride, TPO, thermoplastic ester elastomer, or thermoplastic polyurethane is used as the thermoplastic resin, it has excellent adhesion and low-temperature flexibility, and in particular, for polyvinyl chloride, which is difficult to adhere to, it has excellent adhesion and low-temperature flexibility whether it is foamed or unfoamed.
 前記接着剤層は、本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物により形成されるが、その形成方法としては、例えば、前記湿気硬化型ポリウレタンホットメルト樹脂組成物を100~140℃で溶融した後、ロールコーター、スプレーコーター、T-ダイコーター、ナイフコーター、コンマコーター等のコーター方式;ディスペンサー、インクジェット印刷、スクリーン印刷、オフセット印刷等の精密方式;ノズル塗布などを使用して前記熱可塑性樹脂層又は前記基材に塗布し、その後貼り合わせる方法が挙げられる。 The adhesive layer is formed from the moisture-curable polyurethane hot melt resin composition of the present invention, and examples of the method for forming the adhesive layer include a method in which the moisture-curable polyurethane hot melt resin composition is melted at 100 to 140°C, and then coated onto the thermoplastic resin layer or the substrate using a coater method such as a roll coater, spray coater, T-die coater, knife coater, or comma coater; a precision method such as a dispenser, inkjet printing, screen printing, or offset printing; or a nozzle coater, and then the layers are bonded together.
 また、前記接着剤により2つの叢を貼り合わせた後は、必要に応じて接着剤を乾燥、養生を公知の方法で行うことができる。 After the two bunches are attached with the adhesive, the adhesive can be dried and cured as necessary using known methods.
 前記合成皮革としては、前記熱可塑性樹脂層のうえに、更に表面処理層を設けてもよい。前記表面処理層としては、例えば、公知の溶剤系ウレタン樹脂、水系ウレタン樹脂、溶剤系アクリル樹脂、水系アクリル樹脂等により形成されたものを用いることができる。 The synthetic leather may further have a surface treatment layer on top of the thermoplastic resin layer. The surface treatment layer may be formed from, for example, a known solvent-based urethane resin, water-based urethane resin, solvent-based acrylic resin, water-based acrylic resin, etc.
 以下、実施例を用いて、本発明をより詳細に説明する。 The present invention will now be described in more detail using examples.
[実施例1]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、ポリテトラメチレングリコール(数平均分子量;2、000、以下「PEt-1」と略記する。)を171質量部、ポリエステルポリオール(1,6-ヘキサンジオール、及びオルトフタル酸を反応させたもの、数平均分子量;2、000、以下「PEs-1」と略記する。)を78質量部、ポリエステルポリオール(1,6-ヘキサンジオール、及びセバシン酸を反応させたもの、数平均分子量;3,500、以下「PEs-2」と略記する。)を62質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融した4,4’-ジフェニルメタンジイソシアネート(以下「MDI」と略記する。)を71質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、リン酸エステル(1,3-フェニレンビス(2,6-ジメチルフェニル=ホスファート)、以下「難燃剤(B1)」と略記する。)35質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(1)を得た。
[Example 1]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 171 parts by mass of polytetramethylene glycol (number average molecular weight: 2,000, hereinafter abbreviated as "PEt-1"), 78 parts by mass of polyester polyol (residued by reacting 1,6-hexanediol and orthophthalic acid, number average molecular weight: 2,000, hereinafter abbreviated as "PEs-1"), and 62 parts by mass of polyester polyol (residued by reacting 1,6-hexanediol and sebacic acid, number average molecular weight: 3,500, hereinafter abbreviated as "PEs-2"), mixed, and heated at 100°C under reduced pressure to dehydrate the water in the flask until the water content was 0.05% by mass or less. The flask was then cooled to 90°C, and 71 parts by mass of 4,4'-diphenylmethane diisocyanate (hereinafter abbreviated as "MDI") melted at 70°C was added, and the mixture was allowed to react at 110°C for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, yielding a hot-melt urethane prepolymer. 35 parts by mass of a phosphate ester (1,3-phenylenebis(2,6-dimethylphenyl=phosphate), hereinafter abbreviated as "flame retardant (B1)") was blended with 100 parts by mass of this hot-melt urethane prepolymer to obtain a moisture-curable polyurethane hot-melt resin composition (1).
[実施例2]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を74質量部、PEs-1を31質量部、PEs-2を18質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを27質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、難燃剤(B1)25質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(2)を得た。
[Example 2]
In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 74 parts by mass of PEt-1, 31 parts by mass of PEs-1, and 18 parts by mass of PEs-2 were added, mixed, and heated under reduced pressure at 100 ° C., and the moisture in the flask was dehydrated until it was 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 27 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 25 parts by mass of flame retardant (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (2).
[実施例3]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、ポリプロピレングリコール(数平均分子量;2、000、以下「PEt-2」と略記する。)を48質量部、PEs-1を17質量部、ポリエステルポリオール(エチレングリコール、ネオペンチルグリコール、16-ヘキサンジオール、及び、アジピン酸を反応させたもの、数平均分子量;5,500、以下「PEs-3」と略記する。)を22質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを18質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、難燃剤(B1)35質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(3)を得た。
[Example 3]
In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 48 parts by mass of polypropylene glycol (number average molecular weight: 2,000, hereinafter abbreviated as "PEt-2"), 17 parts by mass of PEs-1, and 22 parts by mass of polyester polyol (ethylene glycol, neopentyl glycol, 16-hexanediol, and adipic acid reacted, number average molecular weight: 5,500, hereinafter abbreviated as "PEs-3") were placed, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 18 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 35 parts by mass of a flame retardant (B1) was added to 100 parts by mass of this hot-melt urethane prepolymer to obtain a moisture-curable polyurethane hot-melt resin composition (3).
