WO2024082643A1 - 一种压力机边缘控制设备及控制方法 - Google Patents

一种压力机边缘控制设备及控制方法 Download PDF

Info

Publication number
WO2024082643A1
WO2024082643A1 PCT/CN2023/097555 CN2023097555W WO2024082643A1 WO 2024082643 A1 WO2024082643 A1 WO 2024082643A1 CN 2023097555 W CN2023097555 W CN 2023097555W WO 2024082643 A1 WO2024082643 A1 WO 2024082643A1
Authority
WO
WIPO (PCT)
Prior art keywords
fpga
edge control
layer
circuit
clock
Prior art date
Application number
PCT/CN2023/097555
Other languages
English (en)
French (fr)
Inventor
林雅杰
孙健
仲太生
张军
姜涛
Original Assignee
扬力集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬力集团股份有限公司 filed Critical 扬力集团股份有限公司
Publication of WO2024082643A1 publication Critical patent/WO2024082643A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to a press edge control device and a control method in the field of intelligent control of numerical control equipment.
  • Edge computing refers to the use of an open platform that integrates network, computing, storage, and application core capabilities to provide the nearest service at the side close to the source of objects or data. Its applications are initiated at the edge side, resulting in faster network service responses, meeting the basic needs of the industry in terms of real-time business, application intelligence, security and privacy protection, and edge computing is between physical entities and industrial connections, or at the top of physical entities.
  • PLC programmable logic controller
  • the object of the present invention is to provide a press edge control method, which can improve the processing efficiency of the press for fault information and improve the reliability of the equipment.
  • the present invention provides a press edge control device, including a signal sampling circuit, a clock generation circuit, a filter, an FPGA, a functional output end, and an RS485 output port; wherein the signal sampling circuit is connected to the PT100 temperature sensor on the press, the signal sampling circuit is connected to the FPGA input end through the filter, the clock generation circuit is connected to the FPGA clock end, and the FPGA output end is respectively connected to the functional output end and the RS485 output port, and the RS485 output port is connected to the PLC controller.
  • the beneficial effect of the present invention lies in that the temperature signal on the press is collected through the signal sampling circuit, and is passed to the FPGA after filtering by the filter, the temperature change rate is calculated according to the sampled historical data to process the temperature information, and the overall heating status index score of the press is calculated by comparing the temperature information of each point, the overall heating index and the internal given threshold, an alarm signal is output, and the data is sent to the PLC, and the alarm information of the abnormal situation is directly output to the host computer or cloud server through the function output port according to the temperature status evaluation result.
  • the clock generation circuit includes a main clock circuit, the main clock circuit is connected to the frequency division circuit, the sampling clock output end of the frequency division circuit is respectively connected to the signal sampling circuit and the FPGA, and the scanning clock output end of the frequency division circuit is connected to the FPGA.
  • the main clock circuit can generate the sampling clock signal required by the signal sampling circuit and the scanning clock signal required by the FPGA through the frequency division circuit.
  • the output signal of the main clock circuit is 30MHz, and the input of the sampling clock output terminal is The output signal is 10Hz and the scan clock output is 5kHz.
  • the main clock is a 30MHz signal generated by the crystal oscillator circuit; the main clock is divided into 10Hz and 5kHz by a frequency division circuit, which can better perform data processing.
  • the communication protocol between FPGA and PLC controller is MODBUS RTU communication protocol.
  • control devices produced by different manufacturers can be connected into an industrial network for centralized monitoring, which actually has a wider applicability.
  • the present invention also provides a press edge control method, comprising the following steps:
  • Step 1 The signal sampling circuit collects data from each temperature sensor on the machine tool according to a given sampling clock and performs filtering through a filter;
  • Step 2 FPGA performs median filtering on the sampled values and calculates the temperature change rate based on the sampled historical data
  • Step 3 FPGA uses the hierarchical analysis method to process the temperature information according to the hierarchical analysis structure deployed internally, and calculates the overall heating status index score of the press;
