WO2024084646A1 - Overcurrent protection circuit and semiconductor device - Google Patents

Overcurrent protection circuit and semiconductor device Download PDF

Info

Publication number
WO2024084646A1
WO2024084646A1 PCT/JP2022/039065 JP2022039065W WO2024084646A1 WO 2024084646 A1 WO2024084646 A1 WO 2024084646A1 JP 2022039065 W JP2022039065 W JP 2022039065W WO 2024084646 A1 WO2024084646 A1 WO 2024084646A1
Authority
WO
WIPO (PCT)
Prior art keywords
ocp
overcurrent protection
protection circuit
voltage
voltage value
Prior art date
Application number
PCT/JP2022/039065
Other languages
French (fr)
Japanese (ja)
Inventor
良太 川島
Original Assignee
サンケン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社 filed Critical サンケン電気株式会社
Priority to PCT/JP2022/039065 priority Critical patent/WO2024084646A1/en
Publication of WO2024084646A1 publication Critical patent/WO2024084646A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load

Definitions

  • the present invention relates to an overcurrent protection circuit that prevents an overcurrent from flowing through a power supply or load.
  • a semiconductor device that integrates a motor driver that drives a motor is known.
  • the motor driver converts drive commands from a controller into drive signals with optimal voltage and switching speed to drive a built-in inverter circuit and output a drive voltage that drives the motor.
  • the motor driver is provided with an overcurrent protection (OCP: Over Current Protection) circuit that detects overcurrent, such as a motor overload, and stops the switching operation to prevent overcurrent from flowing to the power supply or load (see, for example, Patent Document 1).
  • OCP Over Current Protection
  • General overcurrent protection operation involves comparing the current IC flowing through a switching element with the OCP threshold, and judging whether or not an overcurrent is flowing based on the comparison result.
  • the recovery current that can occur during normal operation of the switching element enclosed by the dotted line as shown in Figure 10(a) may become larger, causing a malfunction (turning off).
  • This malfunction can be prevented by extending the OCP cut-off time, during which no overcurrent judgment is made. Therefore, if the OCP threshold needs to be reduced due to the type or combination of switching elements, it is effective to extend the OCP cut-off time to prevent malfunction.
  • the appropriate OCP threshold and OCP cut-off time vary depending on the type, generation, size, and combination of switching elements. Therefore, every time a new motor driver was developed, it was necessary to develop a new overcurrent protection circuit with the OCP threshold and OCP cut-off time set to appropriate values. This resulted in a huge number of overcurrent protection circuit varieties that were difficult to manage, and also required a long development period and labor. Furthermore, the number of assembly prototypes increased, which could lead to installation errors.
  • the present invention was made in consideration of these problems, and its purpose is to provide a versatile overcurrent protection circuit that can be used with a variety of switching elements.
  • the overcurrent protection circuit of the present invention is an overcurrent protection circuit that uses a current detection element to detect the current flowing through a switching element as an OCP voltage value, compares the OCP voltage value with an OCP threshold value, and detects an overcurrent when an OCP cut-off time has elapsed with the OCP voltage value exceeding the OCP threshold value, and is characterized in that it comprises a plurality of comparators that compare the OCP voltage value with a plurality of different OCP threshold values, respectively, and a plurality of cut-off time generation circuits that generate a different OCP cut-off time for each of the plurality of comparators, and the cut-off time generation circuit generates a shorter OCP cut-off time the higher the OCP threshold value of the comparator is.
  • an overcurrent protection circuit is an overcurrent protection circuit that detects a current flowing through a switching element as an OCP voltage value using a current detection element, compares the OCP voltage value with an OCP threshold value, and detects an overcurrent when an OCP cut-off time has elapsed with the OCP voltage value exceeding the OCP threshold value
  • the overcurrent protection circuit comprising: a first overcurrent protection circuit; and a second overcurrent protection circuit
  • the first overcurrent protection circuit comprising a plurality of first comparators that compare the OCP voltage value with a plurality of different OCP threshold values, respectively, and a plurality of first cut-off time generation circuits that generate different OCP cut-off times for each of the first comparators, the first cut-off time generation circuit generating a shorter OCP cut-off time as the OCP threshold value of the first comparator is higher, and receives an input of a main power supply voltage value obtained by dividing a main power supply voltage, and the OCP threshold value is set to a lower voltage as the
  • the overcurrent protection circuit of the present invention detects overcurrent with multiple OCP cutoff times that are appropriately set according to multiple OCP thresholds, and can detect how susceptible a state is to thermal destruction and appropriately control the OCP cutoff time, thereby achieving the effect of being able to accommodate a variety of switching elements that have different times until thermal destruction in the event of an abnormality.
  • FIG. 1 is a diagram showing an example of the configuration of a motor driver incorporating an overcurrent protection circuit according to the present invention
  • 1 is a diagram showing a configuration example of an embodiment of an overcurrent protection circuit according to the present invention
  • 3 is a diagram showing an example of the configuration of a variable voltage source used in the first overcurrent protection circuit shown in FIG. 2 .
  • 3 is a diagram illustrating an example of the operation of the first overcurrent protection circuit illustrated in FIG. 2 .
  • 3 is a diagram showing an example of the configuration of a variable voltage source used in the second overcurrent protection circuit shown in FIG. 2 .
  • 3 is a diagram illustrating an example of the operation of the second overcurrent protection circuit illustrated in FIG. 2 .
  • 3 is a diagram showing a modification of the second overcurrent protection circuit shown in FIG. 2 .
  • the motor driver of this embodiment is a motor driving device that drives a motor 1, and referring to FIG. 1, it includes an inverter circuit 2, a high-side driver IC3 and a low-side driver IC4 that are driving circuits, and a controller 5 that is a control circuit.
  • the inverter circuit 2 includes a half-bridge circuit for the U phase, a half-bridge circuit for the V phase, and a half-bridge circuit for the W phase.
  • Each half-bridge circuit includes a high-side switching element QH and a low-side switching element QL connected in series between the motor power supply voltage Vpp and the common line.
  • Capacitor C1 is an input capacitor connected between the motor power supply voltage Vpp and the common line.
  • the high-side switching element QH and the low-side switching element QL are configured, for example, as insulated gate bipolar transistors (IGBTs).
  • the high-side driver IC3 and the low-side driver IC4 are semiconductor devices formed by sealing a semiconductor integrated circuit in a package made of resin.
  • the high-side driver IC3 and the low-side driver IC4 may be in the same package, and may have the inverter circuit 2 built in.
  • the high-side driver IC3 has a control power input terminal Vcc1 that inputs the control power voltage Vcc, and a control ground terminal COM1 that is connected to the common line.
  • Capacitor C2 is an input capacitor connected between the control power voltage Vcc and the common line.
  • the high-side driver IC3 has floating power terminals VB1-3 and floating power terminals HS1-3.
  • Capacitors C3-C5 are capacitors connected between VB1-3 and HS1-3.
  • the high-side driver IC3 has high-side control signal input terminals HIN1-3 and high-side drive signal output terminals HO1-3. Based on the high-side control signal from the controller 5 input to the high-side control signal input terminals HIN1-3, the high-side driver IC3 generates a high-side drive signal that drives the high-side switching element QH of the inverter circuit 2 on and off, and outputs it from the high-side drive signal output terminals HO1-3.
  • the high-side driver IC3 has an error signal input terminal SD.
  • the high-side driver IC3 stops the on/off driving of the high-side switching element QH and switches the high-side switching element QH to a cut-off (off) state.
  • the low-side driver IC4 has a control power supply input terminal Vcc2 that inputs the control power supply voltage Vcc, and a control ground terminal COM2 that is connected to the common line.
  • the low-side driver IC4 has low-side control signal input terminals LIN1-3 and low-side drive signal output terminals LO1-3. Based on the low-side control signal from the controller 5 input to the low-side control signal input terminals LIN1-3, the low-side driver IC4 generates a low-side drive signal that drives the low-side switching element QL of the inverter circuit 2 on and off, and outputs it from the low-side drive signal output terminals LO1-3.
  • the low-side driver IC4 has a motor power supply voltage detection terminal OVM, an overcurrent protection signal input terminal OCP, a user-defined terminal BTMS, and a temperature detection terminal VT.
  • the motor power supply voltage detection terminal OVM is connected between resistor R1 and variable resistor R2, which are connected in series between the motor power supply voltage Vpp and the common line, and the value obtained by dividing the motor power supply voltage Vpp by resistor R1 and variable resistor R2 is input as the power supply voltage value V OVM .
  • the variable resistor R2 is provided so that the user can adjust the detection level of the power supply voltage value V OVM .
  • the overcurrent protection signal input terminal OCP is connected to the emitter of the low-side switching element QL connected to the common line via the current detection element Rs, and detects the current flowing from the low-side switching element QL and inputs it as an OCP voltage value V_OCP .
  • a variable voltage source VA is connected to the user setting terminal BTMS, and the voltage of the variable voltage source VA is input as a user setting value V BTMS .
  • the temperature detection terminal VT is connected to a temperature sensor 6, and the temperature detected by the temperature sensor 6 is input as a temperature voltage value VVT .
  • the error signal output terminal FO is connected to the error signal input terminal SD of the high-side driver IC3 and the controller 5, and the error signal output from the error signal output terminal FO is input to the error signal input terminal SD of the high-side driver IC3 and the controller 5.
  • the low-side driver IC4 includes an overcurrent protection circuit 10 as shown in Fig. 2.
  • the overcurrent protection circuit 10 is a circuit that detects an overcurrent based on an OCP voltage value V_OCP input from an overcurrent protection signal input terminal OCP and outputs an error signal, and includes a first overcurrent protection circuit 11 and a second overcurrent protection circuit 21.
  • the overcurrent protection circuit 10 detects an overcurrent using either the first overcurrent protection circuit 11 or the second overcurrent protection circuit 21.
  • Either the first overcurrent protection circuit 11 or the second overcurrent protection circuit 21 is selected by a user setting value VBTMS input to a user setting terminal BTMS.
  • the user setting value VBTMS is input to one input terminal of an AND circuit AND11 provided at the output stage of the first overcurrent protection circuit 11, and is also input via an inverter INV20 to one input terminal of an AND circuit AND21 provided at the output stage of the second overcurrent protection circuit 21.
  • the AND circuit AND11 is turned on and the AND circuit AND21 is turned off, selecting the first overcurrent protection circuit 11.
  • VBTMS is a voltage at which the input judgment of the AND circuit AND11 and the inverter INV20 is at a high level (e.g., 3 V or more)
  • the AND circuit AND11 is turned on and the AND circuit AND21 is turned off, selecting the first overcurrent protection circuit 11.
  • VBTMS is a voltage at which the input judgment of the AND circuit AND11 and the inverter INV20 is at a low level (e.g., less than 3 V)
  • the AND circuit AND11 is turned off and the AND circuit AND21 is turned on, selecting the second overcurrent protection circuit 21.
  • the first overcurrent protection circuit 11 includes comparators CMP11, CMP12, and CMP13 whose non-inverting input terminals are connected to the overcurrent protection signal input terminal OCP and whose inverting input terminals are connected to variable voltage sources 111, 112, and 113, respectively.
  • the comparator CMP11 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref11 generated by the variable voltage source 111.
  • the comparator CMP12 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref12 generated by the variable voltage source 112.
  • the comparator CMP13 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref13 generated by the variable voltage source 113.
  • the OCP threshold Vref11 is set lower than the OCP threshold Vref12, which is set lower than the OCP threshold Vref13 (Vref11 ⁇ Vref12 ⁇ Vref13). That is, the comparators CMP11, CMP12, and CMP13 compare the OCP voltage value VOCP with the OCP thresholds Vref11, Vref12, and Vref13, which have different potentials, respectively.
  • a series circuit consisting of a resistor R11 and a switch element Q11 is connected between the internal voltage Reg and the common line, and a capacitor C11 is connected in parallel to the switch element Q11.
  • the output terminal of the comparator CMP11 is connected to the control terminal of the switch element Q11 via an inverter INV11. Therefore, when the OCP voltage value VOCP exceeds the OCP threshold value Vref11, the comparator CMP11 outputs a high level (the inverter INV11 outputs a low level), and the switch element Q11 transitions to the off state.
  • the switch element Q11 transitions to the off state, charging of the capacitor C11 begins, and when the voltage of the capacitor C11 reaches a high level due to charging, an error signal (high level) is output.
  • the time it takes for the voltage of capacitor C11 to reach a high level through charging is the OCP cut-off time TOCP11 that masks the detection of an overcurrent. That is, the switch element Q11, resistor R11, and capacitor C11 function as a cut-off time generating circuit that generates the OCP cut-off time TOCP11 . If the OCP voltage value VOCP becomes equal to or lower than the OCP threshold value Vref11 before the OCP cut-off time TOCP11 has elapsed, the switch element Q11 transitions to the ON state, the voltage of capacitor C11 is discharged, and an error signal (high level) is not output.
  • a series circuit consisting of a resistor R12 and a switch element Q12 is connected between the internal voltage Reg and the common line, and a capacitor C12 is connected in parallel to the switch element Q12.
  • the output terminal of the comparator CMP12 is connected to the control terminal of the switch element Q12 via an inverter INV12. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref12, the comparator CMP12 outputs a high level (the inverter INV12 outputs a low level), and the switch element Q12 transitions to the off state.
  • the switch element Q12 transitions to the off state, charging of the capacitor C12 begins, and when the voltage of the capacitor C12 reaches a high level due to charging, an error signal (high level) is output.
  • the time required for the voltage of the capacitor C12 to reach a high level by charging is the OCP cutoff time T OCP12 that masks the detection of an overcurrent. That is, the switch element Q12, the resistor R12, and the capacitor C12 function as a cutoff time generating circuit that generates the OCP cutoff time T OCP12 .
  • the OCP cutoff time T OCP12 is set to a time shorter than the OCP cutoff time T OCP11 (T OCP12 ⁇ T OCP11 ).
  • the time constant of the resistor R12 and the capacitor C12 is set to a value smaller than the time constant of the resistor R11 and the capacitor C11.
  • the OCP voltage value V OCP exceeds the OCP threshold value Vref12, it also exceeds the OCP threshold value Vref11 and charging of the capacitor C11 is started, but if the voltage of the capacitor C12 reaches a high level by charging before the OCP cutoff time T OCP11 has elapsed, an error signal (high level) is output. If the OCP voltage value V_OCP becomes equal to or lower than the OCP threshold value Vref12 before the OCP cutoff time T_OCP12 has elapsed, the switch element Q12 transitions to the on state, the voltage of the capacitor C12 is discharged, and no error signal (high level) is output.
  • a series circuit consisting of a resistor R13 and a switch element Q13 is connected between the internal voltage Reg and the common line, and a capacitor C13 is connected in parallel to the switch element Q13.
  • the output terminal of the comparator CMP13 is connected to the control terminal of the switch element Q13 via an inverter INV13. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref13, the comparator CMP13 outputs a high level (the inverter INV13 outputs a low level), and the switch element Q13 transitions to the off state.
  • the switch element Q13 transitions to the off state, charging of the capacitor C13 begins, and when the voltage of the capacitor C13 reaches a high level due to charging, an error signal (high level) is output.
  • the time required for the voltage of the capacitor C13 to reach a high level by charging is the OCP cut-off time T OCP13 that masks the detection of an overcurrent. That is, the switch element Q13, the resistor R13, and the capacitor C13 function as a cut-off time generating circuit that generates the OCP cut-off time T OCP13 .
  • the OCP cut-off time T OCP13 is set to a time shorter than the OCP cut-off time T OCP13 (T OCP13 ⁇ T OCP12 ).
  • the time constant of the resistor R13 and the capacitor C13 is set to a value smaller than the time constant of the resistor R12 and the capacitor C12.
  • the OCP voltage value V OCP exceeds the OCP threshold value Vref13, it also exceeds the OCP threshold value Vref12 and charging of the capacitor C12 is started, but if the voltage of the capacitor C13 reaches a high level by charging before the OCP cut-off time T OCP12 has elapsed, an error signal (high level) is output. If the OCP voltage value V_OCP becomes equal to or lower than the OCP threshold value Vref13 before the OCP shutoff time T_OCP13 has elapsed, the switch element Q13 transitions to the on state, the voltage of the capacitor C13 is discharged, and no error signal (high level) is output.
  • the voltages of the capacitors C11 to C13 are input to the first to third input terminals of the OR circuit OR11, respectively.
  • the output terminal of the OR circuit OR11 is connected to the other input terminal of the AND circuit AND11, and when the voltage of V TMMS input to the AND circuit AND11 is in a high level state, an error signal is output from the overcurrent protection circuit 10 when the voltage of any of the capacitors C11 to C13 reaches a high level.
  • the error signal from the overcurrent protection circuit 10 is input to a control unit 20 built into the low-side driver IC4 and is output from an error signal output terminal FO.
  • the control unit 20 stops the on/off driving of the low-side switching element QL and switches the low-side switching element QL to a cut-off (off) state.
  • the variable voltage source 111 sets the OCP threshold value Vref11 based on the power supply voltage value V OVM input from the motor power supply voltage detection terminal OVM and the temperature voltage value V VT input from the temperature detection terminal VT .
  • the variable voltage source 111 has a series circuit made up of resistors R30 and R40 connected between the internal voltage Reg and the common line, and outputs the voltage at the connection point between the resistors R30 and R40 as the OCP threshold value Vref11.
  • resistor R40 Connected in parallel to resistor R40 are a series circuit consisting of resistor R31 and switch element Q31, a series circuit consisting of resistor R32 and switch element Q32, a series circuit consisting of resistor R33 and switch element Q33, a series circuit consisting of resistor R41 and switch element Q41, a series circuit consisting of resistor R42 and switch element Q42, and a series circuit consisting of resistor R43 and switch element Q43. Therefore, the voltage of the OCP threshold Vref11 changes depending on the state of switch elements Q31, Q32, Q33, Q41, Q42, and Q43.
  • the switch elements Q31, Q32, and Q33 are each composed of, for example, a MOS transistor.
  • the control terminal of the switch element Q31 is connected to the output terminal of a comparator CMP31 that compares the power supply voltage value V_OVM with a reference voltage Vref31, and the switch element Q31 is turned on when the power supply voltage value V_OVM exceeds the reference voltage Vref31.
  • the control terminal of the switch element Q32 is connected to the output terminal of a comparator CMP32 that compares the power supply voltage value V_OVM with a reference voltage Vref32 (Vref31 ⁇ Vref32) that is higher than the reference voltage Vref31, and the switch element Q32 is turned on when the power supply voltage value V_OVM exceeds the reference voltage Vref32.
  • the control terminal of the switch element Q33 is connected to the output terminal of a comparator CMP33 that compares the power supply voltage value V_OVM with a reference voltage Vref33 (Vref32 ⁇ Vref33) that is higher than the reference voltage Vref32, and is turned on when the power supply voltage value V_OVM exceeds the reference voltage Vref33.
  • the OCP threshold Vref11 is set to a lower voltage as the power supply voltage value V OVM (motor power supply voltage Vpp) is higher.
  • the switching elements Q41, Q42, and Q43 are each composed of, for example, a MOS transistor.
  • the control terminal of the switching element Q41 is connected via an inverter INV41 to an output terminal of a comparator CMP41 that compares the temperature voltage value VVT with a reference voltage Vref41, and the switching element Q41 is turned off when the temperature voltage value VVT exceeds the reference voltage Vref41.
  • the control terminal of the switching element Q42 is connected via an inverter INV42 to an output terminal of a comparator CMP42 that compares the temperature voltage value VVT with a reference voltage Vref42 (Vref41 ⁇ Vref42) that is higher than the reference voltage Vref41, and the switching element Q42 is turned off when the temperature voltage value VVT exceeds the reference voltage Vref42.
  • the control terminal of the switch element Q43 is connected via an inverter INV43 to the output terminal of a comparator CMP43 that compares the temperature voltage value VVT with a reference voltage Vref43 (Vref42 ⁇ Vref43) higher than the reference voltage Vref42, and is turned off when the temperature voltage value VVT exceeds the reference voltage Vref43.
  • the OCP threshold Vref11 is set to a lower voltage as the temperature voltage value VVT is lower (the temperature detected by the temperature sensor 6 is higher).
  • the number of voltages to which the OCP threshold Vref11 can be changed can be set appropriately.
  • Variable voltage sources 112 and 113 have a similar configuration to variable voltage source 111, and set OCP thresholds Vref12 and Vref13, respectively, based on the power supply voltage value V_OVM and the temperature voltage value V_VT . However, when the power supply voltage value V_OVM and the temperature voltage value V_VT are the same combination, the resistance values of variable voltage sources 111, 112, and 113 are set so that the above-mentioned relationship (Vref11 ⁇ Vref12 ⁇ Vref13) is maintained.
  • V OCP ⁇ Vref11 so the first overcurrent protection circuit 11 does not perform the OCP operation.
  • Vref11 ⁇ V OCP ⁇ Vref12 so the first overcurrent protection circuit 11 outputs an error signal when the OCP cut-off time T OCP11 (e.g., 2 ⁇ s) has elapsed in a state where Vref11 ⁇ V OCP .
  • Vref12 ⁇ V OCP ⁇ Vref13 so the first overcurrent protection circuit 11 outputs an error signal when the OCP cut-off time T OCP12 (e.g., 1 ⁇ s) has elapsed in a state where Vref12 ⁇ V OCP .
  • the first overcurrent protection circuit 11 outputs an error signal even after the OCP cutoff time T OCP11 (e.g., 2 ⁇ s) has elapsed in a state where Vref11 ⁇ V OCP.
  • T OCP11 e.g. 2 ⁇ s
  • the error signal after T OCP12 has already elapsed has already been input to the control unit 20, the low-side switching element QL is already in the off state.
  • the OCP voltage value V OCP 0.9 V
  • Vref11 ⁇ V OCP ⁇ Vref12 so the first overcurrent protection circuit 11 outputs an error signal when the OCP cutoff time T OCP11 (e.g., 2 ⁇ s) has elapsed in a state where Vref11 ⁇ V OCP .
  • the first overcurrent protection circuit 11 outputs an error signal when the OCP cutoff time T OCP12 (e.g., 1 ⁇ s) has elapsed in a state where Vref12 ⁇ V OCP .
  • the OCP cutoff time T OCP12 e.g. 1 ⁇ s
  • Vref11 ⁇ V OCP the first overcurrent protection circuit 11 outputs an error signal even after the OCP cutoff time T OCP11 (e.g., 2 ⁇ s) has elapsed in a state where Vref11 ⁇ V OCP .
  • the error signal after the elapse of T OCP12 has already been input to the control unit 20, the low-side switching element QL is already in the off state.
  • the OCP voltage value V OCP 0.9 V
  • Vref11 ⁇ V OCP ⁇ Vref12 so the first overcurrent protection circuit 11 outputs an error signal when the OCP cutoff time T OCP11 (e.g., 2 ⁇ s) has elapsed in a state where Vref11 ⁇ V OCP .
  • the first overcurrent protection circuit 11 outputs an error signal when the OCP cutoff time T OCP12 (e.g., 1 ⁇ s) has elapsed in a state where Vref12 ⁇ V OCP .
  • the first overcurrent protection circuit 11 outputs an error signal even if the OCP cutoff time T OCP11 (e.g., 2 ⁇ s) has elapsed in a state where Vref11 ⁇ V OCP , but the error signal after the elapse of T OCP12 has already been input to the control unit 20, so the low-side switching element QL is already in the off state.
  • T OCP11 e.g., 2 ⁇ s
  • the first overcurrent protection circuit 11 outputs an error signal when the OCP cutoff time T OCP13 (e.g., 0.3 ⁇ s) has elapsed in a state where Vref13 ⁇ V OCP .
  • the first overcurrent protection circuit 11 outputs an error signal even if the OCP cutoff time T OCP11 (e.g., 2 ⁇ s) has elapsed in a state where Vref11 ⁇ V OCP , but the error signal after the elapse of T OCP13 has already been input to the control unit 20, so the low-side switching element QL is already in the off state.
  • T OCP11 e.g. 2 ⁇ s
  • the first overcurrent protection circuit 11 outputs an error signal even after the OCP cutoff time T OCP12 (e.g., 1 ⁇ s) has elapsed in a state where Vref12 ⁇ V OCP.
  • T OCP12 the OCP cutoff time
  • the first overcurrent protection circuit 11 changes the levels of the OCP thresholds Vref11, Vref12, and Vref13 to be compared with the OCP voltage value VOCP depending on the power supply voltage value VOVM and the temperature voltage value VVT .
  • the OCP thresholds Vref11, Vref12, and Vref13 are set to lower voltages as the power supply voltage value VOVM (motor power supply voltage Vpp) is higher, and are set to lower voltages as the temperature voltage value VVT is lower (the temperature detected by the temperature sensor 6 is higher).
  • Different OCP cutoff times TOCP11 , TOCP12, and TOCP13 are set for the OCP thresholds Vref11, Vref12 , and Vref13 , respectively.
  • the OCP thresholds Vref11, Vref12, and Vref13 are set such that Vref11 ⁇ Vref12 ⁇ Vref13, and the OCP cutoff times T OCP11 , T OCP12 , and T OCP13 are set such that T OCP11 > T OCP12 > T OCP13 .
  • the second overcurrent protection circuit 21 includes comparators CMP21, CMP22, and CMP23 whose non-inverting input terminals are connected to the overcurrent protection signal input terminal OCP and whose inverting input terminals are connected to variable voltage sources 211, 212, and 213, respectively.
  • the comparator CMP21 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref21 generated by the variable voltage source 211.
  • the comparator CMP22 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref22 generated by the variable voltage source 212.
  • the comparator CMP23 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref23 generated by the variable voltage source 213.
  • the OCP threshold Vref21 is set lower than the OCP threshold Vref22, which is set lower than the OCP threshold Vref23 (Vref21 ⁇ Vref22 ⁇ Vref23). That is, the comparators CMP21, CMP22, and CMP23 compare the OCP voltage value VOCP with the OCP thresholds Vref21, Vref22, and Vref23, which have different potentials, respectively.
  • a series circuit consisting of a resistor R21 and a switch element Q21 is connected between the internal voltage Reg and the common line, and a capacitor C21 is connected in parallel to the switch element Q21.
  • the output terminal of the comparator CMP21 is connected to the control terminal of the switch element Q21 via an inverter INV21. Therefore, when the OCP voltage value VOCP exceeds the OCP threshold value Vref21, the comparator CMP21 outputs a high level (the inverter INV21 outputs a low level), and the switch element Q21 transitions to the off state.
  • the switch element Q21 transitions to the off state, charging of the capacitor C21 begins, and when the voltage of the capacitor C21 reaches a high level due to charging, an error signal (high level) is output.
  • the time it takes for the voltage of capacitor C21 to reach a high level through charging becomes the OCP cut-off time T OCP21 that masks the detection of an overcurrent. That is, switch element Q21, resistor R21, and capacitor C21 function as a cut-off time generating circuit that generates the OCP cut-off time T OCP21 . If the OCP voltage value V OCP becomes equal to or lower than the OCP threshold value Vref21 before the OCP cut-off time T OCP21 has elapsed, switch element Q21 transitions to the on state to discharge the voltage of capacitor C21, and an error signal (high level) is not output.
  • a series circuit consisting of a resistor R22 and a switch element Q22 is connected between the internal voltage Reg and the common line, and a capacitor C22 is connected in parallel to the switch element Q22.
  • the output terminal of the comparator CMP22 is connected to the control terminal of the switch element Q22 via an inverter INV22. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref22, the comparator CMP22 outputs a high level (the inverter INV22 outputs a low level), and the switch element Q22 transitions to the off state.
  • the switch element Q22 transitions to the off state, charging of the capacitor C22 begins, and when the voltage of the capacitor C22 reaches a high level due to charging, an error signal (high level) is output.
  • the time required for the voltage of the capacitor C22 to reach a high level by charging is the OCP cutoff time T OCP22 that masks the detection of an overcurrent. That is, the switch element Q22, the resistor R22, and the capacitor C22 function as a cutoff time generating circuit that generates the OCP cutoff time T OCP22 .
  • the OCP cutoff time T OCP22 is set to a time shorter than the OCP cutoff time T OCP21 (T OCP22 ⁇ T OCP21 ).
  • the time constant of the resistor R22 and the capacitor C22 is set to a value smaller than the time constant of the resistor R21 and the capacitor C21.
  • the OCP voltage value V OCP exceeds the OCP threshold value Vref22, it also exceeds the OCP threshold value Vref21 and charging of the capacitor C21 begins, but if the voltage of the capacitor C22 reaches a high level by charging before the OCP cutoff time T OCP21 has elapsed, an error signal (high level) is output. If the OCP voltage value V_OCP becomes equal to or lower than the OCP threshold value Vref22 before the OCP shutoff time T_OCP22 has elapsed, the switch element Q22 transitions to the on state, the voltage of the capacitor C22 is discharged, and no error signal (high level) is output.
  • a series circuit consisting of a resistor R23 and a switch element Q23 is connected between the internal voltage Reg and the common line, and a capacitor C23 is connected in parallel to the switch element Q23.
  • the output terminal of the comparator CMP23 is connected to the control terminal of the switch element Q23 via an inverter INV23. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref23, the comparator CMP23 outputs a high level (the inverter INV23 outputs a low level), and the switch element Q23 transitions to the OFF state.
  • the switch element Q23 transitions to the OFF state, charging of the capacitor C23 begins, and when the voltage of the capacitor C23 reaches a high level due to charging, an error signal (high level) is output.
  • the time required for the voltage of the capacitor C23 to reach a high level by charging is the OCP cutoff time T OCP23 that masks the detection of an overcurrent. That is, the switch element Q23, the resistor R23, and the capacitor C23 function as a cutoff time generating circuit that generates the OCP cutoff time T OCP23 .
  • the OCP cutoff time T OCP23 is set to a time shorter than the OCP cutoff time T OCP22 (T OCP23 ⁇ T OCP22 ).
  • the time constant of the resistor R23 and the capacitor C23 is set to a value smaller than the time constant of the resistor R22 and the capacitor C22.
  • the OCP voltage value V OCP exceeds the OCP threshold value Vref23, it also exceeds the OCP threshold value Vref22 and charging of the capacitor C22 is started, but if the voltage of the capacitor C23 reaches a high level by charging before the OCP cutoff time T OCP22 has elapsed, an error signal (high level) is output. If the OCP voltage value V_OCP becomes equal to or lower than the OCP threshold value Vref23 before the OCP shutoff time T_OCP23 has elapsed, the switch element Q23 transitions to the on state, the voltage of the capacitor C23 is discharged, and no error signal (high level) is output.
  • the voltages of capacitors C21 to C23 are input to the first to third input terminals of OR circuit OR21, respectively.
  • the output terminal of OR circuit OR21 is connected to the other input terminal of AND circuit AND21, and when the AND circuit AND21 is in the on state, an error signal is output from overcurrent protection circuit 10 when the voltage of any of capacitors C21 to C23 reaches a high level.
  • the error signal from overcurrent protection circuit 10 is input to control unit 20 built into low-side driver IC4 and is also output from error signal output terminal FO.
  • control unit 20 stops the on/off driving of low-side switching element QL and switches low-side switching element QL to a cut-off (off) state.
  • the variable voltage source 211 sets the OCP threshold Vref21 based on a user setting value VBTMS input to a user setting terminal BTMS.
  • the variable voltage source 211 has a series circuit made up of resistors R50 and R54 connected between the internal voltage Reg and the common line, and outputs the voltage at the connection point between the resistors R50 and R54 as the OCP threshold Vref21.
  • the resistor R54 is connected in parallel to a series circuit consisting of resistor R51 and switch element Q51, a series circuit consisting of resistor R52 and switch element Q52, and a series circuit consisting of resistor R53 and switch element Q53. Therefore, the voltage of the OCP threshold Vref21 changes depending on the state of the switch elements Q51, Q52, and Q53.
  • the switch elements Q51, Q52, and Q53 are each composed of, for example, a MOS transistor.
  • the control terminal of the switch element Q51 is connected to the output terminal of a comparator CMP51 that compares a user set value VBTMS with a reference voltage Vref51, and the switch element Q51 is turned on when the user set value VBTMS exceeds the reference voltage Vref51.
  • the control terminal of the switch element Q52 is connected to the output terminal of a comparator CMP52 that compares the user set value VBTMS with a reference voltage Vref52 (Vref51 ⁇ Vref52) that is higher than the reference voltage Vref51, and the switch element Q52 is turned on when the user set value VBTMS exceeds the reference voltage Vref52.
  • the control terminal of the switch element Q53 is connected to the output terminal of a comparator CMP53 which compares the user set value VBTMS with a reference voltage Vref53 (Vref52 ⁇ Vref53) which is higher than the reference voltage Vref52, and is turned on when the user set value VBTMS exceeds the reference voltage Vref53.
  • the reference voltage Vref53 is set to a voltage at which the input judgment of the AND circuit AND11 and the inverter INV20 is at a low level. Therefore, when the second overcurrent protection circuit 21 is selected, the variable voltage source 211 can set the OCP threshold Vref21 to a plurality of voltages based on the user setting value VBTMS . In the configuration example of the variable voltage source 211 shown in FIG. 5, the OCP threshold Vref21 can be changed to four different voltages according to the user setting value VBTMS . The number of voltages to which the OCP threshold Vref21 can be changed can be set appropriately.
  • Variable voltage sources 212 and 213 have the same configuration as variable voltage source 211, and set OCP thresholds Vref22 and Vref23, respectively, based on a user-set value VBTMS . However, when the user-set value VBTMS is the same, the resistance values of variable voltage sources 211, 212, and 213 are set so that the above-mentioned relationship (Vref21 ⁇ Vref22 ⁇ Vref23) is maintained.
  • the OCP thresholds Vref21, Vref22, and Vref23 set when the user-set value VBTMS satisfies Vref51 ⁇ VBTMS ⁇ Vref52 are 1.0 V, 1.8 V, and 2.6 V, respectively.
  • Vref51 ⁇ VBTMS ⁇ Vref52 are 1.0 V, 1.8 V, and 2.6 V, respectively.
  • VOCP ⁇ Vref21 so the second overcurrent protection circuit 21 does not execute the OCP operation.
  • the second overcurrent protection circuit 21 outputs an error signal even if the OCP cutoff time T OCP21 (e.g., 2 ⁇ s) has elapsed in a state where Vref11 ⁇ V OCP.
  • the error signal after the elapse of T OCP22 has already been input to the control unit 20, the low-side switching element QL is already in the off state.
  • the OCP thresholds Vref21, Vref22, and Vref23 which are set when the user-set value VBTMS is Vref52 ⁇ VBTMS ⁇ Vref53, are 0.8 V, 1.6 V, and 2.4 V, respectively.
  • V OCP 0.9 V
  • Vref21 ⁇ V OCP ⁇ Vref22 so the second overcurrent protection circuit 21 outputs an error signal when the OCP cutoff time T OCP21 (e.g., 2 ⁇ s) has elapsed in a state where Vref21 ⁇ V OCP .
  • the second overcurrent protection circuit 21 outputs an error signal when the OCP cutoff time T OCP22 (e.g., 1 ⁇ s) has elapsed in a state where Vref22 ⁇ V OCP .
  • the second overcurrent protection circuit 21 outputs an error signal even if the OCP cutoff time T OCP21 (e.g., 2 ⁇ s) has elapsed in a state where Vref21 ⁇ V OCP .
  • the error signal after the elapse of T OCP22 has already been input to the control unit 20, the low-side switching element QL is already in the off state.
  • the OCP thresholds Vref21, Vref22, and Vref23 set when the user-set value VBTMS is Vref53 ⁇ VBTMS are 0.6 V, 1.4 V, and 2.2 V, respectively.
  • the OCP voltage value V OCP 0.9 V
  • Vref21 ⁇ V OCP ⁇ Vref22 so the second overcurrent protection circuit 21 outputs an error signal when the OCP cutoff time T OCP21 (e.g., 2 ⁇ s) has elapsed in a state where Vref21 ⁇ V OCP .
  • the second overcurrent protection circuit 21 outputs an error signal even if the OCP cut-off time TOCP21 (e.g., 2 ⁇ s) has elapsed in a state where Vref21 ⁇ VOCP , but the low-side switching element QL is already in the OFF state because the error signal after TOCP22 has elapsed has already been input to the control unit 20.
  • the OCP cut-off time TOCP21 e.g. 2 ⁇ s
  • the second overcurrent protection circuit 21 outputs an error signal when the OCP cut-off time TOCP23 (e.g., 0.3 ⁇ s) has elapsed in a state where Vref23 ⁇ VOCP .
  • the second overcurrent protection circuit 21 outputs an error signal even after the OCP cut-off time T OCP21 (e.g., 2 ⁇ s) has elapsed in a state where Vref21 ⁇ V OCP , but the low-side switching element QL is already in the OFF state because the error signal after T OCP23 has already been input to the control unit 20.
  • T OCP21 e.g. 2 ⁇ s
  • the second overcurrent protection circuit 21 outputs an error signal even after the OCP cut-off time T OCP22 (e.g., 1 ⁇ s) has elapsed in a state where Vref22 ⁇ V OCP , but the low-side switching element QL is already in the OFF state because the error signal after T OCP23 has already been input to the control unit 20.
  • T OCP22 e.g. 1 ⁇ s
  • the levels of the OCP thresholds Vref21, Vref22, and Vref23 to be compared with the OCP voltage value V OCP are changed according to the user set value V BTMS .
  • the OCP thresholds Vref21, Vref22, and Vref23 are set to lower voltages as the user set value V BTMS is higher.
  • Different OCP cutoff times TOCP21, TOCP22, and TOCP23 are set for the OCP thresholds Vref21 , Vref22 , and Vref23 , respectively.
  • the OCP thresholds Vref21, Vref22, and Vref23 are set such that Vref21 ⁇ Vref22 ⁇ Vref23, and the OCP cutoff times T OCP21 , T OCP22 , and T OCP23 are set such that T OCP21 > T OCP22 > T OCP23 .
  • a select circuit 60 is interposed on the input side of an OR circuit OR21.
  • the select circuit 60 selects one of the OCP cut-off times T OCP21 , T OCP22 , and T OCP23 according to a select signal V SEL input from a select signal input terminal SEL.
  • the select circuit 60 includes comparators CMP61, CMP62, and CMP63 which compare the select signal VSEL with different reference voltages Vref61, Vref62, and Vref63 (reference voltages Vref61 ⁇ Vref62 ⁇ Vref63), respectively.
  • comparators CMP61, CMP62, CMP63 are input to one input terminal of AND circuits AND61, AND62, AND63, respectively, and are also input to the first to third input terminals of NOR circuit NOR61.
  • the output of NOR circuit NOR61 is input to one input terminal of AND circuits AND70, AND71, AND72.
  • the voltage of capacitor C21 is input signal IN1
  • the voltage of capacitor C22 is input signal IN2
  • the voltage of capacitor C23 is input signal IN3, which are input to the other input terminals of AND circuits AND61, AND62, AND63, respectively, and to the other input terminals of AND circuits AND70, AND71, AND72, respectively.
  • the outputs of the AND circuits AND70, AND71, and AND72 are input to one input terminal of the OR circuits OR61, OR62, and OR63, respectively, and the outputs of the OR circuits OR61, OR62, and OR63 are output as output signals OUT1, OUT2, and OUT3, respectively.
  • comparator CMP61 is also input to one input terminal of XOR circuit XOR61.
  • the output of comparator CMP62 is also input to the other input terminal of XOR circuit XOR61 and one input terminal of XOR circuit XOR62.
  • the output of comparator CMP63 is also input to the other input terminal of XOR circuit XOR62.
  • the output of XOR circuit XOR61 is input to one input terminal of AND circuit AND66, the output of AND circuit AND61 is input to the other input terminal of AND circuit AND66, and the output of AND circuit AND66 is input to the other input terminal of OR circuit OR61.
  • the output of XOR circuit XOR62 is input to one input terminal of AND circuit AND68, and the output of AND circuit AND62 is input to the other input terminal of AND circuit AND68.
  • the output of AND circuit AND68 is input to the other input terminal of OR circuit OR62.
  • the output of AND circuit AND63 is input to the other input terminal of OR circuit OR63.
  • the AND circuits AND70, AND71, and AND72 are turned off, and the AND circuits AND61, AND62, and AND63 are turned on.
  • the output of the AND circuit AND61 is masked by the low-level output of the XOR circuit XOR61 turning the AND circuit AND66 off.
  • the output of the AND circuit AND62 is masked by the low-level output of the XOR circuit XOR62 turning the AND circuit AND68 off. Therefore, as shown in FIG. 9, the input signals IN1 and IN2 are masked, and only the input signal IN3 operating at the OCP cutoff time T OCP23 is output as the output signal OUT3.
  • the second overcurrent protection circuit 21a can also change the levels of the OCP thresholds Vref21, Vref22, and Vref23 that are compared with the OCP voltage value V OCP using the user set value V BTMS , and can select one of the OCP cut-off times T OCP21 , T OCP22 , and T OCP23 using the select signal V SEL .
  • this embodiment provides an overcurrent protection circuit 10 that detects a current flowing through a low-side switching element QL (switching element) connected between a motor power supply voltage Vpp (main power supply voltage) and a common line as an OCP voltage value V OCP, compares the OCP voltage value V OCP with an OCP threshold value Vref, and detects an overcurrent when the OCP cut-off time T OCP has elapsed in a state in which the OCP voltage value V OCP exceeds the OCP threshold value Vref.
  • QL switching element
  • Vpp main power supply voltage
  • the overcurrent protection circuit 10 includes a plurality of comparators CMP11, CMP12, CMP13 that compare the OCP voltage value V OCP with a plurality of different OCP threshold values Vref11, Vref12, Vref13, respectively, and sets different OCP cut-off times T OCP11 , T OCP12 , T
  • the circuit includes a plurality of cut-off time generating circuits [(switch element Q11, resistor R11, and capacitor C11), (switch element Q12, resistor R12, and capacitor C12), (switch element Q13, resistor R13, and capacitor C13)] that generate OCP13, and the cut-off time generating circuits generate OCP cut-off times TOCP11, TOCP12, and TOCP13 (TOCP11 > TOCP12 > TOCP13) for the OCP thresholds Vref11, Vref12, and Vref13 ( Vref11 ⁇ Vref12 ⁇ Vref13 ) of comparators CMP11
  • overcurrent protection circuit 10 can detect overcurrent with multiple OCP cutoff times TOCP11, TOCP12, TOCP13 that are appropriately set according to multiple OCP thresholds Vref11 , Vref12 , Vref13 , respectively. Therefore, it is possible to detect how susceptible a state is to thermal destruction and appropriately control the OCP cutoff time, and thus it is possible to accommodate a variety of switching elements that have different times until thermal destruction in the event of an abnormality. Because overcurrent protection circuit 10 is highly versatile, it is possible to reduce the variety, development time, and man-hours, and it also helps prevent installation errors.
  • an input of a power supply voltage value V OVM (main power supply voltage value) obtained by dividing the motor power supply voltage Vpp is accepted, and the OCP threshold value Vref is set to a lower voltage as the power supply voltage value V OVM is higher.
  • the OCP thresholds Vref11, Vref12, and Vref13 are set to appropriate levels according to the motor power supply voltage Vpp, making the configuration more versatile.
  • an input of a temperature voltage value VVT (temperature detection value) of the temperature detected by the temperature sensor 6 is accepted, and the OCP threshold value Vref is set to a lower voltage as the temperature voltage value VVT is lower (the temperature detected by the temperature sensor 6 is higher).
  • the OCP thresholds Vref11, Vref12, and Vref13 are set to appropriate levels according to the temperature detected by the temperature sensor 6, making the configuration more versatile.
  • an input of a user-set value V BTMS is accepted, and the OCP threshold value Vref is changeable based on the user-set value V BTMS .
  • This configuration allows the user to set the OCP thresholds Vref11, Vref12, and Vref13 to appropriate levels, making it more versatile.
  • a select circuit 60 is provided that receives an input of a select signal V SEL and enables only one of the OCP cutoff times T OCP11 , T OCP12 , and T OCP13 selected by the select signal V SEL .
  • This configuration allows the user to select an appropriate OCP cutoff time T OCP , making it more versatile.
  • the present embodiment also provides an overcurrent protection circuit 10 that detects a current flowing through a low-side switching element QL (switching element) connected between a motor power supply voltage Vpp (main power supply voltage) and a common line as an OCP voltage value V OCP , compares the OCP voltage value V OCP with an OCP threshold value Vref, and detects an overcurrent when an OCP cut-off time T OCP has elapsed in a state in which the OCP voltage value V OCP exceeds the OCP threshold value Vref, the overcurrent protection circuit 10 including a first overcurrent protection circuit 11 and a second overcurrent protection circuit 21.
  • QL switching element
  • Vpp main power supply voltage
  • Vref main power supply voltage
  • the first overcurrent protection circuit 11 includes a plurality of comparators CMP11, CMP12, CMP13 (first comparators) that compare the OCP voltage value V OCP with a plurality of different OCP threshold values Vref11, Vref12, Vref13, respectively, and a plurality of comparators CMP11, CMP12, CMP13 that respectively set different OCP cut-off times T OCP11 , T and a plurality of first cut-off time generating circuits [( switch element Q11, resistor R11, and capacitor C11), (switch element Q12, resistor R12, and capacitor C12), (switch element Q13, resistor R13, and capacitor C13)] for generating OCP cut-off times TOCP11, TOCP12, and TOCP13 (TOCP11 > TOCP12 >TOCP13) for the OCP threshold values Vref11 , Vref12, and Vref13 (Vref11 ⁇ Vref12 ⁇ Vref13 ) of the comparators CMP11
  • the second overcurrent protection circuit 21 receives an input of a temperature voltage value VVT (temperature detection value) of the temperature detected by the temperature sensor 6, and sets the OCP threshold value Vref to a lower voltage as the temperature voltage value VVT is lower (the temperature is higher).
  • the second overcurrent protection circuit 21 includes a plurality of comparators CMP21, CMP22, CMP23 (second comparators) that compare the OCP voltage value VOCP with a plurality of different OCP threshold values Vref21, Vref22, Vref23, respectively, and sets different OCP cut-off times TOCP21 , TOCP22, TOCP23 for each of the plurality of comparators CMP21, CMP22 , CMP23.
  • the cut-off time generating circuits generate OCP cut-off times TOCP21, TOCP22, and TOCP23 (TOCP21>TOCP22>TOCP23) for the OCP threshold values Vref21, Vref22, and Vref23 ( Vref21 ⁇ Vref22 ⁇ Vref23 ) of the comparators CMP21 , CMP22 , and CMP23 , respectively, and generate an OCP voltage value V
  • the power supply circuit includes a plurality of comparators that respectively compare an OCP with a plurality of different OCP thresholds, and a plurality of cut-off time generation circuits that generate different OCP cut-off times for each of the plurality of comparators, wherein the cut-off time generation circuit generates a shorter OCP cut-off time the higher the OCP threshold of the comparator is, and receives an input of a user setting value VBTMS , and the OCP threshold Vref is changeable based on the user setting value VBTMS , and a first overcurrent protection circuit
  • an overcurrent can be detected by either the first overcurrent protection circuit 11, which can set the OCP thresholds Vref11, Vref12, Vref13 to appropriate levels in accordance with the motor power supply voltage Vpp and the temperature voltage value VVT , or the second overcurrent protection circuit 21, which can set the OCP thresholds Vref21, Vref22, Vref23 to appropriate levels by the user, thereby making the configuration more versatile.
  • Controller 10 overcurrent protection circuit 11: first overcurrent protection circuit 20: control unit 21, 21a Second overcurrent protection circuit 60 Select circuit (select) 111, 112, 113, 211, 212, 213 Variable voltage source