[実施例4]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を133質量部、PEs-1を56質量部、PEs-2を33質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを49質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、難燃剤(B1)30質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(4)を得た。
[Example 4]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 133 parts by mass of PEt-1, 56 parts by mass of PEs-1, and 33 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 49 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 30 parts by mass of flame retardant (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (4).
[実施例5]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-2を139質量部、PEs-1を32質量部、PEs-3を43質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを47質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、難燃剤(B1)35質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(5)を得た。
[Example 5]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 139 parts by mass of PEt-2, 32 parts by mass of PEs-1, and 43 parts by mass of PEs-3, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 47 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 35 parts by mass of flame retardant (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (5).
[実施例6]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を83質量部、PEs-1を19質量部、PEs-3を26質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを26質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、難燃剤(B1)40質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(6)を得た。
[Example 6]
In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 83 parts by mass of PEt-1, 19 parts by mass of PEs-1, and 26 parts by mass of PEs-3 were added, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 26 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 40 parts by mass of flame retardant (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (6).
[実施例7]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を121質量部、PEt-2を121質量部、PEs-1を81質量部、PEs-2を81質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを87質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、難燃剤(B1)30質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(7)を得た。
[Example 7]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 121 parts by mass of PEt-1, 121 parts by mass of PEt-2, 81 parts by mass of PEs-1, and 81 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 87 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 30 parts by mass of flame retardant (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (7).
[実施例8]
 PEt-1をバイオマスポリテトラメチレングリコール(三菱ケミカル株式会社製「Bio PTMG」、数平均分子量;2,000)に種類を変更した以外は実施例1と同様にして湿気硬化型ポリウレタンホットメルト樹脂組成物(8)を得た。
[Example 8]
A moisture-curable polyurethane hot melt resin composition (8) was obtained in the same manner as in Example 1, except that PEt-1 was replaced with biomass polytetramethylene glycol ("Bio PTMG" manufactured by Mitsubishi Chemical Corporation, number average molecular weight: 2,000).
[比較例1]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を92質量部、PEs-1を33質量部、PEs-2を25質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを33質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、難燃剤(B1)10質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(R1)を得た。
[Comparative Example 1]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 92 parts by mass of PEt-1, 33 parts by mass of PEs-1, and 25 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 33 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 100 parts by mass of this hot melt urethane prepolymer was mixed with 10 parts by mass of flame retardant (B1) to obtain a moisture-curable polyurethane hot melt resin composition (R1).
[比較例2]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-2を109質量部、PEs-1を45質量部、PEs-2を27質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを40質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得、湿気硬化型ポリウレタンホットメルト樹脂組成物(R2)を得た。
[Comparative Example 2]
In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 109 parts by mass of PEt-2, 45 parts by mass of PEs-1, and 27 parts by mass of PEs-2 were placed, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 40 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer, and a moisture-curable polyurethane hot melt resin composition (R2) was obtained.
[比較例3]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を111質量部、PEs-1を77質量部、PEs-3を66質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを50質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、難燃剤(B1)65質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(R3)を得た。
[Comparative Example 3]
In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 111 parts by mass of PEt-1, 77 parts by mass of PEs-1, and 66 parts by mass of PEs-3 were added, mixed, and heated under reduced pressure at 100 ° C., and the moisture in the flask was dehydrated until it was 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 50 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 65 parts by mass of flame retardant (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (R3).
[比較例4]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を27質量部、PEs-1を41質量部、PEs-3を23質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを18質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、難燃剤(B1)40質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(R4)を得た。