  • Step 4 FPGA outputs an alarm signal by comparing the temperature information of each point, the overall heating index and the internal given threshold;
  • Step 5 According to the corresponding relationship between the overall heating index of the machine tool and the actual operation status, the weight of the hierarchical analysis structure is modified.
  • the beneficial effect of the present invention lies in that temperature data is collected in real time and at high speed through FPGA, and the data is packaged and sent to PLC through MODBUS RTU communication protocol, so as to realize rapid data collection and processing without occupying PLC computing resources, which is beneficial to ensuring data processing efficiency and machine tool operation safety.
  • step 1 there are a total of 12 temperature sensors in step 1, which are respectively arranged on the left rear guide rail, left middle guide rail, left front guide rail, left front connecting rod support, left connecting rod bearing, right front connecting rod support, right front guide rail, right middle guide rail, right rear guide rail, right rear connecting rod support, right connecting rod bearing, and left rear connecting rod support of the machine tool.
  • step 3 the specific contents of step 3 are as follows:
  • the target layer is the score of the heating state of the machine tool;
  • the criterion layer includes maintenance cost, failure cost, failure frequency and accuracy impact, a total of m criteria;
  • the indicator layer is the real-time temperature and temperature rise rate of each temperature measurement point, a total of n indicators;
  • n is the number of factors
  • a ij is the importance scale value obtained by comparing factor i with factor j;
  • W * (i,1) represents the value of the i-th row element of the feature vector W * ;
  • Step 3.4 single sorting consistency judgment
  • Step 3.5 total sorting consistency judgment
  • Step 3.6 obtain the target layer status indicator score.
  • the temperature information can be processed by the FPGA according to the hierarchical analysis structure deployed internally through the hierarchical analysis method to calculate the overall heating status index score of the press.
  • step 3.4 the specific contents of step 3.4 are as follows:
  • step 3.5 the specific contents of step 3.5 are as follows:
  • the total ranking weight can be obtained as follows:
  • n is the number of evaluation factors
  • m is the number of criteria
  • uj is the weight of the criterion layer
  • step 3.6 the specific contents of step 3.6 are as follows:
  • the target layer status indicator score can be obtained by the following formula:
  • K is the number of indicators
  • Y is the indicator value after normalization of real-time temperature and temperature rise rate.
  • FIG. 1 is a schematic diagram of the hardware structure of a control device of the present invention.
  • FIG. 2 is a flow chart of the control method of the present invention.
  • FIG. 3 is a schematic diagram of temperature information collection sites of the present invention.
  • FIG4 is a schematic diagram of the structure of the temperature information hierarchical analysis method of the present invention.
  • 1 left rear guide rail 1 left rear guide rail, 2 left middle guide rail, 3 left front guide rail, 4 left front connecting rod support, 5 left connecting rod bearing, 6 right front connecting rod support, 7 right front guide rail, 8 right middle guide rail, 9 right rear guide rail, 10 right rear connecting rod support, 11 right connecting rod bearing, 12 left rear connecting rod support.
  • a press edge control device includes a signal sampling circuit, a clock generation circuit, a filter, an FPGA, a function output terminal, and an RS485 output port; wherein the signal sampling circuit and the PT100 temperature sensor on the press
  • the signal sampling circuit is connected to the FPGA input terminal through a filter
  • the clock generation circuit is connected to the FPGA clock terminal
  • the FPGA output terminal is respectively connected to the function output terminal and the RS485 output port
  • the RS485 output port is connected to the PLC controller.
  • the clock generation circuit includes a main clock circuit, which is connected to the frequency division circuit.
  • the sampling clock output end of the frequency division circuit is respectively connected to the signal sampling circuit and the FPGA, and the scanning clock output end of the frequency division circuit is connected to the FPGA;
  • the output signal of the main clock circuit is 30MHz, the output signal of the sampling clock output end is 10Hz, and the output signal of the scanning clock output end is 5kHz;
  • the communication protocol between the FPGA and the PLC controller is the MODBUS RTU communication protocol.
