WO2024082792A1 - 双模融合通信的配置方法、配置装置及双模融合通信系统 - Google Patents
双模融合通信的配置方法、配置装置及双模融合通信系统 Download PDFInfo
- Publication number
- WO2024082792A1 WO2024082792A1 PCT/CN2023/112891 CN2023112891W WO2024082792A1 WO 2024082792 A1 WO2024082792 A1 WO 2024082792A1 CN 2023112891 W CN2023112891 W CN 2023112891W WO 2024082792 A1 WO2024082792 A1 WO 2024082792A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency band
- working
- frequency
- communication
- clock
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 336
- 238000000034 method Methods 0.000 title claims abstract description 83
- 230000004927 fusion Effects 0.000 title claims abstract description 55
- 230000005540 biological transmission Effects 0.000 claims abstract description 25
- 238000012545 processing Methods 0.000 claims abstract description 12
- 239000003990 capacitor Substances 0.000 claims description 13
- 238000001914 filtration Methods 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 11
- 230000001629 suppression Effects 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 11
- 238000013461 design Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 230000005855 radiation Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/382—Monitoring; Testing of propagation channels for resource allocation, admission control or handover
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/345—Interference values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present application relates to the field of communication technology, and in particular to a configuration method and device for dual-mode fusion communication, and a dual-mode fusion communication system.
- the new power system requires the power grid to have the ability of "source-load interaction", and there is a strong demand for IoT communication applications in all links of "source-grid-load”.
- the communication access for the application of intelligent power distribution and utilization in the new power system has the characteristics of complex application environment, diverse business carrying requirements, high transmission reliability requirements, wide terminal distribution area, many measurement and monitoring points, and easy to be affected by distribution network expansion and urban construction. Any single communication method (power line high-speed power line communication, micro-power wireless communication, etc.) cannot fully meet the requirements of the power distribution and utilization communication system.
- the current mainstream solution is to build a local communication network through a dual-mode communication method that combines power line carrier and micro-power wireless communication.
- Micro-power wireless communication technology and power line high-speed power line communication technology complement each other, which effectively solves the reading blind spots and communication island phenomena of pure high-speed power line communication or pure micro-power wireless communication, and ensures the real-time, stability and reliability of data collection.
- the networking mode of the dual-mode communication system is power line carrier + micro-power wireless.
- power line carrier and micro-power wireless use dual channels for networking at the same time, and the power line carrier and micro-power wireless can be used in parallel to synchronize meter reading. And the weight is allocated through the priority strategy.
- the channel with a low node level, high communication success rate and low delay will be used first for meter reading.
- micro-power wireless has a certain complementary effect on power line carrier technology, due to the low transmission rate of the existing micro-power wireless, it cannot cooperate with the power line carrier communication network to achieve the dual-transmission and dual-reception function of rate matching, and the communication mode cannot be switched through intelligent routing channel selection. In most cases, the communication nodes in the network only work in one mode at the same time, and different manufacturers cannot be interconnected in the original mode. The application of the product has great limitations and cannot be applied on a large scale.
- the existing dual-mode dual-channel fusion technology has two main shortcomings: on the one hand, although power line carrier and micro-power wireless can work at the same time, only one mode is used for communication at the same time, and it is impossible to coordinate with the power line carrier communication network to achieve the dual-transmit and dual-receive function of rate matching, and it is impossible to switch the communication mode through intelligent routing channel selection; on the other hand, the existing power line carrier communication circuit has a great impact on the transmission performance of the micro-power wireless channel when it is working, resulting in reduced micro-power wireless receiving sensitivity, shortened communication distance, and low transmission efficiency.
- the purpose of the embodiments of the present application is to provide a dual-mode fusion communication configuration method, a configuration device and a dual-mode fusion communication system to solve the problem of low dual-mode communication transmission efficiency in the prior art.
- the first aspect of the present application provides a configuration method of dual-mode fusion communication, the dual-mode fusion communication including power line carrier communication and micro-power wireless communication, the configuration method comprising:
- the second frequency band number of the second working frequency band is configured according to the first frequency band number of the first working frequency band, so that the higher harmonic frequencies of the first working clock of the power line carrier communication and the second working clock of the micropower wireless communication do not overlap with the first working frequency band and the second working frequency band.
- configuring the second frequency band number of the second working frequency band according to the first frequency band number of the first working frequency band so that the higher harmonic frequency points of the first working clock of the power line carrier communication and the second working clock of the micropower wireless communication do not overlap with the first working frequency band and the second working frequency band includes:
- the frequency band number configuration table including a combined frequency band number composed of the first frequency band number and the second frequency band number and a first working clock and a second working clock corresponding to the combined frequency band number;
- the second frequency band number in the arbitrary combination of frequency band numbers is determined as a candidate second frequency band number
- Any candidate second frequency band number among the candidate second frequency band numbers is configured as the second frequency band number.
- the configuration method further includes:
- establishing a frequency band number configuration table includes:
- a first working clock and a second working clock corresponding to each combined frequency band number among a plurality of combined frequency band numbers are determined.
- determining the first working clock and the second working clock corresponding to each combined frequency band number in the plurality of combined frequency band numbers includes:
- the second working clock is determined according to the second frequency multiplication coefficient, the second frequency division coefficient and the second clock frequency.
- f wk-PLC is the first working clock
- P PLC is the first frequency multiplication coefficient
- Q PLC is the first frequency division coefficient
- fosc-PLC is the first clock frequency
- f wk-RF is the second working clock
- P RF is the second frequency multiplication coefficient
- Q RF is the second frequency division coefficient
- fosc-RF is the second clock frequency
- the configuration method further includes:
- the primary proxy site is selected to send data.
- the configuration method further includes:
- the alternative proxy site is selected to send data.
- the neighboring sites of the current site are rated to obtain candidate proxy sites, including:
- a preset number of neighbor nodes are selected as candidate proxy sites.
- the configuration method further includes:
- physically isolating power line carrier communication and micropower wireless communication includes:
- a power supply interference suppression circuit is provided in the transceiver circuit of the power line carrier communication, the transceiver circuit of the micro-power wireless communication and the carrier power amplifier.
- physically isolating power line carrier communication and micropower wireless communication includes:
- a digital baseband and a slot are arranged between the power line carrier communication chip and the micro-power wireless communication chip to spatially isolate the power line carrier communication chip and the micro-power wireless communication chip.
- physically isolating power line carrier communication and micropower wireless communication includes:
- micro-power wireless antenna the micro-power wireless filtering communication circuit and the high-speed carrier power line coupling loop are arranged to be spatially separated, wherein the micro-power wireless antenna is a spring antenna.
- physically isolating power line carrier communication and micropower wireless communication includes:
- the switching power supply circuit and the micro-power wireless communication transceiver circuit are arranged on different planes.
- the configuration method further includes:
- optimizing the peripheral operating frequency and power pin filtering parameters of the central processing unit includes:
- the capacitor is a capacitor of 100nF and/or 100pF.
- the configuration method further includes:
- a bandpass filter is provided on the transmission circuit of the power line carrier communication.
- the bandpass filter is a sixth-order bandpass filter
- the sixth-order bandpass filter includes a third-order high-pass filter and a third-order low-pass filter.
- the inductance of the third-order high-pass filter is 16.93uH
- the capacitance of the third-order high-pass filter is 3.38nF
- the inductance of the third-order low-pass filter is 15.6nH
- the capacitance of the third-order low-pass filter is 12.5pF.
- a second aspect of the present application provides a configuration device for dual-mode fusion communication, the dual-mode fusion communication including power line carrier communication and micro-power wireless communication, the configuration device comprising:
- a determination module configured to determine a first operating frequency band for power line carrier communication and a second operating frequency band for micro-power wireless communication
- the configuration module is configured to configure the second frequency band number of the second working frequency band according to the first frequency band number of the first working frequency band, so that the high-order harmonic frequency points of the first working clock of the power line carrier communication and the second working clock of the micro-power wireless communication do not overlap with the first working frequency band and the second working frequency band.
- the configuration module is further configured to:
- the frequency band number configuration table including a combined frequency band number composed of the first frequency band number and the second frequency band number and a first working clock and a second working clock corresponding to the combined frequency band number;
- the second frequency band number in the arbitrary combination of frequency band numbers is determined as a candidate second frequency band number
- Any candidate second frequency band number among the candidate second frequency band numbers is configured as the second frequency band number.
- the configuration device further includes:
- the establishing module is configured to establish a frequency band number configuration table.
- the establishment module is further configured to:
- a first working clock and a second working clock corresponding to each combined frequency band number among a plurality of combined frequency band numbers are determined.
- the establishment module is further configured to:
- the second working clock is determined according to the second frequency multiplication coefficient, the second frequency division coefficient and the second clock frequency.
- the configuration device further includes:
- a rating module configured to rate neighboring sites of the current site to obtain candidate proxy sites
- a first judgment module is configured to judge whether the communication success rate of the primary proxy site corresponding to the current site is greater than a first threshold
- a second judgment module is configured to judge whether the delay of the primary proxy site is less than a second threshold when the communication success rate of the primary proxy site is greater than the first threshold;
- the first selection module is configured to select the primary proxy site to send data when the delay of the primary proxy site is less than a second threshold.
- the configuration device further includes:
- the second selection module is configured to select an alternative proxy site to send data when the communication success rate of the primary proxy site is less than or equal to the first threshold and/or the delay of the primary proxy site is greater than or equal to the second threshold.
- the rating module is further configured to:
- a preset number of neighbor nodes are selected as candidate proxy sites.
- a third aspect of the present application provides a dual-mode fusion communication system, which is configured using the above-mentioned dual-mode fusion communication configuration method.
- the working frequency band of the dual-mode communication is configured, and the second frequency band number of the second working frequency band is configured according to the first frequency band number of the first working frequency band, so that the high-order harmonic frequency points of the first working clock of the power line carrier communication and the second working clock of the micro-power wireless communication do not overlap with the first working frequency band and the second working frequency band, so that the working frequencies of the power line carrier communication and the micro-power wireless communication do not overlap.
- the influence of the multiplication noise generated by the superposition of harmonics can be reduced, and the influence of the noise generated when the central processor is working on the performance of the dual-mode fusion communication unit can be reduced, thereby improving the transmission efficiency of the dual-mode fusion communication.
- FIG1 schematically shows a flow chart of a configuration method for dual-mode converged communication according to an embodiment of the present application
- FIG2 schematically shows a flow chart of a configuration method for dual-mode converged communication according to another embodiment of the present application
- FIG3 schematically shows a structural diagram of a dual-mode fusion communication physical channel according to an embodiment of the present application
- FIG4 schematically shows a circuit structure diagram of a dual-mode fusion communication according to an embodiment of the present application
- FIG5 schematically shows a structural diagram of a dual-mode chip layout according to an embodiment of the present application
- FIG6 schematically shows a structural diagram of a dual-mode fusion communication unit layout according to an embodiment of the present application.
- FIG1 schematically shows a flow chart of a configuration method of dual-mode fusion communication according to an embodiment of the present application.
- a configuration method of dual-mode fusion communication is provided, wherein the dual-mode fusion communication includes power line carrier communication and micro-power wireless communication.
- the configuration method may include the following steps:
- Step 102 determine a first operating frequency band for power line carrier communication and a second operating frequency band for micro-power wireless communication;
- Step 104 configure the second frequency band number of the second working frequency band according to the first frequency band number of the first working frequency band, so that the higher harmonic frequencies of the first working clock of the power line carrier communication and the second working clock of the micropower wireless communication do not overlap with the first working frequency band and the second working frequency band.
- dual-mode communication i.e., dual-mode fusion dual-channel communication
- the dual channels may include a transceiver channel of power line carrier communication and a transceiver channel of micro-power wireless communication.
- the two are independently controlled and may be sent simultaneously or not simultaneously. When the receivers of the two are turned on at the same time, the signal sent by any channel may be received and demodulated.
- the existing dual-mode communication has only one mode for communication at the same time, and cannot cooperate with the power line carrier communication network to realize the dual-transmit and dual-receive function of rate matching, and cannot switch the communication mode through intelligent routing channel selection.
- the existing power line carrier communication circuit has a great influence on the channel transmission performance of micro-power wireless communication when working, which will lead to a decrease in the receiving sensitivity of micro-power wireless communication, a shortened communication distance and a low transmission efficiency.
