WO2024082603A1 - 洗碗机及其排水故障检测方法、装置和可读存储介质 - Google Patents

洗碗机及其排水故障检测方法、装置和可读存储介质 Download PDF

Info

Publication number
WO2024082603A1
WO2024082603A1 PCT/CN2023/091572 CN2023091572W WO2024082603A1 WO 2024082603 A1 WO2024082603 A1 WO 2024082603A1 CN 2023091572 W CN2023091572 W CN 2023091572W WO 2024082603 A1 WO2024082603 A1 WO 2024082603A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
current
drainage
washing stage
water
Prior art date
Application number
PCT/CN2023/091572
Other languages
English (en)
French (fr)
Inventor
张芳
冯庆生
张铎
蔡延涛
石义园
Original Assignee
佛山市顺德区美的洗涤电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区美的洗涤电器制造有限公司 filed Critical 佛山市顺德区美的洗涤电器制造有限公司
Priority to EP23844059.8A priority Critical patent/EP4378369A1/en
Publication of WO2024082603A1 publication Critical patent/WO2024082603A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/0018Controlling processes, i.e. processes to control the operation of the machine characterised by the purpose or target of the control
    • A47L15/0049Detection or prevention of malfunction, including accident prevention
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4244Water-level measuring or regulating arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor

Definitions

  • the present disclosure belongs to the technical field of kitchen appliances, and in particular, relates to a dishwasher and a drainage fault detection method, device and readable storage medium thereof.
  • dishwashers that can free your hands are gradually becoming a standard of quality life.
  • dishwashers have the advantages of cleaning, sterilization, saving water and labor.
  • the drain pipe will be blocked or similar. If the dishwasher program cannot correctly alarm it, as the water accumulates, it will overflow the cavity and there is a risk of flooding the customer's floor.
  • the present disclosure aims to solve or improve at least one of the above-mentioned technical problems.
  • a first aspect of the present disclosure is to provide a drainage failure detection method for a dishwasher.
  • a second aspect of the present disclosure is to provide a drainage failure detection device for a dishwasher.
  • a third aspect of the present disclosure is to provide a drainage failure detection device for a dishwasher.
  • a fourth aspect of the present disclosure is to provide a readable storage medium.
  • a fifth aspect of the present disclosure is to provide a dishwasher.
  • the technical solution of the first aspect of the present disclosure provides a method for detecting drainage faults in a dishwasher, including: obtaining the current temperature of the current solution in the dishwasher in the current washing stage; determining the current theoretical temperature according to the water intake in the current washing stage and the water intake and drainage parameters of each stage before the current washing stage; and determining whether there is a drainage fault based on the current temperature and the current theoretical temperature.
  • the washing temperature in different stages may be the same or different.
  • the heat of the washing solution in different stages will also vary with the amount and temperature of the solution.
  • each stage will have a theoretical temperature corresponding to the current amount and temperature of the solution entering.
  • the actual temperature of the solution in each stage will be affected by multiple parameters, one of which is the residual solution. If there is residual solution, it means that the residual solution with a certain temperature will bring a certain amount of heat to the next stage, and if the residual solution in each stage continues to accumulate to the next stage, then this heat will cause a difference between the actual temperature and the theoretical temperature.
  • the present disclosure uses this difference to determine whether there is a drainage failure. That is to say, if there is a lot of residual solution (meaning that the drainage is unfavorable or faulty), then the difference between the actual temperature and the theoretical temperature will be more obvious. At this time, it can be considered that there is a drainage failure.
  • the inlet water temperature is usually equal to the temperature of indoor tap water, and the inlet water is heated in each washing stage, the residual water directly causes the current temperature of the current liquid to be higher than the calculated current theoretical temperature. Therefore, according to the drainage fault detection method disclosed in the present invention, the current temperature of the current liquid of the dishwasher is compared with the current theoretical temperature to determine whether there is a drainage fault.
  • the current theoretical temperature is related to the parameters of the current stage and the inlet and outlet parameters of the previous stages, it can reflect the influence of the inlet and outlet of the previous stages on the actual temperature, so that it can be well judged whether the current temperature is affected by the drainage fault, and then determine whether there is a drainage fault.
  • the drainage fault detection method disclosed in the present invention since the temperature can be measured by a temperature detection device such as a thermistor, the drainage fault detection can be achieved without the need for a micro switch, a high water level sensor or a float and other equipment in the related art.
  • the current theoretical temperature is determined according to the water intake volume of the current washing stage and the water intake and discharge parameters of each stage before the current washing stage, including: determining the first heat released from the pre-drainage temperature of the stage before the current stage to the current theoretical temperature according to the water intake and discharge parameters of each stage before the current washing stage; determining the second heat absorbed from the current water intake temperature to the current theoretical temperature according to the water intake volume of the current washing stage and the current water intake temperature; and determining the current theoretical temperature according to the first heat being equal to the second heat.
  • the water inlet and outlet parameters of each stage before the current washing stage may include: the water inlet temperature, water inlet volume and pre-water outlet temperature of each stage before the current washing stage.
  • the first heat released when the water inlet temperature of the first washing stage is reduced from the water inlet temperature of the first washing stage to the current theoretical temperature is determined according to the water inlet volume of the first washing stage, the temperature before drainage of the first washing stage and the current theoretical temperature; the first heat released when the water inlet temperature of the first washing stage is reduced from the water inlet temperature of the first washing stage to the current theoretical temperature is determined according to the water inlet volume of the second washing stage, The inlet water temperature and the current theoretical temperature determine the second amount of heat required to increase the inlet water volume in the second washing stage from the inlet water temperature to the current theoretical temperature.
  • the water inlet and outlet parameters of each stage before the current washing stage may include: the water inlet temperature, the pre-water outlet temperature and the rated residual water volume of each stage before the current washing stage.
  • the first heat released when the rated residual water volume of the first washing stage is reduced from the pre-drainage temperature of the first washing stage to the current theoretical temperature is determined according to the rated residual water volume of the first washing stage, the pre-drainage temperature of the first washing stage and the current theoretical temperature; the third heat required for the inlet water volume of the second washing stage to be increased from the inlet temperature to the current theoretical temperature is determined according to the inlet water volume of the second washing stage, the inlet water temperature and the current theoretical temperature.
  • the rated residual water volume is used to calculate the current theoretical temperature, that is, the current theoretical temperature is the temperature that should be achieved if there is no drainage failure in the previous washing process.
  • determining whether there is a drainage fault includes: when the current temperature is greater than the current theoretical temperature, determining that there is a drainage fault; when the current temperature is less than or equal to the current theoretical temperature, determining that there is no drainage fault.
  • determining whether there is a drainage fault includes: when the temperature difference between the current temperature and the current theoretical temperature is outside the preset temperature difference range, determining that there is a drainage fault; when the temperature difference between the current temperature and the current theoretical temperature belongs to the preset temperature difference range, determining that there is no drainage fault.
  • the preset temperature difference range can be: greater than or equal to 0°C and less than or equal to 5°C.
  • the technical solution of the second aspect of the present disclosure provides a drainage fault detection device for a dishwasher, including: an acquisition unit for acquiring the current temperature of the current solution in the dishwasher in the current washing stage; and a determination unit for determining whether there is a drainage fault based on the current temperature and the current theoretical temperature.
  • the drainage fault detection device of the dishwasher provided in the present disclosure can implement the drainage fault detection method of the dishwasher of the first aspect of the present disclosure. Therefore, the drainage fault detection device of the dishwasher of the present disclosure has all the beneficial effects of the drainage fault detection method of the dishwasher of any technical solution of the first aspect of the present disclosure, which will not be repeated here.
  • the technical solution of the third aspect of the present disclosure provides a drainage fault detection device for a dishwasher, comprising: a processing unit,
  • the device comprises a storage device and a processor, wherein a computer program is stored in the storage device, and when the processor executes the program, a drainage fault detection method for a dishwasher according to any technical solution of the first aspect of the present disclosure is implemented.
  • the technical solution of the fourth aspect of the present disclosure provides a readable storage medium, including: a processing unit, including a storage and a processor, the storage stores a computer program, and when the processor executes the program, the drainage fault detection method of the dishwasher of any technical solution of the first aspect of the present disclosure is implemented.
  • the technical solution of the fifth aspect of the present disclosure provides a dishwasher, including: a drainage fault detection device of the dishwasher as the technical solution of the second aspect or the third aspect of the present disclosure or a readable storage medium as the technical solution of the fourth aspect of the present disclosure.
  • FIG1 is a flow chart showing a method for detecting a drainage failure of a dishwasher according to a first embodiment of the present disclosure
  • FIG2 is a flow chart showing a method for detecting a drainage failure of a dishwasher according to a second embodiment of the present disclosure
  • FIG3 shows a flow chart of a method for detecting a drainage failure of a dishwasher according to a third embodiment of the present disclosure
  • FIG4 shows a flow chart of a method for detecting a drainage failure of a dishwasher according to a fourth embodiment of the present disclosure
  • FIG5 shows a flow chart of a method for detecting a drainage failure of a dishwasher according to a fifth embodiment of the present disclosure
  • FIG6 shows a schematic diagram of a drainage failure detection device for a dishwasher according to an embodiment of the second aspect of the present disclosure
  • FIG. 7 shows a schematic diagram of a drainage failure detection device for a dishwasher according to an embodiment of the third aspect of the present disclosure.