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

Provided is an overcurrent protection circuit which is highly versatile and compatible with various switching elements. An overcurrent protection circuit 10 detects an overcurrent when an OCP interruption time TOCP has elapsed in a state of an OCP voltage value VOCP being more than an OCP threshold value Vref. The overcurrent protection circuit comprises: a plurality of comparators CMP11, CMP12, CMP13 which compare the OCP voltage value VOCP with a plurality of different OCP threshold values Vref11, Vref12, Vref13; and a plurality of interruption time generation circuits [(switch element Q11, resistor R11, and capacitor C11), (switch element Q12, resistor R12, and capacitor C12), (switch element Q13, resistor R13, and capacitor C13)] that generate different OCP interruption times TOCP11, TOCP12, TOCP13, for the respective comparators CMP11, CMP12, CMP13.

Description

過電流保護回路、半導体装置Overcurrent protection circuit, semiconductor device
 本発明は、電源又は負荷に過電流が流れることを防止する過電流保護回路に関するものである。 The present invention relates to an overcurrent protection circuit that prevents an overcurrent from flowing through a power supply or load.
 モータを駆動するモータドライバを集積化した半導体装置が知られている。モータドライバは、コントローラからの駆動指令を最適な電圧及びスイッチングスピードの駆動信号に変換して内蔵のインバータ回路をドライブし、モータを駆動する駆動電圧を出力する。モータドライバは、例えばモータ過負荷のような過電流を検知してスイッチング動作を停止させ、電源又は負荷に過電流が流れることを防止する過電流保護(OCP:Over Current Protection)回路が設けられている(例えば、特許文献1参照)。 A semiconductor device that integrates a motor driver that drives a motor is known. The motor driver converts drive commands from a controller into drive signals with optimal voltage and switching speed to drive a built-in inverter circuit and output a drive voltage that drives the motor. The motor driver is provided with an overcurrent protection (OCP: Over Current Protection) circuit that detects overcurrent, such as a motor overload, and stops the switching operation to prevent overcurrent from flowing to the power supply or load (see, for example, Patent Document 1).
特開2020-188610号公報JP 2020-188610 A
 一般的な過電流保護動作は、スイッチング素子を流れる電流ICとOCP閾値(OCP threshold)とを比較し、比較結果に基づいて、過電流が流れているか否かを判定している。OCP閾値によっては、図10(a)に示すように点線で囲むスイッチング素子の通常動作時に発生しうるリカバリー電流(recovery current)の方が大きくなり誤動作(オフ)する可能性がある。この誤動作は、過電流の判定を行わないOCP遮断時間(cut-off time)を長くすれば防止できる。従って、スイッチング素子の種類や組み合わせなどでOCP閾値を小さくする必要がある場合は、誤動作防止のためにOCP遮断時間を長くすることが有効である。 General overcurrent protection operation involves comparing the current IC flowing through a switching element with the OCP threshold, and judging whether or not an overcurrent is flowing based on the comparison result. Depending on the OCP threshold, the recovery current that can occur during normal operation of the switching element enclosed by the dotted line as shown in Figure 10(a) may become larger, causing a malfunction (turning off). This malfunction can be prevented by extending the OCP cut-off time, during which no overcurrent judgment is made. Therefore, if the OCP threshold needs to be reduced due to the type or combination of switching elements, it is effective to extend the OCP cut-off time to prevent malfunction.
 しかし、OCP遮断時間を長くした場合、図10(b)に実線で示すように、アブノーマル時の過電流が大きいと、スイッチング素子が短い時間で熱破壊(thermal destruction)する。対策として、OCP遮断時間を短くすれば、熱破壊前にスイッチング動作を停止させることができる。したがって、熱破壊を防ぐためには、OCP遮断時間を短くすることが有効である。 However, if the OCP shutdown time is lengthened, as shown by the solid line in Figure 10(b), if the overcurrent during abnormal operation is large, the switching element will suffer thermal destruction in a short time. As a countermeasure, if the OCP shutdown time is shortened, the switching operation can be stopped before thermal destruction occurs. Therefore, shortening the OCP shutdown time is an effective way to prevent thermal destruction.
 適したOCP閾値及びOCP遮断時間は、スイッチング素子の種類、世代、サイズ、組み合わせに応じて異なってくる。従って、新たなモータドライバを開発するたびに、OCP閾値及びOCP遮断時間を適した値に設定した新たな過電流保護回路を開発する必要があった。これにより、過電流保護回路の品種が膨大で管理が難しく、また、開発期間、工数も多くかかり、さらにAssy試作数も増えるため、組込みミスに繋がる虞があった。 The appropriate OCP threshold and OCP cut-off time vary depending on the type, generation, size, and combination of switching elements. Therefore, every time a new motor driver was developed, it was necessary to develop a new overcurrent protection circuit with the OCP threshold and OCP cut-off time set to appropriate values. This resulted in a huge number of overcurrent protection circuit varieties that were difficult to manage, and also required a long development period and labor. Furthermore, the number of assembly prototypes increased, which could lead to installation errors.
 本発明は斯かる問題点を鑑みてなされたものであり、その目的とするところは、多様なスイッチング素子に対応できる汎用性の高い過電流保護回路を提供する点にある。 The present invention was made in consideration of these problems, and its purpose is to provide a versatile overcurrent protection circuit that can be used with a variety of switching elements.
 本発明に係る過電流保護回路は、上記の目的を達成するため、次のように構成される。
 本発明に係る過電流保護回路は、電流検出素子を用いてスイッチング素子を流れる電流をOCP電圧値として検出し、前記OCP電圧値とOCP閾値を比較して前記OCP電圧値が前記OCP閾値を超えた状態でOCP遮断時間が経過した場合に過電流を検出する過電流保護回路であって、前記OCP電圧値を異なる複数の前記OCP閾値とそれぞれ比較する複数の比較器と、複数の前記比較器毎にそれぞれ異なる前記OCP遮断時間を生成する複数の遮断時間生成回路と、を備え、前記遮断時間生成回路は、前記比較器の前記OCP閾値が高いほど、短い時間の前記OCP遮断時間を生成することを特徴とする。
 また、本発明に係る過電流保護回路は、電流検出素子を用いてスイッチング素子を流れる電流をOCP電圧値として検出し、前記OCP電圧値とOCP閾値を比較して前記OCP電圧値が前記OCP閾値を超えた状態でOCP遮断時間が経過した場合に過電流を検出する過電流保護回路であって、第1過電流保護回路と、第2過電流保護回路と、を備え、前記第1過電流保護回路は、前記OCP電圧値を異なる複数の前記OCP閾値とそれぞれ比較する複数の第1比較器と、複数の前記第1比較器毎にそれぞれ異なる前記OCP遮断時間を生成する複数の第1遮断時間生成回路と、を備え、前記第1遮断時間生成回路は、前記第1比較器の前記OCP閾値が高いほど、短い時間の前記OCP遮断時間を生成し、主電源電圧を分圧した主電源電圧値の入力を受け付け、前記OCP閾値は、前記主電源電圧が高いほど、低い電圧に設定され、温度センサーによって検出された温度の入力を受け付け、前記OCP閾値は、前記温度が高いほど、低い電圧に設定され、前記第2過電流保護回路は、前記OCP電圧値を異なる複数の前記OCP閾値とそれぞれ比較する複数の第2比較器と、複数の前記第2比較器毎にそれぞれ異なる前記OCP遮断時間を生成する複数の第2遮断時間生成回路と、を備え、前記第2遮断時間生成回路は、前記第2比較器の前記OCP閾値が高いほど、短い時間の前記OCP遮断時間を生成し、ユーザ設定値の入力を受け付け、前記OCP閾値は、前記ユーザ設定値に基づいて変更可能であり、前記第1過電流保護回路と前記第2過電流保護回路とは、前記ユーザ設定値に基づいて選択されたいずれかで過電流を検出することを特徴とする。
In order to achieve the above object, the overcurrent protection circuit according to the present invention is configured as follows.
The overcurrent protection circuit of the present invention is an overcurrent protection circuit that uses a current detection element to detect the current flowing through a switching element as an OCP voltage value, compares the OCP voltage value with an OCP threshold value, and detects an overcurrent when an OCP cut-off time has elapsed with the OCP voltage value exceeding the OCP threshold value, and is characterized in that it comprises a plurality of comparators that compare the OCP voltage value with a plurality of different OCP threshold values, respectively, and a plurality of cut-off time generation circuits that generate a different OCP cut-off time for each of the plurality of comparators, and the cut-off time generation circuit generates a shorter OCP cut-off time the higher the OCP threshold value of the comparator is.
Moreover, an overcurrent protection circuit according to the present invention is an overcurrent protection circuit that detects a current flowing through a switching element as an OCP voltage value using a current detection element, compares the OCP voltage value with an OCP threshold value, and detects an overcurrent when an OCP cut-off time has elapsed with the OCP voltage value exceeding the OCP threshold value, the overcurrent protection circuit comprising: a first overcurrent protection circuit; and a second overcurrent protection circuit, the first overcurrent protection circuit comprising a plurality of first comparators that compare the OCP voltage value with a plurality of different OCP threshold values, respectively, and a plurality of first cut-off time generation circuits that generate different OCP cut-off times for each of the first comparators, the first cut-off time generation circuit generating a shorter OCP cut-off time as the OCP threshold value of the first comparator is higher, and receives an input of a main power supply voltage value obtained by dividing a main power supply voltage, and the OCP threshold value is set to a lower voltage as the main power supply voltage is higher and accepts an input of a temperature detected by a temperature sensor, the OCP threshold is set to a lower voltage as the temperature is higher, the second overcurrent protection circuit comprises a plurality of second comparators which compare the OCP voltage value with a plurality of different OCP thresholds, and a plurality of second cut-off time generation circuits which generate different OCP cut-off times for each of the plurality of second comparators, the second cut-off time generation circuit generating a shorter OCP cut-off time as the OCP threshold of the second comparator is higher, accepts an input of a user setting value, and the OCP threshold is changeable based on the user setting value, and the first overcurrent protection circuit and the second overcurrent protection circuit detect an overcurrent using either one selected based on the user setting value.
 本発明の過電流保護回路は、複数のOCP閾値にそれぞれ応じて適切に設定された複数のOCP遮断時間で過電流を検出することで、どのくらい熱破壊しやすい状態かを検知して、OCP遮断時間を適切に制御することができるため、異常時の熱破壊までの時間が異なる多様なスイッチング素子に対応できるという効果を奏する。 The overcurrent protection circuit of the present invention detects overcurrent with multiple OCP cutoff times that are appropriately set according to multiple OCP thresholds, and can detect how susceptible a state is to thermal destruction and appropriately control the OCP cutoff time, thereby achieving the effect of being able to accommodate a variety of switching elements that have different times until thermal destruction in the event of an abnormality.
本発明に係る過電流保護回路が組み込まれたのモータドライバの構成例を示す図である。1 is a diagram showing an example of the configuration of a motor driver incorporating an overcurrent protection circuit according to the present invention; 本発明に係る過電流保護回路の実施の形態の構成例を示す図である。1 is a diagram showing a configuration example of an embodiment of an overcurrent protection circuit according to the present invention; 図2に示す第1過電流保護回路で用いる可変電圧源の構成例を示す図である。3 is a diagram showing an example of the configuration of a variable voltage source used in the first overcurrent protection circuit shown in FIG. 2 . 図2に示す第1過電流保護回路の動作例を示す図である。3 is a diagram illustrating an example of the operation of the first overcurrent protection circuit illustrated in FIG. 2 . 図2に示す第2過電流保護回路で用いる可変電圧源の構成例を示す図である。3 is a diagram showing an example of the configuration of a variable voltage source used in the second overcurrent protection circuit shown in FIG. 2 . 図2に示す第2過電流保護回路の動作例を示す図である。3 is a diagram illustrating an example of the operation of the second overcurrent protection circuit illustrated in FIG. 2 . 図2に示す第2過電流保護回路の変形例を示す図である。3 is a diagram showing a modification of the second overcurrent protection circuit shown in FIG. 2 . 図7に示すセレクト回路の構成例を示す図である。FIG. 8 is a diagram illustrating a configuration example of a select circuit illustrated in FIG. 7 . 図8に示すセレクト回路の真理値表である。9 is a truth table of the select circuit shown in FIG. 8 . 従来の過電流保護動作を説明する図である。FIG. 1 is a diagram illustrating a conventional overcurrent protection operation.
 以下に、本発明の好適な実施の形態を添付図面に基づいて説明する。 Below, a preferred embodiment of the present invention will be described with reference to the attached drawings.
 本実施の形態のモータドライバは、モータ1を駆動するモータ駆動装置であり、図1を参照すると、インバータ回路2と、駆動回路であるハイサイドドライバIC3及びローサイドドライバIC4と、制御回路であるコントローラ(controller)5と、を備える。 The motor driver of this embodiment is a motor driving device that drives a motor 1, and referring to FIG. 1, it includes an inverter circuit 2, a high-side driver IC3 and a low-side driver IC4 that are driving circuits, and a controller 5 that is a control circuit.
 インバータ回路2は、U相用のハーフブリッジ回路と、V相用のハーフブリッジ回路と、W相用のハーフブリッジ回路と、を備える。ハーフブリッジ回路のそれぞれは、モータ用電源電圧Vppとコモン線との間に直列に接続されたハイサイドスイッチング素子QH及びローサイドスイッチング素子QLを備える。キャパシタC1は、モータ用電源電圧Vppとコモン線との間に接続された入力キャパシタである。ハイサイドスイッチング素子QH及びローサイドスイッチング素子QLは、例えば、絶縁ゲートバイポーラートランジスター(IGBT:Insulated Gate Bipolar Transistor)として構成される。 The inverter circuit 2 includes a half-bridge circuit for the U phase, a half-bridge circuit for the V phase, and a half-bridge circuit for the W phase. Each half-bridge circuit includes a high-side switching element QH and a low-side switching element QL connected in series between the motor power supply voltage Vpp and the common line. Capacitor C1 is an input capacitor connected between the motor power supply voltage Vpp and the common line. The high-side switching element QH and the low-side switching element QL are configured, for example, as insulated gate bipolar transistors (IGBTs).
 ハイサイドドライバIC3及びローサイドドライバIC4は、半導体集積回路を樹脂にて構成されたパッケージ内に封入することで形成された半導体装置である。ハイサイドドライバIC3及びローサイドドライバIC4は、同一のパッケージでも良く、インバータ回路2を内蔵しても良い。 The high-side driver IC3 and the low-side driver IC4 are semiconductor devices formed by sealing a semiconductor integrated circuit in a package made of resin. The high-side driver IC3 and the low-side driver IC4 may be in the same package, and may have the inverter circuit 2 built in.
 ハイサイドドライバIC3は、制御電源電圧Vccを入力する制御電源入力端子Vcc1と、コモン線に接続され制御グランド端子COM1と、を備える。キャパシタC2は、制御電源電圧Vccとコモン線との間に接続された入力キャパシタである。ハイサイドドライバIC3は、フローティング電源端子VB1~3と、フローティング電源端子HS1~3と、を備える。キャパシタC3~C5はVB1~3とHS1~3との間に接続されたキャパシタである。 The high-side driver IC3 has a control power input terminal Vcc1 that inputs the control power voltage Vcc, and a control ground terminal COM1 that is connected to the common line. Capacitor C2 is an input capacitor connected between the control power voltage Vcc and the common line. The high-side driver IC3 has floating power terminals VB1-3 and floating power terminals HS1-3. Capacitors C3-C5 are capacitors connected between VB1-3 and HS1-3.
 ハイサイドドライバIC3は、ハイサイド制御信号入力端子HIN1~3と、ハイサイド駆動信号出力端子HO1~3と、を備える。ハイサイドドライバIC3は、ハイサイド制御信号入力端子HIN1~3に入力されるコントローラ5からのハイサイド制御信号に基づいて、インバータ回路2のハイサイドスイッチング素子QHをオンオフ駆動するハイサイド駆動信号を生成してハイサイド駆動信号出力端子HO1~3から出力する。 The high-side driver IC3 has high-side control signal input terminals HIN1-3 and high-side drive signal output terminals HO1-3. Based on the high-side control signal from the controller 5 input to the high-side control signal input terminals HIN1-3, the high-side driver IC3 generates a high-side drive signal that drives the high-side switching element QH of the inverter circuit 2 on and off, and outputs it from the high-side drive signal output terminals HO1-3.
 ハイサイドドライバIC3は、エラー信号入力端子SDを備える。ハイサイドドライバIC3は、エラー信号入力端子SDからエラー信号が入力されると、ハイサイドスイッチング素子QHのオンオフ駆動を停止させ、ハイサイドスイッチング素子QHを遮断(オフ)状態にする。 The high-side driver IC3 has an error signal input terminal SD. When an error signal is input from the error signal input terminal SD, the high-side driver IC3 stops the on/off driving of the high-side switching element QH and switches the high-side switching element QH to a cut-off (off) state.
 ローサイドドライバIC4は、制御電源電圧Vccを入力する制御電源入力端子Vcc2と、コモン線に接続される制御グランド端子COM2と、を備える。 The low-side driver IC4 has a control power supply input terminal Vcc2 that inputs the control power supply voltage Vcc, and a control ground terminal COM2 that is connected to the common line.
 ローサイドドライバIC4は、ローサイド制御信号入力端子LIN1~3と、ローサイド駆動信号出力端子LO1~3と、を備える。ローサイドドライバIC4は、ローサイド制御信号入力端子LIN1~3に入力されるコントローラ5からのローサイド制御信号に基づいて、インバータ回路2のローサイドスイッチング素子QLをオンオフ駆動するローサイド駆動信号を生成してローサイド駆動信号出力端子LO1~3から出力する。 The low-side driver IC4 has low-side control signal input terminals LIN1-3 and low-side drive signal output terminals LO1-3. Based on the low-side control signal from the controller 5 input to the low-side control signal input terminals LIN1-3, the low-side driver IC4 generates a low-side drive signal that drives the low-side switching element QL of the inverter circuit 2 on and off, and outputs it from the low-side drive signal output terminals LO1-3.
 ローサイドドライバIC4は、モータ用電源電圧検出端子OVMと、過電流保護信号入力端子OCPと、ユーザ設定端子BTMSと、温度検出端子VTと、を備える。 The low-side driver IC4 has a motor power supply voltage detection terminal OVM, an overcurrent protection signal input terminal OCP, a user-defined terminal BTMS, and a temperature detection terminal VT.
 モータ用電源電圧検出端子OVMは、モータ用電源電圧Vppとコモン線との間に直列に接続された抵抗R1と可変抵抗R2との中間に接続され、モータ用電源電圧Vppを抵抗R1と可変抵抗R2とで分圧した値が電源電圧値VOVMとして入力される。可変抵抗R2は、ユーザが電源電圧値VOVMの検出レベルを調整するために設けられている。 The motor power supply voltage detection terminal OVM is connected between resistor R1 and variable resistor R2, which are connected in series between the motor power supply voltage Vpp and the common line, and the value obtained by dividing the motor power supply voltage Vpp by resistor R1 and variable resistor R2 is input as the power supply voltage value V OVM . The variable resistor R2 is provided so that the user can adjust the detection level of the power supply voltage value V OVM .
 過電流保護信号入力端子OCPは、電流検出素子Rsを介してコモン線に接続されたローサイドスイッチング素子QLのエミッタに接続され、ローサイドスイッチング素子QLから流れる電流を検出してOCP電圧値VOCPとして入力される。 The overcurrent protection signal input terminal OCP is connected to the emitter of the low-side switching element QL connected to the common line via the current detection element Rs, and detects the current flowing from the low-side switching element QL and inputs it as an OCP voltage value V_OCP .
 ユーザ設定端子BTMSは、可変電圧源VAが接続され、可変電圧源VAの電圧がユーザ設定値VBTMSとして入力される。 A variable voltage source VA is connected to the user setting terminal BTMS, and the voltage of the variable voltage source VA is input as a user setting value V BTMS .
 温度検出端子VTは、温度センサー(temperature senser)6に接続され、温度センサー(temperature senser)6によって検出された温度の検出値が温度電圧値VVTとして入力される。 The temperature detection terminal VT is connected to a temperature sensor 6, and the temperature detected by the temperature sensor 6 is input as a temperature voltage value VVT .
