WO2024082836A1 - 一种水风光储多能互补系统综合效益评估方案寻优方法 - Google Patents

一种水风光储多能互补系统综合效益评估方案寻优方法 Download PDF

Info

Publication number
WO2024082836A1
WO2024082836A1 PCT/CN2023/116185 CN2023116185W WO2024082836A1 WO 2024082836 A1 WO2024082836 A1 WO 2024082836A1 CN 2023116185 W CN2023116185 W CN 2023116185W WO 2024082836 A1 WO2024082836 A1 WO 2024082836A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
comprehensive
water
solar
complementary system
Prior art date
Application number
PCT/CN2023/116185
Other languages
English (en)
French (fr)
Inventor
张玮
张璐
刘瑞阔
李梦杰
黄康迪
余意
Original Assignee
中国长江三峡集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国长江三峡集团有限公司 filed Critical 中国长江三峡集团有限公司
Publication of WO2024082836A1 publication Critical patent/WO2024082836A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to the technical field of electric power systems, and in particular to a method for optimizing a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system.
  • an embodiment of the present invention provides a method for optimizing a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system, so as to solve the technical problem that there is a lack of a comprehensive, scientific, and reference-worthy optimization method for evaluation schemes in the prior art.
  • an embodiment of the present invention provides a method for optimizing a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system.
  • the method for optimizing a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system includes: constructing a comprehensive benefit evaluation index matrix for a water-wind-solar-storage multi-energy complementary system; based on the comprehensive benefit evaluation index matrix for a water-wind-solar-storage multi-energy complementary system, obtaining subjective and objective comprehensive weight coefficients for each type of the evaluation index through tomography analysis and entropy weight method processing; constructing a target benefit evaluation scheme optimization model based on the subjective and objective comprehensive weight coefficients; solving the target benefit evaluation scheme optimization model to obtain a target comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system.
  • the subjective and objective comprehensive weight coefficient of each evaluation index is obtained, including: based on the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system, after processing by tomography analysis method, the subjective weight coefficient of each evaluation index is obtained; based on the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system, each type of evaluation index in each comprehensive benefit to be evaluated scheme of the water-wind-solar-storage multi-energy complementary system is standardized to obtain the standardized processing result of the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system; based on the standardized processing result of the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system, after processing by entropy weight method, the objective
  • a target benefit evaluation scheme optimization model is constructed based on the subjective and objective comprehensive weight coefficients, including: obtaining the relative superiority of each of the comprehensive benefit schemes to be evaluated for the water-wind-solar-storage multi-energy complementary system; calculating the overall comprehensive distance and weighted distance to optimality of each of the comprehensive benefit schemes to be evaluated for the water-wind-solar-storage multi-energy complementary system; determining a first objective function based on the overall comprehensive distance; determining a second objective function based on the weighted distance to optimality; based on the split ratio and the relative superiority, through the first objective function and the second objective function, constructing a target benefit evaluation scheme optimization model.
  • the overall comprehensive distance and weighted distance to the best of all the comprehensive benefit schemes to be evaluated for the water-wind-solar-storage multi-energy complementary system are calculated, including: calculating the weighted distance to the best of all and the weighted distance to the worst of all based on the subjective and objective comprehensive weight coefficients and the standardized processing results; calculating the overall comprehensive distance based on the weighted distance to the best of all and the weighted distance to the worst of all.
  • the target benefit evaluation scheme optimization model is solved to obtain a target comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system, including: based on the first objective function and the second objective function, a non-inferior solution set is obtained through processing by a multi-objective heuristic intelligent optimization algorithm, and the non-inferior solution set reflects a solution set of a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system that simultaneously satisfies the first objective function and the second objective function; the optimal splitting ratio and the optimal relative superiority are determined in the non-inferior solution set in combination with the decision maker's preference; the optimal subjective and objective comprehensive weight coefficient is determined based on the optimal splitting ratio; the optimal overall comprehensive distance is determined based on the optimal relative superiority, the optimal subjective and objective comprehensive weight coefficient and the standardized processing result; and the target comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-
  • an embodiment of the present invention provides a device for optimizing a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system
  • the device for optimizing a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system includes: a first construction module, used to construct a comprehensive benefit evaluation index matrix for a water-wind-solar-storage multi-energy complementary system; a processing module, used to obtain the subjective and objective comprehensive weight coefficients of each type of the evaluation index based on the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system through tomography analysis and entropy weight method; a second construction module, used to construct a target benefit evaluation scheme optimization model based on the subjective and objective comprehensive weight coefficients; a solution module, used to solve the target benefit evaluation scheme optimization model to obtain a target comprehensive benefit evaluation scheme for the water-wind-solar-storage multi-energy complementary system.
  • an embodiment of the present invention provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer instructions, and the computer instructions are used to enable the computer to execute a method for optimizing a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system as described in the first aspect of the embodiment of the present invention and any one of the first aspects.
  • an embodiment of the present invention provides an electronic device, comprising: a memory and a processor, the memory and the processor being communicatively connected to each other, the memory storing computer instructions, and the processor executing the computer instructions to execute the method for finding an optimization plan for a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system as described in the first aspect of the embodiment of the present invention and any one of the first aspects.
  • the method for optimizing the comprehensive benefit evaluation scheme of the water-wind-solar-storage multi-energy complementary system constructs subjective and objective comprehensive weight coefficients based on the tomographic analysis method and the entropy weight method, which not only takes into account the subjective preferences of expert experience, but also respects the objective characteristics of the data itself; by establishing and solving the target benefit evaluation scheme optimization model, the best scheme for the comprehensive benefit evaluation of the water-wind-solar-storage multi-energy complementary system can be quickly identified. Therefore, by implementing the present invention, intelligent and rapid decision-making technical support is provided for the comparison of various installed capacity scale installation schemes and the analysis of different control and operation schemes for the water-wind-solar-storage multi-energy complementary system.
  • FIG. 1 is a flow chart of a method for optimizing a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system provided according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of comprehensive benefit evaluation index types for a water-wind-solar-storage multi-energy complementary system provided according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of a device for optimizing a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system provided according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the structure of a computer-readable storage medium provided according to an embodiment of the present invention.
  • FIG5 is a schematic diagram of the structure of an electronic device provided according to an embodiment of the present invention.
  • An embodiment of the present invention provides a method for optimizing a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system. As shown in FIG1 , the method comprises the following steps:
  • Step 101 Construct a comprehensive benefit evaluation index matrix for the hydro-wind-solar-storage multi-energy complementary system.
