WO2024082627A1 - 一种光学成像镜组及其应用 - Google Patents

一种光学成像镜组及其应用 Download PDF

Info

Publication number
WO2024082627A1
WO2024082627A1 PCT/CN2023/094994 CN2023094994W WO2024082627A1 WO 2024082627 A1 WO2024082627 A1 WO 2024082627A1 CN 2023094994 W CN2023094994 W CN 2023094994W WO 2024082627 A1 WO2024082627 A1 WO 2024082627A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical imaging
imaging lens
lens assembly
image
optical
Prior art date
Application number
PCT/CN2023/094994
Other languages
English (en)
French (fr)
Inventor
敬天帅
周旭东
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211285802.2A external-priority patent/CN117950163A/zh
Priority claimed from CN202211285770.6A external-priority patent/CN117950158A/zh
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2024082627A1 publication Critical patent/WO2024082627A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Definitions

  • the present application relates to the field of display imaging technology, and in particular to an optical imaging lens assembly and its application.
  • Display imaging technology is widely used in various industries. Among them, scanning display imaging, as an emerging display technology, can be used in various application scenarios such as projection display and near-eye display.
  • the existing scanning display imaging systems have disadvantages such as high processing difficulty, high mass production cost and poor imaging quality, which have resulted in certain limitations in the market promotion and application of scanning display imaging technology, especially in the field of fiber optic scanning display technology. Since the image formed during fiber optic scanning is a curved surface, it is difficult to achieve clear imaging of the image curved surface.
  • the embodiments of the present application provide an optical imaging lens assembly and application thereof to solve the problem of clear imaging of curved surface images on the image side.
  • an embodiment of the present application provides an optical imaging lens assembly, the optical imaging lens assembly comprising a plurality of lenses, the plurality of lenses being arranged in sequence from a first side to a second side along a common optical axis, the second side of the optical imaging lens assembly corresponding to a curved surface image;
  • the lens surface close to the curved surface image and opposite to the curved surface image is a concave surface, and the distance between the concave surface and the curved surface image on the optical axis is the working distance of the optical imaging lens assembly, and the working distance is 0.2 mm-1.5 mm;
  • the lens with the concave surface has a first side surface and a second side surface in sequence from the first side to the second side, and the second side surface corresponds to the concave surface; when the optical imaging lens group is working, the light forms maximum intersection heights Y1, Y2 and Y3 with the first side surface, the second side surface and the curved surface image in sequence, wherein the relationship among Y1, Y2 and Y3 is: 1.5 ⁇ Y1/Y2 ⁇ 2.5; 1.2 ⁇ Y2/Y3 ⁇ 2.0.
  • Y1, Y2 and Y3 1.6 ⁇ Y1/Y2 ⁇ 1.9; 1.3 ⁇ Y2/Y3 ⁇ 1.5.
  • a focal length Fi of the negative lens and a total focal length Ftotal of the optical imaging lens assembly satisfy the following relationship: 0.2 ⁇
  • the total focal length is 2mm-3.5mm;
  • the total focal length of the optical imaging lens assembly and the working distance are related by the following equation: 2.95 ⁇
  • Ftotal /Fworking distance ⁇ 14.43 wherein Ftotal is the total focal length of the optical imaging lens assembly, and Fworking distance is the working distance of the optical imaging lens assembly.
  • the working distance is 0.2 mm-1.1 mm.
  • the total focal length and the working distance of the optical imaging lens assembly have the following relationship: 2.95 ⁇ Ftotal /Fworking distance ⁇ 14.43 , wherein Ftotal is the total focal length of the optical imaging lens assembly, and Fworking distance is the working distance of the optical imaging lens assembly.
  • the working distance is 0.2 mm-1.1 mm.
  • the working distance is 0.3-0.5 mm.
  • the working distance is 0.4-0.8 mm.
  • the exit pupil distance of the optical imaging lens assembly is 1.3-5.3 mm.
  • the exit pupil distance of the optical imaging lens assembly is 1.6-3.7 mm.
  • the curved surface orientation of the curved surface image is the same as the curved surface orientation of the concave surface.
  • the curved image is formed by the swing of an optical fiber carrying an optical signal.
  • the projection of the curved surface image along the optical axis direction is a curved surface projection
  • the integral surface area on the curved surface image is a first integral surface area
  • the integral surface area corresponding to the first integral surface area on the curved surface projection is a second integral surface area
  • the first integral surface area corresponds to the second integral surface area one-to-one
  • the size of the second integral surface area on the curved surface projection gradually decreases from the center to the periphery.
  • a tangent plane passing through the center point of the curved image has a normal vector perpendicular to the tangent plane, the normal vector passes through the center point, the center point is the intersection point O of the curved image and the tangent plane, any point on the curved image that does not pass through the intersection point O is P, the projection point corresponding to the point P on the normal vector is P', and the displacement D from the intersection point O to the P' has the following relationship: 0 ⁇ D ⁇ 0.5mm;
  • the slope through the point P becomes smaller as the point P moves away from the normal vector.
  • the embodiment of the present application further provides an application of the above-mentioned optical imaging lens assembly, wherein the optical imaging lens assembly is applied in the display field or the imaging field.
  • FIG. 1a and 1b are schematic diagrams of the structures of illustrative scanning display systems
  • FIG2 is a schematic diagram of a scanning output of a fiber optic scanner provided in an embodiment of the present application.
  • FIG3a is a schematic structural diagram of an optical imaging lens assembly provided in an embodiment of the present application with respect to concave surface, curved surface images and working distance;
  • FIG3 b is a schematic structural diagram of an optical imaging lens assembly provided in an embodiment of the present application regarding concave and curved surface images as well as Y1, Y2 and Y3;
  • FIG3c is a schematic structural diagram of an optical imaging lens assembly provided in an embodiment of the present application with respect to an exit pupil distance;
  • FIG4 is a schematic diagram showing the structural characteristics of a curved image corresponding to an optical imaging lens assembly provided in an embodiment of the present application
  • FIG5 is a schematic structural diagram of an optical imaging lens assembly provided in Example 1 of the present application.
  • FIG6 is a graph showing the MTF curve of the optical imaging lens assembly in the first embodiment of the present application.
  • FIG7 is a graph showing the field curvature distortion curve of the optical imaging lens assembly in the first embodiment of the present application.
  • FIG8 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 1 of the present application.
  • FIG9 is a schematic diagram of the structure of an optical imaging lens assembly provided in Example 2 of the present application.
  • FIG10 is a graph showing the MTF curve of the optical imaging lens assembly in the second embodiment of the present application.
  • FIG11 is a graph showing a field curvature distortion curve of the optical imaging lens assembly in the second embodiment of the present application.
  • FIG12 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 2 of the present application.
  • FIG13 is a schematic diagram of the structure of an optical imaging lens assembly provided in Example 3 of the present application.
  • FIG14 is a graph showing the MTF curve of the optical imaging lens assembly in the third embodiment of the present application.
  • FIG15 is a graph showing the field curvature distortion curve of the optical imaging lens assembly in the third embodiment of the present application.
  • FIG16 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 3 of the present application.
  • FIG17 is a schematic diagram of the structure of an optical imaging lens assembly provided in Embodiment 4 of the present application.
  • FIG18 is a MTF curve diagram of the optical imaging lens assembly in the fourth embodiment of the present application.
  • FIG19 is a graph showing a field curvature distortion curve of the optical imaging lens assembly in the fourth embodiment of the present application.
  • FIG20 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 4 of the present application.
  • FIG21 is a schematic diagram of the structure of an optical imaging lens assembly provided in Example 5 of the present application.
  • FIG22 is a graph showing the MTF curve of the optical imaging lens assembly in Embodiment 5 of the present application.
  • FIG23 is a graph showing the field curvature distortion curve of the optical imaging lens assembly in Embodiment 5 of the present application.
  • FIG24 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 5 of the present application.
  • FIG25 is a schematic diagram of the structure of an optical imaging lens assembly provided in Example 6 of the present application.
  • FIG26 is a graph showing the MTF curve of the optical imaging lens assembly in Example 6 of the present application.
  • FIG27 is a graph showing a field curvature distortion curve of the optical imaging lens assembly in Example 6 of the present application.
  • FIG28 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 6 of the present application.
  • FIG29 is a schematic diagram of the structure of an optical imaging lens assembly provided in Embodiment 7 of the present application.
  • FIG30 is a graph showing the MTF curve of the optical imaging lens assembly in Embodiment 7 of the present application.
  • FIG31 is a graph showing a field curvature distortion curve of the optical imaging lens assembly in Embodiment 7 of the present application.
  • FIG32 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 7 of the present application.
  • FIG33 is a schematic diagram of the structure of an optical imaging lens assembly provided in Embodiment 8 of the present application.
  • FIG34 is a graph showing the MTF curve of the optical imaging lens assembly in Embodiment 8 of the present application.
  • FIG35 is a graph showing a field curvature distortion curve of the optical imaging lens assembly in Embodiment 8 of the present application.
  • FIG36 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 8 of the present application.
  • FIG37 is a schematic diagram of the structure of an optical imaging lens assembly provided in Example 9 of the present application.
  • FIG38 is a graph showing the MTF curve of the optical imaging lens assembly in Embodiment 9 of the present application.
  • FIG39 is a graph showing a field curvature distortion curve of the optical imaging lens assembly in Embodiment 9 of the present application.
  • FIG40 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 9 of the present application.
  • FIG41 is a schematic diagram of the structure of an optical imaging lens assembly provided in Example 10 of the present application.
  • FIG42 is a graph showing the MTF curve of the optical imaging lens assembly in the tenth embodiment of the present application.
  • FIG43 is a graph showing a field curvature distortion curve of the optical imaging lens assembly in the tenth embodiment of the present application.
  • FIG44 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 10 of the present application.
  • FIG45 is a schematic diagram of the structure of an optical imaging lens assembly provided in Example 11 of the present application.
  • FIG46 is a graph showing the MTF curve of the optical imaging lens assembly in the eleventh embodiment of the present application.
  • FIG47 is a graph showing a field curvature distortion curve of the optical imaging lens assembly in the eleventh embodiment of the present application.
  • FIG48 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 11 of the present application.
  • FIG49 is a schematic diagram of the structure of an optical imaging lens assembly provided in Example 12 of the present application.
  • FIG50 is a MTF curve diagram of the optical imaging lens assembly in Example 12 of the present application.
  • FIG51 is a graph showing a field curvature distortion curve of the optical imaging lens assembly in the twelfth embodiment of the present application.
  • FIG52 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 12 of the present application.
  • FIG53 is a schematic diagram of the structure of an optical imaging lens assembly provided in Example 13 of the present application.
  • FIG54 is a MTF curve diagram of the optical imaging lens assembly in Example 13 of the present application.
  • FIG55 is a graph showing a field curvature distortion curve of the optical imaging lens assembly in Example 13 of the present application.
  • FIG. 56 is a diagram of vertical axis chromatic aberration of the optical imaging lens assembly in Example 13 of the present application.
  • Icons 100-processor; 110-laser group; 120-fiber scanning module; 130-transmission fiber; 140-light source modulation circuit; 150-scanning drive circuit; 160-beam combining unit; 121-scanning actuator; 121a-slow axis; 121b-fast axis; 122-fiber cantilever; 123-mirror group; 124-scanner package; 125-fixing part; 230-scanning surface; 240-imaging plane; 01-aperture; 02-scanning surface; 03 -aperture; 04-scanning surface; 05-aperture; 06-scanning surface; 07-aperture; 08-scanning surface; 09-aperture; 10-scanning surface; 11-aperture; 12-scanning surface; 13-aperture; 14-scanning surface; 15-aperture; 16-scanning surface; 17-aperture; 18-scanning surface; 19-aperture; 20-scanning surface; 21
  • MEMS micro-electro-mechanical system
  • FSD fiber scanning display
  • FIG. 1a it is an illustrative scanning display system in the present application, which mainly includes:
  • the processor 100 the laser group 110, the optical fiber scanning module 120, the transmission optical fiber 130, the light source modulation circuit 140, the scanning driving circuit 150 and the beam combining unit 160.
  • the processor 100 may be a graphics processing unit (GPU), a central processing unit (CPU), or other chips or circuits with control functions and image processing functions, which are not specifically limited here.
  • GPU graphics processing unit
  • CPU central processing unit
  • image processing functions which are not specifically limited here.
  • the processor 100 can control the light source modulation circuit 140 to modulate the laser group 110 according to the image data to be displayed.
  • the laser group 110 includes multiple monochromatic lasers, which emit light beams of different colors. As can be seen from FIG. 1a, the laser group 110 can specifically use three-color lasers: red (Red, R), green (Green, G), and blue (Blue, B).
  • the light beams emitted by the lasers in the laser group 110 are combined into a laser beam by the beam combining unit 160 and coupled into the transmission optical fiber 130.
  • the processor 100 may also control the scanning driving circuit 150 to drive the optical fiber scanner in the optical fiber scanning module 120 to scan, thereby scanning and outputting the light beam transmitted in the transmission optical fiber 130 .
  • the light beam output by the optical fiber scanner acts on a certain pixel position on the surface of the medium and forms a light spot at the pixel position, thus realizing the scanning of the pixel position.
