CN113568140B - 光学成像镜组、扫描显示装置及近眼显示设备 - Google Patents

光学成像镜组、扫描显示装置及近眼显示设备 Download PDF

Info

Publication number
CN113568140B
CN113568140B CN202110758529.XA CN202110758529A CN113568140B CN 113568140 B CN113568140 B CN 113568140B CN 202110758529 A CN202110758529 A CN 202110758529A CN 113568140 B CN113568140 B CN 113568140B
Authority
CN
China
Prior art keywords
lens
optical imaging
scanning
imaging lens
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110758529.XA
Other languages
English (en)
Other versions
CN113568140A (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Idealsee Technology Co Ltd
Original Assignee
Chengdu Idealsee Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Idealsee Technology Co Ltd filed Critical Chengdu Idealsee Technology Co Ltd
Priority to CN202110758529.XA priority Critical patent/CN113568140B/zh
Publication of CN113568140A publication Critical patent/CN113568140A/zh
Application granted granted Critical
Publication of CN113568140B publication Critical patent/CN113568140B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Abstract

本申请实施例公开了一种光学成像镜组、扫描显示装置及近眼显示设备,其涉及扫描显示技术领域。该光学成像镜组通过对光学成像镜组六个同光轴透镜的焦距进行合理的优化设置,能合理分散系统的光焦度,减缓镜片所产生的像差,达到对多种像差校正的目的,实现对像方曲面的清晰成像;通过对六个同光轴透镜的折射率和面型结构进行限定优化,进一步提高了成像品质;通过将六个同光轴透镜限定优化设计为非球面面形结构并采用塑料材质,使得成像质量在进一步提高的基础上,整个光学成像镜组的成型加工难度也得到降低,从而有利于在低成本下实现批量化的生产。

