WO2024084156A1 - Assembly for an aircraft - Google Patents

Assembly for an aircraft Download PDF

Info

Publication number
WO2024084156A1
WO2024084156A1 PCT/FR2023/051595 FR2023051595W WO2024084156A1 WO 2024084156 A1 WO2024084156 A1 WO 2024084156A1 FR 2023051595 W FR2023051595 W FR 2023051595W WO 2024084156 A1 WO2024084156 A1 WO 2024084156A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
actuator
aircraft
cell
flight
Prior art date
Application number
PCT/FR2023/051595
Other languages
French (fr)
Inventor
Remi-Louis Lawniczak
Pierre Virelizier
Original Assignee
Safran Electronics & Defense
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electronics & Defense filed Critical Safran Electronics & Defense
Publication of WO2024084156A1 publication Critical patent/WO2024084156A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • B64C27/59Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/26Transmitting means without power amplification or where power amplification is irrelevant
    • B64C13/28Transmitting means without power amplification or where power amplification is irrelevant mechanical
    • B64C13/345Transmitting means without power amplification or where power amplification is irrelevant mechanical with artificial feel

Definitions

  • This presentation concerns the aeronautical field. More precisely, this presentation concerns the control of the control surfaces of an aircraft such as a helicopter.
  • a pilot can control the movement of a helicopter in space using control surfaces mechanically linked to cockpit controls.
  • Some helicopters are also equipped with hydraulic servomotors providing the interface between the controls and the control surfaces in order to reduce the effort exerted by the pilot on the controls to control the movement of the helicopter in space.
  • hydraulic servomotors make the helicopter heavier, which reduces its flight autonomy.
  • hydraulic servomotors are replaced by electric actuators, which are lighter.
  • the presence of electric actuators to control the control surfaces requires integrating power electronics into the system connecting the controls to the control surfaces, which can be complex and expensive.
  • a goal of this presentation is to increase the flight autonomy of an aircraft in a reliable, simple and inexpensive manner.
  • an assembly for an aircraft comprising: a compensator comprising: a frame intended to be fixedly mounted on a cell of the aircraft; and an actuator movably mounted on the frame; a mechanical transmission system configured to transmit a force on the one hand between a flight control of the aircraft and a control surface of the aircraft, and on the other hand between the actuator and the control surface, the mechanical transmission system being without hydraulic servomotor; and a control system configured to control the actuator as a function of a force exerted on the flight control so as to control a movement of the rudder relative to the cell.
  • the assembly may include at least one of the following characteristics, taken alone or in any combination:
  • control system further configured to control the actuator according to a measurement of the intensity of the effort carried out by the effort sensor;
  • control system is configured to control the actuator so that: if the measurement of the intensity of the effort is less than an intensity threshold, the control system is designed to hold the actuator in position; and if the measurement of the intensity of the effort is greater than the intensity threshold, the control system is provided to control a speed of a movement of the actuator relative to the chassis as a function of the intensity of the 'effort ;
  • the aircraft further comprises a switch, in which the aircraft is configured so that the effort causes the switch to switch from a first state to a second state, the control system being further configured to control the actuator as a function of a switching duration during which the switch is switched to the second state;
  • control system is configured to control the actuator so that: if the switching duration is less than a duration threshold, the control system is provided to hold the actuator in position; and if the switching duration is greater than the duration threshold, the control system is provided to control a speed of movement of the actuator relative to the chassis as a function of the switching duration.
  • an aircraft comprising: an airframe; a rudder mounted movably on the cell; a flight control movably mounted on the airframe; and an assembly as previously described, in which the chassis is fixedly mounted on the cell.
  • the aircraft may include at least one of the following characteristics, taken alone or in any combination:
  • the rudder is one of: a yaw rudder, a pitch rudder and a roll rudder;
  • the flight control is one of: a stick, a rudder and a collective;
  • a method for controlling an aircraft comprising: a cell; a rudder mounted movably on the cell; a flight control movably mounted on the airframe; a compensator comprising: a frame fixedly mounted on the cell; and an actuator movably mounted on the frame; a mechanical transmission system configured to transmit a force on the one hand between the flight control and the rudder, and on the other hand between the actuator and the rudder, the mechanical transmission system being devoid of hydraulic servomotor; the control method comprising controlling the actuator as a function of a force exerted on the flight control so as to control a movement of the rudder relative to the cell.
  • Figure 1 schematically illustrates an aircraft.
  • Figure 2 schematically illustrates part of the aircraft.
  • Figure 3 is a flowchart illustrating an implementation of aircraft control.
  • Figure 1 illustrates an aircraft 1 which is a device capable of rising or circulating in the air.
  • the aircraft 1 extends along a longitudinal axis X-X and comprises a cell 10, 14, which constitutes the structural part of the aircraft 1, and a wing 12.
  • the cell 10, 14 comprises a fuselage 10 and a tailplane 14.
  • the fuselage 10 is the spindle-shaped carcass which constitutes the body of the aircraft 1 and whose shape is designed to facilitate the penetration of the aircraft 1 into the 'air.
  • the cockpit or cockpit, designed to accommodate the pilot, is arranged within the fuselage 10.
  • the empennage 14 is notably configured to ensure the stability of the aircraft 1.
  • the wing 12 is notably configured to ensure the lift of the aircraft 1.
  • the aircraft 1 further comprises at least one control surface 20, 22, preferably a plurality of control surfaces 20, 22, each mounted movable relative to the cell 10, 14 and configured to produce and/or control a movement of the aircraft 1 around its center of gravity along at least one of three axes: the pitch axis Y-Y, the roll axis X-X and the yaw axis Z-Z. These three axes while the pitch axis Y-Y and the roll axis X-X belong to a plane parallel to the ground, the roll axis X-X being parallel to the longitudinal axis X-X and the pitch axis Y-Y being orthogonal to the axis longitudinal X-X.
  • the aircraft 1 comprises at least one flight control 30, 32, 34, preferably a plurality of flight controls 30, 32, 34, each positioned within the cockpit in order to be accessible to the pilot.
  • the movements of the aircraft 1 are controlled by the pilot by means of the flight controls 30, 32, 34.
  • the aircraft 1 comprises a transmission system 40, 42, 44, 46, 48 in particular configured to transmit a force between the flight controls 30, 32, 34 and the control surfaces 20, 22, in order to control a movement of the control surface 20, 22 relative to the cell 10, 14 with a view to producing and/or controlling a movement of the aircraft 1 around its center of gravity.
  • the transmission system 40, 42, 44, 46, 48 can be mechanical, hydraulic and/or electrical, that is to say comprise a plurality of connections connecting the flight controls 30, 32, 34 to the control surfaces 20, 22 , the connections being mechanical, hydraulic and/or electrical.
  • the aircraft 1 comprises at least one compensator 5, preferably a plurality of compensators 5.
  • Each compensator 5 comprises a frame 50 fixedly mounted on the cell 10, 14 and an actuator 52 movably mounted on the frame 50, for example in rotation or in translation relative to the chassis 50.
  • the chassis 50 can take the form of a box fixed to the floor of the cockpit and the actuator 52 be an arm mounted to rotate around an axis extending from of the chassis 50.
  • the compensator 5 can further comprise at least one cylinder arranged within the chassis 50 and the mobile part of which is connected to the actuator 52, so as to multiply the forces likely to be generated by the actuator 52 when it moves relative to the chassis 50.
  • the cylinder and/or the actuator 52 can be actuated via an electric motor.
  • the compensator 5 may comprise at least one, or even several, mechanical or magnetic return members, connecting the chassis 50 to the actuator 52 so as to control its movement and/or position relative to the chassis. 50.
  • the compensator 5 may include a clutch device allowing the actuator to be engaged and disengaged 52 of the compensator members 5 provided to control its movement and/or its position.
  • the transmission system 40, 42, 44, 46, 48 is also configured to transmit a force between the actuator 52 and at least one of the control surfaces 20, 22 in order to control a movement of the control surface 20, 22 relative to the cell 10, 14 in order to produce and/or control a movement of the aircraft 1 around its center of gravity.
  • the compensators 5 can compensate, that is to say dampen, in whole or in part, the forces perceived by the pilot on the flight controls 30, 32, 34 linked to the aerodynamic forces to which the control surfaces 20, 22 are submitted.