  • the economic benefit indicators are analyzed from the financial analysis of the hydro-wind-solar-storage multi-energy complementary system project, including the net annual value E 1 , investment income E 2 , internal rate of return E 3 , and the income E 4 obtained by the hydro-wind-solar-storage multi-energy complementary system participating in auxiliary services in the power market environment.
  • the net annual value E1 is the net present value of the water-wind-solar-storage multi-energy complementary system allocated to the equal annual value of each year during the life of the system project, which is the annual income in the investment year. Its expression is shown in relational formula (1):
  • ns represents the design engineering life of the hydro-wind-solar-storage multi-energy complementary system
  • j represents the jth year within the design engineering life
  • io represents the discount rate
  • i represents the base discount rate
  • (A/P, io , ns ) represents the capital recovery coefficient
  • CI(j) represents the cash inflow in the jth year
  • CO(j) represents the cash outflow in the jth year.
  • CI(j) mainly includes normal electricity sales revenue and equipment residual value, and its expression is shown in equation (2):
  • Bs represents the equipment residual value of the hydro-wind-solar-storage multi-energy complementary system project
  • Bp (j) represents the electricity sales revenue in the jth year.
  • C0 represents the initial investment
  • CM (j) represents the operation and maintenance cost of the power generation equipment in the jth year
  • CB (j) represents the renewal cost of the power generation equipment in the jth year.
  • the investment income E2 is the profitability of the hydro-wind-solar-storage multi-energy complementary system project, which is expressed as the ratio of net income to total investment in a normal year, as shown in equation (4):
  • NB represents the annual profit before interest and tax in a normal year
  • Ks represents the total investment of the water-wind-solar-storage multi-energy complementary system project, specifically including working capital, construction investment, and loan interest during the construction period.
  • the internal rate of return E3 is the rate of return on investment of the investment operator for the hydro-wind-solar-storage multi-energy complementary system project, and the expression is shown in equation (5):
  • E 41 represents the peak-shaving income of the water-wind-solar-storage multi-energy complementary system
  • E 42 represents the frequency regulation compensation of the water-wind-solar-storage multi-energy complementary system
  • E 43 represents the phase regulation income of the water-wind-solar-storage multi-energy complementary system
  • E 44 represents the standby service income of the water-wind-solar-storage multi-energy complementary system
  • E 45 represents the black start income of the water-wind-solar-storage multi-energy complementary system.
  • the specific calculation method of the income refers to the power market policies of various places.
  • the operation of the water-wind-solar-storage multi-energy complementary system can achieve mutual complementation of power generation of multiple energy types, improve the level of clean energy utilization and the efficiency of power system operation, and reduce the pressure of new energy power consumption. Therefore, the technical benefits of the water-wind-solar-storage multi-energy complementary system mainly consider four indicators: output stability T1 , degree of complementarity T2 , active power control effect T3 and energy utilization rate T4 .
  • the output stability T1 represents the stability index of the output power of the wind, solar, water and storage single system. After the wind and solar are connected to the system, the greater the fluctuation, the greater the negative impact on the power grid. At the same time, the rapid change of the output power of water and storage also increases the difficulty of system regulation. It is necessary to evaluate the stability of the output power of wind, solar, water and storage energy.
  • the specific expression is shown in relation (7):
  • i represents the i-th energy source, which are wind, light, water, and storage respectively;
  • tik represents the output change of the i-th energy source within the sampling unit time k;
  • K represents the total number of points in the sampling time scale;
  • P iN represents the output power rating of the i-th energy source.
  • the degree of complementarity T 2 measures the complementary ability of the water-wind-solar-storage multi-energy complementary system, and can quantitatively evaluate the power fluctuation after the superposition of wind, solar, water and storage output power.
  • the specific expression is shown in equation (8):
  • the smaller the value of the complementarity degree T2 the higher the degree of complementarity of the water-wind-solar-storage multi-energy complementary system.
  • the value is equal to 0, the changes in various energy sources offset each other and achieve complete complementarity.
  • the active power control effect T 3 evaluates the tracking effect of the actual output power of the hydro-wind-solar-storage multi-energy complementary system on the planned output power, which means the degree of power deviation.
  • the specific expression is shown in equation (9):
  • P tol (k) represents the actual output power of the water-wind-solar-storage multi-energy complementary system within unit time k
  • Pref (k) represents the planned output power of the water-wind-solar-storage multi-energy complementary system within unit time k.
  • the energy utilization rate T4 represents the utilization rate of water, wind and light resources by the water-wind-solar-storage multi-energy complementary system, and its expression is shown in equation (10):
  • Pi (k) represents the actual power generation of wind, light and water in the water-wind-solar-storage multi-energy complementary system within unit time k
  • Pin (k) represents the available power generation of wind, light and water in the water-wind-solar-storage multi-energy complementary system within unit time k.
  • the greater the energy utilization rate T4 the less water, wind and light will be abandoned in the water-wind-solar-storage multi-energy complementary system, and the less resource waste will be.
  • Ps represents the demonstration benefit brought by the completion of the water-wind-solar-storage multi-energy complementary project
  • Pz represents the local economic benefits during the same period.
  • P P represents the economic benefits of the hydro-wind-solar-storage multi-energy complementary project in the year after its completion.
  • the water, wind, solar and storage multi-energy complementary system achieves good energy-saving and emission reduction effects by integrating clean energy, improving the power generation structure, and reducing carbon emissions. It greatly reduces the emissions of pollutants, greenhouse gases and other wastes and has high environmental benefits. Therefore, the environmental benefits adopt two indicators: pollutant emission reduction N1 and coal saving benefits N2 .
  • Es represents the power generation of water, wind and light output by the water-wind-solar-storage multi-energy complementary system in one year
  • L F They represent the amount of smoke and carbon dioxide that can be reduced per kilowatt-hour in the water-wind-solar-storage multi-energy complementary system.
  • the amount of sulfur dioxide that can be reduced and the amount of nitrogen oxides that can be reduced are in kg; They represent the control costs per kg of smoke, carbon dioxide, sulfur dioxide and nitrogen oxides respectively.
  • Ets represents the power generation of the hydro-wind-solar-storage multi-energy complementary system in one year; LM represents the amount of coal consumed by conventional thermal power units to produce unit electricity; CM represents the price of unit coal.
  • the M schemes to be evaluated related to the planning and operation of the water-wind-solar-storage multi-energy complementary system are evaluated one by one, and then the comprehensive benefit evaluation indicator matrix of the water-wind-solar-storage multi-energy complementary system is formed as shown in equation (15):
  • N represents the total number of evaluation indicators, that is, the value is 12
  • M represents the total number of schemes to be evaluated in the planning or operation of the water-wind-solar-storage multi-energy complementary system.
  • Step 102 Based on the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system, the subjective and objective comprehensive weight coefficients of each evaluation index are obtained through tomography analysis and entropy weight method.
  • the tomography analysis method is a process of modeling and quantifying the decision-making thinking process of decision makers on complex systems;
  • the entropy weight method is an objective weighting method.
  • the entropy weight of each indicator is calculated based on the degree of data dispersion of each indicator using information entropy, and then the entropy weight is corrected to a certain extent according to each indicator, so as to obtain a more objective indicator weight.
  • the subjective and objective comprehensive weight coefficients of each type of evaluation index can be calculated, and this processing process not only takes into account the subjective preferences of expert experience, but also respects the objective characteristics of the data itself.