 エラー信号出力端子FOは、ハイサイドドライバIC3のエラー信号入力端子SDと、コントローラ5とに接続され、エラー信号出力端子FOから出力されるエラー信号は、ハイサイドドライバIC3のエラー信号入力端子SDと、コントローラ5とに入力される。 The error signal output terminal FO is connected to the error signal input terminal SD of the high-side driver IC3 and the controller 5, and the error signal output from the error signal output terminal FO is input to the error signal input terminal SD of the high-side driver IC3 and the controller 5.
 ローサイドドライバIC4は、図2に示すような過電流保護回路10を備える。過電流保護回路10は、過電流保護信号入力端子OCPから入力されるOCP電圧値VOCPに基づいて過電流を検出し、エラー信号を出力する回路であり、第1過電流保護回路11と、第2過電流保護回路21と、を備える。過電流保護回路10は、第1過電流保護回路11と、第2過電流保護回路21とのいずれか用いて過電流を検出する。 The low-side driver IC4 includes an overcurrent protection circuit 10 as shown in Fig. 2. The overcurrent protection circuit 10 is a circuit that detects an overcurrent based on an OCP voltage value V_OCP input from an overcurrent protection signal input terminal OCP and outputs an error signal, and includes a first overcurrent protection circuit 11 and a second overcurrent protection circuit 21. The overcurrent protection circuit 10 detects an overcurrent using either the first overcurrent protection circuit 11 or the second overcurrent protection circuit 21.
 第1過電流保護回路11と、第2過電流保護回路21とは、ユーザ設定端子BTMSに入力されるユーザ設定値VBTMSによっていずれかが選択される。ユーザ設定値VBTMSは、第1過電流保護回路11の出力段に設けられたアンド回路AND11の一方の入力端子に入力されると共に、インバータINV20を介して、第2過電流保護回路21の出力段に設けられたアンド回路AND21の一方の入力端子に入力される。 Either the first overcurrent protection circuit 11 or the second overcurrent protection circuit 21 is selected by a user setting value VBTMS input to a user setting terminal BTMS. The user setting value VBTMS is input to one input terminal of an AND circuit AND11 provided at the output stage of the first overcurrent protection circuit 11, and is also input via an inverter INV20 to one input terminal of an AND circuit AND21 provided at the output stage of the second overcurrent protection circuit 21.
 ユーザ設定値VBTMSがアンド回路AND11及びインバータINV20の入力判定がハイレベルとなる電圧である場合(例えば、3V以上)、アンド回路AND11は、オン状態となると共に、アンド回路AND21は、オフ状態となり、第1過電流保護回路11が選択される。ユーザ設定値VBTMSがアンド回路AND11及びインバータINV20の入力判定がローレベルとなる電圧である場合(例えば、3V未満)、アンド回路AND11は、オフ状態となると共に、アンド回路AND21は、オン状態となり、第2過電流保護回路21が選択される。 When the user set value VBTMS is a voltage at which the input judgment of the AND circuit AND11 and the inverter INV20 is at a high level (e.g., 3 V or more), the AND circuit AND11 is turned on and the AND circuit AND21 is turned off, selecting the first overcurrent protection circuit 11. When the user set value VBTMS is a voltage at which the input judgment of the AND circuit AND11 and the inverter INV20 is at a low level (e.g., less than 3 V), the AND circuit AND11 is turned off and the AND circuit AND21 is turned on, selecting the second overcurrent protection circuit 21.
 第1過電流保護回路11は、非反転入力端子が過電流保護信号入力端子OCPに、反転入力端子が可変電圧源111、112、113にそれぞれ接続された比較器CMP11、CMP12、CMP13を備える。比較器CMP11は、OCP電圧値VOCPが可変電圧源111で生成されるOCP閾値Vref11を上回るとハイレベルを出力する。比較器CMP12は、OCP電圧値VOCPが可変電圧源112で生成されるOCP閾値Vref12を上回るとハイレベルを出力する。比較器CMP13は、OCP電圧値VOCPが可変電圧源113で生成されるOCP閾値Vref13を上回るとハイレベルを出力する。 The first overcurrent protection circuit 11 includes comparators CMP11, CMP12, and CMP13 whose non-inverting input terminals are connected to the overcurrent protection signal input terminal OCP and whose inverting input terminals are connected to variable voltage sources 111, 112, and 113, respectively. The comparator CMP11 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref11 generated by the variable voltage source 111. The comparator CMP12 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref12 generated by the variable voltage source 112. The comparator CMP13 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref13 generated by the variable voltage source 113.
 OCP閾値Vref11は、OCP閾値Vref12よりも低く、OCP閾値Vref12は、OCP閾値Vref13よりも低い値に設定されている(Vref11<Vref12<Vref13)。すなわち、比較器CMP11、CMP12、CMP13は、OCP電圧値VOCPを電位が異なるOCP閾値Vref11、Vref12、Vref13とそれぞれ比較する。 The OCP threshold Vref11 is set lower than the OCP threshold Vref12, which is set lower than the OCP threshold Vref13 (Vref11<Vref12<Vref13). That is, the comparators CMP11, CMP12, and CMP13 compare the OCP voltage value VOCP with the OCP thresholds Vref11, Vref12, and Vref13, which have different potentials, respectively.
 内部電圧Regとコモン線との間に抵抗R11とスイッチ素子Q11とからなる直列回路が接続され、スイッチ素子Q11と並列にキャパシタC11が接続されている。比較器CMP11の出力端子は、インバータINV11を介してスイッチ素子Q11の制御端子に接続されている。従って、OCP電圧値VOCPがOCP閾値Vref11を上回ると、比較器CMP11はハイレベルを出力(インバータINV11はローレベルを出力)し、スイッチ素子Q11がオフ状態に遷移する。スイッチ素子Q11がオフ状態に遷移することで、キャパシタC11への充電が開始され、キャパシタC11の電圧が充電によってハイレベルに到達すると、エラー信号(ハイレベル)が出力される。 A series circuit consisting of a resistor R11 and a switch element Q11 is connected between the internal voltage Reg and the common line, and a capacitor C11 is connected in parallel to the switch element Q11. The output terminal of the comparator CMP11 is connected to the control terminal of the switch element Q11 via an inverter INV11. Therefore, when the OCP voltage value VOCP exceeds the OCP threshold value Vref11, the comparator CMP11 outputs a high level (the inverter INV11 outputs a low level), and the switch element Q11 transitions to the off state. When the switch element Q11 transitions to the off state, charging of the capacitor C11 begins, and when the voltage of the capacitor C11 reaches a high level due to charging, an error signal (high level) is output.
 キャパシタC11の電圧が充電によってハイレベルに到達するまでの時間が過電流の検出をマスクするOCP遮断時間(OCP cut-off time)TOCP11となる。すなわち、スイッチ素子Q11、抵抗R11及びキャパシタC11は、OCP遮断時間TOCP11を生成する遮断時間生成回路として機能する。OCP遮断時間TOCP11が経過する前に、OCP電圧値VOCPがOCP閾値Vref11以下になった場合、スイッチ素子Q11がオン状態に遷移してキャパシタC11の電圧が放電され、エラー信号(ハイレベル)が出力されることがない。 The time it takes for the voltage of capacitor C11 to reach a high level through charging is the OCP cut-off time TOCP11 that masks the detection of an overcurrent. That is, the switch element Q11, resistor R11, and capacitor C11 function as a cut-off time generating circuit that generates the OCP cut-off time TOCP11 . If the OCP voltage value VOCP becomes equal to or lower than the OCP threshold value Vref11 before the OCP cut-off time TOCP11 has elapsed, the switch element Q11 transitions to the ON state, the voltage of capacitor C11 is discharged, and an error signal (high level) is not output.
 内部電圧Regとコモン線との間に抵抗R12とスイッチ素子Q12とからなる直列回路が接続され、スイッチ素子Q12と並列にキャパシタC12が接続されている。比較器CMP12の出力端子は、インバータINV12を介してスイッチ素子Q12の制御端子に接続されている。従って、OCP電圧値VOCPがOCP閾値Vref12を上回ると、比較器CMP12はハイレベルを出力(インバータINV12はローレベルを出力)し、スイッチ素子Q12がオフ状態に遷移する。スイッチ素子Q12がオフ状態に遷移することで、キャパシタC12への充電が開始され、キャパシタC12の電圧が充電によってハイレベルに到達すると、エラー信号(ハイレベル)が出力される。 A series circuit consisting of a resistor R12 and a switch element Q12 is connected between the internal voltage Reg and the common line, and a capacitor C12 is connected in parallel to the switch element Q12. The output terminal of the comparator CMP12 is connected to the control terminal of the switch element Q12 via an inverter INV12. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref12, the comparator CMP12 outputs a high level (the inverter INV12 outputs a low level), and the switch element Q12 transitions to the off state. When the switch element Q12 transitions to the off state, charging of the capacitor C12 begins, and when the voltage of the capacitor C12 reaches a high level due to charging, an error signal (high level) is output.
 キャパシタC12の電圧が充電によってハイレベルに到達するまでの時間が過電流の検出をマスクするOCP遮断時間TOCP12となる。すなわち、スイッチ素子Q12、抵抗R12及びキャパシタC12は、OCP遮断時間TOCP12を生成する遮断時間生成回路として機能する。OCP遮断時間TOCP12は、OCP遮断時間TOCP11よりも短い時間に設定されている(TOCP12<TOCP11)。抵抗R12及びキャパシタC12の時定数は、抵抗R11及びキャパシタC11の時定数よりも小さい値に設定されている。従って、OCP電圧値VOCPがOCP閾値Vref12を上回る場合、OCP閾値Vref11も上回ってキャパシタC11への充電が開始されるが、OCP遮断時間TOCP11が経過する前に、キャパシタC12の電圧が充電によってハイレベルに到達すると、エラー信号(ハイレベル)が出力される。なお、OCP遮断時間TOCP12が経過する前に、OCP電圧値VOCPがOCP閾値Vref12以下になった場合、スイッチ素子Q12がオン状態に遷移してキャパシタC12の電圧が放電され、エラー信号(ハイレベル)が出力されることがない。 The time required for the voltage of the capacitor C12 to reach a high level by charging is the OCP cutoff time T OCP12 that masks the detection of an overcurrent. That is, the switch element Q12, the resistor R12, and the capacitor C12 function as a cutoff time generating circuit that generates the OCP cutoff time T OCP12 . The OCP cutoff time T OCP12 is set to a time shorter than the OCP cutoff time T OCP11 (T OCP12 <T OCP11 ). The time constant of the resistor R12 and the capacitor C12 is set to a value smaller than the time constant of the resistor R11 and the capacitor C11. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref12, it also exceeds the OCP threshold value Vref11 and charging of the capacitor C11 is started, but if the voltage of the capacitor C12 reaches a high level by charging before the OCP cutoff time T OCP11 has elapsed, an error signal (high level) is output. If the OCP voltage value V_OCP becomes equal to or lower than the OCP threshold value Vref12 before the OCP cutoff time T_OCP12 has elapsed, the switch element Q12 transitions to the on state, the voltage of the capacitor C12 is discharged, and no error signal (high level) is output.
 内部電圧Regとコモン線との間に抵抗R13とスイッチ素子Q13とからなる直列回路が接続され、スイッチ素子Q13と並列にキャパシタC13が接続されている。比較器CMP13の出力端子は、インバータINV13を介してスイッチ素子Q13の制御端子に接続されている。従って、OCP電圧値VOCPがOCP閾値Vref13を上回ると、比較器CMP13はハイレベルを出力(インバータINV13はローレベルを出力)し、スイッチ素子Q13がオフ状態に遷移する。スイッチ素子Q13がオフ状態に遷移することで、キャパシタC13への充電が開始され、キャパシタC13の電圧が充電によってハイレベルに到達すると、エラー信号(ハイレベル)が出力される。 A series circuit consisting of a resistor R13 and a switch element Q13 is connected between the internal voltage Reg and the common line, and a capacitor C13 is connected in parallel to the switch element Q13. The output terminal of the comparator CMP13 is connected to the control terminal of the switch element Q13 via an inverter INV13. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref13, the comparator CMP13 outputs a high level (the inverter INV13 outputs a low level), and the switch element Q13 transitions to the off state. When the switch element Q13 transitions to the off state, charging of the capacitor C13 begins, and when the voltage of the capacitor C13 reaches a high level due to charging, an error signal (high level) is output.
 キャパシタC13の電圧が充電によってハイレベルに到達するまでの時間が過電流の検出をマスクするOCP遮断時間TOCP13となる。すなわち、スイッチ素子Q13、抵抗R13及びキャパシタC13は、OCP遮断時間(OCP cut-off time)TOCP13を生成する遮断時間生成回路として機能する。OCP遮断時間TOCP13は、OCP遮断時間TOCP13よりも短い時間に設定されている(TOCP13<TOCP12)。抵抗R13及びキャパシタC13の時定数は、抵抗R12及びキャパシタC12の時定数よりも小さい値に設定されている。従って、OCP電圧値VOCPがOCP閾値Vref13を上回る場合、OCP閾値Vref12も上回ってキャパシタC12への充電が開始されるが、OCP遮断時間TOCP12が経過する前に、キャパシタC13の電圧が充電によってハイレベルに到達すると、エラー信号(ハイレベル)が出力される。なお、OCP遮断時間TOCP13が経過する前に、OCP電圧値VOCPがOCP閾値Vref13以下になった場合、スイッチ素子Q13がオン状態に遷移してキャパシタC13の電圧が放電され、エラー信号(ハイレベル)が出力されることがない。 The time required for the voltage of the capacitor C13 to reach a high level by charging is the OCP cut-off time T OCP13 that masks the detection of an overcurrent. That is, the switch element Q13, the resistor R13, and the capacitor C13 function as a cut-off time generating circuit that generates the OCP cut-off time T OCP13 . The OCP cut-off time T OCP13 is set to a time shorter than the OCP cut-off time T OCP13 (T OCP13 <T OCP12 ). The time constant of the resistor R13 and the capacitor C13 is set to a value smaller than the time constant of the resistor R12 and the capacitor C12. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref13, it also exceeds the OCP threshold value Vref12 and charging of the capacitor C12 is started, but if the voltage of the capacitor C13 reaches a high level by charging before the OCP cut-off time T OCP12 has elapsed, an error signal (high level) is output. If the OCP voltage value V_OCP becomes equal to or lower than the OCP threshold value Vref13 before the OCP shutoff time T_OCP13 has elapsed, the switch element Q13 transitions to the on state, the voltage of the capacitor C13 is discharged, and no error signal (high level) is output.
 キャパシタC11~C13の電圧は、オア回路OR11の第1~3入力端子にそれぞれ入力される。オア回路OR11の出力端子は、アンド回路AND11の他方の入力端子に接続され、アンド回路AND11に入力されるVTMMSの電圧がハイレベルの状態である場合、キャパシタC11~C13のいずれかの電圧がハイレベルに到達すると、過電流保護回路10からエラー信号が出力される。過電流保護回路10からのエラー信号は、ローサイドドライバIC4に内蔵された制御部(control unit)20に入力されると共に、エラー信号出力端子FOから出力される。制御部20は、過電流保護回路10からエラー信号が入力されると、ローサイドスイッチング素子QLのオンオフ駆動を停止させ、ローサイドスイッチング素子QLを遮断(オフ)状態にする。 The voltages of the capacitors C11 to C13 are input to the first to third input terminals of the OR circuit OR11, respectively. The output terminal of the OR circuit OR11 is connected to the other input terminal of the AND circuit AND11, and when the voltage of V TMMS input to the AND circuit AND11 is in a high level state, an error signal is output from the overcurrent protection circuit 10 when the voltage of any of the capacitors C11 to C13 reaches a high level. The error signal from the overcurrent protection circuit 10 is input to a control unit 20 built into the low-side driver IC4 and is output from an error signal output terminal FO. When the error signal is input from the overcurrent protection circuit 10, the control unit 20 stops the on/off driving of the low-side switching element QL and switches the low-side switching element QL to a cut-off (off) state.
 可変電圧源111は、モータ用電源電圧検出端子OVMから入力される電源電圧値VOVMと、温度検出端子VTから入力される温度電圧値VVTとに基づいて、OCP閾値Vref11を設定する。可変電圧源111は、図3を参照すると、内部電圧Regとコモン線との間に抵抗R30と抵抗R40とからなる直列回路が接続され、抵抗R30と抵抗R40との接続点の電圧がOCP閾値Vref11として出力される。 The variable voltage source 111 sets the OCP threshold value Vref11 based on the power supply voltage value V OVM input from the motor power supply voltage detection terminal OVM and the temperature voltage value V VT input from the temperature detection terminal VT . Referring to Fig. 3, the variable voltage source 111 has a series circuit made up of resistors R30 and R40 connected between the internal voltage Reg and the common line, and outputs the voltage at the connection point between the resistors R30 and R40 as the OCP threshold value Vref11.
 抵抗R40には、抵抗R31とスイッチ素子Q31とからなる直列回路と、抵抗R32とスイッチ素子Q32とからなる直列回路と、抵抗R33とスイッチ素子Q33とからなる直列回路と、抵抗R41とスイッチ素子Q41とからなる直列回路と、抵抗R42とスイッチ素子Q42とからなる直列回路と、抵抗R43とスイッチ素子Q43とからなる直列回路と、が並列に接続されている。従って、スイッチ素子Q31、Q32、Q33、Q41、Q42、Q43の状態に応じてOCP閾値Vref11の電圧が変更される。 Connected in parallel to resistor R40 are a series circuit consisting of resistor R31 and switch element Q31, a series circuit consisting of resistor R32 and switch element Q32, a series circuit consisting of resistor R33 and switch element Q33, a series circuit consisting of resistor R41 and switch element Q41, a series circuit consisting of resistor R42 and switch element Q42, and a series circuit consisting of resistor R43 and switch element Q43. Therefore, the voltage of the OCP threshold Vref11 changes depending on the state of switch elements Q31, Q32, Q33, Q41, Q42, and Q43.
 スイッチ素子Q31、Q32、Q33は、例えば、MOSトランジスタで構成される。スイッチ素子Q31は、制御端子が、電源電圧値VOVMを基準電圧Vref31と比較する比較器CMP31の出力端子に接続され、電源電圧値VOVMが基準電圧Vref31を超えるとオンされる。スイッチ素子Q32は、制御端子が、電源電圧値VOVMを基準電圧Vref31よりも高い基準電圧Vref32(Vref31<Vref32)と比較する比較器CMP32の出力端子に接続され、電源電圧値VOVMが基準電圧Vref32を超えるとオンされる。スイッチ素子Q33は、制御端子が、電源電圧値VOVMを基準電圧Vref32よりも高い基準電圧Vref33(Vref32<Vref33)と比較する比較器CMP33の出力端子に接続され、電源電圧値VOVMが基準電圧Vref33を超えるとオンされる。従って、スイッチ素子Q31、Q32、Q33は、電源電圧値VOVMが基準電圧Vref31以下の場合、全てがオフ状態となり、電源電圧値VOVMが基準電圧Vref31を超えて基準電圧Vref32以下の場合、スイッチ素子Q31のみがオン状態となり、電源電圧値VOVMが基準電圧Vref32を超えて基準電圧Vref33以下の場合、スイッチ素子Q31、Q32がオン状態となり、電源電圧値VOVMが基準電圧Vref33を超えた場合、全てがオン状態となる。これにより、OCP閾値Vref11は、電源電圧値VOVM(モータ用電源電圧Vpp)が高いほど、低い電圧に設定される。 The switch elements Q31, Q32, and Q33 are each composed of, for example, a MOS transistor. The control terminal of the switch element Q31 is connected to the output terminal of a comparator CMP31 that compares the power supply voltage value V_OVM with a reference voltage Vref31, and the switch element Q31 is turned on when the power supply voltage value V_OVM exceeds the reference voltage Vref31. The control terminal of the switch element Q32 is connected to the output terminal of a comparator CMP32 that compares the power supply voltage value V_OVM with a reference voltage Vref32 (Vref31<Vref32) that is higher than the reference voltage Vref31, and the switch element Q32 is turned on when the power supply voltage value V_OVM exceeds the reference voltage Vref32. The control terminal of the switch element Q33 is connected to the output terminal of a comparator CMP33 that compares the power supply voltage value V_OVM with a reference voltage Vref33 (Vref32<Vref33) that is higher than the reference voltage Vref32, and is turned on when the power supply voltage value V_OVM exceeds the reference voltage Vref33. Therefore, when the power supply voltage value V_OVM is equal to or lower than the reference voltage Vref31, all of the switch elements Q31, Q32, and Q33 are in the off state, when the power supply voltage value V_OVM exceeds the reference voltage Vref31 and is equal to or lower than the reference voltage Vref32, only the switch element Q31 is in the on state, when the power supply voltage value V_OVM exceeds the reference voltage Vref32 and is equal to or lower than the reference voltage Vref33, the switch elements Q31 and Q32 are in the on state, and when the power supply voltage value V_OVM exceeds the reference voltage Vref33, all of the switch elements Q31, Q32, and Q33 are in the on state. As a result, the OCP threshold Vref11 is set to a lower voltage as the power supply voltage value V OVM (motor power supply voltage Vpp) is higher.