  • the compensators 5 offer the possibility of controlling the feedback of forces perceived by the pilot in the flight controls 30, 32, 34, and this in a precise manner.
  • the compensators 5 can each maintain and/or place at least one of the control surfaces 20, 22 in a position allowing the balance of the aircraft so as to ensure automatic piloting of the aircraft 1 while maintaining the imposed position by the pilot around the center of gravity of the aircraft 1, whatever the speed and mass of the aircraft 1.
  • the frames 50 provide an anchoring point for the control surfaces 20, 22 on the cell 10 , 14, via the transmission system 40, 42, 44, 46, 48.
  • the transmission system 40, 42, 44, 46, 48 may also comprise at least one linear actuator 46, preferably a plurality of linear actuator members 46s, each mounted movably relative to the cell 10, 14
  • Each linear actuator 46 is configured to cause low amplitude movements of the control surfaces 20, 22 relative to the cell 10, 14, and this at a high frequency, in order to improve the stability of the aircraft 1. flight.
  • each linear actuator 46 may include at least one electric motor.
  • the linear actuating members 46s are designed to operate without their action being felt by the pilot in his manipulation of the flight controls 30, 32, 34.
  • the aircraft 1 comprises a control system 6, illustrated in Figure 2, configured to control at least one of the actuators 52 of the compensators 5, typically a position and/or a speed of a movement of the actuator 52 relative to the chassis 50.
  • the control system 6 can typically comprise a computer (or processor) configured to receive information and to process it so as to transmit a command to the compensator 5, typically to the electric motor of the compensator 5, to control the actuator 52. If necessary, the control system 6 can also be configured to control at least one of the linear actuation members 46.
  • the aircraft 1 illustrated in Figure 1 is a helicopter 1.
  • the wing 12 of the helicopter 1 is rotating, that is to say it comprises at least one main rotor 20 mounted movable to rotate relative to the fuselage 10.
  • the main rotor 20 comprises a plurality of blades 200, each blade 200 having an aerodynamic shape and being capable of being controlled, in particular in incidence, to generate the lift necessary for the lift of the helicopter 1 when the rotor rotates.
  • the position of the plane of rotation of the blades 200 can also be controlled to control a movement of the helicopter 1 around the pitch axis YY and the roll axis XX. Therefore, the main rotor 20 constitutes both the pitch control and the roll control of the helicopter 1.
  • the empennage 14 of the helicopter 1 comprises an anti-torque rotor 22, or tail rotor 22, which also comprises a plurality of blades 220 each having an aerodynamic shape and also being capable of being controlled, in particular in incidence, to control the movements of the helicopter 1 around the yaw axis Z-Z, the axis of rotation of the tail rotor 22 being orthogonal to the axis of rotation of the main rotor 20.
  • the tail rotor 22 therefore constitutes the yaw rudder of helicopter 1.
  • the flight controls 30, 32, 34 of the helicopter 1 include a stick 30, which is designed to extend between the legs of the pilot and makes it possible to control the movements of the helicopter 1 around the pitch axis Y-Y and the roll axis 1 around the yaw axis Z-Z, in particular by controlling the speed of rotation of the tail rotor 22 and/or the incidence of the blades 220 of the tail rotor 22, and a collective 34 which makes it possible to control the movements of the helicopter 1 along the yaw axis Z-Z, that is to say the vertical elevation movement of the helicopter 1, in particular by controlling the speed of rotation of the main rotor 20 and/or the angle of attack blades 200 of the main rotor 20.
  • Figure 1 illustrates a mechanical transmission system 40, 42, 44, 46, 48 which includes a set of linkages 40, cables 42 and horns 44 connected together, to the flight controls 30, 32, 34, to the compensators 5 and to the control surfaces 20, 22.
  • the linear actuating members 46 are each arranged on one of the cables 42 so as to connect two free cable ends 42 between them.
  • the free end of the arm formed by the actuator 52 is connected to at least one of the cables 42.
  • Figure 1 further illustrates that the mechanical transmission system 40, 42, 44, 46, 48 can comprise at least one hydraulic servomotor 48, preferably a plurality of hydraulic servomotors 48, for example a hydraulic servomotor 48 connected to the tail rotor 22 and a plurality of hydraulic servomotors 48 connected to the main rotor 20.
  • the hydraulic servomotors 48 are configured to multiply the force transmitted by the pilot to the flight controls 30, 32, 34 and/or the force generated by the actuator 52, which forces are intended to be transmitted to the main rotor 20 and the tail rotor 22. In this way, control of the control surfaces 20, 22 is facilitated, particularly in conditions where the aerodynamic forces to which the blades of the main rotor 20 and the tail rotor 22 are subjected are high, which makes controlling their movement relative to the cell 10, 14 particularly difficult.
  • the weight of the hydraulic servomotors 48 and the hydraulic power systems necessary for their operation reduces the flight autonomy of the helicopter 1. This is why it can be planned that the transmission system 40, 42, 44, 46, 48 mechanics is devoid of it.
  • Another way of ensuring the function of the hydraulic servomotors 48 is to use at least one of the compensators 5 by adapting the control carried out by the control system 6 so as to allow the compensator 5 to generate greater efforts to move and/or or maintain the control surfaces 20, 22 in position relative to the cell 10, 14 without the haptic feeling of the pilot manipulating the flight controls 30, 32, 34 being modified.
  • the control system 6 is configured to control the actuator 52 of the compensator 5 as a function of a force exerted on the flight control 30, 32, 34 so as to control a movement of the rudder 20, 22 relative to the cell 10, 14.
  • the force is exerted on the flight control 30, 32, 34 by the pilot.
  • it is measured to control the compensator 5 so that these are the forces exerted by the actuator 52 which are transmitted to the control surfaces 20, 22 by the mechanical transmission system 40, 42, 44, 46 in order to control them.
  • the compensator 5 fulfills the function of assisting the manual piloting of the helicopter 1 which was previously fulfilled by the hydraulic servomotors 48.
  • the helicopter 1 includes a force sensor 7 configured to measure an intensity of the force exerted on the flight control 30, 32, 34.
  • the control system 6 is then configured to control the actuator 52 according to a measurement of the intensity of the effort carried out by the sensor.
  • the helicopter 1 includes a switch 7.
  • the helicopter 1 is then configured so that the force exerted on the flight control 30, 32, 34 causes a switching of the switch 7 from a first state to a second state, typically the force exerted on the handle 30 causes a movement of the handle 30 which comes into contact with the switch 7 and causes it to switch.
  • the control system 6 is, in this case, configured to control the actuator 52 as a function of a switching duration during which the switch 7 is switched to the second state.
  • Figure 3 illustrates more precisely the logic for controlling the actuator 52 of the compensator 5 which is implemented by the control system 6 as a function of the effort exerted on the flight control 30, 32, 34, that the piloting either implemented as a function of the intensity of the effort measured by the force sensor 7 or the switching duration during which the switch 7 is switched to the second state.
  • the control system 6 is provided to maintain the actuator 52 in position.
  • the compensator 5 maintains at least one of the control surfaces 20, 22 in position relative to the cell 10, 14, whether following a prior command received from the flight controls 30, 32, 34 or according to automatic piloting logic.
  • the control system 6 is provided to control a speed of movement of the actuator
  • the position and/or speed of the actuator 52 determines a force exerted by the actuator 52 transmitted by the mechanical transmission system 40, 42, 44, 46 to the minus one of the control surfaces 20, 22.
  • the control system 6 controls the actuator 52 so that the effort that the actuator 52 exerts on at least one of the control surfaces 20, 22, i.e. a force which corresponds to what the pilot wishes by requesting the flight control 30, 32, 34.
  • the compensator 5 therefore replaces the hydraulic servomotors 48 during manual piloting.
  • Figure 3 illustrates that a second intensity threshold and/or a second duration threshold, each, respectively, greater than the first intensity threshold and the first duration threshold, can be provided.
  • the first intensity threshold respectively the first duration threshold
  • the first intensity threshold may only constitute a detection threshold for the control system 6 which is then informed that the pilot wishes to switch from automatic piloting by the compensators 5 to manual piloting. But the control of the speed and/or the position of the actuator 52 is only implemented once the second intensity threshold, respectively the second duration threshold, has been exceeded.
  • the logics for controlling the compensators 5 described in this presentation are preferably implemented for the control of the yaw control surface 22, which undergoes much less aerodynamic forces than the pitch and roll control surfaces 20, especially at inside a helicopter 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transmission Devices (AREA)
  • Mechanical Control Devices (AREA)