  • Step 103 constructing a target benefit evaluation scheme optimization model based on the subjective and objective comprehensive weight coefficients.
  • the subjective and objective comprehensive weight coefficient can reflect the importance of each type of evaluation index in each benefit evaluation scheme. Therefore, a target benefit evaluation scheme optimization model can be constructed based on the subjective and objective comprehensive weight coefficient.
  • Step 104 Solve the target benefit evaluation scheme optimization model to obtain a target comprehensive benefit evaluation scheme for the hydro-wind-solar-storage multi-energy complementary system.
  • the target benefit evaluation scheme optimization model can be solved to obtain Target comprehensive benefit evaluation plan of water, wind, solar and storage multi-energy complementary system.
  • the method for optimizing the comprehensive benefit evaluation scheme of the water-wind-solar-storage multi-energy complementary system constructs subjective and objective comprehensive weight coefficients based on the tomographic analysis method and the entropy weight method, which not only takes into account the subjective preferences of expert experience, but also respects the objective characteristics of the data itself; by establishing and solving the target benefit evaluation scheme optimization model, the best scheme for the comprehensive benefit evaluation of the water-wind-solar-storage multi-energy complementary system can be quickly identified. Therefore, by implementing the present invention, intelligent and rapid decision-making technical support is provided for the comparison of various installed capacity scale installation schemes and the analysis of different control and operation schemes for the water-wind-solar-storage multi-energy complementary system.
  • step 102 includes: based on the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system, obtaining the subjective weight coefficient of each type of the evaluation index through tomography analysis method processing; based on the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system, standardizing each type of evaluation index in each comprehensive benefit to be evaluated scheme of the water-wind-solar-storage multi-energy complementary system, and obtaining the standardized processing result of the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system; based on the standardized processing result of the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system, obtaining the objective weight coefficient of each type of the evaluation index through entropy weight method processing; determining the split ratio of the subjective weight coefficient and the objective weight coefficient; determining the subjective and objective comprehensive weight coefficient of each type of the evaluation index based on the subjective weight coefficient, the objective weight coefficient and the
  • the M comprehensive benefit evaluation schemes of the hydro-wind-solar-storage multi-energy complementary system are standardized.
  • the objective weight coefficient of each type of evaluation index is obtained by calculating the information entropy value of each type of evaluation index, as shown in formula (21):
  • wsi represents the objective weight coefficient of the i-th evaluation index
  • Hi represents the information entropy value of the i-th evaluation index
  • ⁇ i represents the subjective and objective comprehensive weight coefficient of the i-th evaluation index
  • ⁇ ci represents the subjective weight coefficient of the i-th evaluation index
  • represents the division ratio of the subjective and objective weight coefficients.
  • step 103 includes: obtaining the relative superiority of each of the comprehensive benefit to be evaluated schemes of the water-wind-solar-storage multi-energy complementary system; calculating the overall comprehensive distance and weighted distance to optimal distance of each of the comprehensive benefit to be evaluated schemes of the water-wind-solar-storage multi-energy complementary system; determining a first objective function based on the overall comprehensive distance; determining a second objective function based on the weighted distance to optimal distance; based on the split ratio and the relative superiority, after the first The objective function and the second objective function construct a target benefit evaluation scheme optimization model.
  • the overall comprehensive distance and weighted distance to the best of all the comprehensive benefit schemes to be evaluated for the water-wind-solar-storage multi-energy complementary system are calculated, including: calculating the weighted distance to the best of all and the weighted distance to the worst of all based on the subjective and objective comprehensive weight coefficients and the standardized processing results; calculating the overall comprehensive distance based on the weighted distance to the best of all and the weighted distance to the worst of all.
  • DB k represents the weighted optimal distance of the k-th comprehensive benefit evaluation scheme of the water-wind-solar-storage multi-energy complementary system
  • u k represents the relative superiority of the k-th comprehensive benefit evaluation scheme of the water-wind-solar-storage multi-energy complementary system
  • the weighted inferior distance is calculated using equation (22):
  • DW k represents the weighted inferior distance of the comprehensive benefit of k water-wind-solar-storage multi-energy complementary systems to be evaluated
  • the objective function includes minimizing the overall comprehensive distance of all solutions (the first objective function) and maximizing the number of solutions with a close distance to the optimal solution (the second objective function), as shown in equations (23) and (24), respectively:
  • (DB k ) 2 +(DW k ) 2 represents the overall comprehensive distance of the k water-wind-solar-storage multi-energy complementary system comprehensive benefits to be evaluated;
  • segmentation ratio and relative superiority ( ⁇ , u 1 ,..., uk ..., u M ) are used as optimization variables, and after the optimization of the first objective function and the second objective function, the corresponding target benefit evaluation scheme optimization model can be constructed.
  • the segmentation ratio and relative superiority value range are both [0,1].
  • step 104 includes: based on the first objective function and the second objective function, a non-inferior solution set is obtained through processing with a multi-objective heuristic intelligent optimization algorithm; the optimal split ratio and the optimal relative superiority are determined in the non-inferior solution set in combination with the decision maker's preference; the optimal subjective and objective comprehensive weight coefficient is determined based on the optimal split ratio; the optimal overall comprehensive distance is determined based on the optimal relative superiority, the optimal subjective and objective comprehensive weight coefficient and the standardized processing result; and the comprehensive benefit evaluation scheme of the target water-wind-solar-storage multi-energy complementary system is determined based on the optimal overall comprehensive distance.
  • the multi-objective heuristic intelligent optimization algorithm can be NSGA-2, PA-DDS and other intelligent optimization algorithms;
  • the non-inferior solution set reflects the solution set of the comprehensive benefit evaluation scheme of the water-wind-solar-storage multi-energy complementary system that simultaneously satisfies the first objective function and the second objective function.
  • the multi-objective heuristic intelligent optimization algorithm can be used to obtain the Pareto non-inferior solution set, and the optimal split ratio and the optimal relative superiority degree can be selected from the non-inferior solution set according to the decision maker's preference.
  • ⁇ * represents the optimal segmentation ratio; It represents the best relative superiority of the comprehensive benefit evaluation scheme of the k-th hydro-wind-solar-storage multi-energy complementary system;
  • the one with the smallest optimal comprehensive distance is selected as the final recommended scheme, that is, the comprehensive benefit evaluation scheme of the target hydro-wind-solar-storage multi-energy complementary system, as shown in equation (26):
  • Best k means that the kth hydro-wind-solar-storage multi-energy complementary system comprehensive benefit evaluation scheme is the final recommended scheme.
  • the method for optimizing the comprehensive benefit evaluation scheme of the water-wind-solar-storage multi-energy complementary system constructs the subjective and objective comprehensive weight coefficients based on the tomographic analysis method-entropy weight method, which takes into account the subjective preferences of expert experience and respects the objective characteristics of the data itself.
  • the optimal proportion of subjective and objective weight coefficients can be intelligently obtained, and the optimal scheme for the comprehensive benefit evaluation of the water-wind-solar-storage multi-energy complementary system can be quickly identified.
  • the present invention provides intelligent and rapid decision-making technical support for the comparison of various installed capacity scale installation schemes and the analysis of different control and operation schemes for the water-wind-solar-storage multi-energy complementary system.