- the embodiment of the present application proposes an interference suppression design method for dual-mode fusion communication, which uses frequency avoidance to configure the working clocks of power line carrier communication and micro-power wireless communication respectively, so that the two are respectively in different clock domains, and the influence of the high-order harmonics of the power line carrier communication circuit on the receiving sensitivity of micro-power wireless communication is reduced.
- the power line carrier communication can be high-speed power line carrier communication (High-speed Powerline Communication, HPLC)
- the micro-power wireless communication can be high-speed micro-power wireless communication (High-speed Radio Frequency, HRF).
- the processor can first determine the working frequency bands of power line carrier communication and micro-power wireless communication, wherein the working frequency band of power line carrier communication is the first working frequency band, and the working frequency band of micro-power wireless communication is the second working frequency band.
- the first working frequency band may include multiple first frequency band numbers
- the second working frequency band may include multiple second frequency band numbers
- each first frequency band number and each second frequency band number may be combined to form a combined frequency band number.
- the first working frequency band includes 4 first frequency band numbers, namely, I 0 , I 1 , I 2 , and I 3
- the second working frequency band number includes 3 second frequency band numbers, namely, J 0 , J 1 , and J 2 , so that 12 combined frequency band numbers can be formed.
- Each combined frequency band number has a corresponding first working clock and a second working clock
- the first working clock is the working clock of the power line carrier communication
- the second working clock is the working clock of the micro-power wireless communication.
- the processor can configure a second frequency band number according to the acquired first frequency band number, so that the first working clock and the second working clock do not overlap with the first working frequency band and the second working frequency band, so that the influence of the multiplication noise generated by the superposition of harmonics can be reduced, and the influence of the noise generated when the central processing unit (CPU) works on the performance of the dual-mode fusion communication unit can be reduced, thereby improving the transmission efficiency of the dual-mode fusion communication.
- CPU central processing unit
- the processor may first determine the first frequency band number i of the power line carrier communication, the corresponding transmitting frequency band is [f p1-i ,f p2-j ], and the corresponding 1st to Ath order harmonics are [f p1-i ,f p2-j ], ..., [A ⁇ f p1-i ,A ⁇ f p2-j ], respectively, and then determine the available second frequency band number j of the micro-power wireless communication according to the second working clock corresponding to the combined frequency band number, and the corresponding transmitting frequency band is [f w1-i ,f w2-j ], so that the 1st to Ath order harmonics of the first working clock and the second working clock do not fall within the first working frequency band [f p1-i ,f p2-j ] and the second working frequency band [f w1-i ,f w2-j ].
- the working frequency band of the dual-mode fusion communication is configured, and the second frequency band number of the second working frequency band is configured according to the first frequency band number of the first working frequency band, so that the high-order harmonic frequency points of the first working clock of the power line carrier communication and the second working clock of the micro-power wireless communication do not overlap with the first working frequency band and the second working frequency band, so that the working frequencies of the power line carrier communication and the micro-power wireless communication do not overlap.
- the influence of the multiplication noise generated by the superposition of harmonics can be reduced, and the influence of the noise generated when the central processor is working on the performance of the dual-mode fusion communication unit can be reduced, thereby improving the transmission efficiency of the dual-mode fusion communication.
- the configuration method may further include:
- the processor can arrange and combine the existing frequency bands according to the first working frequency band of the existing power line carrier communication and the second working frequency band of the micro-power wireless communication to establish a frequency band number configuration table, and the frequency band number configuration table may include a combined frequency band number composed of the first frequency band number and the second frequency band number, and a first working clock and a second working clock corresponding to the combined frequency band number.
- Establishing the frequency band number configuration table can enable the processor to configure interference suppression according to the dual-channel working clock calculated and generated in advance, so as to quickly match the optional second working frequency band number according to the frequency band number of the first working frequency band, so that the power line carrier communication and the micro-power wireless communication can perform frequency avoidance.
- establishing a frequency band number configuration table may include:
- a first working clock and a second working clock corresponding to each combined frequency band number among a plurality of combined frequency band numbers are determined.
- the first working frequency band includes 4 first frequency band numbers, namely, I 0 , I 1 , I 2 and I 3
- the second working frequency band number includes 3 second frequency band numbers, namely, J 0 , J 1 and J 2 , so that 12 combined frequency band numbers can be formed.
- the first frequency band number is 1 and the second frequency band number is 2
- the combined frequency band number is I 1 J 2
- the corresponding first working clocks are f wk-PLC6 and f wk-RF6 .
- determining the first working clock and the second working clock corresponding to each combined frequency band number in the multiple combined frequency band numbers may include:
- the second working clock is determined according to the second frequency multiplication coefficient, the second frequency division coefficient and the second clock frequency.
- the processor may first obtain the clock frequency of the dual-mode fusion communication, wherein the clock frequency of the power line carrier communication is the first clock frequency f osc-PLC , and the clock frequency of the micro-power wireless communication is the second clock frequency f osc-RF .
- the first frequency multiplication coefficient P PLC , the first frequency division coefficient Q PLC , the second frequency multiplication coefficient P RF and the second frequency division coefficient Q RF of each combined frequency band number, wherein the first frequency multiplication coefficient P PLC and the first frequency division coefficient Q PLC are the frequency multiplication coefficient and the frequency division coefficient of the power line carrier communication, and the second frequency multiplication coefficient P RF and the second frequency division coefficient Q RF are the frequency multiplication coefficient and the frequency division coefficient of the micro-power wireless communication.
- the first working clock f wk-PLC is obtained by multiplying and dividing the first clock frequency f osc-PLC
- the second working clock f wk-RF is obtained by multiplying and dividing the second clock frequency f osc-RF .
- f wk-PLC is the first working clock
- P PLC is the first frequency multiplication coefficient
- Q PLC is the first frequency division coefficient
- fosc-PLC is the first clock frequency
- f wk-RF is the second working clock
- P RF is the second frequency multiplication coefficient
- Q RF is the second frequency division coefficient
- fosc-RF is the second clock frequency
- the working frequency bands corresponding to the first frequency band number and the second frequency band number in the frequency band number configuration table should make the 1st to Bth harmonics of the first working frequency band corresponding to each combined frequency band number not overlap or overlap at least with the second working frequency band, so as to prevent the harmonics of the signal of the power line carrier communication from interfering with the micro-power wireless communication.
- the first frequency band number is 1, the corresponding first working frequency band is 2MHz-6MHz; the second frequency band number is 2, the corresponding second working frequency band is 480MHz-490MHz, the first clock frequency f osc-PLC is selected as 25MHz, the second clock frequency f osc-RF is selected as 27MHz, the high-order harmonic frequency points of 25MHz are 475MHz and 500MHz in the range of 470MHz-510MHz, and the high-order harmonic frequency points of 27MHz are 486MHz in the range of 470MHz-510MHz, and the two have no overlapping frequencies, thus avoiding the influence of the multiplication noise caused by the superposition of harmonics.
- configuring the second frequency band number of the second working frequency band according to the first frequency band number of the first working frequency band so that the higher harmonic frequency points of the first working clock of the power line carrier communication and the second working clock of the micropower wireless communication do not overlap with the first working frequency band and the second working frequency band may include:
- the frequency band number configuration table including a combined frequency band number composed of the first frequency band number and the second frequency band number and a first working clock and a second working clock corresponding to the combined frequency band number;
- the second frequency band number in the arbitrary combination of frequency band numbers is determined as a candidate second frequency band number
- Any candidate second frequency band number among the candidate second frequency band numbers is configured as the second frequency band number.
- a frequency band number configuration table can be established in advance, and the frequency band number configuration table may include a combined frequency band number composed of a first frequency band number and a second frequency band number and a first working clock and a second working clock corresponding to the combined frequency band number.
- the processor can search the frequency band number configuration table according to the acquired first frequency band number, and for each combined frequency band number, determine in turn whether the corresponding higher harmonic frequency points of the first working clock and the second working clock fall into the first working frequency band and the second working frequency band.
- the second frequency band number in the combined frequency band number is determined as the candidate second frequency band number.
- FIG2 schematically shows a flow chart of a configuration method for dual-mode converged communication according to another embodiment of the present application.
- the configuration method may also include:
- Step 202 Rating neighboring sites of the current site to obtain candidate proxy sites
- Step 204 determine whether the communication success rate of the primary proxy site corresponding to the current site is greater than a first threshold
- Step 206 When the communication success rate of the primary proxy site is greater than the first threshold, determine whether the delay of the primary proxy site is less than the second threshold;
- Step 208 When the delay of the primary proxy site is less than the second threshold, the primary proxy site is selected to send data;
- Step 210 When the communication success rate of the primary proxy site is less than or equal to a first threshold and/or the delay of the primary proxy site is greater than or equal to a second threshold, select an alternative proxy site to send data.
- the dual-mode chip should be based on the principle of maximizing the rational use of resources, and the design should adopt a mechanism that power line carrier communication and micro-power wireless communication can receive and transmit at the same time.
- the power line carrier and micro-power wireless communication physical layers are used for efficient data transmission.
- Figure 3 schematically shows a structural diagram of the physical channel of dual-mode fusion communication according to an embodiment of the present application.
- the transmitting end of the power line carrier communication sends and couples the signal to the power line through a high-speed power line analog circuit, and the receiving end obtains the data of the transmitting end through an analog circuit and a digital baseband;
- the transmitting end of the micro-power wireless communication sends the signal through a radio frequency circuit and radiates it into space through an antenna, and the receiving end obtains the data of the transmitting end through a radio frequency circuit and a digital baseband.
- the transceivers and communication media of high-speed power line communication and micro-power wireless communication are independent of each other, and the spatial interference between the two is small.
- the dual-mode fusion communication unit When the dual-mode fusion communication unit is networked, including the central coordinator (CCO) and all stations (STA) connected to the network, they need to periodically send power line carrier and micro-power wireless discovery list messages according to the discovery list period parameters.
- the discovery list message carries the network attributes of the current site and receives the downlink reception rate, signal strength, signal-to-noise ratio and other information of the neighboring nodes.
- the station obtains the two-way communication rate, signal strength, signal-to-noise ratio and other information with the neighboring nodes, so that the station can select a more appropriate relay agent or backup multipath.
- the STA uplink agent can select multiple sites as backups.
- the backup agent sites are selected in turn to send Send uplink data.
- the proxy quality of the neighboring sites can be rated first, and then the rating scores of the neighboring sites can be sorted, and a preset number of neighboring sites before the rating can be selected as candidate proxy sites. For example, the top 3 sites can be selected as candidate proxy sites.
- the embodiment of the present application optimizes the physical layer circuits of high-speed power line carrier communication and micro-power wireless communication from the perspective of chip design.
- a mechanism for simultaneous transmission and reception of power line carrier and micro-power wireless communication is adopted, and at the sending end, multiple strategies such as path backup, path optimization, and load balancing are used to utilize the power line carrier communication and micro-power wireless communication physical layer for efficient data transmission, thereby improving data transmission efficiency.
- the judgment of the embodiment of the present application can be to first judge the communication success rate with the primary proxy site and then judge the communication response delay; or to first judge the communication response delay and then judge the communication success rate with the primary proxy site.
- the embodiment of the present application takes the example of first judging the communication success rate of the primary proxy site and then judging the communication response delay, which does not mean that the judgment can only be performed in this way.
- step 202 rating neighboring sites of the current site to obtain candidate proxy sites, may include:
- a preset number of neighbor nodes are selected as candidate proxy sites.
- the communication mode of the current site, the uplink communication success rate, signal strength, signal-to-noise ratio, level, and the number of data frames sent can be used as measurement indicators to rate the proxy quality of neighboring sites.
- the weighted sum of each data is the rating score of the site, and then the rating scores of neighboring sites are sorted from high to low in the same level, and then a preset number of neighboring sites before the rating are selected as candidate proxy sites. For example, the top 3 sites can be selected as candidate proxy sites.
- the embodiment of the present application optimizes the physical layer circuits of high-speed power line carrier communication and micro-power wireless communication from the perspective of chip design. Based on the principle of maximizing the rational use of resources, a mechanism that can simultaneously transmit and receive power line carrier and micro-power wireless communication is adopted. At the transmitting end, multiple strategies such as path backup, path optimization, and load balancing are used to use the power line carrier communication and micro-power wireless communication physical layer for efficient data transmission, thereby improving the data transmission efficiency.