Abstract

The present disclosure relates to an assembly for an aircraft comprising: a compensator (5) comprising: a chassis (50) intended to be fixedly mounted on a cell of the aircraft; and an actuator (52) movably mounted on the chassis (50); a mechanical transmission system (40, 42, 44, 46) configured to transmit a force between a flight control (30, 32, 34) of the aircraft and a control surface (20, 22) of the aircraft on the one hand and between the actuator (52) and the control surface (20, 22) on the other hand, the mechanical transmission system (40, 42, 44, 46) being devoid of a hydraulic servomotor; and a control system (6) configured to control the actuator (52) according to a force exerted on the flight control (30, 32, 34) so as to control a movement of the control surface (20, 22) with respect to the cell (10, 14).

Description

ENSEMBLE POUR UN AERONEF TOGETHER FOR AN AIRCRAFT
DOMAINE TECHNIQUE TECHNICAL AREA
Le présent exposé concerne le domaine aéronautique. Plus précisément, le présent exposé concerne le contrôle des gouvernes d’un aéronef tel qu’un hélicoptère. This presentation concerns the aeronautical field. More precisely, this presentation concerns the control of the control surfaces of an aircraft such as a helicopter.
ETAT DE LA TECHNIQUE STATE OF THE ART
Un pilote peut contrôler le déplacement d’un hélicoptère dans l’espace à l’aide de gouvernes reliées mécaniquement aux commandes du poste de pilotage. Certains hélicoptères sont, en outre, équipés de servomoteurs hydrauliques assurant l’interface entre les commandes et les gouvernes afin de réduire l’effort exercé par le pilote sur les commandes pour contrôler le déplacement de l’hélicoptère dans l’espace. Toutefois, la présence de servomoteurs hydrauliques alourdit l’hélicoptère, ce qui réduit son autonomie en vol. Pour pallier cet inconvénient, dans certains hélicoptères, les servomoteurs hydrauliques sont remplacés par des actionneurs électriques, qui sont plus légers. Toutefois, la présence d ’actionneurs électriques pour piloter les gouvernes nécessite d’intégrer au système reliant les commandes aux gouvernes une électronique de puissance qui peut s’avérer complexe et coûteuse. A pilot can control the movement of a helicopter in space using control surfaces mechanically linked to cockpit controls. Some helicopters are also equipped with hydraulic servomotors providing the interface between the controls and the control surfaces in order to reduce the effort exerted by the pilot on the controls to control the movement of the helicopter in space. However, the presence of hydraulic servomotors makes the helicopter heavier, which reduces its flight autonomy. To overcome this drawback, in some helicopters, hydraulic servomotors are replaced by electric actuators, which are lighter. However, the presence of electric actuators to control the control surfaces requires integrating power electronics into the system connecting the controls to the control surfaces, which can be complex and expensive.
EXPOSE GENERAL GENERAL PRESENTATION
Un but du présent exposé est d’augmenter l’autonomie en vol d’un aéronef de manière fiable, simple et peu coûteuse. A goal of this presentation is to increase the flight autonomy of an aircraft in a reliable, simple and inexpensive manner.
Il est à cet effet proposé, selon un aspect du présent exposé, un ensemble pour un aéronef comprenant : un compensateur comprenant : un châssis prévu pour être monté fixe sur une cellule de l’aéronef ; et un actionneur monté mobile sur le châssis ; un système de transmission mécanique configuré pour transmettre un effort d’une part entre une commande de vol de l’aéronef et une gouverne de l’aéronef, et d’autre part entre l’actionneur et la gouverne, le système de transmission mécanique étant dépourvu de servomoteur hydraulique ; et un système de contrôle configuré pour piloter l’actionneur en fonction d’un effort exercé sur la commande de vol de sorte à contrôler un mouvement de la gouverne par rapport à la cellule. Avantageusement, mais facultativement, l’ensemble peut comprendre l’une au moins des caractéristiques suivantes, prise seule ou dans une quelconque combinaison : For this purpose, according to one aspect of the present presentation, an assembly is proposed for an aircraft comprising: a compensator comprising: a frame intended to be fixedly mounted on a cell of the aircraft; and an actuator movably mounted on the frame; a mechanical transmission system configured to transmit a force on the one hand between a flight control of the aircraft and a control surface of the aircraft, and on the other hand between the actuator and the control surface, the mechanical transmission system being without hydraulic servomotor; and a control system configured to control the actuator as a function of a force exerted on the flight control so as to control a movement of the rudder relative to the cell. Advantageously, but optionally, the assembly may include at least one of the following characteristics, taken alone or in any combination:
- il comprend en outre un capteur d’effort configuré pour mesurer une intensité de l’effort, le système de contrôle étant en outre configuré pour piloter l’actionneur en fonction d’une mesure de l’intensité de l’effort réalisée par le capteur d’effort ; - it further comprises a force sensor configured to measure an intensity of the effort, the control system being further configured to control the actuator according to a measurement of the intensity of the effort carried out by the effort sensor;
- le système de contrôle est configuré pour piloter l’actionneur de sorte que : si la mesure de l’intensité de l’effort est inférieure à un seuil d’intensité, le système de contrôle est prévu pour maintenir en position l’actionneur ; et si la mesure de l’intensité de l’effort est supérieure au seuil d’intensité, le système de contrôle est prévu pour piloter une vitesse d’un mouvement de l’actionneur par rapport au châssis en fonction de l’intensité de l’effort ; - the control system is configured to control the actuator so that: if the measurement of the intensity of the effort is less than an intensity threshold, the control system is designed to hold the actuator in position; and if the measurement of the intensity of the effort is greater than the intensity threshold, the control system is provided to control a speed of a movement of the actuator relative to the chassis as a function of the intensity of the 'effort ;
- il comprend en outre un interrupteur, dans lequel l’aéronef est configuré de sorte que l’effort entraîne une commutation de l’interrupteur d’un premier état à un deuxième état, le système de contrôle étant en outre configuré pour piloter l’actionneur en fonction d’une durée de commutation durant laquelle l’interrupteur est commuté dans le deuxième état ; et - it further comprises a switch, in which the aircraft is configured so that the effort causes the switch to switch from a first state to a second state, the control system being further configured to control the actuator as a function of a switching duration during which the switch is switched to the second state; And
- le système de contrôle est configuré pour piloter l’actionneur de sorte que : si la durée de commutation est inférieure à un seuil de durée, le système de contrôle est prévu pour maintenir en position l’actionneur ; et si la durée de commutation est supérieure au seuil de durée, le système de contrôle est prévu pour piloter une vitesse d’un mouvement de l’actionneur par rapport au châssis en fonction de la durée de commutation. - the control system is configured to control the actuator so that: if the switching duration is less than a duration threshold, the control system is provided to hold the actuator in position; and if the switching duration is greater than the duration threshold, the control system is provided to control a speed of movement of the actuator relative to the chassis as a function of the switching duration.
Selon un autre aspect du présent exposé, il est proposé un aéronef comprenant : une cellule ; une gouverne montée mobile sur la cellule ; une commande de vol montée mobile sur la cellule ; et un ensemble tel que précédemment exposé, dans lequel le châssis est monté fixe sur la cellule. According to another aspect of the present presentation, an aircraft is proposed comprising: an airframe; a rudder mounted movably on the cell; a flight control movably mounted on the airframe; and an assembly as previously described, in which the chassis is fixedly mounted on the cell.
Avantageusement, mais facultativement, l’aéronef peut comprendre l’une au moins des caractéristiques suivantes, prise seule ou dans une quelconque combinaison : Advantageously, but optionally, the aircraft may include at least one of the following characteristics, taken alone or in any combination:
- la gouverne est l’une parmi : une gouverne de lacet, une gouverne de tangage et une gouverne de roulis ; - the rudder is one of: a yaw rudder, a pitch rudder and a roll rudder;
- la commande de vol est l’une parmi : un manche, un palonnier et un collectif ; et- the flight control is one of: a stick, a rudder and a collective; And
- l’aéronef est un hélicoptère. Selon un autre aspect du présent exposé, il est proposé un procédé de contrôle d’un aéronef comprenant : une cellule ; une gouverne montée mobile sur la cellule ; une commande de vol montée mobile sur la cellule ; un compensateur comprenant : un châssis monté fixe sur la cellule ; et un actionneur monté mobile sur le châssis ; un système de transmission mécanique configuré pour transmettre un effort d’une part entre la commande de vol et la gouverne, et d’autre part entre l’actionneur et la gouverne, le système de transmission mécanique étant dépourvu de servomoteur hydraulique ; le procédé de contrôle comprenant le pilotage de l’actionneur en fonction d’un effort exercé sur la commande de vol de sorte à contrôler un mouvement de la gouverne par rapport à la cellule. - the aircraft is a helicopter. According to another aspect of the present presentation, a method is proposed for controlling an aircraft comprising: a cell; a rudder mounted movably on the cell; a flight control movably mounted on the airframe; a compensator comprising: a frame fixedly mounted on the cell; and an actuator movably mounted on the frame; a mechanical transmission system configured to transmit a force on the one hand between the flight control and the rudder, and on the other hand between the actuator and the rudder, the mechanical transmission system being devoid of hydraulic servomotor; the control method comprising controlling the actuator as a function of a force exerted on the flight control so as to control a movement of the rudder relative to the cell.
DESCRIPTION DES FIGURES DESCRIPTION OF FIGURES
D’autres caractéristiques, buts et avantages ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels : Other characteristics, purposes and advantages will emerge from the description which follows, which is purely illustrative and not limiting, and which must be read with reference to the appended drawings in which:
La figure 1 illustre schématiquement un aéronef. Figure 1 schematically illustrates an aircraft.
La figure 2 illustre schématiquement une partie de l’aéronef. Figure 2 schematically illustrates part of the aircraft.
La figure 3 est un organigramme illustrant une mise en oeuvre du contrôle d’un aéronef.Figure 3 is a flowchart illustrating an implementation of aircraft control.
Sur l’ensemble des figures, les éléments similaires portent des références identiques. In all the figures, similar elements bear identical references.
DESCRIPTION DETAILLEE DETAILED DESCRIPTION
La figure 1 illustre un aéronef 1 qui est un appareil capable de s’élever ou de circuler dans les airs. Figure 1 illustrates an aircraft 1 which is a device capable of rising or circulating in the air.
L’aéronef 1 s’étend selon un axe longitudinal X-X et comprend une cellule 10, 14, qui constitue la partie structurelle de l’aéronef 1 , et une voilure 12. The aircraft 1 extends along a longitudinal axis X-X and comprises a cell 10, 14, which constitutes the structural part of the aircraft 1, and a wing 12.
La cellule 10, 14 comprend un fuselage 10 et un empennage 14. Le fuselage 10 est la carcasse en forme de fuseau qui constitue le corps de l’aéronef 1 et dont la forme est prévue pour faciliter la pénétration de l’aéronef 1 dans l’air. Typiquement, le poste de pilotage (ou cockpit), prévu pour accueillir le pilote, est agencé au sein du fuselage 10. L’empennage 14 est notamment configuré pour assurer la stabilité de l’aéronef 1. La voilure 12 est notamment configurée pour assurer la portance de l’aéronef 1. The cell 10, 14 comprises a fuselage 10 and a tailplane 14. The fuselage 10 is the spindle-shaped carcass which constitutes the body of the aircraft 1 and whose shape is designed to facilitate the penetration of the aircraft 1 into the 'air. Typically, the cockpit (or cockpit), designed to accommodate the pilot, is arranged within the fuselage 10. The empennage 14 is notably configured to ensure the stability of the aircraft 1. The wing 12 is notably configured to ensure the lift of the aircraft 1.
L’aéronef 1 comprend en outre au moins une gouverne 20, 22, de préférence une pluralité de gouvernes 20, 22, chacune montée mobile par rapport à la cellule 10, 14 et configurée pour produire et/ou contrôler un mouvement de l’aéronef 1 autour de son centre de gravité suivant au moins l’un de trois axes : l’axe de tangage Y-Y, l’axe de roulis X-X et l’axe de lacet Z-Z. Ces trois axes X-X, Y-Y, Z-Z forment un repère fixe relié au centre de gravité de l’aéronef 1. Lorsque l’aéronef 1 est immobile au sol, l’axe de lacet Z-Z est confondu avec la direction verticale, orthogonale au sol, tandis que l’axe de tangage Y-Y et l’axe de roulis X-X appartiennent à un plan parallèle au sol, l’axe de roulis X-X étant parallèle à l’axe longitudinal X-X et l’axe de tangage Y-Y étant orthogonal à l’axe longitudinal X-X. The aircraft 1 further comprises at least one control surface 20, 22, preferably a plurality of control surfaces 20, 22, each mounted movable relative to the cell 10, 14 and configured to produce and/or control a movement of the aircraft 1 around its center of gravity along at least one of three axes: the pitch axis Y-Y, the roll axis X-X and the yaw axis Z-Z. These three axes while the pitch axis Y-Y and the roll axis X-X belong to a plane parallel to the ground, the roll axis X-X being parallel to the longitudinal axis X-X and the pitch axis Y-Y being orthogonal to the axis longitudinal X-X.
Par ailleurs, l’aéronef 1 comprend au moins une commande de vol 30, 32, 34, de préférence une pluralité de commandes de vol 30, 32, 34, chacune positionnée au sein du poste de pilotage afin d’être accessible au pilote. Les mouvements de l’aéronef 1 sont contrôlés par le pilote au moyen des commandes de vol 30, 32, 34. À cet égard, l’aéronef 1 comprend un système de transmission 40, 42, 44, 46, 48 notamment configuré pour transmettre un effort entre les commandes de vol 30, 32, 34 et les gouvernes 20, 22, et ce afin de commander un mouvement de la gouverne 20, 22 par rapport à la cellule 10, 14 en vue de produire et/ou contrôler un mouvement de l’aéronef 1 autour de son centre de gravité. Le système de transmission 40, 42, 44, 46, 48 peut être mécanique, hydraulique et/ou électrique, c’est-à-dire comprendre une pluralité de liaisons reliant les commandes de vol 30, 32, 34 aux gouvernes 20, 22, les liaisons étant mécaniques, hydrauliques et/ou électriques. Furthermore, the aircraft 1 comprises at least one flight control 30, 32, 34, preferably a plurality of flight controls 30, 32, 34, each positioned within the cockpit in order to be accessible to the pilot. The movements of the aircraft 1 are controlled by the pilot by means of the flight controls 30, 32, 34. In this regard, the aircraft 1 comprises a transmission system 40, 42, 44, 46, 48 in particular configured to transmit a force between the flight controls 30, 32, 34 and the control surfaces 20, 22, in order to control a movement of the control surface 20, 22 relative to the cell 10, 14 with a view to producing and/or controlling a movement of the aircraft 1 around its center of gravity. The transmission system 40, 42, 44, 46, 48 can be mechanical, hydraulic and/or electrical, that is to say comprise a plurality of connections connecting the flight controls 30, 32, 34 to the control surfaces 20, 22 , the connections being mechanical, hydraulic and/or electrical.