[Comparative Example 4]
In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 27 parts by mass of PEt-1, 41 parts by mass of PEs-1, and 23 parts by mass of PEs-3 were added, mixed, and heated under reduced pressure at 100 ° C., and the moisture in the flask was dehydrated until it was 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 18 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 40 parts by mass of flame retardant (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (R4).
[数平均分子量、重量平均分子量の測定方法]
実施例および比較例で用いたポリオールの数平均分子量は、ゲル・パーミエーション・カラムクロマトグラフィー(GPC)法により、下記の条件で測定し得られた値を示す。
[Method of measuring number average molecular weight and weight average molecular weight]
The number average molecular weights of the polyols used in the examples and comparative examples are values measured by gel permeation column chromatography (GPC) under the following conditions.
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measurement device: High-speed GPC device ("HLC-8220GPC" manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were used, connected in series.
"TSKgel G5000" (7.8mm I.D. x 30cm) x 1 "TSKgel G4000" (7.8mm I.D. x 30cm) x 1 "TSKgel G3000" (7.8mm I.D. x 30cm) x 1 "TSKgel G2000" (7.8mm I.D. x 30cm) x 1 Detector: RI (differential refractometer)
Column temperature: 40°C
Eluent: tetrahydrofuran (THF)
Flow rate: 1.0 mL/min Injection volume: 100 μL (sample concentration 0.4% by mass in tetrahydrofuran solution)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
"TSKgel Standard Polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-550" manufactured by Tosoh Corporation
[合成皮革の作製方法]
 温度23℃、湿度50±5%に調整された恒温恒湿室にて、ポリ塩化ビニルシートにグラビアコーターを用いて、実施例及び比較例で得られた湿気硬化型ポリウレタンホットメルト樹脂組成物を40±5g/mとなるように間欠塗布し、ポリエステル系生地と貼り合わせしたものを温度23℃、湿度50±5%の条件で24時間熟成させることで合成皮革を得た。
[Method of producing synthetic leather]
In a constant temperature and humidity chamber adjusted to a temperature of 23°C and a humidity of 50±5%, a polyvinyl chloride sheet was intermittently coated with a gravure coater to give a coating of 40±5 g/ m2 of the moisture-curable polyurethane hot-melt resin composition obtained in the Examples and Comparative Examples. The sheet was then laminated with a polyester fabric and aged for 24 hours at a temperature of 23°C and a humidity of 50±5%, to obtain synthetic leather.
[接着性の評価方法]
 得られたそれぞれの合成皮革に対して、テンシロン(オリエンテック株式会社製テンシロン万能試験機「RTC-1210A」)を使用して、クロスヘッド測度;200mm/分の条件で剥離強度を測定し、6N/cm以上を「○」、6N/cm未満を「×」と評価した。
[Method for evaluating adhesiveness]
For each of the obtained synthetic leathers, the peel strength was measured using a Tensilon (Tensilon universal testing machine "RTC-1210A" manufactured by Orientec Co., Ltd.) under the condition of a crosshead measurement of 200 mm/min, and a value of 6 N/cm or more was evaluated as "○", and a value of less than 6 N/cm was evaluated as "×".
[低温屈曲性の評価方法]
 得られたそれぞれの合成皮革をフレキソメーターでの屈曲性試験(-10℃、100回/毎分)を行い、合成皮革の表面に割れが生じるまでの回数を測定し、20,000回以上を「○」、20,000回未満を「×」と評価した。
[Method for evaluating low-temperature flexibility]
Each of the obtained synthetic leathers was subjected to a bending test using a flexometer (−10° C., 100 times/min) to measure the number of times until cracks appeared on the surface of the synthetic leather. 20,000 times or more was evaluated as "○", and less than 20,000 times was evaluated as "×".
[難燃性の評価方法]
 実施例及び比較例で得られた湿気硬化型ポリウレタンホットメルト樹脂組成物をロールコーターにて厚さ300ミクロンになるように塗布し、その後、温度23℃、湿度50±5%の条件で72時間以上熟成させて皮膜を作製した。次いで、得られた皮膜を幅102mm、長さ356mmの長方形に裁断し、燃焼性試験(FMVSS302)を実施した。試験片に着火しない又はA標線手前で自消するもの、燃焼距離51mm以内(且つ60秒以内)で自消するもの、燃焼速度が102mm/分以下のものを「○」、それ以外のものを「×」とした。
[Flame retardancy evaluation method]
The moisture-curable polyurethane hot melt resin composition obtained in the examples and comparative examples was applied to a thickness of 300 microns using a roll coater, and then aged for 72 hours or more under conditions of a temperature of 23°C and a humidity of 50±5% to produce a film. The obtained film was then cut into a rectangle with a width of 102 mm and a length of 356 mm, and a flammability test (FMVSS302) was performed. Test pieces that did not ignite or self-extinguished before the A-marked line, those that self-extinguished within a burning distance of 51 mm (and within 60 seconds), and those with a burning rate of 102 mm/min or less were marked as "○", and those that did not were marked as "×".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物である実施例1~8は、接着性、低温屈曲性、及び、難燃性に優れることが分かった。  It was found that Examples 1 to 8, which are moisture-curable polyurethane hot melt resin compositions of the present invention, have excellent adhesion, low-temperature flexibility, and flame retardancy.
 一方、比較例1は、難燃剤(B)の含有量が、本発明で規定する範囲を下回る態様であるが、難燃性が不良であった。 On the other hand, in Comparative Example 1, the content of flame retardant (B) was below the range specified in the present invention, but the flame retardancy was poor.
 比較例2は、難燃剤(B)を用いない態様であるが、難燃性が不良であった。 Comparative Example 2 is an embodiment in which flame retardant (B) is not used, but the flame retardancy was poor.
 比較例3及び4は、ポリエーテルポリオール(a1)の使用量が、本発明で規定する範囲を下回る態様であるが、低温屈曲性等が不良であった。 Comparative examples 3 and 4 are examples in which the amount of polyether polyol (a1) used is below the range specified in the present invention, but the low-temperature flexibility and other properties were poor.