  • the method for detecting drainage failure of a dishwasher includes the following steps:
  • S104 determining the current theoretical temperature according to the water intake of the current washing stage and the water intake and discharge parameters of each stage before the current washing stage;
  • the current theoretical temperature is determined based on the amount of water inflow during the water inflow process of the current washing stage and the water inflow and outflow parameters of the previous stages. Because the water inflow and outflow parameters of each stage are taken into account, the influence of the heat of the water inflow and outflow in the previous stages on the current stage is also taken into account. In this way, no matter which previous stage the heat of the water inflow and outflow affects the temperature of the current solution, it will be accumulated in the current stage to form the current theoretical temperature. If the current theoretical temperature is higher than the current temperature, it means that the drainage in the previous stage is unfavorable and the heat in the previous stage is brought to the current stage. In this way, the current theoretical temperature is used to compare with the current temperature to accurately determine whether there is a drainage fault at present.
  • the current washing stage is the second washing stage
  • the water inlet and water discharge parameters of the first washing stage before the current washing stage are specifically: the water inlet temperature, water inlet volume and pre-drainage temperature of the first washing stage.
  • a method for detecting a drainage failure of a dishwasher includes the following steps:
  • the current theoretical temperature is calculated based on the fact that the drainage of the first washing stage is not discharged at all.
  • the water inlet temperature of each washing stage is usually the same, which is basically the temperature of the external water source to which the dishwasher is connected. Therefore, it can be considered that the water inlet temperature of the first washing stage is equal to the water inlet temperature of the second washing stage. Because the incoming water is heated during each washing stage, the temperature before drainage is higher than the water inlet temperature after the first washing stage is completed. For the second washing stage, if the heat of the first washing stage is left due to a drainage failure, then the current theoretical temperature of the second washing stage should be related to the heat of the first washing stage.
  • the heat released by the solution that was not discharged in the first washing stage (the maximum value is the entire water intake of the first washing stage) from the temperature before drainage of the first washing stage to the current theoretical temperature is Q1, and this heat is the heat Q2 required for the current water intake of the second washing stage to reach the current theoretical temperature from the water intake temperature.
  • Tx (T1 ⁇ V2+T2 ⁇ V1)/(V1+V2).
  • c represents the specific heat capacity of the solution
  • m1 represents the mass of the inlet water of the first washing stage
  • m2 represents the mass of the currently preset inlet water of the second washing stage
  • represents the specific gravity of the solution
  • ⁇ t1 and ⁇ t2 represent the temperature difference between the starting temperature and the final temperature of each stage respectively
  • Tx is the current theoretical temperature
  • A1 and C1 are both correction coefficients
  • T1 is the inlet water temperature of the first washing stage and the second washing stage
  • V1 is the inlet water volume of the first washing stage
  • T2 is the pre-drainage temperature of the first washing stage
  • V2 is the currently preset inlet water volume of the second washing stage, which is less than the designed total inlet water volume of the second washing stage.
  • A1 and C1 may be empirical values based on different dishwasher models, and the value range may be: 0 ⁇ A1 ⁇ 1, 0 ⁇ C1 ⁇ 10.
  • Example 2 the current theoretical temperature is calculated by combining the parameters of the first washing process with the parameters of the second washing process, thereby taking into account the impact of the previous washing process on the next washing process, and the current theoretical temperature can be accurately determined, so that whether there is a drainage fault can be determined by comparing the current theoretical temperature with the current temperature.
  • the working parameters of the dishwasher are all known, that is, each time the inlet water temperature, each time the inlet water volume, and each time the temperature before drainage are all known, the inlet water temperature of the first washing stage, the inlet water volume of the first washing stage, and the temperature before drainage of the first washing stage are all known.
  • the system can determine the current theoretical temperature of the current liquid in the current washing stage according to the formula. It should be understood here that before it is determined whether a drainage fault occurs, each washing stage will not start heating, but first inject a part of the inlet water V2, and then perform a fault judgment, so the temperature of this part of the inlet water V2 is the inlet water temperature.
  • the drainage fault detection method of this embodiment directly calculates the current theoretical temperature based on the worst drainage state in which all the inlet water in the first washing stage is not discharged, and determines the current theoretical temperature based on the current theoretical temperature under the worst drainage state, so that overflow caused by the continued subsequent washing water inflow can be avoided when the first washing stage does not drain.
  • the system can calculate the current theoretical temperature based on the water inlet temperature and water volume during the first two water inlet stages, the pre-drainage temperature before the drainage steps of the first two water inlet stages, and the water volume of the current time, and then compare it with the current temperature to determine whether the drainage system of the dishwasher is blocked.
  • the impact of each washing stage on the subsequent washing stage is also taken into account to obtain an accurate current theoretical temperature.
  • step S206 it should be understood that it is also possible to determine whether a fault occurs by comparing the current temperature with the current theoretical temperature. This can avoid misjudgment due to small temperature differences.
  • the current washing stage is the second washing stage
  • the inlet and outlet water parameters of the first washing stage before the current washing stage are specifically: the inlet water temperature, the pre-drainage temperature and the rated residual water volume of the first washing stage.
  • a method for detecting drainage failure of a dishwasher includes the following steps:
  • S306 Determine whether the current temperature is greater than the current theoretical temperature; if so, execute S308; if not, execute S310;
  • the influence of the heat of the rated residual water volume in the first washing stage on the temperature of the incoming water volume in the second washing stage is utilized to determine the current theoretical temperature of the incoming water volume in the second washing stage if there is no drainage failure. This temperature is used as the reference temperature for drainage failure to judge the drainage failure.
  • Tx (T2 ⁇ V0 + T1 ⁇ V2) / (V0 + V2).
  • c represents the specific heat capacity of the solution
  • m1 represents the mass of the inlet water of the first washing stage
  • m2 represents the mass of the currently preset inlet water of the second washing stage
  • represents the specific gravity of the solution
  • ⁇ t1 and ⁇ t2 represent the temperature difference between the starting temperature and the final temperature of each stage respectively
  • Tx is the current theoretical temperature
  • A2 and C2 are correction coefficients
  • T1 is the inlet water temperature of the first washing stage and the second washing stage
  • T2 is the pre-drainage temperature of the first washing stage
  • V2 is the preset inlet water volume of the second washing stage, which is less than the designed total inlet water volume of the second washing stage
  • V0 is the rated residual water volume of the first washing stage.
  • A2 and C2 may be empirical values based on different dishwasher models, and the value range may be: 0 ⁇ A2 ⁇ 1, 0 ⁇ C2 ⁇ 10.
  • this embodiment takes into account the rated residual water volume in the drainage process of each stage before the current washing stage, but does not take into account the water intake volume of each stage before the current washing stage.
  • This embodiment determines the current theoretical temperature based on the water intake temperature of each stage before the current washing stage, the temperature before drainage, the rated residual water volume, and the current solution volume in the dishwasher in the current washing stage. In this way, after obtaining the current temperature, the current theoretical temperature can be calculated based on the current temperature. According to the current temperature of the liquid in the dishwasher during the current washing phase and the current theoretical temperature of the liquid in the dishwasher during the current washing phase, it is determined whether the drainage system is blocked.
  • This technical solution uses the rated residual water volume to calculate the current theoretical temperature, that is, the current theoretical temperature that the dishwasher should have when there is no drainage failure at all.
  • This current theoretical temperature is different from the current theoretical temperature when a drainage failure has occurred.
  • the measured temperature is higher than this temperature, it means that there must be other water inflow besides normal residual water, which can also indicate that there is a drainage failure.
  • this technical solution is more accurate in determining drainage failures.
  • the water intake of each stage before the current washing stage is not considered.
  • parameters such as the water intake of each washing stage can be omitted, which improves the calculation speed, ensures the timeliness of judging whether there is blockage, and reduces the calculation requirements for the controller.
  • the present disclosure can also judge whether the dishwasher has a drainage fault based on the temperature difference between the current temperature of the liquid in the washing chamber and the current theoretical temperature of the liquid in the washing chamber. When the temperature difference between the current temperature of the liquid in the washing chamber and the current theoretical temperature of the liquid in the washing chamber is outside the preset temperature difference range, it is determined that there is a drainage fault.
  • the dishwasher does not have a drainage fault.
  • the judgment is more accurate and the influence of temperature fluctuations can be avoided.
  • the preset temperature difference range may be: greater than or equal to 0° C. and less than or equal to 5° C.