En outre, l’aéronef 1 comprend au moins un compensateur 5, de préférence une pluralité de compensateurs 5. Chaque compensateur 5 comprend un châssis 50 monté fixe sur la cellule 10, 14 et un actionneur 52 monté mobile sur le châssis 50, par exemple en rotation ou en translation par rapport au châssis 50. Le châssis 50 peut prendre la forme d’un boîtier fixé au plancher du poste de pilotage et l’actionneur 52 être un bras monté à rotation autour d’un axe s’étendant à partir du châssis 50. Le compensateur 5 peut en outre comprendre au moins un vérin agencé au sein du châssis 50 et dont la partie mobile est reliée à l’actionneur 52, de sorte à démultiplier les efforts susceptibles d’être générés par l’actionneur 52 lorsqu’il se déplace par rapport au châssis 50. Le vérin et/ou l’actionneur 52 peut être actionné par l’intermédiaire d’un moteur électrique. Alternativement, ou en complément, le compensateur 5 peut comprendre au moins un, voire plusieurs, organes de rappel mécaniques ou magnétiques, reliant le châssis 50 à l’actionneur 52 de sorte à en contrôler le mouvement et/ou la position par rapport au châssis 50. De plus, le compensateur 5 peut comprendre un dispositif d’embrayage permettant de craboter et décraboter l’actionneur 52 des organes du compensateur 5 prévus pour contrôler son mouvement et/ou sa position. Le système de transmission 40, 42, 44, 46, 48 est également configuré pour transmettre un effort entre l’actionneur 52 et au moins une des gouvernes 20, 22 afin de commander un mouvement de la gouverne 20, 22 par rapport à la cellule 10, 14 en vue de produire et/ou contrôler un mouvement de l’aéronef 1 autour de son centre de gravité. De cette manière, les compensateurs 5 peuvent compenser, c’est-à-dire amortir, en tout ou partie, les efforts perçus par le pilote sur les commandes de vol 30, 32, 34 liés aux efforts aérodynamiques auxquels les gouvernes 20, 22 sont soumises. En d’autres termes, les compensateurs 5 offrent la possibilité de contrôler le retour d’efforts perçu par le pilote dans les commandes de vol 30, 32, 34, et ce de manière précise. Enfin, les compensateurs 5 peuvent, chacun, maintenir et/ou placer au moins une des gouvernes 20, 22 dans une position permettant l’équilibre de l’avion de sorte à assurer un pilotage automatique de l’aéronef 1 en maintenant la position imposée par le pilote autour du centre de gravité de l’aéronef 1 , quelles que soient la vitesse et la masse de l’aéronef 1. À cet égard, les châssis 50 offrent un point d’ancrage des gouvernes 20, 22 sur la cellule 10, 14, par l’intermédiaire du système de transmission 40, 42, 44, 46, 48. Furthermore, the aircraft 1 comprises at least one compensator 5, preferably a plurality of compensators 5. Each compensator 5 comprises a frame 50 fixedly mounted on the cell 10, 14 and an actuator 52 movably mounted on the frame 50, for example in rotation or in translation relative to the chassis 50. The chassis 50 can take the form of a box fixed to the floor of the cockpit and the actuator 52 be an arm mounted to rotate around an axis extending from of the chassis 50. The compensator 5 can further comprise at least one cylinder arranged within the chassis 50 and the mobile part of which is connected to the actuator 52, so as to multiply the forces likely to be generated by the actuator 52 when it moves relative to the chassis 50. The cylinder and/or the actuator 52 can be actuated via an electric motor. Alternatively, or in addition, the compensator 5 may comprise at least one, or even several, mechanical or magnetic return members, connecting the chassis 50 to the actuator 52 so as to control its movement and/or position relative to the chassis. 50. In addition, the compensator 5 may include a clutch device allowing the actuator to be engaged and disengaged 52 of the compensator members 5 provided to control its movement and/or its position. The transmission system 40, 42, 44, 46, 48 is also configured to transmit a force between the actuator 52 and at least one of the control surfaces 20, 22 in order to control a movement of the control surface 20, 22 relative to the cell 10, 14 in order to produce and/or control a movement of the aircraft 1 around its center of gravity. In this way, the compensators 5 can compensate, that is to say dampen, in whole or in part, the forces perceived by the pilot on the flight controls 30, 32, 34 linked to the aerodynamic forces to which the control surfaces 20, 22 are submitted. In other words, the compensators 5 offer the possibility of controlling the feedback of forces perceived by the pilot in the flight controls 30, 32, 34, and this in a precise manner. Finally, the compensators 5 can each maintain and/or place at least one of the control surfaces 20, 22 in a position allowing the balance of the aircraft so as to ensure automatic piloting of the aircraft 1 while maintaining the imposed position by the pilot around the center of gravity of the aircraft 1, whatever the speed and mass of the aircraft 1. In this regard, the frames 50 provide an anchoring point for the control surfaces 20, 22 on the cell 10 , 14, via the transmission system 40, 42, 44, 46, 48.
Le système de transmission 40, 42, 44, 46, 48 peut également comprendre au moins un organe d’actionnement linéaire 46, de préférence une pluralité d’organes d’actionnement linéaire 46s, chacun monté mobile par rapport à la cellule 10, 14. Chaque organe d’actionnement linéaire 46 est configuré pour entraîner des mouvements de faible amplitude des gouvernes 20, 22 par rapport à la cellule 10, 14, et ce à une fréquence élevée, afin d’améliorer la stabilité de l’aéronef 1 en vol. À cet égard, chaque organe d’actionnement linéaire 46 peut comprendre au moins un moteur électrique. Les organes d’actionnement linéaire 46s sont prévus pour fonctionner sans que leur action ne soit ressentie par le pilote dans sa manipulation des commandes de vol 30, 32, 34. The transmission system 40, 42, 44, 46, 48 may also comprise at least one linear actuator 46, preferably a plurality of linear actuator members 46s, each mounted movably relative to the cell 10, 14 Each linear actuator 46 is configured to cause low amplitude movements of the control surfaces 20, 22 relative to the cell 10, 14, and this at a high frequency, in order to improve the stability of the aircraft 1. flight. In this regard, each linear actuator 46 may include at least one electric motor. The linear actuating members 46s are designed to operate without their action being felt by the pilot in his manipulation of the flight controls 30, 32, 34.
Par ailleurs, l’aéronef 1 comprend un système de contrôle 6, illustré en figure 2, configuré pour piloter au moins l’un des actionneur 52 des compensateurs 5, typiquement une position et/ou une vitesse d’un mouvement de l’actionneur 52 par rapport au châssis 50. Le système de contrôle 6 peut typiquement comprendre un calculateur (ou processeur) configuré pour recevoir des informations et pour les traiter de sorte à transmettre une commande au compensateur 5, typiquement au moteur électrique du compensateur 5, pour piloter l’actionneur 52. Le cas échéant, le système de contrôle 6 peut également être configuré pour piloter au moins l’un des organes d’actionnement linéaire 46. Furthermore, the aircraft 1 comprises a control system 6, illustrated in Figure 2, configured to control at least one of the actuators 52 of the compensators 5, typically a position and/or a speed of a movement of the actuator 52 relative to the chassis 50. The control system 6 can typically comprise a computer (or processor) configured to receive information and to process it so as to transmit a command to the compensator 5, typically to the electric motor of the compensator 5, to control the actuator 52. If necessary, the control system 6 can also be configured to control at least one of the linear actuation members 46.
L’aéronef 1 illustré sur la figure 1 est un hélicoptère 1. La voilure 12 de l’hélicoptère 1 est tournante, c’est-à-dire qu’elle comprend au moins un rotor principal 20 monté mobile à rotation par rapport au fuselage 10. À cet égard, le rotor principal 20 comprend une pluralité de pales 200, chaque pale 200 présentant une forme aérodynamique et étant propre à être contrôlée, notamment en incidence, pour générer la portance nécessaire à la sustentation de l’hélicoptère 1 lors de la mise en rotation du rotor. En outre, la position du plan de rotation des pales 200 peut également être contrôlée pour commander un mouvement de l’hélicoptère 1 autour de l’axe de tangage Y-Y et de l’axe de roulis X-X. Dès lors, le rotor principal 20 constitue à la fois la gouverne de tangage et la gouverne de roulis de l’hélicoptère 1. The aircraft 1 illustrated in Figure 1 is a helicopter 1. The wing 12 of the helicopter 1 is rotating, that is to say it comprises at least one main rotor 20 mounted movable to rotate relative to the fuselage 10. In this regard, the main rotor 20 comprises a plurality of blades 200, each blade 200 having an aerodynamic shape and being capable of being controlled, in particular in incidence, to generate the lift necessary for the lift of the helicopter 1 when the rotor rotates. In addition, the position of the plane of rotation of the blades 200 can also be controlled to control a movement of the helicopter 1 around the pitch axis YY and the roll axis XX. Therefore, the main rotor 20 constitutes both the pitch control and the roll control of the helicopter 1.
L’empennage 14 de l’hélicoptère 1 comprend un rotor anti couple 22, ou rotor de queue 22, qui comprend également une pluralité de pales 220 présentant chacune une forme aérodynamique et étant également propre à être contrôlée, notamment en incidence, pour contrôler les mouvements de l’hélicoptère 1 autour de l’axe de lacet Z-Z, l’axe de rotation du rotor de queue 22 étant orthogonal à l’axe de rotation du rotor principal 20. Le rotor de queue 22 constitue donc la gouverne de lacet de l’hélicoptère 1. The empennage 14 of the helicopter 1 comprises an anti-torque rotor 22, or tail rotor 22, which also comprises a plurality of blades 220 each having an aerodynamic shape and also being capable of being controlled, in particular in incidence, to control the movements of the helicopter 1 around the yaw axis Z-Z, the axis of rotation of the tail rotor 22 being orthogonal to the axis of rotation of the main rotor 20. The tail rotor 22 therefore constitutes the yaw rudder of helicopter 1.