  • the embodiment of the present invention further provides a device for optimizing a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system, as shown in FIG3 , the device comprising:
  • the first construction module 301 is used to construct a comprehensive benefit evaluation index matrix for a water-wind-solar-storage multi-energy complementary system; for details, see the relevant description of step 101 in the above method embodiment.
  • Processing module 302 is used to obtain the subjective and objective comprehensive weight coefficients of each type of evaluation index based on the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system through tomography analysis and entropy weight method; for details, please refer to the relevant description of step 102 in the above method embodiment.
  • the second construction module 303 is used to construct a target benefit evaluation scheme optimization model based on the subjective and objective comprehensive weight coefficients; for details, please refer to the relevant description of step 103 in the above method embodiment.
  • the solution module 304 is used to solve the target benefit evaluation scheme optimization model to obtain the target water-wind-solar-storage multi-energy complementary system comprehensive benefit evaluation scheme; for details, please refer to the relevant description of step 104 in the above method embodiment.
  • the device for optimizing the comprehensive benefit evaluation scheme of the water-wind-solar-storage multi-energy complementary system constructs a subjective and objective comprehensive weight coefficient based on the tomographic analysis method and the entropy weight method, which not only takes into account the subjective preference of expert experience, but also respects the objective characteristics of the data itself; by establishing and solving the target benefit evaluation scheme optimization model, the best scheme for the comprehensive benefit evaluation of the water-wind-solar-storage multi-energy complementary system can be quickly identified. Therefore, by implementing the present invention, intelligent and rapid decision-making technical support is provided for the comparison of various installed capacity scale installation schemes and the analysis of different control and operation schemes of the water-wind-solar-storage multi-energy complementary system.
  • the processing module includes: a first processing submodule, which is used to obtain the subjective weight coefficient of each type of the evaluation index based on the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system through tomography analysis; a second processing submodule, which is used to standardize each type of evaluation index in each comprehensive benefit to be evaluated scheme of the water-wind-solar-storage multi-energy complementary system based on the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system, and obtain the standardized processing result of the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system; a third processing submodule, which is used to obtain the objective weight coefficient of each type of the evaluation index based on the standardized processing result of the comprehensive benefit evaluation index matrix of the water-wind-solar-storage multi-energy complementary system through entropy weight method; a first determination submodule, which is used to determine the split ratio of the subjective
  • the second construction module includes: a first acquisition submodule, used to obtain the relative superiority of each of the comprehensive benefit schemes to be evaluated for the water-wind-solar-storage multi-energy complementary system; a first calculation submodule, used to calculate the overall comprehensive distance and weighted superior distance of each of the comprehensive benefit schemes to be evaluated for the water-wind-solar-storage multi-energy complementary system; a first determination submodule, used to determine the first objective function based on the overall comprehensive distance; a second determination submodule, used to determine the second objective function based on the weighted superior distance; a first construction submodule, used to construct a target benefit evaluation scheme optimization model based on the split ratio and the relative superiority, through the first objective function and the second objective function.
  • the first calculation submodule includes: a second calculation submodule, used to calculate the weighted superior distance and the weighted inferior distance based on the subjective and objective comprehensive weight coefficient and the standardized processing result; a third calculation submodule, used to calculate the overall comprehensive distance based on the weighted superior distance and the weighted inferior distance.
  • the solution module includes: a fourth processing submodule, which is used to The first objective function and the second objective function are processed by a multi-objective heuristic intelligent optimization algorithm to obtain a non-inferior solution set, and the non-inferior solution set reflects a solution set of a comprehensive benefit evaluation scheme for a water-wind-solar-storage multi-energy complementary system that simultaneously satisfies the first objective function and the second objective function; a third determination submodule is used to determine the optimal split ratio and the optimal relative superiority in the non-inferior solution set in combination with the decision maker's preference; a fourth determination submodule is used to determine the optimal subjective and objective comprehensive weight coefficient based on the optimal split ratio; a fifth determination submodule is used to determine the optimal overall comprehensive distance based on the optimal relative superiority, the optimal subjective and objective comprehensive weight coefficient and the standardized processing result; a sixth determination submodule is used to determine a target comprehensive benefit evaluation scheme for a water-
  • the embodiment of the present invention also provides a storage medium, as shown in FIG4 , on which a computer program 401 is stored, and when the instruction is executed by the processor, the steps of the method for optimizing the comprehensive benefit evaluation scheme of the water-wind-solar-storage multi-energy complementary system in the above embodiment are implemented.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (ROM), a random access memory (RAM), a flash memory (Flash Memory), a hard disk (HDD) or a solid-state drive (SSD), etc.; the storage medium can also include a combination of the above-mentioned types of memory.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (ROM), a random access memory (RAM), a flash memory (Flash Memory), a hard disk (HDD) or a solid-state drive (SSD), etc.; the storage medium can also include a combination of the above-mentioned types of memory.
  • An embodiment of the present invention further provides an electronic device, as shown in FIG5 , which may include a processor 51 and a memory 52 , wherein the processor 51 and the memory 52 may be connected via a bus or other means, with FIG5 taking the connection via a bus as an example.
  • the processor 51 may be a central processing unit (CPU).
  • the processor 51 may also be other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or a combination of the above chips.
  • DSP digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA field-programmable gate arrays
  • programmable logic devices discrete gate or transistor logic devices, discrete hardware components, or a combination of the above chips.
  • the memory 52 is a non-transitory computer-readable storage medium that can be used to store non-transitory software programs, non-transitory Computer executable programs and modules, such as the corresponding program instructions/modules in the embodiments of the present invention.
  • the processor 51 executes various functional applications and data processing of the processor by running the non-transient software programs, instructions and modules stored in the memory 52, that is, the method for optimizing the comprehensive benefit evaluation scheme of the water-wind-solar-storage multi-energy complementary system in the above method embodiment is realized.
  • the memory 52 may include a program storage area and a data storage area, wherein the program storage area may store an application required for operating the device and at least one function; the data storage area may store data created by the processor 51, etc.
  • the memory 52 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 52 may optionally include a memory remotely arranged relative to the processor 51, and these remote memories may be connected to the processor 51 via a network. Examples of the above-mentioned network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more modules are stored in the memory 52, and when executed by the processor 51, perform the method for optimizing the comprehensive benefit evaluation scheme of the water-wind-solar-storage multi-energy complementary system in the embodiment shown in Figures 1-2.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种水风光储多能互补系统综合效益评估方案寻优方法,构建水风光储多能互补系统综合效益评价指标矩阵,并经过层析分析法和熵权法处理,得到每类评价指标的主客观综合权重系数;基于主客观综合权重系数构建目标效益评估方案寻优模型;对目标效益评估方案寻优模型进行求解,得到目标水风光储多能互补系统综合效益评估方案。既考虑了专家经验的主观偏好,又尊重了数据本身的客观特征;通过对目标效益评估方案寻优模型求解,可以快速识别水风光储多能互补系统综合效益评估的最佳方案,为水风光储多能互补系统多种装机规模装机方案比选、不同调控运行方案分析提供了智能且快速的决策技术支持。