Description

光学成像镜组、扫描显示装置及近眼显示设备
技术领域
本申请涉及扫描显示技术领域,具体涉及一种光学成像镜组、扫描显示装置及近眼显示设备。
背景技术
扫描显示成像作为一种新兴的显示技术,可用于投影显示、近眼显示等多种应用场景。
然而,现有的扫描显示成像系统中,存在着加工难度高,量产成本高以及成像质量不佳等缺点,致使扫描显示成像技术在市场推广应用过程中受到一定的限制,尤其是在将扫描显示成像应用于近眼显示的场景中时,由于现有的光学成像镜组采用玻璃镜片设计,使其加工难度和量产成本一直居高不下,同时成像效果也不能满足近眼显示中高分辨率的性能要求,故而一直阻碍着近眼显示向消费级市场的发展。
发明内容
本申请的目的在于提供一种光学成像镜组、扫描显示装置及近眼显示设备,以满足近眼显示场景中高成像品质、易加工及低成本的要求。
本申请实施例提供一种光学成像镜组,所述光学成像镜组包括由第一侧至第二侧依次共光轴设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜及第六透镜,所述第一透镜至所述第六透镜对应的焦距分别为正、负、负、正、正及负。
可选地,各种所述透镜满足以下关系式:1.5<f1/f<3、0.5<|f2/f|<1.5、0.5<|f3/f|<1.5、0.5<f4/f<1.5、1<f5/f<3.5及0.5<|f6/f|<1.5;
其中,f1为所述第一透镜的焦距,f2为所述第二透镜的焦距,f3为所述第三透镜的焦距,f4为所述第四透镜的焦距,f5为所述第五透镜的焦距,f6为所述第六透镜的焦距,f为所述光学成像镜组的焦距。
可选地,各种所述透镜还满足以下关系式:
1.5<n1<1.7,1.6<n2<1.7,1.6<n3<1.7,1.5<n4<1.6,1.45<n5<1.6,1.6<n6<1.7;
其中,n1为所述第一透镜的折射率,n2为所述第二透镜的折射率,n3为所述第三透镜的折射率,n4为所述第四透镜的折射率,n5为所述第五透镜的折射率,n6为所述第六透镜的折射率。
可选地,所述n1为1.59,所述n2为1.63,所述n3为1.64,所述n4为1.51,所述n5为1.49,所述n6为1.67;
或所述n1为1.53,所述n2为1.63,所述n3为1.64,所述n4为1.51,所述n5为1.54,所述n6为1.63。
可选地,所述第六透镜的第一侧表面为凸面,所述第六透镜的第二侧表面于近光轴处为凹面。
可选地,所述第二透镜的第一侧表面于近光轴处为凹面,所述第二透镜的第二侧表面为凸面;所述第四透镜的第二侧表面于近光轴处为凸面;所述第五透镜的第一侧表面为凸面,所述第五透镜的第二侧表面于近光轴处为凹面。
可选地,所述第一透镜至所述第六透镜的第一侧表面和第二侧表面均为非球面面形结构;所述第一透镜至所述第六透镜均由塑料制成;所述光学成像镜组的第二侧对应曲面图像,所述光学成像镜组的第一侧对应平面图像。
本申请实施例中还提供一种扫描显示装置,包括光纤扫描器和上述的光学成像镜组,所述光纤扫描器用于扫描并出射待显示图像的光,所述光学成像镜组用于将所述光纤扫描器出射的光对应的扫描面进行放大成像及投射;
其中,所述光纤扫描器包括致动器和固定于所述致动器上的光纤,所述光纤超过所述致动器的部分形成光纤悬臂,所述光纤悬臂在所述致动器的驱动下进行二维扫描。
本申请实施例中还提供一种近眼显示设备,用作头戴式增强现实设备,至少包括近眼显示模组及上述的扫描显示装置,所述扫描显示装置设置于所述近眼显示模组中。
本申请实施例中还提供一种近眼显示设备,用作头戴式虚拟现实设备,至少包括近眼显示模组及上述的扫描显示装置,所述扫描显示装置设置于所述近眼显示模组中。
采用本申请实施例中的技术方案可以实现以下技术效果:
本申请实施例中,通过对光学成像镜组的六个同光轴透镜的焦距进行合理的优化设置,能合理分散系统的光焦度,减缓镜片所产生的像差,达到对多种像差校正的目的,实现对像方曲面的清晰成像。
进一步地,通过对六个同光轴透镜的折射率和面型结构进行限定优化,进一步提高了成像品质;通过将六个同光轴透镜限定优化设计为非球面面形结构并采用塑料材质,使得成像质量在进一步提高的基础上,整个光学成像镜组的成型加工难度也得到降低,从而有利于在低成本下实现批量化的生产。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请的技术方案而了解。本申请的目的和其它优点可通过在说明书、权利要求书以及附图中所特别指出的结构和/或流程来实现和获得。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1a、1b是说明性的扫描显示系统的结构示意图;
图2是本申请实施例提供的光纤扫描器扫描输出的示意图;
图3是本申请实施例一提供的一种光学成像镜组的结构示意图;
图4是本申请实施例一中光学成像镜组的MTF曲线图;
图5是本申请实施例一中光学成像镜组的场曲畸变曲线图;
图6是本申请实施例一中光学成像镜组的轴向色差图;
图7是本申请实施例一中光学成像镜组的垂轴色差图;
图8是本申请实施例二提供的另一种光学成像镜组的结构示意图;
图9是本申请实施例二中光学成像镜组的MTF曲线图;
图10是本申请实施例二中光学成像镜组的场曲畸变曲线图;
图11是本申请实施例二中光学成像镜组的轴向色差图;
图12是本申请实施例二中光学成像镜组的垂轴色差图。
图标:100-处理器;110-激光器组;120-光纤扫描模组;130-传输光纤;140-光源调制电路;150-扫描驱动电路;160-合束单元;121-扫描致动器;121a-慢轴;121b-快轴;122-光纤悬臂;123-镜组;124-扫描器封装壳;125-固定件;230-扫描曲面;240-成像平面;11-第一透镜;12-第二透镜;13-第三透镜;14-第四透镜;15-第五透镜;16-第六透镜;01-光阑;02-扫描曲面;31-第一透镜;32-第二透镜;33-第三透镜;34-第四透镜;35-第五透镜;36-第六透镜;03-光阑;04-扫描曲面。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
说明性扫描显示系统
对于目前的扫描显示成像来说,可由数字微镜设备(DigitalMicromirrorDevice,DMD)或光纤扫描显示(FiberScanningDisplay,FSD)设备实现。其中的FSD方案作为一种新型扫描显示成像方式,通过光纤扫描器实现图像的扫描输出。为了使本领域技术人员能够清楚地理解本申请方案,下面对光纤扫描成像的简要原理及相应系统进行阐述。