  • the output end of the transmission optical fiber 130 sweeps along a certain scanning trajectory, so that the light beam moves to the corresponding pixel position.
  • the light beam output by the transmission optical fiber 130 will form a light spot with corresponding image information (such as color, grayscale or brightness) at each pixel position.
  • image information such as color, grayscale or brightness
  • FIG. 1 b which shows the specific structure of the optical fiber scanning module 120 , including: a scanning actuator 121 , an optical fiber cantilever 122 , a mirror assembly 123 , a scanner packaging shell 124 and a fixing member 125 .
  • the scanning actuator 121 is fixed in the scanner packaging shell 124 through a fixing member 125.
  • the transmission optical fiber 130 extends from the front end of the scanning actuator 121 to form an optical fiber cantilever 122 (also referred to as a scanning optical fiber).
  • the scanning actuator 121 When working, the scanning actuator 121 is driven by a scanning driving signal, and its slow axis 121a (also referred to as a first actuating portion) vibrates along a vertical direction (the vertical direction is parallel to the Y axis in the reference coordinate system in Figures 1a and 1b, and in this application, the vertical direction can also be referred to as a first direction), and its fast axis 121b (also referred to as a second actuating portion) vibrates along a horizontal direction (the horizontal direction is parallel to the X axis in the reference coordinate system in Figures 1a and 1b, and in this application, the horizontal direction can also be referred to as a second direction).
  • the front end of the optical fiber cantilever 122 performs a two-dimensional scan according to a preset trajectory and emits a light beam, and the emitted light beam can pass through the mirror group 123 to achieve scanning imaging.
  • the structure formed by the scanning actuator 121 and the optical fiber cantilever 122 can be called an optical fiber scanner.
  • the motion trajectory of the optical fiber light outlet forms a scanning curved surface 230 through the movement of the fast and slow axes, and is converted into an imaging plane 240 after passing through the corresponding lens group 123.
  • the imaging plane 240 When applied to a near-eye display device such as an augmented reality (AR) device, the imaging plane 240 will be coupled into the waveguide as the entrance pupil of the waveguide to form an image for viewing by the human eye.
  • AR augmented reality
  • the optical imaging lens group in the present application (such as the lens group 123 shown in FIG. 2 ) is used as an eyepiece.
  • the scanning curved surface 230 can be converted into an imaging plane 240 (in actual application, the transmission direction of the light is: from the scanning curved surface 230 to the imaging plane 240), so that the side of the optical imaging lens group corresponding to the imaging plane 240 is referred to as the first side, and the side of the optical imaging lens group corresponding to the scanning curved surface 230 is referred to as the second side.
  • first side and second side are used as references to describe the embodiment of the optical imaging lens group.
  • first side surface of the Xth lens refers to the surface of the Xth lens facing the first side.
  • the image corresponding to the first side is a plane image
  • the corresponding plane image carrier can be a projection screen, a curtain or a wall, etc.
  • the image corresponding to the second side is a curved image, that is, an arc-shaped scanning surface scanned by a fiber optic scanner or emitted by other image sources; in the use scenario of the camera field, the optical path is opposite to that in the projection field.
  • the first side generally corresponds to the object side for collecting image information
  • the second side generally corresponds to the image side obtained by collecting imaging.
  • the optical imaging lens assembly in the embodiment of the present application includes a plurality of lenses.
  • the multiple lenses are arranged on a common optical axis from the first side to the second side, and the second side of the optical imaging lens group corresponds to a curved image;
  • the lens surface close to the curved image and opposite to the curved image is a concave surface, and the distance between the concave surface and the curved image on the optical axis is the working distance of the optical imaging lens group, and the working distance is 0.2mm-1.5mm;
  • the lens with the concave surface has a first side surface and a second side surface from the first side to the second side, and the second side surface corresponds to the concave surface; when the optical imaging lens group is working, the light and the first side surface, the second side surface and the curved image form intersection heights Y1, Y2 and Y3 with maximum values in sequence, wherein the relationship among Y1, Y2 and Y3 is: 1.5 ⁇ Y1/Y2 ⁇
  • the optical imaging lens group can fully and comprehensively capture the light information from the curved surface image, so that the optical imaging lens group composed of a plurality of lenses can clearly image the curved surface image on the second side, so that the optical imaging lens group can quickly and accurately match the curved surface image during installation and adjustment.
  • the optical imaging lens group provided in the embodiment of the present application can not only achieve high-quality and clear imaging of the curved surface image on the image side, but also help to reduce the difficulty of the assembly process of the entire optical imaging lens group, and also help to achieve mass assembly production at a low cost, laying a good technical foundation for product processing quality control including the optical imaging lens group.
  • some physical and/or geometric features of the first side surface, the second side surface and the curved image can be correspondingly limited, such as their respective effective apertures (under the above-mentioned ratio limitations of Y1, Y2 and Y3 in the present application, the effective aperture range of the first side surface is 2.14-4.34mm, the effective aperture range of the second side surface is 0.8-2.75mm, and the image plane height of the curved image is 0.57-1.97mm); of course, in other embodiments of the present application, it not only includes the above-mentioned effective aperture as a feature, but also other related features.
  • Y1, Y2 and Y3 have the following relationship: 1.6 ⁇ Y1/Y2 ⁇ 1.9; 1.3 ⁇ Y2/Y3 ⁇ 1.5.
  • the focal length Fi of the negative lens and the total focal length Ftotal of the optical imaging lens assembly have the following relationship: 0.2 ⁇
  • the total focal length of the optical imaging lens assembly is 2 mm-3.5 mm. It should be noted that by limiting the total focal length of the optical imaging lens assembly, It can be well adapted to the working distance, thereby realizing the correction of various aberrations, and ultimately achieving high-quality and clear imaging of curved surface images.
  • the total focal length and the working distance of the optical imaging lens assembly have the following relationship: 2.95 ⁇ Ftotal / Fworkingdistance ⁇ 14.43 , wherein Ftotal is the total focal length of the optical imaging lens assembly, and Fworkingdistance is the working distance of the optical imaging lens assembly.
  • Ftotal is the total focal length of the optical imaging lens assembly
  • Fworkingdistance is the working distance of the optical imaging lens assembly.
  • the working distance in the embodiment of the present application, can optionally be 0.2 mm-1.1 mm.
  • the exit pupil distance of the optical imaging lens assembly in the embodiment of the present application is 1.3-5.3 mm.
  • the optical imaging lens group composed of multiple lenses can clearly image the curved surface image on the second side, so that the optical imaging lens group can quickly and accurately match the curved surface image during installation and deployment. Therefore, the optical imaging lens group provided by the embodiment of the present application can not only achieve high-quality and clear imaging of the curved surface image on the image side, but also help to reduce the difficulty of the assembly process of the entire optical imaging lens group, and also help to achieve batch assembly production at low cost, laying a good technical foundation for the processing quality control of products containing the optical imaging lens group.
  • the embodiment of the present application preferably has a working distance of 0.4-0.8mm or 0.3-0.5mm; and with regard to the numerical limitation of the exit pupil distance, the embodiment of the present application preferably has an exit pupil distance of 1.6-3.7mm.
  • the multiple lenses of the optical imaging lens assembly in the embodiment of the present application are arranged on a common optical axis from the entrance pupil position to the exit pupil position, and the exit pupil position of the optical imaging lens assembly corresponds to the curved surface image, that is, corresponds to the second side of the optical imaging lens assembly; the entrance pupil position of the optical imaging lens assembly corresponds to the first side of the optical imaging lens assembly.
  • the exit pupil position of the optical imaging lens assembly corresponds to the first side of the optical imaging lens assembly.
  • the lens surface of the multiple lenses that is close to and opposite to the exit pupil position (that is, the lens surface closest to the curved surface image) is a concave surface, and the optical axis and the concave surface intersect to form an intersection, and the distance between the intersection and the exit pupil position is the exit pupil distance.
  • Entrance pupil The entrance pupil is the effective aperture that limits the incident light beam. It is the image of the aperture stop on the optical system in front and the conjugate phase of the aperture stop in the object space. The entrance pupil corresponds to the exit pupil.
  • the entrance pupil position is the position where the aperture diaphragm forms an image of the front optical system.
  • the calculation of the position is to regard the center of the aperture stop as an object point, trace the rays toward the front optical system, and obtain the coordinates of the intersection with the point on the optical axis.
  • the distance from the surface of the first lens is used as the entrance pupil distance.
  • Exit pupil The image formed by the aperture stop of the optical system in the image space of the optical system is the exit pupil of the lens
  • Exit pupil position is the position point where the aperture stop forms an image for the rear optical system.
  • the exit pupil position is calculated by treating the center of the aperture stop as an object point, tracing rays toward the rear optical system, and obtaining the coordinates of the intersection with the point on the optical axis.
  • the distance from the last lens surface is used as the exit pupil distance.
  • Measurement of exit pupil position Set a point light source at the center of the entrance pupil position, and form an image through the designed lens. The best imaging position of the point light source is the exit pupil position.
  • the curved surface orientation of the curved surface image is the same as the curved surface orientation of the concave surface. It should be noted that by limiting the curved surface orientation of the curved surface image and the concave surface to be the same, the lens closest to the curved surface image can be well adapted to the curved surface image, which is conducive to receiving light with a large viewing angle, so that information from the curved surface image can be more fully captured.
  • the curved surface image is formed by the swing of an optical fiber carrying an optical signal, such as the curved surface image formed by the swing of an optical fiber on the optical fiber scanner described above.
  • the formation method of the curved surface image is not limited to that described in this embodiment, and it can also be a curved surface image formed by other methods, such as the curved surface image is formed by the movement of a continuously output light source or the curved surface image is formed by a self-luminous source.
  • the projection of the curved surface image along the optical axis direction is a curved surface projection
  • the integral surface area on the curved surface image is a first integral surface area
  • the integral surface area corresponding to the first integral surface area on the curved surface projection is a second integral surface area
  • the first integral surface area corresponds to the second integral surface area one-to-one. It should be noted that the size of the second integral surface area on the curved surface projection gradually decreases from the center to the periphery.
  • the tangent plane passing through the center point of the curved image has a normal vector perpendicular to the tangent plane, the normal vector passes through the center point, the center point is the intersection O of the curved image and the tangent plane, any point on the curved image that does not pass through the intersection O is P, the projection point corresponding to the P point on the normal vector is P', and the displacement D from the intersection O to the P' has the following relationship: 0 ⁇ D ⁇ 0.5mm. It should be noted that the slope passing through the P point becomes smaller and smaller as the P point moves away from the normal vector.
  • connection between the multiple lenses can be spaced or bonded together, depending on the needs of the actual application, and is not limited here.
  • the number of the multiple lenses is preferably 6, 7, 8, and 9; it should be emphasized that in other embodiments of the present application, the number of the multiple lenses is not limited, and it can be 3, 4, 5, 10, 11, etc.
  • the second side surface is a concave surface, which means that the second side surface forms a concave shape toward the second side of the optical imaging lens assembly.
  • the surface shape of the lens is not that the entire side surface is concave or convex, and the surface shape of the lens may be a composite curved surface, or the near optical axis portion is curved while the edge portion is non-curved; in particular, optionally, when the lens surface is convex and the position of the convex surface is not defined, it means that the convex surface can be located at the near optical axis of the lens surface; similarly, when the lens surface is concave and the position of the concave surface is not defined, it means that the concave surface can be located at the near optical axis of the lens surface.
  • the first side surface and the second side surface of some lenses of the plurality of lenses are configured as aspherical surface structures. It should be noted that by limiting the design of the mirror structure to an aspherical surface structure, more control variables can be obtained to reduce aberrations and reasonably reduce the number of lenses. Therefore, on the basis of improving the image display quality, it is also helpful to miniaturize or micro-miniaturize the optical imaging lens group.
  • the first side surface and/or the second side surface of the lens is an aspherical surface structure, which can be understood as the entire or a part of the optical effective area of the lens surface is an aspherical surface.
  • the optical imaging lens group disclosed in the embodiment of the present application can optionally be provided with at least one aperture stop, which can be located before the first lens (first side), between the lenses or after the last lens (second side).
  • the type of the aperture stop can be, for example, an aperture stop or a field stop, which can be used to reduce stray light and help improve image display quality.