- the configuration method may further include:
- the spatial radiation interference can be reduced by placing power line carrier communication and micro-power wireless communication in different spatial planes from the perspectives of the physical layer, chip design layout, and communication unit circuit layout design.
- a power supply interference suppression circuit can be set for the transceiver circuit of power line carrier communication, the transceiver circuit of micro-power wireless communication, and the carrier power amplifier;
- a digital baseband and a slot can also be set between the chip of power line carrier communication and the chip of micro-power wireless communication to spatially isolate the chip of power line carrier communication and the chip of micro-power wireless communication;
- a micro-power wireless antenna, a micro-power wireless filter communication circuit, and a high-speed carrier power line coupling loop can also be set to be spatially separated, and the switching power supply circuit and the transceiver circuit of micro-power wireless communication can be set on different planes.
- physically isolating power line carrier communication and micro-power wireless communication may include:
- a power supply interference suppression circuit is provided in the transceiver circuit of the power line carrier communication, the transceiver circuit of the micro-power wireless communication and the carrier power amplifier.
- FIG4 schematically shows a circuit structure diagram of a dual-mode fusion communication according to an embodiment of the present application.
- the power supply of the dual-mode fusion communication device comes from the external 12V power supply of the terminal, wherein the digital part is powered by the external 12V through the internal power converter to output 3.3V, and the carrier part is powered by the external 12V through the internal power converter to output 3.3V.
- the power supply circuit is powered by 12V. To prevent the interference signal from the external power supply from coupling into the dual-mode communication chip and affecting the wireless receiving sensitivity.
- interference suppression circuits it is necessary to add power supply interference suppression circuits to the 3.3V power supply parts of the wireless transceiver circuit (and the transceiver circuit of micro-power wireless communication) and the carrier transceiver circuit (that is, the transceiver circuit of power line carrier communication), use decoupling capacitors and magnetic beads to suppress interference, and divide the two power planes to prevent the power supply of the wireless transceiver circuit and the carrier transceiver circuit from coupling high-frequency interference.
- interference suppression circuits are also added to the power supply and output side of the carrier power amplifier to prevent the high-order harmonics generated when the power amplifier outputs high-power signals from being fed back to the 12V power supply network, thereby affecting the receiving sensitivity of the wireless signal.
- physically isolating power line carrier communication and micro-power wireless communication may include:
- a digital baseband and a slot are arranged between the power line carrier communication chip and the micro-power wireless communication chip to spatially isolate the power line carrier communication chip and the micro-power wireless communication chip.
- FIG5 schematically shows a structural diagram of a dual-mode chip layout according to an embodiment of the present application.
- two analog front ends susceptible to interference namely power line carrier communication and micro-power wireless communication
- the micro-power wireless HRF analog front end i.e., the chip for micro-power wireless communication
- the power line carrier HPLC analog front end i.e., the chip for power line carrier
- digital baseband and trenching technology are used in the middle for spatial isolation.
- the peripheral part can be placed in the lower right foot space away from the micro-power wireless analog front end, and the clock circuit and the power supply circuit can be placed in the upper left corner.
- physically isolating power line carrier communication and micro-power wireless communication may include:
- micro-power wireless antenna the micro-power wireless filtering communication circuit and the high-speed carrier power line coupling loop are arranged to be spatially separated, wherein the micro-power wireless antenna is a spring antenna.
- FIG6 schematically shows a structural diagram of a dual-mode fusion communication unit layout according to an embodiment of the present application.
- the spatial distribution of the dual-mode fusion communication unit can be used to separate the micro-power wireless antenna, the micro-power wireless filtering circuit, and the high-speed power line coupling loop in physical space.
- TX stands for Receive
- TX stands for Transmit
- RXN and RXP are differential input terminals
- TXN and TXP are differential output terminals
- SPI is the abbreviation of Serial Peripheral Interface
- SPI Flash is a flash storage device operated through a serial interface.
- ANT is a type of wireless transmission protocol. In order to make it easier for the antenna to radiate and absorb the noise interference generated at the board level.
- the micro-power wireless part of the communication unit in the embodiment of the present application can use a spring antenna to receive and send signals, so that it is easier to radiate and absorb the noise interference generated at the board level.
- physically isolating power line carrier communication and micro-power wireless communication may include:
- the switching power supply circuit and the micro-power wireless communication transceiver circuit are arranged on different planes.
- the switching power supply circuit itself is a strong interference source.
- the switching power supply pulse width modulation (PWM) generates voltage fluctuations and brings high-frequency switching noise. Therefore, the switching power supply circuit and the micro-power wireless communication transceiver circuit can be set on two planes to reduce interference at the spatial level.
- the switching power supply can support the modulation method of pulse frequency modulation (PWM).
- PWM pulse frequency modulation
- the PFM modulation method can reduce the noise impact through frequency modulation.
- the switching power supply can also be effectively electromagnetically shielded and filtered. In terms of electromagnetics, it is shielded with a shielding box. In terms of filtering, it is filtered through a two-stage resonant LC circuit at the output end of the switching power supply to reduce signal radiation and interference.
- the configuration method may further include:
- optimizing the peripheral operating frequency and power pin filter parameters of the central processing unit may include:
- the CPU peripheral operating frequency and power pin filtering parameters can also be optimized to reduce out-of-band spurious interference.
- the CPU peripheral operates at a high frequency, and the output pin of the CPU peripheral is connected in series with a resistor to achieve impedance matching to reduce the external radiation interference of the output pin.
- the power pins of the CPU need to be specially processed to reduce the output of noise.
- the CPU power pins are connected in parallel with pF and nF level MLCC capacitors to filter out the noise generated by low and high frequencies.
- the capacitors can be 100nF and/or 100pF capacitors.
- the decoupling capacitor calculation formula can be as follows.
- L itself is 1nH
- the operating frequency of micro-power wireless communication is 470MHz-510MHz, taking 500MHz frequency as an example.
- L 1nH
- the high-speed power line carrier provides a new operating frequency of 0.7MHz-12MHz, which is calculated based on a 5MHz frequency.
- the configuration method may further include:
- a bandpass filter is provided on the transmission circuit of the power line carrier communication.
- a bandpass filter can be set on the transmission loop of the power line carrier communication, and the filter parameters of the transmission loop of the power line carrier communication can be optimized to reduce the out-of-band spurious interference of high-speed power line carrier communication.
- the output signal of the high-speed power line carrier digital-to-analog converter DAC needs to add an external power amplifier circuit to amplify the signal before output. Although the signal strength is improved, it will also bring about the amplification of out-of-band noise. It is necessary to add a 470MHz-510MHz bandpass filter circuit to the output of the power amplifier circuit to reduce the impact of out-of-band noise generated by high-speed power line carrier transmission on the sensitivity of micro-power wireless reception.
- the bandpass filter may be a sixth-order bandpass filter
- the sixth-order bandpass filter may include a third-order high-pass filter and a third-order low-pass filter.
- the inductance of the third-order high-pass filter may be 16.93uH
- the capacitance of the third-order high-pass filter may be 3.38nF
- the inductance of the third-order low-pass filter may be 15.6nH
- the capacitance of the third-order low-pass filter may be 12.5pF.
- a third-order Butterworth type low-pass filter with a cut-off frequency of 510 MHz is designed as follows.
- Step 1 Calculate the ratio M of the cutoff frequency of the filter to be designed and the cutoff frequency of the reference filter.
- Step 2 Divide all component values of the reference filter by M to obtain component parameter values when the cutoff frequency has been converted to the cutoff frequency of the filter to be designed, 510 MHz.
- Step 3 Calculate the ratio K of the characteristic impedance of the filter to be designed and the characteristic impedance of the reference filter.
- Step 4 For the filter calculated in step 2, multiply all inductance component values by K and divide all capacitance component values by K. In this way, the parameter values of the third-order fixed-K type LPF filter with a design characteristic impedance of 50 ⁇ and a cutoff frequency deviation of 510MHz are obtained.
- the above calculation formula shows that the inductance of the third-order low-pass filter can be selected as 15.6nH, and the capacitance can be selected as 12.5pF. From the simulation results, it can be obtained that by adding a low-pass filter, the output of useful signals below 510MHz is guaranteed, and signals at other frequencies are suppressed.
- a third-order Butterworth high-pass filter with a cut-off frequency of 470MHz is designed as follows.
- Step 1 Calculate the ratio M of the cutoff frequency of the filter to be designed and the cutoff frequency of the reference filter.
- Step 2 Divide all component values of the reference filter by M to obtain component parameter values when the cutoff frequency has been converted to the cutoff frequency of the filter to be designed, 470 MHz.
- Step 3 Calculate the ratio K of the characteristic impedance of the filter to be designed and the characteristic impedance of the reference filter.
- Step 4 For the filter calculated in step 2, multiply all inductance component values by K and divide all capacitance component values by K. In this way, the parameter values of a third-order fixed-K type LPF filter with a design characteristic impedance of 50 ⁇ and a cutoff frequency deviation of 470MHz are obtained.
- the above calculation formula shows that the inductance of the third-order high-pass filter can be selected as 16.93uH, and the capacitance can be selected as 3.38nF. From the simulation results, by adding a low-pass filter, the output of useful signals above 470MHz is guaranteed, and other frequency signals are suppressed.
- the embodiments of the present application place high-speed power line carrier communication and micro-power wireless communication in different spatial planes from the perspectives of the physical layer, chip design layout, and communication unit circuit layout to reduce spatial radiation interference; shield and filter the switching power supply; design filters for the transmitting circuit to perform out-of-band suppression and reduce dual-channel interference.
- the configuration method of the dual-mode fusion communication of the embodiments of the present application can be any one of the configuration methods in the above embodiments, or a combination of multiple configuration methods to improve the success rate of dual-mode communication.
- the embodiment of the present application also provides a configuration device for dual-mode fusion communication, where the dual-mode fusion communication includes power line carrier communication and micro-power wireless communication, and the configuration device includes:
- a determination module configured to determine a first operating frequency band for power line carrier communication and a second operating frequency band for micro-power wireless communication
- the configuration module is configured to configure the second frequency band number of the second working frequency band according to the first frequency band number of the first working frequency band, so that the high-order harmonic frequency points of the first working clock of the power line carrier communication and the second working clock of the micro-power wireless communication do not overlap with the first working frequency band and the second working frequency band combine.
- the configuration module is further configured to:
- the frequency band number configuration table including a combined frequency band number composed of the first frequency band number and the second frequency band number and a first working clock and a second working clock corresponding to the combined frequency band number;
- the second frequency band number in the arbitrary combination of frequency band numbers is determined as a candidate second frequency band number
- Any candidate second frequency band number among the candidate second frequency band numbers is configured as the second frequency band number.
- the configuration device further includes:
- the establishing module is configured to establish a frequency band number configuration table.
- the establishment module is further configured to:
- a first working clock and a second working clock corresponding to each combined frequency band number among a plurality of combined frequency band numbers are determined.
- the establishment module is further configured to:
- the second working clock is determined according to the second frequency multiplication coefficient, the second frequency division coefficient and the second clock frequency.
- the configuration device further includes:
- a rating module configured to rate neighboring sites of the current site to obtain candidate proxy sites
- a first judgment module is configured to judge whether the communication success rate of the primary proxy site corresponding to the current site is greater than a first threshold
- a second judgment module is configured to judge whether the delay of the primary proxy site is less than a second threshold when the communication success rate of the primary proxy site is greater than the first threshold;
- the first selection module is configured to select the primary proxy site to send data when the delay of the primary proxy site is less than a second threshold.
- the configuration device further includes:
- the second selection module is configured to select an alternative proxy site to send data when the communication success rate of the primary proxy site is less than or equal to the first threshold and/or the delay of the primary proxy site is greater than or equal to the second threshold.
- the rating module is further configured to:
- a preset number of neighbor nodes are selected as candidate proxy sites.
- the configuration device of the dual-mode fusion communication includes: a processor, wherein the processor is used to execute the existence storage
- the above-mentioned program modules of the device include: a determination module, a configuration module, a creation module, a rating module, a first judgment module, a second judgment module, a first selection module and a second selection module.