  • the preset temperature difference range may also be greater than or equal to 0° C. and less than or equal to 10° C.
  • Example 2 considers the situation that there is no drainage at all in the first washing stage
  • Example 3 considers the situation that there is no poor drainage at all.
  • the problem of poor drainage can be determined by determining the current theoretical temperature based on these two situations. In practice, there may be situations between these two situations. For these situations, an empirical formula obtained by using the formula of both situations can be used.
  • the water inlet and outlet parameters of the first washing stage before the current washing stage are specifically: the water inlet temperature, water inlet volume, pre-drainage temperature and rated residual water volume of the first washing stage.
  • a method for detecting a drainage failure of a dishwasher includes the following steps:
  • Tx A3 ⁇ ((T1 ⁇ V2+T2 ⁇ V1)/(V1+V2)+(T2 ⁇ V0+T1 ⁇ V2)/(V0+V2))+C3 to determine the current theoretical temperature Tx;
  • S406 Determine whether the current temperature is greater than the current theoretical temperature; if so, execute S408; if not, execute S410;
  • Tx is the current theoretical temperature
  • A3 and C3 are correction coefficients
  • T1 is the water inlet temperature of the first washing stage and the second washing stage
  • V1 is the water inlet volume of the first washing stage
  • T2 is the pre-drainage temperature of the first washing stage
  • V2 is the preset water inlet volume of the current washing stage, which is less than the designed total water inlet volume of the second washing stage
  • V0 is the rated residual water volume of the first washing stage.
  • A3 and C3 may be empirical values based on different dishwasher models, and the value range may be: 0 ⁇ A3 ⁇ 1, 0 ⁇ C3 ⁇ 10.
  • the water inlet temperature of the dishwasher during each water inlet process the water inlet volume during the water inlet process, the pre-drainage temperature before the drainage step and the rated residual water volume can all be recorded, that is, the water inlet temperature during the water inlet process of the first washing stage, the water inlet volume during the water inlet process, the pre-drainage temperature before the drainage step, the rated residual water volume, and the water inlet temperature of the second washing stage are all known.
  • the system can determine the current theoretical temperature of the current liquid in the current washing stage according to the formula, and then determine whether the drainage system is faulty.
  • step S406 it is also possible to determine whether a fault occurs by determining whether the temperature difference between the current temperature and the current theoretical temperature is within a preset temperature difference range, rather than simply comparing the current temperature with the current theoretical temperature. This can avoid misjudgment due to a small temperature difference.
  • the system can calculate the current theoretical temperature based on the water inlet temperature and water volume during the water inlet process of each previous stage, the pre-drainage temperature before the drainage step of each stage of the first two stages, the rated residual water volume after the drainage step, and the current water inlet volume, and then compare it with the current temperature to determine whether the drainage system of the dishwasher is blocked.
  • the system can determine the current theoretical temperature based on the water inlet temperature during the water inlet process of the first three washing stages, the water inlet volume during the water inlet process, the pre-drainage temperature before the drainage step, the rated residual water volume, and the water inlet volume during the water inlet process of the current washing stage, and so on.
  • the system can The current theoretical temperature of the current liquid in the current washing stage can be determined according to the formula, and then it can be determined whether the drainage system is faulty.
  • This technical solution takes into account the rated residual water volume, so for dishwashers with rated residual water volume during drainage, this technical solution can further ensure the accuracy of measurement and avoid the influence of residual water volume on detection.
  • A1, C1, A2, C2, A3, and C3 may be the same or different, depending on the dishwasher model or the setting of the application scenario.
  • a thermistor is arranged inside the dishwasher water cup to detect and control the temperature of the dishwasher in real time.
  • the temperature information is recorded by the software, and when the temperature is needed for judgment or control, the software can call the stored temperature information.
  • the software can call the stored temperature information.
  • a certain mathematical relationship is given to it, the state of the dishwasher can be judged.
  • a certain functional relationship is given to the temperature, and it can be judged whether the drain pipe is blocked.
  • the dishwasher starts and enters the first washing stage (S502).
  • the water inlet temperature of the first washing stage is the initial water temperature.
  • the software captures the initial water temperature, which is the water inlet temperature T1 (S504).
  • the designed water inlet volume V1 for the first wash (pre-wash or main wash) is known (S506). After the first wash is completed, the water is drained and the temperature T2 before drainage is captured (S508). After drainage, it enters the second washing stage.
  • the designed water inlet volume V for the second washing stage when the preset volume V2 (V2 ⁇ V) is first filled, the software automatically determines whether the drain pipe is blocked.
  • the current temperature of the solution in the current washing stage is obtained, and then the current theoretical temperature of the solution in the current washing stage is calculated based on the water inlet temperature during the first water inlet process, the water inlet volume during the water inlet process and the pre-drainage temperature before the drainage step, the rated residual water volume, and the water inlet volume and water inlet temperature of the second washing. Finally, based on the current temperature of the liquid in the dishwasher in the current washing stage and the current theoretical temperature of the liquid in the dishwasher in the current washing stage, it is determined whether there is a fault in the drainage system of the dishwasher.
  • the corresponding Tx can be stored in the dishwasher in advance according to the various parameter values in the relationship, so that the corresponding theoretical temperature can be directly found by searching, rather than obtaining the theoretical temperature by calculation every time.
  • washing stages refer to the main wash stage, the rinse stage, etc. As long as the stage has one water inlet and one water outlet, it can be called a washing stage.
  • the water inlet temperature of each washing stage during the water inlet process can be the same or different, which can be set according to the washing needs.
  • an embodiment according to the second aspect of the present disclosure provides a drainage fault detection device 600 for a dishwasher, including an acquisition unit 602 and a determination unit 604 .
  • the acquisition unit 602 acquires the current temperature of the current solution in the dishwasher in the current washing stage.
  • the acquisition unit 602 can be a thermocouple, a temperature sensor, or other devices that can be used to obtain the temperature of the liquid.
  • the acquisition unit 602 can acquire the current temperature of the current solution in the dishwasher, and record the temperature information through software, so that when these temperatures are needed for drainage fault detection, these stored temperature information can be called to perform fault judgment.
  • the determination unit 604 determines whether there is a drainage fault based on the current temperature of the liquid in the dishwasher in the current washing stage and the current theoretical temperature of the liquid in the dishwasher in the current washing stage.
  • a drainage fault detection device 700 for a dishwasher comprising: a processing unit 702, comprising a storage device and a processor, wherein a computer program is stored on the storage device, and when the processor executes the program, the drainage fault detection method for the dishwasher of the above embodiment of the present disclosure is implemented.
  • the embodiment of the fourth aspect of the present disclosure provides a readable storage medium, including: a processing unit, including a storage and a processor, the storage stores a computer program, and when the processor executes the program, the drainage fault detection method of the dishwasher of the embodiment of the first aspect of the present disclosure is implemented.
  • An embodiment of the fifth aspect of the present disclosure provides a dishwasher, comprising: a drainage fault detection device of the dishwasher according to an embodiment of the second aspect or the third aspect of the present disclosure or a readable storage medium according to an embodiment of the fourth aspect of the present disclosure.
  • the present disclosure obtains the current temperature of the current liquid in the current washing stage of the dishwasher, and then determines whether the drainage system of the dishwasher has a fault based on the current temperature and the current theoretical temperature. On the one hand, it can promptly issue an alarm when the drainage system fails to prevent drainage blockage and water overflow. On the other hand, it does not need to rely on physical devices such as micro switches and high water level sensors, thereby reducing production costs.
  • the present disclosure combines the water inlet parameters, drainage parameters and other parameters of the previous stages. This is equivalent to determining the current theoretical temperature in any washing stage based on the water inlet parameters, drainage parameters and other parameters of the previous stages, and then determining whether the drainage system has a fault. That is, fault detection can be performed throughout the entire process of the dishwasher, thereby improving user satisfaction.
  • the dishwasher according to the embodiment of the present disclosure does not need to be equipped with devices such as liquid level sensors and micro switches, and the structure is simpler.
  • the blockage of the drain pipe can be detected through a simple structure, and fault detection can be performed during the entire washing process, thereby improving user satisfaction.
  • the terms “first”, “second”, and “third” are only used for descriptive purposes and are not to be understood as indicating or implying relative importance; the term “two” refers to two or more, unless otherwise clearly defined.
  • Terms such as “installed”, “connected”, “connected”, and “fixed” should be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or an integral connection;
  • “connected” can be a direct connection or an indirect connection through an intermediate medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Washing And Drying Of Tableware (AREA)