如图1a所示,为本申请中的一种说明性的扫描显示系统,其中主要包括:
处理器100、激光器组110、光纤扫描模组120、传输光纤130、光源调制电路140、扫描驱动电路150及合束单元160。其中,
处理器100可以为图形处理器(GraphicsProcessingUnit,GPU)、中央处理器(CentralProcessingUnit,CPU)或者其它具有控制功能、图像处理功能的芯片或电路,这里并不进行具体限定。
系统工作时,处理器100可根据待显示的图像数据控制光源调制电路140对激光器组110进行调制,激光器组110中包含多个单色激光器,分别发出不同颜色的光束。从图1中可见,激光器组中具体可采用红(Red,R)、绿(Green,G)、蓝(Blue,B)三色激光器。激光器组110中各激光器发出的光束经由合束单元160合束为一束激光并耦入至传输光纤130中。
处理器100还可控制扫描驱动电路150驱动光纤扫描模组120中的光纤扫描器进行扫动,从而将传输光纤130中传输的光束扫描输出。
由光纤扫描器扫描输出的光束作用于介质表面上某一像素点位置,并在该像素点位置上形成光斑,便实现了对该像素点位置的扫描。在光纤扫描器带动下,传输光纤130输出端按照一定扫描轨迹扫动,从而使得光束移动至对应的像素点位置。实际扫描过程中,传输光纤130输出的光束将在每个像素点位置形成具有相应图像信息(如:颜色、灰度或亮度)的光斑。在一帧的时间里,光束以足够高的速度遍历每一像素点位置完成一帧图像的扫描,由于人眼观察事物存在“视觉残留”的特点,故人眼便无法察觉光束在每一像素点位置上的移动,而是看见一帧完整的图像。
继续参考图1b,为光纤扫描模组120的具体结构,其中包括:扫描致动器121、光纤悬臂122、镜组123、扫描器封装壳124以及固定件125。扫描致动器121通过固定件125固定于扫描器封装壳124中,传输光纤130在扫描致动器121的前端延伸形成光纤悬臂122(也可称为扫描光纤),工作时,扫描致动器121在扫描驱动信号的驱动下,其慢轴121a(也称第一致动部)沿竖直方向(该竖直方向平行于图1a、1b中参考坐标系内的Y轴,在本申请中,该竖直方向也可称为第一方向)振动,其快轴121b(也称第二致动部)沿水平方向(该水平方向平行于图1a、1b中参考坐标系内的X轴,在本申请中,该水平方向也可称为第二方向)振动,受扫描致动器121带动,光纤悬臂122的前端按预设轨迹进行二维扫动并出射光束,出射的光束便可透过镜组123实现扫描成像。一般性地,可将扫描致动器121及光纤悬臂122所构成的结构称为:光纤扫描器。
如图2所示,本申请实施例中,通过快慢轴的运动,光纤出光端的运动轨迹形成扫描曲面230,经相应的镜组123后,转换为成像平面240。当应用于诸如增强现实(AugmentedReality,AR)设备这样的近眼显示设备中时,成像平面240将作为波导的入瞳耦入至波导中,进行成像以便人眼观看。
为了便于表述并使得本领域技术人员容易理解本申请的方案,需要说明的是,本申请中的光学成像镜组(如图2中所示的镜组123)作为目镜,经过该光学成像镜组的作用,可将扫描曲面230转换为成像平面240(实际应用时,光线的传输方向为:由扫描曲面230至成像平面240的方向),从而在此将光学成像镜组对应成像平面240的一侧,称为第一侧,而将光学成像镜组对应扫描曲面230的一侧,称为第二侧。在后续内容中,便采用“第一侧”和“第二侧”为参照,对光学成像镜组的实施例方案进行描述。并且,后续实施例中的描述,诸如对光学成像镜组中的某一透镜而言,“第X透镜的第一侧表面”则是指第X透镜朝向第一侧的表面。
进一步需要说明的是,在投影领域,第一侧对应的图像为平面图像,对应的平面图像载体可以为如投影屏幕、幕布或墙面等,第二侧对应的图像为曲面图像,即为光纤扫描器扫描出的或其它图像源发射出的呈弧形的扫描面;在摄像领域使用场景下,光路与在投影领域时相反,第一侧对应的一般为采集图像信息的物侧面,第二侧对应的一般为采集成像得到的像侧面。
光学成像镜组
本申请实施例中的光学成像镜组包括:由第一侧至第二侧依次共光轴设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜及第六透镜,共六片透镜。需要说明的是,本申请实施例中的第一透镜至第六透镜对应的焦距分别为正、负、负、正、正及负。通过同时对六个同光轴透镜的焦距进行正负性的合理优化设置,能合理分散系统的光焦度,减缓镜片所产生的像差,达到对多种像差校正的目的,实现对像方曲面的清晰成像。另外,需要强调的是,第六透镜的焦距设置为负,有利于接收大视角的光线,以此可以更全面充分地撷取来自曲面图像的信息;通过将第一透镜的焦距设置为正,可以加强最终平面图像的汇聚能力以平衡像差。
进一步具体优选地,各种透镜满足以下关系式:1.5<f1/f<3、0.5<|f2/f|<1.5、0.5<|f3/f|<1.5、0.5<f4/f<1.5、1<f5/f<3.5及0.5<|f6/f|<1.5;其中,f1为第一透镜的焦距,f2为第二透镜的焦距,f3为第三透镜的焦距,f4为第四透镜的焦距,f5为第五透镜的焦距,f6为第六透镜的焦距,f为光学成像镜组的焦距(也可以理解为光学成像镜组的等效焦距)。需要说明的是,通过对每个透镜焦距大小进行更具体的限定,使得系统的光焦度得到更加合理的分散和配置,进而进一步加强对多种像差的校正,提升成像品质。另外,若本实施例中未界定透镜焦距所在的区域位置时,则表示该透镜的焦距可为透镜于近光轴处的焦距。
进一步地,在一种可能的实施方式中,六个透镜之间的连接方式可以采用间隔连接,也可以采用粘合方式粘合在一起,具体将根据实际应用的需要而定,这里并不进行限制。
进一步地,在一种可能的实施方式中,上述各种透镜还满足以下关系式:
1.5<n1<1.7,1.6<n2<1.7,1.6<n3<1.7,1.5<n4<1.6,1.45<n5<1.6,1.6<n6<1.7;其中,n1为第一透镜的折射率,n2为第二透镜的折射率,n3为第三透镜的折射率,n4为第四透镜的折射率,n5为第五透镜的折射率,n6为第六透镜的折射率。优选地,n1为1.59,n2为1.63,n3为1.64,n4为1.51,n5为1.49,n6为1.67;或n1为1.53,n2为1.63,n3为1.64,n4为1.51,n5为1.54,n6为1.63。需要说明的是,通过对六个透镜的折射率进行优化设计的限定,能够达到合理控制对应透镜的色散系数,以保证成像质量。