Description

一种水风光储多能互补系统综合效益评估方案寻优方法 技术领域
本发明涉及电力系技术领域,具体涉及一种水风光储多能互补系统综合效益评估方案寻优方法。
背景技术
当前,电力系统综合效率不高,各类电源互补互济不足等矛盾日益凸显。构建包含水、风、光等多类型清洁可再生能源及抽水蓄能等储能设施的水风光储多能互补系统,有利于促进清洁电力大规模消纳,优化能源结构。随着电力体制改革的深入推进,风光水储坚持市场化发展,风光水储的商业模式空间正在打开。针对水风光储多能互补系统综合效益,建立全面、科学,具有参考价值的评估评价方案寻优方法,可为水风光储多能互补系统的投资与建设提供理论支撑,促进能源结构不断优化调整。
发明内容
有鉴于此,本发明实施例提供了涉及一种水风光储多能互补系统综合效益评估方案寻优方法,以解决现有技术中缺少全面、科学,具有参考价值的评估评价方案寻优方法的技术问题。
本发明提出的技术方案如下:
第一方面,本发明实施例提供一种水风光储多能互补系统综合效益评估方案寻优方法,该水风光储多能互补系统综合效益评估方案寻优方法包括:构建水风光储多能互补系统综合效益评价指标矩阵;基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法和熵权法处理,得到每类所述评价指标的主客观综合权重系数;基于所述主客观综合权重系数构建目标效益评估方案寻优模型;对所述目标效益评估方案寻优模型进行求解,得到目标水风光储多能互补系统综合效益评估方案。
结合第一方面,在第一方面的一种可能的实现方式中,基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法和熵权法处理,得到每个所述评价指标的主客观综合权重系数,包括:基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法处理,得到每个所述评价指标的主观权重系数;基于所述水风光储多能互补系统综合效益评价指标矩阵,对每个水风光储多能互补系统综合效益待评估方案中的每类评价指标进行标准化处理,得到所述水风光储多能互补系统综合效益评价指标矩阵的标准化处理结果;基于所述水风光储多能互补系统综合效益评价指标矩阵的标准化处理结果,经过熵权法处理,得到每类所述评价指标的客观权重系数;确定所述主观权重系数和所述客观权重系数的分割 比;基于所述主观权重系数、所述客观权重系数和所述分割比确定每类所述评价指标的所述主客观综合权重系数。
结合第一方面,在第一方面的另一种可能的实现方式中,基于所述主客观综合权重系数构建目标效益评估方案寻优模型,包括:获取每个所述水风光储多能互补系统综合效益待评估方案的相对优属度;计算每个所述水风光储多能互补系统综合效益待评估方案的整体综合距离和加权距优距离;基于所述整体综合距离确定第一目标函数;基于所述加权距优距离确定第二目标函数;基于所述分割比和所述相对优属度,经过所述第一目标函数和所述第二目标函数,构建目标效益评估方案寻优模型。
结合第一方面,在第一方面的又一种可能的实现方式中,计算每个所述水风光储多能互补系统综合效益待评估方案的整体综合距离和加权距优距离,包括:基于所述主客观综合权重系数和所述标准化处理结果计算所述加权距优距离和加权距劣距离;基于所述加权距优距离和所述加权距劣距离计算所述整体综合距离。
结合第一方面,在第一方面的又一种可能的实现方式中,对所述目标效益评估方案寻优模型进行求解,得到目标水风光储多能互补系统综合效益评估方案,包括:基于所述第一目标函数和所述第二目标函数,经过多目标启发式智能优化算法处理,得到非劣解集,所述非劣解集反映同时满足所述第一目标函数和所述第二目标函数的水风光储多能互补系统综合效益评估方案解集;结合决策者偏好在所述非劣解集中确定最佳分割比和最佳相对优属度;基于所述最佳分割比确定最佳主客观综合权重系数;基于所述最佳相对优属度、所述最佳主客观综合权重系数和所述标准化处理结果确定最佳整体综合距离;基于所述最佳整体综合距离确定目标水风光储多能互补系统综合效益评估方案。
第二方面,本发明实施例提供一种水风光储多能互补系统综合效益评估方案寻优装置,该水风光储多能互补系统综合效益评估方案寻优装置包括:第一构建模块,用于构建水风光储多能互补系统综合效益评价指标矩阵;处理模块,用于基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法和熵权法处理,得到每类所述评价指标的主客观综合权重系数;第二构建模块,用于基于所述主客观综合权重系数构建目标效益评估方案寻优模型;求解模块,用于对所述目标效益评估方案寻优模型进行求解,得到目标水风光储多能互补系统综合效益评估方案。
第三方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行如本发明实施例第一方面及第一方面任一项所述的水风光储多能互补系统综合效益评估方案寻优方法。
第四方面,本发明实施例提供一种电子设备,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行如本发明实施例第一方面及第一方面任一项所述的水风光储多能互补系统综合效益评估方案寻优方法。
本发明提供的技术方案,具有如下效果:
本发明实施例提供的水风光储多能互补系统综合效益评估方案寻优方法,基于层析分析法和熵权法构建主客观综合权重系数,既考虑了专家经验的主观偏好,又尊重了数据本身的客观特征;通过建立目标效益评估方案寻优模型并求解,可以快速识别水风光储多能互补系统综合效益评估的最佳方案。因此,通过实施本发明,为水风光储多能互补系统多种装机规模装机方案比选、不同调控运行方案分析提供了智能且快速的决策技术支持。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例提供的一种水风光储多能互补系统综合效益评估方案寻优方法的流程图;
图2是根据本发明实施例提供的水风光储多能互补系统综合效益评价指标类型示意图;
图3是根据本发明实施例提供的一种水风光储多能互补系统综合效益评估方案寻优装置的结构框图;
图4是根据本发明实施例提供的计算机可读存储介质的结构示意图;
图5是根据本发明实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种水风光储多能互补系统综合效益评估方案寻优方法,如图1所示,该方法包括如下步骤:
步骤101:构建水风光储多能互补系统综合效益评价指标矩阵。
具体地,从经济效益、技术效益、社会效益以及环境效益四个方面,构建了包含12类评价指标(如图2所示)的水风光储多能互补系统综合效益评价指标矩阵:
1a)经济效益
经济效益指标从水风光储多能互补系统项目的财务分析,包括净年值E1、投资收益E2、内部收益率E3,并考虑水风光储多能互补系统在电力市场环境下参与辅助服务获取收益E4
其中,净年值E1为水风光储多能互补系统的净现值分摊到系统项目的寿命期内各年的等额年值,为投资年内的年收益,其表达式如关系式(1)所示:
式中:ns表示水风光储多能互补系统的设计工程寿命;j表示设计工程寿命内的第j年;io表示折现率;i表示基准折现率;(A/P,io,ns)表示资金回收系数;CI(j)表示第j年的现金流入;CO(j)表示第j年的现金流出。
进一步,CI(j)主要包括正常售电收益和设备残值,其表达式如关系式(2)所示:
式中:Bs表示水风光储多能互补系统项目的设备残值;Bp(j)表示第j年的售电收益。
现金流出部分CO(j)包括初始建设的投资成本、运行维护成本、设备更新成本,其表达式如关系式(3)所示:
CO(j)=C0+CM(j)+CB(j)    (3)
式中:C0表示初始投资;CM(j)表示第j年的发电设备运行维护成本;CB(j)表示第j年的发电设备更新成本。
投资收益E2是水风光储多能互补系统项目的盈利能力,其表达式为正常年份的净收益与总投资比值,如关系式(4)所示:
式中:NB表示正常年份的年息税前利润;Ks表示水风光储多能互补系统项目的总投资,具体包括流动资金、建设投资、建设期内贷款利息。
内部收益率E3为投资运营商对水风光储多能互补系统项目的投资报酬率,表达式如关系式(5)所示:
辅助服务获取收益E4为水风光储多能互补系统中储能设备参与电力市场环境下一系列辅助服务获得的收益,其表达式如关系式(6)所示:
EC4=E4=E41+E42+E43+E44+E45    (6)
式中:E41表示水风光储多能互补系统的调峰收益;E42表示水风光储多能互补系统的调频补偿;E43表示水风光储多能互补系统的调相收益;E44表示水风光储多能互补系统的备用服务收益;E45表示水风光储多能互补系统的黑启动收益。其中,收益具体测算方式参照各地的电力市场政策。
1b)技术效益
水风光储多能互补系统运行能实现多能源品种发电互相补充,提升能源清洁利用水平和电力系统运行效率,降低新能源电力消纳的压力,所以水风光储多能互补系统技术效益主要考虑输出平稳性T1、互补程度T2、有功控制效果T3和能源利用率T4四个指标。
其中,输出平稳性T1表示风光水储单体系统的输出功率的平稳性指标,风、光接入系统后,其波动越大对电网造成的负面影响越大,同时水、储的输出功率变化过快也增加了系统的调控难度,有必要对风光水储能源的输出功率进行平稳性评估,具体的表达式如关系式(7)所示:
式中:i表示第i种能源,分别为风、光、水、储;tik表示第i种能源在采样单位时间k内的输出变化量;K表示采样时间尺度的总点数;PiN表示第i种能源的输出功率额定值。
其中,输出平稳性T1的值越小,水风光储多能互补系统输出功率波动越小,平稳性越好。
互补程度T2表示衡量水风光储多能互补系统的互补能力,可以量化地评估了风、光、水、储输出功率叠加后的功率波动情况,具体的表达式如关系式(8)所示:
其中,互补程度T2的值越小,水风光储多能互补系统的互补程度越高,其值等于0时,各种能源变化量相互抵消,实现完全互补。
有功控制效果T3评估了水风光储多能互补系统的实际输出功率对计划输出功率的跟踪效果,含义为功率偏移程度,具体的表达式如关系式(9)所示:
式中:Ptol(k)表示单位时间k内水风光储多能互补系统的实际输出功率;Pref(k)表示单位时间k内水风光储多能互补系统的计划输出功率。
其中,有功控制效果T3的值越小,表明对计划输出功率的跟踪越紧密,系统功率调控能 力越强。
能源利用率T4表示水风光储多能互补系统对水、风、光资源的利用率,其表达式如关系式(10)所示:
式中:Pi(k)表示单位时间k内水风光储多能互补系统中风、光、水的实际发电功率;Pin(k)表示单位时间k内水风光储多能互补系统中风、光、水的可利用发电功率。
其中,能源利用率T4越大,水风光储多能互补系统中的弃水、弃风、弃光越少,资源浪费小。
1c)社会效益
社会效益考虑项目示范效益S1,地区经济影响水平S2两项指标。水风光储多能互补项目由于采用新技术新标准,具有显著示范效益。
其中,项目示范效益S1的表达式如关系式(11)所示:
式中:Ps表示水风光储多能互补项目建成后所带来的示范效益收益;PZ表示当地同期经济收益。
水风光储多能互补项目的建设、维护、运行可以推动发展,促进基础设施的建设,开发新能源可解决用能和供能需求,降低能源投资成本。采用地区经济影响水平S2反映水风光储多能互补系统对当地经济的影响,其表达式如关系式(12)所示:
式中:PP表示水风光储多能互补项目建成后当年的经济收益。
1d)环境效益
水风光储多能互补系统作为绿色能源的联合发电方式,通过整合清洁能源,改善发电结构,减少碳排放,实现了良好的节能减排效应,很大程度地减少了污染气体、温室气体及其他废物的排放,具有很高的环保效益,所以环保效益采用污染物减排量N1和节煤效益N2两个指标。
其中,污染物减排量N1的表达式如关系式(13)所示:
式中:Es表示水风光储多能互补系统在一年内所输出的水、风、光的发电量;LF分别表示水风光储多能互补系统中每度电可减排烟尘量,可减排二氧化碳 量、可减排二氧化硫量和可减排氮氧化合物量,单位为kg;分别表示单位kg的烟尘量、二氧化碳、二氧化硫量和氮氧化合物量的治理费用。
节煤效益N2的表达式如关系式(14)所示:
EC12=N2=EtsLMCM    (14)
式中:Ets表示水风光储多能互补系统在一年内所产生发电量;LM表示常规火电机组生产单位电量所消耗的煤炭量;CM表示单位煤炭量的价格。
根据上述12类评价指标,针对M个水风光储多能互补系统的规划与运行相关的待评估方案,逐一进行评估,进而形成水风光储多能互补系统综合效益评价指标矩阵如关系式(15)所示:
式中:表示第k个待评估方案的第i类评价指标;N表示评价指标的总数,即取值为12;M表示水风光储多能互补系统规划或运行待评估方案的总数。
步骤102:基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法和熵权法处理,得到每个所述评价指标的主客观综合权重系数。
其中,层析分析法是一种将决策者对复杂系统的决策思维过程模型化、数量化的过程;熵权法是一种客观赋权方法,在具体使用过程中,根据各指标的数据分散程度,利用信息熵计算出各指标的熵权,再根据各指标对熵权进行一定的修正,从而得到较为客观的指标权重。
因此,利用层析分析法和熵权法,可以计算得到每类评价指标的主客观综合权重系数,并且这种处理过程既考虑了专家经验的主观偏好,又尊重了数据本身的客观特征。
步骤103:基于所述主客观综合权重系数构建目标效益评估方案寻优模型。
具体地,主客观综合权重系数可以反映每个效益评估方案中每类评价指标的重要程度,因此,根据该主客观综合权重系数可以构建目标效益评估方案寻优模型。
步骤104:对所述目标效益评估方案寻优模型进行求解,得到目标水风光储多能互补系统综合效益评估方案。
具体地,根据步骤103的描述,可以通过对该目标效益评估方案寻优模型进行求解得到 目标水风光储多能互补系统综合效益评估方案。
本发明实施例提供的水风光储多能互补系统综合效益评估方案寻优方法,基于层析分析法和熵权法构建主客观综合权重系数,既考虑了专家经验的主观偏好,又尊重了数据本身的客观特征;通过建立目标效益评估方案寻优模型并求解,可以快速识别水风光储多能互补系统综合效益评估的最佳方案。因此,通过实施本发明,为水风光储多能互补系统多种装机规模装机方案比选、不同调控运行方案分析提供了智能且快速的决策技术支持。
作为本发明实施例一种可选的实施方式,步骤102包括:基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法处理,得到每类所述评价指标的主观权重系数;基于所述水风光储多能互补系统综合效益评价指标矩阵,对每个水风光储多能互补系统综合效益待评估方案中的每类评价指标进行标准化处理,得到所述水风光储多能互补系统综合效益评价指标矩阵的标准化处理结果;基于所述水风光储多能互补系统综合效益评价指标矩阵的标准化处理结果,经过熵权法处理,得到每类所述评价指标的客观权重系数;确定所述主观权重系数和所述客观权重系数的分割比;基于所述主观权重系数、所述客观权重系数和所述分割比确定每类所述评价指标的所述主客观综合权重系数。
首先,基于步骤101中描述的水风光储多能互补系统综合效益评价指标矩阵中的12类评价指标,根据第一个专家的建议构建各层的相对重要性判断矩阵,并对该相对重要性判断矩阵进行一致性校验;进一步,可以得到多名专家的评价矩阵和权重向量;最后构建相似系数矩阵,删除偏离度最大的权重系数,计算剩余权重系数的平均值得到各项指标基于层次分析法计算的主观权重系数ωc=(ωc1,…,ωci,…,ωcN)。
其次,根据如关系式(15)所示的水风光储多能互补系统综合效益评价指标矩阵,对M个水风光储多能互补系统综合效益待评估方案中的N类评价指标(即N=12)进行标准化处理。
其中,除输出平稳性T1、互补程度T2、有功控制效果T3为成本型指标(即i=5、6、7),其余均为效益型指标。
效益型和成本型指标的标准化处理过程分别为:
效益型指标的标准化如关系式(16)所示:
成本型指标的标准化如关系式(17)所示:
上述关系式(16)和(17)中:表示第k个水风光储多能互补系统综合效益待评估方案的第i类评价指标的标准化处理结果;表示第i类评价指标在所有待水风光储多能互补系统综合效益待评估方案中的最大值;表示第i类评价指标在所有待水风光储多能互补系统综合效益待评估方案中的最小值。
其中,当i=5、6、7时,采用成本型指标的标准化处理方式,其他均采用效益型指标的标准化处理方式。
水风光储多能互补系统综合效益评价指标矩阵的标准化处理结果如关系式(18)所示:
然后,基于水风光储多能互补系统综合效益评价指标矩阵的标准化处理结果,通过计算每类评价指标的信息熵值,得到每类评价指标的客观权重系数,如关系式(21)所示:
式中:wsi表示第i类评价指标的客观权重系数;Hi表示第i类评价指标的信息熵值:
进一步,确定主观权重系数和客观权重系数的分割比λ;
最后,根据主观权重系数、客观权重系数和分割比λ可以计算得到每类评价指标的主客观综合权重系数,如关系式(20)所示:
ωi=λ×ωci+(1-λ)×ωsi    (20)
式中:ωi表示第i类评价指标的主客观综合权重系数;ωci表示第i类评价指标的主观权重系数;λ表示主客观权重系数分割比。
作为本发明实施例一种可选的实施方式,步骤103,包括:获取每个所述水风光储多能互补系统综合效益待评估方案的相对优属度;计算每个所述水风光储多能互补系统综合效益待评估方案的整体综合距离和加权距优距离;基于所述整体综合距离确定第一目标函数;基于所述加权距优距离确定第二目标函数;基于所述分割比和所述相对优属度,经过所述第一 目标函数和所述第二目标函数,构建目标效益评估方案寻优模型。
其中,计算每个所述水风光储多能互补系统综合效益待评估方案的整体综合距离和加权距优距离,包括:基于所述主客观综合权重系数和所述标准化处理结果计算所述加权距优距离和加权距劣距离;基于所述加权距优距离和所述加权距劣距离计算所述整体综合距离。
首先,基于主客观综合权重系数ωi和标准化处理结果利用如下关系式(21)可以计算得到对应的加权距优距离:
式中:DBk表示k个水风光储多能互补系统综合效益待评估方案的加权距优距离;uk表示第k个水风光储多能互补系统综合效益待评估方案的相对优属度;
加权距劣距离利用关系式(22)计算得到:
式中:DWk表示k个水风光储多能互补系统综合效益待评估方案的加权距劣距离;
其次,目标函数包括为所有方案的整体综合距离最小化(第一目标函数)、距优距离较近的方案数最大化(第二目标函数),分别如关系式(23)和(24)所示:

其中,(DBk)2+(DWk)2表示k个水风光储多能互补系统综合效益待评估方案的整体综合距离;
最后,将分割比和相对优属度(λ,u1,…,uk…,uM)作为优化变量,经过第一目标函数和第二目标函数优化,可以构建得到对应的目标效益评估方案寻优模型。其中,分割比和相对优属度取值范围均为[0,1]。
作为本发明实施例一种可选的实施方式,步骤104,包括:基于所述第一目标函数和所述第二目标函数,经过多目标启发式智能优化算法处理,得到非劣解集;结合决策者偏好在所述非劣解集中确定最佳分割比和最佳相对优属度;基于所述最佳分割比确定最佳主客观综合权重系数;基于所述最佳相对优属度、所述最佳主客观综合权重系数和所述标准化处理结果确定最佳整体综合距离;基于所述最佳整体综合距离确定目标水风光储多能互补系统综合效益评估方案。
其中,多目标启发式智能优化算法可以为NSGA-2、PA-DDS等智能优化算法;非劣解集反映同时满足第一目标函数和第二目标函数的水风光储多能互补系统综合效益评估方案解集。
具体地,利用该多目标启发式智能优化算法可以得到Pareto非劣解集,根据决策者偏好从非劣解集中选择最佳分割比和最佳相对优属度其中,λ*表示最佳分割比;表示第k个水风光储多能互补系统综合效益待评估方案的最佳相对优属度;
进一步,计算各方案的最佳综合距离如关系式(25)所示:
式中:表示最佳主客观综合权重系数;表示最佳相对优属度;表示标准化处理结果;表示最佳加权距优距离,可以根据关系式(21)计算得到;表示最佳加权距劣距离,可以根据关系式(22)计算得到;表示最佳整体综合距离。
进一步,选择最佳综合距离较小者作为最终推荐方案,即目标水风光储多能互补系统综合效益评估方案,如关系式(26)所示:
式中:Bestk表示第k个水风光储多能互补系统综合效益待评估方案为最终推荐方案。
通过上述实施例提供的水风光储多能互补系统综合效益评估方案寻优方法,一方面,基于层析分析法-熵权法构建主客观综合权重系数,既考虑了专家经验的主观偏好,又尊重了数据本身的客观特征。通过建立最佳效益评估方案寻优模型,采用多目标智能化启发算法进行求解,可智能化获取主客观权重系数的最佳占比、可快速识别水风光储多能互补系统综合效益评估的最佳方案。本发明为水风光储多能互补系统多种装机规模装机方案比选、不同调控运行方案分析提供了智能且快速的决策技术支持。
本发明实施例还提供一种水风光储多能互补系统综合效益评估方案寻优装置,如图3所示,该装置包括:
第一构建模块301,用于构建水风光储多能互补系统综合效益评价指标矩阵;详细内容参见上述方法实施例中步骤101的相关描述。
处理模块302,用于基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法和熵权法处理,得到每类所述评价指标的主客观综合权重系数;详细内容参见上述方法实施例中步骤102的相关描述。
第二构建模块303,用于基于所述主客观综合权重系数构建目标效益评估方案寻优模型;详细内容参见上述方法实施例中步骤103的相关描述。
求解模块304,用于对所述目标效益评估方案寻优模型进行求解,得到目标水风光储多能互补系统综合效益评估方案;详细内容参见上述方法实施例中步骤104的相关描述。
本发明实施例提供的水风光储多能互补系统综合效益评估方案寻优装置,基于层析分析法和熵权法构建主客观综合权重系数,既考虑了专家经验的主观偏好,又尊重了数据本身的客观特征;通过建立目标效益评估方案寻优模型并求解,可以快速识别水风光储多能互补系统综合效益评估的最佳方案。因此,通过实施本发明,为水风光储多能互补系统多种装机规模装机方案比选、不同调控运行方案分析提供了智能且快速的决策技术支持。
作为本发明实施例一种可选的实施方式,所述处理模块包括:第一处理子模块,用于基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法处理,得到每类所述评价指标的主观权重系数;第二处理子模块,用于基于所述水风光储多能互补系统综合效益评价指标矩阵,对每个水风光储多能互补系统综合效益待评估方案中的每类评价指标进行标准化处理,得到所述水风光储多能互补系统综合效益评价指标矩阵的标准化处理结果;第三处理子模块,用于基于所述水风光储多能互补系统综合效益评价指标矩阵的标准化处理结果,经过熵权法处理,得到每类所述评价指标的客观权重系数;第一确定子模块,用于确定所述主观权重系数和所述客观权重系数的分割比;第二确定子模块,用于基于所述主观权重系数、所述客观权重系数和所述分割比确定每类所述评价指标的所述主客观综合权重系数。
作为本发明实施例一种可选的实施方式,所述第二构建模块包括:第一获取子模块,用于获取每个所述水风光储多能互补系统综合效益待评估方案的相对优属度;第一计算子模块,用于计算每个所述水风光储多能互补系统综合效益待评估方案的整体综合距离和加权距优距离;第一确定子模块,用于基于所述整体综合距离确定第一目标函数;第二确定子模块,用于基于所述加权距优距离确定第二目标函数;第一构建子模块,用于基于所述分割比和所述相对优属度,经过所述第一目标函数和所述第二目标函数,构建目标效益评估方案寻优模型。
作为本发明实施例一种可选的实施方式,所述第一计算子模块包括:第二计算子模块,用于基于所述主客观综合权重系数和所述标准化处理结果计算所述加权距优距离和加权距劣距离;第三计算子模块,用于基于所述加权距优距离和所述加权距劣距离计算所述整体综合距离。
作为本发明实施例一种可选的实施方式,所述求解模块包括:第四处理子模块,用于基 于所述第一目标函数和所述第二目标函数,经过多目标启发式智能优化算法处理,得到非劣解集,所述非劣解集反映同时满足所述第一目标函数和所述第二目标函数的水风光储多能互补系统综合效益评估方案解集;第三确定子模块,用于结合决策者偏好在所述非劣解集中确定最佳分割比和最佳相对优属度;第四确定子模块,用于基于所述最佳分割比确定最佳主客观综合权重系数;第五确定子模块,用于基于所述最佳相对优属度、所述最佳主客观综合权重系数和所述标准化处理结果确定最佳整体综合距离;第六确定子模块,用于基于所述最佳整体综合距离确定目标水风光储多能互补系统综合效益评估方案。
本发明实施例提供的水风光储多能互补系统综合效益评估方案寻优装置的功能描述详细参见上述实施例中水风光储多能互补系统综合效益评估方案寻优方法描述。
本发明实施例还提供一种存储介质,如图4所示,其上存储有计算机程序401,该指令被处理器执行时实现上述实施例中水风光储多能互补系统综合效益评估方案寻优方法的步骤。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
本发明实施例还提供了一种电子设备,如图5所示,该电子设备可以包括处理器51和存储器52,其中处理器51和存储器52可以通过总线或者其他方式连接,图5中以通过总线连接为例。
处理器51可以为中央处理器(Central Processing Unit,CPU)。处理器51还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器52作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态 计算机可执行程序以及模块,如本发明实施例中的对应的程序指令/模块。处理器51通过运行存储在存储器52中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的水风光储多能互补系统综合效益评估方案寻优方法。
存储器52可以包括存储程序区和存储数据区,其中,存储程序区可存储操作装置、至少一个功能所需要的应用程序;存储数据区可存储处理器51所创建的数据等。此外,存储器52可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器52可选包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至处理器51。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器52中,当被所述处理器51执行时,执行如图1-2所示实施例中的水风光储多能互补系统综合效益评估方案寻优方法。
上述电子设备具体细节可以对应参阅图1至图2所示的实施例中对应的相关描述和效果进行理解,此处不再赘述。