  • a press edge control method as shown in FIG2-4 includes the following steps:
  • Step 1 The signal sampling circuit collects data from various temperature sensors on the machine tool according to a given sampling clock and completes filtering through a filter.
  • Step 2 FPGA performs median filtering on the sampled values and calculates the temperature change rate based on the sampled historical data.
  • Step 3 FPGA uses the hierarchical analysis method to process the temperature information according to the hierarchical analysis structure deployed internally, and calculates the overall heating status index score of the press.
  • the target layer is the score of the heating status indicator of the machine tool;
  • the criterion layer includes maintenance cost, failure cost, failure frequency and accuracy impact, a total of m criteria;
  • the indicator layer is the real-time temperature and temperature rise rate of each temperature measurement point, a total of n indicators;
  • n is the number of factors
  • a ij is the importance scale value obtained by comparing factor i with factor j;
  • W * (i,1) represents the value of the i-th row element of the feature vector W * ;
  • Step 3.4 single sorting consistency judgment.
  • Step 3.5 total sorting consistency judgment
  • the matrix transposition evaluates the consistency index of the total ranking of the structure as follows:
  • the total ranking weight can be obtained as follows:
  • n is the number of evaluation factors
  • m is the number of criteria
  • uj is the weight of the criterion layer
  • Step 3.6 obtain the target layer status indicator score.
  • the target layer status indicator score can be obtained by the following formula:
  • K is the number of indicators
  • Y is the indicator value after normalization and transformation of real-time temperature and temperature rise rate.
  • Step 4 FPGA outputs an alarm signal by comparing the temperature information of each point, the overall heating index and the internal given threshold;
  • Step 5 According to the corresponding relationship between the overall heating index of the machine tool and the actual operation status, the weight of the hierarchical analysis structure is modified.
  • the signal sampling circuit is used to collect real-time temperature data during the operation of the press;
  • the clock generation circuit is used to generate the 10Hz sampling clock and 5k scanning clock required by the signal sampling circuit and FPGA;
  • the filter is used to denoise the temperature data;
  • the FPGA is used to deploy the required temperature information processing flow;
  • the function output end is used for the FPGA to directly output alarm information under abnormal circumstances; and
  • the RS485 output port is used to communicate with the press PLC.
  • edge control devices are used to collect temperature data in real time and at high speed through the internal FPGA, and the data is packaged and sent to the PLC through the MODBUS RTU communication protocol, so as to achieve rapid data collection and processing without occupying PLC computing resources, and can also transmit data that cannot be processed by the PLC to the cloud server or host computer through the function output terminal for processing, and directly output alarm information for abnormal situations based on the temperature status evaluation results, which is conducive to ensuring data processing efficiency and machine tool operation safety.
  • a hierarchical analysis structure is established, and data is processed and adjusted through the hierarchical analysis method.
  • the internal program can be redeployed; the deployed edge control device does not affect the machine tool PLC program itself; it greatly improves the adaptability to specific scenario business and the flexibility of the press in variable personalized configuration.
  • the present invention aims to improve the reliability and intelligence of the press.
  • the device collects the real-time temperature information of the kinematic pair during the operation of the machine tool through a temperature sensor; cleans and converts the temperature information according to the loaded algorithm, and uses the hierarchical analysis method to evaluate the temperature status of the whole machine; the device outputs the temperature information to the machine tool PLC control system through the RS485 port; the device is equipped with a functional output port, and directly outputs alarm information for abnormal conditions based on the temperature status evaluation results.
  • the machine tool status information processing program and the machine tool logic control program are isolated, which further improves the efficiency of the machine tool in processing fault information and effectively improves the reliability of the equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