  • the embodiment of the present application also provides an application of the optical imaging lens assembly as described above, specifically, the optical imaging lens assembly is applied to the display field or the imaging field.
  • the display field includes the display imaging field; in addition, in other embodiments of the present application, the application of the optical imaging lens assembly is not limited to the display field or the imaging field provided in the embodiment of the present application, but can also be other related fields that can utilize the technical principles and characteristics of the optical imaging lens assembly of the present application and corresponding related technical products.
  • FIG5 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first cemented lens, a second lens, a third cemented lens, a fourth lens, a fifth cemented lens, a sixth lens, and a seventh lens, which are arranged in sequence on a common optical axis from a first side (i.e., the side where the aperture 01 in FIG5 is located) to a second side (i.e., the side where the scanning curved surface 02 (corresponding to the image plane of the curved surface image) in FIG5 is located).
  • a first side i.e., the side where the aperture 01 in FIG5 is located
  • a second side i.e., the side where the scanning curved surface 02 (corresponding to the image plane of the curved surface image) in FIG5 is located.
  • the total focal length Ftotal of the optical imaging lens assembly is 2.579 mm
  • the working distance Fworking distance is 0.47 mm
  • Ftotal /Fworking distance is 5.49
  • Y1/Y2 is 1.647
  • Y2/Y3 is 1.293
  • is 0.82
  • the exit pupil distance is 2.084 mm.
  • the focal length and lens type of each lens in the optical imaging lens assembly are shown in Table 1 below:
  • optical imaging lens assembly provided in the first embodiment of the present invention has a half field angle of 14 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 02 are shown in Table 2:
  • Table 2 shows the detailed structural data of the optical imaging lens assembly of Example 1, wherein the units of the curvature radius, thickness and focal length are all in millimeters, and surfaces 0-19 represent the surfaces from the first side to the second side in sequence; the optical surface with an "infinite" curvature radius in the imaging plane is a flat surface.
  • Table 3 shows the aspheric coefficient data in the first embodiment, wherein k is the cone coefficient in the aspheric curve equation, and A4 to A16 represent the 4th to 16th order aspheric coefficients of each surface.
  • the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens assembly of the first embodiment has good imaging resolution in the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens assembly can clearly image the scanned curved surface image and has good imaging effect.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • FIG9 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first cemented lens, a second lens, a third cemented lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens and an eighth lens which are arranged in sequence on a common optical axis from a first side (i.e., the side where the aperture 03 in FIG9 is located) to a second side (i.e., the side where the scanning curved surface 04 in FIG9 (corresponding to the image plane of the curved surface image) is located).
  • a first side i.e., the side where the aperture 03 in FIG9 is located
  • a second side i.e., the side where the scanning curved surface 04 in FIG9 (corresponding to the image plane of the curved surface image) is located.
  • the total focal length Ftotal of the optical imaging lens assembly is 3.03 mm
  • the working distance Fworking distance is 0.211 mm
  • Ftotal /Fworking distance is 14.43
  • Y1/Y2 is 1.42
  • Y2/Y3 is 1.23
  • is 0.37
  • the exit pupil distance is 2.93 mm.
  • the focal length parameters and lens types of each lens in the optical imaging lens assembly are shown in Table 4 below:
  • optical imaging lens assembly provided in the second embodiment of the present invention has a half field angle of 14 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 04 are shown in Table 5:
  • Table 5 is the detailed structural data of the optical imaging lens assembly of Example 2, wherein the units of the curvature radius, thickness and focal length are all in millimeters, and surfaces 0-20 represent the surfaces from the first side to the second side in sequence; the optical surface with an "infinite" curvature radius in the imaging plane is a flat surface.
  • Table 6 shows the aspheric coefficient data in the second embodiment, wherein k is the cone coefficient in the aspheric curve equation, and A4 to A16 represent the 4th to 16th order aspheric coefficients of each surface.
  • the optical transfer function curve is shown in Figure 10
  • the field curvature distortion curve is shown in Figure 11
  • the vertical axis chromatic aberration curve is shown in Figure 12; wherein, the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens assembly of the second embodiment has good imaging resolution within the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens assembly can clearly image the scanned curved surface image and has good imaging effect.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • FIG13 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, a sixth lens, a seventh lens, a seventh lens, a first lens, a second lens, a third lens, a fourth lens, a fifth ... third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, The eighth lens and the ninth lens.
  • the optical imaging lens assembly provided by the embodiment of the present invention has a total focal length Ftotal of 3.19 mm, a working distance Fworking distance of 1.08 mm, Ftotal /Fworking distance of 2.95, Y1/Y2 of 1.766, Y2/Y3 of 1.923,
  • the focal length parameters and lens types of each lens in the optical imaging lens assembly are shown in Table 7 below:
  • optical imaging lens assembly provided in the third embodiment of the present invention has a half field angle of 9 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 06 are shown in Table 8:
  • Table 8 is the detailed structural data of the optical imaging lens assembly of Example 3, wherein: The units of the radius of curvature, thickness and focal length are all in millimeters, and surfaces 0-20 represent the surfaces from the first side to the second side in sequence; an optical surface with an infinite radius of curvature in the imaging plane is referred to as a flat surface.
  • the optical transfer function curve is shown in Figure 14
  • the field curvature distortion curve is shown in Figure 15
  • the vertical axis chromatic aberration curve is shown in Figure 16; wherein, the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens assembly of the third embodiment has good imaging resolution within the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens assembly can clearly image the scanned curved surface image and has good imaging effect.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • FIG17 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens and an eighth lens which are arranged in sequence along the optical axis from the first side (i.e., the side where the aperture 07 in FIG17 is located) to the second side (i.e., the side where the scanning curved surface 08 (corresponding to the image plane of the curved surface image) in FIG17 is located).
  • the total focal length Ftotal of the optical imaging lens assembly provided by an embodiment of the present invention is 2 mm
  • the working distance Fworking distance is 0.249 mm
  • Ftotal /Fworking distance is 8.03
  • Y1/Y2 is 3
  • Y2/Y3 is 1.34
  • is 1.4
  • the exit pupil distance is 1.347 mm.
  • the focal length parameters and lens types of each lens in the optical imaging lens assembly are shown in Table 9 below:
  • optical imaging lens assembly provided in the fourth embodiment of the present invention has a half field angle of 9 degrees.
  • the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 08 are shown in Table 10:
  • Table 10 is the detailed structural data of the optical imaging lens assembly of Example 4, wherein the units of the curvature radius, thickness and focal length are all in millimeters, and surfaces 0-18 represent the surfaces from the first side to the second side in sequence; the optical surface with an "infinite" curvature radius in the imaging plane refers to a flat surface.
  • the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens assembly of Example 4 has good imaging resolution within the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens assembly can clearly image the scanned curved surface image and has good imaging effects.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • FIG21 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first side (i.e., the side where the aperture 09 in FIG21 is located) to a second side (i.e., The first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, the seventh lens and the eighth lens are arranged in sequence on the same optical axis on the side where the scanning curved surface 10 (corresponding to the image plane of the curved surface image) in 21 is located.
  • the total focal length Ftotal of an optical imaging lens assembly provided in an embodiment of the present invention is 3.19 mm
  • the working distance Fworking distance is 0.423 mm
  • Ftotal / Fworking distance is 7.54
  • Y1/Y2 is 1.94
  • Y2/Y3 is 1.17
  • is 0.4
  • the exit pupil distance is 1.7647 mm.
  • the focal length parameters and lens types of each lens in the optical imaging lens assembly are shown in Table 11 below:
  • optical imaging lens assembly provided in the fifth embodiment of the present invention has a half field angle of 9 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 10 are shown in Table 12:
  • Table 12 is the detailed structural data of the optical imaging lens assembly of Example 5, wherein: The units of the radius of curvature, thickness and focal length are all in millimeters, and surfaces 0-18 represent the surfaces from the first side to the second side in sequence; an optical surface with an infinite radius of curvature in the imaging plane is a flat surface.
  • the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens group of Example 5 has good imaging resolution within the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens group can clearly image the scanned curved surface image and has good imaging effect.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • FIG25 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first lens, a second lens, a third lens, a fourth cemented lens, a fifth lens, a sixth lens, a seventh lens, an eighth lens and a ninth lens which are arranged in sequence on a common optical axis from a first side (i.e., the side where the aperture 11 in FIG25 is located) to a second side (i.e., the side where the scanning curved surface 12 (corresponding to the image plane of the curved surface image) in FIG25 is located).
  • a first side i.e., the side where the aperture 11 in FIG25 is located
  • a second side i.e., the side where the scanning curved surface 12 (corresponding to the image plane of the curved surface image) in FIG25 is located.
  • the total focal length Ftotal of the optical imaging lens assembly is 3.46 mm
  • the working distance Fworking distance is 0.3 mm
  • Ftotal / Fworking distance is 11.53
  • Y1/Y2 is 1.29
  • Y2/Y3 is 1.38
  • is 0.28
  • the exit pupil distance is 2.7 mm.
  • the focal length parameters and lens types of each lens in the optical imaging lens assembly are shown in Table 13 below:
  • optical imaging lens assembly provided in the sixth embodiment of the present invention has a half field angle of 16 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 12 are shown in Table 14:
  • Table 14 is the detailed structural data of the optical imaging lens assembly of Example 6, wherein the units of the curvature radius, thickness and focal length are all in millimeters, and surfaces 0-21 represent the surfaces from the first side to the second side in sequence; the optical surface with an "infinite" curvature radius in the imaging plane refers to a flat surface.
  • Table 15 is the aspheric coefficient data in Example 6, where k is the aspheric curve equation. Cone coefficients, A4 to A16 represent the 4th to 16th order aspheric coefficients of each surface.
  • the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens group of Example 6 has good imaging resolution within the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens group can clearly image the scanned curved surface image and has a good imaging effect.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • FIG29 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens and an eighth lens which are arranged in sequence along the optical axis from the first side (i.e., the side where the aperture 13 in FIG29 is located) to the second side (i.e., the side where the scanning curved surface 14 in FIG29 (corresponding to the image plane of the curved surface image) is located).
  • the total focal length Ftotal of the optical imaging lens assembly is 3 mm
  • the working distance Fworking distance is 0.33 mm
  • Ftotal /Fworking distance is 9.09
  • Y1/Y2 is 2.47
  • Y2/Y3 is 1.2
  • is 0.76
  • the exit pupil distance is 1.6 mm.
  • the focal length parameters and lens types of each lens in the optical imaging lens assembly are shown in Table 16 below:
  • optical imaging lens assembly provided in the seventh embodiment of the present invention has a half field angle of 9 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 14 are shown in Table 17:
  • Table 17 is the detailed structural data of the optical imaging lens assembly of Example 7, wherein the units of the curvature radius, thickness and focal length are all in millimeters, and surfaces 0-18 represent the surfaces from the first side to the second side in sequence; the optical surface with an "infinite" curvature radius in the imaging plane refers to a flat surface.
  • the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens group of Example 7 has good imaging resolution within the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens group can clearly image the scanned curved surface image and has a good imaging effect.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • FIG33 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first side (i.e., the side where the aperture 15 in FIG33 is located) to a second side (i.e., The first lens, the second lens, the third lens, the fourth lens, the fifth cemented lens and the sixth lens are arranged in sequence on the same optical axis on the side where the scanning curved surface 16 (corresponding to the image plane of the curved surface image) in 33 is located.
  • the total focal length Ftotal of the optical imaging lens assembly provided by the embodiment of the present invention is 2.915 mm
  • the working distance Fworking distance is 0.45 mm
  • Ftotal / Fworking distance is 6.48
  • the concave radius of the lens surface close to the curved surface image and opposite to the curved surface image is 1.245
  • Y1/Y2 is 1.972
  • Y2/Y3 is 1.212
  • is 1.02.
  • the focal length parameters and lens types of each lens in the optical imaging lens assembly are shown in Table 18 below:
  • optical imaging lens assembly provided in the eighth embodiment of the present invention has a half field angle of 18 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 16 are shown in Table 19:
  • Table 19 is the detailed structural data of the optical imaging lens assembly of Example 8, wherein the units of the curvature radius, thickness and focal length are all in millimeters, and surfaces 0-15 represent the surfaces from the first side to the second side in sequence; the optical surface with an "infinite" curvature radius in the imaging plane refers to a flat surface.
  • the lens having an aspherical surface shape The aspheric coefficients corresponding to the mirror surface are shown in Table 20 below:
  • Table 20 shows the aspheric coefficient data in Example 8, where k is the cone coefficient in the aspheric curve equation, and A4 to A16 represent the 4th to 16th order aspheric coefficients of each surface.
  • the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens group of Example 8 has good imaging resolution within the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens group can clearly image the scanned curved surface image and has a good imaging effect.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • FIG37 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first lens, a second lens, a third cemented lens, a fourth cemented lens, a fifth lens, a sixth lens, a seventh lens, an eighth lens, and a ninth lens, which are arranged in sequence along the same optical axis from the first side (i.e., the side where the aperture 17 in FIG37 is located) to the second side (i.e., the side where the scanning curved surface 18 (corresponding to the image plane of the curved surface image) in FIG37 is located).
  • the total focal length Ftotal of the optical imaging lens assembly is 3.07 mm
  • the working distance Fworking distance is 0.3 mm
  • Ftotal /Fworking distance is 10.23
  • Y1/Y2 is 1.548
  • Y2/Y3 is 1.257
  • is 0.36.
  • the focal length parameters and lens types of each lens in the optical imaging lens assembly are As shown in Table 21 below:
  • the optical imaging lens assembly provided in Embodiment 9 of the present invention has a half field angle of 16 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 18 are shown in Table 22:
  • Table 22 is the detailed structural data of the optical imaging lens assembly of Example 9, wherein the units of the curvature radius, thickness and focal length are all in millimeters, and surfaces 0-22 represent the surfaces from the first side to the second side in sequence; the optical surface with an "infinite" curvature radius in the imaging plane refers to a flat surface.
  • the lens having an aspherical surface shape The aspheric coefficients corresponding to the mirror surface are shown in Table 23 below:
  • Table 23 shows the aspheric coefficient data in Example 9, where k is the cone coefficient in the aspheric curve equation, and A4 to A16 represent the 4th to 16th order aspheric coefficients of each surface.
  • the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens assembly of Example 9 has good imaging resolution within the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens assembly can clearly image the scanned curved surface image and has good imaging effects.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • FIG41 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens and a second lens arranged in sequence along the optical axis from the first side (i.e., the side where the aperture 19 in FIG41 is located) to the second side (i.e., the side where the scanning curved surface 20 (corresponding to the image surface of the curved surface image) in FIG41 is located).
  • Eighth lens is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens and a second lens arranged in sequence along the optical axis from the first side (i.e., the side where the aperture 19 in FIG41 is located) to the second side (
  • the optical imaging lens assembly provided by the embodiment of the present invention has a total focal length Ftotal of 2 mm, a working distance Fworking distance of 0.364 mm, Ftotal /Fworking distance of 5.49, Y1/Y2 of 2.31, Y2/Y3 of 1.62, and
  • the focal length parameters and lens types of each lens in the optical imaging lens assembly are shown in Table 24 below:
  • optical imaging lens assembly provided in the tenth embodiment of the present invention has a half field angle of 9 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 20 are shown in Table 25:
  • Table 25 is the detailed structural data of the optical imaging lens assembly of Example 10, wherein the units of the curvature radius, thickness and focal length are all in millimeters, and surfaces 0-18 represent the surfaces from the first side to the second side in sequence; the optical surface with an "infinite" curvature radius in the imaging plane refers to a flat surface.
  • the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens group of Example 10 has good imaging resolution within the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens group can clearly image the scanned curved surface image and has a good imaging effect.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • FIG45 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, an eighth lens and a ninth lens which are sequentially arranged along a common optical axis from a first side (i.e., the side where the aperture 21 in FIG45 is located) to a second side (i.e., the side where the scanning curved surface 22 in FIG45 (corresponding to the image surface of the curved surface image) is located).
  • a first side i.e., the side where the aperture 21 in FIG45 is located
  • a second side i.e., the side where the scanning curved surface 22 in FIG45 (corresponding to the image surface of the curved surface image) is located.
  • the total focal length Ftotal of the optical imaging lens assembly is 2.6 mm
  • the working distance Fworking distance is 1.5 mm
  • Ftotal /Fworking distance is 1.73
  • the concave radius of the lens surface close to and opposite to the curved surface image is 2 mm
  • is 0.93.
  • the focal length parameters and lens types of each lens in the optical imaging lens assembly are shown in Table 26 below:
  • optical imaging lens assembly provided in the eleventh embodiment of the present invention has a half field angle of 9 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 22 are shown in Table 27:
  • Table 27 is the detailed structural data of the optical imaging lens assembly of Example 11, wherein the units of the curvature radius, thickness and focal length are all in millimeters, and surfaces 0-20 represent the surfaces from the first side to the second side in sequence; the optical surface with an "infinite" curvature radius in the imaging plane is a flat surface.
  • Table 28 shows the aspheric coefficient data in Example 11, where k is the cone coefficient in the aspheric curve equation, and A4 to A8 represent the 4th to 8th order aspheric coefficients of each surface.
  • the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion value (percentage) under different field angles
  • the vertical axis chromatic aberration curve represents the vertical axial direction. The magnitude of chromatic aberration.
  • the optical imaging lens group of Example 11 has good imaging resolution within the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens group can clearly image the scanned curved surface image and has a good imaging effect.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • FIG49 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, an eighth lens and a ninth lens, which are arranged in sequence along the same optical axis from the first side (i.e., the side where the aperture 23 in FIG49 is located) to the second side (i.e., the side where the scanning curved surface 24 in FIG49 (corresponding to the image plane of the curved surface image) is located).
  • the total focal length Ftotal of the optical imaging lens assembly is 2.6 mm
  • the working distance Fworking distance is 0.8 mm
  • Ftotal / Fworking distance is 3.25
  • Y1/Y2 is 1.75
  • Y2/Y3 is 2.28
  • the exit pupil distance is 1.36 mm.
  • focal length parameters and lens types of each lens in the optical imaging lens assembly are shown in Table 29 below:
  • the optical imaging lens assembly provided in Embodiment 8 of the present invention has a half field angle of 9 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 24 are shown in Table 30:
  • Table 30 is the detailed structural data of the optical imaging lens assembly of Example 12, wherein the units of the curvature radius, thickness and focal length are all in millimeters, and surfaces 0-20 represent the surfaces from the first side to the second side in sequence; the optical surface with an "infinite" curvature radius in the imaging plane is a flat surface.
  • Table 31 shows the aspheric coefficient data in Example 12, where k is the cone coefficient in the aspheric curve equation, and A4 to A8 represent the 4th to 8th order aspheric coefficients of each surface.
  • the optical transfer function curve is shown in Figure 50
  • the field curvature distortion curve is shown in Figure 51
  • the vertical axis chromatic aberration curve is shown in Figure 52; wherein, the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens group of Example 12 has good imaging resolution within the full field of view, and small optical system distortion and chromatic aberration, so the optical imaging lens group can clearly image the scanned curved surface image and has a good imaging effect.
  • the optical imaging lens assembly may also include a photosensitive element, a housing, etc.
  • the component can be arranged on the second side of the optical imaging lens group, and the optical imaging lens group can be installed in the housing, so as to image the curved surface image formed by scanning of the image source (such as the optical fiber scanner) on a plane to achieve clear imaging.
  • FIG53 is a schematic diagram of the structure of an optical imaging lens assembly provided by an embodiment of the present invention.
  • the optical imaging lens assembly includes a first lens, a second lens, a third lens, a fourth lens, a fifth cemented lens, and a sixth lens, which are arranged in sequence along the optical axis from the first side (i.e., the side where the aperture 25 in FIG53 is located) to the second side (i.e., the side where the scanning curved surface 26 in FIG53 (corresponding to the image plane of the curved surface image) is located).
  • the total focal length Ftotal of the optical imaging lens assembly is 2.915 mm
  • the working distance Fworking distance is 0.45 mm
  • Ftotal /Fworking distance is 6.63
  • Y1/Y2 is 1.972
  • Y2/Y3 is 1.212
  • the exit pupil distance is 5.3 mm.
  • the focal length parameters and lens types of each lens in the optical imaging lens assembly are shown in Table 32 below:
  • optical imaging lens assembly provided in the tenth embodiment of the present invention has a half field angle of 18 degrees, and the surface shape, curvature radius, thickness parameter, refractive index and dispersion coefficient parameters of each lens for imaging the scanning curved surface 26 are shown in Table 33:
  • Table 33 is the detailed structural data of the optical imaging lens assembly of Example 10, wherein the units of the curvature radius, thickness and focal length are all in millimeters, and surfaces 0-15 represent the surfaces from the first side to the second side in sequence; the optical surface with an "infinite" curvature radius in the imaging plane refers to a flat surface.
  • Table 34 shows the aspheric coefficient data in Example 13, where k is the cone coefficient in the aspheric curve equation, and A4 to A16 represent the 4th to 16th order aspheric coefficients of each surface.
  • the optical transfer function curve (Modulation Transfer Function, MTF) represents the comprehensive resolution level of an optical system
  • the field curvature distortion curve represents the F-Tan (theta) distortion size value (percentage) under different field of view angles
  • the vertical axis chromatic aberration curve represents the size of chromatic aberration in the vertical axial direction.
  • the optical imaging lens group of Example 13 has good imaging resolution within the full field of view, and the optical system distortion and chromatic aberration are small, so the optical imaging lens group can clearly image the scanned curved surface image and has a good imaging effect.
  • the optical imaging lens group may also include a photosensitive element, a shell, etc.
  • the photosensitive element may be disposed on the second side of the optical imaging lens group, and the optical imaging lens group may be installed in the shell, so that the curved surface image formed by scanning an image source (such as a fiber optic scanner) can be imaged on a plane to achieve clear imaging.
  • an image source such as a fiber optic scanner
  • the aforementioned optical imaging lens group can cooperate with the optical fiber scanner (or the corresponding optical fiber scanning module) to constitute the application of the optical imaging lens group in the embodiment of the present application, that is, the optical imaging lens group is applied to the scanning display device in the display imaging field (as shown in Figures 1a and 1b, the optical imaging lens group is arranged on the light output path of the optical fiber scanner), wherein the first side of the optical imaging lens group faces the light output direction of the optical fiber scanner.
  • the preferred method is that the optical imaging lens group is coaxial with the central optical axis of the fiber scanner.
  • the structure and general principle of the fiber scanner can refer to the corresponding contents of the aforementioned Figures 1a and 1b, and will not be described in detail here.
  • the scanning display device can be further applied to a near-eye display device, and can be used in conjunction with a near-eye display module to form a near-eye display device in an embodiment of the present application, and used as a head-mounted AR device (such as AR glasses).
  • the scanning display device is disposed in the near-eye display module.
  • the near-eye display module may include: a light source, a processing control circuit, a wearable frame structure, a waveguide, etc.
  • the image beam output by the light source enters the scanning display device, and is scanned and output to the optical display lens group by the fiber scanner therein.
  • the scanning surface of the fiber scanner (refer to the scanning surface 02 in FIG. 5 and the corresponding scanning surface 230 in FIG. 2) is converted into an imaging plane (refer to the corresponding imaging plane 240 in FIG. 2) after passing through the optical display lens group.
  • the imaging plane is coupled into the waveguide as the entrance pupil plane of the waveguide, and then coupled out through the waveguide expansion imaging to enter the human eye.
  • the scanning display device can further cooperate with the near-eye display module to form a near-eye display device in the embodiment of the present application, and be used as a head-mounted VR device (such as a VR helmet/glasses).
  • the scanning display device is disposed in the near-eye display module.
  • the optical imaging lens group composed of a plurality of lenses can clearly image the curved surface image on the second side, so that the optical imaging lens group can quickly and accurately match the curved surface image during installation and adjustment.
  • the optical imaging lens group provided in the embodiments of the present application can not only achieve high-quality and clear imaging of the curved surface image on the image side, but also help to reduce the difficulty of the assembly process of the entire optical imaging lens group, and also help to achieve mass assembly production at a low cost, laying a good technical foundation for product processing quality control including the optical imaging lens group.
  • first, second, the first or “the second” used in various embodiments of the present disclosure may modify various components regardless of order and/or importance, but these expressions do not limit the corresponding components.
  • the above expressions are only configured for the purpose of distinguishing an element from other elements.
  • a first lens and a second lens represent different lenses, although both are lenses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜组及其应用,涉及显示成像技术领域,通过对光学成像镜组的工作距离进行定义和数值范围的限定,以及通过对Y1、Y2和Y3进行定义并将Y1、Y2和Y3进行比例关系的限定,使得由多个透镜组成的光学成像镜组能够将第二侧的曲面图像进行清晰的成像,从而使得光学成像镜组在安装调配时能够快速精准地匹配到曲面图像,不但能够实现像方曲面图像的高质量清晰成像,而且还有利于使整个光学成像镜组的装配工艺难度得到降低,同时也有利于在低成本下实现批量化的装配生产,为包含有光学成像镜组的产品加工品控奠定了良好的技术基础。