Les commandes de vol 30, 32, 34 de l’hélicoptère 1 comprennent un manche 30, qui est prévu pour s’étendre entre les jambes du pilote et permet de contrôler les mouvements de l’hélicoptère 1 autour de l’axe de tangage Y-Y et de l’axe de roulis X-X, notamment par pilotage de l’inclinaison du plan de rotation des pales 200 du rotor principal 20, un palonnier 32, de préférence deux pédales de palonnier 32, qui permettent de contrôler les mouvements de l’hélicoptère 1 autour de l’axe de lacet Z-Z, notamment par pilotage de la vitesse de rotation du rotor de queue 22 et/ou de l’incidence des pales 220 du rotor de queue 22, et un collectif 34 qui permet de contrôler les mouvement de l’hélicoptère 1 selon l’axe de lacet Z-Z, c’est-à-dire les mouvement d’élévation verticale de l’hélicoptère 1 , notamment par pilotage de la vitesse de rotation du rotor principal 20 et/ou de l’incidence des pales 200 du rotor principal 20. The flight controls 30, 32, 34 of the helicopter 1 include a stick 30, which is designed to extend between the legs of the pilot and makes it possible to control the movements of the helicopter 1 around the pitch axis Y-Y and the roll axis 1 around the yaw axis Z-Z, in particular by controlling the speed of rotation of the tail rotor 22 and/or the incidence of the blades 220 of the tail rotor 22, and a collective 34 which makes it possible to control the movements of the helicopter 1 along the yaw axis Z-Z, that is to say the vertical elevation movement of the helicopter 1, in particular by controlling the speed of rotation of the main rotor 20 and/or the angle of attack blades 200 of the main rotor 20.
La figure 1 illustre un système de transmission 40, 42, 44, 46, 48 mécanique qui comprend un ensemble de tringleries 40, de câbles 42 et de guignols 44 reliés entre eux, aux commandes de vol 30, 32, 34, aux compensateurs 5 et aux gouvernes 20, 22. Dans un tel système de transmission 40, 42, 44, 46, 48, les organes d’actionnement linéaire 46 sont, chacun, agencés sur un des câbles 42 de sorte à relier deux extrémités de câble 42 libres entre elles. En outre, l’extrémité libre du bras formé par l’actionneur 52 est reliée à au moins un des câbles 42. Figure 1 illustrates a mechanical transmission system 40, 42, 44, 46, 48 which includes a set of linkages 40, cables 42 and horns 44 connected together, to the flight controls 30, 32, 34, to the compensators 5 and to the control surfaces 20, 22. In such a transmission system 40, 42, 44, 46, 48, the linear actuating members 46 are each arranged on one of the cables 42 so as to connect two free cable ends 42 between them. In addition, the free end of the arm formed by the actuator 52 is connected to at least one of the cables 42.
La figure 1 illustre en outre que le système de transmission 40, 42, 44, 46, 48 mécanique peut comprendre au moins un servomoteur hydraulique 48, de préférence une pluralité de servomoteurs hydrauliques 48, par exemple un servomoteur hydraulique 48 relié au rotor de queue 22 et une pluralité de servomoteurs hydrauliques 48 reliés au rotor principal 20. Les servomoteurs hydrauliques 48 sont configurés pour démultiplier l’effort transmis par le pilote aux commandes de vol 30, 32, 34 et/ou l’effort généré par l’actionneur 52, lesquels efforts sont destinés à être transmis au rotor principal 20 et au rotor de queue 22. De cette manière, le contrôle des gouvernes 20, 22 est facilité, notamment dans des conditions où les efforts aérodynamiques auxquels sont soumis les pales du rotor principal 20 et du rotor de queue 22 sont élevés, ce qui rend le contrôle de leur mouvement par rapport à la cellule 10, 14 particulièrement difficile. Figure 1 further illustrates that the mechanical transmission system 40, 42, 44, 46, 48 can comprise at least one hydraulic servomotor 48, preferably a plurality of hydraulic servomotors 48, for example a hydraulic servomotor 48 connected to the tail rotor 22 and a plurality of hydraulic servomotors 48 connected to the main rotor 20. The hydraulic servomotors 48 are configured to multiply the force transmitted by the pilot to the flight controls 30, 32, 34 and/or the force generated by the actuator 52, which forces are intended to be transmitted to the main rotor 20 and the tail rotor 22. In this way, control of the control surfaces 20, 22 is facilitated, particularly in conditions where the aerodynamic forces to which the blades of the main rotor 20 and the tail rotor 22 are subjected are high, which makes controlling their movement relative to the cell 10, 14 particularly difficult.
Le poids des servomoteurs hydrauliques 48 et des systèmes d’alimentation hydrauliques nécessaires à leur fonctionnement réduit l’autonomie en vol de l’hélicoptère 1. C’est pourquoi il peut être prévu que le système de transmission 40, 42, 44, 46, 48 mécanique en soit dépourvu. The weight of the hydraulic servomotors 48 and the hydraulic power systems necessary for their operation reduces the flight autonomy of the helicopter 1. This is why it can be planned that the transmission system 40, 42, 44, 46, 48 mechanics is devoid of it.
Le cas échéant, il est toutefois nécessaire d’assurer la fonction des servomoteurs hydrauliques 48, typiquement au moyen d’actionneurs électriques de puissance, qui présentent l’avantage de ne plus nécessiter la présence de systèmes d’alimentation hydrauliques, mais nécessitent l’intégration d’une électronique de puissance pilotée par les compensateurs 5 et/ou les organes d’actionnement linéaire 46. Where applicable, it is however necessary to ensure the function of the hydraulic servomotors 48, typically by means of electric power actuators, which have the advantage of no longer requiring the presence of hydraulic power systems, but require the integration of power electronics controlled by the compensators 5 and/or the linear actuation members 46.
Une autre manière d’assurer la fonction des servomoteurs hydrauliques 48 est d’utiliser au moins un des compensateurs 5 en adaptant le pilotage réalisé par le système de contrôle 6 de sorte à permettre au compensateur 5 de générer des efforts plus importants pour déplacer et/ou maintenir en position les gouvernes 20, 22 par rapport à la cellule 10, 14 sans que le ressenti haptique du pilote manipulant les commandes de vol 30, 32, 34 ne soit modifié. Another way of ensuring the function of the hydraulic servomotors 48 is to use at least one of the compensators 5 by adapting the control carried out by the control system 6 so as to allow the compensator 5 to generate greater efforts to move and/or or maintain the control surfaces 20, 22 in position relative to the cell 10, 14 without the haptic feeling of the pilot manipulating the flight controls 30, 32, 34 being modified.
À cet égard, comme illustré sur la figure 2, le système de contrôle 6 est configuré pour piloter l’actionneur 52 du compensateur 5 en fonction d’un effort exercé sur la commande de vol 30, 32, 34 de sorte à contrôler un mouvement de la gouverne 20, 22 par rapport à la cellule 10, 14. L’effort est exercé sur la commande de vol 30, 32, 34 par le pilote. Mais, au lieu d’être transmis à au moins une des gouvernes 20, 22 par le système de transmission 40, 42, 44, 46, 48 mécanique, il est mesuré pour piloter le compensateur 5 afin que ce soient les efforts exercés par l’actionneur 52 qui soient transmis aux gouvernes 20, 22 par le système de transmission 40, 42, 44, 46 mécanique en vue de les contrôler. De cette manière, outre ses fonctions de régulation de retour d’effort perçu par le pilote et de pilotage automatique pour maintenir l’équilibre de l’hélicoptère 1 , le compensateur 5 remplit la fonction d’assistance au pilotage manuel de l’hélicoptère 1 qui était auparavant remplie par les servomoteurs hydrauliques 48. In this regard, as illustrated in Figure 2, the control system 6 is configured to control the actuator 52 of the compensator 5 as a function of a force exerted on the flight control 30, 32, 34 so as to control a movement of the rudder 20, 22 relative to the cell 10, 14. The force is exerted on the flight control 30, 32, 34 by the pilot. But, instead of being transmitted to at least one of the control surfaces 20, 22 by the mechanical transmission system 40, 42, 44, 46, 48, it is measured to control the compensator 5 so that these are the forces exerted by the actuator 52 which are transmitted to the control surfaces 20, 22 by the mechanical transmission system 40, 42, 44, 46 in order to control them. In this way, in addition to its functions of regulating force feedback perceived by the pilot and automatic piloting to maintain the balance of the helicopter 1, the compensator 5 fulfills the function of assisting the manual piloting of the helicopter 1 which was previously fulfilled by the hydraulic servomotors 48.