一种压力机边缘控制设备,包括信号采样电路、时钟生成电路、滤波器、FPGA、功能输出端、RS485输出端口;其中,信号采样电路与压力机上的PT100温度传感器相连,信号采样电路通过滤波器与FPGA输入端相连,时钟生成电路与FPGA时钟端相连,FPGA输出端分别与功能输出端和RS485输出端口相连,RS485输出端口与PLC控制器相连;FPGA通过比较各点温度信息、整体发热指标与内部给定阈值的大小,输出报警信号,并且将数据发送至PLC控制器。

Description

一种压力机边缘控制设备及控制方法 技术领域
本发明涉及一种数控装备智能控制领域内的压力机边缘控制设备及控制方法。
背景技术
边缘计算,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求,且边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。
在智能制造的背景下,机床要求需要实现设备协同、物料和装备的有效连接和交流,具备信息交互、柔性化生产、高可靠性与安全性等特征。因此,传统机床的控制系统主要存在以下方面问题:
智能仪表在机床生产过程中的数据采集伴随了大量信息数据的产生。传统机床普遍采用的可编程逻辑控制器(Programmable Logic Controller,PLC)系统已经无法满足对数据进行高效清洗和运算处理的需求。
传统机床控制系统无法有效支持复杂数据模型的运算,导致生产过程数据无法做到完全准确和透明。
发明内容
本发明的目的是提供一种压力机边缘控制方法,可以提高压力机对故障信息的处理效率,并提高装备的可靠性。
为实现上述目的,本发明提供了一种压力机边缘控制设备,包括信号采样电路、时钟生成电路、滤波器、FPGA、功能输出端、RS485输出端口;其中,信号采样电路与压力机上的PT100温度传感器相连,信号采样电路通过滤波器与FPGA输入端相连,时钟生成电路与FPGA时钟端相连,与FPGA输出端分别与功能输出端和RS485输出端口相连,RS485输出端口与PLC控制器相连。
与现有技术相比,本发明的有益效果在于,通过信号采样电路采集压力机上的温度信号,并由滤波器滤波处理后传递给FPGA中,根据采样的历史数据计算温度变化速率对温度信息进行处理,计算压力机整体的发热状态指标score通过比较各点温度信息、整体发热指标与内部给定阈值的大小,输出报警信号,并且将数据发送至PLC,通过功能输出端口依据温度状态评估结果对异常情况直接输出告警信息至上位机或者云端服务器。
作为本发明的进一步改进,时钟生成电路包括主时钟电路,主时钟电路与分频电路相连,分频电路的采样时钟输出端分别与信号采样电路和FPGA相连,分频电路的扫描时钟输出端与FPGA相连。
这样可以由主时钟电路通过分频电路生成信号采样电路所需的采样时钟信号和FPGA所需的扫描时钟信号。
作为本发明的进一步改进,主时钟电路的输出信号为30MHz,采样时钟输出端的输 出信号为10Hz,扫描时钟输出端的为5kHz。
这样主时钟为晶振电路所产生的30MHz信号;采用分频电路将主时钟分别分频为10Hz和5kHz,能够更好进行数据处理。
作为本发明的进一步改进,FPGA和PLC控制器的通讯协议为MODBUS RTU通讯协议。
这样不同厂商生产的控制设备可以连成工业网络,进行集中监控,其实适用性更广。
为实现上述目的,本发明还提供了一种压力机边缘控制方法,包括以下步骤,
步骤1,信号采样电路根据所给定的采样时钟对机床上各个温度传感器数据进行采集,并通过滤波器完成滤波;
步骤2,FPGA对采样值进行中值滤波,并根据采样的历史数据计算温度变化速率;
步骤3,FPGA采用层次分析法根据内部所部署的层次分析结构对温度信息进行处理,计算压力机整体的发热状态指标score;
步骤4,FPGA通过比较各点温度信息、整体发热指标与内部给定阈值的大小,输出报警信号;
步骤5,根据机床整体发热指标与实际运行情况的对应关系,对层次分析结构的权值进行修正。