Description

一种光学成像镜组及其应用 技术领域
本申请涉及显示成像技术领域,具体涉及一种光学成像镜组及其应用。
背景技术
显示成像技术广泛应用于各行各业,其中,扫描显示成像作为一种新兴的显示技术,可用于投影显示、近眼显示等多种应用场景。
然而,现有的扫描显示成像系统中,存在着加工难度高,量产成本高以及成像质量不佳等缺点,致使扫描显示成像技术在市场推广应用过程中受到一定的限制,尤其是在光纤扫描显示技术领域,由于光纤扫描时所形成的像方图像为曲面,因此,很难实现对像方曲面的清晰成像。
发明内容
本申请实施例提供了一种光学成像镜组及其应用,以解决像方曲面图像的清晰成像问题。
一方面,本申请实施例提供了一种光学成像镜组,所述光学成像镜组包括多个透镜,所述多个透镜由第一侧至第二侧依次共光轴设置,所述光学成像镜组的所述第二侧对应曲面图像;
靠近所述曲面图像且与所述曲面图像相对的透镜表面为凹面,所述凹面和所述曲面图像在所述光轴上的间距为所述光学成像镜组的工作距离,所述工作距离为0.2mm-1.5mm;
具有所述凹面的所述透镜由所述第一侧到所述第二侧依次具有第一侧表面和第二侧表面,所述第二侧表面对应所述凹面;当所述光学成像镜组工作时,光线与所述第一侧表面、所述第二侧表面和所述曲面图像依次形成有最大值的交高Y1、Y2和Y3,其中,所述Y1、所述Y2和所述Y3存在关系:1.5≤Y1/Y2≤2.5;1.2≤Y2/Y3≤2.0。
可选地,所述Y1、所述Y2和所述Y3存在关系:1.6≤Y1/Y2≤1.9;1.3≤Y2/Y3≤1.5。
可选地,所述多个透镜中至少存在一个负透镜其焦距Fi与所述光学成像镜组的总焦距F之间存在以下关系:0.2≤|Fi/F|≤1.5。
可选地,所述总焦距为2mm-3.5mm;
所述光学成像镜组的所述总焦距和所述工作距离存在以下关系式:2.95≤
F/F工作距≤14.43,其中,所述F为所述光学成像镜组的所述总焦距,所述F工作距为所述光学成像镜组的所述工作距离。
可选地,所述工作距离为0.2mm-1.1mm。
可选地,所述光学成像镜组的所述总焦距和所述工作距离存在以下关系式:2.95≤F/F工作距≤14.43,其中,所述F为所述光学成像镜组的所述总焦距,所述F工作距为所述光学成像镜组的所述工作距离。
可选地,所述工作距离为0.2mm-1.1mm。
可选地,所述工作距离为0.3-0.5mm。
可选地,所述工作距离为0.4-0.8mm。
可选地,所述光学成像镜组的出瞳距离为1.3-5.3mm。
可选地,所述光学成像镜组的出瞳距离为1.6-3.7mm。
可选地,所述曲面图像的曲面朝向和所述凹面的曲面朝向相同。
可选地,所述曲面图像由载有光信号的光纤摆动所形成。
可选地,所述曲面图像沿所述光轴方向的投影为曲面投影,所述曲面图像上的积分表面积为第一积分表面积,所述第一积分表面积在所述曲面投影上所对应的积分表面积为第二积分表面积,所述第一积分表面积与所述第二积分表面积一一对应;
所述曲面投影上的所述第二积分表面积大小由中心向四周逐渐减小。
可选地,过所述曲面图像中心点的切平面具有垂直于所述切平面的法向量,所述法向量过所述中心点,所述中心点为所述曲面图像与所述切平面的交点O,所述曲面图像上任意一个不过所述交点O的点为P,所述P点在所述法向量上对应的投影点为P’,所述交点O到所述P’的位移D存在以下关系:0<D<0.5mm;
过所述P点的斜率随着所述P点远离所述法向量而越来越小。
本申请实施例还提出一种如上述光学成像镜组的应用,所述光学成像镜组被应用于显示领域或成像领域。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1a、1b是说明性的扫描显示系统的结构示意图;
图2是本申请实施例提供的光纤扫描器扫描输出的示意图;
图3a是本申请实施例提供的光学成像镜组关于凹面、曲面图像以及工作距离的结构示意图;
图3b是本申请实施例提供的光学成像镜组关于凹面、曲面图像以及Y1、Y2和Y3的结构示意图;
图3c是本申请实施例提供的光学成像镜组关于出瞳距离的结构示意图;
图4是本申请实施例提供的光学成像镜组所对应的曲面图像的构造特点示意图;
图5是本申请实施例一提供的一种光学成像镜组的结构示意图;
图6是本申请实施例一中光学成像镜组的MTF曲线图;
图7是本申请实施例一中光学成像镜组的场曲畸变曲线图;
图8是本申请实施例一中光学成像镜组的垂轴色差图;
图9是本申请实施例二提供的光学成像镜组的结构示意图;
图10是本申请实施例二中光学成像镜组的MTF曲线图;
图11是本申请实施例二中光学成像镜组的场曲畸变曲线图;
图12是本申请实施例二中光学成像镜组的垂轴色差图;
图13是本申请实施例三提供的光学成像镜组的结构示意图;
图14是本申请实施例三中光学成像镜组的MTF曲线图;
图15是本申请实施例三中光学成像镜组的场曲畸变曲线图;
图16是本申请实施例三中光学成像镜组的垂轴色差图;
图17是本申请实施例四提供的光学成像镜组的结构示意图;
图18是本申请实施例四中光学成像镜组的MTF曲线图;
图19是本申请实施例四中光学成像镜组的场曲畸变曲线图;
图20是本申请实施例四中光学成像镜组的垂轴色差图;
图21是本申请实施例五提供的光学成像镜组的结构示意图;
图22是本申请实施例五中光学成像镜组的MTF曲线图;
图23是本申请实施例五中光学成像镜组的场曲畸变曲线图;
图24是本申请实施例五中光学成像镜组的垂轴色差图;
图25是本申请实施例六提供的光学成像镜组的结构示意图;
图26是本申请实施例六中光学成像镜组的MTF曲线图;
图27是本申请实施例六中光学成像镜组的场曲畸变曲线图;
图28是本申请实施例六中光学成像镜组的垂轴色差图;
图29是本申请实施例七提供的光学成像镜组的结构示意图;
图30是本申请实施例七中光学成像镜组的MTF曲线图;
图31是本申请实施例七中光学成像镜组的场曲畸变曲线图;
图32是本申请实施例七中光学成像镜组的垂轴色差图;
图33是本申请实施例八提供的光学成像镜组的结构示意图;
图34是本申请实施例八中光学成像镜组的MTF曲线图;
图35是本申请实施例八中光学成像镜组的场曲畸变曲线图;
图36是本申请实施例八中光学成像镜组的垂轴色差图;
图37是本申请实施例九提供的光学成像镜组的结构示意图;
图38是本申请实施例九中光学成像镜组的MTF曲线图;
图39是本申请实施例九中光学成像镜组的场曲畸变曲线图;
图40是本申请实施例九中光学成像镜组的垂轴色差图;
图41是本申请实施例十提供的光学成像镜组的结构示意图;
图42是本申请实施例十中光学成像镜组的MTF曲线图;
图43是本申请实施例十中光学成像镜组的场曲畸变曲线图;
图44是本申请实施例十中光学成像镜组的垂轴色差图;
图45是本申请实施例十一提供的光学成像镜组的结构示意图;
图46是本申请实施例十一中光学成像镜组的MTF曲线图;
图47是本申请实施例十一中光学成像镜组的场曲畸变曲线图;
图48是本申请实施例十一中光学成像镜组的垂轴色差图;
图49是本申请实施例十二提供的光学成像镜组的结构示意图;
图50是本申请实施例十二中光学成像镜组的MTF曲线图;
图51是本申请实施例十二中光学成像镜组的场曲畸变曲线图;
图52是本申请实施例十二中光学成像镜组的垂轴色差图;
图53是本申请实施例十三提供的光学成像镜组的结构示意图;
图54是本申请实施例十三中光学成像镜组的MTF曲线图;
图55是本申请实施例十三中光学成像镜组的场曲畸变曲线图;
图56是本申请实施例十三中光学成像镜组的垂轴色差图。
图标:100-处理器;110-激光器组;120-光纤扫描模组;130-传输光纤;140-光源调制电路;150-扫描驱动电路;160-合束单元;121-扫描致动器;121a-慢轴;121b-快轴;122-光纤悬臂;123-镜组;124-扫描器封装壳;125-固定件;230-扫描曲面;240-成像平面;01-光阑;02-扫描曲面;03-光阑;04-扫描曲面;05-光阑;06-扫描曲面;07-光阑;08-扫描曲面;09-光阑;10-扫描曲面;11-光阑;12-扫描曲面;13-光阑;14-扫描曲面;15-光阑;16-扫描曲面;17-光阑;18-扫描曲面;19-光阑;20-扫描曲面;21-光阑;22-扫描曲面;23-光阑;24-扫描曲面;25-光阑;26-扫描曲面。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
首先需要说明的是,为了使得本领域技术人员对本申请提供的光学成像镜组的技术发明点和作用技术效果有较为清楚和深刻的了解,本说明书先对于本申请提供的光学成像镜组的应用使用场景进行示意性的阐述:
说明性扫描显示系统
对于目前的扫描显示成像来说,可由微机电系统(Micro-Electro-Mechanical System,MEMS)或光纤扫描显示(Fiber Scanning Display,FSD)设备实现。其中,FSD方案作为一种新型扫描显示成像方式,通过光纤扫描器实现图像的扫描输出。为了使本领域技术人员能够清楚地理解本申请方案,下面对光纤扫描成像的简要原理及相应系统进行阐述。
如图1a所示,为本申请中的一种说明性的扫描显示系统,其中主要包括:
处理器100、激光器组110、光纤扫描模组120、传输光纤130、光源调制电路140、扫描驱动电路150及合束单元160。其中,
处理器100可以为图形处理器(Graphics Processing Unit,GPU)、中央处理器(Central Processing Unit,CPU)或者其它具有控制功能、图像处理功能的芯片或电路,这里并不进行具体限定。
系统工作时,处理器100可根据待显示的图像数据控制光源调制电路140对激光器组110进行调制,激光器组110中包含多个单色激光器,分别发出不同颜色的光束。从图1a中可见,激光器组110中具体可采用红(Red,R)、绿(Green,G)、蓝(Blue,B)三色激光器。激光器组110中各激光器发出的光束经由合束单元160合束为一束激光并耦入至传输光纤130中。
处理器100还可控制扫描驱动电路150驱动光纤扫描模组120中的光纤扫描器进行扫动,从而将传输光纤130中传输的光束扫描输出。
由光纤扫描器扫描输出的光束作用于介质表面上某一像素点位置,并在该像素点位置上形成光斑,便实现了对该像素点位置的扫描。在光纤扫描器带动下,传输光纤130输出端按照一定扫描轨迹扫动,从而使得光束移动至对应的像素点位置。实际扫描过程中,传输光纤130输出的光束将在每个像素点位置形成具有相应图像信息(如:颜色、灰度或亮度)的光斑。在一帧的时间里,光束以足够高的速度遍历每一像素点位置完成一帧图像的扫描,由于人眼观察 事物存在“视觉残留”的特点,故人眼便无法察觉光束在每一像素点位置上的移动,而是看见一帧完整的图像。
继续参考图1b,为光纤扫描模组120的具体结构,其中包括:扫描致动器121、光纤悬臂122、镜组123、扫描器封装壳124以及固定件125。扫描致动器121通过固定件125固定于扫描器封装壳124中,传输光纤130在扫描致动器121的前端延伸形成光纤悬臂122(也可称为扫描光纤),工作时,扫描致动器121在扫描驱动信号的驱动下,其慢轴121a(也称第一致动部)沿竖直方向(该竖直方向平行于图1a、1b中参考坐标系内的Y轴,在本申请中,该竖直方向也可称为第一方向)振动,其快轴121b(也称第二致动部)沿水平方向(该水平方向平行于图1a、1b中参考坐标系内的X轴,在本申请中,该水平方向也可称为第二方向)振动,受扫描致动器121带动,光纤悬臂122的前端按预设轨迹进行二维扫动并出射光束,出射的光束便可透过镜组123实现扫描成像。一般地,可将扫描致动器121及光纤悬臂122所构成的结构称为:光纤扫描器。
如图2所示,本申请实施例中,通过快慢轴的运动,光纤出光端的运动轨迹形成扫描曲面230,经相应的镜组123后,转换为成像平面240。当应用于诸如增强现实(Augmented Reality,AR)设备这样的近眼显示设备中时,成像平面240将作为波导的入瞳耦入至波导中,进行成像以便人眼观看。
为了便于表述并使得本领域技术人员容易理解本申请的方案,需要说明的是,本申请中的光学成像镜组(如图2中所示的镜组123)作为目镜,经过该光学成像镜组的作用,可将扫描曲面230转换为成像平面240(实际应用时,光线的传输方向为:由扫描曲面230至成像平面240的方向),从而在此将光学成像镜组对应成像平面240的一侧,称为第一侧,而将光学成像镜组对应扫描曲面230的一侧,称为第二侧。在后续内容中,便采用“第一侧”和“第二侧”为参照,对光学成像镜组的实施例方案进行描述。并且,后续实施例中的描述,诸如对光学成像镜组中的某一透镜而言,“第X透镜的第一侧表面”则是指第X透镜朝向第一侧的表面。
需要说明的是,在投影领域,第一侧对应的图像为平面图像,对应的平面图像载体可以为如投影屏幕、幕布或墙面等,第二侧对应的图像为曲面图像,即为光纤扫描器扫描出的或其它图像源发射出的呈弧形的扫描面;在摄像领域使用场景下,光路与在投影领域时相反,第一侧对应的一般为采集图像信息的物侧面,第二侧对应的一般为采集成像得到的像侧面。
光学成像镜组
请结合参照图1-图3c,本申请实施例中的光学成像镜组包括多个透镜,所 述多个透镜由第一侧至第二侧依次共光轴设置,所述光学成像镜组的所述第二侧对应曲面图像;靠近所述曲面图像且与所述曲面图像相对的透镜表面为凹面,所述凹面和所述曲面图像在所述光轴上的间距为所述光学成像镜组的工作距离,所述工作距离为0.2mm-1.5mm;具有所述凹面的所述透镜由所述第一侧到所述第二侧依次具有第一侧表面和第二侧表面,所述第二侧表面对应所述凹面;当所述光学成像镜组工作时,光线与所述第一侧表面、所述第二侧表面和所述曲面图像依次形成有最大值的交高Y1、Y2和Y3,其中,所述Y1、所述Y2和所述Y3存在关系:1.5≤Y1/Y2≤2.5;1.2≤Y2/Y3≤2.0。需要说明的是,本申请实施例中,通过对光学成像镜组的工作距离进行定义和数值范围的限定,以及通过对Y1、Y2和Y3进行定义并将Y1、Y2和Y3进行比例关系的限定,可以全面而充分地使光学成像镜组撷取来自曲面图像的光线信息,进而使得由多个透镜组成的光学成像镜组能够将第二侧的曲面图像进行清晰的成像,从而使得光学成像镜组在安装调配时能够快速精准地匹配到曲面图像,故本申请实施例提供光学成像镜组不但能够实现像方曲面图像的高质量清晰成像,而且还有利于使整个光学成像镜组的装配工艺难度得到降低,同时也有利于在低成本下实现批量化的装配生产,为包含有光学成像镜组的产品加工品控奠定了良好的技术基础。
还需要说明的是,通过对Y1、Y2以及Y3的比例限定,可以对应限制所述第一侧表面、所述第二侧表面和所述曲面图像的一些物理或/和几何特征,如它们各自对应的有效口径(在本申请Y1、Y2以及Y3的上述比例限定下,第一侧表面的有效口径范围在2.14-4.34mm,第二侧表面的有效口径范围在0.8-2.75mm,曲面图像的像面高度在0.57-1.97mm);当然在本申请其它实施例当中,并不仅仅包括如上述的有效口径这一种特征,还可以是其它相关特征。
为了进一步优化交高Y1、Y2和Y3的比例关系,以此带来更优的技术效果,在本申请实施例当中,优选地,Y1、Y2和Y3存在以下关系,1.6≤Y1/Y2≤1.9;1.3≤Y2/Y3≤1.5。
在一种可能的实施方式中,所述多个透镜中至少存在一个负透镜其焦距Fi与所述光学成像镜组的总焦距F之间存在以下关系:0.2≤|Fi/F|≤1.5。需要说明的是,通过对一个负透镜的焦距与总焦距的比值绝对值进行限定,使其不但均衡了其它透镜的焦距分配比例,而且对于整个光学成像镜组的像差起到了重要的校正作用,故而进一步加强了成像质量。
在一种可能的实施方式中,本申请提供的所述光学成像镜组的总焦距为2mm-3.5mm。需要说明的是,通过对所述光学成像镜组的总焦距大小进行限定, 可以很好地与工作距离进行适配,从而实现对多种像差的校正,最终达到对曲面图像的高品质清晰成像。
在一种可能的实施方式中,所述光学成像镜组的所述总焦距和所述工作距离存在以下关系式:2.95≤F/F工作距≤14.43,其中,所述F为所述光学成像镜组的所述总焦距,所述F工作距为所述光学成像镜组的所述工作距离。需要说明的是,本申请实施例中,通过量化总焦距和工作距离的比例关系,使其配置在一个合理的范围内,实现了总焦距与工作距离的适配关系数据化,进而为光学成像镜组的设计和加工提供了强有力的科学支撑,从而进一步地兼顾加强了光学成像镜组的成像品质和量产品控。
在一种可能的实施方式中,关于工作距离的数值限定,本申请实施例可选地工作距离为0.2mm-1.1mm。
在一种可能的实施方式中,本申请实施例中光学成像镜组的出瞳距离为1.3-5.3mm。
需要强调的是,本申请实施例中,通过对光学成像镜组的工作距离和出瞳距离进行定义与数值范围的限定,使得由多个透镜组成的光学成像镜组能够将第二侧的曲面图像进行清晰的成像,从而使得光学成像镜组在安装调配时能够快速精准地匹配到曲面图像,故本申请实施例提供光学成像镜组不但能够实现像方曲面图像的高质量清晰成像,而且还有利于使整个光学成像镜组的装配工艺难度得到降低,同时也有利于在低成本下实现批量化的装配生产,为包含有光学成像镜组的产品加工品控奠定了良好的技术基础。需要强调的是,关于工作距离的数值限定,本申请实施例优选地工作距离为0.4-0.8mm或0.3-0.5mm;而关于出瞳距离的数值限定,本申请实施例优选地出瞳距离为1.6-3.7mm。
需要解释说明的是,请参照图3c,本申请实施例中的光学成像镜组的多个透镜由入瞳位置至出瞳位置依次共光轴设置,光学成像镜组的出瞳位置对应曲面图像,也即对应光学成像镜组的第二侧;光学成像镜组的入瞳位置对应光学成像镜组的第一侧。请继续结合参照图1至图3c,多个透镜中与出瞳位置靠近且相对的透镜表面(即就是最靠近曲面图像的透镜表面)为凹面,光轴和凹面交叉形成有交点,交点与出瞳位置的距离为出瞳距离。
需要解释说明的是,请继续参照图3c,从左至右,也即从第一侧至第二侧,依次为入瞳(入瞳位置),光学成像镜组,出瞳(出瞳位置),具体地:
入瞳:入瞳是限制入射光束的有效孔径,是孔径光阑对前方光学系统所成的像,是孔径光阑在物空间的共轭相,入瞳和出瞳相对应;
入瞳位置:入瞳位置是孔径光阑对前方光学系统所成像的位置点,入瞳位 置的计算是将孔径光阑的中心看做一个物点,向前方光学系统进行光线追迹,得到与光轴上点的交点坐标,通常以距离第一个透镜的面的距离作为入瞳距离;
出瞳:光学系统的口径光阑在光学系统像空间所成的像为镜头的出瞳;
出瞳位置:出瞳位置是孔径光阑对后方光学系统所成像的位置点,出瞳位置的计算是将孔径光阑的中心看做一个物点,向后方光学系统进行光线追迹,得到与光轴上点的交点坐标,通常以距离最后一个透镜面的距离作为出瞳距离。
出瞳位置的测量:在入瞳位置中心设置1点光源,通过所设计镜头成像,点光源的最佳成像位置为出瞳位置。
在一种可能的实施方式中,请结合参照图3a和图3b,所述曲面图像的曲面朝向和所述凹面的曲面朝向相同。需要说明的是,通过限定曲面图像和凹面的曲面朝向为同向,可以使得距离曲面图像最近的透镜很好地适配曲面图像,有利于接收大视角的光线,以此可以更全面充分地撷取来自曲面图像的信息。
在一种可能的实施方式中,所述曲面图像由载有光信号的光纤摆动所形成,如前文所述的光纤扫描器上的光纤摆动所形成的曲面图像。当然,需要说明的是,在本申请其它实施例当中,并不限定曲面图像的形成方式如本实施例所述,还可以是其它方式所形成的曲面图像,如所述曲面图像为连续输出的光源经过移动所形成或所述曲面图像由自发光源所形成均可。
可选地,在一种可能的实施方式中,所述曲面图像沿所述光轴方向的投影为曲面投影,所述曲面图像上的积分表面积为第一积分表面积,所述第一积分表面积在所述曲面投影上所对应的积分表面积为第二积分表面积,所述第一积分表面积与所述第二积分表面积一一对应。需要说明的是,所述曲面投影上的所述第二积分表面积大小由中心向四周逐渐减小。
可选地,在一种可能的实施方式中,请参照图4,过所述曲面图像中心点的切平面具有垂直于所述切平面的法向量,所述法向量过所述中心点,所述中心点为所述曲面图像与所述切平面的交点O,所述曲面图像上任意一个不过所述交点O的点为P,所述P点在所述法向量上对应的投影点为P’,所述交点O到所述P’的位移D存在以下关系:0<D<0.5mm。需要说明的是,过所述P点的斜率随着所述P点远离所述法向量而越来越小。
在一种可能的实施方式中,多个透镜之间的连接方式可以采用间隔连接,也可以采用粘合方式粘合在一起,具体将根据实际应用的需要而定,这里并不进行限制。需要说明的是,在本申请实施例中,多个透镜的数量优选地为6个、7个、8个以及9个;需要强调的是,在本申请其它实施例当中,并不限定多个所述透镜的数量,其可以是3个、4个、5个、10个、11个等。
可选地,在一种可能的实施方式中,第二侧表面为凹面,是指第二侧表面朝向光学成像镜组的第二侧方向形成凹陷的形状。
在某些实施方式中,透镜的面型并不是整个侧面均为凹面或凸面,透镜的面型可能为复合型曲面,或近光轴部分为曲面而边缘部分非曲面;尤其是可选地,当透镜表面为凸面且未界定该凸面位置时,则表示该凸面可位于透镜表面近光轴处;同理,当透镜表面为凹面且未界定该凹面位置时,则表示该凹面可位于透镜表面近光轴处。
在一种可能的实施方式中,多个透镜中的一些透镜的第一侧表面和第二侧表面设置为非球面面形结构。需要说明的是,通过将镜面结构限定设计为非球面面形结构,借此可获得较多的控制变量,用以消减像差、合理缩减透镜数目,故在提升图像显示质量的基础上,还有助于光学成像镜组的小型化或微型化。另外,透镜的第一侧表面和/或第二侧表面为非球面面形结构,可以理解为该透镜表面光学有效区整个或者其中一部分为非球面。
另外,还需要说明的是,本申请实施例公开的光学成像镜组,可选地,可以设置至少一个光阑,其可位于第一透镜之前(第一侧)、各透镜之间或最后一个透镜之后(第二侧),该光阑的种类可以为如孔径光阑或视场光阑等,可用于减少杂散光,有助于提升图像显示质量。
本申请实施例还提供一种如上述光学成像镜组的应用,具体地,将所述光学成像镜组应用于显示领域或成像领域。需要说明的是,显示领域包括显示成像领域;另外,在本申请其它实施例中,光学成像镜组的应用不限于本申请实施例提供的显示领域或成像领域,还可以是其它能够利用到本申请光学成像镜组技术原理特征的相关领域以及对应的相关技术产品。
实施例一
图5为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图5中的光阑01所在一侧)至第二侧(也即,图5中的扫描曲面02(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一胶合透镜、第二透镜、第三胶合透镜、第四透镜、第五胶合透镜、第六透镜和第七透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为2.579mm,工作距离F工作距为0.47mm,F/F工作距为5.49,Y1/Y2为1.647,Y2/Y3为1.293,|F1/F|为0.82,出瞳距离2.084mm。
进一步具体地,在本实施例中,光学成像镜组中各透镜的焦距及镜片类型如下表1所示:
表1光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例一提供的光学成像镜组,半视场角为14度,其在对扫描曲面02进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表2所示:
表2实施例一中光学成像镜组的结构参数
需要说明的是,表2为实施例一的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-19依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,本实施例的光学成像镜组的各个透镜中,具有非球面面形的透镜表面所对应的非球面系数如下表3所示:
表3实施例一中具有非球面面形的透镜表面非球面系数数据
表3为实施例一中的非球面系数数据,其中,k为非球面曲线方程式中的锥面系数,A4到A16则表示各表面第4到16阶非球面系数。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图6所示,场曲畸变曲线图如图7所示,垂轴色差曲线图如图8所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图6-图8观察可知,实施例一的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例二
图9为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图9中的光阑03所在一侧)至第二侧(也即,图9中的扫描曲面04(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一胶合透镜、第二透镜、第三胶合透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为3.03mm,工作距离F工作距为0.211mm,F/F工作距为14.43,Y1/Y2为1.42,Y2/Y3为1.23,|F4/F|为0.37,出瞳距离2.93mm。
进一步具体地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型如下表4所示:
表4光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例二提供的光学成像镜组,半视场角为14度,其在对扫描曲面04进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表5所示:
表5实施例二中光学成像镜组的结构参数
需要说明的是,表5为实施例二的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-20依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,本实施例的光学成像镜组的各个透镜中,具有非球面面形的透镜表面所对应的非球面系数如下表6所示:
表6实施例二中具有非球面面形的透镜表面非球面系数数据
表6为实施例二中的非球面系数数据,其中,k为非球面曲线方程式中的锥面系数,A4到A16则表示各表面第4到16阶非球面系数。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图10所示,场曲畸变曲线图如图11所示,垂轴色差曲线图如图12所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图10-图12观察可知,实施例二的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例三
图13为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图13中的光阑05所在一侧)至第二侧(也即,图13中的扫描曲面06(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、 第八透镜和第九透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为3.19mm,工作距离F工作距为1.08mm,F/F工作距为2.95,Y1/Y2为1.766,Y2/Y3为1.923,|F3/F|为0.54,出瞳距离1.72mm。
进一步具体地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型如下表7所示:
表7光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例三提供的光学成像镜组,半视场角为9度,其在对扫描曲面06进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表8所示:
表8实施例三中光学成像镜组的结构参数
需要说明的是,表8为实施例三的光学成像镜组详细的结构数据,其中, 曲率半径、厚度及焦距的单位均为毫米,且表面0-20依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图14所示,场曲畸变曲线图如图15所示,垂轴色差曲线图如图16所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图14-图16观察可知,实施例三的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例四
图17为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图17中的光阑07所在一侧)至第二侧(也即,图17中的扫描曲面08(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为2mm,工作距离F工作距为0.249mm,F/F工作距为8.03,Y1/Y2为3,Y2/Y3为1.34,|F8/F|为1.4,出瞳距离1.347mm。
进一步具体地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型如下表9所示:
表9光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例四提供的光学成像镜组,半视场角为9度,其在 对扫描曲面08进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表10所示:
表10实施例四中光学成像镜组的结构参数
需要说明的是,表10为实施例四的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-18依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图18所示,场曲畸变曲线图如图19所示,垂轴色差曲线图如图20所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图18-图20观察可知,实施例四的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例五
图21为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图21中的光阑09所在一侧)至第二侧(也即,图 21中的扫描曲面10(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为3.19mm,工作距离F工作距为0.423mm,F/F工作距为7.54,Y1/Y2为1.94,Y2/Y3为1.17,|F3/F|为0.4,出瞳距离1.7647mm。
进一步具体地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型如下表11所示:
表11光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例五提供的光学成像镜组,半视场角为9度,其在对扫描曲面10进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表12所示:
表12实施例五中光学成像镜组的结构参数
需要说明的是,表12为实施例五的光学成像镜组详细的结构数据,其中, 曲率半径、厚度及焦距的单位均为毫米,且表面0-18依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图22所示,场曲畸变曲线图如图23所示,垂轴色差曲线图如图24所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图22-图24观察可知,实施例五的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例六
图25为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图25中的光阑11所在一侧)至第二侧(也即,图25中的扫描曲面12(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一透镜、第二透镜、第三透镜、第四胶合透镜、第五透镜、第六透镜、第七透镜、第八透镜和第九透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为3.46mm,工作距离F工作距为0.3mm,F/F工作距为11.53,Y1/Y2为1.29,Y2/Y3为1.38,|F6/F|为0.28,出瞳距离2.7mm。
进一步具体地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型如下表13所示:
表13光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例六提供的光学成像镜组,半视场角为16度,其在对扫描曲面12进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表14所示:
表14实施例六中光学成像镜组的结构参数
需要说明的是,表14为实施例六的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-21依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,本实施例的光学成像镜组的各个透镜中,具有非球面面形的透镜表面所对应的非球面系数如下表15所示:
表15实施例六中具有非球面面形的透镜表面非球面系数数据
表15为实施例六中的非球面系数数据,其中,k为非球面曲线方程式中的 锥面系数,A4到A16则表示各表面第4到16阶非球面系数。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图26所示,场曲畸变曲线图如图27所示,垂轴色差曲线图如图28所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图26-图28观察可知,实施例六的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例七
图29为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图29中的光阑13所在一侧)至第二侧(也即,图29中的扫描曲面14(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为3mm,工作距离F工作距为0.33mm,F/F工作距为9.09,Y1/Y2为2.47,Y2/Y3为1.2,|F4/F|为0.76,出瞳距离为1.6mm。
进一步具体地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型如下表16所示:
表16光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例七提供的光学成像镜组,半视场角为9度,其在对扫描曲面14进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表17所示:
表17实施例七中光学成像镜组的结构参数
需要说明的是,表17为实施例七的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-18依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图30所示,场曲畸变曲线图如图31所示,垂轴色差曲线图如图32所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图30-图32观察可知,实施例七的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例八
图33为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图33中的光阑15所在一侧)至第二侧(也即,图 33中的扫描曲面16(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五胶合透镜和第六透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为2.915mm,工作距离F工作距为0.45mm,F/F工作距为6.48,靠近曲面图像且与曲面图像相对的透镜表面的凹面半径为1.245,Y1/Y2为1.972;Y2/Y3为1.212,|F3/F|为1.02。
进一步具体地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型如下表18所示:
表18光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例八提供的光学成像镜组,半视场角为18度,其在对扫描曲面16进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表19所示:
表19实施例八中光学成像镜组的结构参数
需要说明的是,表19为实施例八的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-15依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,本实施例的光学成像镜组的各个透镜中,具有非球面面形的透 镜表面所对应的非球面系数如下表20所示:
表20实施例八中具有非球面面形的透镜表面非球面系数数据
表20为实施例八中的非球面系数数据,其中,k为非球面曲线方程式中的锥面系数,A4到A16则表示各表面第4到16阶非球面系数。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图34所示,场曲畸变曲线图如图35所示,垂轴色差曲线图如图36所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图34-图36观察可知,实施例八的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例九
图37为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图37中的光阑17所在一侧)至第二侧(也即,图37中的扫描曲面18(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一透镜、第二透镜、第三胶合透镜、第四胶合透镜、第五透镜、第六透镜、第七透镜、第八透镜和第九透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为3.07mm,工作距离F工作距为0.3mm,F/F工作距为10.23,Y1/Y2为1.548,Y2/Y3为1.257,|F7/F|为0.36。
进一步地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型 如下表21所示:
表21光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例九提供的光学成像镜组,半视场角为16度,其在对扫描曲面18进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表22所示:
表22实施例九中光学成像镜组的结构参数
需要说明的是,表22为实施例九的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-22依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,本实施例的光学成像镜组的各个透镜中,具有非球面面形的透 镜表面所对应的非球面系数如下表23所示:
表23实施例九中具有非球面面形的透镜表面非球面系数数据
表23为实施例九中的非球面系数数据,其中,k为非球面曲线方程式中的锥面系数,A4到A16则表示各表面第4到16阶非球面系数。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图38所示,场曲畸变曲线图如图39所示,垂轴色差曲线图如图40所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图38-图40观察可知,实施例九的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例十
图41为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图41中的光阑19所在一侧)至第二侧(也即,图41中的扫描曲面20(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和 第八透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为2mm,工作距离F工作距为0.364mm,F/F工作距为5.49,Y1/Y2为2.31,Y2/Y3为1.62,|F8/F|为1.5。
进一步具体地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型如下表24所示:
表24光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例十提供的光学成像镜组,半视场角为9度,其在对扫描曲面20进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表25所示:
表25实施例十中光学成像镜组的结构参数
需要说明的是,表25为实施例十的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-18依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图42所示,场曲畸变曲线图如图43所示,垂轴色差曲线图如图44所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图42-图44观察可知,实施例十的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例十一
图45为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图45中的光阑21所在一侧)至第二侧(也即,图45中的扫描曲面22(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜和第九透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为2.6mm,工作距离F工作距为1.5mm,F/F工作距为1.73,靠近曲面图像且与曲面图像相对的透镜表面的凹面半径为2mm,|F3/F|为0.93。
进一步具体地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型如下表26所示:
表26光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例十一提供的光学成像镜组,半视场角为9度,其在对扫描曲面22进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表27所示:
表27实施例十一中光学成像镜组的结构参数
需要说明的是,表27为实施例十一的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-20依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,本实施例的光学成像镜组的各个透镜中,具有非球面面形的透镜表面所对应的非球面系数如下表28所示:
表28实施例十一中具有非球面面形的透镜表面非球面系数数据
表28为实施例十一中的非球面系数数据,其中,k为非球面曲线方程式中的锥面系数,A4到A8则表示各表面第4到8阶非球面系数。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图46所示,场曲畸变曲线图如图47所示,垂轴色差曲线图如图48所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向 上色像差大小。
由图46-图48观察可知,实施例十一的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例十二
图49为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图49中的光阑23所在一侧)至第二侧(也即,图49中的扫描曲面24(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜和第九透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为2.6mm,工作距离F工作距为0.8mm,F/F工作距为3.25,Y1/Y2为1.75,Y2/Y3为2.28,出瞳距离为1.36mm。
进一步地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型如下表29所示:
表29光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例八提供的光学成像镜组,半视场角为9度,其在对扫描曲面24进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表30所示:
表30实施例十二中光学成像镜组的结构参数