Abstract

一种洗碗机及其排水故障检测方法、装置和可读储存介质,洗碗机的排水故障检测方法,包括:获取当前洗涤阶段洗碗机中的当前溶液的当前温度;根据当前洗涤阶段的进水量、当前洗涤阶段之前的每个阶段的进排水参数确定当前理论温度;以及基于当前温度和当前理论温度,确定是否存在排水故障。

Description

洗碗机及其排水故障检测方法、装置和可读存储介质
相关申请的交叉引用
本公开要求于2022年10月18日提交的申请号为202211274022.8,名称为“洗碗机及其排水故障检测方法、装置和可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于厨房家电技术领域,具体而言,涉及一种洗碗机及其排水故障检测方法、装置和可读储存介质。
背景技术
随着物质生活水平的提高,能够解放双手的洗碗机正逐步成为品质生活的标配。与传统手洗相比,洗碗机具有洗涤洁净、杀菌、省水省力等优势。但是洗碗机在使用过程中,难免会出现排水管堵塞或类似堵塞的情况。如洗碗机程序不能正确的对其报警,这样随着水量积累,从而溢出腔体,存在淹没客户地板的风险。
公开内容
本公开旨在解决或改善上述技术问题中的至少之一。
本公开的第一方面在于提供一种洗碗机的排水故障检测方法。
本公开的第二方面在于提供一种洗碗机的排水故障检测装置。
本公开的第三方面在于提供一种洗碗机的排水故障检测装置。
本公开的第四方面在于提供一种可读储存介质。
本公开的第五方面在于提供一种洗碗机。
本公开第一方面的技术方案提供了一种洗碗机的排水故障检测方法,包括:获取当前洗涤阶段洗碗机中的当前溶液的当前温度;根据当前洗涤阶段的进水量、当前洗涤阶段之前的每个阶段的进排水参数确定当前理论温度;以及基于当前温度和当前理论温度,确定是否存在排水故障。
在洗碗机的洗涤过程中,可能存在多个阶段,因为每个阶段都会对洗涤水溶液进行加热,所以不同阶段的洗涤温度可能相同或不同,不同阶段的洗涤溶液的热量也会随着溶液量和温度而不同。那么每个阶段都会有一个对应于当前进入的溶液量和溶液温度的理论温 度。但是每个阶段的溶液的实际温度却会受多个参数的影响,其中一个因素就是残留溶液,如果存在残留溶液,就意味着带有一定温度的残留溶液本身就会给下一阶段带来一定的热量,而且如果每个阶段的残留溶液不断累积到下一阶段,那么这个热量就会导致实际温度与理论温度之间有差异。本公开正是利用了这种差异来确定是否出现了排水故障,也就是说如果残留溶液很多(意味着排水不利或故障),那么就会导致实际温度与理论温度之前的差异比较明显,这时候,可以认为排水出现了故障。
因为,通常进水温度都等于室内自来水的温度,而且每个洗涤阶段都会对进水进行加热,所以残留水直接导致当前液体的当前温度会高于计算出的当前理论温度,所以根据本公开的排水故障检测方法,将洗碗机的当前液体的当前温度与当前理论温度进行比较来确定是否存在排水故障。在该方法中,因为当前理论温度与当前阶段的参数和前面各个阶段的进排水参数相关,所以能够体现出前面各个阶段的进排水对实际温度的影响,从而可以很好地判断出当前的温度是否受到排水故障的影响,进而确定是否存在排水故障。
根据本公开的排水故障检测方法,因为可以通过热敏电阻等温度检测装置来对温度进行测量,所以无需相关技术中的微动开关,高水位传感器或者浮子等设备,就可以实现排水故障的检测。
在上述技术方案中,根据当前洗涤阶段的进水量、当前洗涤阶段之前的每个阶段的进排水参数确定当前理论温度,包括:根据当前洗涤阶段之前的每个阶段的进排水参数,确定从当前阶段的前一阶段的排水前温度降低至当前理论温度,释放的第一热量;根据当前洗涤阶段的进水量和当前进水温度,确定从当前进水温度至所述当前理论温度,吸收的第二热量;根据第一热量等于第二热量,确定当前理论温度。
针对理论温度,根据热量公式,Q=c×m×△t,c表示物质的比热容,m表示物体的质量,△t表示各个阶段的开始温度和末温之间的温度差,根据这个热量公式,根据各个洗涤阶段进入到洗碗机的流水量和开始温度,以及排水前温度,可以基于前面各个阶段释放的第一热量等于当前洗涤阶段从前面各个洗涤阶段获取的第二热量,来计算出对应于当前阶段的进水量的理论温度。
在上述技术方案中,当前洗涤阶段之前的每个阶段的进排水参数可以包括:当前洗涤阶段之前的每个阶段的进水温度、进水量以及排水前温度。
在上述技术方案中,在当前洗涤阶段为第二洗涤阶段的情况下,根据第一洗涤阶段的进水量、第一洗涤阶段的排水前温度和当前理论温度确定第一洗涤阶段的进水量从第一洗涤阶段进水温度降低到所述当前理论温度所释放的第一热量;根据第二洗涤阶段的进水量、 进水温度和当前理论温度确定第二洗涤阶段的进水量从进水温度升到当前理论温度所需的第二热量。
在该技术方案中,假设了第一洗涤阶段的洗涤过程的排水完全故障的情况,利用第一洗涤阶段的所有进水来计算根本不排水的故障下的当前理论温度。
在上述技术方案中,当前洗涤阶段之前的每个阶段的进排水参数可以包括:当前洗涤阶段之前的每个阶段的进水温度、排水前温度以及额定残留水量。
在上述技术方案中,在当前洗涤阶段为第二洗涤阶段的情况下,根据第一洗涤阶段的额定残留水量、第一洗涤阶段的排水前温度和当前理论温度确定第一洗涤阶段的额定残留水量从第一洗涤阶段排水前温度降低到当前理论温度所释放的第一热量;根据第二洗涤阶段的进水量、进水温度和当前理论温度确定第二洗涤阶段的进水量从进水温度升到当前理论温度所需的第三热量。
在该技术方案中,利用额定残留水量来计算当前理论温度,也就是说,认为前次洗涤过程没有排水故障的情况下,应该具有的当前理论温度。
在上述技术方案中,基于当前温度和当前理论温度,确定是否存在排水故障包括:当当前温度大于当前理论温度时,确定存在排水故障;当当前温度小于等于当前理论温度时,确定不存在排水故障。
在上述技术方案中,基于当前温度和当前理论温度,确定是否存在排水故障包括:当当前温度与当前理论温度的温差在预设温差区间之外时,确定存在排水故障;当当前温度与当前理论温度的温差属于预设温差区间时,确定不存在排水故障。
在该技术方案中,通过根据洗涤腔内液体的当前温度与洗涤腔内液体的当前理论温度的温差来判断洗碗机是否存在排水故障,使得判断更加精确,可以避免温度波动带来的影响。
在上述技术方案中,预设温差区间可以为:大于等于0℃,小于等于5℃。
本公开第二方面的技术方案提供了一种洗碗机的排水故障检测装置,包括:获取单元,用于获取当前洗涤阶段洗碗机中的当前溶液的当前温度;确定单元,用于基于当前温度和当前理论温度,确定是否存在排水故障。
本公开提供的洗碗机的排水故障检测装置,能够实现本公开第一方面的洗碗机的排水故障检测方法,因此,本公开的洗碗机的排水故障检测装置具有本公开第一方面任一项技术方案的洗碗机的排水故障检测方法全部有益效果,在此不再赘述。
本公开第三方面的技术方案提供了一种洗碗机的排水故障检测装置,包括:处理单元, 包括储存器和处理器,储存器上存储有计算机程序,处理器执行程序时实现本公开第一方面任一项技术方案的洗碗机的排水故障检测方法。
本公开第四方面的技术方案提供了一种可读储存介质,包括:处理单元,包括储存器和处理器,储存器上存储有计算机程序,处理器执行程序时实现本公开第一方面任一项技术方案的洗碗机的排水故障检测方法。
本公开第五方面的技术方案提供了一种洗碗机,包括:如本公开第二方面或第三方面技术方案的洗碗机的排水故障检测装置或如本公开第四方面技术方案的可读储存介质。
根据本公开的附加方面和优点将在下面的描述部分中变得明显,或通过根据本公开的实践了解到。
附图说明
根据本公开的实施例的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本公开的第一实施例的洗碗机的排水故障检测方法的流程图;
图2示出了根据本公开的第二实施例的洗碗机的排水故障检测方法的流程图;
图3示出了根据本公开的第三实施例提供的洗碗机的排水故障检测方法的流程图;
图4示出了根据本公开的第四实施例的洗碗机的排水故障检测方法的流程图;
图5示出了根据本公开的第五实施例的洗碗机的排水故障检测方法的流程图;
图6示出了根据本公开的第二方面的实施例的洗碗机的排水故障检测装置的示意图;
图7示出了根据本公开的第三方面的实施例的洗碗机的排水故障检测装置的示意图。
具体实施方式
为了能够更清楚地理解根据本公开的实施例的上述方面、特征和优点,下面结合附图和具体实施方式对根据本公开的实施例进行进一步的详细描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解根据本公开的实施例,但是,根据本公开的实施例还可以采用其他不同于在此描述的其他方式来实施,因此,根据本公开的实施例的防护范围并不受下面公开的具体实施例的限制。
如图1所示,根据本公开的洗碗机的排水故障检测方法,包括如下步骤:
S102:获取当前洗涤阶段洗碗机中的当前溶液的当前温度;
S104:根据当前洗涤阶段的进水量、当前洗涤阶段之前的每个阶段的进排水参数确定当前理论温度;以及
S106:基于当前温度和当前理论温度,确定是否存在排水故障。