 スイッチ素子Q41、Q42、Q43は、例えば、MOSトランジスタで構成される。スイッチ素子Q41は、制御端子が、温度電圧値VVTを基準電圧Vref41と比較する比較器CMP41の出力端子にインバータINV41を介して接続され、温度電圧値VVTが基準電圧Vref41を超えるとオフされる。スイッチ素子Q42は、制御端子が、温度電圧値VVTを基準電圧Vref41よりも高い基準電圧Vref42(Vref41<Vref42)と比較する比較器CMP42の出力端子にインバータINV42を介して接続され、温度電圧値VVTが基準電圧Vref42を超えるとオフされる。スイッチ素子Q43は、制御端子が、温度電圧値VVTを基準電圧Vref42よりも高い基準電圧Vref43(Vref42<Vref43)と比較する比較器CMP43の出力端子にインバータINV43を介して接続され、温度電圧値VVTが基準電圧Vref43を超えるとオフされる。従って、スイッチ素子Q41、Q42、Q43は、温度電圧値VVTが基準電圧Vref41以下の場合、全てがオン状態となり、温度電圧値VVTが基準電圧Vref41を超えて基準電圧Vref42以下の場合、スイッチ素子Q41のみがオフ状態となり、温度電圧値VVTが基準電圧Vref42を超えて基準電圧Vref43以下の場合、スイッチ素子Q41、Q42がオフ状態となり、温度電圧値VVTが基準電圧Vref43を超えた場合、全てがオフ状態となる。これにより、OCP閾値Vref11は、温度電圧値VVTが低い(温度センサー6で検出される温度が高い)ほど低い電圧に設定される。 The switching elements Q41, Q42, and Q43 are each composed of, for example, a MOS transistor. The control terminal of the switching element Q41 is connected via an inverter INV41 to an output terminal of a comparator CMP41 that compares the temperature voltage value VVT with a reference voltage Vref41, and the switching element Q41 is turned off when the temperature voltage value VVT exceeds the reference voltage Vref41. The control terminal of the switching element Q42 is connected via an inverter INV42 to an output terminal of a comparator CMP42 that compares the temperature voltage value VVT with a reference voltage Vref42 (Vref41<Vref42) that is higher than the reference voltage Vref41, and the switching element Q42 is turned off when the temperature voltage value VVT exceeds the reference voltage Vref42. The control terminal of the switch element Q43 is connected via an inverter INV43 to the output terminal of a comparator CMP43 that compares the temperature voltage value VVT with a reference voltage Vref43 (Vref42<Vref43) higher than the reference voltage Vref42, and is turned off when the temperature voltage value VVT exceeds the reference voltage Vref43. Therefore, when the temperature voltage value VVT is equal to or lower than the reference voltage Vref41, all of the switch elements Q41, Q42, and Q43 are in the on state, when the temperature voltage value VVT exceeds the reference voltage Vref41 and is equal to or lower than the reference voltage Vref42, only the switch element Q41 is in the off state, when the temperature voltage value VVT exceeds the reference voltage Vref42 and is equal to or lower than the reference voltage Vref43, the switch elements Q41 and Q42 are in the off state, and when the temperature voltage value VVT exceeds the reference voltage Vref43, all of the switch elements are in the off state. As a result, the OCP threshold Vref11 is set to a lower voltage as the temperature voltage value VVT is lower (the temperature detected by the temperature sensor 6 is higher).
 図3に示す可変電圧源111の構成例では、OCP閾値Vref11は、電源電圧値VOVM及び温度電圧値VVTの組み合わせによって4×4=16通りに変更可能である。OCP閾値Vref11の変更可能な電圧の数は、適宜設定できる。 3, the OCP threshold Vref11 can be changed in 4×4=16 ways by combining the power supply voltage value V OVM and the temperature voltage value V VT . The number of voltages to which the OCP threshold Vref11 can be changed can be set appropriately.
 可変電圧源112、113は、可変電圧源111と同様な構成で、電源電圧値VOVMと、温度電圧値VVTとに基づいて、OCP閾値Vref12、Vref13をそれぞれ設定する。但し、電源電圧値VOVMと温度電圧値VVTとが同じ組み合わせである場合、上述した(Vref11<Vref12<Vref13)の関係が維持されるように、可変電圧源111、112、113の各抵抗値が設定されている。 Variable voltage sources 112 and 113 have a similar configuration to variable voltage source 111, and set OCP thresholds Vref12 and Vref13, respectively, based on the power supply voltage value V_OVM and the temperature voltage value V_VT . However, when the power supply voltage value V_OVM and the temperature voltage value V_VT are the same combination, the resistance values of variable voltage sources 111, 112, and 113 are set so that the above-mentioned relationship (Vref11<Vref12<Vref13) is maintained.
 図4(a)に示す例では、モータ用電源電圧Vpp=300V時の電源電圧値VOVMと検出温度50℃時の温度電圧値VVTとの組み合わせによって設定されるOCP閾値Vref11、Vref12、Vref13は、それぞれ1.0V、1.8V、2.6Vである。この場合、OCP電圧値VOCP=0.9V(電流検出素子Rs=50mΩで18A)では、VOCP≦Vref11であるため、第1過電流保護回路11は、OCP動作を実行しない。OCP電圧値VOCP=1.65V(電流検出素子Rs=50mΩで33A)では、Vref11<VOCP≦Vref12であるため、第1過電流保護回路11は、Vref11<VOCPの状態でOCP遮断時間TOCP11(例えば、2μs)が経過するとエラー信号を出力する。OCP電圧値VOCP=2.3V(電流検出素子Rs=50mΩで46A)では、Vref12<VOCP≦Vref13であるため、第1過電流保護回路11は、Vref12<VOCPの状態でOCP遮断時間TOCP12(例えば、1μs)が経過するとエラー信号を出力する。なお、OCP電圧値VOCP=2.3Vは、Vref11<VOCPでもあるため、第1過電流保護回路11は、Vref11<VOCPの状態でOCP遮断時間TOCP11(例えば、2μs)が経過してもエラー信号を出力するが制御部20にTOCP12経過後のエラー信号がすでに入力されているため、ローサイドスイッチング素子QLはすでにオフ状態になっている。 4A, the OCP thresholds Vref11, Vref12, and Vref13, which are set by a combination of the power supply voltage value V OVM when the motor power supply voltage Vpp=300 V and the temperature voltage value V VT when the detection temperature is 50° C., are 1.0 V, 1.8 V, and 2.6 V, respectively. In this case, when the OCP voltage value V OCP =0.9 V (18 A with the current detection element Rs=50 mΩ), V OCP ≦Vref11, so the first overcurrent protection circuit 11 does not perform the OCP operation. At an OCP voltage value V OCP =1.65V (33A with current detection element Rs=50mΩ), Vref11<V OCP ≦Vref12, so the first overcurrent protection circuit 11 outputs an error signal when the OCP cut-off time T OCP11 (e.g., 2μs) has elapsed in a state where Vref11<V OCP . At an OCP voltage value V OCP =2.3V (46A with current detection element Rs=50mΩ), Vref12<V OCP ≦Vref13, so the first overcurrent protection circuit 11 outputs an error signal when the OCP cut-off time T OCP12 (e.g., 1μs) has elapsed in a state where Vref12<V OCP . In addition, since the OCP voltage value V OCP = 2.3 V also satisfies Vref11 < V OCP , the first overcurrent protection circuit 11 outputs an error signal even after the OCP cutoff time T OCP11 (e.g., 2 μs) has elapsed in a state where Vref11 < V OCP. However, since the error signal after T OCP12 has already elapsed has already been input to the control unit 20, the low-side switching element QL is already in the off state.
 図4(b)に示す例では、モータ用電源電圧Vpp=900V時の電源電圧値VOVMと検出温度50℃時の温度電圧値VVTとの組み合わせによって設定されるOCP閾値Vref11、Vref12、Vref13は、それぞれ0.8V、1.6V、2.4Vである。この場合、OCP電圧値VOCP=0.9Vでは、Vref11<VOCP≦Vref12であるため、第1過電流保護回路11は、Vref11<VOCPの状態でOCP遮断時間TOCP11(例えば、2μs)が経過するとエラー信号を出力する。OCP電圧値VOCP=1.65V、2.3Vでは、Vref12<VOCP≦Vref13であるため、第1過電流保護回路11は、Vref12<VOCPの状態でOCP遮断時間TOCP12(例えば、1μs)が経過するとエラー信号を出力する。なお、OCP電圧値VOCP=1.65V、2.3Vは、Vref11<VOCPでもあるため、第1過電流保護回路11は、Vref11<VOCPの状態でOCP遮断時間TOCP11(例えば、2μs)が経過してもエラー信号を出力するが制御部20にTOCP12経過後のエラー信号がすでに入力されているため、ローサイドスイッチング素子QLはすでにオフ状態になっている。 4B, the OCP thresholds Vref11, Vref12, and Vref13, which are set by combining the power supply voltage value V OVM when the motor power supply voltage Vpp=900 V and the temperature voltage value V VT when the detected temperature is 50° C., are 0.8 V, 1.6 V, and 2.4 V, respectively. In this case, when the OCP voltage value V OCP =0.9 V, Vref11<V OCP ≦Vref12, so the first overcurrent protection circuit 11 outputs an error signal when the OCP cutoff time T OCP11 (e.g., 2 μs) has elapsed in a state where Vref11<V OCP . At OCP voltage values V OCP =1.65 V and 2.3 V, Vref12<V OCP ≦Vref13, so the first overcurrent protection circuit 11 outputs an error signal when the OCP cutoff time T OCP12 (e.g., 1 μs) has elapsed in a state where Vref12<V OCP . Note that at OCP voltage values V OCP =1.65 V and 2.3 V, Vref11<V OCP , so the first overcurrent protection circuit 11 outputs an error signal even after the OCP cutoff time T OCP11 (e.g., 2 μs) has elapsed in a state where Vref11<V OCP . However, since the error signal after the elapse of T OCP12 has already been input to the control unit 20, the low-side switching element QL is already in the off state.
 図4(c)に示す例では、モータ用電源電圧Vpp=900V時の電源電圧値VOVMと検出温度100℃時の温度電圧値VVTとの組み合わせによって設定されるOCP閾値Vref11、Vref12、Vref13は、それぞれ0.6V、1.4V、2.2Vである。この場合、OCP電圧値VOCP=0.9Vでは、Vref11<VOCP≦Vref12であるため、第1過電流保護回路11は、Vref11<VOCPの状態でOCP遮断時間TOCP11(例えば、2μs)が経過するとエラー信号を出力する。OCP電圧値VOCP=1.65Vでは、Vref12<VOCP≦Vref13であるため、第1過電流保護回路11は、Vref12<VOCPの状態でOCP遮断時間TOCP12(例えば、1μs)が経過するとエラー信号を出力する。なお、OCP電圧値VOCP=1.65Vは、Vref11<VOCPでもあるため、第1過電流保護回路11は、Vref11<VOCPの状態でOCP遮断時間TOCP11(例えば、2μs)が経過してもエラー信号を出力するが、制御部20にTOCP12経過後のエラー信号がすでに入力されているため、ローサイドスイッチング素子QLはすでにオフ状態になっている。OCP電圧値VOCP=2.3Vでは、Vref13<VOCPであるため、第1過電流保護回路11は、Vref13<VOCPの状態でOCP遮断時間TOCP13(例えば、0.3μs)が経過するとエラー信号を出力する。なお、OCP電圧値VOCP=2.3Vは、Vref11<VOCPでもあるため、第1過電流保護回路11は、Vref11<VOCPの状態でOCP遮断時間TOCP11(例えば、2μs)が経過してもエラー信号を出力するが、制御部20にTOCP13経過後のエラー信号がすでに入力されているため、ローサイドスイッチング素子QLはすでにオフ状態になっている。同様に、OCP電圧値VOCP=2.3Vは、Vref12<VOCPでもあるため、第1過電流保護回路11は、Vref12<VOCPの状態でOCP遮断時間TOCP12(例えば、1μs)が経過してもエラー信号を出力するが制御部20にTOCP13経過後のエラー信号がすでに入力されているため、ローサイドスイッチング素子QLはすでにオフ状態になっている。 4(c), the OCP thresholds Vref11, Vref12, and Vref13, which are set by combining the power supply voltage value V OVM when the motor power supply voltage Vpp=900 V and the temperature voltage value V VT when the detected temperature is 100° C., are 0.6 V, 1.4 V, and 2.2 V, respectively. In this case, when the OCP voltage value V OCP =0.9 V, Vref11<V OCP ≦Vref12, so the first overcurrent protection circuit 11 outputs an error signal when the OCP cutoff time T OCP11 (e.g., 2 μs) has elapsed in a state where Vref11<V OCP . At an OCP voltage value V OCP =1.65V, Vref12<V OCP ≦Vref13, so the first overcurrent protection circuit 11 outputs an error signal when the OCP cutoff time T OCP12 (e.g., 1 μs) has elapsed in a state where Vref12<V OCP . Note that at an OCP voltage value V OCP =1.65V, Vref11<V OCP , so the first overcurrent protection circuit 11 outputs an error signal even if the OCP cutoff time T OCP11 (e.g., 2 μs) has elapsed in a state where Vref11<V OCP , but the error signal after the elapse of T OCP12 has already been input to the control unit 20, so the low-side switching element QL is already in the off state. At an OCP voltage value V OCP =2.3 V, Vref13<V OCP , so the first overcurrent protection circuit 11 outputs an error signal when the OCP cutoff time T OCP13 (e.g., 0.3 μs) has elapsed in a state where Vref13<V OCP . Note that at an OCP voltage value V OCP =2.3 V, Vref11<V OCP , so the first overcurrent protection circuit 11 outputs an error signal even if the OCP cutoff time T OCP11 (e.g., 2 μs) has elapsed in a state where Vref11<V OCP , but the error signal after the elapse of T OCP13 has already been input to the control unit 20, so the low-side switching element QL is already in the off state. Similarly, when the OCP voltage value V OCP = 2.3 V, Vref12 < V OCP , so the first overcurrent protection circuit 11 outputs an error signal even after the OCP cutoff time T OCP12 (e.g., 1 μs) has elapsed in a state where Vref12 < V OCP. However, since the error signal after T OCP13 has already been input to the control unit 20, the low-side switching element QL is already in the off state.
 以上の構成により、第1過電流保護回路11は、電源電圧値VOVM及び温度電圧値VVTによってOCP電圧値VOCPと比較するOCP閾値Vref11、Vref12、Vref13のレベルが変更される。OCP閾値Vref11、Vref12、Vref13は、電源電圧値VOVM(モータ用電源電圧Vpp)が高いほど、低い電圧に設定され、温度電圧値VVTが低い(温度センサー6で検出される温度が高い)ほど、低い電圧に設定される。OCP閾値Vref11、Vref12、Vref13のそれぞれで異なるOCP遮断時間TOCP11、TOCP12、TOCP13が設定されている。OCP閾値Vref11、Vref12、Vref13は、Vref11<Vref12<Vref13に設定され、OCP遮断時間TOCP11、TOCP12、TOCP13は、TOCP11>TOCP12>TOCP13に設定されている。 With the above configuration, the first overcurrent protection circuit 11 changes the levels of the OCP thresholds Vref11, Vref12, and Vref13 to be compared with the OCP voltage value VOCP depending on the power supply voltage value VOVM and the temperature voltage value VVT . The OCP thresholds Vref11, Vref12, and Vref13 are set to lower voltages as the power supply voltage value VOVM (motor power supply voltage Vpp) is higher, and are set to lower voltages as the temperature voltage value VVT is lower (the temperature detected by the temperature sensor 6 is higher). Different OCP cutoff times TOCP11 , TOCP12, and TOCP13 are set for the OCP thresholds Vref11, Vref12 , and Vref13 , respectively. The OCP thresholds Vref11, Vref12, and Vref13 are set such that Vref11<Vref12<Vref13, and the OCP cutoff times T OCP11 , T OCP12 , and T OCP13 are set such that T OCP11 > T OCP12 > T OCP13 .
 第2過電流保護回路21は、非反転入力端子が過電流保護信号入力端子OCPに、反転入力端子が可変電圧源211、212、213にそれぞれ接続された比較器CMP21、CMP22、CMP23を備える。比較器CMP21は、OCP電圧値VOCPが可変電圧源211で生成されるOCP閾値Vref21を上回るとハイレベルを出力する。比較器CMP22は、OCP電圧値VOCPが可変電圧源212で生成されるOCP閾値Vref22を上回るとハイレベルを出力する。比較器CMP23は、OCP電圧値VOCPが可変電圧源213で生成されるOCP閾値Vref23を上回るとハイレベルを出力する。 The second overcurrent protection circuit 21 includes comparators CMP21, CMP22, and CMP23 whose non-inverting input terminals are connected to the overcurrent protection signal input terminal OCP and whose inverting input terminals are connected to variable voltage sources 211, 212, and 213, respectively. The comparator CMP21 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref21 generated by the variable voltage source 211. The comparator CMP22 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref22 generated by the variable voltage source 212. The comparator CMP23 outputs a high level when the OCP voltage value V_OCP exceeds an OCP threshold Vref23 generated by the variable voltage source 213.
 OCP閾値Vref21は、OCP閾値Vref22よりも低く、OCP閾値Vref22は、OCP閾値Vref23よりも低い値に設定されている(Vref21<Vref22<Vref23)。すなわち、比較器CMP21、CMP22、CMP23は、OCP電圧値VOCPを電位が異なるOCP閾値Vref21、Vref22、Vref23とそれぞれ比較する。 The OCP threshold Vref21 is set lower than the OCP threshold Vref22, which is set lower than the OCP threshold Vref23 (Vref21<Vref22<Vref23). That is, the comparators CMP21, CMP22, and CMP23 compare the OCP voltage value VOCP with the OCP thresholds Vref21, Vref22, and Vref23, which have different potentials, respectively.
 内部電圧Regとコモン線との間に抵抗R21とスイッチ素子Q21とからなる直列回路が接続され、スイッチ素子Q21と並列にキャパシタC21が接続されている。比較器CMP21の出力端子は、インバータINV21を介してスイッチ素子Q21の制御端子に接続されている。従って、OCP電圧値VOCPがOCP閾値Vref21を上回ると、比較器CMP21はハイレベルを出力(インバータINV21はローレベルを出力)し、スイッチ素子Q21がオフ状態に遷移する。スイッチ素子Q21がオフ状態に遷移することで、キャパシタC21への充電が開始され、キャパシタC21の電圧が充電によってハイレベルに到達すると、エラー信号(ハイレベル)が出力される。 A series circuit consisting of a resistor R21 and a switch element Q21 is connected between the internal voltage Reg and the common line, and a capacitor C21 is connected in parallel to the switch element Q21. The output terminal of the comparator CMP21 is connected to the control terminal of the switch element Q21 via an inverter INV21. Therefore, when the OCP voltage value VOCP exceeds the OCP threshold value Vref21, the comparator CMP21 outputs a high level (the inverter INV21 outputs a low level), and the switch element Q21 transitions to the off state. When the switch element Q21 transitions to the off state, charging of the capacitor C21 begins, and when the voltage of the capacitor C21 reaches a high level due to charging, an error signal (high level) is output.
 キャパシタC21の電圧が充電によってハイレベルに到達するまでの時間が過電流の検出をマスクするOCP遮断時間TOCP21となる。すなわち、スイッチ素子Q21、抵抗R21及びキャパシタC21は、OCP遮断時間TOCP21を生成する遮断時間生成回路として機能する。OCP遮断時間TOCP21が経過する前に、OCP電圧値VOCPがOCP閾値Vref21以下になった場合、スイッチ素子Q21がオン状態に遷移してキャパシタC21の電圧が放電され、エラー信号(ハイレベル)が出力されることがない。 The time it takes for the voltage of capacitor C21 to reach a high level through charging becomes the OCP cut-off time T OCP21 that masks the detection of an overcurrent. That is, switch element Q21, resistor R21, and capacitor C21 function as a cut-off time generating circuit that generates the OCP cut-off time T OCP21 . If the OCP voltage value V OCP becomes equal to or lower than the OCP threshold value Vref21 before the OCP cut-off time T OCP21 has elapsed, switch element Q21 transitions to the on state to discharge the voltage of capacitor C21, and an error signal (high level) is not output.
 内部電圧Regとコモン線との間に抵抗R22とスイッチ素子Q22とからなる直列回路が接続され、スイッチ素子Q22と並列にキャパシタC22が接続されている。比較器CMP22の出力端子は、インバータINV22を介してスイッチ素子Q22の制御端子に接続されている。従って、OCP電圧値VOCPがOCP閾値Vref22を上回ると、比較器CMP22はハイレベルを出力(インバータINV22はローレベルを出力)し、スイッチ素子Q22がオフ状態に遷移する。スイッチ素子Q22がオフ状態に遷移することで、キャパシタC22への充電が開始され、キャパシタC22の電圧が充電によってハイレベルに到達すると、エラー信号(ハイレベル)が出力される。 A series circuit consisting of a resistor R22 and a switch element Q22 is connected between the internal voltage Reg and the common line, and a capacitor C22 is connected in parallel to the switch element Q22. The output terminal of the comparator CMP22 is connected to the control terminal of the switch element Q22 via an inverter INV22. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref22, the comparator CMP22 outputs a high level (the inverter INV22 outputs a low level), and the switch element Q22 transitions to the off state. When the switch element Q22 transitions to the off state, charging of the capacitor C22 begins, and when the voltage of the capacitor C22 reaches a high level due to charging, an error signal (high level) is output.
 キャパシタC22の電圧が充電によってハイレベルに到達するまでの時間が過電流の検出をマスクするOCP遮断時間TOCP22となる。すなわち、スイッチ素子Q22、抵抗R22及びキャパシタC22は、OCP遮断時間TOCP22を生成する遮断時間生成回路として機能する。OCP遮断時間TOCP22は、OCP遮断時間TOCP21よりも短い時間に設定されている(TOCP22<TOCP21)。抵抗R22及びキャパシタC22の時定数は、抵抗R21及びキャパシタC21の時定数よりも小さい値に設定されている。従って、OCP電圧値VOCPがOCP閾値Vref22を上回る場合、OCP閾値Vref21も上回ってキャパシタC21への充電が開始されるが、OCP遮断時間TOCP21が経過する前に、キャパシタC22の電圧が充電によってハイレベルに到達すると、エラー信号(ハイレベル)が出力される。なお、OCP遮断時間TOCP22が経過する前に、OCP電圧値VOCPがOCP閾値Vref22以下になった場合、スイッチ素子Q22がオン状態に遷移してキャパシタC22の電圧が放電され、エラー信号(ハイレベル)が出力されることがない。 The time required for the voltage of the capacitor C22 to reach a high level by charging is the OCP cutoff time T OCP22 that masks the detection of an overcurrent. That is, the switch element Q22, the resistor R22, and the capacitor C22 function as a cutoff time generating circuit that generates the OCP cutoff time T OCP22 . The OCP cutoff time T OCP22 is set to a time shorter than the OCP cutoff time T OCP21 (T OCP22 <T OCP21 ). The time constant of the resistor R22 and the capacitor C22 is set to a value smaller than the time constant of the resistor R21 and the capacitor C21. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref22, it also exceeds the OCP threshold value Vref21 and charging of the capacitor C21 begins, but if the voltage of the capacitor C22 reaches a high level by charging before the OCP cutoff time T OCP21 has elapsed, an error signal (high level) is output. If the OCP voltage value V_OCP becomes equal to or lower than the OCP threshold value Vref22 before the OCP shutoff time T_OCP22 has elapsed, the switch element Q22 transitions to the on state, the voltage of the capacitor C22 is discharged, and no error signal (high level) is output.