Claims (4)

  1. イソシアネート基を有するホットメルトウレタンプレポリマー(A)、及び、難燃剤(B)を含有する湿気硬化型ポリウレタンホットメルト樹脂組成物であって、
    前記ホットメルトプレポリマー(A)が、ポリエーテルポリオール(a1)を50質量%以上含むポリオール(a)を原料とするものであり、
    前記難燃剤(B)の含有量が、前記ホットメルトウレタンプレポリマー(A)100質量部に対して、15質量部を超えるものであることを特徴とする湿気硬化型ポリウレタンホットメルト樹脂組成物。
    A moisture-curable polyurethane hot-melt resin composition comprising a hot-melt urethane prepolymer (A) having an isocyanate group and a flame retardant (B),
    The hot melt prepolymer (A) is made from a polyol (a) containing 50% by mass or more of a polyether polyol (a1),
    A moisture-curable polyurethane hot-melt resin composition, characterized in that the content of the flame retardant (B) is more than 15 parts by mass per 100 parts by mass of the hot-melt urethane prepolymer (A).
  2. 前記難燃剤(B)が、芳香環を3つ以上有するリン酸エステルである請求項1記載の湿気硬化型ポリウレタンホットメルト樹脂組成物。 The moisture-curable polyurethane hot melt resin composition according to claim 1, wherein the flame retardant (B) is a phosphoric acid ester having three or more aromatic rings.
  3. 請求項1記載の湿気硬化型ポリウレタンホットメルト樹脂組成物を含有することを特徴とする接着剤。 An adhesive comprising the moisture-curable polyurethane hot melt resin composition according to claim 1.
  4. 少なくとも、熱可塑性樹脂層、及び、請求項3記載の接着剤層とを有することを特徴とする合成皮革。 Synthetic leather characterized by having at least a thermoplastic resin layer and the adhesive layer described in claim 3.
PCT/JP2023/019460 2022-10-18 2023-05-25 Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather WO2024084729A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024536474A JPWO2024084729A1 (en) 2022-10-18 2023-05-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-166839 2022-10-18
JP2022166839 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024084729A1 true WO2024084729A1 (en) 2024-04-25