- the above-mentioned dual-mode fusion communication configuration device implements the corresponding processes in each method of the embodiment of the present application when executing the above-mentioned method. For the sake of brevity, it will not be repeated here.
- An embodiment of the present application also provides a dual-mode fusion communication system, which is configured using the above-mentioned dual-mode fusion communication configuration method.
- the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
- a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
- These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
- a computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
- processors CPU
- input/output interfaces network interfaces
- memory volatile and non-volatile memory
- Memory may include non-permanent storage in a computer-readable medium, random access memory (RAM) and/or non-volatile memory in the form of read-only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
- RAM random access memory
- ROM read-only memory
- flash RAM flash memory
- Computer readable media include permanent and non-permanent, removable and non-removable media that can be implemented by any method or technology to store information.
- Information can be computer readable instructions, data structures, program modules or other data.
- Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disk read-only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by a computing device.
- computer readable media does not include temporary computer readable media (transitory media), such as modulated data signals and carrier waves.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Transceivers (AREA)
Abstract
本申请公开了一种双模融合通信的配置方法、配置装置及双模融合通信系统。该配置方法包括:确定电力线载波通信的第一工作频段和微功率无线通信的第二工作频段;根据第一工作频段的第一频段号配置第二工作频段的第二频段号,以使电力线载波通信的第一工作时钟和微功率无线通信的第二工作时钟的高次谐波频点与第一工作频段和第二工作频段不重合。这样,可以减小谐波叠加产生的倍增噪声的影响,并且可以减少中央处理器工作时产生的噪声对双模融合通信单元性能的影响,从而提高双模融合通信的传输效率。
Description
本申请涉及通信技术领域,具体地涉及一种双模融合通信的配置方法、配置装置及双模融合通信系统。
新型电力系统要求电网具备“源荷互动”的能力,“源网荷”各环节物联通信应用需求旺盛。面向新型电力系统智能配用电环节应用的通信接入具有应用环境复杂、业务承载需求多样、传输可靠性要求高、终端分布区域广、测量监控点多、易受配电网扩容和城建影响等特点,单独采用任何一种通信方式(电力线高速电力线通信、微功率无线通信等)都不能完全满足配用电通信系统的要求。
目前主流方案是通过电力线载波和微功率无线通信相结合的双模通信方式构建本地通信网络。微功率无线通信技术和电力线高速电力线通信技术互为补充,很好地解决了单纯高速电力线通信或者单纯微功率无线通信的抄读盲点和通信孤岛现象,保证了数据采集的实时性、稳定性和可靠性。
双模通信系统组网方式为电力线载波+微功率无线,双模的网络中电力线载波和微功率无线同时利用双信道进行组网,可以利用电力线载波、微功率无线并行的方式同步抄表。且通过优先级策略进行权重分配,哪个信道的节点层级低、通信成功率高、延时低,则优先使用该信道进行抄表。虽然微功率无线对电力线载波技术具有一定的互补作用,但由于现有微功率无线传输速率较低,无法与电力线载波通信网络协同实现速率匹配的双发双收功能,不能通过智能化路由选择信道切换通信模式。网络中的通信节点大多数情况下在同一时刻只采用一种模式工作,并且在原有模式下不同厂家无法做到互联互通,产品的应用具有很大的局限性,无法大规模应用。
现有的双模双信道融合技术主要存在两方面缺点:一方面电力线载波和微功率无线虽然可以同时工作,但同一时刻只有一种模式进行通信,无法与电力线载波通信网络协同实现速率匹配的双发双收功能,不能通过智能化路由选择信道切换通信模式;另一方面现有的电力线载波通信电路工作时对微功率无线信道传输性能有很大影响,导致微功率无线接收灵敏度降低,通信距离缩短,传输效率较低。
发明内容
本申请实施例的目的是提供一种双模融合通信的配置方法、配置装置及双模融合通信系统,用以解决现有技术中双模通信传输效率较低的问题。
为了实现上述目的,本申请第一方面提供一种双模融合通信的配置方法,双模融合通信包括电力线载波通信和微功率无线通信,该配置方法包括:
确定电力线载波通信的第一工作频段和微功率无线通信的第二工作频段;
根据第一工作频段的第一频段号配置第二工作频段的第二频段号,以使电力线载波通信的第一工作时钟和微功率无线通信的第二工作时钟的高次谐波频点与第一工作频段和第二工作频段不重合。
在本申请实施例中,根据第一工作频段的第一频段号配置第二工作频段的第二频段号,以使电力线载波通信的第一工作时钟和微功率无线通信的第二工作时钟的高次谐波频点与第一工作频段和第二工作频段不重合包括:
获取第一工作频段的第一频段号;
根据第一频段号查找频段号配置表格,该频段号配置表格包括第一频段号和第二频段号组成的组合频段号以及与组合频段号对应的第一工作时钟和第二工作时钟;
判断任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点是否落入第一工作频段和第二工作频段;
在判定任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点未落入第一工作频段和第二工作频段的情况下,将任意组合频段号中的第二频段号确定为候选第二频段号;
将候选第二频段号中任意候选第二频段号配置为第二频段号。
在本申请实施例中,该配置方法还包括:
建立频段号配置表格。
在本申请实施例中,建立频段号配置表格包括:
对第一频段号和第二频段号进行排列组合,以得到多个组合频段号;
确定多个组合频段号中每个组合频段号对应的第一工作时钟和第二工作时钟。
在本申请实施例中,确定多个组合频段号中每个组合频段号对应的第一工作时钟和第二工作时钟包括:
获取电力线载波通信的第一时钟频率和微功率无线通信的第二时钟频率;
获取每个组合频段号的第一倍频系数、第一分频系数、第二倍频系数和第二分频系数;
根据第一倍频系数、第一分频系数和第一时钟频率确定第一工作时钟;
根据第二倍频系数、第二分频系数和第二时钟频率确定第二工作时钟。
在本申请实施例中,第一工作时钟满足公式(1):
fwk-PLC=PPLC/QPLC*fosc-PLC; (1)
fwk-PLC=PPLC/QPLC*fosc-PLC; (1)
其中,fwk-PLC为第一工作时钟,PPLC第一倍频系数,QPLC为第一分频系数,fosc-PLC为第一时钟频率。
在本申请实施例中,第二工作时钟满足公式(2):
fwk-RF=PRF/QRF*fosc-RF; (2)
fwk-RF=PRF/QRF*fosc-RF; (2)
其中,fwk-RF为第二工作时钟,PRF为第二倍频系数,QRF为第二分频系数,fosc-RF为第二时钟频率。
在本申请实施例中,该配置方法还包括:
对当前站点的邻居站点进行评级,以得到备选代理站点;
判断与当前站点对应的主代理站点的通信成功率是否大于第一阈值;
在主代理站点的通信成功率大于第一阈值的情况下,判断主代理站点的延时是否小于第二阈值;
在主代理站点的延时小于第二阈值的情况下,选用主代理站点发送数据。
在本申请实施例中,该配置方法还包括:
在主代理站点的通信成功率小于或等于第一阈值的情况下和/或主代理站点的延时大于或等于第二阈值的情况下,选用备选代理站点发送数据。
在本申请实施例中,对当前站点的邻居站点进行评级,以得到备选代理站点包括:
根据当前站点的邻居站点的上行通信成功率、信号强度、信噪比、层级、发送数据帧数量确定邻居站点的代理质量评级;
根据代理质量评级将邻居站点从高等级到低等级进行排序;
选择前预设数量的邻居节点作为备选代理站点。
在本申请实施例中,该配置方法还包括:
将电力线载波通信和微功率无线通信进行物理隔离。
在本申请实施例中,将电力线载波通信和微功率无线通信进行物理隔离包括:
在电力线载波通信的收发电路、微功率无线通信的收发电路以及载波功率放大器均设置电源干扰抑制电路。
在本申请实施例中,将电力线载波通信和微功率无线通信进行物理隔离包括:
在电力线载波通信的芯片和微功率无线通信的芯片之间设置数字基带和挖槽,以对电力线载波通信的芯片和微功率无线通信的芯片进行空间隔离。
在本申请实施例中,将电力线载波通信和微功率无线通信进行物理隔离包括:
将微功率无线天线、微功率无线滤波通信电路和高速载波电力线耦合回路设置为空间隔开,其中,微功率无线天线为弹簧天线。
在本申请实施例中,将电力线载波通信和微功率无线通信进行物理隔离包括:
将开关电源电路和微功率无线通信的收发电路设置于不同平面。
在本申请实施例中,该配置方法还包括:
对中央处理器的外设工作频率和电源引脚滤波参数进行优化。
在本申请实施例中,对中央处理器的外设工作频率和电源引脚滤波参数进行优化包括:
将电源引脚与电阻串联;和/或
将电源引脚与电容并联。
在本申请实施例中,电容为100nF和/或100pF的电容。
在本申请实施例中,该配置方法还包括:
在电力线载波通信的发送回路上设置带通滤波器。
在本申请实施例中,带通滤波器为六阶带通滤波器,六阶带通滤波器包括三阶高通滤波器和三阶低通滤波器。
在本申请实施例中,三阶高通滤波器的电感为16.93uH,三阶高通滤波器的电容为3.38nF,三阶低通滤波器的电感为15.6nH,三阶低通滤波器的电容为12.5pF。
本申请第二方面提供一种双模融合通信的配置装置,双模融合通信包括电力线载波通信和微功率无线通信,该配置装置包括:
确定模块,被配置成确定电力线载波通信的第一工作频段和微功率无线通信的第二工作频段;
配置模块,被配置成根据第一工作频段的第一频段号配置第二工作频段的第二频段号,以使电力线载波通信的第一工作时钟和微功率无线通信的第二工作时钟的高次谐波频点与第一工作频段和第二工作频段不重合。
在本申请实施例中,配置模块还被配置成:
获取第一工作频段的第一频段号;
根据第一频段号查找频段号配置表格,频段号配置表格包括第一频段号和第二频段号组成的组合频段号以及与组合频段号对应的第一工作时钟和第二工作时钟;
判断任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点是否落入第一工作频段和第二工作频段;
在判定任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点未落入第一工作频段和第二工作频段的情况下,将任意组合频段号中的第二频段号确定为候选第二频段号;
将候选第二频段号中任意候选第二频段号配置为第二频段号。
在本申请实施例中,配置装置还包括:
建立模块,被配置成建立频段号配置表格。
在本申请实施例中,建立模块还被配置成:
对第一频段号和第二频段号进行排列组合,以得到多个组合频段号;
确定多个组合频段号中每个组合频段号对应的第一工作时钟和第二工作时钟。
在本申请实施例中,建立模块还被配置成:
获取电力线载波通信的第一时钟频率和微功率无线通信的第二时钟频率;
获取每个组合频段号的第一倍频系数、第一分频系数、第二倍频系数和第二分频系数;
根据第一倍频系数、第一分频系数和第一时钟频率确定第一工作时钟;