 内部電圧Regとコモン線との間に抵抗R23とスイッチ素子Q23とからなる直列回路が接続され、スイッチ素子Q23と並列にキャパシタC23が接続されている。比較器CMP23の出力端子は、インバータINV23を介してスイッチ素子Q23の制御端子に接続されている。従って、OCP電圧値VOCPがOCP閾値Vref23を上回ると、比較器CMP23はハイレベルを出力(インバータINV23はローレベルを出力)し、スイッチ素子Q23がオフ状態に遷移する。スイッチ素子Q23がオフ状態に遷移することで、キャパシタC23への充電が開始され、キャパシタC23の電圧が充電によってハイレベルに到達すると、エラー信号(ハイレベル)が出力される。 A series circuit consisting of a resistor R23 and a switch element Q23 is connected between the internal voltage Reg and the common line, and a capacitor C23 is connected in parallel to the switch element Q23. The output terminal of the comparator CMP23 is connected to the control terminal of the switch element Q23 via an inverter INV23. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref23, the comparator CMP23 outputs a high level (the inverter INV23 outputs a low level), and the switch element Q23 transitions to the OFF state. When the switch element Q23 transitions to the OFF state, charging of the capacitor C23 begins, and when the voltage of the capacitor C23 reaches a high level due to charging, an error signal (high level) is output.
 キャパシタC23の電圧が充電によってハイレベルに到達するまでの時間が過電流の検出をマスクするOCP遮断時間TOCP23となる。すなわち、スイッチ素子Q23、抵抗R23及びキャパシタC23は、OCP遮断時間TOCP23を生成する遮断時間生成回路として機能する。OCP遮断時間TOCP23は、OCP遮断時間TOCP22よりも短い時間に設定されている(TOCP23<TOCP22)。抵抗R23及びキャパシタC23の時定数は、抵抗R22及びキャパシタC22の時定数よりも小さい値に設定されている。従って、OCP電圧値VOCPがOCP閾値Vref23を上回る場合、OCP閾値Vref22も上回ってキャパシタC22への充電が開始されるが、OCP遮断時間TOCP22が経過する前に、キャパシタC23の電圧が充電によってハイレベルに到達すると、エラー信号(ハイレベル)が出力される。なお、OCP遮断時間TOCP23が経過する前に、OCP電圧値VOCPがOCP閾値Vref23以下になった場合、スイッチ素子Q23がオン状態に遷移してキャパシタC23の電圧が放電され、エラー信号(ハイレベル)が出力されることがない。 The time required for the voltage of the capacitor C23 to reach a high level by charging is the OCP cutoff time T OCP23 that masks the detection of an overcurrent. That is, the switch element Q23, the resistor R23, and the capacitor C23 function as a cutoff time generating circuit that generates the OCP cutoff time T OCP23 . The OCP cutoff time T OCP23 is set to a time shorter than the OCP cutoff time T OCP22 (T OCP23 <T OCP22 ). The time constant of the resistor R23 and the capacitor C23 is set to a value smaller than the time constant of the resistor R22 and the capacitor C22. Therefore, when the OCP voltage value V OCP exceeds the OCP threshold value Vref23, it also exceeds the OCP threshold value Vref22 and charging of the capacitor C22 is started, but if the voltage of the capacitor C23 reaches a high level by charging before the OCP cutoff time T OCP22 has elapsed, an error signal (high level) is output. If the OCP voltage value V_OCP becomes equal to or lower than the OCP threshold value Vref23 before the OCP shutoff time T_OCP23 has elapsed, the switch element Q23 transitions to the on state, the voltage of the capacitor C23 is discharged, and no error signal (high level) is output.
 キャパシタC21~C23の電圧は、オア回路OR21の第1~3入力端子にそれぞれ入力される。オア回路OR21の出力端子は、アンド回路AND21の他方の入力端子に接続され、アンド回路AND21がオン状態である場合、キャパシタC21~C23のいずれかの電圧がハイレベルに到達すると、過電流保護回路10からエラー信号が出力される。過電流保護回路10からのエラー信号は、ローサイドドライバIC4に内蔵された制御部(control unit)20に入力されると共に、エラー信号出力端子FOから出力される。制御部20は、過電流保護回路10からエラー信号が入力されると、ローサイドスイッチング素子QLのオンオフ駆動を停止させ、ローサイドスイッチング素子QLを遮断(オフ)状態にする。 The voltages of capacitors C21 to C23 are input to the first to third input terminals of OR circuit OR21, respectively. The output terminal of OR circuit OR21 is connected to the other input terminal of AND circuit AND21, and when the AND circuit AND21 is in the on state, an error signal is output from overcurrent protection circuit 10 when the voltage of any of capacitors C21 to C23 reaches a high level. The error signal from overcurrent protection circuit 10 is input to control unit 20 built into low-side driver IC4 and is also output from error signal output terminal FO. When an error signal is input from overcurrent protection circuit 10, control unit 20 stops the on/off driving of low-side switching element QL and switches low-side switching element QL to a cut-off (off) state.
 可変電圧源211は、ユーザ設定端子BTMSに入力されるユーザ設定値VBTMSに基づいて、OCP閾値Vref21を設定する。可変電圧源211は、図5を参照すると、内部電圧Regとコモン線との間に抵抗R50と抵抗R54とからなる直列回路が接続され、抵抗R50と抵抗R54との接続点の電圧がOCP閾値Vref21として出力される。 The variable voltage source 211 sets the OCP threshold Vref21 based on a user setting value VBTMS input to a user setting terminal BTMS. With reference to Fig. 5, the variable voltage source 211 has a series circuit made up of resistors R50 and R54 connected between the internal voltage Reg and the common line, and outputs the voltage at the connection point between the resistors R50 and R54 as the OCP threshold Vref21.
 抵抗R54には、抵抗R51とスイッチ素子Q51とからなる直列回路と、抵抗R52とスイッチ素子Q52とからなる直列回路と、抵抗R53とスイッチ素子Q53とからなる直列回路と、が並列に接続されている。従って、スイッチ素子Q51、Q52、Q53の状態に応じてOCP閾値Vref21の電圧が変更される。 The resistor R54 is connected in parallel to a series circuit consisting of resistor R51 and switch element Q51, a series circuit consisting of resistor R52 and switch element Q52, and a series circuit consisting of resistor R53 and switch element Q53. Therefore, the voltage of the OCP threshold Vref21 changes depending on the state of the switch elements Q51, Q52, and Q53.
 スイッチ素子Q51、Q52、Q53は、例えば、MOSトランジスタで構成される。スイッチ素子Q51は、制御端子が、ユーザ設定値VBTMSを基準電圧Vref51と比較する比較器CMP51の出力端子に接続され、ユーザ設定値VBTMSが基準電圧Vref51を超えるとオンされる。スイッチ素子Q52は、制御端子が、ユーザ設定値VBTMSを基準電圧Vref51よりも高い基準電圧Vref52(Vref51<Vref52)と比較する比較器CMP52の出力端子に接続され、ユーザ設定値VBTMSが基準電圧Vref52を超えるとオンされる。スイッチ素子Q53は、制御端子が、ユーザ設定値VBTMSを基準電圧Vref52よりも高い基準電圧Vref53(Vref52<Vref53)と比較する比較器CMP53の出力端子に接続され、ユーザ設定値VBTMSが基準電圧Vref53を超えるとオンされる。従って、スイッチ素子Q51、Q52、Q53は、ユーザ設定値VBTMSが基準電圧Vref51以下の場合、全てがオフ状態となり、ユーザ設定値VBTMSが基準電圧Vref51を超えて基準電圧Vref52以下の場合、スイッチ素子Q51のみがオン状態となり、ユーザ設定値VBTMSが基準電圧Vref52を超えて基準電圧Vref53以下の場合、スイッチ素子Q51、Q52がオン状態となり、ユーザ設定値VBTMSが基準電圧Vref53を超えた場合、全てがオン状態となる。これにより、OCP閾値Vref21は、ユーザ設定値VBTMSが高いほど、低い電圧に設定される。 The switch elements Q51, Q52, and Q53 are each composed of, for example, a MOS transistor. The control terminal of the switch element Q51 is connected to the output terminal of a comparator CMP51 that compares a user set value VBTMS with a reference voltage Vref51, and the switch element Q51 is turned on when the user set value VBTMS exceeds the reference voltage Vref51. The control terminal of the switch element Q52 is connected to the output terminal of a comparator CMP52 that compares the user set value VBTMS with a reference voltage Vref52 (Vref51<Vref52) that is higher than the reference voltage Vref51, and the switch element Q52 is turned on when the user set value VBTMS exceeds the reference voltage Vref52. The control terminal of the switch element Q53 is connected to the output terminal of a comparator CMP53 which compares the user set value VBTMS with a reference voltage Vref53 (Vref52<Vref53) which is higher than the reference voltage Vref52, and is turned on when the user set value VBTMS exceeds the reference voltage Vref53. Thus, when the user set value VBTMS is equal to or lower than the reference voltage Vref51, all of the switch elements Q51, Q52, and Q53 are in the off state, when the user set value VBTMS exceeds the reference voltage Vref51 and is equal to or lower than the reference voltage Vref52, only the switch element Q51 is in the on state, when the user set value VBTMS exceeds the reference voltage Vref52 and is equal to or lower than the reference voltage Vref53, the switch elements Q51 and Q52 are in the on state, and when the user set value VBTMS exceeds the reference voltage Vref53, all of the switch elements are in the on state. As a result, the OCP threshold Vref21 is set to a lower voltage as the user-set value V BTMS is higher.
 基準電圧Vref53は、アンド回路AND11及びインバータINV20の入力判定がローレベルとなる電圧に設定されている。従って、第2過電流保護回路21が選択された状態で、可変電圧源211は、ユーザ設定値VBTMSに基づいて、OCP閾値Vref21を複数の電圧に設定できる。図5に示す可変電圧源211の構成例では、OCP閾値Vref21は、ユーザ設定値VBTMSに応じて4通りに変更可能である。OCP閾値Vref21の変更可能な電圧の数は、適宜設定できる。 The reference voltage Vref53 is set to a voltage at which the input judgment of the AND circuit AND11 and the inverter INV20 is at a low level. Therefore, when the second overcurrent protection circuit 21 is selected, the variable voltage source 211 can set the OCP threshold Vref21 to a plurality of voltages based on the user setting value VBTMS . In the configuration example of the variable voltage source 211 shown in FIG. 5, the OCP threshold Vref21 can be changed to four different voltages according to the user setting value VBTMS . The number of voltages to which the OCP threshold Vref21 can be changed can be set appropriately.
 可変電圧源212、213は、可変電圧源211と同様に構成で、ユーザ設定値VBTMSに基づいて、OCP閾値Vref22、Vref23をそれぞれ設定する。但し、ユーザ設定値VBTMSが同じである場合、上述した(Vref21<Vref22<Vref23)の関係が維持されるように、可変電圧源211、212、213の各抵抗値が設定されている。 Variable voltage sources 212 and 213 have the same configuration as variable voltage source 211, and set OCP thresholds Vref22 and Vref23, respectively, based on a user-set value VBTMS . However, when the user-set value VBTMS is the same, the resistance values of variable voltage sources 211, 212, and 213 are set so that the above-mentioned relationship (Vref21<Vref22<Vref23) is maintained.
 図6(a)に示す例では、ユーザ設定値VBTMSがVref51<VBTMS≦Vref52で設定されるOCP閾値Vref21、Vref22、Vref23は、それぞれ1.0V、1.8V、2.6Vである。この場合、OCP電圧値VOCP=0.9V(電流検出素子Rs=50mΩで18A)では、VOCP≦Vref21であるため、第2過電流保護回路21は、OCP動作を実行しない。OCP電圧値VOCP=1.65V(電流検出素子Rs=50mΩで33A)では、Vref21<VOCP≦Vref22であるため、第2過電流保護回路21は、Vref21<VOCPの状態でOCP遮断時間TOCP21(例えば、2μs)が経過するとエラー信号を出力する。OCP電圧値VOCP=2.3V(電流検出素子Rs=50mΩで46A)では、Vref22<VOCP≦Vref23であるため、第2過電流保護回路21は、Vref22<VOCPの状態でOCP遮断時間TOCP22(例えば、1μs)が経過するとエラー信号を出力する。なお、OCP電圧値VOCP=2.3Vは、Vref23<VOCPでもあるため、第2過電流保護回路21は、Vref11<VOCPの状態でOCP遮断時間TOCP21(例えば、2μs)が経過してもエラー信号を出力するが制御部20にTOCP22経過後のエラー信号がすでに入力されているため、ローサイドスイッチング素子QLはすでにオフ状態となっている。 6A, the OCP thresholds Vref21, Vref22, and Vref23 set when the user-set value VBTMS satisfies Vref51< VBTMS ≦Vref52 are 1.0 V, 1.8 V, and 2.6 V, respectively. In this case, when the OCP voltage value VOCP is 0.9 V (current detection element Rs=50 mΩ and 18 A), VOCP ≦Vref21, so the second overcurrent protection circuit 21 does not execute the OCP operation. When the OCP voltage value VOCP is 1.65 V (current detection element Rs=50 mΩ and 33 A), Vref21< VOCP ≦Vref22, so the second overcurrent protection circuit 21 outputs an error signal when the OCP cutoff time TOCP21 (e.g., 2 μs) has elapsed in a state where Vref21< VOCP . At an OCP voltage value V OCP =2.3V (46A with current detection element Rs=50mΩ), Vref22<V OCP ≦Vref23, so the second overcurrent protection circuit 21 outputs an error signal when the OCP cutoff time T OCP22 (e.g., 1 μs) has elapsed in a state where Vref22<V OCP . Note that at an OCP voltage value V OCP =2.3V, Vref23<V OCP , so the second overcurrent protection circuit 21 outputs an error signal even if the OCP cutoff time T OCP21 (e.g., 2 μs) has elapsed in a state where Vref11<V OCP. However, since the error signal after the elapse of T OCP22 has already been input to the control unit 20, the low-side switching element QL is already in the off state.
 図6(b)に示す例では、ユーザ設定値VBTMSがVref52<VBTMS≦Vref53で設定されるOCP閾値Vref21、Vref22、Vref23は、それぞれ0.8V、1.6V、2.4Vである。この場合、OCP電圧値VOCP=0.9Vでは、Vref21<VOCP≦Vref22であるため、第2過電流保護回路21は、Vref21<VOCPの状態でOCP遮断時間TOCP21(例えば、2μs)が経過するとエラー信号を出力する。OCP電圧値VOCP=1.65V、2.3Vでは、Vref22<VOCP≦Vref23であるため、第2過電流保護回路21は、Vref22<VOCPの状態でOCP遮断時間TOCP22(例えば、1μs)が経過するとエラー信号を出力する。なお、OCP電圧値VOCP=1.65V、2.3Vは、Vref21<VOCPでもあるため、第2過電流保護回路21は、Vref21<VOCPの状態でOCP遮断時間TOCP21(例えば、2μs)が経過してもエラー信号を出力するが制御部20にTOCP22経過後のエラー信号がすでに入力されているため、ローサイドスイッチング素子QLはすでにオフ状態となっている。 6B, the OCP thresholds Vref21, Vref22, and Vref23, which are set when the user-set value VBTMS is Vref52< VBTMS ≦Vref53, are 0.8 V, 1.6 V, and 2.4 V, respectively. In this case, when the OCP voltage value V OCP =0.9 V, Vref21<V OCP ≦Vref22, so the second overcurrent protection circuit 21 outputs an error signal when the OCP cutoff time T OCP21 (e.g., 2 μs) has elapsed in a state where Vref21<V OCP . At OCP voltage values V OCP =1.65 V and 2.3 V, Vref22<V OCP ≦Vref23, so the second overcurrent protection circuit 21 outputs an error signal when the OCP cutoff time T OCP22 (e.g., 1 μs) has elapsed in a state where Vref22<V OCP . Note that at OCP voltage values V OCP =1.65 V and 2.3 V, Vref21<V OCP , so the second overcurrent protection circuit 21 outputs an error signal even if the OCP cutoff time T OCP21 (e.g., 2 μs) has elapsed in a state where Vref21<V OCP . However, since the error signal after the elapse of T OCP22 has already been input to the control unit 20, the low-side switching element QL is already in the off state.
 図6(c)に示す例では、ユーザ設定値VBTMSがVref53<VBTMSで設定されるOCP閾値Vref21、Vref22、Vref23は、それぞれ0.6V、1.4V、2.2Vである。この場合、OCP電圧値VOCP=0.9Vでは、Vref21<VOCP≦Vref22であるため、第2過電流保護回路21は、Vref21<VOCPの状態でOCP遮断時間TOCP21(例えば、2μs)が経過するとエラー信号を出力する。OCP電圧値VOCP=1.65Vでは、Vref22<VOCP≦Vref23であるため、第2過電流保護回路21は、Vref22<VOCPの状態でOCP遮断時間TOCP22(例えば、1μs)が経過するとエラー信号を出力する。なお、OCP電圧値VOCP=1.65Vは、Vref21<VOCPでもあるため、第2過電流保護回路21は、Vref21<VOCPの状態でOCP遮断時間TOCP21(例えば、2μs)が経過してもエラー信号を出力するが、制御部20にTOCP22経過後のエラー信号がすでに入力されているため、ローサイドスイッチング素子QLはすでにオフ状態となっている。OCP電圧値VOCP=2.3Vでは、Vref23<VOCPであるため、第2過電流保護回路21は、Vref23<VOCPの状態でOCP遮断時間TOCP23(例えば、0.3μs)が経過するとエラー信号を出力する。なお、OCP電圧値VOCP=2.3Vは、Vref21<VOCPでもあるため、第2過電流保護回路21は、Vref21<VOCPの状態でOCP遮断時間TOCP21(例えば、2μs)が経過してもエラー信号を出力するが、制御部20にTOCP23経過後のエラー信号がすでに入力されているため、ローサイドスイッチング素子QLはすでにオフ状態となっている。同様に、OCP電圧値VOCP=2.3Vは、Vref22<VOCPでもあるため、第2過電流保護回路21は、Vref22<VOCPの状態でOCP遮断時間TOCP22(例えば、1μs)が経過してもエラー信号を出力するが制御部20にTOCP23経過後のエラー信号がすでに入力されているため、ローサイドスイッチング素子QLはすでにオフ状態となっている。 6C, the OCP thresholds Vref21, Vref22, and Vref23 set when the user-set value VBTMS is Vref53< VBTMS are 0.6 V, 1.4 V, and 2.2 V, respectively. In this case, when the OCP voltage value V OCP =0.9 V, Vref21<V OCP ≦Vref22, so the second overcurrent protection circuit 21 outputs an error signal when the OCP cutoff time T OCP21 (e.g., 2 μs) has elapsed in a state where Vref21<V OCP . When the OCP voltage value V OCP =1.65 V, Vref22<V OCP ≦Vref23, so the second overcurrent protection circuit 21 outputs an error signal when the OCP cutoff time T OCP22 (e.g., 1 μs) has elapsed in a state where Vref22<V OCP . Note that, since Vref21< VOCP at the OCP voltage value VOCP =1.65V, the second overcurrent protection circuit 21 outputs an error signal even if the OCP cut-off time TOCP21 (e.g., 2µs) has elapsed in a state where Vref21< VOCP , but the low-side switching element QL is already in the OFF state because the error signal after TOCP22 has elapsed has already been input to the control unit 20. At the OCP voltage value VOCP =2.3V, Vref23< VOCP , so the second overcurrent protection circuit 21 outputs an error signal when the OCP cut-off time TOCP23 (e.g., 0.3µs) has elapsed in a state where Vref23< VOCP . Note that, since the OCP voltage value V OCP = 2.3V also satisfies Vref21 < V OCP , the second overcurrent protection circuit 21 outputs an error signal even after the OCP cut-off time T OCP21 (e.g., 2 μs) has elapsed in a state where Vref21 < V OCP , but the low-side switching element QL is already in the OFF state because the error signal after T OCP23 has already been input to the control unit 20. Similarly, since the OCP voltage value V OCP = 2.3V also satisfies Vref22 < V OCP , the second overcurrent protection circuit 21 outputs an error signal even after the OCP cut-off time T OCP22 (e.g., 1 μs) has elapsed in a state where Vref22 < V OCP , but the low-side switching element QL is already in the OFF state because the error signal after T OCP23 has already been input to the control unit 20.
 以上の構成により、第2過電流保護回路21は、ユーザ設定値VBTMSによってOCP電圧値VOCPと比較するOCP閾値Vref21、Vref22、Vref23のレベルが変更される。OCP閾値Vref21、Vref22、Vref23は、ユーザ設定値VBTMSが高いほど、低い電圧に設定される。OCP閾値Vref21、Vref22、Vref23のそれぞれで異なるOCP遮断時間TOCP21、TOCP22、TOCP23が設定されている。OCP閾値Vref21、Vref22、Vref23は、Vref21<Vref22<Vref23に設定され、OCP遮断時間TOCP21、TOCP22、TOCP23は、TOCP21>TOCP22>TOCP23に設定されている。 With the above configuration, in the second overcurrent protection circuit 21, the levels of the OCP thresholds Vref21, Vref22, and Vref23 to be compared with the OCP voltage value V OCP are changed according to the user set value V BTMS . The OCP thresholds Vref21, Vref22, and Vref23 are set to lower voltages as the user set value V BTMS is higher. Different OCP cutoff times TOCP21, TOCP22, and TOCP23 are set for the OCP thresholds Vref21 , Vref22 , and Vref23 , respectively. The OCP thresholds Vref21, Vref22, and Vref23 are set such that Vref21<Vref22<Vref23, and the OCP cutoff times T OCP21 , T OCP22 , and T OCP23 are set such that T OCP21 > T OCP22 > T OCP23 .
 図7に示す第2過電流保護回路21aは、第2過電流保護回路21の変形例である。第2過電流保護回路21aは、セレクト回路(select)60がオア回路OR21の入力側に介装されている。セレクト回路60は、セレクト信号入力端子SELから入力されるセレクト信号VSELによって、OCP遮断時間TOCP21、OCP遮断時間TOCP22、OCP遮断時間TOCP23のいずれかを選択する。 7 is a modified example of the second overcurrent protection circuit 21. In the second overcurrent protection circuit 21a, a select circuit 60 is interposed on the input side of an OR circuit OR21. The select circuit 60 selects one of the OCP cut-off times T OCP21 , T OCP22 , and T OCP23 according to a select signal V SEL input from a select signal input terminal SEL.
 セレクト回路60は、図8を参照すると、セレクト信号VSELを異なる基準電圧Vref61、Vref62、Vref63(基準電圧Vref61<Vref62<Vref63)とそれぞれ比較する比較器CMP61、CMP62、CMP63を備える。 8, the select circuit 60 includes comparators CMP61, CMP62, and CMP63 which compare the select signal VSEL with different reference voltages Vref61, Vref62, and Vref63 (reference voltages Vref61<Vref62<Vref63), respectively.