Family

ID=90737232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019460 WO2024084729A1 (en) 2022-10-18 2023-05-25 Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather

Country Status (2)

Country Link
JP (1) JPWO2024084729A1 (en)
WO (1) WO2024084729A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049147A (en) * 2001-08-08 2003-02-21 Dainippon Ink & Chem Inc Nonsolvent-type hot-melt urethane resin adhesive curable by moisture for synthetic leather, and synthetic leather structure using the same
JP2005206828A (en) * 2003-12-25 2005-08-04 Dainippon Ink & Chem Inc Moisture-curing polyurethane hot melt resin composition
CN104099055A (en) * 2013-04-07 2014-10-15 广东国望精细化学品有限公司 Halogenn-free flame retardant polyurethane sealant and preparation method thereof
JP2020002262A (en) * 2018-06-28 2020-01-09 Dic株式会社 Moisture-curable polyurethane hot-melt resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049147A (en) * 2001-08-08 2003-02-21 Dainippon Ink & Chem Inc Nonsolvent-type hot-melt urethane resin adhesive curable by moisture for synthetic leather, and synthetic leather structure using the same
JP2005206828A (en) * 2003-12-25 2005-08-04 Dainippon Ink & Chem Inc Moisture-curing polyurethane hot melt resin composition
CN104099055A (en) * 2013-04-07 2014-10-15 广东国望精细化学品有限公司 Halogenn-free flame retardant polyurethane sealant and preparation method thereof
JP2020002262A (en) * 2018-06-28 2020-01-09 Dic株式会社 Moisture-curable polyurethane hot-melt resin composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDEO SASAKI: "Flame Retardants", NEW REVISED EDITION: PLASTIC COMPOUNDING AGENTS - FUNDAMENTALS AND APPLICATIONS. K.K. TAISEISHA, 1996, pages 139 *
IMAMURA, TAKEO: "Flame Retardants", PLASTIC DATA BOOK. KOGYO CHOSAKAI PUBLISHING CO., LTD., 1 December 1999 (1999-12-01), pages 1003 *

Also Published As

Publication number Publication date
JPWO2024084729A1 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
KR101514107B1 (en) Urethane Prepolymer
KR101934662B1 (en) Manufacturing method of leather-like sheet
CN110418809B (en) Moisture-curable polyurethane hot-melt resin composition and laminate
US5178938A (en) Composition for adhesion of polyurethane-coated nylon fabrics
KR102623240B1 (en) Moisture curing polyurethane adhesive composition
JP6753550B2 (en) Moisture curable polyurethane hot melt resin composition
KR20200036903A (en) Synthetic Leather
EP3770229B1 (en) Adhesive and synthetic leather
KR102188218B1 (en) Flame retardant reactive polyurethane hot-melt adhesives having excellent thermal resistance and producing method of coating textile using the same
KR102428612B1 (en) Synthetic leather manufacturing method
EP3816344A1 (en) Synthetic leather
US6448193B1 (en) Moisture-setting polyurethane adhesive
WO2024084729A1 (en) Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather
JP6981578B2 (en) Moisture-curable polyurethane resin composition, adhesive, and laminate
JP6836735B2 (en) Synthetic leather
WO2024095530A1 (en) Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather
WO2022097333A1 (en) Laminate and synthetic leather
JP6485726B1 (en) Synthetic leather manufacturing method
JP2023094002A (en) Moisture curable polyurethane hot melt resin composition, adhesive, and synthetic leather
JP7517622B2 (en) Method for manufacturing polyurethane foam sheet and method for manufacturing synthetic leather
JP2021024998A (en) Moisture-curable polyurethane hot melt resin composition, and cured product thereof
WO2024122084A1 (en) Manufacturing method for polyurethane foam sheet and manufacturing method for synthetic leather
WO2024116443A1 (en) Moisture-curable polyurethane resin composition, adhesive, and laminate
WO2024122083A1 (en) Moisture-curable polyurethane resin composition, adhesive, and laminate
EP4079822A1 (en) Urethane resin aqueous dispersion, synthetic leather, and method for producing synthetic leather

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879383

Country of ref document: EP

Kind code of ref document: A1