进一步可选地,在一种可能的实施方式中,第二透镜的第一侧表面于近光轴处为凹面,第二透镜的第二侧表面为凸面;第四透镜的第二侧表面于近光轴处为凸面;第五透镜的第一侧表面为凸面,第五透镜的第二侧表面于近光轴处为凹面;第六透镜的第一侧表面为凸面,第六透镜的第二侧表面于近光轴处为凹面。需要说明的是,通过对上述透镜对应侧表面面型结构的限定,可进一步有效校正镜片之间产生的像差,降低光学敏感度,提高最终成像品质。另外还需要说明的是,本文所说的第一侧表面为凸面,是指第一侧表面朝向光学成像镜组的第一侧方向形成凸起的形状;第一侧表面为凹面,是指第一侧表面朝向光学成像镜组的第一侧方向形成凹陷的形状;第二侧表面为凸面,是指第二侧表面朝向光学成像镜组的第二侧方向形成凸起的形状;第二侧表面为凹面,是指第二侧表面朝向光学成像镜组的第二侧方向形成凹陷的形状。需要强调的是,在本发明其它实施例当中,并不限于如本实施例对第二透镜、第四透镜、第五透镜和第六透镜的面型结构进行同时限定,也可以只对其中至少一个透镜的面型结构进行限定,如只限定第六透镜第一侧表面和第二侧表面的面型结构,对其它透镜的面型结构不作限定。
进一步地,在某些实施方式中,透镜的面型并不是整个侧面均为凹面或凸面,透镜的面型可能为复合型曲面,或近光轴部分为曲面而边缘部分非曲面;尤其是可选地,当透镜表面为凸面且未界定该凸面位置时,则表示该凸面可位于透镜表面近光轴处;同理,当透镜表面为凹面且未界定该凹面位置时,则表示该凹面可位于透镜表面近光轴处。
进一步可选地,在一种可能的实施方式中,第一透镜至第六透镜的第一侧表面和第二侧表面均为非球面面形结构。需要说明的是,通过将第一透镜至第六透镜的镜面结构限定设计为非球面面形结构,借此可获得较多的控制变量,用以消减像差、合理缩减透镜数目,故在提升图像显示质量的基础上,还有助于光学成像镜组的小型化或微型化。另外,上述透镜第一侧表面和第二侧表面均为非球面面形结构,可以理解为该透镜表面光学有效区整个或者其中一部分为非球面。
进一步可选地,在一种可能的实施方式中,第一透镜至第六透镜均由塑料制成。需要说明的是,由塑料制成的第一透镜至第六透镜,可以有效降低生产成本,相较于玻璃材质,塑料材质的透镜成本是玻璃材质成本的二十分之一到十分之一,故而非常有利于低成本批量化生产;另外,塑料材质的透镜通常可采用注塑成型,其加工难度低且能够很容易的加工成满足非球面的各种型面结构,同时塑料材质还能整体减轻镜头的重量,有利于其轻质化的产品设计。
另外,还需要说明的是,本发明实施例公开的光学成像镜组,可选地,可以设置至少一个光阑,其可位于第一透镜之前(第一侧)、各透镜之间或最后第六透镜之后(第二侧),该光阑的种类可以为如孔径光阑或视场光阑等,可用于减少杂散光,有助于提升图像显示质量。
实施例一
图3为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图3中的光阑01所在一侧)至第二侧(也即,图3中的扫描曲面02所在一侧)共光轴依次设置的第一透镜11、第二透镜12、第三透镜13、第四透镜14、第五透镜15、第六透镜16。
在本实施例中,第一透镜11、第二透镜12、第三透镜13、第四透镜14、第五透镜15、第六透镜16中每两个相邻透镜间均具有间隔,第一透镜11、第二透镜12、第三透镜13、第四透镜14、第五透镜15、第六透镜16为六片单一非粘合透镜。
第一透镜11至第六透镜16由第一侧至第二侧的焦距依次为正、负、负、正、正、负。
第一透镜11为双凸透镜,即,其第一侧表面、第二侧表面均为凸面。
第二透镜12的第一侧表面于近光轴处为凹面,第二侧表面为凸面。
第三透镜13的第一侧表面为凹面,第二侧表面于近光轴处为凸面。
第四透镜14的第一侧表面为凸面,第二侧表面于近光轴处为凸面。
第五透镜15的第一侧表面为凸面,第二侧表面为凹面。
第六透镜16的第一侧表面为凸面,第二侧表面于近光轴处为凹面。
在本实施例中,光学成像镜组中第一透镜11至第六透镜16的焦距满足以下关系式:
1.5<f1/f<3、0.5<|f2/f|<1.5、0.5<|f3/f|<1.5、0.5<f4/f<1.5、1<f5/f<3.5及0.5<|f6/f|<1.5;其中,f1为第一透镜11的焦距,f2为第二透镜12的焦距,f3为第三透镜13的焦距,f4为第四透镜14的焦距,f5为第五透镜15的焦距,f6为第六透镜16的焦距,f为光学成像镜组的等效焦距。
光学成像镜组中第一透镜11至第六透镜16的折射率满足以下条件:
n1为1.59,n2为1.63,n3为1.64,n4为1.51,n5为1.49,n6为1.67。其中,n1~n6分别代表第一透镜11至第六透镜16的折射率。
本发明实施例一提供的光学成像镜组中,透镜的材质是塑料的;光学成像镜组整体的等效焦距为2.97mm,光圈值为1.36,半视场角为8度,其在对扫描曲面02进行成像的各透镜的曲率半径、厚度参数、折射率及色散系数的优选参数如表1所示:
表1实施例一中光学成像镜组的结构参数
Figure GDA0003728015050000101
Figure GDA0003728015050000111
需要说明的是,表1为实施例一的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-14依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,第一透镜11至第六透镜16对应的表面的非球面系数如下表2所示:
表2实施例一中不同透镜表面的非球面系数数据
表面 2 3 4 5 6 7
K 1.8209E+001 -2.7027E+001 -5.6275E-001 6.7239E-001 -9.0420E+000 3.7106E+001
A4 3.5525E-003 1.5269E-002 -8.7587E-002 -6.2921E-003 4.6989E-002 -1.3132E-002
A6 -1.5188E-003 1.6229E-003 4.4607E-002 1.0406E-002 3.1086E-003 7.8731E-003
A8 2.0015E-004 -3.5850E-003 1.0351E-002 -1.5270E-003 -1.6861E-003 4.4642E-003
A10 -9.2354E-005 4.9875E-003 -8.8383E-003 -1.0746E-003 -1.1323E-003 1.8530E-004
A12 -1.4155E-003 1.2370E-003 7.0361E-004 -1.2646E-003 -2.5059E-004 -3.0710E-004