在该方法中,根据当前洗涤阶段进水过程中的进水量以及之前各个阶段的进出水参数来确定当前理论温度。因为考虑到各个阶段的进出水参数,所以也就是考虑到了前面各个阶段的进排水的热量对当前阶段的影响。这样的话,不论在前面哪个阶段的进排水的热量对当前溶液的温度影响都会被累计到当前阶段,形成当前理论温度。当前理论温度如果高于当前温度,就意味着前面阶段的排水不利,前面阶段的热量被带到当前阶段。这样当前理论温度用于跟当前温度进行比较,可以准确地确定当前是否存在排水故障。
在该实施例中,当前洗涤阶段为第二洗涤阶段,并且当前洗涤阶段之前的第一洗涤阶段的进排水参数具体为:第一洗涤阶段的进水温度、进水量以及排水前温度。
如图2所示,根据本公开的第二实施例的洗碗机的排水故障检测方法,包括如下步骤:
S202:获取当前洗涤阶段洗碗机中的当前溶液的当前温度;
S204:按照公式Tx=A1×(T1V2+T2V1)/(V1+V2)+C1确定当前理论温度Tx;
S206:判断当前温度是否大于当前理论温度Tx;若是,则执行S208,若否,则执行S210;
S208:确定洗碗机的排水系统存在排水故障;
S210:确定洗碗机的排水系统不存在排水故障。
在该实施例中,当前理论温度是基于第一洗涤阶段的排水完全没有排出来计算的。对于洗碗机来说,通常每次洗涤阶段的进水温度通常都是相同的,基本就是洗碗机所连接的外部水源的温度。所以可以认为第一洗涤阶段的进水温度等于第二洗涤阶段的进水温度。因为洗涤阶段都是对进水进行了加热处理,所以第一洗涤阶段完成之后,排水前温度要高于进水温度。对于第二洗涤阶段来说,如果因为排水故障而导致留下的第一洗涤阶段的热量,那么第二洗涤阶段的当前理论温度就应该与第一洗涤阶段的热量有关。根据热量公式,第一洗涤阶段没有被排出的溶液(最大值就是第一洗涤阶段的整个进水量)从第一洗涤阶段排水前温度达到当前理论温度释放的热量为Q1,这个热量就是第二洗涤阶段的当前进水量从进水温度达到当前理论温度所需的热量Q2。根据以下公式:
第一热量:Q1=c×m1×△t1=c×ρ×V1×(T2-Tx),
第二热量:Q2=c×m2×△t2=c×ρ×V2×(Tx-T1),
Q1=Q2,
可以得到上述公式:Tx=(T1×V2+T2×V1)/(V1+V2),考虑到实际应用场景以及洗碗机型号等等的各种因素的影响,增加修正系数A1和C1,得到最终的公式:
Tx=A1×(T1×V2+T2×V1)/(V1+V2)+C1,
其中,c表示溶液的比热容,m1表示第一洗涤阶段的进水的质量,m2表示第二洗涤阶段的当前预设进水的质量,ρ表示溶液的比重,△t1和△t2分别表示各个阶段的开始温度和末温之间的温度差,Tx为当前理论温度;A1、C1均为修正系数;T1为第一洗涤阶段和第二洗涤阶段的进水温度;V1为第一洗涤阶段的进水量;T2为第一洗涤阶段的排水前温度;V2为第二洗涤阶段的当前预设进水量,小于第二洗涤阶段的设计进水总量。
A1和C1可以是根据不同洗碗机的型号的经验值,取值范围可以为:0<A1<1,0<C1<10。
在实施例二中,通过将第一次洗涤过程的参数与第二次洗涤的参数结合计算得到当前理论温度,从而考虑到了上一洗涤过程对下一洗涤过程的影响,可以准确地确定当前理论温度,从而可以通过当前理论温度和当前温度的比较结果来确定是否存在排水故障。
这样由于洗碗机的工作参数都是已知的,也就是说每一次的进水温度、每一次的进水量、每一次的排水前温度都是已知的,这样第一洗涤阶段的进水温度、第一洗涤阶段的进水量、第一洗涤阶段的排水前温度都是已知的,当当前洗涤阶段注入V2体积的水后,系统就可以根据该公式确定出当前洗涤阶段的当前液体的当前理论温度,这里应该理解,在还没有判断出是否发生排水故障之前,每个洗涤阶段不会开始进行加热,而是先注入一部分进水V2之后,进行故障判断,所以这部分进水V2的温度就是进水温度。另外由于获取了当前液体的当前温度,这样当获取到的当前温度大于计算出的当前理论温度时,说明洗碗机排液系统存在堵塞,否则,确定洗碗机排液系统未存在堵塞。该实施例的排水故障检测方法,直接以第一次洗涤阶段的所有进水都没有被排出的最差排水状态来计算当前理论温度,以该最差排水状态下的当前理论温度来确定当前理论温度,这样就可以避免了第一次洗涤阶段没有排水而继续后续洗涤进水导致的溢水。
进一步,假如洗涤设备在第三个洗涤阶段进行检测,那么系统可以根据前两次每个阶段进水过程中的进水温度、进水量,前两次每个阶段排水步骤之前的排水前温度以及当次进水量计算出当前理论温度,然后与当前温度进行比较,进而判断出洗碗机的排水系统是否堵塞。以此类推,对于存在多次洗涤阶段的情况,也同样考虑到每次洗涤阶段对后续洗涤阶段的影响,从而得到准确的当前理论温度。
针对步骤S206,应该理解,也可以通过当前温度与当前理论温度之间的温差是否在在预设温差区间来判断是否出现故障。而不是仅仅将当前温度与当前理论温度进行比较。这 样可以避免由于温差很小而带来的误判。
在该实施例中,当前洗涤阶段为第二洗涤阶段,并且当前洗涤阶段之前的第一洗涤阶段的进排水参数具体为:第一洗涤阶段的进水温度、排水前温度以及额定残留水量。
如图3所示,根据本公开的第三实施例的洗碗机的排水故障检测方法,包括如下步骤:
S302:获取当前洗涤阶段洗碗机中的当前溶液的当前温度;
S304:按照公式Tx=A2×(T2×V0+T1×V2)/(V0+V2)+C2确定当前理论温度Tx;
S306:判断当前温度是否大于当前理论温度;若是,则执行S308,若否,则执行S310;
S308:确定洗碗机的排水系统存在排水故障;
S310:确定洗碗机的排水系统不存在排水故障。
在该实施例中,利用了第一洗涤阶段的额定残留水量的热量对于第二洗涤阶段洗涤的进水量的温度的影响,来确定如果没有排水故障的情况下,第二洗涤阶段洗涤的进水量的当前理论温度,将这个温度作为排水故障的基准温度来进行排水故障的判断。
同样类似于实施例二中的公式推导过程:
第一热量:Q1=c×m1×△t1=c×ρ×V0×(T2-Tx),
第二热量:Q2=c×m2×△t2=c×ρ×V2×(Tx-T1),
Q1=Q2,
可以得到上述公式:Tx=(T2×V0+T1×V2)/(V0+V2),考虑到实际应用场景以及洗碗机型号等等的各种因素的影响,增加修正系数A2和C2,得到最终的公式:
Tx=A2×(T2×V0+T1×V2)/(V0+V2)+C2,
其中,c表示溶液的比热容,m1表示第一洗涤阶段的进水的质量,m2表示第二洗涤阶段的当前预设进水的质量,ρ表示溶液的比重,△t1和△t2分别表示各个阶段的开始温度和末温之间的温度差,Tx为当前理论温度;A2、C2为修正系数;T1为第一洗涤阶段和第二洗涤阶段的进水温度;T2为第一洗涤阶段的排水前温度;V2为第二洗涤阶段的预设进水量,小于第二洗涤阶段的设计总进水量;V0为第一洗涤阶段的额定残留水量。
A2和C2可以是根据不同洗碗机的型号的经验值,取值范围可以为:0<A2<1,0<C2<10。
该实施例在计算当前理论温度的过程中考虑到了当前洗涤阶段之前的每个阶段在排水过程中的额定残留水量,但是不考虑当前洗涤阶段之前的每个阶段的进水量,本实施例根据当前洗涤阶段之前的每个阶段的进水温度、排水前温度以及额定残留水量以及当前洗涤阶段洗碗机中的当前溶液量来确定出当前理论温度,这样在获取到当前温度后,就可以根 据当前洗涤阶段洗碗机内液体的当前温度和当前洗涤阶段洗碗机内液体的当前理论温度,确定出排水系统是否发生堵塞。
该技术方案利用了额定残留水量来计算当前理论温度,也就是说,在洗碗机的排水根本没有故障的情况下,洗碗机应该有的当前理论温度,这个当前理论温度不同于已经发生排水故障的情况下当前理论温度,但是只要测量的温度高于这个温度,那就表示一定存在正常残留水之外的其他进水,也能提示排水出现了故障。该技术方案相较于实施例二中以发生完全排水故障的情况下计算的当前理论温度而言,对于排水故障的确定更精确。
另外,该技术方案中,不考虑当前洗涤阶段之前的每个阶段的进水量,这样在计算当前理论温度的过程中,能够省略各个洗涤阶段的进水量等参数,提高了计算速度,确保了判断是否堵塞的及时性,也减少了对于控制器的计算量的要求。
在上述实施例中,考虑到温度波动带来的影响,如果只比较大小的话,存在某些外界因素导致的误判,例如,在两者的温差非常小的情况下,可能并不意味着出现了排水故障,所以本公开也可以根据洗涤腔内液体的当前温度与洗涤腔内液体的当前理论温度的温差来判断洗碗机是否存在排水故障。当洗涤腔内液体的当前温度与洗涤腔内液体的当前理论温度的温差在预设温差区间之外时,确定存在排水故障。当洗涤腔内液体的当前温度与洗涤腔内液体的当前理论温度的温差在预设温差区间之内时,确定洗碗机不存在排水故障。通过根据洗涤腔内液体的当前温度与洗涤腔内液体的当前理论温度的温差来判断洗碗机是否存在排水故障,使得判断更加精确,可以避免温度波动带来的影响。
在上述实施例中,预设温差区间可以为:大于等于0℃,小于等于5℃。当然考虑到洗碗机的型号不同,以及工作参数不同,预设温差区间也可以为大于等于0℃,小于等于10℃。