与现有技术相比,本发明的有益效果在于,通过FPGA对温度数据进行实时高速采集,并通过MODBUS RTU通讯协议将数据打包发送至PLC,在不占用PLC运算资源的情况下实现数据的快速采集和处理,有利于保证数据处理效率和机床运行安全。
作为本发明的进一步改进,步骤1中的温度传感器一共12个,分别设置在机床左后导轨、左中导轨、左前导轨、左前连杆支承、左连杆瓦、右前连杆支承、右前导轨、右中导轨、右后导轨、右后连杆支承、右连杆瓦、左后连杆支承。
这样可以对压力机各个部分的温度实施精确监测,能够更全面地采集压力机运行过程中的实时温度数据。
作为本发明的进一步改进,步骤3具体内容如下,
步骤3.1,步骤S11:建立层次分析结构,包括目标层、准则层和指标层;目标层为机床发热状态指标score;准则层包括维修成本、失效成本、失效频率和精度影响,共计m个准则;指标层为各个温度测量点位的实时温度和温升速率,共计n个指标;
步骤3.2,构造比较矩阵A=(aij)n×n以反映其对于给定元素的重要程度。其中,n为因素个数,aij为因素i相对于因素j比较所得的重要性标度值;
步骤3.3,计算各比较矩阵A的最大特征值λmax及其对应的特征列向量W*,将其归一化后作为权向量W=(w1,w2…,wn)T
式中:W*(i,1)表示特征向量W*的第i行元素值;
步骤3.4,单排序一致性判断;
步骤3.5,总排序一致性判断;
步骤3.6,目标层状态指标score的获取。
这样可以通过层次分析法FPGA根据内部所部署的层次分析结构对温度信息进行处理,计算压力机整体的发热状态指标score。
作为本发明的进一步改进,步骤3.4具体内容如下,
当且仅当λmax=n时,A是一致的;为保证比较矩阵具有较强的逻辑性、比较结果具有良好的协调性,需要对比较矩阵进行一致性检验,其判断标准可由一致性比率CR确定;
其中为A的一致性指标,RI为随机一致性指标。
作为本发明的进一步改进,步骤3.5具体内容如下,
设准则层B层对目标层A层的权向量分别为W=(w1,w2,…,wm)T,其下一层次C层与B层相关元素一致性指标为CI(j)(j=1,…,m),则评价结构总排序一致性指标为:
当CR<0.10时,通过总排序一致性检验并接受层次分析结果;
总排序权重可由下式得到:
其中,n为评价因素个数,m为准则个数,uj为准则层权重,WI=(wij)n×m为指标层相对于准则层的权重。
作为本发明的进一步改进,步骤3.6具体内容如下,
目标层状态指标score可以由下式获得:
式中K为指标数量,Y为实时温度和温升速率归一化转化后的指标值
附图说明
图1为本发明的控制设备硬件结构示意图。
图2为本发明控制方法流程图。
图3为本发明温度信息采集位点示意图。
图4为本发明温度信息层次分析法结构示意图。
其中,1左后导轨,2左中导轨,3左前导轨,4左前连杆支承,5左连杆瓦,6右前连杆支承,7右前导轨,8右中导轨,9右后导轨,10右后连杆支承,11右连杆瓦,12左后连杆支承。
具体实施方式
下面结合附图对本发明进一步说明:
如图1所示的一种压力机边缘控制设备,包括信号采样电路、时钟生成电路、滤波器、FPGA、功能输出端、RS485输出端口;其中,信号采样电路与压力机上的PT100温度传感器 相连,信号采样电路通过滤波器与FPGA输入端相连,时钟生成电路与FPGA时钟端相连,与FPGA输出端分别与功能输出端和RS485输出端口相连,RS485输出端口与PLC控制器相连。
时钟生成电路包括主时钟电路,主时钟电路与分频电路相连,分频电路的采样时钟输出端分别与信号采样电路和FPGA相连,分频电路的扫描时钟输出端与FPGA相连;主时钟电路的输出信号为30MHz,采样时钟输出端的输出信号为10Hz,扫描时钟输出端的为5kHz;FPGA和PLC控制器的通讯协议为MODBUS RTU通讯协议。
如图2-4所示的一种压力机边缘控制方法,包括以下步骤,
包括以下步骤,
步骤1,信号采样电路根据所给定的采样时钟对机床上各个温度传感器数据进行采集,并通过滤波器完成滤波。
温度传感器一共12个,分别设置在机床的左后导轨1、左中导轨2、左前导轨3、左前连杆支承4、左连杆瓦5、右前连杆支承6、右前导轨7、右中导轨8、右后导轨9、右后连杆支承10、右连杆瓦11、左后连杆支承12。