A14 1.9563E-003 -2.6267E-003 -2.0416E-003 -6.6312E-005 1.0598E-004 -2.1977E-004
A16 -5.9817E-004 1.1490E-003 2.4347E-003 2.2578E-004 1.2435E-005 5.2063E-005
表面 8 9 10 11 12 13
K 1.6341E+001 -9.5208E-001 -4.7212E-001 -9.7952E+000 2.5835E+000 2.3888E+000
A4 -2.2852E-002 2.1976E-002 -4.6021E-002 1.1199E-002 5.1514E-001 1.1714E+000
A6 9.3624E-003 1.5301E-002 -2.4610E-003 -8.8785E-003 -5.3680E-001 -7.5392E+000
A8 3.1584E-003 -3.7623E-003 1.9759E-003 -1.1244E-002 4.0828E-001 4.9707E+001
A10 -5.4658E-005 -5.9741E-004 8.8772E-004 1.0863E-003 -2.1809E-001 -1.5046E+002
A12 -3.1655E-004 3.9929E-004 -1.0408E-003 1.0591E-003 -5.1260E-002 5.0210E+001
A14 1.4088E-005 8.2956E-005 5.6016E-005 1.6206E-003 9.8912E-002 5.5862E+002
A16 9.2254E-006 -2.2444E-005 -6.1935E-005 -5.6294E-004 -2.2464E-002 -7.7984E+002
表2为实施例一中的非球面系数数据,其中,k为非球面曲线方程式中的锥面系数,A4到A16则表示各表面第4到16阶非球面系数。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图4所示,场曲畸变曲线图如图5所示,轴向色差曲线图如图6所示,垂直色差曲线图如图7所示;其中,光学传递函数曲线图(ModulationTransferFunction,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),轴向色差曲线图和垂直色差曲线图代表不同方向上色像差大小。
由图4-图7观察可知,实施例一的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对光纤扫描器的扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
实施例二
图8为本发明实施例提供的一种光学成像镜组的结构示意图。该光学成像镜组包括由第一侧(也即,图8中的光阑03所在一侧)至第二侧(也即,图8中的扫描曲面04所在一侧)共光轴依次设置的第一透镜31、第二透镜32、第三透镜33、第四透镜34、第五透镜35、第六透镜36。
在本实施例中,第一透镜31、第二透镜32、第三透镜33、第四透镜34、第五透镜35、第六透镜36中每两个相邻透镜间均具有间隔,第一透镜31、第二透镜32、第三透镜33、第四透镜34、第五透镜35、第六透镜36为六片单一非粘合透镜。
第一透镜31至第六透镜36由第一侧至第二侧的焦距依次为正、负、负、正、正、负。
第一透镜31为双凸透镜,即,其第一侧于近光轴处表面、第二侧表面均为凸面。
第二透镜32的第一侧表面于近光轴处为凹面,第二侧表面为凸面。
第三透镜33的第一侧表面于近光轴处为凹面,第二侧表面于近光轴处为凸面。
第四透镜34的第一侧表面为凸面,第二侧表面于近光轴处为凸面。
第五透镜35的第一侧表面为凸面,第二侧表面为凹面。
第六透镜36的第一侧表面为凸面,第二侧表面于近光轴处为凹面。
在本实施例中,光学成像镜组中第一透镜31至第六透镜36的焦距满足以下关系式:
1.5<f1/f<3、0.5<|f2/f|<1.5、0.5<|f3/f|<1.5、0.5<f4/f<1.5、1<f5/f<3.5及0.5<|f6/f|<1.5;其中,f1为第一透镜31的焦距,f2为第二透镜32的焦距,f3为第三透镜33的焦距,f4为第四透镜34的焦距,f5为第五透镜35的焦距,f6为第六透镜36的焦距,f为光学成像镜组的等效焦距。
光学成像镜组中第一透镜31至第六透镜36的折射率满足以下条件:
n1为1.53,n2为1.63,n3为1.64,n4为1.51,n5为1.54,n6为1.63。其中,n1~n6分别代表第一透镜31至第六透镜36的折射率。
本发明实施例提供的光学成像镜组中,透镜的材质是塑料的;光学成像镜组整体的等效焦距为2.99mm,光圈值为1.37,半视场角为8度,其在对扫描曲面04进行成像的各透镜的曲率半径、厚度参数、折射率及色散系数的优选参数如表3所示:
表3实施例二中光学成像镜组的结构参数
表面 透镜序号 面形 曲率半径 厚度/间距 材料 材料折射率 色散系数
0 成像平面 平面 无限 无限
1 光阑03 无限 1
2 第一透镜31 非球面 6.168 0.678 塑料 1.53 55.8
3 非球面 -5.403 2.613
4 第二透镜32 非球面 -1.331 0.528 塑料 1.63 23.4
5 非球面 -4.165 0.117
6 第三透镜33 非球面 -1.257 0.525 塑料 1.64 22.4
7 非球面 -22.702 0.100
8 第四透镜34 非球面 19.766 1.537 塑料 1.51 57.2
9 非球面 -1.025 0.100
10 第五透镜35 非球面 1.328 1.178 塑料 1.54 56.8
11 非球面 1.293 0.100
12 第六透镜36 非球面 4.502 0.769 塑料 1.63 23.4
13 非球面 1.252 0.464
14 扫描曲面04 球面 1.7
需要说明的是,表3为实施例二的光学成像镜组详细的结构数据,其中,曲率半径、厚度及焦距的单位均为毫米,且表面0-14依序表示由第一侧至第二侧的表面;成像平面中曲率半径为“无限”的光学面即指呈平面。
进一步地,第一透镜31至第六透镜36对应的表面的非球面系数如下表4所示:
表4实施例二中不同透镜表面的非球面系数数据
表面 2 3 4 5 6 7