上面实施例二和实施例三中分别考虑了两种情况,实施例二中考虑第一洗涤阶段完全不排水的情况,以及实施例三中考虑了完全没有排水不畅的情况,以这两种情况来确定当前理论温度可以确定排水不畅的问题,实践中,可能有介于这两种情况之间的情况,针对这些情况,可以使用利用了两者情况的公式得到的经验公式。在实施例四中,以当前洗涤阶段为第二洗涤阶段为例,取当前洗涤阶段之前的第一洗涤阶段的进排水参数具体为:第一洗涤阶段的进水温度、进水量、排水前温度以及额定残留水量。
如图4所示,根据本公开的第四实施例的洗碗机的排水故障检测方法,包括如下步骤:
S402:获取当前洗涤阶段(第二洗涤阶段)洗碗机中的当前溶液的当前温度;
S404:按照公式
Tx=A3×((T1×V2+T2×V1)/(V1+V2)+(T2×V0+T1×V2)/(V0+V2))+C3确定当前理论温度Tx;
S406:判断当前温度是否大于当前理论温度;若是,则执行S408,若否,则执行S410;
S408:确定洗碗机的排水系统存在排水故障;
S410:确定洗碗机的排水系统不存在排水故障。
其中,Tx为当前理论温度;A3、C3均为修正系数;T1为第一洗涤阶段和第二洗涤阶段的进水温度;V1为第一洗涤阶段的进水量;T2为第一洗涤阶段的排水前温度;V2为当前洗涤阶段的预设进水量,小于第二洗涤阶段的设计总进水量;V0为第一洗涤阶段的额定残留水量度。
A3和C3可以是根据不同洗碗机的型号的经验值,取值范围可以为:0<A3<1,0<C3<10。
由于洗碗机的每次进水过程中的进水温度,进水过程中的进水量和排水步骤之前的排水前温度和额定残留水量都可以被记录,也即第一洗涤阶段的进水过程中的进水温度,进水过程中的进水量和排水步骤之前的排水前温度、额定残留水量、第二洗涤阶段的进水温度都是已知的,这样当当前洗涤阶段注入预设体积的水后,系统就可以根据该公式确定出当前洗涤阶段的当前液体的当前理论温度,进而确定出排水系统是否故障。
同样,类似于实施例二,针对步骤S406,也可以通过当前温度与当前理论温度之间的温差是否在在预设温差区间来判断是否出现故障。而不是仅仅将当前温度与当前理论温度进行比较。这样可以避免由于温差很小而带来的误判。
进一步,假如洗涤设备在第三个洗涤阶段进行检测,那么系统可以根据前次每个阶段进水过程中的进水温度、进水量,前两次每个阶段排水步骤之前的排水前温度、排水步骤之后的额定残留水量以及当次进水量计算出当前理论温度,然后与当前温度进行比较,进而判断出洗碗机的排水系统是否堵塞。假如洗涤设备在第四个洗涤阶段进行检测,那么系统就可以根据前3次洗涤阶段的进水过程中的进水温度,进水过程中的进水量和排水步骤之前的排水前温度以及额定残留水量以及当前洗涤阶段在进水过程中的进水量确定出当前理论温度,以此类推。
通过这样的技术方案,由于洗碗机的每次进水过程中的进水温度,进水过程中的进水量和排水步骤之前的排水前温度和额定残留水量都是已知的,也即第一洗涤阶段的进水过程中的进水温度,进水过程中的进水量和排水步骤之前的排水前温度、额定残留水量、第二洗涤阶段的进水温度都是已知的,这样当当前洗涤阶段注入预定体积的水后,系统就可 以根据该公式确定出当前洗涤阶段的当前液体的当前理论温度,进而确定出排水系统是否故障。该技术方案考虑到了额定残留水量,这样对于排水时存在额定残留水量的洗碗机而言,该技术方案能够进一步保证测量的精准率,避免了残留水量对检测的影响。
在上述实施例中,A1、C1、A2、C2、A3、C3可能相同,也可以不同,取决于洗碗机型号或者应用场景的设置等。
如图5所示,在该实施例中,在洗碗机水杯内,往布置有热敏电阻,用来实时检测以及控制洗碗机工作时的温度。这些温度信息通过软件对其记录,需要这些温度用于判定或控制时,软件可调用存储的温度信息。对其赋予某种数学关系时,可对洗碗机的状态进行判定。而在该实施例中,对温度赋予某种函数关系,可对排水管是否堵住进行判定。
如图5所示,洗碗机启动,进入第一洗涤阶段(S502),第一洗涤阶段的进水温度为初始水温,软件抓取初始水温,即为进水温度T1(S504)。已知第一次洗涤(预洗或主洗)设计进水量V1(S506)。第一次洗涤完成后排水,抓取排水之前的温度T2(S508)。排水后,进入第二洗涤阶段。第二洗涤阶段的设计进水量V,先进水预设体积V2(V2<V)时,软件自动对排水管是否堵住进行判断。
抓取进水V2后对应的实时温度Ty。设正常洗涤排水水杯的残留水量为V0。用V0、T1、V1、T2、V2其中一个或多个的函数计算进水预定体积V2后对应的理论温度Tx=f(V0、T1、V1、T2、V2)(S510)。当Ty>Tx时,排水管堵住报警(S514)。否则,继续运行(S516)。
根据本公开提供的排水故障检测方法,在进行排水故障检测的过程中,获取当前洗涤阶段中的溶液的当前温度,然后根据第一次进水的进水过程中的进水温度,进水过程中的进水量和排水步骤之前的排水前温度、额定残留水量以及第二次洗涤的进水量以及进水温度计算当前洗涤阶段中的溶液的当前理论温度,最后基于当前洗涤阶段洗碗机内液体的当前温度和当前洗涤阶段洗碗机内液体的当前理论温度,确定洗碗机的排水系统是否存在故障。
在此,应该理解,步骤S510中的理论温度Tx=f(V0,T1,V1,T2,V2)的关系式根据不同的洗碗机型号或者应用场景,可能不同。并且,也应该理解,也可以根据关系式中的各个参数值,预先在洗碗机中存储对应的Tx,这样可以采用查找的方式来直接找到对应的理论温度,而不是每次都通过计算来得到理论温度。
在此需要说明的是,在本公开中,所有洗涤阶段指的是,主洗阶段、漂洗阶段等等阶 段,只要该阶段具有一次进水和一次排水,即可称之为一个洗涤阶段。另外,每个洗涤阶段在进水程序时的进水温度可以是相同的,也可以是不同的,具体可以根据洗涤需求而设定。
如图6所示,根据本公开的第二方面的实施例提供了一种洗碗机的排水故障检测装置600,包括获取单元602和确定单元604。
获取单元602获取当前洗涤阶段洗碗机中的当前溶液的当前温度。例如,获取单元602可以是一个热电偶,也可以是温度传感器,也可以是其他能够用于获取液体温度的装置等。在实际工作过程中,获取单元602能够获取到洗碗机中的当前溶液的当前温度,将这些温度信息通过软件对其记录,这样在需要这些温度用于排水故障检测时,这些存储的温度信息可以被调用来进行故障判断。确定单元604基于当前洗涤阶段洗碗机内液体的当前温度和当前洗涤阶段洗碗机内液体的当前理论温度,确定是否存在排水故障。
如图7所示,根据本公开第三方面的实施例提供了一种洗碗机的排水故障检测装置700,包括:处理单元702,包括储存器和处理器,储存器上存储有计算机程序,处理器执行程序时实现本公开上述实施例的洗碗机的排水故障检测方法。
本公开第四方面的实施例提供了一种可读储存介质,包括:处理单元,包括储存器和处理器,储存器上存储有计算机程序,处理器执行程序时实现本公开第一方面实施例的洗碗机的排水故障检测方法。
本公开第五方面的实施例提供了一种洗碗机,包括:如本公开第二方面或第三方面实施例的洗碗机的排水故障检测装置或如本公开第四方面实施例的可读储存介质。
本公开通过获取洗碗机当前洗涤阶段内的当前液体的当前温度,然后根据当前温度和当前理论温度就能够判断出洗碗机的排水系统是否存在故障,一方面能够在排水系统发生故障的时候及时进行报警提示,避免发生排水堵塞而导致水溢出,另一方面,无需依靠微动开关、高水位传感器等实体装置,降低了生产成本。此外,本公开在确定当前理论温度时,结合之前的各个阶段的进水参数、排水参数等参数,这样就相当于在任何一个洗涤阶段都可以根据之前的各个阶段的进水参数、排水参数等参数来确定当前理论温度,进而确定排水系统是否存在故障,也即在洗碗机的整个过程中都可以进行故障检测,提高了用户的满意度。
相关技术的洗碗机,为了实现排水故障的检查,通常有如下三种解决方式:
一、用导流机构将水导流至位于腔体底板内的浮子,在洗碗机堵塞时,浮子有水会浮起,触动微动开关,从而触发溢流报警;
二、利用变频洗涤泵和排水泵的功率、电流信号波动变化等进行堵塞检测;
三、设置高水位传感器,利用不同水量压力的变化检测水位的变化,从而进行预警。
然而这些方案存在的缺点在于,结构复杂,可靠性不高,变频方案仅适用于变频泵的机型,采用高水位传感器又导致成本高。
采用根据本公开的实施例的洗碗机,无需设置液位传感器、微动开关等器件,结构上更加简单,通过简单的结构就能够实现排水管堵塞的检测,并且在整个洗涤过程中均可以进行故障检测,提高了用户的满意度。
在根据本公开的实施例中,术语“第一”、“第二”、“第三”仅用于描述的方面,而不能理解为指示或暗示相对重要性;术语“两个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在根据本公开的实施例中的具体含义。
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在两个实现中。
尽管已经采用特定结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
以上仅为根据本公开的实施例的优选实施例而已,并不用于限制根据本公开的实施例,对于本领域的技术人员来说,根据本公开的实施例可以有各种更改和变化。凡在根据本公开的实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在根据本公开的实施例的防护范围之内。