根据第二倍频系数、第二分频系数和第二时钟频率确定第二工作时钟。
在本申请实施例中,配置装置还包括:
评级模块,被配置成对当前站点的邻居站点进行评级,以得到备选代理站点;
第一判断模块,被配置成判断与当前站点对应的主代理站点的通信成功率是否大于第一阈值;
第二判断模块,被配置成在主代理站点的通信成功率大于第一阈值的情况下,判断主代理站点的延时是否小于第二阈值;
第一选择模块,被配置成在主代理站点的延时小于第二阈值的情况下,选用主代理站点发送数据。
在本申请实施例中,配置装置还包括:
第二选择模块,被配置成在主代理站点的通信成功率小于或等于第一阈值的情况下和/或主代理站点的延时大于或等于第二阈值的情况下,选用备选代理站点发送数据。
在本申请实施例中,评级模块还被配置成:
根据当前站点的邻居站点的上行通信成功率、信号强度、信噪比、层级、发送数据帧数量确定邻居站点的代理质量评级;
根据代理质量评级将邻居站点从高等级到低等级进行排序;
选择前预设数量的邻居节点作为备选代理站点。
本申请第三方面提供一种双模融合通信系统,该双模融合通信系统采用上述的双模融合通信的配置方法配置得到。
通过上述技术方案,对双模通信的工作频段进行配置,根据第一工作频段的第一频段号配置第二工作频段的第二频段号,以使电力线载波通信的第一工作时钟和微功率无线通信的第二工作时钟的高次谐波频点与第一工作频段和第二工作频段不重合,从而让电力线载波通信和微功率无线通信的工作频率不重合。这样,可以减小谐波叠加产生的倍增噪声的影响,并且可以减少中央处理器工作时产生的噪声对双模融合通信单元性能的影响,从而提高双模融合通信的传输效率。
本申请实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图是用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请实施例,但并不构成对本申请实施例的限制。在附图中:
图1示意性示出了根据本申请一实施例的一种双模融合通信的配置方法的流程图;
图2示意性示出了根据本申请另一实施例的一种双模融合通信的配置方法的流程图;
图3示意性示出了根据本申请实施例的一种双模融合通信物理信道的结构图;
图4示意性示出了根据本申请实施例的一种双模融合通信的电路结构图;
图5示意性示出了根据本申请实施例的一种双模芯片布局的结构图;
图6示意性示出了根据本申请实施例的一种双模融合通信单元布局的结构图。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请实施例,并不用于限制本申请实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
图1示意性示出了根据本申请一实施例的一种双模融合通信的配置方法的流程图。如图1所示,在本申请一实施例中,提供一种双模融合通信的配置方法,双模融合通信包括电力线载波通信和微功率无线通信,该
配置方法可以包括下列步骤:
步骤102、确定电力线载波通信的第一工作频段和微功率无线通信的第二工作频段;
步骤104、根据第一工作频段的第一频段号配置第二工作频段的第二频段号,以使电力线载波通信的第一工作时钟和微功率无线通信的第二工作时钟的高次谐波频点与第一工作频段和第二工作频段不重合。
在本申请实施例中,双模通信即双模融合双信道通信,可以包括电力线载波通信(Powerline Communication,PLC)和微功率无线通信(Radio Frequency,RF),双信道可以包括电力线载波通信的收发通道和微功率无线通信的收发通道,二者独立控制,可以同时发送或者不同时发送,二者接收机同时打开可以对任意通道发送的信号进行接收解调。现有的双模通信在同一时刻只有一种模式进行通信,无法与电力线载波通信网络协同实现速率匹配的双发双收功能,不能通过智能化路由选择信道切换通信模式,并且现有的电力线载波通信的电路工作时对微功率无线通信的信道传输性能有很大的影响,会导致微功率无线通信的接收灵敏度降低,通信距离缩短且传输效率较低。
因此,本申请实施例提出一种双模融合通信的干扰抑制设计方法,采用频率避让的方式分别配置电力线载波通信和微功率无线通信的工作时钟,让二者分别在不同的时钟域下,降低电力线载波通信电路的高次谐波对微功率无线通信的接收灵敏度的影响。本申请实施例中,电力线载波通信可以为高速电力线载波通信(High-speedPowerline Communication,HPLC),微功率无线通信可以为高速微功率无线通信(High-speedRadio Frequency,HRF)。具体地,处理器可以先确定电力线载波通信和微功率无线通信的工作频段,其中,电力线载波通信的工作频段为第一工作频段,微功率无线通信的工作频段为第二工作频段。在一个示例中,第一工作频段可以包括N个可选第一工作频段[fp1-i,fp2-j],i=1、2、…、N,第二工作频段可以包括M个可选第二工作频段[fw1-i,fw2-j],j=1、2、…、M。第一工作频段可以包括多个第一频段号,第二工作频段可以包括多个第二频段号,每个第一频段号和每个第二频段号可以进行组合,以形成组合频段号。例如,假设第一工作频段包括4个第一频段号,即I0、I1、I2和I3,第二工作频段号包括3个第二频段号,即J0、J1和J2,这样,可以组成12个组合频段号。每个组合频段号具有对应的第一工作时钟和第二工作时钟,第一工作时钟即电力线载波通信的工作时钟,第二工作时钟即微功率无线通信的工作时钟。处理器可以根据获取的第一频段号配置对一个的第二频段号,以使第一工作时钟和第二工作时钟与第一工作频段和第二工作频段均不重合,这样可以减小谐波叠加产生的倍增噪声的影响,并且可以减少中央处理器(Central Processing Unit,CPU)工作时产生的噪声对双模融合通信单元性能的影响,从而提高双模融合通信的传输效率。在一个示例中,处理器可以先确定电力线载波通信的第一频段号i,相应的发送频段为[fp1-i,fp2-j],对应的1~A次高次谐波分别为[fp1-i,fp2-j]、…、[A×fp1-i,A×fp2-j],再根据组合频段号对应的第二工作时钟确定可用的微功率无线通信的第二频段号j,相应的发送频段为[fw1-i,fw2-j],使得第一工作时钟和第二工作时钟的1~A次高次谐波不落入第一工作频段[fp1-i,fp2-j]和第二工作频段[fw1-i,fw2-j]内。
通过上述技术方案,对双模融合通信的工作频段进行配置,根据第一工作频段的第一频段号配置第二工作频段的第二频段号,以使电力线载波通信的第一工作时钟和微功率无线通信的第二工作时钟的高次谐波频点与第一工作频段和第二工作频段不重合,从而让电力线载波通信和微功率无线通信的工作频率不重合。这样,可以减小谐波叠加产生的倍增噪声的影响,并且可以减少中央处理器工作时产生的噪声对双模融合通信单元性能的影响,从而提高双模融合通信的传输效率。
在本申请实施例中,该配置方法还可以包括:
建立频段号配置表格。
具体地,处理器可以根据已有的电力线载波通信的第一工作频段和微功率无线通信的第二工作频段对现有频段进行排列组合,以建立频段号配置表格,频段号配置表格可以包括第一频段号和第二频段号组成的组合频段号以及与组合频段号对应的第一工作时钟和第二工作时钟。建立频段号配置表格可以使得处理器根据事先计算生成的双信道工作时钟进行干扰抑制的配置,从而根据第一工作频段的频段号迅速匹配出可选的第二工作频段号,以使电力线载波通信和微功率无线通信进行频率避让。
在本申请实施例中,建立频段号配置表格可以包括:
对第一频段号和第二频段号进行排列组合,以得到多个组合频段号;
确定多个组合频段号中每个组合频段号对应的第一工作时钟和第二工作时钟。
具体地,如表1所示,以电力线载波通信的第一工作频段为4个,微功率无线通信的第二工作频段为3个为例,第一工作频段包括4个第一频段号,即I0、I1、I2和I3,第二工作频段号包括3个第二频段号,即J0、J1和J2,这样,可以组成12个组合频段号。例如,第一频段号为1,第二频段号为2,则组合频段号为I1J2,对应的第一工作时钟为fwk-PLC6和fwk-RF6。
表1
在本申请实施例中,确定多个组合频段号中每个组合频段号对应的第一工作时钟和第二工作时钟可以包括:
获取电力线载波通信的第一时钟频率和微功率无线通信的第二时钟频率;
获取每个组合频段号的第一倍频系数、第一分频系数、第二倍频系数和第二分频系数;
根据第一倍频系数、第一分频系数和第一时钟频率确定第一工作时钟;
根据第二倍频系数、第二分频系数和第二时钟频率确定第二工作时钟。
具体地,处理器可以先获取双模融合通信的时钟频率,其中,电力线载波通信的时钟频率为第一时钟频率fosc-PLC,微功率无线通信的时钟频率为第二时钟频率fosc-RF。再获取每个组合频段号的第一倍频系数PPLC、第一分频系数QPLC、第二倍频系数PRF和第二分频系数QRF,其中,第一倍频系数PPLC和第一分频系数QPLC即电力线载波通信的倍频系数和分频系数,第二倍频系数PRF和第二分频系数QRF即微功率无线通信的倍频系数和分频系数。第一工作时钟fwk-PLC通过对第一时钟频率fosc-PLC进行倍频和分频得到,第二工作时钟fwk-RF通过对第二时钟频率fosc-RF进行倍频和分频得到。
在本申请实施例中,第一工作时钟满足公式(1):
fwk-PLC=PPLC/QPLC*fosc-PLC; (1)
fwk-PLC=PPLC/QPLC*fosc-PLC; (1)
其中,fwk-PLC为第一工作时钟,PPLC为第一倍频系数,QPLC为第一分频系数,fosc-PLC为第一时钟频率。
在本申请实施例中,第二工作时钟满足公式(2):
fwk-RF=PRF/QRF*fosc-RF; (2)
fwk-RF=PRF/QRF*fosc-RF; (2)
其中,fwk-RF为第二工作时钟,PRF为第二倍频系数,QRF为第二分频系数,fosc-RF为第二时钟频率。
在本申请实施例中,频段号配置表格中的第一频段号和第二频段号对应的工作频段应当使每个组合频段号对应的第一工作频段的1~B次高次谐波和第二工作频段不重合或者最少重合,从而防止电力线载波通信的信号的高次谐波对微功率无线通信造成干扰。例如,假设第一频段号为1,对应的第一工作频段为2MHz-6MHz;第二频段号为2,对应的第二工作频段为480MHz-490MHz,第一时钟频率fosc-PLC选择为25MHz,第二时钟频率fosc-RF选择为27MHz,25MHz的高次谐波频点在470MHz-510MHz区间为475MHz和500MHz,27MHz的高次谐波频点在470MHz-510MHz区间为486MHz,两者没有重合的频点,避免了谐波叠加产生的倍增噪声影响。
在本申请实施例中,可以根据已知参数计算得到每个组合频段号对应的第一倍频系数PPLC、第一分频系数QPLC、第二倍频系数PRF和第二分频系数QRF。假设取PPLC=48,QPLC=6,RPLC=48,QRF=9,通过寄存器参数设置将第一时钟频率倍频到1200MHz,第二时钟频率倍频到1296MHz,然后通过分频器进行分频,让第一工作频段和第二工作频段不重合,分别工作在200MHz和144MHz,当第一工作时钟在200MHz时以及200MHz的整数倍(400MHz和600MHz)会产生谐波噪声影响,当第二工作时钟在144MHz时,在144MHz整数倍(432MHz和576MHz)会产生谐波噪声影响,没有落在470MHz-510MHz区间。通过这种方式选取合适的配置值,可以根据工作频段进行动态调整,即可减少CPU工作时产生的噪声对双模融合通信单元性能的影响。
在本申请实施例中,根据第一工作频段的第一频段号配置第二工作频段的第二频段号,以使电力线载波通信的第一工作时钟和微功率无线通信的第二工作时钟的高次谐波频点与第一工作频段和第二工作频段不重合可以包括:
获取第一工作频段的第一频段号;
根据第一频段号查找频段号配置表格,该频段号配置表格包括第一频段号和第二频段号组成的组合频段号以及与组合频段号对应的第一工作时钟和第二工作时钟;
判断任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点是否落入第一工作频段和第
二工作频段;
在判定任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点未落入第一工作频段和第二工作频段的情况下,将任意组合频段号中的第二频段号确定为候选第二频段号;
将候选第二频段号中任意候选第二频段号配置为第二频段号。
具体地,在本申请实施例中可以事先建立频段号配置表格,频段号配置表格可以包括第一频段号和第二频段号组成的组合频段号以及与组合频段号对应的第一工作时钟和第二工作时钟。处理器可以根据获取的第一频段号查找该频段号配置表格,对于每个组合频段号,依次判断对应的第一工作时钟和第二工作时钟的高次谐波频点是否落入第一工作频段和第二工作频段。若该组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点未落入第一工作频段和第二工作频段的情况下,将该组合频段号中的第二频段号确定为候选第二频段号。每个第一频段号对应的候选第二频段号可以为多个。因此,可以选取任意一个候选第二频段号进行配置,从而使得电力线载波通信的第一工作时钟和微功率无线通信的第二工作时钟的高次谐波频点与第一工作频段和第二工作频段不重合。这样可以根据工作频段进行动态调整,即可减少CPU工作时产生的噪声对双模融合通信单元性能的影响。
图2示意性示出了根据本申请另一实施例的一种双模融合通信的配置方法的流程图。如图2所示,在本申请实施例中,该配置方法还可以包括:
步骤202、对当前站点的邻居站点进行评级,以得到备选代理站点;