步骤2,FPGA对采样值进行中值滤波,并根据采样的历史数据计算温度变化速率。
步骤3,FPGA采用层次分析法根据内部所部署的层次分析结构对温度信息进行处理,计算压力机整体的发热状态指标score。
步骤3.1,步骤S11:建立层次分析结构,包括目标层、准则层和指标层;目标层为机床发热状态指标score;准则层包括维修成本、失效成本、失效频率和精度影响,共计m个准则;指标层为各个温度测量点位的实时温度和温升速率,共计n个指标;;
步骤3.2,构造比较矩阵A=(aij)n×n以反映其对于给定元素的重要程度。其中,n为因素个数,aij为因素i相对于因素j比较所得的重要性标度值;
步骤3.3,计算各比较矩阵A的最大特征值λmax及其对应的特征列向量W*,将其归一化后作为权向量W=(w1,w2…,wn)T
式中:W*(i,1)表示特征向量W*的第i行元素值;
步骤3.4,单排序一致性判断。
当且仅当λmax=n时,A是一致的;为保证比较矩阵具有较强的逻辑性、比较结果具有良好的协调性,需要对比较矩阵进行一致性检验,其判断标准可由一致性比率CR确定;
其中为A的一致性指标,RI为随机一致性指标。
步骤3.5,总排序一致性判断;
设准则层B层对目标层A层的权向量分别为W=(w1,w2,…,wm)T,T为矩阵转置,其下一层次C层与B层相关元素一致性指标为CI(j)(j=1,…,m),矩阵转置则评价结构总排序一致性指标为:
当CR<0.10时,通过总排序一致性检验并接受层次分析结果;
总排序权重可由下式得到:
其中,n为评价因素个数,m为准则个数,uj为准则层权重,WI=(wij)n×m为指标层相对于准则层的权重。
步骤3.6,目标层状态指标score的获取。
目标层状态指标score可以由下式获得:
式中K为指标数量,Y为实时温度和温升速率归一化转化后的指标值。
步骤4,FPGA通过比较各点温度信息、整体发热指标与内部给定阈值的大小,输出报警信号;
步骤5,根据机床整体发热指标与实际运行情况的对应关系,对层次分析结构的权值进行修正。
本发明中,信号采样电路用于采集压力机运行过程中的实时温度数据;时钟生成电路用于生成信号采样电路和FPGA所需的10Hz采样时钟与5k扫描时钟;滤波器用于对温度数据进行去噪处理;FPGA用于部署所要求的温度信息处理流程;功能输出端用于异常情况下FPGA直接输出告警信息;RS485输出端口用于与压力机PLC的通讯。
支持温度信息节点的扩展和高效数据处理。由于直接采用PLC系统对机床温度信息进行采集和处理将产生硬件电路复杂、数据量过大、计算能力不足等问题;因此采用边缘控制设备通过内部FPGA对温度数据进行实时高速采集,并通过MODBUS RTU通讯协议将数据打包发送至PLC,在不占用PLC运算资源的情况下实现数据的快速采集和处理,而且还能将PLC不能处理的数据通过功能输出端传输给云端服务器或者上位机进行处理,并且依据温度状态评估结果对异常情况直接输出告警信息,有利于保证数据处理效率和机床运行安全。
建立层次分析结构,通过层次分析法处数据进行处理调整。当温度传感节点进行调整或者FPGA内部搭载的温度处理程序无法满足要求或需要进行参数修改时,可对内部程序进行重新部署;部署后的边缘控制设备不对机床PLC本身程序产生影响;极大提升了对特定场景业务的适应性,提高了压力机在多变的个性化配置的灵活性。
本发明旨在提高压力机的可靠性与智能化程度。设备通过温度传感器采集机床运行过程中的运动副实时温度信息;根据所装载的算法对温度信息进行清洗、转换,并采用层次分析法对整机温度状态进行评估;设备通过RS485端口将温度信息输出至机床PLC控制系统;设备搭载功能输出口,依据温度状态评估结果对异常情况直接输出告警信息。通过在边缘侧对温度信息进行采集与处理,将机床状态信息处理程序和机床逻辑控制程序隔离,进一步提高了机床对故障信息的处理效率,并有效提高了装备的可靠性。
本发明不局限于上述实施例,在本公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换 和变形,这些替换和变形均在本发明的保护范围内。