Claims (13)

  1. 一种洗碗机的排水故障检测方法,包括:
    获取当前洗涤阶段所述洗碗机中的当前溶液的当前温度;
    根据所述当前洗涤阶段的进水量、所述当前洗涤阶段之前的每个阶段的进排水参数确定当前理论温度;以及
    基于所述当前温度和所述当前理论温度,确定是否存在排水故障。
  2. 根据权利要求1所述的洗碗机的排水故障检测方法,其中,所述根据所述当前洗涤阶段的进水量、所述当前洗涤阶段之前的每个阶段的进排水参数确定当前理论温度,包括:
    根据所述当前洗涤阶段之前的每个阶段的进排水参数,确定从所述当前阶段的前一阶段的排水前温度降低至所述当前理论温度,释放的第一热量;
    根据所述当前洗涤阶段的进水量和当前进水温度,确定从所述当前进水温度至所述当前理论温度,吸收的第二热量;
    根据所述第一热量等于所述第二热量,确定所述当前理论温度。
  3. 根据权利要求2所述的洗碗机的排水故障检测方法,其中,所述当前洗涤阶段之前的每个阶段的进排水参数包括:所述当前洗涤阶段之前的每个阶段的进水温度、进水量以及排水前温度。
  4. 根据权利要求3所述的洗碗机的排水故障检测方法,其中,在所述当前洗涤阶段为第二洗涤阶段的情况下,所述方法包括:
    根据第一洗涤阶段的进水量、所述第一洗涤阶段的排水前温度和当前理论温度确定所述第一洗涤阶段的进水量从第一洗涤阶段进水温度降低到所述当前理论温度所释放的所述第一热量;以及
    根据所述第二洗涤阶段的进水量、进水温度和所述当前理论温度确定所述第二洗涤阶段的进水量从所述进水温度升到所述当前理论温度所需的所述第二热量。
  5. 根据权利要求2所述的洗碗机的排水故障检测方法,其中,所述当前洗涤阶段之前的每个阶段的进排水参数包括:所述当前洗涤阶段之前的每个阶段的进水温度、排水前温度以及额定残留水量。
  6. 根据权利要求5所述的洗碗机的排水故障检测方法,其中,在所述当前洗涤阶段为第二洗涤阶段的情况下,所述方法包括:
    根据第一洗涤阶段的额定残留水量、所述第一洗涤阶段的排水前温度和当前理论温度确定所述第一洗涤阶段的额定残留水量从第一洗涤阶段排水前温度降低到所述当前理论温度所释放的所述第一热量;
    根据所述第二洗涤阶段的进水量、进水温度和所述当前理论温度确定所述第二洗涤阶段的进水量从所述进水温度升到所述当前理论温度所需的所述第二热量。
  7. 根据权利要求1至6中任一项所述的洗碗机的排水故障检测方法,其中,所述基于所述当前温度和当前理论温度,确定是否存在排水故障包括:
    当所述当前温度大于所述当前理论温度时,确定存在排水故障;
    当所述当前温度小于等于所述当前理论温度时,确定不存在排水故障。
  8. 根据权利要求1至6中任一项所述的洗碗机的排水故障检测方法,其中,所述基于所述当前温度和当前理论温度,确定是否存在排水故障包括:
    当所述当前温度与所述当前理论温度的温差在预设温差区间之外时,确定存在排水故障;
    当所述当前温度与所述当前理论温度的温差属于所述预设温差区间时,确定不存在排水故障。
  9. 根据权利要求8所述的洗碗机的排水故障检测方法,其中,
    所述预设温差区间为:大于等于0℃,小于等于5℃。
  10. 一种洗碗机的排水故障检测装置,包括:
    获取单元,用于获取当前洗涤阶段所述洗碗机中的当前溶液的当前温度;
    确定单元,用于基于所述当前温度和当前理论温度,确定是否存在排水故障。
  11. 一种洗碗机的排水故障检测装置,包括:
    处理单元,包括储存器和处理器,所述储存器上存储有计算机程序,所述处理器执行所述程序时实现如权利要求1至9中任一项所述的洗碗机的排水故障检测方法。
  12. 一种可读储存介质,包括:
    处理单元,包括储存器和处理器,所述储存器上存储有计算机程序,所述处理器执行所述程序时实现如权利要求1至9中任一项所述的洗碗机的排水故障检测方法。
  13. 一种洗碗机,包括:
    如权利要求10或权利要求11所述的洗碗机的排水故障检测装置或如权利要求12所述的可读储存介质。
PCT/CN2023/091572 2022-10-18 2023-04-28 洗碗机及其排水故障检测方法、装置和可读存储介质 WO2024082603A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23844059.8A EP4378369A1 (en) 2022-10-18 2023-04-28 Dish washing machine and drainage fault detection method and apparatus therefor, and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211274022.8 2022-10-18
CN202211274022.8A CN117942002A (zh) 2022-10-18 2022-10-18 洗碗机及其排水故障检测方法、装置和可读储存介质

Publications (1)

Publication Number Publication Date
WO2024082603A1 true WO2024082603A1 (zh) 2024-04-25

Family

ID=89854532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091572 WO2024082603A1 (zh) 2022-10-18 2023-04-28 洗碗机及其排水故障检测方法、装置和可读存储介质

Country Status (3)

Country Link
EP (1) EP4378369A1 (zh)
CN (1) CN117942002A (zh)
WO (1) WO2024082603A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154798A (ja) * 1995-12-11 1997-06-17 Mitsubishi Electric Corp 食器洗浄乾燥機
JP2011000321A (ja) * 2009-06-19 2011-01-06 Mitsubishi Electric Corp 食器洗い機
CN108185962A (zh) * 2018-01-11 2018-06-22 佛山市顺德区美的洗涤电器制造有限公司 检测排水管路异常的方法及装置
CN108716083A (zh) * 2018-05-04 2018-10-30 佛山市顺德区美的洗涤电器制造有限公司 洗涤电器的水检测方法和洗涤电器
CN112971664A (zh) * 2019-12-18 2021-06-18 珠海格力电器股份有限公司 洗碗机故障检测方法、装置、洗碗机及存储介质
CN113156532A (zh) * 2021-03-25 2021-07-23 青岛海尔洗碗机有限公司 用于检测洗碗机的排水管堵塞的方法
CN113261904A (zh) * 2021-04-21 2021-08-17 青岛海尔洗碗机有限公司 洗碗机的控制方法、洗碗机的检测方法及洗碗机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154798A (ja) * 1995-12-11 1997-06-17 Mitsubishi Electric Corp 食器洗浄乾燥機
JP2011000321A (ja) * 2009-06-19 2011-01-06 Mitsubishi Electric Corp 食器洗い機
CN108185962A (zh) * 2018-01-11 2018-06-22 佛山市顺德区美的洗涤电器制造有限公司 检测排水管路异常的方法及装置
CN108716083A (zh) * 2018-05-04 2018-10-30 佛山市顺德区美的洗涤电器制造有限公司 洗涤电器的水检测方法和洗涤电器
CN112971664A (zh) * 2019-12-18 2021-06-18 珠海格力电器股份有限公司 洗碗机故障检测方法、装置、洗碗机及存储介质
CN113156532A (zh) * 2021-03-25 2021-07-23 青岛海尔洗碗机有限公司 用于检测洗碗机的排水管堵塞的方法
CN113261904A (zh) * 2021-04-21 2021-08-17 青岛海尔洗碗机有限公司 洗碗机的控制方法、洗碗机的检测方法及洗碗机

Also Published As

Publication number Publication date
CN117942002A (zh) 2024-04-30
EP4378369A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
CN102573595B (zh) 清洗机,例如洗碗机或洗衣机,以及操作清洗机的方法
CN1920155B (zh) 一种洗衣机撞桶检测装置及其检测方法
US20120037187A1 (en) Method for operating a dishwasher
CN103479313A (zh) 一种用于洗碗机的语音提醒系统
JP2014504718A (ja) 製氷機のセーフモードでの冷凍及び収穫制御並びにその方法
CN105105694A (zh) 洗碗机的干燥控制装置、方法和洗碗机
CN102260984A (zh) 洗衣机控制方法及其洗衣机
CN106868780A (zh) 一种洗衣装置的洗衣控制方法及系统
CN107034617B (zh) 洗衣机耗电量监测方法、洗衣机及洗衣机系统
KR20110013581A (ko) 가전기기 진단시스템 및 그 진단방법
CN112971660A (zh) 一种水位检测方法及洗碗机
CN105266735B (zh) 洗碗机及其控制方法
WO2024082603A1 (zh) 洗碗机及其排水故障检测方法、装置和可读存储介质
CN112137540A (zh) 一种洗碗机及其缺水控制方法
CN211408693U (zh) 一种用于蒸汽烹饪装置的水垢检测装置
WO2024078083A1 (zh) 控制洗碗机的方法、设备和存储介质
CN113156532A (zh) 用于检测洗碗机的排水管堵塞的方法
CN109820463B (zh) 一种进水控制方法及洗碗机
CN110604527B (zh) 一种洗碗机的进水控制方法及洗碗机
CN112971664A (zh) 洗碗机故障检测方法、装置、洗碗机及存储介质
EP2586353A1 (en) Dishwasher
TW202010897A (zh) 洗衣機、以及連接到其的電子設備
CN114424892B (zh) 用于蒸汽烹饪设备的水垢检测方法及蒸汽烹饪设备
EP2160970B1 (en) Weight sensing method for dishwashers
CN114481543A (zh) 洗涤设备及其控制方法、计算机可读存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023844059

Country of ref document: EP

Effective date: 20240130