Pour ce faire, il peut être prévu que l’hélicoptère 1 comprenne un capteur d’effort 7 configuré pour mesurer une intensité de l’effort exercé sur la commande de vol 30, 32, 34. Le système de contrôle 6 est alors configuré pour piloter l’actionneur 52 en fonction d’une mesure de l’intensité de l’effort réalisée par le capteur. To do this, it can be provided that the helicopter 1 includes a force sensor 7 configured to measure an intensity of the force exerted on the flight control 30, 32, 34. The control system 6 is then configured to control the actuator 52 according to a measurement of the intensity of the effort carried out by the sensor.
Alternativement, ou en complément, il peut être prévu que l’hélicoptère 1 comprenne un interrupteur 7. L’hélicoptère 1 est alors configuré de sorte que l’effort exercé sur la commande de vol 30, 32, 34 entraîne une commutation de l’interrupteur 7 d’un premier état à un deuxième état, typiquement l’effort exercé sur le manche 30 entraîne un mouvement du manche 30 qui entre en contact avec l’interrupteur 7 et le fait commuter. Le système de contrôle 6 est, dans ce cas, configuré pour piloter l’actionneur 52 en fonction d’une durée de commutation durant laquelle l’interrupteur 7 est commuté dans le deuxième état. Alternatively, or in addition, it can be provided that the helicopter 1 includes a switch 7. The helicopter 1 is then configured so that the force exerted on the flight control 30, 32, 34 causes a switching of the switch 7 from a first state to a second state, typically the force exerted on the handle 30 causes a movement of the handle 30 which comes into contact with the switch 7 and causes it to switch. The control system 6 is, in this case, configured to control the actuator 52 as a function of a switching duration during which the switch 7 is switched to the second state.
La figure 3 illustre plus précisément la logique de pilotage de l’actionneur 52 du compensateur 5 qui est mis en oeuvre par le système de contrôle 6 en fonction de l’effort exercé sur la commande de vol 30, 32, 34, que le pilotage soit mis en oeuvre en fonction de l’intensité de l’effort mesurée par le capteur d’effort 7 ou de la durée de commutation durant laquelle l’interrupteur 7 est commuté dans le deuxième état. Figure 3 illustrates more precisely the logic for controlling the actuator 52 of the compensator 5 which is implemented by the control system 6 as a function of the effort exerted on the flight control 30, 32, 34, that the piloting either implemented as a function of the intensity of the effort measured by the force sensor 7 or the switching duration during which the switch 7 is switched to the second state.
Si la mesure de l’intensité de l’effort est inférieure à un premier seuil d’intensité, ou si la durée de commutation est inférieure à un premier seuil de durée, le système de contrôle 6 est prévu pour maintenir l’actionneur 52 en position. En d’autres termes, tant que le pilote ne manifeste pas, par sollicitation des commandes de vol 30, 32, 34, sa volonté de reprendre la main pour le contrôle des gouvernes 20, 22, le compensateur 5 maintient au moins une des gouvernes 20, 22 en position par rapport à la cellule 10, 14, que ce soit suivant une commande préalable reçue des commandes de vol 30, 32, 34 ou selon une logique de pilotage automatique. If the measurement of the intensity of the effort is less than a first intensity threshold, or if the switching duration is less than a first duration threshold, the control system 6 is provided to maintain the actuator 52 in position. In other words, as long as the pilot does not demonstrate, by requesting the flight controls 30, 32, 34, his desire to regain control of the control surfaces 20, 22, the compensator 5 maintains at least one of the control surfaces 20, 22 in position relative to the cell 10, 14, whether following a prior command received from the flight controls 30, 32, 34 or according to automatic piloting logic.
51 la mesure de la mesure de l’intensité de l’effort est supérieure au premier seuil d’intensité, ou si la durée de commutation est supérieure au premier seuil de durée, le système de contrôle 6 est prévu pour piloter une vitesse d’un mouvement de l’actionneur51 the measurement of the measurement of the intensity of the effort is greater than the first intensity threshold, or if the switching duration is greater than the first duration threshold, the control system 6 is provided to control a speed of movement of the actuator
52 par rapport au châssis 50 et/ou une position de l’actionneur 52 par rapport au châssis 50, en fonction de l’intensité de l’effort mesurée ou, le cas échéant, de la durée de commutation. La position et/ou la vitesse de l’actionneur 52 détermine un effort exercé par l’actionneur 52 transmis par le système de transmission 40, 42, 44, 46 mécanique à au moins une des gouvernes 20, 22. En d’autres termes, suivant la manière dont le pilote sollicite les commandes de vol 30, 32, 34, le système de contrôle 6 pilote l’actionneur 52 pour que l’effort que l’actionneur 52 exerce sur l’au moins une des gouvernes 20, 22 soit un effort qui corresponde à ce que souhaite le pilote en sollicitant la commande de vol 30, 32, 34. Le compensateur 5 remplace donc les servomoteurs hydrauliques 48 lors du pilotage manuel. 52 relative to the chassis 50 and/or a position of the actuator 52 relative to the chassis 50, depending on the intensity of the force measured or, where appropriate, the switching duration. The position and/or speed of the actuator 52 determines a force exerted by the actuator 52 transmitted by the mechanical transmission system 40, 42, 44, 46 to the minus one of the control surfaces 20, 22. In other words, depending on the way in which the pilot requests the flight controls 30, 32, 34, the control system 6 controls the actuator 52 so that the effort that the actuator 52 exerts on at least one of the control surfaces 20, 22, i.e. a force which corresponds to what the pilot wishes by requesting the flight control 30, 32, 34. The compensator 5 therefore replaces the hydraulic servomotors 48 during manual piloting.
La figure 3 illustre qu’un deuxième seuil d’intensité et/ou un deuxième seuil de durée, chacun, respectivement, supérieur au premier seuil d’intensité et au premier seuil de durée, peut être prévu. Dans ce cas, le premier seuil d’intensité, respectivement le premier seuil de durée, peut ne constituer qu’un seuil de détection pour le système de contrôle 6 qui est alors informé que le pilote souhaite passer du pilotage automatique par les compensateurs 5 à un pilotage manuel. Mais le pilotage de la vitesse et/ou de la position de l’actionneur 52 n’est mis en oeuvre qu’une fois le deuxième seuil d’intensité, respectivement le deuxième seuil de durée, dépassé. Figure 3 illustrates that a second intensity threshold and/or a second duration threshold, each, respectively, greater than the first intensity threshold and the first duration threshold, can be provided. In this case, the first intensity threshold, respectively the first duration threshold, may only constitute a detection threshold for the control system 6 which is then informed that the pilot wishes to switch from automatic piloting by the compensators 5 to manual piloting. But the control of the speed and/or the position of the actuator 52 is only implemented once the second intensity threshold, respectively the second duration threshold, has been exceeded.
Bien que les logiques de pilotage des compensateurs 5 aient été décrites en référence à un hélicoptère 1 dans le présent exposé, ceci n’est bien entendu limitatif. En effet, de telles logiques de pilotage des compensateurs s’appliquent à tout aéronef dont le système de transmission est mécanique et dépourvu de servomoteurs hydrauliques pour assister la commande des gouvernes. Although the logic for controlling the compensators 5 has been described with reference to a helicopter 1 in this presentation, this is of course not limiting. Indeed, such compensator control logic applies to any aircraft whose transmission system is mechanical and without hydraulic servomotors to assist control of the control surfaces.
De même, les logiques de pilotage des compensateurs 5 décrites dans le présent exposé sont de préférence mises en oeuvre pour le contrôle de la gouverne de lacet 22, laquelle subit des efforts aérodynamiques bien moindre que les gouvernes 20 de tangage et de roulis, surtout au sein d’un hélicoptère 1. Likewise, the logics for controlling the compensators 5 described in this presentation are preferably implemented for the control of the yaw control surface 22, which undergoes much less aerodynamic forces than the pitch and roll control surfaces 20, especially at inside a helicopter 1.