 比較器CMP61、CMP62、CMP63のそれぞれの出力は、アンド回路AND61、AND62、AND63の一方の入力端子にそれぞれ入力されると共に、ノア回路NOR61の第1~3の入力端子にそれぞれ入力される。ノア回路NOR61の出力は、アンド回路AND70、AND71、AND72の一方の入力端子に入力される。キャパシタC21の電圧が入力信号(input signal)IN1、キャパシタC22の電圧が入力信号IN2、キャパシタC23の電圧が入力信号IN3として、アンド回路AND61、AND62、AND63の他方の入力端子にそれぞれ入力されると共に、アンド回路AND70、AND71、AND72の他方の入力端子にそれぞれ入力される。アンド回路AND70、AND71、AND72のそれぞれの出力は、オア回路OR61、OR62、OR63の一方の入力端子にそれぞれ入力され、オア回路OR61、OR62、OR63のそれぞれの出力が出力信号(output signal)OUT1、OUT2、OUT3として出力される。 The outputs of comparators CMP61, CMP62, CMP63 are input to one input terminal of AND circuits AND61, AND62, AND63, respectively, and are also input to the first to third input terminals of NOR circuit NOR61. The output of NOR circuit NOR61 is input to one input terminal of AND circuits AND70, AND71, AND72. The voltage of capacitor C21 is input signal IN1, the voltage of capacitor C22 is input signal IN2, and the voltage of capacitor C23 is input signal IN3, which are input to the other input terminals of AND circuits AND61, AND62, AND63, respectively, and to the other input terminals of AND circuits AND70, AND71, AND72, respectively. The outputs of the AND circuits AND70, AND71, and AND72 are input to one input terminal of the OR circuits OR61, OR62, and OR63, respectively, and the outputs of the OR circuits OR61, OR62, and OR63 are output as output signals OUT1, OUT2, and OUT3, respectively.
 比較器CMP61の出力は、XOR回路XOR61の一方の入力端子にも入力される。比較器CMP62の出力は、XOR回路XOR61の他方の入力端子と、XOR回路XOR62の一方の入力端子と、にも入力される。比較器CMP63の出力は、XOR回路XOR62の他方の入力端子にも入力される。 The output of comparator CMP61 is also input to one input terminal of XOR circuit XOR61. The output of comparator CMP62 is also input to the other input terminal of XOR circuit XOR61 and one input terminal of XOR circuit XOR62. The output of comparator CMP63 is also input to the other input terminal of XOR circuit XOR62.
 XOR回路XOR61の出力は、アンド回路AND66の一方の入力端子に、アンド回路AND61の出力は、アンド回路AND66の他方の入力端子にそれぞれ入力され、アンド回路AND66の出力は、オア回路OR61の他方の入力端子に入力される。XOR回路XOR62の出力は、アンド回路AND68の一方の入力端子に、アンド回路AND62の出力は、アンド回路AND68の他方の入力端子にそれぞれ入力される。アンド回路AND68の出力は、オア回路OR62の他方の入力端子に入力される。アンド回路AND63の出力は、オア回路OR63の他方の入力端子に入力される。 The output of XOR circuit XOR61 is input to one input terminal of AND circuit AND66, the output of AND circuit AND61 is input to the other input terminal of AND circuit AND66, and the output of AND circuit AND66 is input to the other input terminal of OR circuit OR61. The output of XOR circuit XOR62 is input to one input terminal of AND circuit AND68, and the output of AND circuit AND62 is input to the other input terminal of AND circuit AND68. The output of AND circuit AND68 is input to the other input terminal of OR circuit OR62. The output of AND circuit AND63 is input to the other input terminal of OR circuit OR63.
 セレクト信号VSELがVSEL≦Vref61の場合、アンド回路AND61、AND62、AND63がオフ状態となり、アンド回路AND70、AND71、AND72がオン状態となる。このため、図9に示すように、入力信号IN1、IN2、IN3がそのまま出力信号OUT1、OUT2、OUT3として出力される。この状態は、第2過電流保護回路21と同じOCP動作となる。 When the select signal VSEL is VSEL ≦ Vref61, the AND circuits AND61, AND62, and AND63 are turned off, and the AND circuits AND70, AND71, and AND72 are turned on. Therefore, as shown in Fig. 9, the input signals IN1, IN2, and IN3 are output as they are as the output signals OUT1, OUT2, and OUT3. This state is the same OCP operation as the second overcurrent protection circuit 21.
 セレクト信号VSELがVref61<VSEL≦Vref62の場合、アンド回路AND62、AND63、AND70、AND71、AND72がオフ状態となり、アンド回路AND61がオン状態となる。このため、図9に示すように、入力信号IN2、IN3がマスクされ、OCP遮断時間TOCP21で動作する入力信号IN1のみが出力信号OUT1として出力される。 When the select signal VSEL is Vref61< VSEL ≦Vref62, the AND circuits AND62, AND63, AND70, AND71, and AND72 are turned off, and the AND circuit AND61 is turned on. Therefore, as shown in Fig. 9, the input signals IN2 and IN3 are masked, and only the input signal IN1 that operates during the OCP cutoff time TOCP21 is output as the output signal OUT1.
 セレクト信号VSELがVref62<VSEL≦Vref63の場合、アンド回路AND63、AND70、AND71、AND72がオフ状態となり、アンド回路AND61、AND62がオン状態となる。アンド回路AND61の出力は、XOR回路XOR61のローレベル出力によってアンド回路AND66がオフ状態となってマスクされる。このため、図9に示すように、入力信号IN1、IN3がマスクされ、OCP遮断時間TOCP22で動作する入力信号IN2のみが出力信号OUT2として出力される。 When the select signal VSEL is Vref62< VSEL ≦Vref63, the AND circuits AND63, AND70, AND71, and AND72 are turned off, and the AND circuits AND61 and AND62 are turned on. The output of the AND circuit AND61 is masked by the low-level output of the XOR circuit XOR61 turning off the AND circuit AND66. Therefore, as shown in FIG. 9, the input signals IN1 and IN3 are masked, and only the input signal IN2 operating at the OCP cutoff time T OCP22 is output as the output signal OUT2.
 セレクト信号VSELがVref63<VSELの場合、アンド回路AND70、AND71、AND72がオフ状態となり、アンド回路AND61、AND62、AND63がオン状態となる。アンド回路AND61の出力は、XOR回路XOR61のローレベル出力によってアンド回路AND66がオフ状態となってマスクされる。アンド回路AND62の出力は、XOR回路XOR62のローレベル出力によってアンド回路AND68がオフ状態となってマスクされる。このため、図9に示すように、入力信号IN1、IN2がマスクされ、OCP遮断時間TOCP23で動作する入力信号IN3のみが出力信号OUT3として出力される。 When the select signal VSEL is Vref63< VSEL , the AND circuits AND70, AND71, and AND72 are turned off, and the AND circuits AND61, AND62, and AND63 are turned on. The output of the AND circuit AND61 is masked by the low-level output of the XOR circuit XOR61 turning the AND circuit AND66 off. The output of the AND circuit AND62 is masked by the low-level output of the XOR circuit XOR62 turning the AND circuit AND68 off. Therefore, as shown in FIG. 9, the input signals IN1 and IN2 are masked, and only the input signal IN3 operating at the OCP cutoff time T OCP23 is output as the output signal OUT3.
 以上の構成により、第2過電流保護回路21aは、ユーザ設定値VBTMSによってOCP電圧値VOCPと比較するOCP閾値Vref21、Vref22、Vref23のレベルも変更でき、セレクト信号VSELによって、OCP遮断時間TOCP21、OCP遮断時間TOCP22、OCP遮断時間TOCP23のいずれかを選択できる。 With the above configuration, the second overcurrent protection circuit 21a can also change the levels of the OCP thresholds Vref21, Vref22, and Vref23 that are compared with the OCP voltage value V OCP using the user set value V BTMS , and can select one of the OCP cut-off times T OCP21 , T OCP22 , and T OCP23 using the select signal V SEL .
 以上説明したように、本実施の形態は、モータ用電源電圧Vpp(主電源電圧)とコモン線との間に接続されたローサイドスイッチング素子QL(スイッチング素子)を流れる電流をOCP電圧値VOCPとして検出し、OCP電圧値VOCPとOCP閾値Vrefを比較してOCP電圧値VOCPがOCP閾値Vrefを超えた状態でOCP遮断時間TOCPが経過した場合に過電流を検出する過電流保護回路10であって、OCP電圧値VOCPを異なる複数のOCP閾値Vref11、Vref12、Vref13とそれぞれ比較する複数の比較器CMP11、CMP12、CMP13と、複数の比較器CMP11、CMP12、CMP13毎にそれぞれ異なるOCP遮断時間TOCP11、TOCP12、TOCP13を生成する複数の遮断時間生成回路[(スイッチ素子Q11、抵抗R11及びキャパシタC11)、(スイッチ素子Q12、抵抗R12及びキャパシタC12)、(スイッチ素子Q13、抵抗R13及びキャパシタC13)]と、を備え、遮断時間生成回路は、比較器CMP11、CMP12、CMP13のそれぞれのOCP閾値Vref11、Vref12、Vref13(Vref11<Vref12<Vref13)に対してOCP遮断時間TOCP11、TOCP12、TOCP13(TOCP11>TOCP12>TOCP13)をそれぞれ生成する。
 この構成により、過電流保護回路10は、複数のOCP閾値Vref11、Vref12、Vref13にそれぞれ応じて適切に設定された複数のOCP遮断時間TOCP11、TOCP12、TOCP13で過電流を検出できる。従って、どのくらい熱破壊しやすい状態かを検知して、OCP遮断時間を適切に制御することができるため、異常時の熱破壊までの時間が異なる多様なスイッチング素子に対応できる。過電流保護回路10の汎用性が高いため、品種、開発期間、工数を削減でき、組込みミスの防止にも繋がる。
As described above, this embodiment provides an overcurrent protection circuit 10 that detects a current flowing through a low-side switching element QL (switching element) connected between a motor power supply voltage Vpp (main power supply voltage) and a common line as an OCP voltage value V OCP, compares the OCP voltage value V OCP with an OCP threshold value Vref, and detects an overcurrent when the OCP cut-off time T OCP has elapsed in a state in which the OCP voltage value V OCP exceeds the OCP threshold value Vref. The overcurrent protection circuit 10 includes a plurality of comparators CMP11, CMP12, CMP13 that compare the OCP voltage value V OCP with a plurality of different OCP threshold values Vref11, Vref12, Vref13, respectively, and sets different OCP cut-off times T OCP11 , T OCP12 , T The circuit includes a plurality of cut-off time generating circuits [(switch element Q11, resistor R11, and capacitor C11), (switch element Q12, resistor R12, and capacitor C12), (switch element Q13, resistor R13, and capacitor C13)] that generate OCP13, and the cut-off time generating circuits generate OCP cut-off times TOCP11, TOCP12, and TOCP13 (TOCP11 > TOCP12 > TOCP13) for the OCP thresholds Vref11, Vref12, and Vref13 ( Vref11 < Vref12 < Vref13 ) of comparators CMP11 , CMP12 , and CMP13 , respectively.
With this configuration, overcurrent protection circuit 10 can detect overcurrent with multiple OCP cutoff times TOCP11, TOCP12, TOCP13 that are appropriately set according to multiple OCP thresholds Vref11 , Vref12 , Vref13 , respectively. Therefore, it is possible to detect how susceptible a state is to thermal destruction and appropriately control the OCP cutoff time, and thus it is possible to accommodate a variety of switching elements that have different times until thermal destruction in the event of an abnormality. Because overcurrent protection circuit 10 is highly versatile, it is possible to reduce the variety, development time, and man-hours, and it also helps prevent installation errors.
 さらに、本実施形態において、モータ用電源電圧Vppを分圧した電源電圧値VOVM(主電源電圧値)の入力を受け付け、OCP閾値Vrefは、電源電圧値VOVMが高いほど、低い電圧に設定される。
 この構成により、OCP閾値Vref11、Vref12、Vref13は、モータ用電源電圧Vppに応じて適切なレベルに設定されるため、より汎用性が高くなる。
Furthermore, in this embodiment, an input of a power supply voltage value V OVM (main power supply voltage value) obtained by dividing the motor power supply voltage Vpp is accepted, and the OCP threshold value Vref is set to a lower voltage as the power supply voltage value V OVM is higher.
With this configuration, the OCP thresholds Vref11, Vref12, and Vref13 are set to appropriate levels according to the motor power supply voltage Vpp, making the configuration more versatile.
 さらに、本実施形態において、温度センサー6によって検出された温度の温度電圧値VVT(温度検出値)の入力を受け付け、OCP閾値Vrefは、温度電圧値VVTが低い(温度センサー6によって検出された温度が高い)ほど、低い電圧に設定される。
 この構成により、OCP閾値Vref11、Vref12、Vref13は、温度センサー6によって検出された温度に応じて適切なレベルに設定されるため、より汎用性が高くなる。
Furthermore, in this embodiment, an input of a temperature voltage value VVT (temperature detection value) of the temperature detected by the temperature sensor 6 is accepted, and the OCP threshold value Vref is set to a lower voltage as the temperature voltage value VVT is lower (the temperature detected by the temperature sensor 6 is higher).
With this configuration, the OCP thresholds Vref11, Vref12, and Vref13 are set to appropriate levels according to the temperature detected by the temperature sensor 6, making the configuration more versatile.
 さらに、本実施形態において、ユーザ設定値VBTMSの入力を受け付け、OCP閾値Vrefは、ユーザ設定値VBTMSに基づいて変更可能である。
 この構成により、ユーザは、OCP閾値Vref11、Vref12、Vref13を適切なレベルに設定できるため、より汎用性が高くなる。
Furthermore, in this embodiment, an input of a user-set value V BTMS is accepted, and the OCP threshold value Vref is changeable based on the user-set value V BTMS .
This configuration allows the user to set the OCP thresholds Vref11, Vref12, and Vref13 to appropriate levels, making it more versatile.
 さらに、本実施形態において、セレクト信号VSELの入力を受け付け、セレクト信号VSELによって選択されたOCP遮断時間TOCP11、TOCP12、TOCP13のいずれかのみを有効とするセレクト回路60を備える。
 この構成により、ユーザは、適切なOCP遮断時間TOCPを選択できるため、より汎用性が高くなる。
Furthermore, in this embodiment, a select circuit 60 is provided that receives an input of a select signal V SEL and enables only one of the OCP cutoff times T OCP11 , T OCP12 , and T OCP13 selected by the select signal V SEL .
This configuration allows the user to select an appropriate OCP cutoff time T OCP , making it more versatile.
 また、本実施の形態は、モータ用電源電圧Vpp(主電源電圧)とコモン線との間に接続されたローサイドスイッチング素子QL(スイッチング素子)を流れる電流をOCP電圧値VOCPとして検出し、OCP電圧値VOCPとOCP閾値Vrefを比較してOCP電圧値VOCPがOCP閾値Vrefを超えた状態でOCP遮断時間TOCPが経過した場合に過電流を検出する過電流保護回路10であって、第1過電流保護回路11と、第2過電流保護回路21と、を備え、第1過電流保護回路11は、OCP電圧値VOCPを異なる複数のOCP閾値Vref11、Vref12、Vref13とそれぞれ比較する複数の比較器CMP11、CMP12、CMP13(第1比較器)と、複数の比較器CMP11、CMP12、CMP13毎にそれぞれ異なるOCP遮断時間TOCP11、TOCP12、TOCP13を生成する複数の第1遮断時間生成回路[(スイッチ素子Q11、抵抗R11及びキャパシタC11)、(スイッチ素子Q12、抵抗R12及びキャパシタC12)、(スイッチ素子Q13、抵抗R13及びキャパシタC13)]と、を備え、遮断時間生成回路は、比較器CMP11、CMP12、CMP13のそれぞれのOCP閾値Vref11、Vref12、Vref13(Vref11<Vref12<Vref13)に対してOCP遮断時間TOCP11、TOCP12、TOCP13(TOCP11>TOCP12>TOCP13)をそれぞれ生成し、モータ用電源電圧Vppを分圧した電源電圧値VOVM(主電源電圧値)の入力を受け付け、OCP閾値Vrefは、電源電圧値VOVMが高いほど、低い電圧に設定され、温度センサー6によって検出された温度の温度電圧値VVT(温度検出値)の入力を受け付け、OCP閾値Vrefは、温度電圧値VVTが低い(温度が高い)ほど、低い電圧に設定され、第2過電流保護回路21は、OCP電圧値VOCPを異なる複数のOCP閾値Vref21、Vref22、Vref23とそれぞれ比較する複数の比較器CMP21、CMP22、CMP23(第2比較器)と、複数の比較器CMP21、CMP22、CMP23毎にそれぞれ異なるOCP遮断時間TOCP21、TOCP22、TOCP23を生成する複数の第2遮断時間生成回路[(スイッチ素子Q21、抵抗R21及びキャパシタC21)、(スイッチ素子Q22、抵抗R22及びキャパシタC22)、(スイッチ素子Q23、抵抗R23及びキャパシタC23)]と、を備え、遮断時間生成回路は、比較器CMP21、CMP22、CMP23のそれぞれのOCP閾値Vref21、Vref22、Vref23(Vref21<Vref22<Vref23)に対してOCP遮断時間TOCP21、TOCP22、TOCP23(TOCP21>TOCP22>TOCP23)をそれぞれ生成し、OCP電圧値VOCPを異なる複数の前記OCP閾値とそれぞれ比較する複数の前記比較器と、複数の前記比較器毎にそれぞれ異なる前記OCP遮断時間を生成する複数の遮断時間生成回路と、を備え、前記遮断時間生成回路は、前記比較器の前記OCP閾値が高いほど、短い時間の前記OCP遮断時間を生成し、ユーザ設定値VBTMSの入力を受け付け、OCP閾値Vrefは、ユーザ設定値VBTMSに基づいて変更可能であり、第1過電流保護回路11と第2過電流保護回路21とは、ユーザ設定値VBTMSに基づいて選択されたいずれかで過電流を検出する。
 この構成により、OCP閾値Vref11、Vref12、Vref13をモータ用電源電圧Vpp及び温度電圧値VVTに応じて適切なレベルに設定できる第1過電流保護回路11と、OCP閾値Vref21、Vref22、Vref23をユーザが適切なレベルに設定できる第2過電流保護回路21とのいずれかで過電流を検出できるため、より汎用性が高くなる。
The present embodiment also provides an overcurrent protection circuit 10 that detects a current flowing through a low-side switching element QL (switching element) connected between a motor power supply voltage Vpp (main power supply voltage) and a common line as an OCP voltage value V OCP , compares the OCP voltage value V OCP with an OCP threshold value Vref, and detects an overcurrent when an OCP cut-off time T OCP has elapsed in a state in which the OCP voltage value V OCP exceeds the OCP threshold value Vref, the overcurrent protection circuit 10 including a first overcurrent protection circuit 11 and a second overcurrent protection circuit 21. The first overcurrent protection circuit 11 includes a plurality of comparators CMP11, CMP12, CMP13 (first comparators) that compare the OCP voltage value V OCP with a plurality of different OCP threshold values Vref11, Vref12, Vref13, respectively, and a plurality of comparators CMP11, CMP12, CMP13 that respectively set different OCP cut-off times T OCP11 , T and a plurality of first cut-off time generating circuits [( switch element Q11, resistor R11, and capacitor C11), (switch element Q12, resistor R12, and capacitor C12), (switch element Q13, resistor R13, and capacitor C13)] for generating OCP cut-off times TOCP11, TOCP12, and TOCP13 (TOCP11 > TOCP12 >TOCP13) for the OCP threshold values Vref11 , Vref12, and Vref13 (Vref11<Vref12< Vref13 ) of the comparators CMP11 , CMP12 , and CMP13 , respectively, and generating a power supply voltage value VOVM obtained by dividing the motor power supply voltage Vpp. The second overcurrent protection circuit 21 receives an input of a temperature voltage value VVT (temperature detection value) of the temperature detected by the temperature sensor 6, and sets the OCP threshold value Vref to a lower voltage as the temperature voltage value VVT is lower (the temperature is higher). The second overcurrent protection circuit 21 includes a plurality of comparators CMP21, CMP22, CMP23 (second comparators) that compare the OCP voltage value VOCP with a plurality of different OCP threshold values Vref21, Vref22, Vref23, respectively, and sets different OCP cut-off times TOCP21 , TOCP22, TOCP23 for each of the plurality of comparators CMP21, CMP22 , CMP23. and a plurality of second cut-off time generating circuits [(switching element Q21, resistor R21, and capacitor C21), (switching element Q22, resistor R22, and capacitor C22), (switching element Q23, resistor R23, and capacitor C23)] that generate OCP23. The cut-off time generating circuits generate OCP cut-off times TOCP21, TOCP22, and TOCP23 (TOCP21>TOCP22>TOCP23) for the OCP threshold values Vref21, Vref22, and Vref23 ( Vref21 < Vref22 < Vref23 ) of the comparators CMP21 , CMP22 , and CMP23 , respectively, and generate an OCP voltage value V The power supply circuit includes a plurality of comparators that respectively compare an OCP with a plurality of different OCP thresholds, and a plurality of cut-off time generation circuits that generate different OCP cut-off times for each of the plurality of comparators, wherein the cut-off time generation circuit generates a shorter OCP cut-off time the higher the OCP threshold of the comparator is, and receives an input of a user setting value VBTMS , and the OCP threshold Vref is changeable based on the user setting value VBTMS , and a first overcurrent protection circuit 11 and a second overcurrent protection circuit 21 detect an overcurrent with either one selected based on the user setting value VBTMS .
With this configuration, an overcurrent can be detected by either the first overcurrent protection circuit 11, which can set the OCP thresholds Vref11, Vref12, Vref13 to appropriate levels in accordance with the motor power supply voltage Vpp and the temperature voltage value VVT , or the second overcurrent protection circuit 21, which can set the OCP thresholds Vref21, Vref22, Vref23 to appropriate levels by the user, thereby making the configuration more versatile.
 なお、本発明が上記各実施の形態に限定されず、本発明の技術思想の範囲内において、各実施の形態は適宜変更され得ることは明らかである。また、上記構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等にすることができる。なお、同一構成要素には、各図において、同一符号を付している。 It is clear that the present invention is not limited to the above-described embodiments, and that each embodiment can be modified as appropriate within the scope of the technical concept of the present invention. Furthermore, the number, position, shape, etc. of the above-described components are not limited to the above-described embodiments, and the number, position, shape, etc. can be any suitable number for implementing the present invention. The same components are denoted by the same reference numerals in each drawing.
1 モータ
2 インバータ回路
3 ハイサイドドライバIC
4 ローサイドドライバIC
5 コントローラ(controller)
10 過電流保護回路
11 第1過電流保護回路
20 制御部(control unit)
21、21a 第2過電流保護回路
60 セレクト回路(select)
111、112、113、211、212、213 可変電圧源
1 Motor 2 Inverter circuit 3 High side driver IC
4 Low side driver IC
5. Controller
10: overcurrent protection circuit 11: first overcurrent protection circuit 20: control unit
21, 21a Second overcurrent protection circuit 60 Select circuit (select)
111, 112, 113, 211, 212, 213 Variable voltage source