步骤204、判断与当前站点对应的主代理站点的通信成功率是否大于第一阈值;
步骤206、在主代理站点的通信成功率大于第一阈值的情况下,判断主代理站点的延时是否小于第二阈值;
步骤208、在主代理站点的延时小于第二阈值的情况下,选用主代理站点发送数据;
步骤210、在主代理站点的通信成功率小于或等于第一阈值的情况下和/或主代理站点的延时大于或等于第二阈值的情况下,选用备选代理站点发送数据。
在本申请实施例中,双模芯片应基于最大化合理利用资源的原则,在设计上采用电力线载波通信和微功率无线通信可同时收、发的机制。在发送端通过路径备份、路径优选、负载均衡等多种策略,利用电力线载波和微功率无线通信物理层进行高效的数据传输。图3示意性示出了根据本申请实施例的双模融合通信物理信道的结构图。如图3所示,电力线载波通信的发送端通过高速电力线模拟电路将信号发送并耦合到电力线上,接收端通过模拟电路和数字基带获取发送端的数据;微功率无线通信的发送端通过射频电路将信号发送并通过天线辐射到空间中,接收端通过射频电路和数字基带获取发送端的数据。从物理信道上看,高速电力线通信和微功率无线通信的收发机和通信媒介是相互独立的,两者之间空间干扰较小。
当双模融合通信单元组网完成后,包括中央协调器(Central Coordinator,CCO)和所有入网的站点(Station,STA),都需要根据发现列表周期参数定周期发送电力线载波和微功率无线发现列表报文,发现列表报文中携带当前站点的网络属性,接收邻居节点的下行接收率、信号强度、信噪比等信息。站点通过接收发现列表报文,获取与邻居节点的双向通信率、信号强度、信噪比等信息,以便站点选择更合适的中继代理、或者备份多路径。
考虑到电网应用中CCO和STA的一对多通信模式,STA上行代理可选用多个站点作为备份,当与主代理站点的通信成功率小于或等于第一阈值或者通信响应延时大于或等于第二阈值时,依次选用备选代理站点发
送上行数据。在一个示例中,可以先对邻居站点的代理质量评级,再对邻居站点的评级分值进行排序,选用评级前预设数量的邻居站点为备选代理站点。例如,可以选用前3的站点作为备选代理站点。本申请实施例从芯片设计角度对告诉电力线载波通信及微功率无线通信的物理层电路进行优化。基于最大化合理利用资源的原则,采用电力线载波和微功率无线通信可同时收发机制,在发送端通过路径备份、路径优选、负载均衡等多种策略,利用电力线载波通信和微功率无线通信物理层进行高效的数据传输,提高了数据的传输效率。
需要说明的是,本申请实施例的判断可以是先判断与主代理站点的通信成功率,再判断通信响应延时;或者先判断通信响应延时,再判断与主代理站点的通信成功率等判断方式。本申请实施例以先判断主代理站点的通信成功率,再判断通信响应延时为例,不代表只能按照该方式进行判断。
在本申请实施例中,步骤202、对当前站点的邻居站点进行评级,以得到备选代理站点可以包括:
根据当前站点的邻居站点的上行通信成功率、信号强度、信噪比、层级、发送数据帧数量确定邻居站点的代理质量评级;
根据代理质量评级将邻居站点从高等级到低等级进行排序;
选择前预设数量的邻居节点作为备选代理站点。
具体地,可以使用当前站点的通信模式,上行通信成功率、信号强度、信噪比、层级,发送数据帧数量作为衡量指标,为邻居站点进行代理质量评级。在一个示例中,可以在对邻居站点的通信模式,上行通信成功率、信号强度、信噪比、层级,发送数据帧数量数据做归一化处理后,各个数据的加权和即为该站点的评级分值,再对邻居站点的评级分值进行排序,从平级分值高到低的顺序进行排序,然后选用评级前预设数量的邻居站点为备选代理站点。例如,可以选用前3的站点作为备选代理站点。本申请实施例从芯片设计角度对告诉电力线载波通信及微功率无线通信的物理层电路进行优化。基于最大化合理利用资源的原则,采用电力线载波和微功率无线通信可同时收发机制,在发送端通过路径备份、路径优选、负载均衡等多种策略,利用电力线载波通信和微功率无线通信物理层进行高效的数据传输,提高了数据的传输效率。
在本申请实施例中,该配置方法还可以包括:
将电力线载波通信和微功率无线通信进行物理隔离。
具体地,可以在芯片和电路设计时,从物理层、芯片设计布局和通信单元电路布局设计上通过让电力线载波通信和微功率无线通信放置在不同的空间平面,减少空间辐射干扰。例如,可以在电力线载波通信的收发电路、微功率无线通信的收发电路以及载波功率放大器均设置电源干扰抑制电路;也可以在电力线载波通信的芯片和微功率无线通信的芯片之间设置数字基带和挖槽,以对电力线载波通信的芯片和微功率无线通信的芯片进行空间隔离;还可以将微功率无线天线、微功率无线滤波通信电路和高速载波电力线耦合回路设置为空间隔开,以及将开关电源电路和微功率无线通信的收发电路设置于不同平面。通过将电力线载波通信和微功率无线通信进行物理隔离,可以从物理层面减少空间辐射干扰。
在本申请实施例中,将电力线载波通信和微功率无线通信进行物理隔离可以包括:
在电力线载波通信的收发电路、微功率无线通信的收发电路以及载波功率放大器均设置电源干扰抑制电路。
图4示意性示出了根据本申请实施例的一种双模融合通信的电路结构图。如图4所示,双模融合通信设备的电源来自终端的外部12V供电,其中数字部分由外部12V经过内部的电源转换器输出3.3V供电,载波部
分的功放电路由12V供电。为防止来自外部电源的干扰信号耦合至双模通信芯片内部影响无线接收灵敏度。需要在无线收发电路(及微功率无线通信的收发电路)与载波收发电路(即电力线载波通信的收发电路)的3.3V电源部分分别增加电源干扰抑制电路,使用退耦电容及磁珠抑制干扰,并将两个电源平面进行分割,防止无线收发电路与载波收发电路的电源相互耦合高频干扰。同时在载波功率放大器的电源及输出侧也增加干扰抑制电路,防止功放输出大功率信号时产生的高次谐波反灌回12V电源网络,进而影响无线信号的接收灵敏度。
在本申请实施例中,将电力线载波通信和微功率无线通信进行物理隔离可以包括:
在电力线载波通信的芯片和微功率无线通信的芯片之间设置数字基带和挖槽,以对电力线载波通信的芯片和微功率无线通信的芯片进行空间隔离。
图5示意性示出了根据本申请实施例的一种双模芯片布局的结构图。如图5所示,可以将电力线载波通信和微功率无线通信两个容易受到干扰的模拟前端布局在对角线位置,以减少对彼此的干扰。微功率无线HRF模拟前端(即微功率无线通信的芯片)设置在右上角,电力线载波HPLC模拟前端(即电力线载波的芯片)设置在左下角,中间使用数字基带和挖槽技术进行空间隔离。为减少数字基带信号和电力线载波信号对微功率无线模拟前端影响,可以将外设部分放置在远离微功率无线模拟前端的右下脚空间,将时钟电路和电源电路放置在左上角。
在本申请实施例中,将电力线载波通信和微功率无线通信进行物理隔离可以包括:
将微功率无线天线、微功率无线滤波通信电路和高速载波电力线耦合回路设置为空间隔开,其中,微功率无线天线为弹簧天线。
图6示意性示出了根据本申请实施例的一种双模融合通信单元布局的结构图。如图6所示,可以利用双模融合通信单元的空间分布,将微功率无线天线、微功率无线滤波电路、高速电力线耦合回路在物理空间上隔开。在图6中,TX为Receive接收,TX为Transmit发送,RXN和RXP为差分输入端,TXN和TXP为差分输出端,SPI为Serial Peripheral Interface的缩写,即串行外围设备接口,SPI Flash即通过串行的接口进行操作的flash存储设备。ANT是无线传输协议的一种。为了使得天线更容易辐射吸收板级产生的噪声干扰。本申请实施例的通信单元微功率无线部分可以采用弹簧天线接收和发送信号,从而更容易辐射吸收板级产生噪声干扰。
在本申请实施例中,将电力线载波通信和微功率无线通信进行物理隔离可以包括:
将开关电源电路和微功率无线通信的收发电路设置于不同平面。
具体地,开关电源电路本身就是一个强干扰源,开关电源脉冲宽度调制(Pulse Width Modulation,PWM)产生电压波动,带来高频开关噪声,因此,可以将开关电源电路与微功率无线通信的收发电路设置在两个平面,在空间层面上减少干扰,同时可以采用开关电源支持脉冲频率调制(Pulse Frequency Modulation,PWM)的调制方式,PFM调制方式通过调频方式可以降低噪声影响。除了电路上采取措施抑制其电磁干扰产生外,还可以对开关电源进行有效的电磁屏蔽和滤波,电磁方面用屏蔽盒进行屏蔽处理,滤波方面在开关电源输出端通过两级谐振LC电路进行滤波处理,减少信号辐射和受扰。
在本申请实施例中,该配置方法还可以包括:
对中央处理器的外设工作频率和电源引脚滤波参数进行优化。
在本申请实施例中,对中央处理器的外设工作频率和电源引脚滤波参数进行优化可以包括:
将电源引脚与电阻串联;和/或
将电源引脚与电容并联。
具体地,还可以对CPU工作的外设工作频率和电源引脚滤波参数进行优化,减少带外杂散干扰。在一个示例中,CPU外设工作的频率很高,将CPU外设的输出引脚串接电阻实现阻抗匹配,用于减少输出引脚对外辐射干扰。
在另一个示例中,CPU的电源引脚需要进行特殊的处理,减少噪声的输出,将CPU电源引脚各并联pF和nF级别贴片MLCC电容,用于滤除低频和高频产生的噪声。优选地,电容可以为100nF和/或100pF的电容。其中,去耦电容计算公式可以如下。
对于0805贴片电容,自身L=1nH,微功率无线通信的工作频率为470MHz-510MHz,以按照500MHz频率计算为例。
通过公式:
计算得出C=100pF;
对于0805贴片电容,自身L=1nH,高速电力线载波提供新的工作频率为0.7MHz-12MHz,以按照5MHz频率计算。
通过上述公式计算得出C=100pF。
因此,CPU电源引脚并联100nF和100pF电容,能更好地滤除低频和高频产生的噪声。
在本申请实施例中,该配置方法还可以包括:
在电力线载波通信的发送回路上设置带通滤波器。
具体地,可以在电力线载波通信的发送回路上设置带通滤波器,对电力线载波通信的发送回路的滤波器参数进行优化,减少高速电力线载波通信发送带外杂散干扰。高速电力线载波数模转换器DAC输出信号需要增加外部功放电路对信号放大后输出,虽然信号的强度提升但同时也会带来带外噪声的放大,需要在功放电路输出增加470MHz-510MHz的带通滤波器电路,减少高速电力线载波发送产生带外噪声对微功率无线接收灵敏度的影响。
在本申请实施例中,带通滤波器可以为六阶带通滤波器,六阶带通滤波器可以包括三阶高通滤波器和三阶低通滤波器。优选地,三阶高通滤波器的电感可以为16.93uH,三阶高通滤波器的电容可以为3.38nF,三阶低通滤波器的电感可以为15.6nH,三阶低通滤波器的电容可以为12.5pF。
具体地,截止频率510MHz的三阶巴特沃思型低通滤波器设计如下。
步骤一、求待设计滤波器截止频率与基准滤波器截止频率的比值M。
M=待设计滤波器的截止频率/基准滤波器的截止频率=510MHz/(1/2π)Hz=510000000Hz/0.159154Hz=3204443495。
步骤二、对基准滤波器的所有元件值除以M,得到截止频率已变换成待设计滤波器截止频率510MHz时的元件参数值。
L(new)=L(old)/M=1.0H/3204443495=0.0000000003121H;
C(new)=C(old)/M=2.0F/3204443495=0.0000000006241F。
L(new)=L(old)/M=1.0H/3204443495=0.0000000003121H;
C(new)=C(old)/M=2.0F/3204443495=0.0000000006241F。
步骤三、求待设计滤波器特征阻抗与基准滤波器特征阻抗的比之K。
K=待设计滤波器的特征阻抗/基准滤波器的特征阻抗=50Ω/1Ω=50。
步骤四、针对步骤二所计算的滤波器,将所有电感元件值乘以K,将所有电容元件值除以K,这样就得到了设计特征阻抗为50Ω且截止频偏为510MHz的三阶定K型LPF滤波器参数值。
L(new)=L(old)×K=0.0000000003121H×50=0.0000000156033H=15.6nH;
C(new)=C(old)/K=0.0000000006241F/50=0.0000000000125F=12.5pF。
L(new)=L(old)×K=0.0000000003121H×50=0.0000000156033H=15.6nH;
C(new)=C(old)/K=0.0000000006241F/50=0.0000000000125F=12.5pF。
通过上述计算公式得出三阶低通滤波器电感可以选取15.6nH,电容可以选取12.5pF,从仿真结果可以得到,通过增加低通滤波器的方式保证了510MHz以下有用信号的输出,对其他频点信号起到了抑制作用。
截止频率470MHz的三阶巴特沃思型高通滤波器设计如下。
步骤一、求待设计滤波器截止频率与基准滤波器截止频率的比值M。
M=待设计滤波器的截止频率/基准滤波器的截止频率=470MHz/(1/2π)Hz=470000000Hz/0.159154Hz=2953114593。
步骤二、对基准滤波器的所有元件值除以M,得到截止频率已变换成待设计滤波器截止频率470MHz时的元件参数值。
L(new)=L(old)/M=1.0H/2953114593=0.0000000003386H;
C(new)=C(old)/M=0.5F/2953114593=0.0000000001693F。
L(new)=L(old)/M=1.0H/2953114593=0.0000000003386H;
C(new)=C(old)/M=0.5F/2953114593=0.0000000001693F。
步骤三、求待设计滤波器特征阻抗与基准滤波器特征阻抗的比之K。
K=待设计滤波器的特征阻抗/基准滤波器的特征阻抗=50Ω/1Ω=50。