K 1.6585E+001 1.3315E+001 -2.4443E-002 4.1760E+000 -5.8819E+000 1.0000E+002
A4 -2.4707E-002 -5.3311E-003 -2.3127E-001 -2.6060E-002 3.9802E-002 -3.7977E-002
A6 -8.1071E-003 -1.8750E-003 1.5347E-001 1.5858E-003 6.4046E-003 1.5583E-002
A8 -3.1914E-003 -3.0265E-003 -6.0184E-002 -1.6611E-003 -1.8871E-003 3.7780E-003
A10 2.9642E-004 3.5601E-005 -2.8724E-002 9.1525E-004 -1.4491E-003 -1.4805E-004
A12 -2.7403E-003 3.2456E-003 1.6522E-002 -2.1095E-003 -4.9575E-004 -1.7634E-004
A14 2.7009E-003 -2.7009E-003 1.9629E-002 -2.3395E-004 1.1764E-004 -2.0257E-004
A16 -1.0939E-003 6.9103E-004 -5.5317E-003 3.3265E-004 1.6499E-005 4.3352E-005
表面 8 9 10 11 12 13
K 7.5012E+001 -9.7647E-001 -6.3199E-001 -1.3993E+001 -8.0298E+001 1.6322E+000
A4 -2.7739E-002 3.9584E-002 -4.9340E-002 -3.7955E-002 5.5426E-001 1.3057E+000
A6 1.1197E-002 1.0380E-002 5.5400E-003 -4.5366E-003 -5.7691E-001 -5.7639E+000
A8 1.6388E-003 -3.6609E-003 8.6992E-003 5.5554E-003 4.5571E-001 2.6764E+001
A10 1.3233E-005 -3.8279E-004 -2.2896E-003 2.1387E-004 -2.2383E-001 -5.4071E+001
A12 -2.0586E-004 3.4361E-004 -5.8062E-004 -8.2286E-004 -4.9413E-002 -4.1404E+001
A14 1.1871E-005 4.9270E-005 1.88760E-004 2.5020E-004 1.0772E-001 2.7724E+002
A16 4.8997E-006 -1.4698E-005 -5.0045E-006 -2.69806E-005 -3.1842E-002 -2.6323E+002
表4为实施例二中的非球面系数数据,其中,k为非球面曲线方程式中的锥面系数,A4到A16则表示各表面第4到16阶非球面系数。
进一步地,经测试,在采用上述光学成像镜组投射扫描面对应的图像光时,其光学传递函数曲线图如图9所示,场曲畸变曲线图如图10所示,轴向色差曲线图如图11所示,垂直色差曲线图如图12所示;其中,光学传递函数曲线图(ModulationTransferFunction,MTF)代表一个光学系统的综合解像水平,场曲畸变曲线图表示不同视场角情况下F-Tan(theta)畸变大小值(百分比),轴向色差曲线图和垂直色差曲线图代表不同方向上色像差大小。
由图9-图12观察可知,实施例二的光学成像镜组的全视场范围内成像分辨率良好、光学系统畸变和色差小,故光学成像镜组能够对光纤扫描器的扫描曲面图像进行清晰成像,均具有较好的成像效果。
当然,在实际应用中,光学成像镜组还可包括感光元件、壳体等,感光元件可以设置于光学成像镜组的第二侧,光学成像镜组可安装在壳体内,即可将图像源(如光纤扫描器)扫描形成的曲面图像成像于一平面,实现清晰成像。
扫描显示装置
前述的光学成像镜组,可以配合光纤扫描器(或者相应的光纤扫描模组),构成本申请实施例中的扫描显示装置(如图1a、1b所示,光学成像镜组设置于光纤扫描器的出光光路上),其中,光学成像镜组的第一侧朝向光纤扫描器扫描出光方向,优选方式为光学成像镜组与光纤扫描器中心光轴共轴。当然,有关光纤扫描器的结构和大致原理可以参考前述图1a、1b对应的内容,这里便不再过多赘述。
近眼显示设备
本申请中,扫描显示装置可进一步应用于近眼显示设备中,可配合近眼显示模组构成本申请实施例中的近眼显示设备,用作头戴式AR设备(如:AR眼镜)。该扫描显示装置设置于近眼显示模组中。
其中,近眼显示模组中可包括:光源、处理控制电路、佩戴式框架结构、波导等。光源输出的图像光束进入扫描显示装置中,由其中的光纤扫描器扫描输出至光学显示镜组,光纤扫描器的扫描曲面(可参考图3中的扫描曲面02、图8中的扫描曲面04,以及对应图2中的扫描曲面230)经光学显示镜组后,转换为成像平面(可参考对应图2中的成像平面240),该成像平面作为波导的入瞳面耦入至波导中,再经波导扩展成像耦出,进入人眼。
作为另一种可能的实施方式,扫描显示装置可进一步可配合近眼显示模组构成本申请实施例中的近眼显示设备,用作头戴式VR设备(如:VR头盔/眼镜)。该扫描显示装置设置于近眼显示模组中。
本申请实施例中,通过对光学成像镜组的六个同光轴透镜的焦距进行合理的优化设置,能合理分散系统的光焦度,减缓镜片所产生的像差,达到对多种像差校正的目的,实现对像方曲面的清晰成像;通过对六个同光轴透镜的折射率和面型结构进行限定优化,进一步提高了成像品质;通过将六个同光轴透镜限定优化设计为非球面面形结构并采用塑料材质,使得成像质量在进一步提高的基础上,整个光学成像镜组的成型加工难度也得到降低,从而有利于在低成本下实现批量化的生产。
以上所述的只是本申请的较佳具体实施例,各实施例仅用于说明本申请的技术方案而非对本申请的限制,凡本领域技术人员依本申请的构思通过逻辑分析、推理或者有效的实验可以得到的技术方案,皆应该本申请的范围之内。
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
在本公开的各种实施方式中所使用的表述“第一”、“第二”、“所述第一”或“所述第二”可修饰各种部件而与顺序和/或重要性无关,但是这些表述不限制相应部件。以上表述仅配置为将元件与其它元件区分开的目的。例如,第一透镜和第二透镜表示不同的透镜,虽然两者均是透镜。