Claims (7)

  1.  主電源電圧とコモン線との間に接続されたスイッチング素子を流れる電流をOCP電圧値として検出し、前記OCP電圧値とOCP閾値を比較して前記OCP電圧値が前記OCP閾値を超えた状態でOCP遮断時間が経過した場合に過電流を検出する過電流保護回路であって、
     前記OCP電圧値を異なる複数の前記OCP閾値とそれぞれ比較する複数の比較器と、
     複数の前記比較器毎にそれぞれ異なる前記OCP遮断時間を生成する複数の遮断時間生成回路と、を備え、
     前記遮断時間生成回路は、前記比較器の前記OCP閾値が高いほど、短い時間の前記OCP遮断時間を生成することを特徴とする過電流保護回路。
    1. An overcurrent protection circuit that detects a current flowing through a switching element connected between a main power supply voltage and a common line as an OCP voltage value, compares the OCP voltage value with an OCP threshold value, and detects an overcurrent when an OCP cutoff time has elapsed in a state in which the OCP voltage value exceeds the OCP threshold value,
    a plurality of comparators for comparing the OCP voltage value with a plurality of different OCP thresholds, respectively;
    a plurality of cut-off time generating circuits that generate different OCP cut-off times for the plurality of comparators,
    The overcurrent protection circuit according to claim 1, wherein the cutoff time generating circuit generates a shorter OCP cutoff time as the OCP threshold of the comparator becomes higher.
  2.  前記主電源電圧を分圧した主電源電圧値の入力を受け付け、前記OCP閾値は、前記主電源電圧が高いほど、低い電圧に設定されることを特徴とする請求項1に記載の過電流保護回路。 The overcurrent protection circuit of claim 1, characterized in that it accepts an input of a main power supply voltage value obtained by dividing the main power supply voltage, and the OCP threshold is set to a lower voltage as the main power supply voltage is higher.
  3.  温度センサーによって検出された温度の入力を受け付け、前記OCP閾値は、前記温度が高いほど、低い電圧に設定されることを特徴とする請求項1又は2に記載の過電流保護回路。 The overcurrent protection circuit according to claim 1 or 2, characterized in that it accepts input of a temperature detected by a temperature sensor, and the higher the temperature, the lower the OCP threshold voltage is set.
  4.  ユーザ設定値の入力を受け付け、前記OCP閾値は、前記ユーザ設定値に基づいて変更可能であることを特徴とする請求項1に記載の過電流保護回路。 The overcurrent protection circuit of claim 1, characterized in that it accepts input of a user-set value, and the OCP threshold value is changeable based on the user-set value.
  5.  セレクト信号の入力を受け付け、前記セレクト信号によって選択された前記OCP遮断時間のみを有効とするセレクト回路を備えることを特徴とする請求項1に記載の過電流保護回路。 The overcurrent protection circuit of claim 1, further comprising a select circuit that accepts a select signal input and enables only the OCP cutoff time selected by the select signal.
  6.  主電源電圧とコモン線との間に接続されたスイッチング素子を流れる電流をOCP電圧値として検出し、前記OCP電圧値とOCP閾値を比較して前記OCP電圧値が前記OCP閾値を超えた状態でOCP遮断時間が経過した場合に過電流を検出する過電流保護回路であって、
     第1過電流保護回路と、第2過電流保護回路と、を備え、
     前記第1過電流保護回路は、
     前記OCP電圧値を異なる複数の前記OCP閾値とそれぞれ比較する複数の第1比較器と、
     複数の前記第1比較器毎にそれぞれ異なる前記OCP遮断時間を生成する複数の第1遮断時間生成回路と、を備え、
     前記第1遮断時間生成回路は、前記第1比較器の前記OCP閾値が高いほど、短い時間の前記OCP遮断時間を生成し、
     前記主電源電圧を分圧した主電源電圧値の入力を受け付け、前記OCP閾値は、前記主電源電圧が高いほど、低い電圧に設定され、
     温度センサーによって検出された温度の入力を受け付け、前記OCP閾値は、前記温度が高いほど低い電圧に設定され、
     前記第2過電流保護回路は、
     前記OCP電圧値を異なる複数の前記OCP閾値とそれぞれ比較する複数の第2比較器と、
     複数の前記第2比較器毎にそれぞれ異なる前記OCP遮断時間を生成する複数の第2遮断時間生成回路と、を備え、
     前記第2遮断時間生成回路は、前記第2比較器の前記OCP閾値が高いほど、短い時間の前記OCP遮断時間を生成し、
     ユーザ設定値の入力を受け付け、前記OCP閾値は、前記ユーザ設定値に基づいて変更可能であり、
     前記第1過電流保護回路と前記第2過電流保護回路とは、前記ユーザ設定値に基づいて選択されたいずれかで過電流を検出することを特徴とする過電流保護回路。
    1. An overcurrent protection circuit that detects a current flowing through a switching element connected between a main power supply voltage and a common line as an OCP voltage value, compares the OCP voltage value with an OCP threshold value, and detects an overcurrent when an OCP cutoff time has elapsed in a state in which the OCP voltage value exceeds the OCP threshold value,
    A first overcurrent protection circuit and a second overcurrent protection circuit are provided.
    The first overcurrent protection circuit comprises:
    a plurality of first comparators each for comparing the OCP voltage value with a plurality of different OCP thresholds;
    a plurality of first cut-off time generating circuits that generate different OCP cut-off times for the plurality of first comparators,
    the first cut-off time generating circuit generates a shorter OCP cut-off time as the OCP threshold of the first comparator is higher;
    an input of a main power supply voltage value obtained by dividing the main power supply voltage is received, and the OCP threshold is set to a lower voltage as the main power supply voltage is higher;
    receiving an input of a temperature detected by a temperature sensor, and setting the OCP threshold to a lower voltage as the temperature increases;
    The second overcurrent protection circuit includes:
    a plurality of second comparators that respectively compare the OCP voltage value with a plurality of different OCP thresholds;
    a plurality of second cutoff time generating circuits that generate different OCP cutoff times for the plurality of second comparators,
    the second cut-off time generating circuit generates a shorter OCP cut-off time as the OCP threshold of the second comparator is higher;
    An input of a user-set value is accepted, and the OCP threshold value is changeable based on the user-set value;
    An overcurrent protection circuit, wherein the first overcurrent protection circuit and the second overcurrent protection circuit detect an overcurrent in one of them selected based on the user set value.
  7.  請求項1又は6に記載の過電流保護回路が基板上に集積化されていることを特徴とする半導体装置。 A semiconductor device in which the overcurrent protection circuit according to claim 1 or 6 is integrated on a substrate.
PCT/JP2022/039065 2022-10-20 2022-10-20 Overcurrent protection circuit and semiconductor device WO2024084646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039065 WO2024084646A1 (en) 2022-10-20 2022-10-20 Overcurrent protection circuit and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039065 WO2024084646A1 (en) 2022-10-20 2022-10-20 Overcurrent protection circuit and semiconductor device