步骤四、针对步骤二所计算的滤波器,将所有电感元件值乘以K,将所有电容元件值除以K,这样就得到了设计特征阻抗为50Ω且截止频偏为470MHz的三阶定K型LPF滤波器参数值。
L(new)=L(old)×K=0.0000000003386H×50=0.00000001693H=16.93uH;
C(new)=C(old)/K=0.0000000001693F/50=0.00000000000338F=3.38nF。
L(new)=L(old)×K=0.0000000003386H×50=0.00000001693H=16.93uH;
C(new)=C(old)/K=0.0000000001693F/50=0.00000000000338F=3.38nF。
通过上述计算公式得出三阶高通滤波器电感可以选取16.93uH,电容可以选取3.38nF。从仿真结果看,通过增加低通滤波器的方式保证了470MHz以上有用信号的输出,对其他频点信号起到了抑制作用。
本申请实施例在芯片和电路设计时,从物理层、芯片设计布局和通信单元电路布局设计上通过让高速电力线载波通信和微功率无线通信放置在不同的空间平面,减少空间辐射干扰;对开关电源进行屏蔽、滤波处理;对发送电路进行滤波器设计,进行带外抑制,降低双信道干扰。需要说明的是,本申请实施例的双模融合通信的配置方法,可以是上述实施例中任一项的配置方法,也可以是多项结合的配置方法,以提高双模通信的成功率。
本申请实施例还提供一种双模融合通信的配置装置,双模融合通信包括电力线载波通信和微功率无线通信,该配置装置包括:
确定模块,被配置成确定电力线载波通信的第一工作频段和微功率无线通信的第二工作频段;
配置模块,被配置成根据第一工作频段的第一频段号配置第二工作频段的第二频段号,以使电力线载波通信的第一工作时钟和微功率无线通信的第二工作时钟的高次谐波频点与第一工作频段和第二工作频段不重
合。
在本申请实施例中,配置模块还被配置成:
获取第一工作频段的第一频段号;
根据第一频段号查找频段号配置表格,频段号配置表格包括第一频段号和第二频段号组成的组合频段号以及与组合频段号对应的第一工作时钟和第二工作时钟;
判断任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点是否落入第一工作频段和第二工作频段;
在判定任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点未落入第一工作频段和第二工作频段的情况下,将任意组合频段号中的第二频段号确定为候选第二频段号;
将候选第二频段号中任意候选第二频段号配置为第二频段号。
在本申请实施例中,配置装置还包括:
建立模块,被配置成建立频段号配置表格。
在本申请实施例中,建立模块还被配置成:
对第一频段号和第二频段号进行排列组合,以得到多个组合频段号;
确定多个组合频段号中每个组合频段号对应的第一工作时钟和第二工作时钟。
在本申请实施例中,建立模块还被配置成:
获取电力线载波通信的第一时钟频率和微功率无线通信的第二时钟频率;
获取每个组合频段号的第一倍频系数、第一分频系数、第二倍频系数和第二分频系数;
根据第一倍频系数、第一分频系数和第一时钟频率确定第一工作时钟;
根据第二倍频系数、第二分频系数和第二时钟频率确定第二工作时钟。
在本申请实施例中,配置装置还包括:
评级模块,被配置成对当前站点的邻居站点进行评级,以得到备选代理站点;
第一判断模块,被配置成判断与当前站点对应的主代理站点的通信成功率是否大于第一阈值;
第二判断模块,被配置成在主代理站点的通信成功率大于第一阈值的情况下,判断主代理站点的延时是否小于第二阈值;
第一选择模块,被配置成在主代理站点的延时小于第二阈值的情况下,选用主代理站点发送数据。
在本申请实施例中,配置装置还包括:
第二选择模块,被配置成在主代理站点的通信成功率小于或等于第一阈值的情况下和/或主代理站点的延时大于或等于第二阈值的情况下,选用备选代理站点发送数据。
在本申请实施例中,评级模块还被配置成:
根据当前站点的邻居站点的上行通信成功率、信号强度、信噪比、层级、发送数据帧数量确定邻居站点的代理质量评级;
根据代理质量评级将邻居站点从高等级到低等级进行排序;
选择前预设数量的邻居节点作为备选代理站点。
在另一个实施示例中,上述双模融合通信的配置装置包括:处理器,其中所述处理器用于执行存在存储
器的上述程序模块,包括:确定模块、配置模块、建立模块、评级模块、第一判断模块、第二判断模块、第一选择模块和第二选择模块。
上述双模融合通信的配置装置执行上述方法时实现本申请实施例的各个方法中的相应流程,为了简洁,在此,不再赘述。
本申请实施例还提供一种双模融合通信系统,该双模融合通信系统采用上述的双模融合通信的配置方法配置得到。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (28)
- 一种双模融合通信的配置方法,其特征在于,双模融合通信包括电力线载波通信和微功率无线通信,所述配置方法包括:确定所述电力线载波通信的第一工作频段和所述微功率无线通信的第二工作频段;根据所述第一工作频段的第一频段号配置所述第二工作频段的第二频段号,以使所述电力线载波通信的第一工作时钟和所述微功率无线通信的第二工作时钟的高次谐波频点与所述第一工作频段和所述第二工作频段不重合。
- 根据权利要求1所述的配置方法,其特征在于,所述根据所述第一工作频段的第一频段号配置所述第二工作频段的第二频段号,以使所述电力线载波通信的第一工作时钟和所述微功率无线通信的第二工作时钟的高次谐波频点与所述第一工作频段和所述第二工作频段不重合,具体包括:获取所述第一工作频段的第一频段号;根据所述第一频段号查找频段号配置表格,所述频段号配置表格包括所述第一频段号和所述第二频段号组成的组合频段号以及与所述组合频段号对应的第一工作时钟和第二工作时钟;判断任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点是否落入所述第一工作频段和所述第二工作频段;在判定所述任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点未落入所述第一工作频段和所述第二工作频段的情况下,将所述任意组合频段号中的第二频段号确定为候选第二频段号;将所述候选第二频段号中任意候选第二频段号配置为所述第二频段号。
- 根据权利要求2所述的配置方法,其特征在于,所述配置方法还包括:建立所述频段号配置表格。
- 根据权利要求3所述的配置方法,其特征在于,所述建立所述频段号配置表格包括:对所述第一频段号和所述第二频段号进行排列组合,以得到多个组合频段号;确定所述多个组合频段号中每个组合频段号对应的第一工作时钟和第二工作时钟。
- 根据权利要求4所述的配置方法,其特征在于,所述确定所述多个组合频段号中每个组合频段号对应的第一工作时钟和第二工作时钟包括:获取所述电力线载波通信的第一时钟频率和所述微功率无线通信的第二时钟频率;获取每个组合频段号的第一倍频系数、第一分频系数、第二倍频系数和第二分频系数;根据所述第一倍频系数、所述第一分频系数和所述第一时钟频率确定所述第一工作时钟;根据所述第二倍频系数、所述第二分频系数和所述第二时钟频率确定所述第二工作时钟。
- 根据权利要求5所述的配置方法,其特征在于,所述第一工作时钟满足公式(1):
fwk-PLC=PPLC/QPLC*fosc-PLC;(1)其中,fwk-PLC为所述第一工作时钟,PPLC为所述第一倍频系数,QPLC为所述第一分频系数,fosc-PLC为所述第一时钟频率。 - 根据权利要求5所述的配置方法,其特征在于,所述第二工作时钟满足公式(2):
fwk-RF=PRF/QRF*fosc-RF;(2)其中,fwk-RF为所述第二工作时钟,PRF为所述第二倍频系数,QRF为所述第二分频系数,fosc-RF为所述第二时钟频率。 - 根据权利要求1所述的配置方法,其特征在于,所述配置方法还包括:对当前站点的邻居站点进行评级,以得到备选代理站点;判断与所述当前站点对应的主代理站点的通信成功率是否大于第一阈值;在所述主代理站点的通信成功率大于第一阈值的情况下,判断所述主代理站点的延时是否小于第二阈值;在所述主代理站点的延时小于所述第二阈值的情况下,选用所述主代理站点发送数据。
- 根据权利要求8所述的配置方法,其特征在于,所述配置方法还包括:在所述主代理站点的通信成功率小于或等于所述第一阈值的情况下和/或所述主代理站点的延时大于或等于所述第二阈值的情况下,选用所述备选代理站点发送数据。
- 根据权利要求8所述的配置方法,其特征在于,所述对当前站点的邻居站点进行评级,以得到备选代理站点包括:根据所述当前站点的邻居站点的上行通信成功率、信号强度、信噪比、层级、发送数据帧数量确定所述邻居站点的代理质量评级;根据所述代理质量评级将所述邻居站点从高等级到低等级进行排序;选择前预设数量的邻居节点作为所述备选代理站点。
- 根据权利要求1所述的配置方法,其特征在于,所述配置方法还包括:将所述电力线载波通信和所述微功率无线通信进行物理隔离。
- 根据权利要求11所述的配置方法,其特征在于,所述将所述电力线载波通信和所述微功率无线通信进行物理隔离包括:在所述电力线载波通信的收发电路、所述微功率无线通信的收发电路以及载波功率放大器均设置电源干扰抑制电路。
- 根据权利要求11所述的配置方法,其特征在于,所述将所述电力线载波通信和所述微功率无线通信进行物理隔离包括:在所述电力线载波通信的芯片和所述微功率无线通信的芯片之间设置数字基带和挖槽,以对所述电力线载波通信的芯片和所述微功率无线通信的芯片进行空间隔离。
- 根据权利要求11所述的配置方法,其特征在于,所述将所述电力线载波通信和所述微功率无线通信进行物理隔离包括:将微功率无线天线、微功率无线滤波通信电路和高速载波电力线耦合回路设置为空间隔开。
- 根据权利要求11所述的配置方法,其特征在于,所述将所述电力线载波通信和所述微功率无线通信进行物理隔离,包括:将开关电源电路和所述微功率无线通信的收发电路设置于不同平面。
- 根据权利要求1所述的配置方法,其特征在于,所述配置方法还包括:对中央处理器的外设工作频率和电源引脚滤波参数进行优化。
- 根据权利要求16所述的配置方法,其特征在于,所述对中央处理器的外设工作频率和电源引脚滤波参数进行优化包括:将所述电源引脚与电阻串联;和/或将所述电源引脚与电容并联。
- 根据权利要求1所述的配置方法,其特征在于,所述配置方法还包括:在所述电力线载波通信的发送回路上设置带通滤波器。
- 根据权利要求18所述的配置方法,其特征在于,所述带通滤波器为六阶带通滤波器,所述六阶带通滤波器包括三阶高通滤波器和三阶低通滤波器。
- 一种双模融合通信的配置装置,其特征在于,所述双模融合通信包括电力线载波通信和微功率无线通信,所述配置装置包括:确定模块,被配置成确定所述电力线载波通信的第一工作频段和所述微功率无线通信的第二工作频段;配置模块,被配置成根据所述第一工作频段的第一频段号配置所述第二工作频段的第二频段号,以使所述电力线载波通信的第一工作时钟和所述微功率无线通信的第二工作时钟的高次谐波频点与所述第一工作频段和所述第二工作频段不重合。
- 根据权利要求20所述的配置装置,其特征在于,所述配置模块还被配置成:获取所述第一工作频段的第一频段号;根据所述第一频段号查找频段号配置表格,所述频段号配置表格包括所述第一频段号和所述第二频段号组成的组合频段号以及与所述组合频段号对应的第一工作时钟和第二工作时钟;判断任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点是否落入所述第一工作频段和所述第二工作频段;在判定所述任意组合频段号对应的第一工作时钟和第二工作时钟的高次谐波频点未落入所述第一工作频段和所述第二工作频段的情况下,将所述任意组合频段号中的第二频段号确定为候选第二频段号;将所述候选第二频段号中任意候选第二频段号配置为所述第二频段号。
- 根据权利要求21所述的配置装置,其特征在于,所述配置装置还包括:建立模块,被配置成建立所述频段号配置表格。
- 根据权利要求22所述的配置装置,其特征在于,所述建立模块还被配置成:对所述第一频段号和所述第二频段号进行排列组合,以得到多个组合频段号;确定所述多个组合频段号中每个组合频段号对应的第一工作时钟和第二工作时钟。
- 根据权利要求23所述的配置装置,其特征在于,所述建立模块还被配置成:获取所述电力线载波通信的第一时钟频率和所述微功率无线通信的第二时钟频率;获取每个组合频段号的第一倍频系数、第一分频系数、第二倍频系数和第二分频系数;根据所述第一倍频系数、所述第一分频系数和所述第一时钟频率确定所述第一工作时钟;根据所述第二倍频系数、所述第二分频系数和所述第二时钟频率确定所述第二工作时钟。
- 根据权利要求20所述的配置装置,其特征在于,所述配置装置还包括:评级模块,被配置成对当前站点的邻居站点进行评级,以得到备选代理站点;第一判断模块,被配置成判断与所述当前站点对应的主代理站点的通信成功率是否大于第一阈值;第二判断模块,被配置成在所述主代理站点的通信成功率大于第一阈值的情况下,判断所述主代理站点的延时是否小于第二阈值;第一选择模块,被配置成在所述主代理站点的延时小于所述第二阈值的情况下,选用所述主代理站点发送数据。
- 根据权利要求25所述的配置装置,其特征在于,所述配置装置还包括:第二选择模块,被配置成在所述主代理站点的通信成功率小于或等于所述第一阈值的情况下和/或所述主代理站点的延时大于或等于所述第二阈值的情况下,选用所述备选代理站点发送数据。