Claims (10)

  1. 一种压力机边缘控制设备,其特征在于:包括信号采样电路、时钟生成电路、滤波器、FPGA、功能输出端、RS485输出端口;
    其中,信号采样电路与压力机上的PT100温度传感器相连,信号采样电路通过滤波器与FPGA输入端相连,时钟生成电路与FPGA时钟端相连,与FPGA输出端分别与功能输出端和RS485输出端口相连,RS485输出端口与PLC控制器相连。
  2. 根据权利要求1所述的一种压力机边缘控制设备,其特征在于:时钟生成电路包括主时钟电路,主时钟电路与分频电路相连,分频电路的采样时钟输出端分别与信号采样电路和FPGA相连,分频电路的扫描时钟输出端与FPGA相连。
  3. 根据权利要求2所述的一种压力机边缘控制设备,其特征在于:主时钟电路的输出信号为30MHz,采样时钟输出端的输出信号为10Hz,扫描时钟输出端的为5kHz。
  4. 根据权利要求3所述的一种压力机边缘控制设备,其特征在于:FPGA和PLC控制器的通讯协议为MODBUS RTU通讯协议。
  5. 一种压力机边缘控制方法,其特征在于:利用权利要求1-4任意一项所述的一种压力机边缘控制设备,包括以下步骤,
    步骤1,信号采样电路根据所给定的采样时钟对机床上各个温度传感器数据进行采集,并通过滤波器完成滤波;
    步骤2,FPGA对采样值进行中值滤波,并根据采样的历史数据计算温度变化速率;
    步骤3,FPGA采用层次分析法根据内部所部署的层次分析结构对温度信息进行处理,计算压力机整体的发热状态指标score;
    步骤4,FPGA通过比较各点温度信息、整体发热指标与内部给定阈值的大小,输出报警信号;
    步骤5,根据机床整体发热指标与实际运行情况的对应关系,对层次分析结构的权值进行修正。
  6. 根据权利要求5所述的一种压力机边缘控制方法,其特征在于:步骤1中的温度传感器一共12个,分别设置在机床左后导轨、左中导轨、左前导轨、左前连杆支承、左连杆瓦、右前连杆支承、右前导轨、右中导轨、右后导轨、右后连杆支承、右连杆瓦、左后连杆支承。
  7. 根据权利要求6所述的一种压力机边缘控制方法,其特征在于:步骤3具体内容如下,
    步骤3.1,步骤S11:建立层次分析结构,包括目标层、准则层和指标层;目标层为机床发热状态指标score;准则层包括维修成本、失效成本、失效频率和精度影响,共计m个准则;指标层为各个温度测量点位的实时温度和温升速率,共计n个指标;;
    步骤3.2,构造比较矩阵A=(aij)n×n以反映其对于给定元素的重要程度。其中,n为因素个数,aij为因素i相对于因素j比较所得的重要性标度值;
    步骤3.3,计算各比较矩阵A的最大特征值λmax及其对应的特征列向量W*,将其归一化后作为权向量W=(w1,w2…,wn)T
    式中:W*(i,1)表示特征向量W*的第i行元素值;
    步骤3.4,单排序一致性判断;
    步骤3.5,总排序一致性判断;
    步骤3.6,目标层状态指标score的获取。
  8. 根据权利要求7所述的一种压力机边缘控制方法,其特征在于:步骤3.4具体内容如下,
    当且仅当λmax=n时,A是一致的;为保证比较矩阵具有较强的逻辑性、比较结果具有良好的协调性,需要对比较矩阵进行一致性检验,其判断标准可由一致性比率CR确定;
    其中为A的一致性指标,RI为随机一致性指标。
  9. 根据权利要求8所述的一种压力机边缘控制方法,其特征在于:步骤3.5具体内容如下,
    设准则层B层对目标层A层的权向量分别为W=(w1,w2,…,wm)T,T为矩阵转置,其下一层次C层与B层相关元素一致性指标为CI(j)(j=1,…,m),矩阵转置则评价结构总排序一致性指标为:
    当CR<0.10时,通过总排序一致性检验并接受层次分析结果;
    总排序权重可由下式得到:
    其中,n为评价因素个数,m为准则个数,uj为准则层权重,WI=(wij)n×m为指标层相对于准则层的权重。
  10. 根据权利要求9所述的一种压力机边缘控制方法,其特征在于:步骤3.6具体内容如下,
    目标层状态指标score可以由下式获得:
    式中K为指标数量,Y为实时温度和温升速率归一化转化后的指标值。
PCT/CN2023/097555 2022-10-19 2023-05-31 一种压力机边缘控制设备及控制方法 WO2024082643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211280057.2A CN115657533A (zh) 2022-10-19 2022-10-19 一种压力机边缘控制设备及控制方法
CN202211280057.2 2022-10-19

Publications (1)

Publication Number Publication Date
WO2024082643A1 true WO2024082643A1 (zh) 2024-04-25

Family

ID=84989892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097555 WO2024082643A1 (zh) 2022-10-19 2023-05-31 一种压力机边缘控制设备及控制方法

Country Status (2)