Claims (9)

1.一种光学成像镜组,其特征在于,所述光学成像镜组由第一侧至第二侧依次共光轴设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜及第六透镜组成,所述第一透镜至所述第六透镜对应的焦距分别为正、负、负、正、正及负;
各种所述透镜满足以下关系式:1.5<f1/f<3、0.5<|f2/f|<1.5、0.5<|f3/f|<1.5、0.5<f4/f<1.5、1<f5/f<3.5及0.5<|f6/f|<1.5;其中,f1为所述第一透镜的焦距,f2为所述第二透镜的焦距,f3为所述第三透镜的焦距,f4为所述第四透镜的焦距,f5为所述第五透镜的焦距,f6为所述第六透镜的焦距,f为所述光学成像镜组的焦距。
2.如权利要求1所述的光学成像镜组,其特征在于,各种所述透镜还满足以下关系式:
1.5<n1<1.7,1.6<n2<1.7,1.6<n3<1.7,1.5<n4<1.6,1.45<n5<1.6,1.6<n6<1.7;
其中,n1为所述第一透镜的折射率,n2为所述第二透镜的折射率,n3为所述第三透镜的折射率,n4为所述第四透镜的折射率,n5为所述第五透镜的折射率,n6为所述第六透镜的折射率。
3.如权利要求2所述的光学成像镜组,其特征在于,所述n1为1.59,所述n2为1.63,所述n3为1.64,所述n4为1.51,所述n5为1.49,所述n6为1.67;
或所述n1为1.53,所述n2为1.63,所述n3为1.64,所述n4为1.51,所述n5为1.54,所述n6为1.63。
4.如权利要求1~3中任一项所述的光学成像镜组,其特征在于,所述第六透镜的第一侧表面为凸面,所述第六透镜的第二侧表面于近光轴处为凹面。
5.如权利要求4所述的光学成像镜组,其特征在于,所述第二透镜的第一侧表面于近光轴处为凹面,所述第二透镜的第二侧表面为凸面;所述第四透镜的第二侧表面于近光轴处为凸面;所述第五透镜的第一侧表面为凸面,所述第五透镜的第二侧表面于近光轴处为凹面。
6.如权利要求1所述的光学成像镜组,其特征在于,所述第一透镜至所述第六透镜的第一侧表面和第二侧表面均为非球面面形结构;
所述第一透镜至所述第六透镜均由塑料制成;
所述光学成像镜组的所述第二侧对应曲面图像,所述光学成像镜组的所述第一侧对应平面图像。
7.一种扫描显示装置,其特征在于,包括光纤扫描器及前述权利要求1至6中任一项所述的光学成像镜组,所述光纤扫描器用于扫描并出射待显示图像的光,所述光学成像镜组用于将所述光纤扫描器出射的光对应的扫描面进行放大成像及投射;
其中,所述光纤扫描器包括致动器和固定于所述致动器上的光纤,所述光纤超过所述致动器的部分形成光纤悬臂,所述光纤悬臂在所述致动器的驱动下进行二维扫描。
8.一种近眼显示设备,其特征在于,所述近眼显示设备用作头戴式增强现实设备,至少包括近眼显示模组以及根据权利要求7所述的扫描显示装置,所述扫描显示装置设置于所述近眼显示模组中。
9.一种近眼显示设备,其特征在于,所述近眼显示设备用作头戴式虚拟现实设备,至少包括近眼显示模组以及根据权利要求7所述的扫描显示装置,所述扫描显示装置设置于所述近眼显示模组中。
CN202110758529.XA 2021-07-05 2021-07-05 光学成像镜组、扫描显示装置及近眼显示设备 Active CN113568140B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110758529.XA CN113568140B (zh) 2021-07-05 2021-07-05 光学成像镜组、扫描显示装置及近眼显示设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110758529.XA CN113568140B (zh) 2021-07-05 2021-07-05 光学成像镜组、扫描显示装置及近眼显示设备