- 根据权利要求25所述的配置装置,其特征在于,所述评级模块还被配置成:根据所述当前站点的邻居站点的上行通信成功率、信号强度、信噪比、层级、发送数据帧数量确定所述邻居站点的代理质量评级;根据所述代理质量评级将所述邻居站点从高等级到低等级进行排序;选择前预设数量的邻居节点作为所述备选代理站点。
- 一种双模融合通信系统,其特征在于,所述双模融合通信系统采用根据权利要求1至19中任一项所述的双模融合通信的配置方法配置得到。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211284306.5A CN115514437B (zh) | 2022-10-20 | 2022-10-20 | 双模通信融合的配置方法、配置装置及双模通信融合系统 |
CN202211284306.5 | 2022-10-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024082792A1 true WO2024082792A1 (zh) | 2024-04-25 |
Family
ID=84510746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/112891 WO2024082792A1 (zh) | 2022-10-20 | 2023-08-14 | 双模融合通信的配置方法、配置装置及双模融合通信系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115514437B (zh) |
WO (1) | WO2024082792A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118214504A (zh) * | 2024-05-21 | 2024-06-18 | 北京智芯微电子科技有限公司 | 信号传输方法、装置和电子设备 |
CN118353552A (zh) * | 2024-05-16 | 2024-07-16 | 广州伟宏智能科技有限公司 | 基于hplc和hrf双通道通信成功率测试方法及装置 |
CN118449557A (zh) * | 2024-06-27 | 2024-08-06 | 广东电网有限责任公司佛山供电局 | 电力线载波聚合方法和装置、存储介质及电子设备 |
CN118555624A (zh) * | 2024-05-27 | 2024-08-27 | 北京京能能源技术研究有限责任公司 | 一种能够主动调整通信模式的物联网智能终端系统及方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115514437B (zh) * | 2022-10-20 | 2023-04-07 | 北京智芯微电子科技有限公司 | 双模通信融合的配置方法、配置装置及双模通信融合系统 |
CN116054879A (zh) * | 2022-12-23 | 2023-05-02 | 华为数字能源技术有限公司 | 一种电力线通信系统、电力线通信方法及设备 |
CN116170880B (zh) * | 2022-12-28 | 2023-10-27 | 深圳市瑞科慧联科技有限公司 | 信号传输方法、同频双模基站及存储介质 |
CN116318261A (zh) * | 2023-03-24 | 2023-06-23 | 北京博维亚讯技术有限公司 | 基于高速载波和无线的双模通信芯片 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102386937A (zh) * | 2011-10-25 | 2012-03-21 | 青岛海信移动通信技术股份有限公司 | 提高无线通信系统灵敏度的方法及无线通信系统 |
US20210143902A1 (en) * | 2019-11-08 | 2021-05-13 | Zebra Technologies Corporation | Systems and methods to co-locate rfid reader networks with in-band sensor networks |
CN114980170A (zh) * | 2022-05-16 | 2022-08-30 | 北京智芯微电子科技有限公司 | 多模通信设备的通信方法、通信系统、设备和芯片 |
CN114978243A (zh) * | 2022-05-16 | 2022-08-30 | 北京智芯微电子科技有限公司 | 多模通信设备组网方法、通信方法及其系统、设备和芯片 |
CN115514437A (zh) * | 2022-10-20 | 2022-12-23 | 北京智芯微电子科技有限公司 | 双模通信融合的配置方法、配置装置及双模通信融合系统 |
CN116318261A (zh) * | 2023-03-24 | 2023-06-23 | 北京博维亚讯技术有限公司 | 基于高速载波和无线的双模通信芯片 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1260992C (zh) * | 2003-05-21 | 2006-06-21 | 重庆重邮信科股份有限公司 | Td-scdma/gsm ue双模多频段收发信机中频选择方法 |
US7796716B2 (en) * | 2006-08-17 | 2010-09-14 | Texas Instruments Incorporated | Eliminating narrowband interference in a receiver |
US10103780B1 (en) * | 2017-03-31 | 2018-10-16 | GM Global Technology Operations LLC | Dual mode communication over automotive power lines |
CN107087282B (zh) * | 2017-05-23 | 2019-09-24 | Oppo广东移动通信有限公司 | 干扰消除方法、装置、存储介质及终端 |
CN108834176B (zh) * | 2018-05-23 | 2022-01-18 | Oppo广东移动通信有限公司 | 天线信号干扰处理方法、装置、电子装置以及存储介质 |
KR20200122887A (ko) * | 2019-04-19 | 2020-10-28 | 삼성전자주식회사 | 5g 통신에서의 전원 제어 방법 및 이를 위한 전자 장치 |
CN110108937B (zh) * | 2019-05-10 | 2023-03-14 | 中国电力科学研究院有限公司 | 一种基于谐波分析的无线充电频率选取方法及系统 |
CN112634601A (zh) * | 2020-11-23 | 2021-04-09 | 北京智芯微电子科技有限公司 | 双模通信装置、双模通信方法及电表系统 |
-
2022
- 2022-10-20 CN CN202211284306.5A patent/CN115514437B/zh active Active
-
2023
- 2023-08-14 WO PCT/CN2023/112891 patent/WO2024082792A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102386937A (zh) * | 2011-10-25 | 2012-03-21 | 青岛海信移动通信技术股份有限公司 | 提高无线通信系统灵敏度的方法及无线通信系统 |
US20210143902A1 (en) * | 2019-11-08 | 2021-05-13 | Zebra Technologies Corporation | Systems and methods to co-locate rfid reader networks with in-band sensor networks |
CN114980170A (zh) * | 2022-05-16 | 2022-08-30 | 北京智芯微电子科技有限公司 | 多模通信设备的通信方法、通信系统、设备和芯片 |
CN114978243A (zh) * | 2022-05-16 | 2022-08-30 | 北京智芯微电子科技有限公司 | 多模通信设备组网方法、通信方法及其系统、设备和芯片 |
CN115514437A (zh) * | 2022-10-20 | 2022-12-23 | 北京智芯微电子科技有限公司 | 双模通信融合的配置方法、配置装置及双模通信融合系统 |
CN116318261A (zh) * | 2023-03-24 | 2023-06-23 | 北京博维亚讯技术有限公司 | 基于高速载波和无线的双模通信芯片 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118353552A (zh) * | 2024-05-16 | 2024-07-16 | 广州伟宏智能科技有限公司 | 基于hplc和hrf双通道通信成功率测试方法及装置 |
CN118214504A (zh) * | 2024-05-21 | 2024-06-18 | 北京智芯微电子科技有限公司 | 信号传输方法、装置和电子设备 |
CN118555624A (zh) * | 2024-05-27 | 2024-08-27 | 北京京能能源技术研究有限责任公司 | 一种能够主动调整通信模式的物联网智能终端系统及方法 |
CN118449557A (zh) * | 2024-06-27 | 2024-08-06 | 广东电网有限责任公司佛山供电局 | 电力线载波聚合方法和装置、存储介质及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN115514437A (zh) | 2022-12-23 |
CN115514437B (zh) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024082792A1 (zh) | 双模融合通信的配置方法、配置装置及双模融合通信系统 | |
CN203277374U (zh) | 半导体器件 | |
US11824569B2 (en) | Radio frequency system with tunable filters including tunable filter with mutually coupled inductors | |
US20140273887A1 (en) | Tunable ila and dila matching for simultaneous high and low band operation | |
TW201409954A (zh) | 收發器前端 | |
US8149818B2 (en) | Mesh network within a device | |
CN106099370A (zh) | 天线系统、谐波抑制元件及射频装置 | |
US9543073B2 (en) | Transformer, method for manufacturing transformer and chip | |
US8090313B2 (en) | Method and system for frequency-shift based chip-to-chip communications | |
WO2019027534A1 (en) | SELECTIVE FILTERING PROVIDED WITH SWITCHING | |
US20230223963A1 (en) | Radio frequency system with parallel acoustic wave filters | |
CN114696865A (zh) | 无线通信装置及其控制方法 | |
CN116318261A (zh) | 基于高速载波和无线的双模通信芯片 | |
WO2023125255A1 (zh) | 通信方法、装置、系统及存储介质 | |
EP3675381A2 (en) | Electronic device including plurality of antenna arrays | |
CN110875747B (zh) | 一种传输方法及通信设备 | |
CN106788313A (zh) | 一种滤波器的馈电电路及基于该馈电电路的装置 | |
US12009566B2 (en) | Four-way power divider and combiner for phased array system | |
CN108988887B (zh) | 用于共享单车的折叠电路 | |
WO2024109741A1 (zh) | 射频传输电路和电子设备 | |
CN113078916B (zh) | 一种超宽带接收机抑制干扰电路及抑制干扰的方法 | |
CN114785360B (zh) | 无线通信装置及方法 | |
CN220896715U (zh) | 一种WiFi6双频路由器 | |
WO2024093607A1 (zh) | 一种通信方法及装置 | |
CN114885343B (zh) | 一种通信方法及装置、存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23878788 Country of ref document: EP Kind code of ref document: A1 |