Claims

REVENDICATIONS
1. Ensemble pour un aéronef (1 ) comprenant : un compensateur (5) comprenant : un châssis (50) prévu pour être monté fixe sur une cellule (10, 14) de l’aéronef (1 ) ; et un actionneur (52) monté mobile sur le châssis (50) ; un système de transmission mécanique (40, 42, 44, 46) configuré pour transmettre un effort d’une part entre une commande de vol (30, 32, 34) de l’aéronef (1 ) et une gouverne (20, 22) de l’aéronef (1 ), et d’autre part entre l’actionneur (52) et la gouverne (20, 22), le système de transmission mécanique (40, 42, 44, 46) étant dépourvu de servomoteur hydraulique ; un interrupteur (7) configuré de sorte qu’un effort exercé sur la commande de vol (30, 32, 34) entraîne une commutation de l’interrupteur (7) d’un premier état à un deuxième état ; et un système de contrôle (6) configuré pour piloter l’actionneur (52) en fonction d’une durée de commutation durant laquelle l’interrupteur (7) est commuté dans le deuxième état de sorte à contrôler un mouvement de la gouverne (20, 22) par rapport à la cellule (10, 14). 1. Assembly for an aircraft (1) comprising: a compensator (5) comprising: a frame (50) intended to be fixedly mounted on a cell (10, 14) of the aircraft (1); and an actuator (52) movably mounted on the frame (50); a mechanical transmission system (40, 42, 44, 46) configured to transmit a force on the one hand between a flight control (30, 32, 34) of the aircraft (1) and a control surface (20, 22) of the aircraft (1), and on the other hand between the actuator (52) and the rudder (20, 22), the mechanical transmission system (40, 42, 44, 46) being devoid of hydraulic servomotor; a switch (7) configured so that an effort exerted on the flight control (30, 32, 34) causes the switch (7) to switch from a first state to a second state; and a control system (6) configured to control the actuator (52) as a function of a switching duration during which the switch (7) is switched to the second state so as to control a movement of the rudder (20). , 22) relative to the cell (10, 14).
2. Ensemble selon la revendication 1 , comprenant en outre un capteur d’effort (7) configuré pour mesurer une intensité de l’effort exercé sur la commande de vol (30, 32, 34), le système de contrôle (6) étant en outre configuré pour piloter l’actionneur (52) en fonction d’une mesure de l’intensité de l’effort réalisée par le capteur d’effort (7) de sorte à contrôler un mouvement de la gouverne (20, 22) par rapport à la cellule (10, 14). 2. Assembly according to claim 1, further comprising a force sensor (7) configured to measure an intensity of the force exerted on the flight control (30, 32, 34), the control system (6) being further configured to control the actuator (52) as a function of a measurement of the intensity of the effort carried out by the force sensor (7) so as to control a movement of the rudder (20, 22) by relation to the cell (10, 14).
3. Ensemble selon la revendication 2, dans lequel le système de contrôle (6) est configuré pour piloter l’actionneur (52) de sorte que : si la mesure de l’intensité de l’effort exercé sur la commande de vol (30, 32, 34) est inférieure à un seuil d’intensité, le système de contrôle (6) est prévu pour maintenir en position l’actionneur (52) ; et si la mesure de l’intensité de l’effort exercé sur la commande de vol (30, 32, 34) est supérieure au seuil d’intensité, le système de contrôle (6) est prévu pour piloter une vitesse d’un mouvement de l’actionneur (52) par rapport au châssis (50) en fonction de l’intensité de l’effort exercé sur la commande de vol (30, 32, 34). 3. Assembly according to claim 2, in which the control system (6) is configured to control the actuator (52) so that: if the measurement of the intensity of the effort exerted on the flight control (30 , 32, 34) is less than an intensity threshold, the control system (6) is provided to hold the actuator (52) in position; and if the measurement of the intensity of the effort exerted on the flight control (30, 32, 34) is greater than the intensity threshold, the control system (6) is provided to control a speed of a movement of the actuator (52) relative to the chassis (50) as a function of the intensity of the force exerted on the flight control (30, 32, 34).
4. Ensemble selon l’une quelconque des revendications 1 à 3, dans lequel le système de contrôle (6) est configuré pour piloter l’actionneur (52) de sorte que : si la durée de commutation est inférieure à un seuil de durée, le système de contrôle (6) est prévu pour maintenir en position l’actionneur (52) ; et si la durée de commutation est supérieure au seuil de durée, le système de contrôle (6) est prévu pour piloter une vitesse d’un mouvement de l’actionneur (52) par rapport au châssis (50) en fonction de la durée de commutation. 4. Assembly according to any one of claims 1 to 3, in which the control system (6) is configured to control the actuator (52) so that: if the switching duration is less than a duration threshold, the control system (6) is provided to hold the actuator (52) in position; And if the switching duration is greater than the duration threshold, the control system (6) is provided to control a speed of movement of the actuator (52) relative to the chassis (50) as a function of the switching duration .
5. Aéronef (1 ) comprenant : une cellule (10, 14) ; une gouverne (20, 22) montée mobile sur la cellule (10, 14) ; une commande de vol (30, 32, 34) montée mobile sur la cellule (10, 14) ; et un ensemble selon l’une quelconque des revendications 1 à 4, dans lequel le châssis (50) est monté fixe sur la cellule (10, 14). 5. Aircraft (1) comprising: an airframe (10, 14); a control surface (20, 22) movably mounted on the cell (10, 14); a flight control (30, 32, 34) movably mounted on the airframe (10, 14); and an assembly according to any one of claims 1 to 4, in which the frame (50) is fixedly mounted on the cell (10, 14).
6. Aéronef (1 ) selon la revendication 5, dans lequel la gouverne (20, 22) est l’une parmi : une gouverne de lacet (22), une gouverne de tangage (20) et une gouverne de roulis (20). 6. Aircraft (1) according to claim 5, wherein the control surface (20, 22) is one of: a yaw control surface (22), a pitch control surface (20) and a roll control surface (20).
7. Aéronef (1 ) selon l’une quelconque des revendications 5 et 6, dans lequel la commande de vol (30, 32, 34) est l’une parmi : un manche (30), un palonnier (32) et un collectif (34). 7. Aircraft (1) according to any one of claims 5 and 6, in which the flight control (30, 32, 34) is one of: a stick (30), a rudder (32) and a collective (34).
8. Aéronef (1 ) selon l’une quelconque des revendications 5 à 7, dans lequel l’aéronef (1 ) est un hélicoptère. 8. Aircraft (1) according to any one of claims 5 to 7, wherein the aircraft (1) is a helicopter.
9. Procédé de contrôle d’un aéronef (1 ) comprenant : une cellule (10, 14) ; une gouverne (20, 22) montée mobile sur la cellule (10, 14) ; une commande de vol (30, 32, 34) montée mobile sur la cellule (10, 14) ; un compensateur (5) comprenant : un châssis (50) monté fixe sur la cellule (10, 14) ; et un actionneur (52) monté mobile sur le châssis (50) ; un système de transmission mécanique (40, 42, 44, 46) configuré pour transmettre un effort d’une part entre la commande de vol (30, 32, 34) et la gouverne (20, 22), et d’autre part entre l’actionneur (52) et la gouverne (20, 22), le système de transmission mécanique (40, 42, 44, 46) étant dépourvu de servomoteur hydraulique ; et un interrupteur (7) configuré de sorte qu’un effort exercé sur la commande de vol (30, 32, 34) entraîne une commutation de l’interrupteur (7) d’un premier état à un deuxième état ; le procédé de contrôle comprenant le pilotage de l’actionneur (52) en fonction d’une durée de commutation durant laquelle l’interrupteur (7) est commuté dans le deuxième état de sorte à contrôler un mouvement de la gouverne (20, 22) par rapport à la cellule (10, 14). 9. Method for controlling an aircraft (1) comprising: a cell (10, 14); a control surface (20, 22) movably mounted on the cell (10, 14); a flight control (30, 32, 34) movably mounted on the airframe (10, 14); a compensator (5) comprising: a frame (50) fixedly mounted on the cell (10, 14); and an actuator (52) movably mounted on the frame (50); a mechanical transmission system (40, 42, 44, 46) configured to transmit a force on the one hand between the flight control (30, 32, 34) and the rudder (20, 22), and on the other hand between the actuator (52) and the rudder (20, 22), the mechanical transmission system (40, 42, 44, 46) being without a hydraulic servomotor; and a switch (7) configured so that an effort exerted on the flight control (30, 32, 34) causes the switch (7) to switch from a first state to a second state; the control method comprising controlling the actuator (52) as a function of a switching duration during which the switch (7) is switched to the second state so as to control a movement of the rudder (20, 22) relative to the cell (10, 14).
PCT/FR2023/051595 2022-10-17 2023-10-12 Assembly for an aircraft WO2024084156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2210710 2022-10-17
FR2210710A FR3140861A1 (en) 2022-10-17 2022-10-17 Set for an aircraft

Publications (1)

Publication Number Publication Date
WO2024084156A1 true WO2024084156A1 (en) 2024-04-25

Family

ID=85381127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051595 WO2024084156A1 (en) 2022-10-17 2023-10-12 Assembly for an aircraft

Country Status (2)

Country Link
FR (1) FR3140861A1 (en)
WO (1) WO2024084156A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1119236A (en) * 1954-12-29 1956-06-18 Sfena Device of artificial sensations for piloting aerodynes
US5908177A (en) * 1995-07-12 1999-06-01 Tanaka; Yasunari Flight control system
FR2931132A1 (en) * 2008-05-19 2009-11-20 Eurocopter France ASSISTED CONTROL SYSTEM OF A GIRAVON
US20120025014A1 (en) * 2009-03-30 2012-02-02 Arnaud Duyck Aircraft flight control system comprising a connecting rod provided with a sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1119236A (en) * 1954-12-29 1956-06-18 Sfena Device of artificial sensations for piloting aerodynes
US5908177A (en) * 1995-07-12 1999-06-01 Tanaka; Yasunari Flight control system
FR2931132A1 (en) * 2008-05-19 2009-11-20 Eurocopter France ASSISTED CONTROL SYSTEM OF A GIRAVON
US20120025014A1 (en) * 2009-03-30 2012-02-02 Arnaud Duyck Aircraft flight control system comprising a connecting rod provided with a sensor

Also Published As

Publication number Publication date
FR3140861A1 (en) 2024-04-19

Similar Documents

Publication Publication Date Title
EP2279941B1 (en) Variable damping of haptic feedback for kinematic linkage to change the flight attitude of an aircraft
EP2468627B1 (en) Aircraft provided with a tilting rear rotor and associated method
EP2691299B1 (en) Remotely piloted micro/nano aicraft provided with a system for gound taxiing and vertical take off and landing
EP2502825A1 (en) Backup control by linear actuator for manual flight command chain of an aircraft and Method
EP2096030B1 (en) Helicopter equipped with a plurality of lifting elements equipped with a flap for controlling the angle of attack of its blades
FR2983171A1 (en) ANTI-TORQUE DEVICE WITH LONGITUDINAL PUSH FOR A GIRAVION
EP3882129B1 (en) Method for controlling the propellers of a hybrid helicopter and hybrid helicopter
FR2600036A1 (en) DIRECTIONAL DEVICE AND STABILIZER WITH CARENE AND INCLINE ANTI - TORQUE ROTOR AND DISSYMETRIC V - RING, AND HELICOPTER EQUIPPED WITH SUCH A DEVICE.
EP2799331B1 (en) System and method for control of a pitch stabilisation mean of an aircraft
EP2759473B1 (en) Control mean provided with a collective lever blade pitch control and with means for yaw control as well as an aircraft with such a control mean
CA2586892C (en) Method for improving roll steering of an aircraft and aircraft using same
EP2096031A1 (en) Helicopter equipped with a plurality of lifting elements for controlling the angle of attack of its blades
FR2899562A1 (en) DEVICE FOR CONTROLLING FLIGHT OF A GIRAVION
EP3330177B1 (en) A control member, a rotary wing aircraft, and a method
WO2024084156A1 (en) Assembly for an aircraft
FR3022217A1 (en) CONVERTIBLE AIRCRAFT WITH TILTING WING
CA2988687C (en) Control element, rotary-wing aircraft and process
EP3162706B1 (en) Combiner of yaw and thrust commands for a hybrid helicopter
WO2022171958A1 (en) Vtol aircraft having four rotors in a cruciform arrangement, and associated method for managing an emergency landing
EP4148299B1 (en) Mechanical device with variable gain and an aircraft provided with such a device
FR3136745A1 (en) VERTICAL TAKEOFF AND LANDING AIRCRAFT
EP4159619A1 (en) Method for hovering of an aircraft in relation to an axis with controllable pitch angle
EP0971840A1 (en) Aircraft rudder unit control device and aircraft equipped with same
FR3123320A1 (en) Aircraft having at least one propeller and a rotary wing equipped with two rotors carried by two half-wings
FR3092082A1 (en) Flying vehicle intended for passenger transport

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23808846

Country of ref document: EP

Kind code of ref document: A1