Publications (1)

Publication Number Publication Date
WO2024084646A1 true WO2024084646A1 (en) 2024-04-25

Family

ID=90737224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039065 WO2024084646A1 (en) 2022-10-20 2022-10-20 Overcurrent protection circuit and semiconductor device

Country Status (1)

Country Link
WO (1) WO2024084646A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292656A (en) * 1992-04-13 1993-11-05 Mitsubishi Electric Corp Overcurrent protective apparatus for power device
JP2011078228A (en) * 2009-09-30 2011-04-14 Minebea Co Ltd Overcurrent protection circuit
JP2014239620A (en) * 2013-06-10 2014-12-18 ソニー株式会社 Switching power supply apparatus, switching power supply control method, and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292656A (en) * 1992-04-13 1993-11-05 Mitsubishi Electric Corp Overcurrent protective apparatus for power device
JP2011078228A (en) * 2009-09-30 2011-04-14 Minebea Co Ltd Overcurrent protection circuit
JP2014239620A (en) * 2013-06-10 2014-12-18 ソニー株式会社 Switching power supply apparatus, switching power supply control method, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP4589966B2 (en) Power supply control device and semiconductor device
JP5315026B2 (en) Semiconductor device
JP4619812B2 (en) Gate drive circuit
JP4836694B2 (en) Power supply control device
KR101311690B1 (en) Short-circuit detection circuit and short-circuit detection method
US9871440B2 (en) Internal power supply circuit and semiconductor device
WO2007074828A1 (en) Power supply control device and its threshold value modification method
US9660636B2 (en) Drive device
WO2007097300A1 (en) Power supply control device
WO2015146040A1 (en) Drive device
JP7443679B2 (en) semiconductor equipment
US9825454B2 (en) Protection device and method for electronic device
US20130188287A1 (en) Protection circuit, charge control circuit, and reverse current prevention method employing charge control circuit
US10103539B2 (en) Semiconductor device and current limiting method
CN110474627B (en) Driving device for totem pole circuit
JP2004080346A (en) Current limit circuit and output circuit equipped therewith
JP2007288356A (en) Power supply control device
JP2005223308A (en) Semiconductor device and semiconductor device module
US6211709B1 (en) Pulse generating apparatus
JP5356056B2 (en) Control and protection system for negative logic output of automation equipment
WO2024084646A1 (en) Overcurrent protection circuit and semiconductor device
US20230246640A1 (en) Wide voltage gate driver using low gate oxide transistors
US11789061B2 (en) Integrated circuit and semiconductor device
JP6758221B2 (en) Switching circuit
US12009808B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962754

Country of ref document: EP

Kind code of ref document: A1