需要说明的是,表30为实施例十二的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-20依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,本实施例的光学成像镜组的各个透镜中,具有非球面面形的透镜表面所对应的非球面系数如下表31所示:
表31实施例十二中具有非球面面形的透镜表面非球面系数数据
表31为实施例十二中的非球面系数数据,其中,k为非球面曲线方程式中的锥面系数,A4到A8则表示各表面第4到8阶非球面系数。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图50所示,场曲畸变曲线图如图51所示,垂轴色差曲线图如图52所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图50-图52观察可知,实施例十二的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元 件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例十三
图53为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图53中的光阑25所在一侧)至第二侧(也即,图53中的扫描曲面26(对应为曲面图像的像面)所在一侧)共光轴依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五胶合透镜和第六透镜。需要说明的是,本发明实施例所提供的一种光学成像镜组的总焦距F为2.915mm,工作距离F工作距为0.45mm,F/F工作距为6.63,Y1/Y2为1.972,Y2/Y3为1.212,出瞳距离为5.3mm。
进一步具体地,在本实施例中,光学成像镜组中各透镜的焦距参数及镜片类型如下表32所示:
表32光学成像镜组中各透镜的焦距参数及镜片类型
进一步地,本发明实施例十提供的光学成像镜组,半视场角为18度,其在对扫描曲面26进行成像的各透镜的面形、曲率半径、厚度参数、折射率及色散系数的参数如表33所示:
表33实施例十三中光学成像镜组的结构参数