Country Link
CN (1) CN115657533A (zh)
WO (1) WO2024082643A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115657533A (zh) * 2022-10-19 2023-01-31 扬力集团股份有限公司 一种压力机边缘控制设备及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157788A (ja) * 2002-11-06 2004-06-03 Ntt Power & Building Facilities Inc 建物性能総合評価システム及びその方法
CN101520868A (zh) * 2009-02-24 2009-09-02 上海大学 将层次分析法运用于审稿专家信息数据库系统的方法
CN203191100U (zh) * 2013-04-23 2013-09-11 周莹 一种机械压力机温度检测装置
CN209433024U (zh) * 2019-03-14 2019-09-24 南方科技大学 一种时钟同步电路和海底地震仪
CN110297464A (zh) * 2019-06-28 2019-10-01 江苏南高智能装备创新中心有限公司 基于数控机床上传感器数据的故障预测系统及其方法
CN110874509A (zh) * 2019-11-14 2020-03-10 北京信息科技大学 一种高端数控装备多维信息融合状态评价方法
CN113776794A (zh) * 2021-08-13 2021-12-10 昆明理工大学 一种嵌入式边缘计算的故障诊断方法、装置和系统
CN115657533A (zh) * 2022-10-19 2023-01-31 扬力集团股份有限公司 一种压力机边缘控制设备及控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108256763A (zh) * 2018-01-15 2018-07-06 苏州索及信息技术有限公司 基于层次分析法的非标零部件供应商制造能力分析方法及装置
CN109697151A (zh) * 2018-12-28 2019-04-30 郑州云海信息技术有限公司 一种服务器中背板防短路烧毁的方法及系统
CN112200327B (zh) * 2020-10-14 2023-10-17 北京理工大学 一种mes设备维护预警方法及系统
CN113688120A (zh) * 2021-08-30 2021-11-23 维沃移动通信有限公司 数据仓库的质量检测方法、装置和电子设备
CN114089690B (zh) * 2021-10-25 2022-05-31 西北工业大学 一种用于车间监控的边缘计算设备与方法
CN114548637A (zh) * 2021-11-04 2022-05-27 国网浙江省电力有限公司湖州供电公司 一种基于ahp-rst的电力通信骨干数据网络安全综合评估方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157788A (ja) * 2002-11-06 2004-06-03 Ntt Power & Building Facilities Inc 建物性能総合評価システム及びその方法
CN101520868A (zh) * 2009-02-24 2009-09-02 上海大学 将层次分析法运用于审稿专家信息数据库系统的方法
CN203191100U (zh) * 2013-04-23 2013-09-11 周莹 一种机械压力机温度检测装置
CN209433024U (zh) * 2019-03-14 2019-09-24 南方科技大学 一种时钟同步电路和海底地震仪
CN110297464A (zh) * 2019-06-28 2019-10-01 江苏南高智能装备创新中心有限公司 基于数控机床上传感器数据的故障预测系统及其方法
CN110874509A (zh) * 2019-11-14 2020-03-10 北京信息科技大学 一种高端数控装备多维信息融合状态评价方法
CN113776794A (zh) * 2021-08-13 2021-12-10 昆明理工大学 一种嵌入式边缘计算的故障诊断方法、装置和系统
CN115657533A (zh) * 2022-10-19 2023-01-31 扬力集团股份有限公司 一种压力机边缘控制设备及控制方法

Also Published As

Publication number Publication date
CN115657533A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2024082643A1 (zh) 一种压力机边缘控制设备及控制方法
CN111461555A (zh) 一种生产线质量监测方法、装置及系统
CN108627720B (zh) 一种基于贝叶斯算法的电力设备状态监测方法
CN104732276A (zh) 一种计量生产设施故障在线诊断方法
CN104615122B (zh) 一种工控信号检测系统及检测方法
CN111143438A (zh) 一种基于流处理的车间现场数据实时监测与异常检测方法
CN112415331B (zh) 基于多源故障信息的电网二次系统故障诊断方法
US20230118175A1 (en) Event analysis in an electric power system
CN111080074A (zh) 基于网络多特征关联的系统服役安全态势要素获取方法
WO2022048050A1 (zh) 一种大数据信息采集系统及使用方法
CN105978145B (zh) 智能变电站二次系统信息融合系统
CN103617447A (zh) 智能变电站的评价系统及评价方法
CN113220751A (zh) 多源数据状态量的计量系统及评估方法
CN116820277A (zh) 一种用于电磁触控屏的防电磁辐射与抗干扰方法
CN109613372B (zh) 一种基于多元电网数据库的电网故障诊断方法
CN105568732A (zh) 盘磨机控制方法
CN105652120A (zh) 电力变压器故障检测方法和检测系统
CN112541634A (zh) 一种顶层油温预测、误报火警判别方法、装置和存储介质
CN117034149A (zh) 故障处理策略确定方法、装置、电子设备和存储介质
CN110866615A (zh) 一种变电站及其无故障时间计算方法、回路状态检修方法
CN114925476A (zh) 一种滚动轴承退化轨迹增广四元数预测方法及存储介质
CN108761258A (zh) 基于人工智能和大数据技术的变压器短期过载能力评估系统
Jingyu et al. Statistical analysis of distribution network fault information based on multi-source heterogeneous data mining
CN113985156A (zh) 一种基于变压器声纹大数据的智能故障识别方法
CN113267711A (zh) 变电站高压电气设备绝缘状态在线监测系统及监测方法