Claims (6)

  1. 一种水风光储多能互补系统综合效益评估方案寻优方法,其特征在于,所述方法包括:
    构建水风光储多能互补系统综合效益评价指标矩阵;
    基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法和熵权法处理,得到每类所述评价指标的主客观综合权重系数;
    基于所述主客观综合权重系数构建目标效益评估方案寻优模型;
    对所述目标效益评估方案寻优模型进行求解,得到目标水风光储多能互补系统综合效益评估方案。
  2. 根据权利要求1所述的方法,其特征在于,基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法和熵权法处理,得到每类所述评价指标的主客观综合权重系数,包括:
    基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法处理,得到每类所述评价指标的主观权重系数;
    基于所述水风光储多能互补系统综合效益评价指标矩阵,对每个水风光储多能互补系统综合效益待评估方案中的每类评价指标进行标准化处理,得到所述水风光储多能互补系统综合效益评价指标矩阵的标准化处理结果;
    基于所述水风光储多能互补系统综合效益评价指标矩阵的标准化处理结果,经过熵权法处理,得到每类所述评价指标的客观权重系数;
    确定所述主观权重系数和所述客观权重系数的分割比;
    基于所述主观权重系数、所述客观权重系数和所述分割比确定每类所述评价指标的所述主客观综合权重系数。
  3. 根据权利要求2所述的方法,其特征在于,基于所述主客观综合权重系数构建目标效益评估方案寻优模型,包括:
    获取每个所述水风光储多能互补系统综合效益待评估方案的相对优属度;
    计算每个所述水风光储多能互补系统综合效益待评估方案的整体综合距离和加权距优距离;
    基于所述整体综合距离确定第一目标函数;
    基于所述加权距优距离确定第二目标函数;
    基于所述分割比和所述相对优属度,经过所述第一目标函数和所述第二目标函数,构建目标效益评估方案寻优模型。
  4. 根据权利要求3所述的方法,其特征在于,计算每个所述水风光储多能互补系统综合效益待评估方案的整体综合距离和加权距优距离,包括:
    基于所述主客观综合权重系数和所述标准化处理结果计算所述加权距优距离和加权距劣距离;
    基于所述加权距优距离和所述加权距劣距离计算所述整体综合距离。
  5. 根据权利要求4所述的方法,其特征在于,对所述目标效益评估方案寻优模型进行求解,得到目标水风光储多能互补系统综合效益评估方案,包括:
    基于所述第一目标函数和所述第二目标函数,经过多目标启发式智能优化算法处理,得到非劣解集,所述非劣解集反映同时满足所述第一目标函数和所述第二目标函数的水风光储多能互补系统综合效益评估方案解集;
    结合决策者偏好在所述非劣解集中确定最佳分割比和最佳相对优属度;
    基于所述最佳分割比确定最佳主客观综合权重系数;
    基于所述最佳相对优属度、所述最佳主客观综合权重系数和所述标准化处理结果确定最佳整体综合距离;
    基于所述最佳整体综合距离确定目标水风光储多能互补系统综合效益评估方案。
  6. 一种水风光储多能互补系统综合效益评估方案寻优装置,其特征在于,所述装置包括:
    第一构建模块,用于构建水风光储多能互补系统综合效益评价指标矩阵;
    处理模块,用于基于所述水风光储多能互补系统综合效益评价指标矩阵,经过层析分析法和熵权法处理,得到每类所述评价指标的主客观综合权重系数;
    第二构建模块,用于基于所述主客观综合权重系数构建目标效益评估方案寻优模型;
    求解模块,用于对所述目标效益评估方案寻优模型进行求解,得到目标水风光储多能互补系统综合效益评估方案。
PCT/CN2023/116185 2022-10-19 2023-08-31 一种水风光储多能互补系统综合效益评估方案寻优方法 WO2024082836A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211283652.1 2022-10-19
CN202211283652.1A CN115713252A (zh) 2022-10-19 2022-10-19 一种水风光储多能互补系统综合效益评估方案寻优方法

Publications (1)

Publication Number Publication Date
WO2024082836A1 true WO2024082836A1 (zh) 2024-04-25

Family

ID=85229964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116185 WO2024082836A1 (zh) 2022-10-19 2023-08-31 一种水风光储多能互补系统综合效益评估方案寻优方法

Country Status (2)

Country Link
CN (1) CN115713252A (zh)
WO (1) WO2024082836A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115713252A (zh) * 2022-10-19 2023-02-24 中国长江三峡集团有限公司 一种水风光储多能互补系统综合效益评估方案寻优方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170308966A1 (en) * 2016-04-22 2017-10-26 Economy Research Institute of State Grid Zhejiang Electric Power Post-evaluation and risk management and control method of power transmission engineering cost
CN110222973A (zh) * 2019-05-31 2019-09-10 国网安徽省电力有限公司经济技术研究院 一种基于最优组合赋权的综合能源系统评价方法及系统
CN112861376A (zh) * 2021-03-10 2021-05-28 广东电网有限责任公司 一种基于单元调度模型的评估方法及装置
CN114977324A (zh) * 2022-06-16 2022-08-30 西安理工大学 能源基地多能互补运行中多主体效益变化的量化方法
CN115713252A (zh) * 2022-10-19 2023-02-24 中国长江三峡集团有限公司 一种水风光储多能互补系统综合效益评估方案寻优方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170308966A1 (en) * 2016-04-22 2017-10-26 Economy Research Institute of State Grid Zhejiang Electric Power Post-evaluation and risk management and control method of power transmission engineering cost
CN110222973A (zh) * 2019-05-31 2019-09-10 国网安徽省电力有限公司经济技术研究院 一种基于最优组合赋权的综合能源系统评价方法及系统
CN112861376A (zh) * 2021-03-10 2021-05-28 广东电网有限责任公司 一种基于单元调度模型的评估方法及装置
CN114977324A (zh) * 2022-06-16 2022-08-30 西安理工大学 能源基地多能互补运行中多主体效益变化的量化方法
CN115713252A (zh) * 2022-10-19 2023-02-24 中国长江三峡集团有限公司 一种水风光储多能互补系统综合效益评估方案寻优方法

Also Published As

Publication number Publication date
CN115713252A (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
CN109193748B (zh) 一种光伏消纳能力的评价方法及计算设备
WO2024082836A1 (zh) 一种水风光储多能互补系统综合效益评估方案寻优方法
CN105809349A (zh) 一种考虑来水相关性梯级水电站群的调度方法
CN111952965B (zh) 一种基于预测控制与区间规划的cchp系统优化运行方法
CN110866658A (zh) 一种城市电网中长期负荷预测方法
CN112633762A (zh) 楼宇能效获取方法及设备
Wang et al. Multi-criteria comprehensive study on predictive algorithm of heating energy consumption of district heating station based on timeseries processing
CN108108837B (zh) 一种地区新能源电源结构优化预测方法和系统
CN114037209A (zh) 分布式光伏接入直流配电系统综合效益分析方法及装置
CN117669832A (zh) 降损成效评价方法及装置
Wang et al. Multi‐objective expansion planning of park‐level integrated energy system considering the volatility trend of CETP
CN117526335A (zh) 考虑多元灵活性资源协同的电力系统源网荷储规划方法
CN112668850A (zh) 一种基于dea算法的配电网台区投入产出分析方法
CN116823008A (zh) 一种园区能源利用效率评估方法、系统、设备和存储介质
CN115776138A (zh) 一种考虑多维不确定性和能量管理策略的微电网容量规划方法及装置
CN115758763A (zh) 一种计及源荷不确定性的多能流系统优化配置方法及系统
CN115204944A (zh) 一种计及全寿命周期的储能最优峰谷价差测算方法及装置
Shiyun et al. Data analysis and cloud computing of power grid infrastructure projects under the background of informatization
US20240097444A1 (en) Hybrid system and method for distributed virtual power plants integrated intelligent net zero
CN114358856A (zh) 一种涉及海上风电的大型清洁能源基地商业模式
CN117117924B (zh) 一种考虑市场出清收益的储能容量配置方法、装置及设备
CN117314239A (zh) 一种电网发展薄弱环节的优化方法、装置、设备及介质
CN113435686B (zh) 蓄热式电采暖系统评价方法及装置
CN117993599A (zh) 一种基于数据融合的建筑绿色节能改造评价方法及设备
Guo et al. Short-term wind power prediction based on data decomposition and fusion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878831

Country of ref document: EP

Kind code of ref document: A1