需要说明的是,表33为实施例十的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-15依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,本实施例的光学成像镜组的各个透镜中,具有非球面面形的透镜表面所对应的非球面系数如下表34所示:
表34实施例十三中具有非球面面形的透镜表面非球面系数数据
表34为实施例十三中的非球面系数数据,其中,k为非球面曲线方程式中的锥面系数,A4到A16则表示各表面第4到16阶非球面系数。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图54所示,场曲畸变曲线图如图55所示,垂轴色差曲线图如图56所示;其中,光学传递函数曲线图(Modulation Transfer Function,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),垂轴色差曲线图代表垂直轴向方向上色像差大小。
由图54-图56观察可知,实施例十三的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
扫描显示装置
前述的光学成像镜组,可以配合光纤扫描器(或者相应的光纤扫描模组),构成本申请实施例中光学成像镜组的应用,即将光学成像镜组应用在显示成像领域的扫描显示装置(如图1a、1b所示,光学成像镜组设置于光纤扫描器的出光光路上)上,其中,光学成像镜组的第一侧朝向光纤扫描器扫描出光方向, 优选方式为光学成像镜组与光纤扫描器中心光轴共轴。当然,有关光纤扫描器的结构和大致原理可以参考前述图1a、1b对应的内容,这里便不再过多赘述。
近眼显示设备
本申请中,扫描显示装置可进一步应用于近眼显示设备中,可配合近眼显示模组构成本申请实施例中的近眼显示设备,用作头戴式AR设备(如:AR眼镜)。该扫描显示装置设置于近眼显示模组中。
其中,近眼显示模组中可包括:光源、处理控制电路、佩戴式框架结构、波导等。光源输出的图像光束进入扫描显示装置中,由其中的光纤扫描器扫描输出至光学显示镜组,光纤扫描器的扫描曲面(可参考图5中的扫描曲面02以及对应图2中的扫描曲面230)经光学显示镜组后,转换为成像平面(可参考对应图2中的成像平面240),该成像平面作为波导的入瞳面耦入至波导中,再经波导扩展成像耦出,进入人眼。
作为另一种可能的实施方式,扫描显示装置可进一步可配合近眼显示模组构成本申请实施例中的近眼显示设备,用作头戴式VR设备(如:VR头盔/眼镜)。该扫描显示装置设置于近眼显示模组中。
综上所述,本申请实施例中,通过对光学成像镜组的工作距离进行定义和数值范围的限定,以及通过对Y1、Y2和Y3进行定义并将Y1、Y2和Y3进行比例关系的限定,使得由多个透镜组成的光学成像镜组能够将第二侧的曲面图像进行清晰的成像,从而使得光学成像镜组在安装调配时能够快速精准地匹配到曲面图像,故本申请实施例提供光学成像镜组不但能够实现像方曲面图像的高质量清晰成像,而且还有利于使整个光学成像镜组的装配工艺难度得到降低,同时也有利于在低成本下实现批量化的装配生产,为包含有光学成像镜组的产品加工品控奠定了良好的技术基础。
以上所述的只是本申请的较佳具体实施例,各实施例仅用于说明本申请的技术方案而非对本申请的限制,凡本领域技术人员依本申请的构思通过逻辑分析、推理或者有效的实验可以得到的技术方案,皆应该本申请的范围之内。
在本公开的各种实施方式中所使用的表述“第一”、“第二”、“所述第一”或“所述第二”可修饰各种部件而与顺序和/或重要性无关,但是这些表述不限制相应部件。以上表述仅配置为将元件与其它元件区分开的目的。例如,第一透镜和第二透镜表示不同的透镜,虽然两者均是透镜。
以上所揭露的仅为本申请的局部实施例而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或局部流程,并依本申请权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (16)

  1. 一种光学成像镜组,其特征在于,所述光学成像镜组包括多个透镜,所述多个透镜由第一侧至第二侧依次共光轴设置,所述光学成像镜组的所述第二侧对应曲面图像;
    靠近所述曲面图像且与所述曲面图像相对的透镜表面为凹面,所述凹面和所述曲面图像在所述光轴上的间距为所述光学成像镜组的工作距离,所述工作距离为0.2mm-1.5mm;
    具有所述凹面的所述透镜由所述第一侧到所述第二侧依次具有第一侧表面和第二侧表面,所述第二侧表面对应所述凹面;当所述光学成像镜组工作时,光线与所述第一侧表面、所述第二侧表面和所述曲面图像依次形成有最大值的交高Y1、Y2和Y3,其中,所述Y1、所述Y2和所述Y3存在关系:1.5≤Y1/Y2≤2.5;1.2≤Y2/Y3≤2.0。
  2. 根据权利要求1所述的光学成像镜组,其特征在于,所述Y1、所述Y2和所述Y3存在关系:1.6≤Y1/Y2≤1.9;1.3≤Y2/Y3≤1.5。
  3. 根据权利要求1所述的光学成像镜组,其特征在于,所述多个透镜中至少存在一个负透镜其焦距Fi与所述光学成像镜组的总焦距F之间存在以下关系:0.2≤|Fi/F|≤1.5。
  4. 根据权利要求2所述的光学成像镜组,其特征在于,所述总焦距为2mm-3.5mm;
    所述光学成像镜组的所述总焦距和所述工作距离存在以下关系式:2.95≤F/F工作距≤14.43,其中,所述F为所述光学成像镜组的所述总焦距,所述F工作距为所述光学成像镜组的所述工作距离。
  5. 根据权利要求4所述的光学成像镜组,其特征在于,所述工作距离为0.2mm-1.1mm。
  6. 根据权利要求1所述的光学成像镜组,其特征在于,所述光学成像镜组的所述总焦距和所述工作距离存在以下关系式:2.95≤F/F工作距≤14.43,其中,所述F为所述光学成像镜组的所述总焦距,所述F工作距为所述光学成像镜组的所述工作距离。
  7. 根据权利要求1所述的光学成像镜组,其特征在于,所述工作距离为0.2mm-1.1mm。
  8. 根据权利要求7所述的光学成像镜组,其特征在于,所述工作距离为0.3-0.5mm。
  9. 根据权利要求7所述的光学成像镜组,其特征在于,所述工作距离为0.4-0.8mm。
  10. 根据权利要求1所述的光学成像镜组,其特征在于,所述光学成像镜组的出瞳距离为1.3-5.3mm。
  11. 根据权利要求10所述的光学成像镜组,其特征在于,所述光学成像镜组的出瞳距离为1.6-3.7mm。
  12. 根据权利要求1~11任意一项所述的光学成像镜组,其特征在于,所述曲面图像的曲面朝向和所述凹面的曲面朝向相同。
  13. 根据权利要求12所述的光学成像镜组,其特征在于,所述曲面图像由载有光信号的光纤摆动所形成。
  14. 根据权利要求12所述的光学成像镜组,其特征在于,所述曲面图像沿所述光轴方向的投影为曲面投影,所述曲面图像上的积分表面积为第一积分表面积,所述第一积分表面积在所述曲面投影上所对应的积分表面积为第二积分表面积,所述第一积分表面积与所述第二积分表面积一一对应;
    所述曲面投影上的所述第二积分表面积大小由中心向四周逐渐减小。
  15. 根据权利要求12所述的光学成像镜组,其特征在于,过所述曲面图像中心点的切平面具有垂直于所述切平面的法向量,所述法向量过所述中心点,所述中心点为所述曲面图像与所述切平面的交点O,所述曲面图像上任意一个不过所述交点O的点为P,所述P点在所述法向量上对应的投影点为P’,所述交点O到所述P’的位移D存在以下关系:0<D<0.5mm;
    过所述P点的斜率随着所述P点远离所述法向量而越来越小。
  16. 一种如权利要求1-15任意一项所述光学成像镜组的应用,其特征在于,所述光学成像镜组被应用于显示领域或成像领域。
PCT/CN2023/094994 2022-10-20 2023-05-18 一种光学成像镜组及其应用 WO2024082627A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211285802.2A CN117950163A (zh) 2022-10-20 2022-10-20 一种光学成像镜组及其应用
CN2022112858022 2022-10-20
CN2022112857706 2022-10-20
CN202211285770.6A CN117950158A (zh) 2022-10-20 2022-10-20 一种光学成像镜组及其应用

Publications (1)

Publication Number Publication Date
WO2024082627A1 true WO2024082627A1 (zh) 2024-04-25

Family

ID=90736778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094994 WO2024082627A1 (zh) 2022-10-20 2023-05-18 一种光学成像镜组及其应用

Country Status (1)

Country Link
WO (1) WO2024082627A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200026726A (ko) * 2018-08-31 2020-03-11 난창 오-필름 옵티컬-일렉트로닉 테크 컴퍼니 리미티드 촬상 광학 시스템 및 전자 장치
CN112882193A (zh) * 2020-12-21 2021-06-01 成都理想境界科技有限公司 光学成像镜组、扫描显示装置及近眼显示设备
CN113253448A (zh) * 2021-05-24 2021-08-13 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示系统
CN216561182U (zh) * 2021-10-21 2022-05-17 成都理想境界科技有限公司 光学成像镜组、扫描显示装置及近眼显示设备
CN217007829U (zh) * 2021-10-21 2022-07-19 成都理想境界科技有限公司 光学成像镜组、扫描显示装置及近眼显示设备
CN217606164U (zh) * 2022-05-18 2022-10-18 成都理想境界科技有限公司 光学成像镜组、扫描显示装置及近眼显示设备
CN217606165U (zh) * 2022-05-18 2022-10-18 成都理想境界科技有限公司 光学成像镜组、扫描显示装置及近眼显示设备
CN218601558U (zh) * 2022-10-20 2023-03-10 成都理想境界科技有限公司 一种光学成像镜组及扫描显示装置
CN218824919U (zh) * 2022-10-20 2023-04-07 成都理想境界科技有限公司 一种光学成像镜组及扫描显示装置
CN218824924U (zh) * 2022-10-20 2023-04-07 成都理想境界科技有限公司 一种光学成像镜组及扫描显示装置
CN218824917U (zh) * 2022-10-20 2023-04-07 成都理想境界科技有限公司 一种光学成像镜组及扫描显示装置
CN218824922U (zh) * 2022-10-20 2023-04-07 成都理想境界科技有限公司 一种光学成像镜组及扫描显示装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200026726A (ko) * 2018-08-31 2020-03-11 난창 오-필름 옵티컬-일렉트로닉 테크 컴퍼니 리미티드 촬상 광학 시스템 및 전자 장치
CN112882193A (zh) * 2020-12-21 2021-06-01 成都理想境界科技有限公司 光学成像镜组、扫描显示装置及近眼显示设备
CN113253448A (zh) * 2021-05-24 2021-08-13 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示系统
CN216561182U (zh) * 2021-10-21 2022-05-17 成都理想境界科技有限公司 光学成像镜组、扫描显示装置及近眼显示设备
CN217007829U (zh) * 2021-10-21 2022-07-19 成都理想境界科技有限公司 光学成像镜组、扫描显示装置及近眼显示设备
CN217606164U (zh) * 2022-05-18 2022-10-18 成都理想境界科技有限公司 光学成像镜组、扫描显示装置及近眼显示设备
CN217606165U (zh) * 2022-05-18 2022-10-18 成都理想境界科技有限公司 光学成像镜组、扫描显示装置及近眼显示设备
CN218601558U (zh) * 2022-10-20 2023-03-10 成都理想境界科技有限公司 一种光学成像镜组及扫描显示装置
CN218824919U (zh) * 2022-10-20 2023-04-07 成都理想境界科技有限公司 一种光学成像镜组及扫描显示装置
CN218824924U (zh) * 2022-10-20 2023-04-07 成都理想境界科技有限公司 一种光学成像镜组及扫描显示装置
CN218824917U (zh) * 2022-10-20 2023-04-07 成都理想境界科技有限公司 一种光学成像镜组及扫描显示装置
CN218824922U (zh) * 2022-10-20 2023-04-07 成都理想境界科技有限公司 一种光学成像镜组及扫描显示装置

Similar Documents

Publication Publication Date Title
CN112904530B (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN112882193B (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN214540202U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN218824919U (zh) 一种光学成像镜组及扫描显示装置
CN218824924U (zh) 一种光学成像镜组及扫描显示装置
CN218824922U (zh) 一种光学成像镜组及扫描显示装置
CN218601558U (zh) 一种光学成像镜组及扫描显示装置
CN218824917U (zh) 一种光学成像镜组及扫描显示装置
WO2024082627A1 (zh) 一种光学成像镜组及其应用
CN214540203U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN113568140B (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN218824921U (zh) 一种光学成像镜组及扫描显示装置
CN218824925U (zh) 一种光学成像镜组及扫描显示装置
CN218824920U (zh) 一种光学成像镜组及扫描显示装置
CN218601559U (zh) 一种光学成像镜组及扫描显示装置
CN218824918U (zh) 一种光学成像镜组及扫描显示装置
CN218824923U (zh) 一种光学成像镜组及扫描显示装置
CN112558275A (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN113568137B (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN214097946U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN117950153A (zh) 一种光学成像镜组及其应用
CN113568138B (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN117950156A (zh) 一种光学成像镜组及其应用
CN117917593A (zh) 一种光学成像镜组及其应用
CN216561178U (zh) 光学成像镜组、扫描显示装置及近眼显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878625

Country of ref document: EP

Kind code of ref document: A1