Publications (2)

Publication Number Publication Date
CN113568140A CN113568140A (zh) 2021-10-29
CN113568140B true CN113568140B (zh) 2022-10-18

Family

ID=78163672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110758529.XA Active CN113568140B (zh) 2021-07-05 2021-07-05 光学成像镜组、扫描显示装置及近眼显示设备

Country Status (1)

Country Link
CN (1) CN113568140B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089508B (zh) * 2022-01-19 2022-05-03 茂莱(南京)仪器有限公司 一种用于光波导ar镜片检测的广角投影镜头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621664B (zh) * 2011-01-27 2014-05-21 大立光电股份有限公司 影像撷取镜头组
TWI589921B (zh) * 2016-09-12 2017-07-01 大立光電股份有限公司 影像擷取系統鏡組、取像裝置及電子裝置
CN109839728B (zh) * 2018-12-31 2021-03-19 瑞声光学解决方案私人有限公司 摄像光学镜头
CN211786315U (zh) * 2020-03-12 2020-10-27 浙江舜宇光学有限公司 摄像镜头组

Also Published As

Publication number Publication date
CN113568140A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN112904530A (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN113568140B (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN112882193A (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN113568139B (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN113568137B (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN113568138B (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN217007829U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN113568144B (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN216561182U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN216561184U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN216748254U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN217007827U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN217606165U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN216561180U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN217007825U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN216748255U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN216561181U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN217007826U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN216748253U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN217007828U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN216561178U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN217606164U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN216561183U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN218601550U (zh) 光学成像镜组、扫描显示装置及近眼显示设备
CN216561179U (zh) 光学成像镜组、扫描显示装置及近眼显示设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant