WO2024082449A1 - 一种童锁控制方法及童锁控制电路、装置、电子烟 - Google Patents

一种童锁控制方法及童锁控制电路、装置、电子烟 Download PDF

Info

Publication number
WO2024082449A1
WO2024082449A1 PCT/CN2022/143781 CN2022143781W WO2024082449A1 WO 2024082449 A1 WO2024082449 A1 WO 2024082449A1 CN 2022143781 W CN2022143781 W CN 2022143781W WO 2024082449 A1 WO2024082449 A1 WO 2024082449A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
preset
air pressure
current
counting
Prior art date
Application number
PCT/CN2022/143781
Other languages
English (en)
French (fr)
Inventor
宋利军
Original Assignee
无锡市稳先微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡市稳先微电子有限公司 filed Critical 无锡市稳先微电子有限公司
Publication of WO2024082449A1 publication Critical patent/WO2024082449A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/49Child proofing

Definitions

  • the present application relates to the technical field of electronic cigarettes, and in particular to a child lock control method, a child lock control circuit, a device, and an electronic cigarette.
  • Electronic cigarettes are electronic devices that simulate cigarettes. They replace traditional cigarettes by simulating the taste and smoke of real cigarettes, which not only saves consumers' expenses but also reduces the harm caused by "second-hand smoke”.
  • the child lock function of electronic cigarettes on the market generally uses Bluetooth, WIFI, NFC, fingerprints, touch buttons, mechanical buttons and other methods to achieve child protection.
  • the child lock function generally includes a locking function and an unlocking function.
  • the locking function and the unlocking function are implemented in the same way, all of which are implemented by using Bluetooth, WIFI, NFC, fingerprints, touch buttons, mechanical buttons and other methods.
  • Bluetooth, WIFI, NFC, fingerprints and other methods will greatly increase the hardware cost, and touch buttons, mechanical buttons and other methods will increase the complexity of the structural design and have a certain impact on the appearance of the electronic cigarette.
  • the specific solution is to set a threshold number of puffs on the electronic cigarette within a preset time. For example, if the electronic cigarette is puffed 3 times within 2 seconds, the electronic cigarette is triggered to enter a locked state, and the locking function is implemented. After entering the locked state, it can prevent children from accidentally inhaling the electronic cigarette.
  • this setting can improve the safety of electronic cigarettes, when the user puffs normally on the electronic cigarette, if the puff is relatively fast, the user may accidentally trigger the electronic cigarette to enter a locked state during normal puffing. After entering the locked state, the user will not atomize the e-liquid when puffing on the electronic cigarette again. It is necessary to change from the locked state to the unlocked state before resuming normal use, which causes great inconvenience to some users.
  • the technical problem to be solved by the embodiments of the present application is to provide a child lock control method and a child lock control circuit, device, and electronic cigarette to conveniently have a child lock function, in view of the technical defects of the prior art that cause inconvenience to users.
  • the first aspect of the embodiment of the present application provides a child lock control method for an electronic cigarette, wherein the electronic cigarette comprises a power MOS tube and a heating element, wherein the heating element and the power MOS tube are connected in series, and when the power MOS tube is turned on, the heating element is heated to atomize the e-liquid, and when the power MOS tube is turned off, the heating element stops heating, and the child lock control method comprises:
  • the first counting information is used to represent the air pressure condition in the airflow channel of the electronic cigarette
  • the electronic cigarette is controlled to enter a locked state, and the power MOS tube remains disconnected and cut off in the locked state.
  • the first counting information includes the number of oscillation cycles in the first counting time, the ratio of the number of oscillation cycles in the first counting time to a benchmark oscillation cycle number, the difference between the number of oscillation cycles in the first counting time and the benchmark oscillation cycle, or the ratio of the difference between the number of oscillation cycles in the first counting time and the benchmark oscillation cycle number to the benchmark oscillation cycle number.
  • the upper limit value of the second preset numerical range is less than the upper limit value of the first preset numerical range
  • the upper limit of the second preset numerical range is less than the upper limit of the first preset numerical range, wherein the reference oscillation cycle number is the number of oscillation cycles in the first counting time when the electronic cigarette is in a non-inhalation state;
  • the lower limit of the second preset numerical range is greater than the lower limit of the first preset numerical range, wherein the reference oscillation cycle number is the oscillation cycle number in the first counting time when the electronic cigarette is in a non-inhalation state;
  • the lower limit value of the second preset numerical range is greater than the lower limit value of the first preset numerical range, wherein the reference oscillation cycle number is the oscillation cycle number of the electronic cigarette in the first counting time period when it is not inhaled or blown.
  • the step of triggering the second counting specifically includes: triggering the third timing and triggering the third counting;
  • the electronic cigarette is in a smoking state during a third preset time period.
  • the step of receiving the first counting information specifically includes: obtaining information that the electronic cigarette changes from a non-smoking state to a smoking state;
  • Triggering receiving first counting information.
  • the child lock control method further includes:
  • the judgment result is yes, the information that the electronic cigarette changes from a non-smoking state to a smoking state is output.
  • the method further includes: obtaining information that the electronic cigarette enters a non-smoking state from a smoking state;
  • the child lock control method further includes: if the second count is less than a second preset number within a second preset time period, maintaining the original child lock state of the electronic cigarette, setting the second count to 0, and resetting the second timer to zero.
  • the electronic cigarette includes a state detection unit and an airflow sensor, the state detection unit is used to be electrically connected to the airflow sensor, and the airflow sensor is at least partially located in the airflow channel.
  • the step of receiving the first counting information specifically includes:
  • the first counting information output by the receiving state detection unit.
  • the second count is reset to zero and the second timing is reset to zero;
  • the second timing is less than the second preset time and the second count reaches the second preset number, the second count is reset to zero and the second timing is reset to zero; and/or,
  • the information that the first counting information is within the second preset value range is obtained again, and the second count is increased by 1.
  • the electronic cigarette is controlled to enter an unlocked state, wherein in the unlocked state, when the electronic cigarette is in a puffing state, the power MOS tube is continuously turned on or intermittently turned on.
  • the second preset time length ranges from 1 second to 5 seconds; and/or;
  • the second preset number is greater than or equal to 3.
  • a second aspect of an embodiment of the present application provides a child lock control circuit, which is applied to an electronic cigarette, comprising:
  • a state detection unit which is electrically connected to the airflow sensor and is used to output first counting information
  • a second counting judgment unit which is used to receive the first counting information and to judge whether the first counting information is within a second preset value range, wherein the first counting information is used to characterize the air pressure condition in the airflow channel of the electronic cigarette; the second preset value range is within the first preset value range, and the first preset value range is used to judge whether the electronic cigarette is in a puffing state;
  • a second counting unit which is used to trigger a second counting if the judgment result of the second counting judgment unit is yes;
  • a second timing unit which is used to trigger a second timing if the judgment result of the second counting judgment unit is yes;
  • a second timing counting judgment unit which is used to judge whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control unit is used to control the electronic cigarette to enter a locked state if the judgment results of the second timing and counting judgment unit are all yes. In the locked state, the power MOS tube of the electronic cigarette remains disconnected and cut off.
  • the child lock control circuit is located on the same chip.
  • a third aspect of an embodiment of the present application provides a child lock control device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the above-mentioned child lock control method for an electronic cigarette when executing the computer program.
  • a fourth aspect of the embodiments of the present application provides an electronic cigarette, comprising: the above-mentioned child lock control circuit;
  • It also includes a battery, a power MOS tube and a heating element, wherein the heating element and the power MOS tube are connected in series to form a heating branch, the two ends of the heating branch are electrically connected to the positive and negative electrodes of the battery respectively, and the control end of the power MOS tube is electrically connected to the child lock control circuit;
  • An airflow sensor is electrically connected to a state detection unit of the child lock control circuit, and the state detection unit is used to determine the inhalation state of the electronic cigarette.
  • the embodiment of the present application receives the first counting information; determines whether the first counting information is within the second preset value range; if the judgment result is yes, triggers the second timing and triggers the second counting; determines whether the second count is greater than or equal to the second preset number within the second preset time, and if the judgment result is yes, controls the electronic cigarette to enter the locked state.
  • the embodiment of the present application further subdivides the suction state through the first counting information and the second preset value range, and divides it into a suction state with a smaller air pressure and a suction state with a smaller air pressure.
  • the number of puffs in which the first counting information is within the second preset value range is distinguished as a suction state with a smaller air pressure, and the second counting is performed, and the electronic cigarette enters the locked state only when the second count is greater than or equal to the second preset number within the second preset time.
  • the electronic cigarette can further distinguish whether the user is smoking the electronic cigarette normally or wants to trigger the electronic cigarette to enter the locked state by smoking the electronic cigarette, which can reduce the probability of the user being mistakenly triggered to enter the locked state when smoking the electronic cigarette normally, and can reduce the user's use troubles.
  • the electronic cigarette can enter a locked state. After the electronic cigarette of this embodiment is locked for protection, it can prevent children from picking up the electronic cigarette and imitating the smoking action of adults, causing the electronic cigarette product to start atomizing, thereby improving the safety of electronic cigarette use.
  • a fifth aspect of the embodiments of the present application provides a child lock control method for an electronic cigarette, wherein the electronic cigarette comprises a power MOS tube and a heating element, wherein the heating element and the power MOS tube are connected in series, wherein when the power MOS tube is turned on, the heating element is heated to atomize the e-liquid, and when the power MOS tube is turned off, the heating element stops heating, and the child lock control method comprises: receiving current air pressure information in an airflow channel of the electronic cigarette;
  • the electronic cigarette is controlled to enter a locked state, and the power MOS tube remains disconnected and cut off in the locked state.
  • the current air pressure information includes the current air pressure value, the ratio of the current air pressure value to a reference air pressure value, the difference between the current air pressure value and the reference air pressure value, or the ratio of the difference between the current air pressure value and the reference air pressure value to the reference air pressure value.
  • the upper limit value of the second preset air pressure range is less than the upper limit value of the first preset air pressure range; or, when the current air pressure information is the ratio of the current air pressure value to the reference air pressure value, the upper limit value of the second preset air pressure range is less than the upper limit value of the first preset air pressure range, wherein the reference air pressure value is the air pressure value in the air flow channel of the electronic cigarette when it is in a non-inhalation state; or, when the current air pressure information is the difference between the current air pressure value and the reference air pressure value, the lower limit value of the second preset air pressure range is greater than the lower limit value of the first preset air pressure range, wherein the reference air pressure value is the air pressure value in the air flow channel of the electronic cigarette when it is in a non-inhalation state; or, when the current air pressure information is the ratio of the difference between the current air pressure value and the reference air pressure value to the reference air pressure value, the lower limit value
  • the step of triggering the second counting specifically includes:
  • the electronic cigarette is in a smoking state during a third preset time period.
  • the step of receiving current air pressure information in the airflow channel of the electronic cigarette specifically includes:
  • Searching a pre-stored capacitance value-pressure value table according to the current capacitance value searching a pre-stored frequency value-pressure value table according to the current frequency value, searching a pre-stored count value-pressure value table according to the current count value, searching a pre-stored capacitance change-pressure value table according to the current capacitance change, searching a pre-stored frequency change-pressure value table according to the current frequency change, or searching a pre-stored count change-pressure value table according to the current count change;
  • the child lock control method further includes:
  • the judgment result is yes, the information that the electronic cigarette changes from a non-smoking state to a smoking state is output.
  • the child lock control method further includes:
  • the judgment result is yes, the information that the electronic cigarette changes from a non-smoking state to a smoking state is output.
  • the method further includes:
  • the child lock control method further includes: if the second count is less than a second preset number within a second preset time period, maintaining the original child lock state of the electronic cigarette, and setting the second count to 0, and resetting the second timer to zero; and/or,
  • the second count is reset to zero and the second timing is reset to zero;
  • the second timing is less than the second preset time and the second count reaches the second preset number, the second count is reset to zero and the second timing is reset to zero; and/or,
  • the information that the current air pressure information in the airflow channel of the electronic cigarette is within the second preset air pressure range is obtained again, and the second count is increased by 1.
  • the electronic cigarette is controlled to enter an unlocked state, wherein in the unlocked state, when the electronic cigarette is in a puffing state, the power MOS tube is continuously turned on or intermittently turned on.
  • the second preset time length ranges from 1 second to 5 seconds; and/or;
  • the second preset number is greater than or equal to 3.
  • a sixth aspect of the embodiments of the present application provides a child lock control circuit, which is applied to an electronic cigarette, including:
  • An air pressure acquisition unit which is used to output the current air pressure information in the airflow channel of the electronic cigarette;
  • a second air pressure judgment unit which is used to receive current air pressure information and to judge whether the current air pressure information is within a second preset air pressure range, wherein the second preset air pressure range is within the first preset air pressure range, and the first preset air pressure range is used to judge whether the electronic cigarette is in a puffing state;
  • a second counting unit which is used to trigger a second counting if the judgment result of the second air pressure judgment unit is yes;
  • a second timing unit which is used to trigger a second timing if the judgment result of the second air pressure judgment unit is yes;
  • a second timing counting judgment unit which is used to judge whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control unit is used to control the electronic cigarette to enter a locked state if the judgment results of the second timing and counting judgment unit are all yes. In the locked state, the power MOS tube of the electronic cigarette remains disconnected and cut off.
  • the child lock control circuit is located on the same chip; and/or,
  • the child lock control circuit also includes a state detection unit, which is used to be electrically connected to the air flow sensor, and is also used to be connected to the air pressure acquisition unit.
  • a seventh aspect of an embodiment of the present application provides a child lock control device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the above-mentioned child lock control method for an electronic cigarette when executing the computer program.
  • An eighth aspect of the embodiments of the present application provides an electronic cigarette, comprising: the above-mentioned child lock control circuit;
  • It also includes a battery, a power MOS tube and a heating element.
  • the heating element and the power MOS tube are connected in series to form a heating branch.
  • the two ends of the heating branch are electrically connected to the positive and negative poles of the battery respectively, and the control end of the power MOS tube is electrically connected to the child lock control circuit.
  • the embodiment of the present application receives the current air pressure information in the airflow channel of the electronic cigarette; determines whether the current air pressure information is within the second preset air pressure range, and if the determination result is yes, triggers the second timing and triggers the second counting; determines whether the second count is greater than or equal to the second preset number within the second preset time, and if the determination result is yes, controls the electronic cigarette to enter the locked state.
  • the embodiment of the present application further subdivides the puffing state through the current air pressure information and the second preset air pressure range, and divides it into a puffing state with a smaller air pressure and a puffing state with a smaller air pressure.
  • the number of puffs when the current air pressure information is within the second preset air pressure range is distinguished as a puffing state with a smaller air pressure, and a second counting is performed.
  • the electronic cigarette enters the locked state only when the second count is greater than or equal to the second preset number within the second preset time. By setting it in this way, the electronic cigarette can further distinguish whether the user is puffing the electronic cigarette normally or wants to trigger the electronic cigarette to enter the locked state by puffing the electronic cigarette, which can reduce the probability of the user being mistakenly triggered to enter the locked state when puffing the electronic cigarette normally, and can reduce the user's use troubles.
  • the electronic cigarette can enter a locked state. After the electronic cigarette of this embodiment is locked for protection, it can prevent children from picking up the electronic cigarette and imitating the smoking action of adults, causing the electronic cigarette product to start atomizing, thereby improving the safety of electronic cigarette use.
  • a ninth aspect of the embodiments of the present application provides a child lock control method for an electronic cigarette, wherein the electronic cigarette comprises a power MOS tube and a heating element, wherein the heating element and the power MOS tube are connected in series, wherein when the power MOS tube is turned on, the heating element is heated to atomize the e-liquid, and when the power MOS tube is turned off, the heating element stops heating, and the child lock control method comprises:
  • the electronic cigarette is controlled to enter a locked state, and the power MOS tube remains disconnected and cut off in the locked state.
  • the first parameter information includes a current capacitance value, a current frequency value, a current count value, a ratio of a current capacitance value to a reference capacitance value, a ratio of a current frequency value to a reference frequency value, a ratio of a current count value to a reference count value, a difference between a current capacitance value and a reference capacitance value, a difference between a current frequency value and a reference frequency value, a difference between a current count value and a reference count value, a ratio of a difference between a current capacitance value and a reference capacitance value to a reference oscillation capacitance value, a ratio of a difference between a current frequency value and a reference frequency value to a reference frequency value, or a ratio of a difference between a current count value and a reference count value to a reference count value.
  • the lower limit value of the second preset parameter range is greater than the lower limit value of the first preset parameter range; or, when the first parameter information is the current frequency value or the ratio of the current frequency value to the reference frequency value, the upper limit value of the second preset parameter range is less than the upper limit value of the first preset parameter range; or, when the first parameter information is the current count value or the ratio of the current count value to the reference count value, the upper limit value of the second preset parameter range is less than the upper limit value of the first preset parameter range
  • the step of triggering the second counting specifically includes:
  • the electronic cigarette is in a smoking state during a third preset time period.
  • the child lock control method further includes:
  • the judgment result is yes, the information that the electronic cigarette changes from a non-smoking state to a smoking state is output.
  • the method further includes:
  • the child lock control method further includes: if the second count is less than a second preset number within a second preset time period, maintaining the original child lock state of the electronic cigarette, and setting the second count to 0, and resetting the second timer to zero; and/or,
  • the second count is reset to zero and the second timing is reset to zero;
  • the second timing is less than the second preset time and the second count reaches the second preset number, the second count is reset to zero and the second timing is reset to zero; and/or,
  • the information that the first parameter information in the electronic cigarette airflow channel is within the second preset parameter range is obtained again, and the second count is increased by 1.
  • the electronic cigarette is controlled to enter an unlocked state, wherein in the unlocked state, when the electronic cigarette is in a puffing state, the power MOS tube is continuously turned on or intermittently turned on.
  • the second preset time length ranges from 1 second to 5 seconds; and/or;
  • the second preset number is greater than or equal to 3.
  • a tenth aspect of the embodiment of the present application provides a child lock control circuit, which is applied to an electronic cigarette, including:
  • a state detection unit which is used to be electrically connected to the airflow sensor and is also used to output first parameter information
  • a second parameter judgment unit which is used to receive the first parameter information and to judge whether the first parameter information is within a second preset parameter range, wherein the second preset parameter range is within the first preset parameter range, and the first preset parameter range is used to judge whether the electronic cigarette is in a puffing state;
  • a second counting unit which is used to trigger a second counting if the judgment result of the second parameter judgment unit is yes;
  • a second timing unit which is used to trigger a second timing if the judgment result of the second parameter judgment unit is yes;
  • a second timing counting judgment unit which is used to judge whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control unit is used to control the electronic cigarette to enter a locked state if the judgment results of the second timing and counting judgment unit are all yes. In the locked state, the power MOS tube of the electronic cigarette remains disconnected and cut off.
  • the child lock control circuit is located on the same chip.
  • An eleventh aspect of an embodiment of the present application provides a child lock control device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the above-mentioned child lock control method for an electronic cigarette when executing the computer program.
  • a twelfth aspect of the embodiment of the present application provides an electronic cigarette, comprising:
  • It also includes a battery, a power MOS tube and a heating element, wherein the heating element and the power MOS tube are connected in series to form a heating branch, the two ends of the heating branch are electrically connected to the positive and negative electrodes of the battery respectively, and the control end of the power MOS tube is electrically connected to the child lock control circuit;
  • An airflow sensor is electrically connected to the state detection unit of the child lock control circuit.
  • the embodiment of the present application receives the first parameter information; determines whether the first parameter information is within the second preset parameter range, and if the judgment result is yes, triggers the second timing and triggers the second counting; determines whether the second count is greater than or equal to the second preset number within the second preset time, and if the judgment result is yes, controls the electronic cigarette to enter the locked state.
  • the embodiment of the present application further subdivides the suction state through the first parameter information and the second preset parameter range, and divides it into a suction state with a smaller air pressure and a suction state with a smaller air pressure.
  • the number of puffs when the first parameter information is within the second preset parameter range is distinguished as a suction state with a smaller air pressure, and a second count is performed, and the electronic cigarette enters the locked state only when the second count is greater than or equal to the second preset number within the second preset time.
  • the electronic cigarette can further distinguish whether the user is smoking the electronic cigarette normally, or wants to trigger the cigarette to enter the locked state by smoking the electronic cigarette, which can reduce the probability of the user being mistakenly triggered to enter the locked state when smoking the electronic cigarette normally, and can reduce the user's use troubles.
  • the second count being greater than or equal to the second preset number within the second preset time period, the electronic cigarette can enter a locked state. After the electronic cigarette of this embodiment is locked for protection, it can prevent children from picking up the electronic cigarette and imitating the smoking action of adults, causing the electronic cigarette product to start atomizing, thereby improving the safety of electronic cigarette use.
  • a thirteenth aspect of the embodiment of the present application provides a child lock control method for an electronic cigarette, wherein the electronic cigarette comprises a power MOS tube and a heating element, wherein the heating element and the power MOS tube are connected in series, wherein when the power MOS tube is turned on, the heating element is heated to atomize the e-liquid, and when the power MOS tube is turned off, the heating element stops heating, and the child lock control method comprises:
  • the electronic cigarette is controlled to enter a locked state, and the power MOS tube remains disconnected and cut off in the locked state.
  • the first parameter information includes a current air pressure value, a current capacitance value, a current frequency value, a current count value, a ratio of a current air pressure value to a reference air pressure value, a ratio of a current capacitance value to a reference capacitance value, a ratio of a current frequency value to a reference frequency value, a ratio of a current count value to a reference count value, a difference between a current air pressure value and a reference air pressure value, a difference between a current capacitance value and a reference capacitance value, a difference between a current frequency value and a reference frequency value, a difference between a current count value and a reference count value, a ratio of a difference between a current air pressure value and a reference air pressure value, a ratio of a difference between a current capacitance value and a reference capacitance value to a reference oscillation capacitance value, a ratio of a difference between a current frequency value and a reference frequency value to a reference frequency
  • the upper limit value of the second preset parameter range is less than the upper limit value of the first preset parameter range
  • the lower limit value of the second preset parameter range is greater than the lower limit value of the first preset parameter range.
  • the ratio of the upper limit value of the second preset parameter range to the upper limit value of the first preset parameter range is less than or equal to 85%; or,
  • the ratio of the lower limit value of the second preset parameter range to the lower limit value of the first preset parameter range is greater than or equal to 115%; or,
  • the upper limit value of the second preset parameter range is less than or equal to 85%; or
  • the lower limit of the second preset parameter range is greater than or equal to 115%; or
  • the lower limit value of the second preset parameter range is greater than or equal to 15%.
  • the step of receiving the first parameter information specifically includes:
  • the child lock control method further includes:
  • the judgment result is yes, the information that the electronic cigarette changes from a non-smoking state to a smoking state is output.
  • the electronic cigarette is controlled to enter an unlocked state, wherein in the unlocked state, when the electronic cigarette is in a puffing state, the power MOS tube is continuously turned on or intermittently turned on.
  • a fourteenth aspect of the embodiment of the present application provides a child lock control circuit, which is applied to an electronic cigarette, comprising:
  • a second parameter judgment unit which is used to receive the first parameter information and to judge whether the first parameter information is within a second preset parameter range, wherein the second preset parameter range is within the first preset parameter range, and the first preset parameter range is used to judge whether the electronic cigarette is in a puffing state;
  • the child lock control unit is used to control the electronic cigarette to enter a locked state if the judgment results of the second parameter judgment unit are all yes. In the locked state, the power MOS tube of the electronic cigarette remains disconnected and cut off.
  • the child lock control circuit is located on the same chip; and/or,
  • the child lock control circuit further includes a state detection unit, which is electrically connected to the airflow sensor and is further used to output first parameter information; and/or,
  • the child lock control circuit also includes a state detection unit and an air pressure acquisition unit.
  • the state detection unit is used to be electrically connected to the air flow sensor.
  • the state detection unit is also used to be connected to the air pressure acquisition unit.
  • the air pressure acquisition unit is used to output the first parameter information.
  • a fifteenth aspect of an embodiment of the present application provides a child lock control device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the above-mentioned child lock control method for an electronic cigarette when executing the computer program.
  • a sixteenth aspect of the present application embodiment provides an electronic cigarette, comprising:
  • It also includes a battery, a power MOS tube and a heating element.
  • the heating element and the power MOS tube are connected in series to form a heating branch.
  • the two ends of the heating branch are electrically connected to the positive and negative poles of the battery respectively, and the control end of the power MOS tube is electrically connected to the child lock control circuit.
  • the embodiment of the present application receives the first parameter information; determines whether the first parameter information is within the second preset parameter range, and if the judgment result is yes, controls the electronic cigarette to enter the locked state.
  • the embodiment of the present application further subdivides the suction state through the first parameter information and the second preset parameter range, and divides it into a suction state with a smaller air pressure and a suction state with a smaller air pressure.
  • the number of suctions when the first parameter information is within the second preset parameter range is distinguished as a suction state with a smaller air pressure (re-suction), and the electronic cigarette enters the locked state.
  • the electronic cigarette can further distinguish whether the user is normally smoking the electronic cigarette or wants to trigger the locked state by smoking the electronic cigarette, which can reduce the probability of the user being mistakenly triggered to enter the locked state when smoking the electronic cigarette normally, and can reduce the user's use troubles. Moreover, by re-suctioning to realize the electronic cigarette entering the locked state, the electronic cigarette of this embodiment can prevent children from picking up the electronic cigarette and imitating the adult's suction action, causing the electronic cigarette product to start atomization after the locking protection, thereby improving the safety of electronic cigarette use.
  • a seventeenth aspect of the embodiments of the present application provides a child lock control method for an electronic cigarette, wherein the electronic cigarette comprises a power MOS tube and a heating element, wherein the heating element and the power MOS tube are connected in series, wherein when the power MOS tube is turned on, the heating element is heated to atomize the e-liquid, and when the power MOS tube is turned off, the heating element stops heating, and the child lock control method comprises:
  • the electronic cigarette is controlled to enter an unlocked state.
  • the unlocked state when the electronic cigarette is in a puffing state, the power MOS tube is continuously turned on or intermittently turned on.
  • the first parameter information includes current air pressure value, current capacitance value, current frequency value, current count value, current air pressure change, current capacitance change, current frequency change, current count change, the ratio of current air pressure value to reference air pressure value, the ratio of current capacitance value to reference capacitance value, the ratio of current frequency value to reference frequency value, the ratio of current count value to reference count value, the ratio of current air pressure change to reference air pressure value, the ratio of current capacitance change to reference capacitance value, the ratio of current frequency change to reference frequency value, or the ratio of current count change to reference count value.
  • the lower limit value of the second preset parameter range is greater than the lower limit value of the first preset parameter range
  • the upper limit value of the second preset parameter range is less than the upper limit value of the first preset parameter range
  • an upper limit value of the second preset parameter range is smaller than an upper limit value of the first preset parameter range.
  • the step of triggering the second counting specifically includes:
  • the electronic cigarette is in a smoking state during a third preset time period.
  • the child lock control method further includes:
  • the judgment result is yes, the information that the electronic cigarette changes from a non-smoking state to a smoking state is output.
  • the method further includes:
  • the child lock control method further includes: if the second count is less than a second preset number within a second preset time period, maintaining the original child lock state of the electronic cigarette, and setting the second count to 0, and resetting the second timer to zero; and/or,
  • the second count is reset to zero and the second timing is reset to zero;
  • the second timing is less than the second preset time and the second count reaches the second preset number, the second count is reset to zero and the second timing is reset to zero; and/or,
  • the information that the first parameter information in the electronic cigarette airflow channel is within the second preset parameter range is obtained again, and the second count is increased by 1.
  • the electronic cigarette is controlled to enter a locked state, and the power MOS tube remains disconnected and cut off in the locked state.
  • the second preset time length ranges from 1 second to 5 seconds; and/or;
  • the second preset number is greater than or equal to 3.
  • the first parameter information includes a current capacitance value, a current frequency value, a current count value, a current capacitance change, a current frequency change, a current count change, a ratio of a current capacitance value to a reference capacitance value, a ratio of a current frequency value to a reference frequency value, a ratio of a current count value to a reference count value, a ratio of a current capacitance change to a reference capacitance value, a ratio of a current frequency change to a reference frequency value, or a ratio of a current count change to a reference count value;
  • the electronic cigarette includes a state detection unit and a capacitive airflow sensor, the state detection unit is used to be electrically connected to the capacitive airflow sensor, the capacitive airflow sensor includes a capacitor, and the capacitor is located in the airflow channel; the step of receiving the first parameter information specifically includes: receiving the first parameter information output by the state detection unit.
  • the first parameter information includes a current air pressure value, a current air pressure change, a ratio of the current air pressure value to a reference air pressure value, and a ratio of the current air pressure change to the reference air pressure value.
  • the electronic cigarette includes a state detection unit and a capacitive airflow sensor.
  • the state detection unit is used to be electrically connected to the capacitive airflow sensor.
  • the capacitive airflow sensor includes a capacitor, and the capacitor is located in the airflow channel of the electronic cigarette.
  • the step of receiving the first parameter information specifically includes:
  • Searching a pre-stored capacitance value-pressure value table according to the current capacitance value searching a pre-stored frequency value-pressure value table according to the current frequency value, searching a pre-stored count value-pressure value table according to the current count value, searching a pre-stored capacitance change-pressure value table according to the current capacitance change, searching a pre-stored frequency change-pressure value table according to the current frequency change, or searching a pre-stored count change-pressure value table according to the current count change;
  • An eighteenth aspect of the embodiments of the present application provides a child lock control circuit, which is applied to an electronic cigarette, comprising:
  • a second parameter judgment unit which is used to receive the first parameter information and to judge whether the first parameter information is within a second preset parameter range, wherein the first parameter information is used to characterize the air pressure condition in the airflow channel of the electronic cigarette, the second preset parameter range is within the first preset parameter range, and the first preset parameter range is used to judge whether the electronic cigarette is in a puffing state;
  • a second counting unit which is used to trigger a second counting if the judgment result of the second parameter judgment unit is yes;
  • a second timing unit which is used to trigger timing if the judgment result of the second parameter judgment unit is yes;
  • a second timing counting judgment unit which is used to judge whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control unit is used to control the electronic cigarette to enter an unlocked state if the judgment results of the second timing and counting judgment unit are all yes.
  • the power MOS tube is continuously turned on or intermittently turned on when the electronic cigarette is in a puffing state.
  • the child lock control circuit is located on the same chip; and/or,
  • the child lock control circuit further includes a state detection unit, which is electrically connected to the airflow sensor and is further used to output first parameter information; and/or,
  • the child lock control circuit also includes a state detection unit and an air pressure acquisition unit.
  • the state detection unit is used to be electrically connected to the air flow sensor.
  • the state detection unit is also used to be connected to the air pressure acquisition unit.
  • the air pressure acquisition unit is used to output the first parameter information.
  • a nineteenth aspect of an embodiment of the present application provides a child lock control device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the above-mentioned child lock control method for an electronic cigarette when executing the computer program.
  • the twentieth aspect of the embodiment of the present application provides an electronic cigarette, comprising:
  • It also includes a battery, a power MOS tube and a heating element.
  • the heating element and the power MOS tube are connected in series to form a heating branch.
  • the two ends of the heating branch are electrically connected to the positive and negative poles of the battery respectively, and the control end of the power MOS tube is electrically connected to the child lock control circuit.
  • the embodiment of the present application receives first parameter information; determines whether the first parameter information is within a second preset parameter range, and if the determination result is yes, triggers a second timing and a second count; determines whether the second count is greater than or equal to a second preset number within a second preset time period, and if the determination result is yes, controls the electronic cigarette to enter an unlocked state.
  • the embodiment of the present application further subdivides the puffing state through the first parameter information and the second preset parameter range, and divides it into a puffing state with lower air pressure and a puffing state with relatively high air pressure.
  • the number of puffs for which the first parameter information is within the second preset parameter range is distinguished as a puffing state with lower air pressure, and a second count is performed.
  • the electronic cigarette enters an unlocked state only when the second count is greater than or equal to the second preset number within a second preset time period.
  • the electronic cigarette can further distinguish whether the user is puffing the electronic cigarette normally or wants to trigger the unlocking state by puffing the electronic cigarette, which can reduce the probability of the user being accidentally triggered to unlock when playing with the electronic cigarette, and can reduce the user's use troubles; moreover, it is necessary to puff again to unlock.
  • it is not easy for children to distinguish puffing as heavy puffing and normal puffing so it is difficult for children to unlock the locked state of the electronic cigarette, thereby improving the safety of the electronic cigarette.
  • FIG1 is a circuit module diagram of an electronic cigarette according to a first embodiment of the present application.
  • FIG2 is a flowchart of a child lock control method according to a first embodiment of the present application.
  • FIG3 is a partial specific process step diagram of step S13 in FIG2 ;
  • FIG4 is a flowchart of the process steps after step S13 in FIG2 ;
  • FIG5 is a flowchart of an embodiment after step S15 in FIG2 ;
  • FIG6 is a schematic block diagram of a child lock control circuit according to an embodiment of the present application.
  • FIG7 is a schematic structural diagram of a child lock control device according to an embodiment of the present application.
  • FIG8 is a circuit module diagram of an electronic cigarette according to a second embodiment of the present application.
  • FIG. 9 is a flowchart of a child lock control method according to a second embodiment of the present application.
  • FIG10 is a partial specific process step diagram of step S13 in FIG9;
  • FIG. 11 is a flowchart of another part of the child lock control method according to an embodiment of the present application.
  • FIG12 is a flowchart of the process steps after step S13 in FIG9;
  • FIG13 is a flowchart of an embodiment after step S15 in FIG9;
  • FIG14 is a schematic block diagram of a child lock control circuit according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a child lock control device according to an embodiment of the present application.
  • FIG16 is a circuit module diagram of an electronic cigarette according to a third embodiment of the present application.
  • FIG. 17 is a flowchart of a child lock control method according to a third embodiment of the present application.
  • FIG18 is a partial specific process step diagram of step S13 in FIG17;
  • FIG20 is a flowchart of the process steps after step S13 in FIG17;
  • FIG21 is a flowchart of an embodiment after step S15 in FIG17;
  • FIG22 is a schematic block diagram of a child lock control circuit according to an embodiment of the present application.
  • FIG23 is a schematic diagram of the structure of a child lock control device according to an embodiment of the present application.
  • FIG24 is a circuit module diagram of the electronic cigarette of the fourth embodiment of the present application.
  • 25 is a flowchart of a child lock control method according to a fourth embodiment of the present application.
  • FIG26 is a specific process step diagram of another embodiment of step S11 in FIG25;
  • 27 is a flowchart of another part of the child lock control method according to an embodiment of the present application.
  • FIG28 is a flowchart of an embodiment after step S13 in FIG25;
  • FIG29 is a schematic block diagram of a child lock control circuit according to an embodiment of the present application.
  • FIG30 is a schematic diagram of the structure of a child lock control device according to an embodiment of the present application.
  • FIG31 is a circuit module diagram of the electronic cigarette of the fifth embodiment of the present application.
  • FIG33 is a specific process step diagram of another embodiment of step S11 in FIG32;
  • FIG34 is a partial specific process step diagram of step S13 in FIG32;
  • 35 is a flowchart of another part of the child lock control method according to an embodiment of the present application.
  • FIG36 is a flowchart of the process steps after step S13 in FIG32;
  • FIG37 is a flowchart of an embodiment after step S15 in FIG32;
  • FIG38 is a schematic block diagram of a child lock control circuit according to an embodiment of the present application.
  • FIG. 39 is a schematic structural diagram of a child lock control device according to an embodiment of the present application.
  • the electronic cigarette includes a battery 110, a child lock control circuit 200, a heating element 130, an airflow sensor 140, a power MOS tube M, etc., and the child lock control circuit 200 includes a state detection unit 150.
  • the child lock control circuit 200 is electrically connected to the battery 110, the airflow sensor 140, the power MOS tube M, etc.
  • the battery 110 is, for example, a rechargeable battery such as a lithium battery, a nickel-cadmium battery, a nickel-hydrogen battery, etc., and the battery 110 can also be a non-rechargeable battery;
  • the state detection unit 150 is electrically connected to the airflow sensor 140, and the state detection unit 150 is used to determine whether the electronic cigarette is inhaled and/or blown, and output a corresponding signal.
  • a specific implementation of the state detection unit 150 can refer to the prior application in the art, or other conventional state detection units known to those skilled in the art.
  • the airflow sensor 140 is a capacitive airflow sensor, such as a capacitive MEMS sensor or a capacitive microphone, etc.
  • the airflow sensor 140 is located in the airflow channel of the electronic cigarette.
  • the airflow sensor 140 includes a capacitor.
  • the state detection unit 150 determines whether the electronic cigarette is in a suction state, a blowing state, or a non-suction and blowing state (corresponding to the state when the user is not using it) by changes in the capacitance value of the capacitor.
  • the child lock control circuit 200 is electrically connected to the control end of the power MOS tube M.
  • the child lock control circuit 200 is used to control whether the power MOS tube M is turned on.
  • the power MOS tube M is connected in series with the heating element 130 via the atomization end AT to form a series branch.
  • the power MOS tube M is a PMOS tube for example.
  • the power MOS tube M can also be an NMOS tube.
  • the power MOS tube M and the child lock control circuit 200 can be located on the same chip, which is generally called a system control chip.
  • the present application is not limited thereto. In other embodiments of the present application, the power MOS tube M and the child lock control circuit 200 may be located on different chips.
  • the heating element 130 is, for example, a heating wire, a heating wire, a ceramic seat containing a heating wire or a heating wire, or other conventional heating elements.
  • the heating element 130 when the child lock control circuit 200 outputs a low level to control the power MOS tube M to be turned on, the heating element 130 is heated to atomize the e-liquid, and when the child lock control circuit 200 outputs a high level to control the power MOS tube M to be turned off, the heating element 130 stops heating.
  • the state detection unit 150 is electrically connected to the airflow sensor 140 to determine whether the electronic cigarette is inhaled or blown or is in a state of neither blowing nor inhaling (non-inhalation and non-blow state).
  • the air pressure between the two capacitor electrode sheets of the airflow sensor 140 will change, causing the distance between the two electrode sheets to change accordingly, thereby causing the capacitance value of the airflow sensor 140 to change.
  • the state detection unit 150 converts the capacitance value change into a count value change. By comparing the count value with a preset numerical range, the state detection unit 150 can determine whether the electronic cigarette is inhaled and in the inhalation state, blown and in the blowing state, or in the non-inhalation and non-blow state.
  • the inventor of the present application proposed the following solution after a large number of experiments: the puffing state of the electronic cigarette is further subdivided into a puffing state with even smaller air pressure and a puffing state with even smaller air pressure.
  • the puffing state with even smaller air pressure corresponds to the user's normal puffing
  • the puffing state with even smaller air pressure corresponds to the user's puffing that wants to enter a locked state or the user's accidental heavy inhalation.
  • the electronic cigarette Regardless of whether it is in a puffing state with even smaller air pressure or a puffing state with even smaller air pressure, the electronic cigarette will be judged as a puffing state.
  • the present application determines whether it is in a puffing state with even smaller air pressure by whether the first counting information is within a second preset numerical range.
  • the first counting information represents the air pressure condition in the airflow channel of the electronic cigarette.
  • the air pressure condition includes, for example, the size of the air pressure, the change of the air pressure, etc.
  • the first counting information is in a corresponding relationship with the air pressure condition in the airflow channel.
  • the first counting information when the first counting information is within the second preset numerical range, it represents that the electronic cigarette is in a suction state with a lower air pressure.
  • the first counting information is outside the second preset numerical range and within the first preset numerical range, it represents that the electronic cigarette is in a suction state with a lower air pressure.
  • the second preset numerical range is within the first preset numerical range, that is, as long as the first counting information is within the second preset numerical range, the first counting information must be within the first preset numerical range, indicating that the electronic cigarette is in a suction state and is a heavy suction.
  • the first counting information may be within the second preset numerical range (heavy suction) or may not be within the second preset numerical range (normal suction).
  • the first counting information includes the number of oscillation cycles in the first counting time, the ratio of the number of oscillation cycles in the first counting time to the reference number of oscillation cycles, the difference between the number of oscillation cycles in the first counting time and the reference number of oscillation cycles, or the ratio of the difference between the number of oscillation cycles in the first counting time and the reference number of oscillation cycles to the reference number of oscillation cycles.
  • the first counting time is preset, and the electronic cigarette can collect the number of oscillation cycles of the oscillator of the electronic cigarette in this time.
  • the oscillation period of the oscillator changes with the capacitance of the airflow sensor 140.
  • the first counting time is 1s
  • the number of oscillation cycles in the first counting time is the frequency.
  • the number of oscillation cycles counted in the preset counting time is the reference number of oscillation cycles.
  • the preset counting time can be equal to the first counting time, or it can be unequal, preferably equal, and the reference number of oscillation cycles is collected at this time; in addition, the reference number of oscillation cycles can also be preset.
  • the capacitance of the airflow sensor 140 When the user inhales lightly and the air pressure is relatively low, the capacitance of the airflow sensor 140 is relatively large compared to the state without inhalation and blowing, and the oscillation period of the oscillator will be longer, so that the value counted in the first counting time period will be smaller, that is, the number of oscillation periods of the first counting time period will be smaller at this time, and the ratio of the number of oscillation periods of the first counting time period to the number of reference oscillation periods will be smaller at this time, and the difference between the number of oscillation periods of the first counting time period and the reference oscillation period will be larger, and the ratio of the difference between the number of oscillation periods in the first counting time period and the reference oscillation period will be larger; when the user inhales heavily and the air pressure is smaller, the capacitance of the airflow sensor 140 is larger compared to the state without inhalation and blowing, and the oscillation period of the oscillator will be longer, so that the value counted in the first counting
  • the distance between the two electrode plates of the capacitor of the airflow sensor 140 will increase relative to the distance in the non-inhalation and blowing state, the capacitance of the airflow sensor 140 will be smaller, and the oscillation period of the oscillator will be smaller.
  • the second preset value range is the range of oscillation cycles.
  • the air pressure in the airflow channel is smaller, the deformation of the capacitor of the airflow sensor 140 is larger, and the distance between the two electrodes of the capacitor is smaller, so that its capacitance value will be larger, and the number of oscillation cycles in the first counting duration will be smaller; when the air pressure in the airflow channel is smaller, the deformation of the capacitor of the airflow sensor 140 is larger, and the distance between the two electrodes of the capacitor is smaller, so that its capacitance value will be larger, and the number of oscillation cycles in the first counting duration will be smaller, so the first counting information is proportional to the air pressure in the airflow channel.
  • the upper limit of the second preset numerical range is smaller than the upper limit of the first preset numerical range
  • the lower limit of the second preset numerical range is greater than or equal to the lower limit of the first preset numerical range.
  • the second preset numerical range is (a, A], for example, A is 950
  • the first preset numerical range is (b, B], for example, B is 970
  • the number of base oscillation cycles is 1000, wherein A is smaller than B, a is greater than or equal to b, and A, a, B, and b are positive integers.
  • the lower limit of the second preset numerical range is not limited, that is, when the first counting information is smaller than A, it falls within the second preset numerical range.
  • the first counting information is the ratio of the number of oscillation cycles in the first counting time length to the number of base oscillation cycles
  • the second preset numerical range is a ratio range at this time, and its principle is similar to the scheme described above in which the first counting information is the number of oscillation cycles in the first counting time length, and will not be repeated here. This ratio is preferably less than or equal to 0.95, for example, 0.9, 0.8, 0.7, etc.
  • the second preset numerical range is the difference range.
  • the air pressure in the air flow channel is smaller, the capacitance deformation of the air flow sensor 140 is larger, the distance between the two electrode sheets of the capacitor is smaller, so that its capacitance value will be larger, so that the difference will be larger, and when the air pressure in the air flow channel is smaller, the capacitance deformation of the air flow sensor 140 is larger, the distance between the two electrode sheets of the capacitor is smaller, so that its capacitance value will be larger, so that the difference will be larger, so that the first counting information is proportional to the air pressure in the air flow channel.
  • the lower limit of the second preset numerical range is greater than the lower limit of the first preset numerical range
  • the upper limit of the second preset numerical range is less than or equal to the upper limit of the first preset numerical range
  • the second preset numerical range is [M, m), for example, M is 50
  • the first preset numerical range is [N, n), for example, N is 30, wherein M is greater than N, m is less than or equal to n, and M, m, N, and n are positive integers.
  • the upper limit of the second preset numerical range is not limited, that is, as long as the first counting information is greater than or equal to M, it falls within the second preset numerical range.
  • the second preset numerical range is a ratio range, and its principle is similar to the scheme described above that the first counting information is the difference between the number of oscillation cycles in the first counting time and the reference oscillation cycle, and will not be repeated here.
  • This ratio is preferably greater than or equal to 0.05, for example, 0.1, 0.2, 0.3, etc.
  • the child lock control circuit 200 of this embodiment also includes a second counting judgment unit 211, and the second counting judgment unit 211 is connected to the state detection unit 150.
  • the state detection unit 150 itself knows the first counting information, so the state detection unit 150 outputs the first counting information to the second counting judgment unit 211.
  • the second counting judgment unit 211 is used to receive the first counting information and determine whether the first counting information is within the second preset value range, so as to distinguish whether the user is inhaling normally or entering the locked state. After such distinction, the probability of the user mistakenly judging that the child lock locked state is entered during normal inhalation can be reduced.
  • the embodiment of the present application provides a child lock control method for an electronic cigarette, comprising the following steps:
  • the child lock control circuit 200 includes a second counting and judging unit 211, which is electrically connected to the state detection unit 150.
  • the state detection unit 150 generates and outputs first counting information, and the second counting and judging unit 211 receives the first counting information.
  • the state detection unit 150 itself can identify whether the electronic cigarette is in the suction state or the blowing state.
  • the state detection unit 150 identifies that the electronic cigarette is in the suction state through the airflow sensor 140. At this time, the state detection unit 150 determines that the first counting information is within the first preset value range, and the state detection unit 150 outputs a suction signal.
  • the state detection unit 150 identifies that the electronic cigarette is in the blowing state through the airflow sensor 140. At this time, the state detection unit 150 outputs a blowing signal.
  • the state detection unit 150 identifies that the electronic cigarette is in the non-inhalation and blowing state, and the state detection unit 150 outputs a non-inhalation and blowing signal.
  • the child lock control circuit 200 receives the output signal of the state detection unit 150 to obtain the state of the electronic cigarette.
  • the state detection unit 150 changes from outputting the non-inhalation and blowing signal to outputting the suction signal or the blowing signal
  • the child lock control circuit 200 obtains that the electronic cigarette changes from the non-inhalation and blowing state to the suction state or the blowing state.
  • the non-suction state includes a non-suction and blowing state and a blowing state.
  • S12 Determine whether the first counting information is within a second preset value range, wherein the second preset value range is within the first preset value range, and the first preset value range is used to determine whether the electronic cigarette is in a puffing state;
  • the child lock control circuit 200 includes a second timing unit 216 and a second counting unit 215, the second timing unit 216 is electrically connected to the second counting judgment unit 211, and the second counting unit 215 is electrically connected to the second counting judgment unit 211.
  • the second counting judgment unit 211 If the judgment result of the second counting judgment unit 211 is yes, the second counting judgment unit 211 outputs a counting valid signal, the second timing unit 216 is triggered to start timing, the second timing unit 216 starts timing from 0, the second counting unit 215 is triggered to start counting, and also counts this time, that is, the count of the second counting unit 215 is 1 at this time; if the judgment result of the second counting judgment unit 211 is no, the second counting judgment unit 211 outputs a counting invalid signal, the second timing unit 216 maintains the original state, and the second counting unit 215 maintains the original state. In this embodiment, when the second timing unit 216 is triggered to start timing, the second timing unit 216 will keep timing until the second timing unit 216 is reset to zero, and then the second timing unit 216 stops timing.
  • the second timing unit 216 When the second timing unit 216 is triggered to start timing and the second counting unit 215 is triggered to start counting, when the second counting judgment unit 211 receives the second counting information again and once again determines that the first counting information is within the second preset value range, that is, outputs a counting valid signal again, then the second count of the second counting unit 215 is increased by 1, and the second count is 2 at this time. At the same time, the second timing unit 216 continues the second timing.
  • S14 Determine whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control circuit 200 further includes a second timing counting judgment unit 217, which is connected to the second counting unit 215 and the second timing unit 216 respectively.
  • the second timing counting judgment unit 217 judges that the timing duration of the second timing unit 216 is within the second preset duration, and the second count of the second counting unit 215 is greater than or equal to the second preset number, the second timing counting judgment unit 217 outputs a child lock locking signal.
  • the second preset duration is generally less than or equal to 5s, and the second preset duration is, for example, 1s, 1.5s, 1.8s, 2s, 2.3s, 2.5s, 2.8s, 3s, 4s, 5s, etc., preferably 2s.
  • the second preset number is an integer greater than or equal to 2, such as 2, 3, 4, 5, 6, etc., preferably 3, and the second preset number is generally less than or equal to 6 times, which is convenient for user operation.
  • the second preset time length is 2 seconds
  • the second preset number is 3. If the second count is greater than or equal to 3 within 2 seconds, the second timing and counting judgment unit 217 outputs a child lock locking signal.
  • the second timing counting judgment unit 217 is electrically connected to the second timing unit 216 and the second counting unit 215 in real time.
  • the second timing counting judgment unit 217 obtains that the second count reaches the second preset number and the second timing unit 216 has not reached the second preset duration
  • the second timing counting judgment unit 217 outputs a child lock locking signal, or the second timing counting judgment unit 217 waits until the timing duration of the second timing unit 216 reaches the second preset duration before outputting the child lock locking signal.
  • the second timing counting judgment unit 217 is connected to the second timing unit 216 and the second counting unit 215.
  • the second timing unit 216 When the second timing unit 216 reaches the second preset duration, the second timing unit 216 outputs a signal to the second timing counting judgment unit 217.
  • the second timing counting judgment unit 217 obtains the second count of the second counting unit 215 at this time, and then determines whether the second count is greater than or equal to the second preset number. If the second count is greater than or equal to the second preset number, the second timing counting judgment unit 217 outputs a child lock locking signal. If the second count is less than the second preset number, the second timing counting judgment unit 217 maintains the original signal output.
  • the child lock control circuit 200 further includes a child lock control unit 240, which is electrically connected to the second timing and counting judgment unit 217. If the judgment result of the second timing and counting judgment unit 217 is yes, that is, the second count is greater than or equal to the second preset number within the second preset time, the second timing and counting judgment unit 217 outputs a child lock locking signal to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter a locked state. In the locked state, the power MOS tube M remains disconnected. In this embodiment, the child lock control unit 240 continuously outputs a high level signal to the power MOS tube M, and the power MOS tube M remains cut off.
  • the child lock control unit 240 includes a trigger and a switch control unit.
  • the trigger is used to maintain the child lock locking signal and the subsequent child lock unlocking signal.
  • the trigger is, for example, an SR trigger, etc.
  • the switch control unit is electrically connected to the trigger and the state detection unit 150 respectively.
  • the switch control unit is, for example, an AND gate, a NAND gate, an OR gate, or a NOR gate, etc.
  • the switch control unit includes a NAND gate, and the two input ends of the NAND gate are respectively connected to the output end of the trigger and an output end of the state detection unit 150.
  • the child lock locking signal keeps the output of the trigger at a low level, so that it remains at a high level after passing through the NAND gate (at this time, the state detection unit 150 outputs a suction signal, and the suction signal is, for example, a high level), and the power MOS tube M remains cut off; the child lock unlocking signal keeps the output of the trigger at a high level, so that the output of the NAND gate is affected by the output of the state detection unit 150.
  • the state detection unit 150 determines that the user inhales the electronic cigarette, the state detection unit 150 outputs a suction signal to the NAND gate, and the suction signal is a high level.
  • the switch control unit controls the power MOS tube M to be continuously turned on or intermittently turned on (for example, PWM, PFM control mode). If the judgment result of the second timing counting judgment unit 217 is no, that is, the second count is less than the second preset number within the second preset time period, the original child lock state of the electronic cigarette is maintained, the second count is set to 0, and the second timer is reset to zero.
  • the state of the electronic cigarette is divided into a locked state and an unlocked state, wherein the locked state corresponds to the child lock protection function.
  • the child lock control unit 240 continues to control the power MOS tube M to remain disconnected, so that the heating element 130 will not be heated, and the smoke oil will not be atomized for the user to draw, that is, even if the user draws the electronic cigarette, no smoke will appear.
  • the unlocked state corresponds to the release of the child lock protection function.
  • the child lock control unit 240 controls the power MOS tube M to be continuously turned on or intermittently turned on. Intermittently turned on means that the child lock control unit 240 outputs a square wave signal through a PWM mode or a PFM mode, and adjusts the duty cycle of the square wave signal to control the output power and output voltage.
  • the first counting information by receiving the first counting information; judging whether the first counting information is within the second preset value range, wherein the second preset value range is within the first preset value range, and the first preset value range is used to judge whether the electronic cigarette is in the puffing state, if the judgment result is yes, then triggering the second timing and triggering the second counting; judging whether the second count is greater than or equal to the second preset number within the second preset time, if the judgment result is yes, then controlling the electronic cigarette to enter the locked state.
  • the embodiment of the present application further subdivides the puffing state through the first counting information and the second preset value range, and divides it into a puffing state with a smaller air pressure and a puffing state with a smaller air pressure, distinguishes the number of puffs with the first counting information within the second preset value range as a puffing state with a smaller air pressure, and performs the second counting, and the electronic cigarette enters the locked state only when the second count is greater than or equal to the second preset number within the second preset time.
  • the electronic cigarette can further distinguish whether the user is puffing the electronic cigarette normally, or wants to trigger the electronic cigarette to enter the locked state by puffing the electronic cigarette, and the electronic cigarette is not easy to confuse the two, which can reduce the probability of the user being mistakenly triggered to enter the locked state when puffing the electronic cigarette normally, and can reduce the user's use troubles.
  • the second count being greater than or equal to the second preset number within the second preset time, the electronic cigarette can enter a locked state.
  • this embodiment can obtain the first counting information using the existing state detection unit 150 and airflow sensor 140, without the need to make major changes to the electronic cigarette, without increasing the hardware cost or increasing the hardware cost very little, thereby reducing the hardware cost of the electronic cigarette for locking protection, and solving the technical problem of high electronic cigarette locking cost in the prior art.
  • the child lock control method further includes: obtaining again information that the first count information is within a second preset value range, and adding 1 to the second count.
  • the second timing unit 216 and the second counting unit 215 do not stop working.
  • the electronic cigarette is turned into a non-smoking state, thereafter, when the user smokes the electronic cigarette again, the first counting information is obtained in real time again. If the second counting unit 215 obtains information that the first counting information is within the second preset value range again, that is, the second counting unit 215 receives a valid counting signal again, then the second counting unit 215 adds 1 to the original second count.
  • the original count value of the second counting unit 215 is 1, and the first counting information is obtained again within the second preset value range, then the second count of the second counting unit 215 is increased by 1, that is, the second count becomes 2; if the second counting unit 215 does not obtain information that the first counting information is within the second preset value range this time, that is, the second counting unit 215 does not receive a valid counting signal, then the second count remains unchanged.
  • the child lock control method further includes: if the second timer reaches a second preset time length, the second count is reset to zero, and the second timer is reset to zero.
  • the second timing counting judgment unit 217 has completed the judgment before the second timing unit 216 and the second counting unit 215 are reset to zero.
  • the child lock control method further includes: if the second timing is less than the second preset time length and the second count reaches the second preset number, the second count is reset to zero and the second timing is reset to zero.
  • the second timing counting judgment unit 217 if the second count obtained by the second timing counting judgment unit 217 reaches the second preset number, and the timing duration of the second timing unit 216 is less than the second preset duration, the second timing counting judgment unit 217 outputs a signal to the second timing unit 216 and the second counting unit 215, the second timing unit 216 is reset to zero, and the second counting unit 215 is reset to zero.
  • the signal can be the same as the child lock locking signal or a different signal.
  • the step of receiving the first counting information specifically includes:
  • the first counting information output by the receiving state detection unit 150 is received.
  • the state detection unit 150 itself can obtain the first counting information, and the second counting judgment unit 211 receives the first counting information through the state detection unit 150.
  • This embodiment makes full use of the airflow sensor 140 and the state detection unit 150 in the existing electronic cigarette, and only needs to add the second counting judgment unit 211.
  • the function to be realized by the second counting judgment unit 211 can be realized by software, hardware, or a combination of software and hardware, so that no new hardware needs to be added or less new hardware is added, and the problem of the electronic cigarette mistakenly entering the locked state can be greatly reduced without increasing the cost or increasing the cost by a small amount, thereby improving the user's convenience.
  • the air pressure may drop momentarily when in the inhalation state, causing the first counting information to reach the second preset value range.
  • This momentary air pressure drop lasts for a very short time, usually once in a while, causing the second counting unit 215 to count incorrectly, which may mistakenly trigger the electronic cigarette to enter the locked state, causing trouble for the user.
  • the step of triggering the second counting specifically includes:
  • the child lock control circuit 200 also includes a third timing unit 212 and a third counting unit 213.
  • the third timing unit 212 and the third counting unit 213 are both connected to the second counting judgment unit 211.
  • the third timing unit 212 and the third counting unit 213 obtain the first counting information which is within the second preset value range, that is, when the third timing unit 212 receives a valid counting signal, the third timing unit 212 starts the third timing, and the third timing unit 212 keeps timing until it is reset to zero, after which the third timing unit 212 stops timing; when the third counting unit 213 receives a valid counting signal, the third counting unit 213 starts the third counting, and also performs the third counting this time, and the third count is 1 at this time.
  • S132 Determine whether the third count is greater than or equal to a third preset number within a third preset time period
  • the child lock control circuit 200 further includes a third timing counting judgment unit 214, which is connected to the third counting unit 213 and the third timing unit 212 respectively.
  • the third timing counting judgment unit 214 judges that the timing duration of the third timing unit 212 is within the third preset duration, and the third count of the third counting unit 213 is greater than or equal to the third preset number, the third timing counting judgment unit 214 outputs a first counting signal.
  • the third preset duration is generally 30ms-150ms, and the third preset duration is, for example, 30ms, 40ms, 50ms, 60ms, 70ms, 80ms, 90ms, 100ms, 110ms, 120ms, 130ms, 140ms, 150ms, etc., preferably 60ms-100ms.
  • the third preset number is an integer greater than or equal to 2, such as 2, 3, etc. In this embodiment, the third preset number is greater than or equal to 2, such as 2, 3, 4, 5, 6, etc.
  • the third timing counting judgment unit 214 is electrically connected to the third timing unit 212 and the third counting unit 213 in real time.
  • the third timing counting judgment unit 214 obtains that the third count reaches the third preset number and the third timing does not reach the third preset duration, the third timing counting judgment unit 214 outputs a first counting signal, or the third timing counting judgment unit 214 waits until the third timing reaches the third preset duration before outputting the first counting signal.
  • the third timing counting judgment unit 214 is connected to the third timing unit 212 and the third counting unit 213. When the third timing unit 212 reaches the third preset duration, the third timing unit 212 outputs a signal to the third timing counting judgment unit 214.
  • the third timing counting judgment unit 214 obtains the third count of the third counting unit 213 at this time, and then determines whether the third count is greater than or equal to the third preset number. If the third count is greater than or equal to the third preset number, the third timing counting judgment unit 214 outputs a first counting signal. If the third count is less than the third preset number, the third timing is reset to zero and the third count is set to zero.
  • the third timing and counting judgment unit 214 is connected to the second timing unit 216 and the second counting unit 215. If the judgment result of the third timing and counting judgment unit 214 is yes, the second timing unit 216 receives the first counting signal, the second timing unit 216 is triggered to start timing, and the second timing starts from 0; the second counting unit 215 receives the first counting signal, the second counting unit 215 is triggered to start counting, and the second counting unit 215 also counts this time, that is, the second count is 1 at this time.
  • the second counting unit 215 when the second counting unit 215 has not been triggered to start counting and the second timing unit 216 has not been triggered to start timing, if the judgment result of the third timing counting judgment unit 214 is no, that is, the third timing counting judgment unit 214 does not output the first counting signal, the second counting unit 215 maintains the original state of not counting and the second timing unit 216 maintains the original state of not timing; when the second counting unit 215 has been triggered to start counting (that is, the second count is at least 1) and the second timing unit 216 has been triggered to start timing, if the judgment result of the third timing counting judgment unit 214 is no, the second count maintains the original count, the second count does not increase, and the second timing continues to count.
  • the air flow crosstalk causes the air pressure in the air flow channel of the electronic cigarette to change in a short time
  • the condition that the third count is greater than or equal to the third preset number within the third preset time period will not be met, and the second count will not change, so the air flow crosstalk will not be misjudged as a situation where the user wants to enter the child lock protection, which can prevent the electronic cigarette from mistakenly entering the locked state and prevent trouble to the user.
  • This embodiment can avoid this situation and improve the user experience.
  • the second timing unit 216 counts.
  • the child lock control method also includes:
  • the judgment result is yes, the information that the electronic cigarette changes from a non-smoking state to a smoking state is output.
  • the state detection unit 150 includes a first counting generation unit and a first counting judgment unit.
  • the first counting generation unit is connected to the first counting judgment unit and the second counting judgment unit 211 respectively. After the first counting generation unit generates the first counting information, the first counting judgment unit receives the first counting information.
  • the first counting judgment unit judges whether the first counting information is within the first preset value range. If the judgment result is yes, the first counting judgment unit outputs the information that the electronic cigarette changes from the non-inhalation state to the inhalation state, that is, outputs the inhalation signal. If the judgment result is no, the first counting judgment unit maintains the original signal output, such as outputting the non-inhalation and blowing signal and the blowing signal.
  • the first counting judgment unit and the second counting judgment unit 211 can be the same judgment unit or different judgment units.
  • the step of receiving the first counting information specifically includes:
  • Triggering receiving first counting information.
  • the second counting and judging unit 211 is connected to the state detecting unit 150.
  • the second counting and judging unit 211 does not work before receiving the inhalation signal.
  • the second counting and judging unit 211 is triggered to start working. At this time, the second counting and judging unit 211 receives the first counting information. This arrangement is conducive to reducing the power consumption of the electronic cigarette.
  • S161 Obtaining information that the electronic cigarette changes from a smoking state to a non-smoking state
  • S162 Trigger the fifth timing and lock the second timing
  • the child lock control circuit 200 includes a fifth timing unit 221 and a fifth duration judgment unit 222, the fifth timing unit 221 is respectively connected to the state detection unit 150 and the third timing and counting judgment unit 214, the fifth duration judgment unit 222 is respectively electrically connected to the fifth timing unit 221 and the second counting unit 215, and the second counting unit 215 is also electrically connected to the state detection unit 150.
  • the fifth timing unit 221 obtains the information that the electronic cigarette enters the non-smoking state from the inhalation state after receiving the first counting signal, and the fifth timing unit 221 is triggered to start timing.
  • the second counting unit 215 also obtains the information that the electronic cigarette enters the non-smoking state from the inhalation state after receiving the first counting signal.
  • the second counting unit 215 is locked, that is, it enters the counting locked state. After the second counting unit 215 is locked, the count will not be increased even if the first counting signal is received again, that is, in the locked state, the second counting unit 215 maintains the original count value and does not increase the count value.
  • the second counting unit 215 receives the first counting signal and the count is increased by one.
  • the fifth timing unit 221 is always timing (even if it is changing from the non-inhalation state to the inhalation state)
  • the fifth duration judgment unit 222 judges whether the timing duration of the fifth timing unit 221 is greater than or equal to the fifth preset duration.
  • the fifth duration judgment unit 222 judges that the timing of the fifth timing unit 221 reaches the fifth preset duration, the fifth timing unit 221 will stop timing and reset to zero, that is, the fifth timing unit 221 is reset to zero.
  • the fifth duration judgment unit outputs a counting unlocking signal to the second counting unit 215, the second counting unit 215 is unlocked from counting, the second counting unit 215 enters the counting unlocking state, and the third timing unit 212, the third counting unit 213, and the second timing unit 216 are also reset to zero.
  • the second counting unit 215 obtains the first counting signal again, and the second counting unit 215 can perform a counting plus one action, that is, the second count is increased by one on the original basis.
  • the fifth timing unit 221 when the fifth timing unit 221 does not receive the first counting signal, or the fifth timing unit 221 does not obtain the information that the electronic cigarette enters the non-smoking state from the inhalation state, the fifth timing unit 221 will not trigger the start of timing.
  • the step of triggering the second count it also includes: judging whether the duration of the first count information being within the second preset value range is greater than or equal to the seventh preset duration. If the judgment result is yes, the second count and the second timing are reset to zero. In this embodiment, the duration of the re-inhalation is judged. If the duration of the re-inhalation is greater than or equal to the seventh preset duration, the second count and the second timing are reset to zero, the second count is 0, and the second timing stops counting and is reset to zero.
  • the seventh preset duration is greater than or equal to 400ms, for example, 400ms, 450ms, 500ms, 600ms, etc.
  • the electronic cigarette after the electronic cigarette enters the child lock locked state, the user cannot smoke the electronic cigarette normally.
  • the electronic cigarette needs to be unlocked.
  • the unlocking method can be the same as the locking method, and the previous description can be referred to, which will not be repeated here.
  • the child lock control method further includes:
  • the state detection unit 150 includes a fourth counting judgment unit 231, and the fourth counting judgment unit 231 is used to receive fourth counting information, wherein the fourth counting information and the first counting information can be the same counting information or different counting information, and the fourth counting judgment unit 231 and the second counting judgment unit 211 can be different judgment units or the same counting judgment unit.
  • the fourth counting information includes the number of oscillation cycles in the fourth counting time, the ratio of the number of oscillation cycles in the fourth counting time to the reference oscillation cycle number, the difference of the number of oscillation cycles in the fourth counting time relative to the reference oscillation cycle, or the ratio of the difference of the number of oscillation cycles in the fourth counting time relative to the reference oscillation cycle number to the reference oscillation cycle number, and the fourth counting time can be the same as the first counting time or different.
  • the fourth counting judgment unit 231 receives the fourth counting information.
  • the air pressure in the airflow channel is relatively large, which will be higher than the air pressure in the non-suction and blowing state.
  • the distance between the two electrodes of the capacitor of the airflow sensor 140 is larger than that in the non-suction and blowing state, so that the capacitance value will be smaller than that in the non-suction and blowing state, and the frequency will be larger than that in the non-suction and blowing state.
  • the number of oscillation cycles in the fourth counting time in the blowing state is greater than the number of oscillation cycles (reference oscillation cycle number) of the corresponding time in the non-suction and blowing state, and the number of oscillation cycles in the first counting time in the suction state will be less than the number of oscillation cycles (reference oscillation cycle number) of the corresponding time in the non-suction and blowing state.
  • the fourth counting judgment unit 231 determines whether the fourth counting information is within a fourth preset value range, and the fourth preset value range is pre-calculated or pre-stored in the fourth counting judgment unit 231.
  • the fourth preset numerical range is the cycle number range, and the fourth counting duration is the same as the first counting duration
  • the lower limit value of the fourth preset numerical range is, for example, 1030, 1040, 1050, etc., which will be greater than the upper limit value corresponding to the first preset numerical range, and the lower limit value of the fourth preset numerical range is greater than the reference oscillation cycle number
  • the fourth counting information is the ratio of the number of oscillation cycles in the fourth counting duration to the reference oscillation cycle number
  • the fourth preset numerical range is the ratio range, and the fourth counting duration is the same as the first counting duration
  • the lower limit value of the fourth preset numerical range is, for example, 1.03, 1.04, 1.05, etc., which will be greater than the upper limit value corresponding to the first preset numerical range
  • the upper limit value of the fourth preset numerical range may not be limited, or may be limited as needed.
  • the fourth counting information is the difference between the number of oscillation cycles in the fourth counting time and the benchmark oscillation cycle, or the ratio of the difference between the number of oscillation cycles in the fourth counting time and the benchmark oscillation cycle to the benchmark oscillation cycle
  • the fourth preset numerical range corresponds to the difference range or the ratio range.
  • the first counting information Those skilled in the art can know how to distinguish between the inhalation state and the blowing state based on existing knowledge.
  • the child lock control circuit 200 includes a fourth timing unit 232 and a fourth counting unit 233.
  • the fourth timing unit 232 is electrically connected to the fourth counting judgment unit 231, and the fourth counting unit 233 is electrically connected to the fourth counting judgment unit 231. If the judgment result of the fourth counting judgment unit 231 is yes, the fourth counting judgment unit 231 outputs a blowing signal, the fourth timing unit 232 is triggered to start timing, the fourth timing unit 232 starts timing from 0, the fourth counting unit 233 is triggered to start counting, and also counts this time, that is, the count of the fourth counting unit 233 is 1 at this time; if the judgment result of the fourth counting judgment unit 231 is no, the fourth counting judgment unit 231 will not output a blowing signal, the fourth timing unit 232 maintains the original state, and the fourth counting unit 233 maintains the original state.
  • the fourth timing unit 232 when the fourth timing unit 232 is triggered to start timing, the fourth timing unit 232 will continue to count until the fourth timing unit 232 is reset to zero, and then the fourth timing unit 232 stops timing.
  • the blowing signal is also output to the child lock control unit 240 .
  • the fourth timing unit 232 when the fourth timing unit 232 is triggered to start timing and the fourth counting unit 233 is triggered to start counting, when the fourth counting judgment unit 231 receives the fourth counting information again and once again determines that the fourth counting information is within the fourth preset value range, the fourth count of the fourth counting unit 233 is increased by 1, and the fourth count is 2 at this time. At the same time, the fourth timing unit 232 continues to perform the fourth timing.
  • S24 Determine whether a fourth count is greater than or equal to a fourth preset number within a fourth preset time period, wherein the fourth preset number is greater than or equal to 2;
  • the child lock control circuit 200 further includes a fourth timing counting judgment unit 234, which is electrically connected to the fourth counting unit 233 and the fourth timing unit 232, respectively.
  • the fourth timing counting judgment unit 234 judges that the timing duration of the fourth timing unit 232 is within the fourth preset duration, and the fourth counting unit 233 counts greater than or equal to the fourth preset number, the fourth timing counting judgment unit 234 outputs a child lock unlocking signal.
  • the fourth preset duration is generally less than or equal to 5s, such as 1s, 1.5s, 1.8s, 2s, 2.3s, 2.5s, 2.8s, 3s, 4s, 5s, etc., preferably 2s.
  • the fourth preset number is greater than or equal to 2, such as 2, 3, 4, 5, 6, etc., preferably 3, and the fourth preset number is generally less than or equal to 6 times, which is convenient for user operation.
  • the fourth timing counting judgment unit 234 is connected to the fourth timing unit 232 and the fourth counting unit 233 in real time.
  • the fourth timing counting judgment unit 234 obtains that the fourth counting unit 233 reaches the fourth preset number and the fourth timing unit 232 does not reach the fourth preset duration, the fourth timing counting judgment unit 234 outputs the child lock unlocking signal, or the fourth timing counting judgment unit 234 waits until the fourth timing unit 232 timing duration reaches the fourth preset duration before outputting the child lock unlocking signal.
  • the fourth timing counting judgment unit 234 is connected to the fourth timing unit 232 and the fourth counting unit 233.
  • the fourth timing unit 232 When the fourth timing unit 232 reaches the fourth preset duration, the fourth timing unit 232 outputs a signal to the fourth timing counting judgment unit 234.
  • the fourth timing counting judgment obtains the count of the fourth counting unit 233 at this time, and then determines whether the fourth count is greater than or equal to the fourth preset number. If it is greater than or equal to the fourth preset number, the child lock unlocking signal is output. If it is less than the fourth preset number, the original signal output is maintained.
  • the fourth timing and counting judgment unit 234 if the result of the judgment of the fourth timing and counting judgment unit 234 is yes, that is, the number counted within the fourth preset time length is greater than or equal to the fourth preset number, the fourth timing and counting judgment unit 234 outputs a child lock unlocking signal to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter an unlocked state.
  • the unlocked state when the electronic cigarette is in a puffing state, the power MOS tube M is continuously turned on or intermittently turned on, that is, at this time, the power MOS tube M is controlled by whether the user puffs.
  • the child lock control unit 240 continuously outputs a low-level signal or intermittently outputs a low-level signal to the power MOS tube M, and the power MOS tube M is continuously turned on or intermittently turned on.
  • the heating element 130 is heated to atomize the smoke oil, so that the atomized smoke oil can be inhaled by the user.
  • unlocking is achieved by timing and counting the blowing, and an effective unlocking effect is achieved without adding Bluetooth/NFC and other designs and mechanical structures, thereby reducing the hardware cost of unlocking the electronic cigarette and solving the technical problem of high unlocking cost of electronic cigarettes in the prior art.
  • the unlocking method of the present application is not easy to be detected by children, and the electronic cigarette is not easy to be unlocked by children after being locked, which is conducive to improving the safety of the electronic cigarette.
  • the child lock control method further includes: obtaining again information that the fourth count information is within a fourth preset value range, and adding 1 to the fourth count.
  • the fourth timing unit 232 and the fourth counting unit 233 do not stop working, and the fourth timing unit 232 and the fourth counting unit 233 again (again means that the value of the fourth count in the fourth counting unit 233 is at least 1) obtain information that the fourth counting information is within the fourth preset value range, then the fourth counting unit 233 adds 1 on the basis of the original count, for example, the original count value of the fourth counting unit 233 is 1, and the information that the fourth counting information is within the fourth preset value range is obtained again, that is, the information that the state is changed from no suction and blowing to blowing state is received, then the count of the fourth counting unit 233 is added by 1, that is, the count value becomes 2; the fourth timing unit 232 continues to work and continuously time, that is, after the fourth timing unit 232 triggers timing, as long as the fourth timing unit 232 does not receive a signal to stop timing or reset, the fourth timing unit 232 keeps
  • the child lock control method further includes: if the timing duration of the fourth timing unit 232 reaches a fourth preset duration, the fourth counter is reset to zero, and the fourth timing unit 232 is reset to zero.
  • the fourth timing counting judgment unit 234 determines whether the timing duration of the fourth timing unit 232 reaches the fourth preset duration. If the fourth timing unit 232 reaches the fourth preset duration, the fourth timing unit 232 is reset to zero, and at the same time the fourth timing unit 232 sends a signal to the fourth counting unit 233, and the fourth counting unit 233 is reset to zero, that is, at this time the fourth timing unit 232 stops timing, and the fourth counting unit 233 stops counting, and the timing duration is reset to zero, the fourth count is reset to zero, and the fourth timing unit 232 and the fourth counting unit 233 are restored to the initial state to facilitate subsequent detection.
  • the child lock control method further includes: if the timing duration of the fourth timing unit 232 is less than the fourth preset duration and the fourth count reaches the fourth preset number, the fourth count is reset to zero and the fourth timing unit 232 is reset to zero.
  • the fourth timing counting judgment unit 234 if the fourth count of the fourth counting unit 233 obtained by the fourth timing counting judgment unit 234 reaches the fourth preset number, and the timing duration of the fourth timing unit 232 is less than the fourth preset duration, the fourth timing counting judgment unit 234 outputs a signal to the fourth timing unit 232 and the fourth counting unit 233, the fourth timing unit 232 is reset to zero, and the fourth counting unit 233 is reset to zero.
  • the signal can be the same as the child lock unlocking signal, or it can be a different signal.
  • FIG6 shows a module diagram of a child lock control circuit 200 of the electronic cigarette provided in an embodiment of the present application. For ease of explanation, only the part related to the embodiment of the present application is shown.
  • the child lock control circuit 200 includes:
  • a state detection unit 150 which is electrically connected to the airflow sensor 140 and is used to output first counting information
  • a second counting judgment unit 211 is used to receive first counting information and to judge whether the first counting information is within a second preset value range, wherein the first counting information is used to characterize the air pressure condition in the airflow channel of the electronic cigarette; the second preset value range is within the first preset value range, and the first preset value range is used to judge whether the electronic cigarette is in a puffing state;
  • a second timing unit 216 which is used to trigger timing if the judgment result of the second counting judgment unit 211 is yes;
  • a second timing counting judgment unit 217 which is used to judge whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control unit 240 is used to control the electronic cigarette to enter a locked state if the judgment results of the second timing and counting judgment unit 217 are all yes. In the locked state, the power MOS tube M of the electronic cigarette remains disconnected and cut off.
  • the first counting information includes the number of oscillation cycles in the first counting time, the ratio of the number of oscillation cycles in the first counting time to the reference oscillation cycle number, the difference between the number of oscillation cycles in the first counting time and the reference oscillation cycle, or the ratio of the difference between the number of oscillation cycles in the first counting time and the reference oscillation cycle number to the reference oscillation cycle number.
  • the upper limit value of the second preset numerical range is less than the upper limit value of the first preset numerical range; or, when the first counting information is the ratio of the number of oscillation cycles in the first counting time to the reference oscillation cycle number, the upper limit value of the second preset numerical range is less than the upper limit value of the first preset numerical range, wherein the reference oscillation cycle number is the number of oscillation cycles in the first counting time when the electronic cigarette is in a non-inhalation state; or, when the first counting information is the difference between the number of oscillation cycles in the first counting time and the reference oscillation cycle, the lower limit value of the second preset numerical range is greater than the lower limit value of the first preset numerical range, wherein the reference oscillation cycle number is the number of oscillation cycles in the first counting time when the electronic cigarette is in a non-inhalation state; or, when the first counting information is the ratio of the difference between the number of oscillation cycles in the first counting
  • the child lock control circuit 200 includes a third timing unit 212, a third counting unit 213 and a third timing and counting judgment unit 214, wherein the third timing unit 212 and the third counting unit 213 are respectively connected to the second counting and judgment unit 211.
  • the second counting and judgment unit 211 outputs a counting valid signal
  • the third timing unit 212 is triggered to perform a third timing
  • the third counting unit 213 is triggered to perform a third counting.
  • the third timing and counting judgment unit 214 is connected to the third timing unit 212 and the third counting unit 213.
  • the third timing and counting judgment unit 214 is used to determine whether the third count is greater than or equal to the third preset number within the third preset time length.
  • the second timing unit 216 is triggered to perform a second timing
  • the second counting unit 215 is triggered to perform a second counting.
  • the state detection unit 150 is always outputting the suction signal during the third preset time length.
  • the second counting judgment unit 211 is used to obtain information that the electronic cigarette changes from a non-inhalation state to a inhalation state, and the second counting judgment unit 211 is triggered to receive the first counting information.
  • the state detection unit 150 includes a first counting generation unit and a first counting judgment unit.
  • the first counting generation unit is connected to the first counting judgment unit. After the first counting generation unit generates the first counting information, the first counting judgment unit is used to receive the first counting information and judge whether the first counting information is within a first preset value range. If the judgment result of the first counting judgment unit is yes, the first counting judgment unit outputs information that the electronic cigarette has changed from a non-smoking state to a smoking state, that is, outputs the smoking information.
  • the child lock control circuit 200 also includes a fifth timing unit 221 and a fifth duration judgment unit 222, wherein the fifth timing unit 221 is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state and obtain information for a second count, the fifth timing unit 221 starts the fifth timing, the second counting unit 215 performs a second count and is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state, the second counting unit 215 is locked, and the fifth duration judgment unit 222 is used to judge whether the fifth timing of the fifth timing unit 221 is greater than or equal to a fifth preset duration. If the judgment result of the fifth duration judgment unit 222 is yes, the fifth duration judgment unit 222 is used to output a counting unlocking signal to the second counting unit 215, and the second counting unit 215 is unlocked.
  • the fifth timing unit 221 is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state and obtain information
  • the second counting judgment unit 211 is connected to the state detection unit 150 , the state detection unit 150 is electrically connected to the capacitive airflow sensor 140 , and the second counting judgment unit 211 is used to receive the first counting information output by the state detection unit 150 .
  • the child lock control circuit 200 includes a locking unit, and the locking unit includes a second timing unit 216, a second counting unit 215, a second timing and counting determination unit 217, a second counting determination unit 211, and the like.
  • the child lock control circuit 200 includes an unlocking unit, which includes a fourth counting judgment unit 231, a fourth timing unit 232, a fourth counting unit 233, and a fourth timing and counting judgment unit 234, wherein the fourth counting judgment unit 231 is used to receive fourth counting information and judge whether the fourth counting information is within a fourth preset value range, and the fourth preset value range is used to judge whether the electronic cigarette is in a blowing state; if the judgment result of the fourth counting judgment unit 231 is yes, the fourth timing unit 232 is triggered to perform a fourth timing, the fourth counting unit 233 is triggered to perform a fourth counting, and the fourth timing and counting judgment unit 234 is used to judge whether the fourth count is greater than or equal to a fourth preset number within a fourth preset time length, and if the judgment result of the fourth timing and counting judgment unit 234 is yes, a child lock unlocking signal is output to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter an unlocking state, and
  • the fourth counting unit 233 is further configured to obtain again information that the fourth counting information is within a fourth preset value range, and the fourth count is incremented by 1.
  • the fourth timing unit 232 is further configured to reset the fourth count to zero if the timing duration reaches a fourth preset duration, and reset the fourth timing unit 232 to zero.
  • the fourth timing counting judgment unit 234 is further configured to reset the fourth count to zero if the timing duration is less than the fourth preset duration and the fourth count reaches a fourth preset number, and reset the fourth timing unit 232 to zero.
  • the technicians in the relevant field can clearly understand that for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example for illustration.
  • the above-mentioned function allocation can be completed by different functional units and modules as needed, that is, the internal structure of the device can be divided into different functional units or modules to complete all or part of the functions described above.
  • the functional units and modules in the embodiment can be integrated in a processing unit, or each unit can exist physically separately, or two or more units can be integrated in one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or in the form of software functional units.
  • FIG7 is a schematic diagram of a child lock control device 400 provided in an embodiment of the present application.
  • the child lock control device 400 of this embodiment includes: at least one processor 420 (only one is shown in FIG7 ), a memory 410, and a computer program stored in the memory 410 and executable on the processor 420.
  • the processor 420 executes the computer program, the steps in the above-mentioned child lock control method embodiment are implemented.
  • FIG7 is merely an example of a child lock control device 400 and does not constitute a limitation on the child lock control device 400.
  • the processor 420 may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the memory 410 may be an internal storage unit of the child lock control device 400, such as a hard disk or memory of the child lock control device 400. In other embodiments, the memory 410 may also be an external storage device of the child lock control device 400, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), etc. equipped on the child lock control device 400. Further, the memory 410 may also include both the internal storage unit of the child lock control device 400 and an external storage device.
  • a plug-in hard disk such as a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), etc. equipped on the child lock control device 400.
  • the memory 410 may also include both the internal storage unit of the child lock control device 400 and an external storage device.
  • the memory 410 is used to store an operating system, an application program, a boot loader (BootLoader), data, and other programs, such as the program code of the computer program.
  • the memory 410 may also be used to temporarily store data that has been output or is to be output.
  • the child lock control device 400 is, for example, an electronic cigarette.
  • the embodiment of the present application further provides a storage medium, which stores a computer program.
  • a storage medium which stores a computer program.
  • An embodiment of the present application provides a computer program product.
  • the terminal can implement the steps in the above-mentioned child lock control method embodiment when executing the computer program product.
  • the electronic cigarette includes the above-mentioned child lock control circuit 200
  • the electronic cigarette also includes a battery 110, a power MOS tube M and a heating element 130, the heating element 130 and the power MOS tube M are connected in series to form a heating branch, and the two ends of the heating branch are electrically connected to the positive and negative electrodes of the battery 110; it also includes an airflow sensor 140, wherein the control end of the power MOS tube M and the airflow sensor 140 are both electrically connected to the child lock control circuit 200, and the airflow sensor 140 is electrically connected to the state detection unit 150 of the child lock control circuit 200.
  • the second embodiment of the present application provides an electronic cigarette, please refer to Figure 8 and Figure 14, the electronic cigarette includes a battery 110, a child lock control circuit 200, a heating element 130, an airflow sensor 140, a power MOS tube M1, etc., and the child lock control circuit 200 includes a state detection unit 150.
  • the child lock control circuit 200 is electrically connected to the battery 110, the airflow sensor 140, the power MOS tube M1, etc. respectively.
  • the battery 110 is, for example, a rechargeable battery such as a lithium battery, a nickel-cadmium battery, a nickel-hydrogen battery, etc., and the battery 110 can also be a non-rechargeable battery;
  • the state detection unit 150 is electrically connected to the airflow sensor 140, and a specific implementation of the state detection unit 150 can refer to the prior application in the art, or other conventional state detection units known to those skilled in the art.
  • the airflow sensor 140 is a capacitive airflow sensor 140, such as a capacitive MEMS sensor or a capacitive microphone, etc.
  • the airflow sensor 140 is located in the airflow channel of the electronic cigarette, and the airflow sensor 140 includes a capacitor.
  • the state detection unit 150 outputs a corresponding signal through changes in the capacitance value of the capacitor.
  • the child lock control circuit 200 is electrically connected to the control end of the power MOS tube M1.
  • the child lock control circuit 200 is used to control whether the power MOS tube M1 is turned on.
  • the power MOS tube M1 is connected in series with the heating element 130 via the atomization end AT to form a series branch.
  • One end of the series branch is electrically connected to the positive electrode of the battery 110 via the power supply end BAT, and the other end of the series branch is electrically connected to the negative electrode of the battery 110 via the power ground end GND.
  • the power MOS tube M1 is a PMOS tube as an example for explanation.
  • the power MOS tube M1 can also be an NMOS tube.
  • the power MOS tube M1 and the child lock control circuit 200 can be located on the same chip, which is generally referred to as a system control chip.
  • the present application is not limited to this. In other embodiments of the present application, the power MOS tube M1 and the child lock control circuit 200 can be located on different chips.
  • the heating element 130 is, for example, a heating wire, a heating wire, a ceramic seat containing a heating wire or a heating wire, or other conventional heating elements 130.
  • the heating element 130 stops heating.
  • the state detection unit 150 is electrically connected to the airflow sensor 140; when the user inhales the electronic cigarette or blows air into the electronic cigarette, the air pressure between the two electrode sheets of the capacitor of the airflow sensor 140 will change relative to the non-inhalation and blowing state (when not in use), causing the distance between the two electrode sheets to change accordingly, thereby causing the capacitance value of the airflow sensor 140 to change.
  • the state detection unit 150 converts the capacitance value change into a frequency value change and a count value change, and the state detection unit 150 outputs a corresponding signal, so that the electronic cigarette can determine whether it is inhaled and in the inhalation state, blown in the blowing state, or in the non-inhalation and blowing state.
  • the inventor of the present application proposed the following solution after a large number of experiments: the puffing state of the electronic cigarette is further subdivided into a puffing state with even smaller air pressure and a puffing state with even smaller air pressure.
  • the puffing state with even smaller air pressure (the user's suction force is smaller) generally corresponds to the user's normal puffing, and the puffing state with even smaller air pressure (the user's suction force is larger) corresponds to the user's puffing that wants to enter a locked state or the user's accidental heavy inhalation.
  • the electronic cigarette Regardless of whether it is in a puffing state with even smaller air pressure or a puffing state with even smaller air pressure, the electronic cigarette will be judged as a puffing state.
  • the present application determines whether it is in a puffing state with even smaller air pressure by whether the current air pressure information is within a second preset air pressure range.
  • the present embodiment is designed such that when the current air pressure information is within the second preset air pressure range, it represents that the electronic cigarette is in a puffing state with a lower air pressure; when the current air pressure information is outside the second preset air pressure range and within the first preset air pressure range, it represents that the electronic cigarette is in a puffing state with a lower air pressure, wherein the second preset air pressure range is within the first preset air pressure range, that is, as long as the current air pressure information is within the second preset air pressure range, the current air pressure information must be within the first preset air pressure range, indicating that the electronic cigarette is in a puffing state and it is a heavy puff; when the current air pressure information is within the first preset air pressure range, the current air pressure information may be within the second preset air pressure range (heavy puff) or may not be within the second preset air pressure range (normal puff).
  • the current air pressure information includes the current air pressure value, the ratio of the current air pressure value to the reference air pressure value, the difference between the current air pressure value and the reference air pressure value, or the ratio of the difference between the current air pressure value and the reference air pressure value to the reference air pressure value, etc.
  • the reference air pressure value is obtained by acquisition or conversion, and the number of oscillation cycles within the preset counting time is the reference oscillation cycle number; in addition, the reference air pressure value can also be preset.
  • the reference air pressure value can also be preset.
  • the ratio of the current air pressure value to the reference air pressure value will be smaller, the difference between the current air pressure value and the reference air pressure value will be larger, and the ratio of the difference between the current air pressure value and the reference air pressure value to the reference air pressure value will be larger;
  • the distance between the two electrode sheets of the capacitor of the airflow sensor 140 will become smaller relative to the state of no inhalation and blowing, the capacitance will be larger, the frequency value will be smaller, the number of oscillation cycles within the preset counting time will be smaller, and the current count value will be smaller relative to the reference oscillation cycle number.
  • the ratio of the current air pressure value to the reference air pressure value will be smaller, the difference between the current air pressure value and the reference air pressure value will be larger, and the ratio of the difference between the current air pressure value and the reference air pressure value to the reference air pressure value will be larger.
  • the child lock control circuit 200 of this embodiment further includes an air pressure acquisition unit 241 and a second air pressure judgment unit 211.
  • the air pressure acquisition unit 241 is connected to the state detection unit 150, and the second air pressure judgment unit 211 is connected to the air pressure acquisition unit 241.
  • the air pressure acquisition unit 241 is used to obtain the current air pressure information in the air flow channel when the electronic cigarette is in the suction state through the state detection unit 150 and the air flow sensor 140.
  • the second air pressure judgment unit 211 is used to determine whether the current air pressure information is within the second preset air pressure range.
  • the capacitance value is proportional to the air pressure in the air flow channel.
  • the capacitance value is inversely proportional to the frequency value and the count value, so that the frequency value, the count value and the air pressure are also proportional.
  • the change in capacitance value in the suction state relative to the capacitance value in the non-suction and blowing state will also be proportional to the air pressure in the air flow channel.
  • the change in frequency value in the suction state relative to the frequency value in the non-suction and blowing state will also be proportional to the air pressure in the air flow channel, or the change in count value in the suction state relative to the count value in the non-suction and blowing state will also be proportional to the air pressure in the air flow channel.
  • the current air pressure information in the air flow channel can be obtained accordingly, and the corresponding relationship between the two can be obtained by formula calculation to obtain the current air pressure information, or by pre-storing the corresponding table in advance, and then searching the corresponding table to obtain the current air pressure information.
  • the current air pressure information can also be directly obtained by sensor detection.
  • the air pressure acquisition unit 241 pre-stores a capacitance value-air pressure value table, a frequency value-air pressure value table, a count value-air pressure value table, a capacitance change-air pressure value table, a frequency change-air pressure value table or a count change-air pressure value table, wherein the capacitance value-air pressure value table stores the corresponding relationship between the capacitance value and the air pressure value, the frequency value-air pressure value table stores the corresponding relationship between the frequency value and the air pressure value, the count value-air pressure value table stores the corresponding relationship between the count value of the preset counting time and the air pressure value, the capacitance change-air pressure value table stores the corresponding relationship between the capacitance change and the air pressure value, the frequency change-air pressure value table stores the corresponding relationship between the frequency change and the air pressure value, and the count change-air pressure value table stores the corresponding relationship between the count change of the preset counting time and the air pressure value, so that when the capacitance value, frequency value, count value,
  • the air pressure acquisition unit 241 and the second air pressure judgment unit 211 are preferably implemented by software or hardware.
  • the air pressure acquisition unit 241 may not be electrically connected to the state detection unit 150.
  • the air pressure acquisition unit 241 is an air pressure sensor, and the air pressure sensor is at least partially disposed in the air flow channel of the electronic cigarette. The air pressure acquisition unit 241 can directly obtain the current air pressure value.
  • the current air pressure information can be obtained by converting the current air pressure value.
  • the current air pressure information when the current air pressure information is the current air pressure value, the current air pressure information can be directly obtained; when the current air pressure information is the ratio of the current air pressure value to the reference air pressure value, the difference of the current air pressure value relative to the reference air pressure value, or the ratio of the difference of the current air pressure value relative to the reference air pressure value to the reference air pressure value, the current air pressure information can be obtained by arithmetic operation after obtaining the current air pressure value.
  • the second preset air pressure range is the range of air pressure values, the upper limit value of the second preset air pressure range is smaller than the upper limit value of the first preset air pressure range, and the lower limit value of the second preset air pressure range is greater than or equal to the lower limit value of the first preset air pressure range, for example, the second preset air pressure range is (a, A], the first preset air pressure range is (b, B], for example, the reference air pressure value is the ambient atmospheric pressure, for example, the ambient atmospheric pressure is 1 standard atmospheric pressure, wherein A is less than B, B is less than the ambient atmospheric pressure, a is greater than or equal to b, A, a, B, b are positive numbers, generally, A is 500pa less than the ambient atmospheric pressure, B is 300pa less than the ambient atmospheric pressure, preferably A is 500pa, 600pa, 1000pa, 2000p
  • the second preset air pressure information is The lower limit of the pressure range is not limited, that is, when the current air pressure information is less than A, it falls into the second preset air pressure range.
  • the second preset air pressure range is a ratio range, and its principle is similar to the solution described above when the current air pressure information is the current air pressure value, which will not be repeated here. This ratio is preferably less than or equal to 0.95, for example, 0.9, 0.8, 0.7, etc.
  • the current air pressure information is the difference between the current air pressure value and the reference air pressure value
  • the difference when the air pressure in the airflow channel is smaller, the difference will be larger, and when the air pressure in the airflow channel is smaller, the difference will be larger, so the current air pressure information is proportional to the air pressure in the airflow channel.
  • the second preset air pressure range is a difference range, the lower limit of the second preset air pressure range is greater than the lower limit of the first preset air pressure range, and the upper limit of the second preset air pressure range is less than or equal to the upper limit of the first preset air pressure range, for example, the second preset air pressure range is [M, m), for example, M is 500pa, and the first preset air pressure range is [N, n), for example, N is 300pa, wherein M is greater than N, m is less than or equal to n, and M, m, N, and n are positive numbers.
  • the upper limit of the second preset air pressure range is not limited, that is, as long as the current air pressure information is greater than or equal to M, it falls into the second preset air pressure range.
  • the second preset air pressure range is a ratio range. Its principle is similar to the previously described scheme in which the current air pressure information is the difference between the current air pressure value and the reference air pressure value. It will not be repeated here. This ratio is preferably greater than or equal to 0.05, for example 0.1, 0.2, 0.3, etc.
  • an embodiment of the present application provides a child lock control method for an electronic cigarette, comprising the following steps: S11: receiving current air pressure information in an airflow channel of the electronic cigarette;
  • the air pressure acquisition unit 241 is connected to the state detection unit 150, and the state detection unit 150 outputs the current capacitance value, the current capacitance change, the current frequency value, the current frequency change, the current count value (the number of oscillation cycles of the preset count duration) or the current count change to the air pressure acquisition unit 241.
  • the air pressure acquisition unit 241 can obtain the current air pressure value in the electronic cigarette airflow channel by looking up the table according to the pre-stored capacitance value-air pressure value table, capacitance change-air pressure value table, frequency value-air pressure value table, frequency change-air pressure value table, count value-air pressure value table or count change-air pressure value table, and then obtain the current air pressure information.
  • the air pressure acquisition unit 241 is not connected to the state detection unit 150, and the air pressure acquisition unit 241 itself can directly obtain the current air pressure value, and then obtain the current air pressure information.
  • This embodiment utilizes the current capacitance value, current capacitance change, current frequency value, current frequency change, current count value or current count change output by the existing airflow sensor 140 and the state detection unit 150.
  • the current air pressure information can be obtained through simple changes, which is conducive to reducing costs.
  • the second air pressure determination unit 211 is connected to the air pressure acquisition unit 241 , the air pressure acquisition unit 241 generates current air pressure information and outputs the current air pressure information, and the second air pressure determination unit 211 receives the current air pressure information.
  • S12 Determine whether the current air pressure information is within a second preset air pressure range, wherein the second preset air pressure range is within a first preset air pressure range, and the first preset air pressure range is used to determine whether the electronic cigarette is in a puffing state;
  • the child lock control circuit 200 After receiving the current air pressure information, the second air pressure determination unit 211 determines whether the current air pressure information is within a second preset air pressure range, and the second preset air pressure range is pre-calculated or pre-stored in the second air pressure determination unit 211 .
  • the child lock control circuit 200 includes a second timing unit 216 and a second counting unit 215.
  • the second timing unit 216 is electrically connected to the second air pressure judgment unit 211
  • the second counting unit 215 is electrically connected to the second air pressure judgment unit 211.
  • the second air pressure judgment unit 211 If the judgment result of the second air pressure judgment unit 211 is yes, the second air pressure judgment unit 211 outputs an air pressure valid signal, the second timing unit 216 is triggered to start timing, the second timing unit 216 starts timing from 0, the second counting unit 215 is triggered to start counting, and also counts this time, that is, the count of the second counting unit 215 is 1 at this time; if the judgment result of the second air pressure judgment unit 211 is no, the second air pressure judgment unit 211 outputs an air pressure invalid signal, the second timing unit 216 maintains the original state, and the second counting unit 215 maintains the original state. In this embodiment, when the second timing unit 216 is triggered to start timing, the second timing unit 216 will continue to count until the second timing unit 216 is reset to zero, and then the second timing unit 216 stops timing.
  • the second timing unit 216 When the second timing unit 216 is triggered to start timing and the second counting unit 215 is triggered to start counting, when the second air pressure judgment unit 211 receives the current air pressure information again and once again determines that the current air pressure information is within the second preset air pressure range, that is, outputs the air pressure valid signal again, then the second count of the second counting unit 215 is increased by 1, and the second count is 2 at this time. At the same time, the second timing unit 216 continues the second timing.
  • S14 Determine whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control circuit 200 further includes a second timing counting judgment unit 217, which is connected to the second counting unit 215 and the second timing unit 216 respectively.
  • the second timing counting judgment unit 217 judges that the timing duration of the second timing unit 216 is within the second preset duration, and the second count of the second counting unit 215 is greater than or equal to the second preset number, the second timing counting judgment unit 217 outputs a child lock locking signal.
  • the second preset duration is generally less than or equal to 5s, and the second preset duration is, for example, 1s, 1.5s, 1.8s, 2s, 2.3s, 2.5s, 2.8s, 3s, 4s, 5s, etc., preferably 2s.
  • the second preset number is an integer greater than or equal to 2, such as 2, 3, 4, 5, 6, etc., preferably 3, and the second preset number is generally less than or equal to 6 times, which is convenient for user operation.
  • the second preset time length is 2 seconds
  • the second preset number is 3. If the second count is greater than or equal to 3 within 2 seconds, the second timing and counting judgment unit 217 outputs a child lock locking signal.
  • the second timing counting judgment unit 217 is electrically connected to the second timing unit 216 and the second counting unit 215 in real time.
  • the second timing counting judgment unit 217 obtains that the second count reaches the second preset number and the second timing unit 216 has not reached the second preset duration
  • the second timing counting judgment unit 217 outputs a child lock locking signal, or the second timing counting judgment unit 217 waits until the timing duration of the second timing unit 216 reaches the second preset duration before outputting the child lock locking signal.
  • the second timing counting judgment unit 217 is connected to the second timing unit 216 and the second counting unit 215.
  • the second timing unit 216 When the second timing unit 216 reaches the second preset duration, the second timing unit 216 outputs a signal to the second timing counting judgment unit 217.
  • the second timing counting judgment unit 217 obtains the second count of the second counting unit 215 at this time, and then determines whether the second count is greater than or equal to the second preset number. If the second count is greater than or equal to the second preset number, the second timing counting judgment unit 217 outputs a child lock locking signal. If the second count is less than the second preset number, the second timing counting judgment unit 217 maintains the original signal output.
  • the child lock control circuit 200 further includes a child lock control unit 240, which is electrically connected to the second timing and counting judgment unit 217. If the judgment result of the second timing and counting judgment unit 217 is yes, that is, the second count is greater than or equal to the second preset number within the second preset time, the second timing and counting judgment unit 217 outputs a child lock locking signal to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter a locked state. In the locked state, the power MOS tube M1 remains disconnected. In this embodiment, the child lock control unit 240 continuously outputs a high level signal to the power MOS tube M1, and the power MOS tube M1 remains cut off.
  • the child lock control unit 240 includes a trigger and a switch control unit.
  • the trigger is used to maintain the child lock locking signal and the subsequent child lock unlocking signal.
  • the trigger is, for example, an SR trigger, etc.
  • the switch control unit is electrically connected to the trigger.
  • the switch control unit also receives a suction signal (a signal output in the suction state), a blowing signal (a signal output in the blowing state) or a non-suction and blowing signal (a signal output when not in use).
  • the switch control unit is, for example, an AND gate, a NAND gate, an OR gate, a NOR gate, etc.
  • the switch control unit includes a NAND gate, a first input end of the NAND gate is connected to the output end of the trigger, and a second input end of the NAND gate receives
  • the child lock locking signal keeps the output of the trigger at a low level, and then keeps it at a high level after passing through the NAND gate (at this time, the second input terminal receives the suction signal, and the suction signal is, for example, at a high level), and the power MOS tube M1 remains cut off;
  • the child lock unlocking signal keeps the output of the trigger at a high level, so that the output of the NAND gate is affected by the suction and blowing state of the electronic cigarette.
  • the switch control unit controls the power MOS tube M1 to be continuously turned on or intermittently turned on (for example, PWM, PFM control mode). If the judgment result of the second timing counting judgment unit 217 is no, that is, the second count is less than the second preset number within the second preset time length, the original child lock state of the electronic cigarette is maintained, and the second count is set to 0, and the second timing reset is zero.
  • the child lock state of the electronic cigarette is divided into a locked state and an unlocked state, wherein the locked state corresponds to the child lock protection function.
  • the child lock control unit 240 continues to control the power MOS tube M1 to remain disconnected and cut off, so that the heating element 130 will not be heated, and then the smoke oil will not be atomized for the user to draw, that is, even if the user draws the electronic cigarette, no smoke will appear.
  • the unlocked state corresponds to the release of the child lock protection function. At this time, whether the smoke oil is atomized is controlled by whether to draw.
  • the child lock control unit 240 controls the power MOS tube M1 to be continuously turned on or intermittently turned on. Intermittent conduction means that the child lock control unit 240 outputs a square wave signal through a PWM mode or a PFM mode, and adjusts the duty cycle of the square wave signal to control the output power and output voltage.
  • the embodiment of the present application further subdivides the suction state through the current air pressure information and the second preset air pressure range, and divides it into a suction state with a smaller air pressure and a suction state with a smaller air pressure.
  • the number of puffs when the current air pressure information is within the second preset air pressure range is distinguished as a suction state with a smaller air pressure (heavy suction), and a second counting is performed, and the electronic cigarette enters the locked state only when the second count is greater than or equal to the second preset number within the second preset time.
  • the electronic cigarette can further distinguish whether the user is puffing the electronic cigarette normally or wants to trigger the electronic cigarette to enter the locked state by puffing the electronic cigarette.
  • the electronic cigarette is not easy to confuse the two, which can reduce the probability of the user being mistakenly triggered to enter the locked state when puffing the electronic cigarette normally, and can reduce the user's use troubles.
  • the electronic cigarette can enter a locked state.
  • the electronic cigarette of this embodiment is locked for protection, it can prevent children from picking up the electronic cigarette and imitating the adult's puffing action, causing the electronic cigarette product to start atomizing, thereby improving the safety of electronic cigarette use.
  • this embodiment uses the existing state detection unit 150 and airflow sensor 140 to obtain the current air pressure information through conversion, without the need to make major changes to the electronic cigarette, without increasing the hardware cost or increasing the hardware cost very little, thereby reducing the hardware cost of the electronic cigarette for locking protection, and solving the technical problem of high electronic cigarette locking cost in the prior art.
  • the child lock control method further includes: obtaining again information that the current air pressure information is within the second preset air pressure range, and adding 1 to the second count.
  • the second timing unit 216 and the second counting unit 215 do not stop working.
  • the electronic cigarette is turned into a non-inhalation state, thereafter, when the user inhales the electronic cigarette again, the current air pressure information is obtained in real time again. If the second counting unit 215 obtains information that the current air pressure information is within the second preset air pressure range again, that is, the second counting unit 215 receives a valid air pressure signal again, then the second counting unit 215 adds 1 on the basis of the original second count.
  • the original count value of the second counting unit 215 is 1, and the information that the current air pressure information is within the second preset air pressure range is obtained again, then the second count of the second counting unit 215 is added by 1, that is, the second count becomes 2.
  • the second timing unit 216 has been timing; if the second counting unit 215 does not obtain information that the current air pressure information is within the second preset air pressure range this time, that is, the second counting unit 215 does not receive a valid air pressure signal, then the second count remains unchanged, and the second timing unit 216 is also timing at this time.
  • the child lock control method further includes: if the second timer reaches a second preset time length, the second count is reset to zero, and the second timer is reset to zero.
  • the second timing counting judgment unit 217 has completed the judgment before the second timing unit 216 and the second counting unit 215 are reset to zero.
  • the child lock control method further includes: if the second timing is less than the second preset time length and the second count reaches the second preset number, the second count is reset to zero and the second timing is reset to zero.
  • the second timing counting judgment unit 217 if the second count obtained by the second timing counting judgment unit 217 reaches the second preset number, and the timing duration of the second timing unit 216 is less than the second preset duration, the second timing counting judgment unit 217 outputs a signal to the second timing unit 216 and the second counting unit 215, the second timing unit 216 is reset to zero, and the second counting unit 215 is reset to zero.
  • the signal can be the same as the child lock locking signal or a different signal.
  • the step of triggering the second count specifically includes: S131: triggering the third timing and triggering the third count;
  • the child lock control circuit 200 also includes a third timing unit 212 and a third counting unit 213.
  • the third timing unit 212 and the third counting unit 213 are both connected to the second air pressure judgment unit 211.
  • the third timing unit 212 and the third counting unit 213 obtain the current air pressure information within the second preset air pressure range, that is, when the third timing unit 212 receives a valid air pressure signal, the third timing unit 212 starts the third timing, and the third timing unit 212 keeps timing until it is reset to zero, after which the third timing unit 212 stops timing; when the third counting unit 213 receives a valid air pressure signal, the third counting unit 213 starts the third counting, and also performs the third counting this time, and the third count is 1 at this time.
  • S132 Determine whether the third count is greater than or equal to a third preset number within a third preset time period
  • the child lock control circuit 200 further includes a third timing counting judgment unit 214, which is connected to the third counting unit 213 and the third timing unit 212 respectively.
  • the third timing counting judgment unit 214 judges that the timing duration of the third timing unit 212 is within the third preset duration, and the third count of the third counting unit 213 is greater than or equal to the third preset number, the third timing counting judgment unit 214 outputs a first counting signal.
  • the third preset duration is generally 30ms-150ms, and the third preset duration is, for example, 30ms, 40ms, 50ms, 60ms, 70ms, 80ms, 90ms, 100ms, 110ms, 120ms, 130ms, 140ms, 150ms, etc., preferably 60ms-100ms.
  • the third preset number is an integer greater than or equal to 2, such as 2, 3, etc. In this embodiment, the third preset number is greater than or equal to 2, such as 2, 3, 4, 5, 6, etc.
  • the third timing counting judgment unit 214 is electrically connected to the third timing unit 212 and the third counting unit 213 in real time.
  • the third timing counting judgment unit 214 obtains that the third count reaches the third preset number and the third timing does not reach the third preset duration, the third timing counting judgment unit 214 outputs a first counting signal, or the third timing counting judgment unit 214 waits until the third timing reaches the third preset duration before outputting the first counting signal.
  • the third timing counting judgment unit 214 is connected to the third timing unit 212 and the third counting unit 213. When the third timing unit 212 reaches the third preset duration, the third timing unit 212 outputs a signal to the third timing counting judgment unit 214.
  • the third timing counting judgment unit 214 obtains the third count of the third counting unit 213 at this time, and then determines whether the third count is greater than or equal to the third preset number. If the third count is greater than or equal to the third preset number, the third timing counting judgment unit 214 outputs a first counting signal. If the third count is less than the third preset number, the third timing is reset to zero and the third count is set to zero.
  • the third timing and counting judgment unit 214 is connected to the second timing unit 216 and the second counting unit 215. If the judgment result of the third timing and counting judgment unit 214 is yes, the second timing unit 216 receives the first counting signal, the second timing unit 216 is triggered to start timing, and the second timing starts from 0; the second counting unit 215 receives the first counting signal, the second counting unit 215 is triggered to start counting, and the second counting unit 215 also counts this time, that is, the second count is 1 at this time.
  • the second counting unit 215 when the second counting unit 215 has not been triggered to start counting and the second timing unit 216 has not been triggered to start timing, if the judgment result of the third timing counting judgment unit 214 is no, that is, the third timing counting judgment unit 214 does not output the first counting signal, the second counting unit 215 maintains the original state of not counting and the second timing unit 216 maintains the original state of not timing; when the second counting unit 215 has been triggered to start counting (that is, the second count is at least 1) and the second timing unit 216 has been triggered to start timing, if the judgment result of the third timing counting judgment unit 214 is no, the second count maintains the original count, the second count does not increase, and the second timing continues to count.
  • the air flow crosstalk causes the air pressure in the air flow channel of the electronic cigarette to change in a short time
  • the condition that the third count is greater than or equal to the third preset number within the third preset time period will not be met, and the second count will not change, so the air flow crosstalk will not be misjudged as a situation where the user wants to enter the child lock protection, which can prevent the electronic cigarette from mistakenly entering the locked state and prevent trouble to the user.
  • This embodiment can avoid this situation and improve the user experience.
  • the second timing unit 216 counts.
  • the child lock control method further includes: S171: receiving current air pressure information in the airflow channel of the electronic cigarette;
  • the child lock control circuit 200 includes a first air pressure judgment unit 242, the first air pressure judgment unit 242 is connected to the air pressure acquisition unit 241, after the air pressure acquisition unit 241 outputs the current air pressure information, the first air pressure judgment unit 242 receives the current air pressure information, and the first air pressure judgment unit 242 judges whether the current air pressure information is within the first preset air pressure range. If the judgment result is yes, the first air pressure judgment unit 242 outputs the information that the electronic cigarette is changed from a non-inhalation state to a suction state, that is, outputs a suction signal. If the judgment result is no, the first air pressure judgment unit 242 maintains the original signal output, such as outputting a non-inhalation signal and a blowing signal.
  • the first air pressure judgment unit 242 is connected to the child lock control unit 240, and is specifically connected to the switch control unit of the child lock control unit 240. Further, it can also be required to output the suction signal only after the judgment is yes for multiple consecutive times, which is conducive to reducing the probability of false triggering of airflow crosstalk.
  • the first air pressure judgment unit 242 and the second air pressure judgment unit 211 can be the same judgment unit or different judgment units.
  • the state detection unit 150 can be used to directly determine whether the electronic cigarette is in the suction state or the blowing state.
  • the child lock control method also includes:
  • the judgment result is yes, the information that the electronic cigarette changes from a non-smoking state to a smoking state is output.
  • the state detection unit 150 includes a first counting generation unit and a first counting judgment unit.
  • the first counting generation unit is connected to the first counting judgment unit. After the first counting generation unit generates the current count value, the first counting judgment unit receives the current count value. The first counting judgment unit determines whether the current count value is within the first preset value range.
  • the first preset value range corresponds to the first preset air pressure range, that is, the first preset air pressure range can be obtained by converting the first preset value range, and the first preset value range can also be obtained by converting the first preset air pressure range.
  • the first counting judgment unit outputs the information that the electronic cigarette is changed from the non-inhalation state to the inhalation state, that is, outputs the inhalation signal. If the judgment result is no, the first counting judgment unit maintains the original signal output, such as outputting the non-inhalation and blowing signal and the blowing signal. Further, it can also be required to output the inhalation signal only after the judgment is yes for multiple consecutive times, which is conducive to reducing the probability of false triggering of airflow crosstalk.
  • the current count value is the count value of the oscillation period of the preset counting time, which is a conventional technology in the field and will not be repeated here.
  • S161 Obtaining information that the electronic cigarette changes from a smoking state to a non-smoking state
  • S162 Trigger the fifth timing and lock the second timing
  • the child lock control circuit 200 includes a fifth timing unit 221 and a fifth duration judgment unit 222, the fifth timing unit 221 is respectively connected to the first air pressure judgment unit 242 and the third timing and counting judgment unit 214, the fifth duration judgment unit 222 is respectively electrically connected to the fifth timing unit 221 and the second counting unit 215, and the second counting unit 215 is also electrically connected to the first air pressure judgment unit 242.
  • the fifth timing unit 221 obtains the information that the electronic cigarette enters the non-smoking state from the inhalation state after receiving the first counting signal, and the fifth timing unit 221 is triggered to start timing.
  • the second counting unit 215 also obtains the information that the electronic cigarette enters the non-smoking state from the inhalation state after receiving the first counting signal.
  • the second counting unit 215 is locked, that is, it enters the counting locked state. After the second counting unit 215 is locked, even if it receives the first counting signal again, the count will not be increased, that is, in the locked state, the second counting unit 215 maintains the original count value and does not increase the count value.
  • the second counting unit 215 receives the first counting signal and the count is increased by one.
  • the fifth timing unit 221 is always timing (even if it is changing from the non-inhalation state to the inhalation state)
  • the fifth duration judgment unit 222 judges whether the timing duration of the fifth timing unit 221 is greater than or equal to the fifth preset duration.
  • the fifth duration judgment unit 222 judges that the timing of the fifth timing unit 221 reaches the fifth preset duration, the fifth timing unit 221 will stop timing and reset to zero, that is, the fifth timing unit 221 is reset to zero.
  • the fifth duration judgment unit outputs a count unlocking signal to the second counting unit 215, the second counting unit 215 is unlocked from counting, the second counting unit 215 enters a count unlocking state, and the third timing unit 212, the third counting unit 213, and the second timing unit 216 are also reset to zero. Thereafter, the second counting unit 215 obtains the first counting signal again, and the second counting unit 215 can perform a count plus one action, that is, the second count is increased by one on the original basis.
  • the fifth timing unit 221 when the fifth timing unit 221 does not receive the first counting signal, or the fifth timing unit 221 does not obtain the information that the electronic cigarette enters the non-smoking state from the inhalation state, the fifth timing unit 221 will not trigger the start of timing.
  • the step of triggering the second count it also includes: judging whether the duration of the current air pressure information being within the second preset air pressure range is greater than or equal to the seventh preset duration. If the judgment result is yes, the second count and the second timing are reset to zero. In this embodiment, the duration of the re-inhalation is judged. If the duration of the re-inhalation is greater than or equal to the seventh preset duration, the second count and the second timing are reset to zero, the second count is 0, and the second timing stops counting and is reset to zero.
  • the seventh preset duration is greater than or equal to 400ms, for example, 400ms, 450ms, 500ms, 600ms, etc.
  • the electronic cigarette after the electronic cigarette enters the child lock locked state, the user cannot smoke the electronic cigarette normally.
  • the electronic cigarette needs to be unlocked.
  • the unlocking method can be the same as the locking method, and the previous description can be referred to, which will not be repeated here.
  • the child lock control method further includes:
  • the child lock control circuit 200 includes a fourth air pressure judgment unit 231, and the fourth air pressure judgment unit 231 is used to receive current air pressure information.
  • the fourth air pressure judgment unit 231 and the second air pressure judgment unit 211 can be different judgment units or the same air pressure judgment unit.
  • the air pressure in the airflow channel is relatively large, which will be higher than the air pressure in the non-suction and blowing state, that is, the current air pressure value will be greater than the reference air pressure value, and the distance between the two electrodes of the capacitor of the airflow sensor 140 will be larger than that in the non-suction and blowing state, so that the capacitance value will be smaller than that in the non-suction and blowing state, and the frequency will be larger than that in the non-suction and blowing state.
  • the number of oscillation cycles within the preset counting time is greater than the number of oscillation cycles of the corresponding time in the non-suction and blowing state (reference oscillation cycle number), and in the suction state, the number of oscillation cycles within the preset counting time (current counting value) will be less than the number of oscillation cycles of the corresponding time in the non-suction and blowing state (reference oscillation cycle number).
  • S22 determining whether the current air pressure information is within a fourth preset air pressure range, wherein the fourth preset air pressure range is used to determine whether the electronic cigarette is in a blowing state;
  • the fourth air pressure determination unit 231 After receiving the current air pressure information, the fourth air pressure determination unit 231 determines whether the current air pressure information is within a fourth preset air pressure range, and the fourth preset air pressure range is pre-calculated or pre-stored in the fourth air pressure determination unit 231 .
  • the fourth preset air pressure range is the air pressure value range.
  • the lower limit of the fourth preset air pressure range is, for example, 1.03 times the reference air pressure value, etc., which will be greater than the upper limit corresponding to the first preset air pressure range, and the lower limit of the fourth preset air pressure range is greater than the reference air pressure value; when the current air pressure information is the ratio of the current air pressure value to the reference air pressure value, the fourth preset air pressure range is the ratio range.
  • the lower limit of the fourth preset air pressure range is, for example, 1.03, 1.04, 1.05, etc., which will be greater than the upper limit corresponding to the first preset air pressure range; the upper limit of the fourth preset air pressure range can be unlimited or limited as needed.
  • the current air pressure information is the difference between the current air pressure value and the reference air pressure value or the ratio of the difference between the current air pressure value and the reference air pressure value to the reference air pressure value
  • the fourth preset air pressure range corresponds to the difference range or the ratio range. At this time, you can refer to the previous description. Those skilled in the art can know how to distinguish between the inhalation state and the blowing state based on existing knowledge.
  • the child lock control circuit 200 includes a fourth timing unit 232 and a fourth counting unit 233.
  • the fourth timing unit 232 is electrically connected to the fourth air pressure judgment unit 231, and the fourth counting unit 233 is electrically connected to the fourth air pressure judgment unit 231. If the judgment result of the fourth air pressure judgment unit 231 is yes, the fourth air pressure judgment unit 231 outputs a blowing signal, the fourth timing unit 232 is triggered to start timing, the fourth timing unit 232 starts timing from 0, the fourth counting unit 233 is triggered to start counting, and this time is also counted, that is, the count of the fourth counting unit 233 is 1 at this time; if the judgment result of the fourth air pressure judgment unit 231 is no, the fourth air pressure judgment unit 231 will not output a blowing signal, the fourth timing unit 232 maintains the original state, and the fourth counting unit 233 maintains the original state.
  • the fourth timing unit 232 when the fourth timing unit 232 is triggered to start timing, the fourth timing unit 232 will continue to count until the fourth timing unit 232 is reset to zero, and then the fourth timing unit 232 stops timing.
  • the blowing signal is also output to the child lock control unit 240.
  • the state detection unit 150 can determine whether the electronic cigarette is in the blowing state by whether the current count value is within the fourth preset value range, wherein the fourth preset value range corresponds to the fourth preset air pressure range; when it is determined to be in the blowing state, the state detection unit 150 outputs the blowing signal, which is a conventional technology in the art and will not be described in detail here.
  • the fourth timing unit 232 when the fourth timing unit 232 is triggered to time and the fourth counting unit 233 is triggered to count, when the fourth air pressure judgment unit 231 receives the current air pressure information again and once again determines that the current air pressure information is within the fourth preset air pressure range, the fourth count of the fourth counting unit 233 is increased by 1, and the fourth count is 2 at this time. At the same time, the fourth timing unit 232 continues the fourth timing.
  • S24 Determine whether a fourth count is greater than or equal to a fourth preset number within a fourth preset time period, wherein the fourth preset number is greater than or equal to 2;
  • the child lock control circuit 200 further includes a fourth timing counting judgment unit 234, which is electrically connected to the fourth counting unit 233 and the fourth timing unit 232, respectively.
  • the fourth timing counting judgment unit 234 judges that the timing duration of the fourth timing unit 232 is within the fourth preset duration, and the fourth counting unit 233 counts greater than or equal to the fourth preset number, the fourth timing counting judgment unit 234 outputs a child lock unlocking signal.
  • the fourth preset duration is generally less than or equal to 5s, such as 1s, 1.5s, 1.8s, 2s, 2.3s, 2.5s, 2.8s, 3s, 4s, 5s, etc., preferably 2s.
  • the fourth preset number is greater than or equal to 2, such as 2, 3, 4, 5, 6, etc., preferably 3, and the fourth preset number is generally less than or equal to 6 times, which is convenient for user operation.
  • the fourth timing counting judgment unit 234 is connected to the fourth timing unit 232 and the fourth counting unit 233 in real time.
  • the fourth timing counting judgment unit 234 obtains that the fourth counting unit 233 reaches the fourth preset number and the fourth timing unit 232 does not reach the fourth preset duration, the fourth timing counting judgment unit 234 outputs the child lock unlocking signal, or the fourth timing counting judgment unit 234 waits until the fourth timing unit 232 timing duration reaches the fourth preset duration before outputting the child lock unlocking signal.
  • the fourth timing counting judgment unit 234 is connected to the fourth timing unit 232 and the fourth counting unit 233.
  • the fourth timing unit 232 When the fourth timing unit 232 reaches the fourth preset duration, the fourth timing unit 232 outputs a signal to the fourth timing counting judgment unit 234.
  • the fourth timing counting judgment obtains the count of the fourth counting unit 233 at this time, and then determines whether the fourth count is greater than or equal to the fourth preset number. If it is greater than or equal to the fourth preset number, the child lock unlocking signal is output. If it is less than the fourth preset number, the original signal output is maintained.
  • the fourth timing and counting judgment unit 234 if the result of the judgment of the fourth timing and counting judgment unit 234 is yes, that is, the number counted within the fourth preset time length is greater than or equal to the fourth preset number, the fourth timing and counting judgment unit 234 outputs a child lock unlocking signal to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter an unlocked state.
  • the unlocked state when the electronic cigarette is in a puffing state, the power MOS tube M1 is continuously turned on or intermittently turned on, that is, at this time, the power MOS tube M1 is controlled by whether the user puffs.
  • the child lock control unit 240 when the electronic cigarette is in a puffing state, the child lock control unit 240 continuously outputs a low-level signal or intermittently outputs a low-level signal to the power MOS tube M1, and the power MOS tube M1 is continuously turned on or intermittently turned on.
  • the heating element 130 is heated to atomize the smoke oil, so that the atomized smoke oil can be inhaled by the user.
  • unlocking is achieved by timing and counting the blowing, and an effective unlocking effect is achieved without adding Bluetooth/NFC and other designs and mechanical structures, thereby reducing the hardware cost of unlocking the electronic cigarette and solving the technical problem of high unlocking cost of electronic cigarettes in the prior art.
  • the unlocking method of the present application is not easy to be noticed by children, and the electronic cigarette is not easy to be unlocked by children after being locked, which is conducive to improving the safety of the electronic cigarette.
  • judging the suction state it is also possible to judge whether to blow by the current count value.
  • the child lock control method further includes: obtaining again information that the current air pressure information is within a fourth preset air pressure range, and adding 1 to the fourth count.
  • the fourth timing unit 232 and the fourth counting unit 233 do not stop working, and the fourth timing unit 232 and the fourth counting unit 233 again (again means that the value of the fourth count in the fourth counting unit 233 is at least 1) obtain the information that the current air pressure information is within the fourth preset air pressure range, then the fourth counting unit 233 adds 1 on the basis of the original count, for example, the original count value of the fourth counting unit 233 is 1, and the information that the current air pressure information is within the fourth preset air pressure range is obtained again, that is, the information that the state is changed from no suction and blowing to blowing state is received, then the count of the fourth counting unit 233 is added by 1, that is, the count value becomes 2; the fourth timing unit 232 continues to work and continuously time, that is, after the fourth timing unit 232 triggers the timing, as long as the fourth timing unit 232 does not receive a signal to stop timing or reset, the
  • the child lock control method further includes: if the timing duration of the fourth timing unit 232 reaches a fourth preset duration, the fourth counter is reset to zero, and the fourth timing unit 232 is reset to zero.
  • the child lock control method further includes: if the timing duration of the fourth timing unit 232 is less than the fourth preset duration and the fourth count reaches the fourth preset number, the fourth count is reset to zero and the fourth timing unit 232 is reset to zero.
  • FIG. 14 shows a module diagram of a child lock control circuit 200 of the electronic cigarette provided in an embodiment of the present application. For ease of explanation, only the part related to the embodiment of the present application is shown.
  • the child lock control circuit 200 includes:
  • a state detection unit 150 which is used to be electrically connected to the airflow sensor 140;
  • the air pressure acquisition unit 241 is used to be connected to the state detection unit 150, and is used to output the current air pressure information in the airflow channel of the electronic cigarette; in addition, in other embodiments of the present application, the child lock control circuit 200 may also not have the state detection unit 150, and in this case, the air pressure acquisition unit 241 is not connected to the state detection unit 150;
  • a second air pressure judgment unit 211 which is used to receive current air pressure information in the air flow channel of the electronic cigarette, and to judge whether the current air pressure information is within a second preset air pressure range, wherein the second preset air pressure range is within the first preset air pressure range, and the first preset air pressure range is used to judge whether the electronic cigarette is in a puffing state;
  • a second timing unit 216 which is used to trigger timing if the judgment result of the second air pressure judgment unit 211 is yes;
  • a second timing counting judgment unit 217 which is used to judge whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control unit 240 is used to control the electronic cigarette to enter a locked state if the judgment results of the second timing and counting judgment unit 217 are all yes. In the locked state, the power MOS tube M1 of the electronic cigarette remains disconnected and cut off.
  • the current air pressure information includes the current air pressure value, the ratio of the current air pressure value to the reference air pressure value, the difference between the current air pressure value and the reference air pressure value, or the ratio of the difference between the current air pressure value and the reference air pressure value to the reference air pressure value.
  • the upper limit of the second preset air pressure range is less than the upper limit of the first preset air pressure range; or, when the current air pressure value is the ratio of the reference air pressure value, the upper limit of the second preset air pressure range is less than the upper limit of the first preset air pressure range; or, when the current air pressure value is the difference from the reference air pressure value, the lower limit of the second preset air pressure range is greater than the lower limit of the first preset air pressure range; or, when the current air pressure value is the difference from the reference air pressure value and the ratio of the reference air pressure value, the lower limit of the second preset air pressure range is greater than the lower limit of the first preset air pressure range.
  • the reference air pressure value is the air pressure value in the air flow channel of the electronic cigarette when it is in a non-inhalation state.
  • the child lock control circuit 200 includes a third timing unit 212, a third counting unit 213 and a third timing and counting judgment unit 214, wherein the third timing unit 212 and the third counting unit 213 are respectively connected to the second air pressure judgment unit 211.
  • the second air pressure judgment unit 211 outputs an air pressure valid signal
  • the third timing unit 212 is triggered to perform the third timing
  • the third counting unit 213 is triggered to perform the third counting.
  • the third timing and counting judgment unit 214 is connected to the third timing unit 212 and the third counting unit 213.
  • the third timing and counting judgment unit 214 is used to judge whether the third count is greater than or equal to the third preset number within the third preset time length.
  • the second timing unit 216 is triggered to perform the second timing, and the second counting unit 215 is triggered to perform the second counting.
  • the electronic cigarette is in the inhalation state during the third preset time length.
  • the air pressure acquisition unit 241 is used to obtain the current capacitance value, the current frequency value, the current count value, the current capacitance change relative to the no-inhalation and blowing state, the current frequency change relative to the no-inhalation and blowing state, or the current count change relative to the no-inhalation and blowing state, and is also used to search a pre-stored capacitance value-pressure value table according to the current capacitance value, search a pre-stored frequency value-pressure value table according to the current frequency value, search a pre-stored count value-pressure value table according to the current count value, search a pre-stored capacitance change-pressure value table according to the current capacitance change, search a pre-stored frequency change-pressure value table according to the current frequency change, or search a pre-stored count change-pressure value table according to the current count change; the air pressure acquisition unit is used to obtain and output the current air pressure information in the electronic cigarette airflow channel, and the second air pressure judgment unit receives the
  • the child lock control circuit 200 also includes a first air pressure judgment unit 242, which is connected to the air pressure acquisition unit 241.
  • the first air pressure judgment unit 242 is used to receive the current air pressure information in the air flow channel of the electronic cigarette and judge whether the current air pressure information is within the first preset air pressure range. If the judgment result of the first air pressure judgment unit 242 is yes, the information that the electronic cigarette changes from a non-smoking state to a smoking state is output, that is, the smoking information is output.
  • the child lock control circuit 200 also includes a fifth timing unit 221 and a fifth duration judgment unit 222, wherein the fifth timing unit 221 is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state and obtain information for a second count, the fifth timing unit 221 starts the fifth timing, the second counting unit 215 performs a second count and is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state, the second counting unit 215 is locked, and the fifth duration judgment unit 222 is used to judge whether the fifth timing of the fifth timing unit 221 is greater than or equal to a fifth preset duration. If the judgment result of the fifth duration judgment unit 222 is yes, the fifth duration judgment unit 222 is used to output a counting unlocking signal to the second counting unit 215, and the second counting unit 215 is unlocked.
  • the fifth timing unit 221 is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state and obtain information
  • the second air pressure judgment unit 211 is connected to the air pressure acquisition unit 241
  • the air pressure acquisition unit 241 is connected to the state detection unit 150
  • the state detection unit 150 is electrically connected to the capacitive airflow sensor 140
  • the second air pressure judgment unit 211 is used to receive the current air pressure information output by the air pressure acquisition unit 24.
  • the child lock control circuit 200 includes a locking unit, and the locking unit includes a second timing unit 216, a second counting unit 215, a second timing and counting judgment unit 217, a second air pressure judgment unit 211, and the like.
  • the child lock control circuit 200 includes an unlocking unit, which includes a fourth air pressure judgment unit 231, a fourth timing unit 232, a fourth counting unit 233, and a fourth timing and counting judgment unit 234, wherein the fourth air pressure judgment unit 231 is used to receive current air pressure information and judge whether the current air pressure information is within a fourth preset air pressure range, and the fourth preset air pressure range is used to judge whether the electronic cigarette is in a blowing state; if the judgment result of the fourth air pressure judgment unit 231 is yes, the fourth timing unit 232 is triggered to perform a fourth timing, the fourth counting unit 233 is triggered to perform a fourth counting, and the fourth timing and counting judgment unit 234 is used to judge whether the fourth count is greater than or equal to a fourth preset number within a fourth preset time length, and if the judgment result of the fourth timing and counting judgment unit 234 is yes, a child lock unlocking signal is output to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to
  • the fourth counting unit 233 is further used to obtain again the information that the current air pressure information is within the fourth preset air pressure range, and the fourth count is incremented by 1.
  • the fourth timing unit 232 is further configured to reset the fourth count to zero if the timing duration reaches a fourth preset duration, and reset the fourth timing unit 232 to zero.
  • the fourth timing counting judgment unit 234 is further configured to reset the fourth count to zero if the timing duration is less than the fourth preset duration and the fourth count reaches a fourth preset number, and reset the fourth timing unit 232 to zero.
  • the technicians in the relevant field can clearly understand that for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example for illustration.
  • the above-mentioned function allocation can be completed by different functional units and modules as needed, that is, the internal structure of the device can be divided into different functional units or modules to complete all or part of the functions described above.
  • the functional units and modules in the embodiment can be integrated in a processing unit, or each unit can exist physically separately, or two or more units can be integrated in one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or in the form of software functional units.
  • FIG15 is a schematic diagram of a child lock control device 400 provided in an embodiment of the present application.
  • the child lock control device 400 of this embodiment includes: at least one processor 420 (only one is shown in FIG15 ), a memory 410, and a computer program stored in the memory 410 and executable on the processor 420.
  • the processor 420 executes the computer program, the steps in the above-mentioned child lock control method embodiment are implemented.
  • FIG15 is merely an example of a child lock control device 400 and does not constitute a limitation on the child lock control device 400.
  • the child lock control device 400 may include more or fewer components than shown in the figure, or may combine certain components, or different components, for example, it may also include input and output devices, network access devices, etc.
  • the processor 420 may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the memory 410 may be an internal storage unit of the child lock control device 400, such as a hard disk or memory of the child lock control device 400. In other embodiments, the memory 410 may also be an external storage device of the child lock control device 400, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), etc. equipped on the child lock control device 400. Further, the memory 410 may also include both the internal storage unit of the child lock control device 400 and an external storage device.
  • a plug-in hard disk such as a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), etc. equipped on the child lock control device 400.
  • the memory 410 may also include both the internal storage unit of the child lock control device 400 and an external storage device.
  • the memory 410 is used to store an operating system, an application program, a boot loader (BootLoader), data, and other programs, such as the program code of the computer program.
  • the memory 410 may also be used to temporarily store data that has been output or is to be output.
  • the child lock control device 400 is, for example, an electronic cigarette.
  • the embodiment of the present application further provides a storage medium, which stores a computer program.
  • a storage medium which stores a computer program.
  • An embodiment of the present application provides a computer program product.
  • the terminal can implement the steps in the above-mentioned child lock control method embodiment when executing the computer program product.
  • the electronic cigarette includes the above-mentioned child lock control circuit 200, the electronic cigarette also includes a battery 110, a power MOS tube M1 and a heating element 130, the heating element 130 and the power MOS tube M1 are connected in series to form a heating branch, and the two ends of the heating branch are electrically connected to the positive and negative electrodes of the battery 110; it also includes an airflow sensor 140, wherein the control end of the power MOS tube M1 and the airflow sensor 140 are both electrically connected to the child lock control circuit 200, and the airflow sensor 140 is electrically connected to the state detection unit 150 of the child lock control circuit 200.
  • the third embodiment of the present application provides an electronic cigarette, please refer to Figure 16 and Figure 22, the electronic cigarette includes a battery 110, a child lock control circuit 200, a heating element 130, an airflow sensor 140, a power MOS tube M1, etc., and the child lock control circuit 200 includes a state detection unit 150.
  • the child lock control circuit 200 is electrically connected to the battery 110, the airflow sensor 140, the power MOS tube M1, etc.
  • the battery 110 is, for example, a rechargeable battery such as a lithium battery, a nickel-cadmium battery, a nickel-hydrogen battery, etc., and the battery 110 can also be a non-rechargeable battery;
  • the state detection unit 150 is electrically connected to the airflow sensor 140, and the state detection unit 150 is used to determine whether the electronic cigarette is inhaled and/or blown, and output a corresponding signal.
  • a specific implementation of the state detection unit 150 can refer to the prior application in the art, or other conventional state detection units known to those skilled in the art.
  • the airflow sensor 140 is a capacitive airflow sensor 140, such as a capacitive MEMS sensor or a capacitive microphone, etc.
  • the airflow sensor 140 is located in the airflow channel of the electronic cigarette, and the airflow sensor 140 includes a capacitor.
  • the state detection unit 150 determines whether the electronic cigarette is in a suction state, a blowing state, or a non-suction and blowing state (corresponding to the state when the user is not using it) by changes in the capacitance value of the capacitor.
  • the child lock control circuit 200 is electrically connected to the control end of the power MOS tube M1.
  • the child lock control circuit 200 is used to control whether the power MOS tube M1 is turned on.
  • the power MOS tube M1 is connected in series with the heating element 130 via the atomization end AT to form a series branch.
  • the power MOS tube M1 is a PMOS tube for example.
  • the power MOS tube M1 can also be an NMOS tube.
  • the power MOS tube M1 and the child lock control circuit 200 can be located on the same chip, which is generally called a system control chip.
  • the present application is not limited thereto. In other embodiments of the present application, the power MOS tube M1 and the child lock control circuit 200 can be located on different chips.
  • the heating element 130 is, for example, a heating wire, a heating wire, a ceramic seat containing a heating wire or a heating wire, or other conventional heating elements 130.
  • the heating element 130 when the child lock control circuit 200 outputs a low level to control the power MOS tube M1 to turn on, the heating element 130 is heated to atomize the smoke oil, and when the child lock control circuit 200 outputs a high level to control the power MOS tube M1 to turn off, the heating element 130 stops heating.
  • the state detection unit 150 is electrically connected to the airflow sensor 140 to determine whether the electronic cigarette is inhaled or blown or is in a state of neither blowing nor inhaling (non-inhalation and blowing state).
  • the air pressure between the two electrode sheets of the capacitor of the airflow sensor 140 will change, causing the distance between the two electrode sheets to change accordingly, thereby causing the capacitance value of the airflow sensor 140 to change.
  • the state detection unit 150 converts the capacitance value change into a frequency value change or a count value change.
  • the state detection unit 150 can determine whether the electronic cigarette is inhaled and in the inhalation state, blown and in the blowing state, or in the non-inhalation and blowing state.
  • the inventor of the present application proposed the following solution after a large number of experiments: the puffing state of the electronic cigarette is further subdivided into a puffing state with even smaller air pressure and a puffing state with even smaller air pressure.
  • the puffing state with even smaller air pressure (the user's suction force is smaller) generally corresponds to the user's normal puffing, and the puffing state with even smaller air pressure (the user's suction force is larger) corresponds to the user's puffing that wants to enter a locked state or the user's accidental heavy inhalation.
  • the electronic cigarette Regardless of whether it is in a puffing state with even smaller air pressure or a puffing state with even smaller air pressure, the electronic cigarette will be judged as a puffing state.
  • the present application determines whether it is in a puffing state with even smaller air pressure by whether the first parameter information is within the second preset parameter range.
  • the first parameter information characterizes the air pressure condition in the airflow channel of the electronic cigarette, and the air pressure condition includes, for example, the air pressure size, the change of air pressure, etc.
  • the first parameter information is in a corresponding relationship with the air pressure condition in the airflow channel.
  • the first parameter information when the first parameter information is within the second preset parameter range, it represents that the electronic cigarette is in a suction state with a lower air pressure.
  • the first parameter information is outside the second preset parameter range and within the first preset parameter range, it represents that the electronic cigarette is in a suction state with a lower air pressure.
  • the second preset parameter range is within the first preset parameter range, that is, as long as the first parameter information is within the second preset parameter range, the first parameter information must be within the first preset parameter range, indicating that the electronic cigarette is in a suction state and is a heavy suction.
  • the first parameter information may be within the second preset parameter range (heavy suction) or may not be within the second preset parameter range (normal suction).
  • the first parameter information includes the current capacitance value, the current frequency value, the current count value, the ratio of the current capacitance value to the reference capacitance value, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value, the difference between the current capacitance value and the reference capacitance value, the difference between the current frequency value and the reference frequency value, the difference between the current count value and the reference count value, the difference between the current capacitance value relative to the reference capacitance value and the reference oscillation capacitance value, the difference between the current frequency value relative to the reference frequency value and the reference frequency value, or the difference between the current count value relative to the reference count value and the reference count value, or the deformation of the current capacitance value, the current frequency value or the current count value.
  • the electrode sheet of the capacitor is not deformed at this time, and the current capacitance value at this time is the reference capacitance value, and the reference capacitance value is obtained by acquisition or conversion at this time.
  • the corresponding current frequency value at this time is the reference frequency value
  • the number of oscillation cycles of the preset counting time is the current count value, which is also the reference count value; in addition, the reference capacitance value, the reference frequency value, and the reference count value can also be preset.
  • the current capacitance value When the user inhales lightly, causing the current air pressure in the electronic cigarette airflow channel to be relatively small, the distance between the two electrode sheets of the capacitor of the airflow sensor 140 will become smaller than that in the non-inhalation and blowing state, the current capacitance value will be larger, the ratio of the current capacitance value to the reference capacitance value will be larger, the current frequency value will be smaller, and the number of oscillation cycles of the preset counting time will be smaller, that is, the current count value will be smaller, the ratio of the current frequency value to the reference frequency value, and the ratio of the current count value to the reference count value will be smaller, the corresponding difference will be larger, and the ratio of the corresponding difference to the corresponding reference value will be larger; when the user inhales heavily, causing the current air pressure value in the electronic cigarette airflow channel to be smaller, the distance between the two electrode sheets of the capacitor of the airflow sensor 140 will become smaller than that in the non-inhalation and blowing state, the current capacitance value
  • the distance between the two electrode plates of the capacitor of the airflow sensor 140 will increase relative to the non-blow state, the current capacitance value of the airflow sensor 140 will decrease, the current frequency value will increase, and the current count value will be larger than the reference count value.
  • the second preset parameter range corresponds to the capacitance value range
  • the lower limit value of the second preset parameter range is greater than the lower limit value of the first preset parameter range
  • the upper limit value of the second preset parameter range is less than or equal to the upper limit value of the first preset parameter range
  • the second preset parameter range corresponds to Difference range, ratio range, the lower limit of the second preset parameter range is greater than the lower limit of the first preset parameter range.
  • the upper limit of the second preset parameter range is not limited, that is, the current capacitance value is greater than a and falls within the second preset parameter range.
  • the second preset parameter range corresponds to the frequency value range, the count value range or the ratio range
  • the upper limit of the second preset parameter range is less than the upper limit of the first preset parameter range
  • the lower limit of the second preset parameter range is greater than or equal to the lower limit of the first preset parameter range
  • the child lock control circuit 200 of this embodiment also includes a second parameter judgment unit 211, and the second parameter judgment unit 211 is connected to the state detection unit 150.
  • the state detection unit 150 itself knows the first parameter information, that is, the state detection unit 150 itself knows the current capacitance value, the current frequency value or the current count value, etc., so that the state detection unit 150 outputs the first parameter information to the second parameter judgment unit 211.
  • the second parameter judgment unit 211 is used to receive the first parameter information and determine whether the first parameter information is within the second preset parameter range, so as to distinguish whether the user is inhaling normally or entering the locked state. After such distinction, the probability of the user mistakenly judging that the child lock locked state is entered during normal inhalation can be reduced.
  • the embodiment of the present application provides a child lock control method for an electronic cigarette, comprising the following steps:
  • the second parameter determination unit 211 is connected to the state detection unit 150 , the state detection unit 150 generates first parameter information and outputs the first parameter information, and the second parameter determination unit 211 receives the first parameter information.
  • the state detection unit 150 itself can identify whether the electronic cigarette is in the suction state or the blowing state.
  • the state detection unit 150 identifies that the electronic cigarette is in the suction state through the airflow sensor 140. At this time, the state detection unit 150 determines that the first parameter information is within the first preset parameter range, and the state detection unit 150 outputs a suction signal.
  • the state detection unit 150 identifies that the electronic cigarette is in the blowing state through the airflow sensor 140. At this time, the state detection unit 150 outputs a blowing signal.
  • the state detection unit 150 identifies that the electronic cigarette is in the non-inhalation and blowing state, and the state detection unit 150 outputs a non-inhalation and blowing signal.
  • the child lock control circuit 200 receives the output signal of the state detection unit 150 to obtain the state of the electronic cigarette.
  • the state detection unit 150 changes from outputting the non-inhalation and blowing signal to outputting the suction signal or the blowing signal
  • the child lock control circuit 200 obtains that the electronic cigarette changes from the non-inhalation and blowing state to the suction state or the blowing state.
  • the non-suction state includes a non-suction and blowing state and a blowing state.
  • S12 Determine whether the first parameter information is within a second preset parameter range, wherein the second preset parameter range is within the first preset parameter range, and the first preset parameter range is used to determine whether the electronic cigarette is in a puffing state;
  • the child lock control circuit 200 includes a second timing unit 216 and a second counting unit 215, the second timing unit 216 is electrically connected to the second parameter judgment unit 211, and the second counting unit 215 is electrically connected to the second parameter judgment unit 211.
  • the second parameter judgment unit 211 If the judgment result of the second parameter judgment unit 211 is yes, the second parameter judgment unit 211 outputs a parameter valid signal, the second timing unit 216 is triggered to start timing, the second timing unit 216 starts timing from 0, the second counting unit 215 is triggered to start counting, and also counts this time, that is, the count of the second counting unit 215 is 1 at this time; if the judgment result of the second parameter judgment unit 211 is no, the second parameter judgment unit 211 outputs a parameter invalid signal, the second timing unit 216 maintains the original state, and the second counting unit 215 maintains the original state. In this embodiment, when the second timing unit 216 is triggered to start timing, the second timing unit 216 will keep timing until the second timing unit 216 is reset to zero, and then the second timing unit 216 stops timing.
  • the second timing unit 216 When the second timing unit 216 is triggered to start timing and the second counting unit 215 is triggered to start counting, when the second parameter judgment unit 211 receives the first parameter information again and once again determines that the first parameter information is within the second preset parameter range, that is, outputs a parameter valid signal again, then the second count of the second counting unit 215 is increased by 1, and the second count is 2 at this time. At the same time, the second timing unit 216 continues the second timing.
  • S14 Determine whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control circuit 200 further includes a second timing counting judgment unit 217, which is connected to the second counting unit 215 and the second timing unit 216 respectively.
  • the second timing counting judgment unit 217 judges that the timing duration of the second timing unit 216 is within the second preset duration, and the second count of the second counting unit 215 is greater than or equal to the second preset number, the second timing counting judgment unit 217 outputs a child lock locking signal.
  • the second preset duration is generally less than or equal to 5s, and the second preset duration is, for example, 1s, 1.5s, 1.8s, 2s, 2.3s, 2.5s, 2.8s, 3s, 4s, 5s, etc., preferably 2s.
  • the second preset number is an integer greater than or equal to 2, such as 2, 3, 4, 5, 6, etc., preferably 3, and the second preset number is generally less than or equal to 6 times, which is convenient for user operation.
  • the second preset time length is 2 seconds
  • the second preset number is 3. If the second count is greater than or equal to 3 within 2 seconds, the second timing and counting judgment unit 217 outputs a child lock locking signal.
  • the second timing counting judgment unit 217 is electrically connected to the second timing unit 216 and the second counting unit 215 in real time.
  • the second timing counting judgment unit 217 obtains that the second count reaches the second preset number and the second timing unit 216 has not reached the second preset duration
  • the second timing counting judgment unit 217 outputs a child lock locking signal, or the second timing counting judgment unit 217 waits until the timing duration of the second timing unit 216 reaches the second preset duration before outputting the child lock locking signal.
  • the second timing counting judgment unit 217 is connected to the second timing unit 216 and the second counting unit 215.
  • the second timing unit 216 When the second timing unit 216 reaches the second preset duration, the second timing unit 216 outputs a signal to the second timing counting judgment unit 217.
  • the second timing counting judgment unit 217 obtains the second count of the second counting unit 215 at this time, and then determines whether the second count is greater than or equal to the second preset number. If the second count is greater than or equal to the second preset number, the second timing counting judgment unit 217 outputs a child lock locking signal. If the second count is less than the second preset number, the second timing counting judgment unit 217 maintains the original signal output.
  • the child lock control circuit 200 further includes a child lock control unit 240, which is electrically connected to the second timing and counting judgment unit 217. If the judgment result of the second timing and counting judgment unit 217 is yes, that is, the second count is greater than or equal to the second preset number within the second preset time, the second timing and counting judgment unit 217 outputs a child lock locking signal to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter a locked state. In the locked state, the power MOS tube M remains disconnected. In this embodiment, the child lock control unit 240 continuously outputs a high level signal to the power MOS tube M, and the power MOS tube M remains cut off.
  • the child lock control unit 240 includes a trigger and a switch control unit.
  • the trigger is used to maintain the child lock locking signal and the subsequent child lock unlocking signal.
  • the trigger is, for example, an SR trigger, etc.
  • the switch control unit is electrically connected to the trigger and the state detection unit 150 respectively.
  • the switch control unit is, for example, an AND gate, a NAND gate, an OR gate, or a NOR gate, etc.
  • the switch control unit includes a NAND gate, and the two input ends of the NAND gate are respectively connected to the output end of the trigger and an output end of the state detection unit 150.
  • the child lock locking signal keeps the output of the trigger at a low level, so that it remains at a high level after passing through the NAND gate (at this time, the state detection unit 150 outputs a suction signal, and the suction signal is, for example, a high level), and the power MOS tube M remains cut off; the child lock unlocking signal keeps the output of the trigger at a high level, so that the output of the NAND gate is affected by the output of the state detection unit 150.
  • the state detection unit 150 determines that the user inhales the electronic cigarette, the state detection unit 150 outputs a suction signal to the NAND gate, and the suction signal is high.
  • the switch control unit controls the power MOS tube M to be continuously turned on or intermittently turned on (for example, PWM, PFM control mode). If the judgment result of the second timing counting judgment unit 217 is no, that is, the second count is less than the second preset number within the second preset time period, the original child lock state of the electronic cigarette is maintained, the second count is set to 0, and the second timer is reset to zero.
  • the child lock state of the electronic cigarette is divided into a locked state and an unlocked state, wherein the locked state corresponds to the child lock protection function.
  • the child lock control unit 240 continues to control the power MOS tube M1 to remain disconnected and cut off, so that the heating element 130 will not be heated, and then the smoke oil will not be atomized for the user to draw, that is, even if the user draws the electronic cigarette, no smoke will appear.
  • the unlocked state corresponds to the release of the child lock protection function. At this time, whether the smoke oil is atomized is controlled by whether to draw.
  • the child lock control unit 240 controls the power MOS tube M1 to be continuously turned on or intermittently turned on. Intermittent conduction means that the child lock control unit 240 outputs a square wave signal through a PWM mode or a PFM mode, and adjusts the duty cycle of the square wave signal to control the output power and output voltage.
  • the embodiment of the present application further subdivides the suction state through the first parameter information and the second preset parameter range, and divides it into a suction state with a smaller air pressure and a suction state with a smaller air pressure.
  • the number of puffs when the first parameter information is within the second preset parameter range is distinguished as a suction state with a smaller air pressure (heavy suction), and a second counting is performed, and the electronic cigarette enters the locked state only when the second count is greater than or equal to the second preset number within the second preset time.
  • the electronic cigarette can further distinguish whether the user is puffing the electronic cigarette normally or wants to trigger the locked state by puffing the electronic cigarette.
  • the electronic cigarette is not easy to confuse the two, which can reduce the probability of the user being mistakenly triggered to enter the locked state when puffing the electronic cigarette normally, and can reduce the user's use troubles.
  • the electronic cigarette can enter a locked state.
  • the electronic cigarette of this embodiment is locked for protection, it can prevent children from picking up the electronic cigarette and imitating the adult's puffing action, causing the electronic cigarette product to start atomizing, thereby improving the safety of electronic cigarette use.
  • this embodiment can obtain the first parameter information using the existing state detection unit 150 and airflow sensor 140, without the need to make major changes to the electronic cigarette, without increasing the hardware cost or increasing the hardware cost very little, thereby reducing the hardware cost of the electronic cigarette for locking protection, and solving the technical problem of high electronic cigarette locking cost in the prior art.
  • the child lock control method further includes: obtaining again information that the first parameter information is within the second preset parameter range, and adding 1 to the second count.
  • the second timing unit 216 and the second counting unit 215 do not stop working.
  • the electronic cigarette is turned into a non-inhalation state, thereafter, when the user inhales the electronic cigarette again, the first parameter information is obtained again in real time. If the second counting unit 215 obtains information that the first parameter information is within the second preset parameter range again, that is, the second counting unit 215 receives a valid parameter signal again, then the second counting unit 215 adds 1 to the original second count.
  • the original count value of the second counting unit 215 is 1, and the first parameter information is obtained again within the second preset parameter range, then the second count of the second counting unit 215 is added by 1, that is, the second count becomes 2.
  • the second timing unit 216 has been timing; if the second counting unit 215 does not obtain information that the first parameter information is within the second preset parameter range this time, that is, the second counting unit 215 does not receive a valid parameter signal, then the second count remains unchanged, and the second timing unit 216 is also timing.
  • the child lock control method further includes: if the second timer reaches a second preset time length, the second count is reset to zero, and the second timer is reset to zero.
  • the second timing counting judgment unit 217 has completed the judgment before the second timing unit 216 and the second counting unit 215 are reset to zero.
  • the child lock control method further includes: if the second timing is less than the second preset time length and the second count reaches the second preset number, the second count is reset to zero and the second timing is reset to zero.
  • the second timing counting judgment unit 217 if the second count obtained by the second timing counting judgment unit 217 reaches the second preset number, and the timing duration of the second timing unit 216 is less than the second preset duration, the second timing counting judgment unit 217 outputs a signal to the second timing unit 216 and the second counting unit 215, the second timing unit 216 is reset to zero, and the second counting unit 215 is reset to zero.
  • the signal can be the same as the child lock locking signal or a different signal.
  • the step of receiving the first parameter information specifically includes:
  • the first parameter information output by the receiving state detection unit 150 is received.
  • the state detection unit 150 itself can obtain the first parameter information, and the second parameter judgment unit 211 receives the first parameter information through the state detection unit 150.
  • This embodiment makes full use of the airflow sensor 140 and the state detection unit 150 in the existing electronic cigarette, and only needs to add the second parameter judgment unit 211.
  • the function to be realized by the second parameter judgment unit 211 can be realized by software, hardware, or a combination of software and hardware, so that no new hardware needs to be added or less new hardware is added, and the problem of the electronic cigarette mistakenly entering the locked state can be greatly reduced without increasing the cost or increasing the cost by a small amount, thereby improving the user's convenience.
  • the air pressure may drop momentarily during the inhalation state, causing the first parameter information to reach the second preset parameter range.
  • This momentary air pressure drop lasts for a very short time, usually once in a while, causing the second counting unit 215 to miscount, which may mistakenly trigger the electronic cigarette to enter the locked state, causing trouble for the user.
  • the step of triggering the second count specifically includes:
  • the child lock control circuit 200 also includes a third timing unit 212 and a third counting unit 213.
  • the third timing unit 212 and the third counting unit 213 are both connected to the second parameter judgment unit 211.
  • the third timing unit 212 and the third counting unit 213 obtain the first parameter information within the second preset parameter range, that is, when the third timing unit 212 receives a valid parameter signal, the third timing unit 212 starts a third timing, and the third timing unit 212 keeps timing until it is reset to zero, after which the third timing unit 212 stops timing; when the third counting unit 213 receives a valid parameter signal, the third counting unit 213 starts a third count, and also performs a third count this time, and the third count is 1 at this time.
  • S132 Determine whether the third count is greater than or equal to a third preset number within a third preset time period
  • the child lock control circuit 200 further includes a third timing counting judgment unit 214, which is connected to the third counting unit 213 and the third timing unit 212 respectively.
  • the third timing counting judgment unit 214 judges that the timing duration of the third timing unit 212 is within the third preset duration, and the third count of the third counting unit 213 is greater than or equal to the third preset number, the third timing counting judgment unit 214 outputs a first counting signal.
  • the third preset duration is generally 30ms-150ms, and the third preset duration is, for example, 30ms, 40ms, 50ms, 60ms, 70ms, 80ms, 90ms, 100ms, 110ms, 120ms, 130ms, 140ms, 150ms, etc., preferably 60ms-100ms.
  • the third preset number is an integer greater than or equal to 2, such as 2, 3, etc. In this embodiment, the third preset number is greater than or equal to 2, such as 2, 3, 4, 5, 6, etc.
  • the third timing counting judgment unit 214 is electrically connected to the third timing unit 212 and the third counting unit 213 in real time.
  • the third timing counting judgment unit 214 obtains that the third count reaches the third preset number and the third timing does not reach the third preset duration, the third timing counting judgment unit 214 outputs a first counting signal, or the third timing counting judgment unit 214 waits until the third timing reaches the third preset duration before outputting the first counting signal.
  • the third timing counting judgment unit 214 is connected to the third timing unit 212 and the third counting unit 213. When the third timing unit 212 reaches the third preset duration, the third timing unit 212 outputs a signal to the third timing counting judgment unit 214.
  • the third timing counting judgment unit 214 obtains the third count of the third counting unit 213 at this time, and then determines whether the third count is greater than or equal to the third preset number. If the third count is greater than or equal to the third preset number, the third timing counting judgment unit 214 outputs a first counting signal. If the third count is less than the third preset number, the third timing is reset to zero and the third count is set to zero.
  • the third timing and counting judgment unit 214 is connected to the second timing unit 216 and the second counting unit 215. If the judgment result of the third timing and counting judgment unit 214 is yes, the second timing unit 216 receives the first counting signal, the second timing unit 216 is triggered to start timing, and the second timing starts from 0; the second counting unit 215 receives the first counting signal, the second counting unit 215 is triggered to start counting, and the second counting unit 215 also counts this time, that is, the second count is 1 at this time.
  • the second counting unit 215 when the second counting unit 215 has not been triggered to start counting and the second timing unit 216 has not been triggered to start timing, if the judgment result of the third timing counting judgment unit 214 is no, that is, the third timing counting judgment unit 214 does not output the first counting signal, the second counting unit 215 maintains the original state of not counting and the second timing unit 216 maintains the original state of not timing; when the second counting unit 215 has been triggered to start counting (that is, the second count is at least 1) and the second timing unit 216 has been triggered to start timing, if the judgment result of the third timing counting judgment unit 214 is no, the second count maintains the original count, the second count does not increase, and the second timing continues to count.
  • the air flow crosstalk causes the air pressure in the air flow channel of the electronic cigarette to change in a short time
  • the condition that the third count is greater than or equal to the third preset number within the third preset time period will not be met, and the second count will not change, so the air flow crosstalk will not be misjudged as a situation where the user wants to enter the child lock protection, which can prevent the electronic cigarette from mistakenly entering the locked state and prevent trouble to the user.
  • This embodiment can avoid this situation and improve the user experience.
  • the second timing unit 216 counts.
  • the child lock control method further includes:
  • the state detection unit 150 includes a first parameter generation unit and a first parameter judgment unit.
  • the first parameter generation unit is connected to the first parameter judgment unit and the second parameter judgment unit 211 respectively.
  • the first parameter judgment unit receives the first parameter information.
  • the first parameter judgment unit judges whether the first parameter information is within the first preset parameter range. If the judgment result is yes, the first parameter judgment unit outputs the information that the electronic cigarette changes from a non-inhalation state to a suction state, that is, outputs a suction signal. If the judgment result is no, the first parameter judgment unit maintains the original signal output, such as outputting a non-inhalation signal and a blowing signal.
  • the first parameter judgment unit and the second parameter judgment unit 211 can be the same parameter judgment unit or different parameter judgment units.
  • the step of receiving the first parameter information specifically includes:
  • the second parameter determination unit 211 is connected to the state detection unit 150, and the second parameter determination unit 211 does not work before receiving the puff signal.
  • the second parameter determination unit 211 receives the puff signal, the second parameter determination unit 211 is triggered to start working, and at this time, the second parameter determination unit 211 receives the first parameter information. This arrangement is conducive to reducing the power consumption of the electronic cigarette.
  • S161 Obtaining information that the electronic cigarette changes from a smoking state to a non-smoking state
  • S162 Trigger the fifth timing and lock the second timing
  • the child lock control circuit 200 includes a fifth timing unit 221 and a fifth duration judgment unit 222, the fifth timing unit 221 is respectively connected to the first parameter judgment unit and the third timing and counting judgment unit 214, the fifth duration judgment unit 222 is respectively electrically connected to the fifth timing unit 221 and the second counting unit 215, and the second counting unit 215 is also electrically connected to the first parameter judgment unit.
  • the fifth timing unit 221 obtains the information that the electronic cigarette enters the non-smoking state from the inhalation state after receiving the first counting signal, and the fifth timing unit 221 is triggered to start timing.
  • the second counting unit 215 also obtains the information that the electronic cigarette enters the non-smoking state from the inhalation state after receiving the first counting signal.
  • the second counting unit 215 is locked, that is, it enters the counting locked state. After the second counting unit 215 is locked, even if it receives the first counting signal again, the count will not be increased, that is, in the locked state, the second counting unit 215 maintains the original count value and does not increase the count value.
  • the second counting unit 215 receives the first counting signal and the count is increased by one.
  • the fifth timing unit 221 is always timing (even if it is changing from the non-inhalation state to the inhalation state)
  • the fifth duration judgment unit 222 judges whether the timing duration of the fifth timing unit 221 is greater than or equal to the fifth preset duration.
  • the fifth duration judgment unit 222 judges that the timing of the fifth timing unit 221 reaches the fifth preset duration, the fifth timing unit 221 will stop timing and reset to zero, that is, the fifth timing unit 221 is reset to zero.
  • the fifth duration judgment unit outputs a counting unlocking signal to the second counting unit 215, the second counting unit 215 is unlocked from counting, the second counting unit 215 enters the counting unlocking state, and the third timing unit 212, the third counting unit 213, and the second timing unit 216 are also reset to zero.
  • the second counting unit 215 obtains the first counting signal again, and the second counting unit 215 can perform a counting plus one action, that is, the second count is increased by one on the original basis.
  • the fifth timing unit 221 when the fifth timing unit 221 does not receive the first counting signal, or the fifth timing unit 221 does not obtain the information that the electronic cigarette enters the non-smoking state from the inhalation state, the fifth timing unit 221 will not trigger the start of timing.
  • the step of triggering the second count it also includes: judging whether the duration of the first parameter information being within the second preset parameter range is greater than or equal to the seventh preset duration. If the judgment result is yes, the second count and the second timing are reset to zero. In this embodiment, the duration of the re-inhalation is judged. If the duration of the re-inhalation is greater than or equal to the seventh preset duration, the second count and the second timing are reset to zero, the second count is 0, and the second timing stops counting and is reset to zero.
  • the seventh preset duration is greater than or equal to 400ms, for example, 400ms, 450ms, 500ms, 600ms, etc.
  • the electronic cigarette after the electronic cigarette enters the child lock locked state, the user cannot smoke the electronic cigarette normally.
  • the electronic cigarette needs to be unlocked.
  • the unlocking method can be the same as the locking method, and the previous description can be referred to, which will not be repeated here.
  • the child lock control method further includes:
  • the child lock control circuit 200 includes a fourth parameter judgment unit 231, which is used to receive the first parameter information.
  • the fourth parameter judgment unit 231 and the second parameter judgment unit 211 can be different judgment units or the same parameter judgment unit.
  • the air pressure in the airflow channel is relatively large, which will be higher than the air pressure in the non-suction and blowing state, that is, the current air pressure value will be greater than the reference air pressure value, and the distance between the two electrodes of the capacitor of the airflow sensor 140 will be larger than that in the non-suction and blowing state, so that the current capacitance value will be smaller than that in the non-suction and blowing state, the current frequency value will be larger than that in the non-suction and blowing state, and the current count value will be greater than the reference count value.
  • the fourth parameter determination unit 231 determines whether the first parameter information is within a fourth preset parameter range, where the fourth preset parameter range is pre-calculated or pre-stored in the fourth parameter determination unit 231 .
  • the fourth preset parameter range corresponds to the capacitance value range
  • the upper limit value of the fourth preset parameter range will be less than the lower limit value corresponding to the first preset parameter range
  • the lower limit value of the fourth preset parameter range may be unlimited or limited as needed
  • the first parameter information is the current frequency value or the current count value
  • the fourth preset parameter range corresponds to the frequency value range or the count value range
  • the lower limit value of the fourth preset parameter range will be greater than the upper limit value corresponding to the first preset parameter range
  • the upper limit value of the fourth preset parameter range may be unlimited or limited as needed
  • the first parameter is the ratio of the current capacitance value to the reference capacitance value, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value, the difference between the current capacitance value and the reference capacitance value, the difference between the current frequency value and the reference frequency value, the difference between the current count value and the reference count value, the ratio
  • the child lock control circuit 200 includes a fourth timing unit 232 and a fourth counting unit 233.
  • the fourth timing unit 232 is electrically connected to the fourth parameter judgment unit 231, and the fourth counting unit 233 is electrically connected to the fourth parameter judgment unit 231. If the judgment result of the fourth parameter judgment unit 231 is yes, the fourth parameter judgment unit 231 outputs a blowing signal, the fourth timing unit 232 is triggered to start timing, the fourth timing unit 232 starts timing from 0, the fourth counting unit 233 is triggered to start counting, and also counts this time, that is, the count of the fourth counting unit 233 is 1 at this time; if the judgment result of the fourth parameter judgment unit 231 is no, the fourth parameter judgment unit 231 will not output a blowing signal, the fourth timing unit 232 maintains the original state, and the fourth counting unit 233 maintains the original state.
  • the fourth timing unit 232 when the fourth timing unit 232 is triggered to start timing, the fourth timing unit 232 will continue to count until the fourth timing unit 232 is reset to zero, and then the fourth timing unit 232 stops timing.
  • the blowing signal is also output to the child lock control unit 240 .
  • the fourth timing unit 232 when the fourth timing unit 232 is triggered to time and the fourth counting unit 233 is triggered to count, when the fourth parameter judgment unit 231 receives the first parameter information again and once again determines that the first parameter information is within the fourth preset parameter range, the fourth count of the fourth counting unit 233 is increased by 1, and the fourth count is 2 at this time. At the same time, the fourth timing unit 232 continues to perform the fourth timing.
  • S24 Determine whether a fourth count is greater than or equal to a fourth preset number within a fourth preset time period, wherein the fourth preset number is greater than or equal to 2;
  • the child lock control circuit 200 further includes a fourth timing counting judgment unit 234, which is electrically connected to the fourth counting unit 233 and the fourth timing unit 232, respectively.
  • the fourth timing counting judgment unit 234 judges that the timing duration of the fourth timing unit 232 is within the fourth preset duration, and the fourth counting unit 233 counts greater than or equal to the fourth preset number, the fourth timing counting judgment unit 234 outputs a child lock unlocking signal.
  • the fourth preset duration is generally less than or equal to 5s, such as 1s, 1.5s, 1.8s, 2s, 2.3s, 2.5s, 2.8s, 3s, 4s, 5s, etc., preferably 2s.
  • the fourth preset number is greater than or equal to 2, such as 2, 3, 4, 5, 6, etc., preferably 3, and the fourth preset number is generally less than or equal to 6 times, which is convenient for user operation.
  • the fourth timing counting judgment unit 234 is connected to the fourth timing unit 232 and the fourth counting unit 233 in real time.
  • the fourth timing counting judgment unit 234 obtains that the fourth counting unit 233 reaches the fourth preset number and the fourth timing unit 232 does not reach the fourth preset duration, the fourth timing counting judgment unit 234 outputs the child lock unlocking signal, or the fourth timing counting judgment unit 234 waits until the fourth timing unit 232 timing duration reaches the fourth preset duration before outputting the child lock unlocking signal.
  • the fourth timing counting judgment unit 234 is connected to the fourth timing unit 232 and the fourth counting unit 233.
  • the fourth timing unit 232 When the fourth timing unit 232 reaches the fourth preset duration, the fourth timing unit 232 outputs a signal to the fourth timing counting judgment unit 234.
  • the fourth timing counting judgment obtains the count of the fourth counting unit 233 at this time, and then determines whether the fourth count is greater than or equal to the fourth preset number. If it is greater than or equal to the fourth preset number, the child lock unlocking signal is output. If it is less than the fourth preset number, the original signal output is maintained.
  • the fourth timing and counting judgment unit 234 if the result of the judgment of the fourth timing and counting judgment unit 234 is yes, that is, the number counted within the fourth preset time length is greater than or equal to the fourth preset number, the fourth timing and counting judgment unit 234 outputs a child lock unlocking signal to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter an unlocked state.
  • the unlocked state when the electronic cigarette is in a puffing state, the power MOS tube M1 is continuously turned on or intermittently turned on, that is, at this time, the power MOS tube M1 is controlled by whether the user puffs.
  • the child lock control unit 240 when the electronic cigarette is in a puffing state, the child lock control unit 240 continuously outputs a low-level signal or intermittently outputs a low-level signal to the power MOS tube M1, and the power MOS tube M1 is continuously turned on or intermittently turned on.
  • the heating element 130 is heated to atomize the smoke oil, so that the atomized smoke oil can be inhaled by the user.
  • unlocking is achieved by timing and counting the blowing, and an effective unlocking effect is achieved without adding Bluetooth/NFC and other designs and mechanical structures, thereby reducing the hardware cost of unlocking the electronic cigarette and solving the technical problem of high unlocking cost of electronic cigarettes in the prior art.
  • the unlocking method of the present application is not easy to be noticed by children, and the electronic cigarette is not easy to be unlocked by children after being locked, which is conducive to improving the safety of the electronic cigarette.
  • judging the suction state it is also possible to judge whether to blow by the current count value.
  • the child lock control method further includes: obtaining again information that the first parameter information is within a fourth preset parameter range, and adding 1 to the fourth count.
  • the fourth timing unit 232 and the fourth counting unit 233 do not stop working, and the fourth timing unit 232 and the fourth counting unit 233 again (again means that the value of the fourth count in the fourth counting unit 233 is at least 1) obtain information that the first parameter information is within the fourth preset parameter range, then the fourth counting unit 233 adds 1 on the basis of the original count, for example, the original count value of the fourth counting unit 233 is 1, and the information that the first parameter information is within the fourth preset parameter range is obtained again, that is, the information that the state is changed from no suction and blowing to blowing state is received, then the count of the fourth counting unit 233 is added by 1, that is, the count value becomes 2; the fourth timing unit 232 continues to work and continuously time, that is, after the fourth timing unit 232 triggers the timing, as long as the fourth timing unit 232 does not receive a signal to stop timing or reset, the fourth timing unit 232
  • the child lock control method further includes: if the timing duration of the fourth timing unit 232 reaches a fourth preset duration, the fourth counter is reset to zero, and the fourth timing unit 232 is reset to zero.
  • the fourth timing counting judgment unit 234 determines whether the timing duration of the fourth timing unit 232 reaches the fourth preset duration. If the fourth timing unit 232 reaches the fourth preset duration, the fourth timing unit 232 is reset to zero, and at the same time the fourth timing unit 232 sends a signal to the fourth counting unit 233, and the fourth counting unit 233 is reset to zero, that is, at this time the fourth timing unit 232 stops timing, and the fourth counting unit 233 stops counting, and the timing duration is reset to zero, the fourth count is reset to zero, and the fourth timing unit 232 and the fourth counting unit 233 are restored to the initial state to facilitate subsequent detection.
  • the child lock control method further includes: if the timing duration of the fourth timing unit 232 is less than the fourth preset duration and the fourth count reaches the fourth preset parameter range, the fourth count is reset to zero and the fourth timing unit 232 is reset to zero.
  • the fourth timing counting judgment unit 234 outputs a signal to the fourth timing unit 232 and the fourth counting unit 233, the fourth timing unit 232 is reset to zero, and the fourth counting unit 233 is reset to zero.
  • the signal can be the same as the child lock unlocking signal, or it can be a different signal.
  • FIG. 22 shows a module diagram of a child lock control circuit 200 of the electronic cigarette provided in an embodiment of the present application. For ease of explanation, only the part related to the embodiment of the present application is shown.
  • the child lock control circuit 200 includes:
  • a state detection unit 150 which is electrically connected to the airflow sensor 140 and is further used to output first parameter information
  • a second parameter determination unit 211 which is used to receive the first parameter information and to determine whether the first parameter information is within a second preset parameter range, wherein the second preset parameter range is within the first preset parameter range, and the first preset parameter range is used to determine whether the electronic cigarette is in a puffing state;
  • a second timing unit 216 which is used to trigger a second timing if the judgment result of the second parameter judgment unit 211 is yes;
  • a second timing counting judgment unit 217 which is used to judge whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control unit 240 is used to control the electronic cigarette to enter a locked state if the judgment results of the second timing and counting judgment unit 217 are all yes. In the locked state, the power MOS tube M1 of the electronic cigarette remains disconnected and cut off.
  • the first parameter information includes the current capacitance value, the current frequency value, the current count value, the ratio of the current capacitance value to the reference capacitance value, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value, the difference between the current capacitance value and the reference capacitance value, the difference between the current frequency value and the reference frequency value, the difference between the current count value and the reference count value, the ratio of the difference between the current capacitance value and the reference capacitance value to the reference oscillation capacitance value, the ratio of the difference between the current frequency value and the reference frequency value to the reference frequency value, or the ratio of the difference between the current count value and the reference count value to the reference count value.
  • the lower limit value of the second preset parameter range is greater than the lower limit value of the first preset parameter range; or, when the first parameter information is the current frequency value or the ratio of the current frequency value to the reference frequency value, the upper limit value of the second preset parameter range is less than the upper limit value of the first preset parameter range; or, when the first parameter information is the current count value or the ratio of the current count value to the reference count value, the upper limit value of the second preset parameter range is less than the upper limit value of the second preset parameter range of
  • the child lock control circuit 200 includes a third timing unit 212, a third counting unit 213 and a third timing and counting judgment unit 214, wherein the third timing unit 212 and the third counting unit 213 are respectively connected to the second parameter judgment unit 211.
  • the second parameter judgment unit 211 outputs a parameter valid signal
  • the third timing unit 212 is triggered to perform the third timing
  • the third counting unit 213 is triggered to perform the third counting
  • the third timing and counting judgment unit 214 is connected to the third timing unit 212 and the third counting unit 213.
  • the third timing and counting judgment unit 214 is used to judge whether the third count is greater than or equal to the third preset number within the third preset time length.
  • the second timing unit 216 is triggered to perform the second timing, and the second counting unit 215 is triggered to perform the second counting.
  • the electronic cigarette is in the inhalation state during the third preset time length.
  • the state detection unit 150 includes a first parameter generating unit and a first parameter judging unit.
  • the first parameter generating unit is connected to the first parameter judging unit. After the first parameter generating unit generates the first parameter information, the first parameter judging unit is used to receive the first parameter information and judge whether the first parameter information is within the first preset parameter range. If the judgment result of the first parameter judging unit is yes, the first parameter judging unit outputs the information that the electronic cigarette changes from the non-smoking state to the smoking state, that is, outputs the smoking information.
  • the child lock control circuit 200 also includes a fifth timing unit 221 and a fifth duration judgment unit 222, wherein the fifth timing unit 221 is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state and obtain information for a second count, the fifth timing unit 221 starts the fifth timing, the second counting unit 215 performs a second count and is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state, the second counting unit 215 is locked, and the fifth duration judgment unit 222 is used to judge whether the fifth timing of the fifth timing unit 221 is greater than or equal to a fifth preset duration. If the judgment result of the fifth duration judgment unit 222 is yes, the fifth duration judgment unit 222 is used to output a counting unlocking signal to the second counting unit 215, and the second counting unit 215 is unlocked.
  • the fifth timing unit 221 is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state and obtain information
  • the second parameter determination unit 211 is connected to the state detection unit 150 , the state detection unit 150 is electrically connected to the capacitive airflow sensor 140 , and the second parameter determination unit 211 is used to receive the first parameter information output by the state detection unit 150 .
  • the child lock control circuit 200 includes a locking unit, and the locking unit includes a second timing unit 216, a second counting unit 215, a second timing and counting judgment unit 217, a second parameter judgment unit 211, and the like.
  • the child lock control circuit 200 includes an unlocking unit, which includes a fourth parameter judgment unit 231, a fourth timing unit 232, a fourth counting unit 233, and a fourth timing and counting judgment unit 234, wherein the fourth parameter judgment unit 231 is used to receive the first parameter information and judge whether the first parameter information is within a fourth preset parameter range, and the fourth preset parameter range is used to judge whether the electronic cigarette is in a blowing state; if the judgment result of the fourth parameter judgment unit 231 is yes, the fourth timing unit 232 is triggered to perform a fourth timing, the fourth counting unit 233 is triggered to perform a fourth counting, and the fourth timing and counting judgment unit 234 is used to judge whether the fourth count is greater than or equal to a fourth preset number within a fourth preset time length, and if the judgment result of the fourth timing and counting judgment unit 234 is yes, a child lock unlocking signal is output to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter an unlocking state,
  • the fourth counting unit 233 is further used to obtain information again that the first parameter information is within the fourth preset parameter range, and the fourth count is increased by 1.
  • the fourth timing unit 232 is further configured to reset the fourth count to zero if the timing duration reaches a fourth preset duration, and reset the fourth timing unit 232 to zero.
  • the fourth timing counting judgment unit 234 is further configured to reset the fourth count to zero if the timing duration is less than the fourth preset duration and the fourth count reaches a fourth preset number, and reset the fourth timing unit 232 to zero.
  • the technicians in the relevant field can clearly understand that for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example for illustration.
  • the above-mentioned function allocation can be completed by different functional units and modules as needed, that is, the internal structure of the device can be divided into different functional units or modules to complete all or part of the functions described above.
  • the functional units and modules in the embodiment can be integrated in a processing unit, or each unit can exist physically separately, or two or more units can be integrated in one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or in the form of software functional units.
  • FIG23 is a schematic diagram of a child lock control device 400 provided in an embodiment of the present application.
  • the child lock control device 400 of this embodiment includes: at least one processor 420 (only one is shown in FIG23 ), a memory 410, and a computer program stored in the memory 410 and executable on the processor 420.
  • the processor 420 executes the computer program, the steps in the above-mentioned child lock control method embodiment are implemented.
  • FIG23 is merely an example of a child lock control device 400 and does not constitute a limitation on the child lock control device 400.
  • the processor 420 may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the memory 410 may be an internal storage unit of the child lock control device 400, such as a hard disk or memory of the child lock control device 400. In other embodiments, the memory 410 may also be an external storage device of the child lock control device 400, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), etc. equipped on the child lock control device 400. Further, the memory 410 may also include both the internal storage unit of the child lock control device 400 and an external storage device.
  • a plug-in hard disk such as a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), etc. equipped on the child lock control device 400.
  • the memory 410 may also include both the internal storage unit of the child lock control device 400 and an external storage device.
  • the memory 410 is used to store an operating system, an application program, a boot loader (BootLoader), data, and other programs, such as the program code of the computer program.
  • the memory 410 may also be used to temporarily store data that has been output or is to be output.
  • the child lock control device 400 is, for example, an electronic cigarette.
  • the embodiment of the present application further provides a storage medium, which stores a computer program.
  • a storage medium which stores a computer program.
  • An embodiment of the present application provides a computer program product.
  • the terminal can implement the steps in the above-mentioned child lock control method embodiment when executing the computer program product.
  • the electronic cigarette includes the above-mentioned child lock control circuit 200
  • the electronic cigarette also includes a battery 110, a power MOS tube M1 and a heating element 130, the heating element 130 and the power MOS tube M1 are connected in series to form a heating branch, and the two ends of the heating branch are electrically connected to the positive and negative electrodes of the battery 110; it also includes an airflow sensor 140, wherein the control end of the power MOS tube M1 and the airflow sensor 140 are both electrically connected to the child lock control circuit 200, and the airflow sensor 140 is electrically connected to the state detection unit 150 of the child lock control circuit 200.
  • the fourth embodiment of the present application provides an electronic cigarette, please refer to Figures 24 and 29, the electronic cigarette includes a battery 110, a child lock control circuit 200, a heating element 130, an airflow sensor 140, a power MOS tube M1, etc., and the child lock control circuit 200 includes a state detection unit 150.
  • the child lock control circuit 200 is electrically connected to the battery 110, the airflow sensor 140, the power MOS tube M1, etc.
  • the battery 110 is, for example, a rechargeable battery such as a lithium battery, a nickel-cadmium battery, a nickel-hydrogen battery, etc., and the battery 110 can also be a non-rechargeable battery;
  • the state detection unit 150 is electrically connected to the airflow sensor 140, and the state detection unit 150 is used to determine whether the electronic cigarette is inhaled and/or blown, and output a corresponding signal.
  • a specific implementation of the state detection unit 150 can refer to the prior application in the art, or other conventional state detection units known to those skilled in the art.
  • the airflow sensor 140 is a capacitive airflow sensor 140, such as a capacitive MEMS sensor or a capacitive microphone, etc.
  • the airflow sensor 140 is located in the airflow channel of the electronic cigarette, and the airflow sensor 140 includes a capacitor.
  • the state detection unit 150 determines whether the electronic cigarette is in a suction state, a blowing state, or a non-suction and blowing state (corresponding to the state when the user is not using it) by changes in the capacitance value of the capacitor.
  • the child lock control circuit 200 is electrically connected to the control end of the power MOS tube M1.
  • the child lock control circuit 200 is used to control whether the power MOS tube M1 is turned on.
  • the power MOS tube M1 is connected in series with the heating element 130 to form a series branch.
  • the power MOS tube M1 is a PMOS tube for example.
  • the power MOS tube M1 can also be an NMOS tube.
  • the power MOS tube M1 and the child lock control circuit 200 can be located in the same chip, which is generally called a system control chip.
  • the present application is not limited thereto. In other embodiments of the present application, the power MOS tube M1 and the child lock control circuit 200 may be located on different chips.
  • the heating element 130 is, for example, a heating wire, a heating wire, a ceramic seat containing a heating wire or a heating wire, or other conventional heating elements 130.
  • the heating element 130 when the child lock control circuit 200 outputs a low level to control the power MOS tube M1 to be turned on, the heating element 130 is heated to atomize the e-liquid, and when the child lock control circuit 200 outputs a high level to control the power MOS tube M1 to be turned off, the heating element 130 stops heating.
  • the state detection unit 150 is electrically connected to the airflow sensor 140; when the user inhales the electronic cigarette or blows air into the electronic cigarette, the air pressure value between the two electrode sheets of the capacitor of the airflow sensor 140 will change relative to the non-inhalation and blowing state (when not in use), causing the distance between the two electrode sheets to change accordingly, thereby causing the capacitance value of the airflow sensor 140 to change, and the state detection unit 150 converts the capacitance value change into a frequency value change and a count value change, and the state detection unit 150 outputs a corresponding signal, so that the electronic cigarette can determine whether it is inhaled and in the inhalation state, in the blowing state, or in the non-inhalation and blowing state.
  • the inventor of the present application proposed the following solution after a large number of experiments: the puffing state of the electronic cigarette is further subdivided into a puffing state with even smaller air pressure and a puffing state with even smaller air pressure.
  • the puffing state with even smaller air pressure (the user's suction force is smaller) generally corresponds to the user's normal puffing, and the puffing state with even smaller air pressure (the user's suction force is larger) corresponds to the puffing that the user wants to enter a locked state.
  • the electronic cigarette Regardless of whether it is in a puffing state with even smaller air pressure or a puffing state with even larger air pressure, the electronic cigarette will be judged as a puffing state.
  • the present application determines whether it is in a puffing state with even smaller air pressure by whether the first parameter information is within the second preset parameter range.
  • the first parameter information characterizes the air pressure condition in the airflow channel of the electronic cigarette, and the air pressure condition includes, for example, the size of the air pressure, the change of the air pressure, etc.
  • the first parameter information is in a corresponding relationship with the air pressure in the airflow channel.
  • the first parameter information when the first parameter information is within the second preset parameter range, it represents that the electronic cigarette is in a suction state with a lower air pressure.
  • the first parameter information is outside the second preset parameter range and within the first preset parameter range, it represents that the electronic cigarette is in a suction state with a lower air pressure.
  • the second preset parameter range is within the first preset parameter range, that is, as long as the first parameter information is within the second preset parameter range, the first parameter information must be within the first preset parameter range, indicating that the electronic cigarette is in a suction state and is a heavy suction.
  • the first parameter information may be within the second preset parameter range (heavy suction) or may not be within the second preset parameter range (normal suction).
  • the first parameter information includes the current capacitance value, the current frequency value, the current count value, the ratio of the current capacitance value to the reference capacitance value, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value, the difference between the current capacitance value and the reference capacitance value, the difference between the current frequency value and the reference frequency value, the difference between the current count value and the reference count value, the ratio of the difference between the current capacitance value and the reference capacitance value to the reference oscillation capacitance value, the ratio of the difference between the current frequency value and the reference frequency value to the reference frequency value, or the ratio of the difference between the current count value and the reference count value to the reference count value, etc., or a deformation of the current capacitance value, the current frequency value or the current count value.
  • the electrode sheet of the capacitor is not deformed, and the current air pressure value in the electronic cigarette airflow channel is atmospheric pressure, which is the reference air pressure value, and the current capacitance value is the reference capacitance value.
  • the reference capacitance value is acquired by collection or conversion, and the corresponding current frequency value is the reference frequency value.
  • the number of oscillation cycles within the preset counting time is the current counting value, which is also the reference counting value; in addition, the reference air pressure value, the reference capacitance value, the reference frequency value, and the reference counting value can also be preset.
  • the distance between the two electrode plates of the capacitor of the airflow sensor 140 will increase relative to the non-blow state, the current capacitance value of the airflow sensor 140 will decrease, the current frequency value will increase, and the current count value will be larger than the reference count value.
  • the second preset parameter range corresponds to the capacitance value range
  • the lower limit value of the second preset parameter range is greater than the lower limit value of the first preset parameter range
  • the upper limit value of the second preset parameter range is less than or equal to the upper limit value of the first preset parameter range.
  • the second preset parameter range is (a, A]
  • the first preset parameter range is (b, B], wherein a is greater than b, A is less than or equal to B, and A, a, B, and b are positive numbers.
  • the second preset parameter range corresponds to the difference between the current capacitance value and the reference capacitance value.
  • Value range, ratio range, the lower limit of the second preset parameter range is greater than the lower limit of the first preset parameter range.
  • the upper limit of the second preset parameter range is not limited, that is, the current capacitance value is greater than a and falls within the second preset parameter range.
  • the second preset parameter range corresponds to the frequency value range, the count value range or the ratio range
  • the upper limit of the second preset parameter range is less than the upper limit of the first preset parameter range
  • the lower limit of the second preset parameter range is greater than or equal to the lower limit of the first preset parameter range
  • the child lock control circuit 200 of this embodiment also includes a second parameter judgment unit 211, and the second parameter judgment unit 211 is connected to the state detection unit 150.
  • the state detection unit 150 knows the first parameter information, and the state detection unit 150 itself knows the current capacitance value, the current frequency value or the current count value, so that the state detection unit 150 outputs the first parameter information to the second parameter judgment unit 211.
  • the second parameter judgment unit 211 is used to receive the first parameter information and determine whether the first parameter information is within the second preset parameter range, so as to distinguish whether the user is inhaling normally or entering the locked state. After such distinction, the probability of the user mistakenly judging that the child lock locked state is entered during normal inhalation can be reduced.
  • the embodiment of the present application provides a child lock control method for an electronic cigarette, comprising the following steps:
  • S11 Receive first parameter information, wherein the first parameter information is used to characterize the air pressure in the airflow channel of the electronic cigarette
  • the second parameter determination unit 211 is connected to the state detection unit 150 , the state detection unit 150 generates first parameter information and outputs the first parameter information, and the second parameter determination unit 211 receives the first parameter information.
  • the state detection unit 150 itself can identify whether the electronic cigarette is in the suction state or the blowing state.
  • the state detection unit 150 identifies that the electronic cigarette is in the suction state through the airflow sensor 140. At this time, the state detection unit 150 determines that the first parameter information is within the first preset parameter range, and the state detection unit 150 outputs a suction signal.
  • the state detection unit 150 identifies that the electronic cigarette is in the blowing state through the airflow sensor 140. At this time, the state detection unit 150 outputs a blowing signal.
  • the state detection unit 150 identifies that the electronic cigarette is in the non-inhalation and blowing state, and the state detection unit 150 outputs a non-inhalation and blowing signal.
  • the child lock control circuit 200 receives the output signal of the state detection unit 150 to obtain the state of the electronic cigarette.
  • the state detection unit 150 changes from outputting the non-inhalation and blowing signal to outputting the suction signal or the blowing signal
  • the child lock control circuit 200 obtains that the electronic cigarette changes from the non-inhalation and blowing state to the suction state or the blowing state.
  • the non-suction state includes a non-suction and blowing state and a blowing state.
  • S12 determining whether the first parameter information is within a second preset parameter range, wherein the second preset parameter range is within the first preset parameter range, and the first preset parameter range is used to determine whether the electronic cigarette is in a puffing state;
  • the second parameter determination unit 211 determines whether the first parameter information is within a second preset parameter range, where the second preset parameter range is pre-calculated or pre-stored in the second parameter determination unit 211 .
  • the child lock control circuit 200 further includes a child lock control unit 240, which is electrically connected to the second parameter judgment unit 211. If the judgment result of the second parameter judgment unit 211 is yes, that is, the first parameter information is within the second preset parameter range, the second parameter judgment unit 211 outputs a child lock lock signal to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter a locked state, in which the power MOS tube M remains disconnected. In this embodiment, the child lock control unit 240 continuously outputs a high level signal to the power MOS tube M, and the power MOS tube M remains cut off. In this embodiment, the child lock control unit 240 includes a trigger and a switch control unit.
  • the trigger is used to maintain the child lock locking signal and the subsequent child lock unlocking signal.
  • the trigger is, for example, an SR trigger, etc.
  • the switch control unit is electrically connected to the trigger and the state detection unit 150 respectively.
  • the switch control unit is, for example, an AND gate, a NAND gate, an OR gate, or a NOR gate, etc.
  • the switch control unit includes an NAND gate, and the two input ends of the NAND gate are respectively connected to the output end of the trigger and an output end of the state detection unit 150.
  • the child lock locking signal keeps the output of the trigger at a low level, so that it remains at a high level after passing through the NAND gate (at this time, the state detection unit 150 outputs a suction signal, and the suction signal is, for example, a high level), and the power MOS tube M remains cut off; the child lock unlocking signal keeps the output of the trigger at a high level, so that the output of the NAND gate is affected by the output of the state detection unit 150.
  • the state detection unit 150 determines that the user inhales the electronic cigarette, the state detection unit 150 outputs a suction signal to the NAND gate, and the suction signal is high.
  • the switch control unit controls the power MOS tube M to be continuously turned on or intermittently turned on (for example, PWM, PFM control mode). If the determination result of the second parameter determination unit 211 is no, that is, the first parameter information is not within the second preset parameter range, the original child lock state of the electronic cigarette is maintained.
  • the child lock state of the electronic cigarette is divided into a locked state and an unlocked state, wherein the locked state corresponds to the child lock protection function.
  • the child lock control unit 240 continues to control the power MOS tube M1 to remain disconnected and cut off, so that the heating element 130 will not be heated, and then the smoke oil will not be atomized for the user to draw, that is, even if the user draws the electronic cigarette, no smoke will appear.
  • the unlocked state corresponds to the release of the child lock protection function. At this time, whether the smoke oil is atomized is controlled by whether to draw.
  • the child lock control unit 240 controls the power MOS tube M1 to be continuously turned on or intermittently turned on. Intermittent conduction means that the child lock control unit 240 outputs a square wave signal through a PWM mode or a PFM mode, and adjusts the duty cycle of the square wave signal to control the output power and output voltage.
  • the electronic cigarette by receiving the first parameter information; judging whether the first parameter information is within the second preset parameter range, if the judgment result is yes, the electronic cigarette is controlled to enter the locked state.
  • the embodiment of the present application further subdivides the suction state through the first parameter information and the second preset parameter range, and divides it into a suction state with a smaller air pressure and a suction state with a smaller air pressure.
  • the number of suctions when the first parameter information is within the second preset parameter range is distinguished as a suction state with a smaller air pressure (re-suction), and the electronic cigarette is made to enter the locked state.
  • the electronic cigarette can further distinguish whether the user is normally smoking the electronic cigarette or wants to trigger the locked state by smoking the electronic cigarette.
  • the electronic cigarette is not easy to confuse the two, which can reduce the probability of the user being mistakenly triggered to enter the locked state when smoking the electronic cigarette normally, and can reduce the user's use troubles. Moreover, by re-suctioning to realize the electronic cigarette entering the locked state, the electronic cigarette of this embodiment can prevent children from picking up the electronic cigarette and imitating the adult's suction action to cause the electronic cigarette product to start atomization after the locking protection, thereby improving the safety of electronic cigarette use.
  • this embodiment can obtain the first parameter information by using the existing state detection unit 150 and the airflow sensor 140, without major changes to the electronic cigarette, without increasing the hardware cost or with very little increased hardware cost, thereby reducing the hardware cost of locking the electronic cigarette for protection and solving the technical problem of high locking cost of the electronic cigarette in the prior art.
  • the embodiment of the present application sets the suction force of the user to suck the electronic cigarette to be relatively large, that is, the current air pressure value in the electronic cigarette airflow channel is relatively low.
  • the ratio of the upper limit value of the second preset parameter range to the upper limit value of the first preset parameter range is less than or equal to 85%, preferably less than or equal to 70%.
  • the upper limit value of the first preset parameter range is 970 (taking the count value as an example for explanation), and the reference count value is 1000.
  • the upper limit value of the second preset parameter range is less than or equal to 824, which is obviously much smaller than the reference count value.
  • the user's suction force is relatively heavy to reach this range, so the probability of false triggering can be reduced;
  • the ratio of the lower limit value of the second preset parameter range to the lower limit value of the first preset parameter range is greater than or equal to 115%, preferably greater than or equal to 130%.
  • the upper limit value of the second preset parameter range is less than or equal to 85%.
  • the lower limit value of the second preset parameter range is greater than or equal to 115%. In other embodiments of the present application, when the first parameter information is the ratio of the difference between the current capacitance value and the reference capacitance value to the reference oscillation capacitance value, the ratio of the difference between the current frequency value and the reference frequency value to the reference frequency value, or the ratio of the difference between the current count value and the reference count value to the reference count value, the lower limit value of the second preset parameter range is greater than or equal to 15%.
  • the step of receiving the first parameter information specifically includes:
  • the first parameter information output by the receiving state detection unit 150 is received.
  • the state detection unit 150 itself can obtain the first parameter information, and the second parameter judgment unit 211 receives the first parameter information through the state detection unit 150.
  • This embodiment makes full use of the airflow sensor 140 and the state detection unit 150 in the existing electronic cigarette, and only needs to add the second parameter judgment unit 211.
  • the function to be realized by the second parameter judgment unit 211 can be realized by software, hardware, or a combination of software and hardware, so that no new hardware needs to be added or less new hardware is added, and the problem of the electronic cigarette mistakenly entering the locked state can be greatly reduced without increasing the cost or increasing the cost by a small amount, thereby improving the user's convenience.
  • the first parameter information can also be the current air pressure value, the ratio of the current air pressure value to the reference air pressure value, the difference between the current air pressure value and the reference air pressure value, or the ratio of the difference between the current air pressure value and the reference air pressure value to the reference air pressure value.
  • the second preset parameter range corresponds to the air pressure value range, ratio range, and difference range.
  • the upper limit value of the second preset parameter range is less than the upper limit value of the first preset parameter range.
  • the first parameter information is the current air pressure value.
  • the second preset parameter range is (a, A], and the second preset parameter range is (b, B], for example, the reference air pressure value is the ambient atmospheric pressure, for example, the ambient atmospheric pressure is 1 standard atmospheric pressure, wherein A is less than B, B is less than the ambient atmospheric pressure, a is greater than or equal to b, and A, a, B, and b are positive numbers.
  • A is 500 Pa less than the ambient atmospheric pressure
  • B is 300 Pa less than the ambient atmospheric pressure.
  • A is 500 Pa, 600 Pa, 800 Pa, 1000 Pa, 2000 Pa, 3000 Pa, or less than the ambient atmospheric pressure.
  • the lower limit value of the second preset parameter range is not limited, that is, when the current air pressure value is less than A, it falls into the second preset parameter range. range.
  • the first parameter information is the difference between the current air pressure value and the reference air pressure value or the ratio of the difference between the current air pressure value and the reference air pressure value to the reference air pressure value
  • the lower limit of the second preset parameter range is greater than the lower limit of the first preset parameter range
  • the upper limit of the second preset parameter range is less than or equal to the upper limit of the first preset parameter range.
  • the ratio of the upper limit of the second preset parameter range to the upper limit of the first preset parameter range is less than or equal to 85%, preferably less than or equal to 70%, 60%.
  • the upper limit of the second preset parameter range is less than or equal to 85%.
  • the lower limit of the second preset parameter range is greater than or equal to 15%.
  • S111 Obtaining a current capacitance value, a current frequency value, or a current count value
  • S112 searching a pre-stored capacitance value-pressure value table according to the current capacitance value, searching a pre-stored frequency value-pressure value table according to the current frequency value, or searching a pre-stored count value-pressure value table according to the current count value;
  • the child lock control circuit 200 in order to obtain the current air pressure value in the air flow channel of the electronic cigarette, also includes an air pressure acquisition unit, the air pressure acquisition unit is connected to the state detection unit 150, and the second parameter judgment unit 211 is connected to the air pressure acquisition unit.
  • the air pressure acquisition unit is used to obtain the current air pressure value in the air flow channel when the electronic cigarette is in the suction state through the state detection unit 150 and the air flow sensor 140, and the second parameter judgment unit 211 is used to determine whether the current air pressure value is within the second preset parameter range.
  • the air pressure in the air flow channel is large due to blowing, the distance between the two electrode sheets of the capacitor of the air flow sensor 140 will be relatively large, so that its capacitance value will be relatively small.
  • the capacitance value is inversely proportional to the frequency value and the count value, so that the frequency value, the count value and the air pressure value are also proportional.
  • the current air pressure value in the airflow channel can be obtained.
  • the corresponding relationship between the two can be calculated by a formula to obtain the current voltage value, or by pre-storing a corresponding table and then searching the corresponding table to obtain the current voltage information.
  • the current air pressure value can also be directly obtained by sensor detection.
  • the air pressure acquisition unit pre-stores a capacitance value-air pressure value table, a frequency value-air pressure value table or a count value-air pressure value table, wherein the capacitance value-air pressure value table stores the corresponding relationship between the capacitance value and the air pressure value, the frequency value-air pressure value table stores the corresponding relationship between the frequency value and the air pressure value, and the count value-air pressure value table stores the corresponding relationship between the count value of the preset counting time and the air pressure value, so that when the current capacitance value, the current frequency value, and the current count value are obtained, the current air pressure value can be obtained by looking up the table.
  • the air pressure acquisition unit and the second parameter judgment unit 211 can preferably be implemented by software or by hardware.
  • the air pressure acquisition unit may not be electrically connected to the state detection unit 150.
  • the air pressure acquisition unit is an air pressure sensor, and the air pressure sensor is at least partially arranged in the air flow channel of the electronic cigarette.
  • the air pressure acquisition unit can directly obtain the current air pressure value, that is, the first parameter information can be obtained.
  • the child lock control method further includes:
  • the state detection unit 150 includes a first parameter generation unit and a first parameter judgment unit.
  • the first parameter generation unit is respectively connected to the first parameter judgment unit and the second parameter judgment unit 211.
  • the first parameter judgment unit receives the first parameter information.
  • the first parameter judgment unit judges whether the first parameter information is within the first preset parameter range. If the judgment result is yes, the first parameter judgment unit outputs information that the electronic cigarette has changed from a non-sucking state to a smoking state, that is, outputs a smoking signal.
  • the first parameter judgment unit maintains the original signal output, such as outputting a non-sucking and blowing signal and a blowing signal.
  • the child lock control circuit includes a first parameter judgment unit, the first parameter judgment unit is connected to the air pressure acquisition unit, the air pressure acquisition unit can obtain the current air pressure value, and the first parameter judgment unit judges whether the first parameter information is within the first preset parameter range. If the judgment result is yes, the first parameter judgment unit outputs information that the electronic cigarette has changed from a non-inhalation state to a suction state, that is, outputs a suction signal.
  • the first parameter judgment unit maintains the original signal output, such as outputting a non-inhalation signal and a blowing signal. Furthermore, it can also be required to output a suction signal only after the judgment is yes for multiple consecutive times, which is conducive to reducing the probability of false triggering of airflow crosstalk.
  • the first parameter judgment unit and the second parameter judgment unit 211 can be the same parameter judgment unit or different parameter judgment units.
  • the step of receiving the first parameter information specifically includes:
  • the second parameter determination unit 211 does not work before receiving the puff signal. After receiving the puff signal, the second parameter determination unit 211 is triggered to start working, and the second parameter determination unit 211 receives the first parameter information. This arrangement is conducive to reducing the power consumption of the electronic cigarette.
  • the electronic cigarette after the electronic cigarette enters the child lock locked state, the user cannot smoke the electronic cigarette normally.
  • the electronic cigarette needs to be unlocked.
  • the unlocking method can be the same as the locking method, and the previous description can be referred to, which will not be repeated here.
  • the child lock control method further includes:
  • the child lock control circuit 200 includes a fourth parameter judgment unit 231, which is used to receive the first parameter information.
  • the fourth parameter judgment unit 231 and the second parameter judgment unit 211 can be different judgment units or the same parameter judgment unit.
  • the air pressure in the airflow channel is relatively large, which will be higher than the air pressure in the non-suction and blowing state, that is, the current air pressure value will be greater than the reference air pressure value, and the distance between the two electrodes of the capacitor of the airflow sensor 140 will be larger than that in the non-suction and blowing state, so that the current capacitance value will be smaller than that in the non-suction and blowing state, the current frequency value will be larger than that in the non-suction and blowing state, and the current count value will be greater than the reference count value.
  • the fourth parameter determination unit 231 determines whether the first parameter information is within a fourth preset parameter range, where the fourth preset parameter range is pre-calculated or pre-stored in the fourth parameter determination unit 231 .
  • the fourth preset parameter range corresponds to the capacitance value range and the ratio range
  • the upper limit value of the fourth preset parameter range will be smaller than the lower limit value corresponding to the first preset parameter range
  • the lower limit value of the fourth preset parameter range may be unlimited or limited as needed
  • the fourth preset parameter range corresponds to the pressure value range, the frequency value range, the count value range or the ratio range
  • the lower limit value of the fourth preset parameter range will be larger than the upper limit value corresponding to the first preset parameter range
  • the upper limit value of the fourth preset parameter range may be unlimited or limited as needed.
  • the size relationship between the fourth preset parameter range and the first preset parameter range may not be limited, and the ranges of the two may be the same or different.
  • the child lock control circuit 200 includes a fourth timing unit 232 and a fourth counting unit 233.
  • the fourth timing unit 232 is electrically connected to the fourth parameter judgment unit 231, and the fourth counting unit 233 is electrically connected to the fourth parameter judgment unit 231. If the judgment result of the fourth parameter judgment unit 231 is yes, the fourth parameter judgment unit 231 outputs a blowing signal, the fourth timing unit 232 is triggered to start timing, the fourth timing unit 232 starts timing from 0, the fourth counting unit 233 is triggered to start counting, and also counts this time, that is, the count of the fourth counting unit 233 is 1 at this time; if the judgment result of the fourth parameter judgment unit 231 is no, the fourth parameter judgment unit 231 will not output a blowing signal, the fourth timing unit 232 maintains the original state, and the fourth counting unit 233 maintains the original state.
  • the fourth timing unit 232 when the fourth timing unit 232 is triggered to start timing, the fourth timing unit 232 will continue to count until the fourth timing unit 232 is reset to zero, and then the fourth timing unit 232 stops timing.
  • the blowing signal is also output to the child lock control unit 240 .
  • the fourth timing unit 232 when the fourth timing unit 232 is triggered to time and the fourth counting unit 233 is triggered to count, when the fourth parameter judgment unit 231 receives the first parameter information again and once again determines that the first parameter information is within the fourth preset parameter range, the fourth count of the fourth counting unit 233 is increased by 1, and the fourth count is 2 at this time. At the same time, the fourth timing unit 232 continues to perform the fourth timing.
  • S24 Determine whether a fourth count is greater than or equal to a fourth preset number within a fourth preset time period, wherein the fourth preset number is greater than or equal to 2;
  • the child lock control circuit 200 further includes a fourth timing counting judgment unit 234, which is electrically connected to the fourth counting unit 233 and the fourth timing unit 232, respectively.
  • the fourth timing counting judgment unit 234 judges that the timing duration of the fourth timing unit 232 is within the fourth preset duration, and the fourth counting unit 233 counts greater than or equal to the fourth preset number, the fourth timing counting judgment unit 234 outputs a child lock unlocking signal.
  • the fourth preset duration is generally less than or equal to 5s, such as 1s, 1.5s, 1.8s, 2s, 2.3s, 2.5s, 2.8s, 3s, 4s, 5s, etc., preferably 2s.
  • the fourth preset number is greater than or equal to 2, such as 2, 3, 4, 5, 6, etc., preferably 3, and the fourth preset number is generally less than or equal to 6 times, which is convenient for user operation.
  • the fourth timing counting judgment unit 234 is connected to the fourth timing unit 232 and the fourth counting unit 233 in real time.
  • the fourth timing counting judgment unit 234 obtains that the fourth counting unit 233 reaches the fourth preset number and the fourth timing unit 232 does not reach the fourth preset duration, the fourth timing counting judgment unit 234 outputs the child lock unlocking signal, or the fourth timing counting judgment unit 234 waits until the fourth timing unit 232 timing duration reaches the fourth preset duration before outputting the child lock unlocking signal.
  • the fourth timing counting judgment unit 234 is connected to the fourth timing unit 232 and the fourth counting unit 233.
  • the fourth timing unit 232 When the fourth timing unit 232 reaches the fourth preset duration, the fourth timing unit 232 outputs a signal to the fourth timing counting judgment unit 234.
  • the fourth timing counting judgment obtains the count of the fourth counting unit 233 at this time, and then determines whether the fourth count is greater than or equal to the fourth preset number. If it is greater than or equal to the fourth preset number, the child lock unlocking signal is output. If it is less than the fourth preset number, the original signal output is maintained.
  • the fourth timing and counting judgment unit 234 if the result of the judgment of the fourth timing and counting judgment unit 234 is yes, that is, the number counted within the fourth preset time length is greater than or equal to the fourth preset number, the fourth timing and counting judgment unit 234 outputs a child lock unlocking signal to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter an unlocked state.
  • the unlocked state when the electronic cigarette is in a puffing state, the power MOS tube M1 is continuously turned on or intermittently turned on, that is, at this time, the power MOS tube M1 is controlled by whether the user puffs.
  • the child lock control unit 240 when the electronic cigarette is in a puffing state, the child lock control unit 240 continuously outputs a low-level signal or intermittently outputs a low-level signal to the power MOS tube M1, and the power MOS tube M1 is continuously turned on or intermittently turned on.
  • the heating element 130 is heated to atomize the smoke oil, so that the atomized smoke oil can be inhaled by the user.
  • unlocking is achieved by timing and counting the blowing, and an effective unlocking effect is achieved without adding Bluetooth/NFC and other designs and mechanical structures, thereby reducing the hardware cost of unlocking the electronic cigarette and solving the technical problem of high unlocking cost of electronic cigarettes in the prior art.
  • the unlocking method of the present application is not easy to be noticed by children, and the electronic cigarette is not easy to be unlocked by children after being locked, which is conducive to improving the safety of the electronic cigarette.
  • judging the suction state it is also possible to judge whether to blow by the current count value.
  • the child lock control method further includes: obtaining again information that the first parameter information is within a fourth preset parameter range, and adding 1 to the fourth count.
  • the fourth timing unit 232 and the fourth counting unit 233 do not stop working, and the fourth timing unit 232 and the fourth counting unit 233 again (again means that the value of the fourth count in the fourth counting unit 233 is at least 1) obtain information that the first parameter information is within the fourth preset parameter range, then the fourth counting unit 233 adds 1 on the basis of the original count, for example, the original count value of the fourth counting unit 233 is 1, and the information that the first parameter information is within the fourth preset parameter range is obtained again, that is, the information that the state is changed from no suction and blowing to blowing state is received, then the count of the fourth counting unit 233 is added by 1, that is, the count value becomes 2; the fourth timing unit 232 continues to work and continuously time, that is, after the fourth timing unit 232 triggers the timing, as long as the fourth timing unit 232 does not receive a signal to stop timing or reset, the fourth timing unit 232
  • the child lock control method further includes: if the timing duration of the fourth timing unit 232 reaches a fourth preset duration, the fourth counter is reset to zero, and the fourth timing unit 232 is reset to zero.
  • the fourth timing counting judgment unit 234 determines whether the timing duration of the fourth timing unit 232 reaches the fourth preset duration. If the fourth timing unit 232 reaches the fourth preset duration, the fourth timing unit 232 is reset to zero, and at the same time the fourth timing unit 232 sends a signal to the fourth counting unit 233, and the fourth counting unit 233 is reset to zero, that is, at this time the fourth timing unit 232 stops timing, and the fourth counting unit 233 stops counting, and the timing duration is reset to zero, the fourth count is reset to zero, and the fourth timing unit 232 and the fourth counting unit 233 are restored to the initial state to facilitate subsequent detection.
  • the child lock control method further includes: if the timing duration of the fourth timing unit 232 is less than the fourth preset duration and the fourth count reaches the fourth preset parameter range, the fourth count is reset to zero and the fourth timing unit 232 is reset to zero.
  • the fourth timing counting judgment unit 234 outputs a signal to the fourth timing unit 232 and the fourth counting unit 233, the fourth timing unit 232 is reset to zero, and the fourth counting unit 233 is reset to zero.
  • the signal can be the same as the child lock unlocking signal, or it can be a different signal.
  • FIG. 29 shows a module diagram of the child lock control circuit 200 of the electronic cigarette provided in the embodiment of the present application. For the sake of convenience, only the part related to the embodiment of the present application is shown.
  • the child lock control circuit 200 includes:
  • a second parameter determination unit 211 which is used to receive the first parameter information and to determine whether the first parameter information is within a second preset parameter range, wherein the second preset parameter range is within the first preset parameter range, and the first preset parameter range is used to determine whether the electronic cigarette is in a puffing state;
  • the child lock control unit 240 is used to control the electronic cigarette to enter a locked state if the judgment results of the second parameter judgment unit 211 are all yes. In the locked state, the power MOS tube M1 of the electronic cigarette remains disconnected and cut off.
  • the first parameter information includes the current air pressure value, the current capacitance value, the current frequency value, the current count value, the ratio of the current air pressure value to the reference air pressure value, the ratio of the current capacitance value to the reference capacitance value, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value, the difference between the current air pressure value and the reference air pressure value, the difference between the current capacitance value and the reference capacitance value, the difference between the current frequency value and the reference frequency value, the difference between the current count value and the reference count value, the ratio of the difference between the current air pressure value and the reference air pressure value, the ratio of the difference between the current capacitance value and the reference capacitance value to the reference oscillation capacitance value, the ratio of the difference between the current frequency value and the reference frequency value to the reference frequency value, or the ratio of the difference between the current count value and the reference count value to the reference count value.
  • the upper limit value of the second preset parameter range is less than the upper limit value of the first preset parameter range; or, when the first parameter information is the current capacitance value, the ratio of the current capacitance value to the reference capacitance value, the difference between the current air pressure value and the reference air pressure value, the difference between the current capacitance value and the reference capacitance value, the difference between the current frequency value and the reference frequency value, the difference between the current count value and the reference count value, the ratio of the difference between the current air pressure value and the reference air pressure value, the ratio of the difference between the current capacitance value and the reference capacitance value to the reference oscillation capacitance value, the ratio of the difference between the current frequency value and the reference frequency value to the reference frequency value, or the ratio
  • the ratio of the upper limit value of the second preset parameter range to the upper limit value of the first preset parameter range is less than or equal to 85%; or, when the first parameter information is the current capacitance value, the ratio of the lower limit value of the second preset parameter range to the lower limit value of the first preset parameter range is greater than or equal to 115%; or, when the first parameter information is the ratio of the current air pressure value to the reference air pressure value, the ratio of the current frequency value to the reference frequency value, and the ratio of the current count value to the reference count value, the second preset parameter range
  • the upper limit value of the second preset parameter range is less than or equal to 85%; or, when the first parameter information is the ratio of the current capacitance value to the reference capacitance value, the lower limit value of the second preset parameter range is greater than or equal to 115%; or, when the first parameter information is the ratio of the difference between the current pressure value and the reference pressure value
  • the child lock control circuit 200 when the first parameter information is the current air pressure value, the child lock control circuit 200 includes an air pressure acquisition unit 241, which is used to obtain the current capacitance value, the current frequency value or the current count value, and is also used to search a pre-stored capacitance value-air pressure value table according to the current capacitance value, search a pre-stored frequency value-air pressure value table according to the current frequency value, or search a pre-stored count value-air pressure value table according to the current count value; the air pressure acquisition unit is used to obtain and output the current air pressure value in the electronic cigarette airflow channel, and the second parameter judgment unit receives the first parameter information.
  • the air pressure acquisition unit 241 is used to obtain the current capacitance value, the current frequency value or the current count value, and is also used to search a pre-stored capacitance value-air pressure value table according to the current capacitance value, search a pre-stored frequency value-air pressure value table according to the current frequency value, or search a pre-stored
  • the state detection unit 150 when the first parameter information is the current capacitance value, the current frequency value or the current count value, the state detection unit 150 includes a first parameter generation unit and a first parameter judgment unit.
  • the first parameter generation unit is connected to the first parameter judgment unit. After the first parameter generation unit generates the first parameter information, the first parameter judgment unit is used to receive the first parameter information and judge whether the first parameter information is within the first preset parameter range. If the judgment result of the first parameter judgment unit is yes, the first parameter judgment unit outputs information that the electronic cigarette is changed from a non-smoked state to a smoked state, that is, outputs the smoke information; when the first parameter information is the current air pressure value, the child lock control circuit includes a first parameter judgment unit.
  • the air pressure acquisition unit is connected to the first parameter judgment unit. After the air pressure acquisition unit generates the first parameter information, the first parameter judgment unit is used to receive the first parameter information and judge whether the first parameter information is within the first preset parameter range. If the judgment result of the first parameter judgment unit is yes, the first parameter judgment unit outputs information that the electronic cigarette is changed from a non-smoked state to a smoked state, that is, outputs the smoke information.
  • the child lock control circuit 200 includes a locking unit, and the locking unit includes a second parameter determination unit 211 and the like.
  • the child lock control circuit 200 includes an unlocking unit, which includes a fourth parameter judgment unit 231, a fourth timing unit 232, a fourth counting unit 233, and a fourth timing and counting judgment unit 234, wherein the fourth parameter judgment unit 231 is used to receive the first parameter information and judge whether the first parameter information is within a fourth preset parameter range, and the fourth preset parameter range is used to judge whether the electronic cigarette is in a blowing state; if the judgment result of the fourth parameter judgment unit 231 is yes, the fourth timing unit 232 is triggered to perform a fourth timing, the fourth counting unit 233 is triggered to perform a fourth counting, and the fourth timing and counting judgment unit 234 is used to judge whether the fourth count is greater than or equal to a fourth preset number within a fourth preset time length, and if the judgment result of the fourth timing and counting judgment unit 234 is yes, a child lock unlocking signal is output to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter an unlocking state,
  • the fourth counting unit 233 is further used to obtain information again that the first parameter information is within the fourth preset parameter range, and the fourth count is increased by 1.
  • the fourth timing unit 232 is further configured to reset the fourth count to zero if the timing duration reaches a fourth preset duration, and reset the fourth timing unit 232 to zero.
  • the fourth timing counting judgment unit 234 is further configured to reset the fourth count to zero if the timing duration is less than the fourth preset duration and the fourth count reaches a fourth preset number, and reset the fourth timing unit 232 to zero.
  • the child lock control circuit is located on the same chip; and/or, the child lock control circuit also includes a state detection unit 150, which is used to be electrically connected to the airflow sensor 140, and is also used to output the first parameter information; and/or, the child lock control circuit also includes a state detection unit 150 and an air pressure acquisition unit, the state detection unit is used to be electrically connected to the airflow sensor 140, the state detection unit 150 is also used to be connected to the air pressure acquisition unit, and the air pressure acquisition unit is used to output the first parameter information.
  • the technicians in the relevant field can clearly understand that for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example for illustration.
  • the above-mentioned function allocation can be completed by different functional units and modules as needed, that is, the internal structure of the device can be divided into different functional units or modules to complete all or part of the functions described above.
  • the functional units and modules in the embodiment can be integrated in a processing unit, or each unit can exist physically separately, or two or more units can be integrated in one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or in the form of software functional units.
  • FIG30 is a schematic diagram of a child lock control device 400 provided in an embodiment of the present application.
  • the child lock control device 400 of this embodiment includes: at least one processor 420 (only one is shown in FIG30 ), a memory 410, and a computer program stored in the memory 410 and executable on the processor 420.
  • the processor 420 executes the computer program, the steps in the above-mentioned child lock control method embodiment are implemented.
  • FIG30 is merely an example of a child lock control device 400 and does not constitute a limitation on the child lock control device 400.
  • the processor 420 may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the memory 410 may be an internal storage unit of the child lock control device 400, such as a hard disk or memory of the child lock control device 400. In other embodiments, the memory 410 may also be an external storage device of the child lock control device 400, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), etc. equipped on the child lock control device 400. Further, the memory 410 may also include both the internal storage unit of the child lock control device 400 and an external storage device.
  • a plug-in hard disk such as a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), etc. equipped on the child lock control device 400.
  • the memory 410 may also include both the internal storage unit of the child lock control device 400 and an external storage device.
  • the memory 410 is used to store an operating system, an application program, a boot loader (BootLoader), data, and other programs, such as the program code of the computer program.
  • the memory 410 may also be used to temporarily store data that has been output or is to be output.
  • the child lock control device 400 is, for example, an electronic cigarette.
  • the embodiment of the present application further provides a storage medium, which stores a computer program.
  • a storage medium which stores a computer program.
  • An embodiment of the present application provides a computer program product.
  • the terminal can implement the steps in the above-mentioned child lock control method embodiment when executing the computer program product.
  • the electronic cigarette includes the above-mentioned child lock control circuit 200, the electronic cigarette also includes a battery 110, a power MOS tube M1 and a heating element 130, the heating element 130 and the power MOS tube M1 are connected in series to form a heating branch, and the two ends of the heating branch are electrically connected to the positive and negative electrodes of the battery 110 respectively; the control end of the power MOS tube M1 is electrically connected to the child lock control circuit 200.
  • the electronic cigarette includes a battery 110, a child lock control circuit 200, a heating element 130, an airflow sensor 140, a power MOS tube M1, etc., and the child lock control circuit 200 includes a state detection unit 150.
  • the child lock control circuit 200 is electrically connected to the battery 110, the airflow sensor 140, the power MOS tube M1, etc.
  • the battery 110 is, for example, a rechargeable battery such as a lithium battery, a nickel-cadmium battery, a nickel-hydrogen battery, etc., and the battery 110 can also be a non-rechargeable battery;
  • the state detection unit 150 is electrically connected to the airflow sensor 140, and the state detection unit 150 is used to determine whether the electronic cigarette is inhaled and/or blown, and output a corresponding signal.
  • a specific implementation of the state detection unit 150 can refer to the prior application in the art, or other conventional state detection units known to those skilled in the art.
  • the airflow sensor 140 is a capacitive airflow sensor 140, such as a capacitive MEMS sensor or a capacitive microphone, etc.
  • the airflow sensor 140 is located in the airflow channel of the electronic cigarette, and the airflow sensor 140 includes a capacitor.
  • the state detection unit 150 determines whether the electronic cigarette is in a suction state, a blowing state, or a non-suction and blowing state (corresponding to the state when the user is not using it) by changes in the capacitance value of the capacitor.
  • the child lock control circuit 200 is electrically connected to the control end of the power MOS tube M1.
  • the child lock control circuit 200 is used to control whether the power MOS tube M1 is turned on.
  • the power MOS tube M1 is connected in series with the heating element 130 via the atomization end AT to form a series branch.
  • the power MOS tube M1 is a PMOS tube for example.
  • the power MOS tube M1 can also be an NMOS tube.
  • the power MOS tube M1 and the child lock control circuit 200 can be located on the same chip, which is generally called a system control chip.
  • the present application is not limited to this. In other embodiments of the present application, the power MOS tube M1 and the child lock control circuit 200 can be located on different chips.
  • the heating element 130 is, for example, a heating wire, a heating wire, a ceramic seat containing a heating wire or a heating wire, or other conventional heating elements 130.
  • the heating element 130 when the child lock control circuit 200 outputs a low level to control the power MOS tube M1 to turn on, the heating element 130 is heated to atomize the smoke oil, and when the child lock control circuit 200 outputs a high level to control the power MOS tube M1 to turn off, the heating element 130 stops heating.
  • the state detection unit 150 is electrically connected to the airflow sensor 140 to determine whether the electronic cigarette is inhaled or blown or is in a state of neither blowing nor inhaling (non-inhalation and blowing state).
  • the air pressure between the two electrode sheets of the capacitor of the airflow sensor 140 will change, causing the distance between the two electrode sheets to change accordingly, thereby causing the capacitance value of the airflow sensor 140 to change.
  • the state detection unit 150 converts the capacitance value change into a frequency value change or a count value change.
  • the state detection unit 150 can determine whether the electronic cigarette is inhaled and in the inhalation state, blown and in the blowing state, or in the non-inhalation and blowing state. In addition, in other embodiments of the present application, it is also possible to determine whether the electronic cigarette is in the inhalation state or the blowing state without using the state detection unit.
  • the puffing state of the electronic cigarette is further subdivided into a puffing state with lower air pressure and a puffing state with lower air pressure.
  • the puffing state with lower air pressure generally corresponds to normal puffing of the user
  • the puffing state with lower air pressure corresponds to the puffing that the user wants to enter the unlocked state or the accidental heavy puff of the user.
  • the electronic cigarette Regardless of whether it is in the puffing state with lower air pressure or in the puffing state with even lower air pressure, the electronic cigarette will be judged as the puffing state.
  • the present application judges whether it is the puffing state with even lower air pressure by whether the first parameter information is within the second preset parameter range.
  • the first parameter information characterizes the air pressure condition in the airflow channel of the electronic cigarette, and the air pressure condition includes, for example, the size of the air pressure, the change of the air pressure, etc.
  • the first parameter information is in a corresponding relationship with the air pressure in the airflow channel.
  • the first parameter information when the first parameter information is within the second preset parameter range, it represents that the electronic cigarette is in a suction state with a lower air pressure.
  • the first parameter information is outside the second preset parameter range and within the first preset parameter range, it represents that the electronic cigarette is in a suction state with a lower air pressure.
  • the second preset parameter range is within the first preset parameter range, that is, as long as the first parameter information is within the second preset parameter range, the first parameter information must be within the first preset parameter range, indicating that the electronic cigarette is in a suction state and is a heavy suction.
  • the first parameter information may be within the second preset parameter range (heavy suction) or may not be within the second preset parameter range (normal suction).
  • the first parameter information includes the current capacitance value, the current capacitance change, the current frequency value, the current frequency change, the current count value, the current count change, the ratio of the current capacitance value to the reference capacitance value, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value, the ratio of the current capacitance change to the reference capacitance value, the ratio of the current frequency change to the reference frequency value, or the ratio of the current count change to the reference count value, etc.
  • the first parameter information can be directly obtained by the state detection unit 150.
  • the electrode sheet of the capacitor is not deformed at this time, and the current capacitance value at this time is the reference capacitance value.
  • the reference capacitance value is acquired or converted, and the corresponding current frequency value at this time is the reference frequency value.
  • the number of oscillation cycles within the preset counting time is the current count value, that is, the reference count value; in addition, the reference capacitance value, the reference frequency value, and the reference count value can also be preset; the current capacitance change, the current frequency change, or the current count change is the difference between the corresponding current value and the corresponding reference value.
  • the distance between the two electrode sheets of the capacitor of the airflow sensor 140 will become smaller than that in the non-puffing state, the current capacitance value will be larger, the current frequency value will be smaller, and the number of oscillation cycles within the preset counting time will be smaller, that is, the current counting value will be smaller, and the current capacitance value will be smaller.
  • the change amount, the current frequency change amount or the current count change amount will be larger, the ratio of the current capacitance value to the reference capacitance value will be larger, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value will be smaller, the ratio of the current capacitance change amount to the reference capacitance value, the ratio of the current frequency change amount to the reference frequency value or the ratio of the current count change amount to the reference count value will be larger; when the user re-inhales and causes the current air pressure value in the electronic cigarette airflow channel to be smaller, the distance between the two electrode sheets of the capacitor of the airflow sensor 140 will be smaller than that in the non-inhalation and blowing state, the current capacitance value will be larger, the current frequency value will be smaller, the number of oscillation cycles within the preset counting time will be smaller, that is, the current count value will be smaller, the current capacitance change amount, the current frequency change amount or the current count change amount will be larger, the ratio of the current capacitance
  • the distance between the two electrode plates of the capacitor of the airflow sensor 140 will increase relative to the non-blow state, the current capacitance value of the airflow sensor 140 will decrease, the current frequency value will increase, and the current count value will be larger than the reference count value.
  • the capacitance deformation of the air flow sensor 140 is greater, and the distance between the two electrode sheets of the capacitor is smaller, so that its current capacitance value will be larger, the current count value will be smaller, the current frequency value will be smaller, the current capacitance change, the current frequency change, or the current count change will be larger, the ratio of the current capacitance value to the reference capacitance value will be larger, the ratio of the current frequency value to the reference frequency value, and the ratio of the current count value to the reference count value will be smaller, and the ratio of the current capacitance change to the reference capacitance value, the ratio of the current frequency change to the reference frequency value, or the ratio of the current count change to the reference count value will be larger.
  • the deformation of the capacitor of the air flow sensor 140 is large, and the distance between the two electrodes of the capacitor is small, so that its capacitance value will be large, the current count value will be small, the current frequency value will be small, the current capacitance change, the current frequency change or the current count change will be large, the ratio of the current capacitance value to the reference capacitance value will be large, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value will be small, the ratio of the current capacitance change to the reference capacitance value, the ratio of the current frequency change to the reference frequency value or the ratio of the current count change to the reference count value will be large. Therefore, the current capacitance value, the current count value, the current frequency value, the current capacitance change, the current frequency change, the current count change, etc. are all proportional to the air pressure in the air flow channel.
  • the second preset parameter range corresponds to the capacitance value range, the capacitance change range, the frequency change range, the count change range, or the ratio range
  • the lower limit value of the second preset parameter range is greater than the lower limit value of the first preset parameter range
  • the upper limit value of the second preset parameter range is less than or equal to the upper limit value of the first preset parameter range
  • the upper limit value of the second preset parameter range is not limited, that is, the current capacitance value, the current capacitance change, the current frequency change or the current count change is greater than a, that is, it falls within the second preset parameter range.
  • the second preset parameter range corresponds to the frequency value range, the count value range or the ratio range, the upper limit value of the second preset parameter range is less than the upper limit value of the first preset parameter range, and the lower limit value of the second preset parameter range is greater than or equal to the lower limit value of the first preset parameter range, for example, when the first parameter information is the current count value, the second preset parameter range is [m, M), for example, M is 950, and the first preset parameter range is [n, N), for example, N is 970, wherein M is less than N, m is greater than or equal to n, and M, m, N, n are positive integers.
  • the lower limit value of the second preset parameter range is not limited, that is, the current frequency value or the current count value is less than M, that
  • the first parameter information may also include the current air pressure value, the current air pressure change (the difference between the current air pressure value and the reference air pressure value), the ratio of the current air pressure value to the reference air pressure value, the ratio of the current air pressure change to the reference air pressure value, etc.
  • the electrode sheet of the capacitor is not deformed, and the air pressure value in the air flow channel of the electronic cigarette is the reference air pressure value, that is, the atmospheric pressure value, and the reference air pressure value is obtained by acquisition or conversion; in addition, the reference air pressure value may also be preset.
  • the current capacitance value When the user inhales lightly, causing the current air pressure value in the electronic cigarette airflow channel to be smaller, the distance between the two electrode sheets of the capacitor of the airflow sensor 140 will become smaller than that in the non-inhalation and blowing state, the current capacitance value will be larger, and the difference between the current air pressure value and the reference air pressure value will be larger, that is, the current air pressure change will be larger, the ratio of the current air pressure value to the reference air pressure value will be smaller, and the ratio of the current air pressure change to the reference air pressure value will be larger; when the user inhales heavily, causing the current air pressure value in the electronic cigarette airflow channel to be smaller, the distance between the two electrode sheets of the capacitor of the airflow sensor 140 will become smaller than that in the non-inhalation and blowing state, the current capacitance value will be larger, and the difference between the current air pressure value and the reference air pressure value will be larger, that is, the current air pressure change will be larger, the ratio of the current air pressure value to
  • the child lock control circuit 200 also includes an air pressure acquisition unit, which is connected to the state detection unit 150.
  • the air pressure acquisition unit is used to obtain the current air pressure value in the air flow channel of the electronic cigarette through the state detection unit 150 and the air flow sensor 140, and then the current air pressure change can be obtained through calculation.
  • the distance between the two electrode sheets of the capacitor of the air flow sensor 140 will be relatively large, so that its current capacitance value will be relatively small.
  • the current capacitance value in the air flow channel is small due to suction, the distance between the two electrode sheets of the capacitor of the air flow sensor 140 is relatively small, so that its current capacitance value will be relatively large, and thus the current capacitance value is proportional to the current air pressure value in the air flow channel.
  • the current capacitance value is inversely proportional to the current frequency value and the current count value, so that the current frequency value, the current count value and the current air pressure value are also proportional.
  • the change of the current capacitance value in the suction state relative to the reference capacitance value will also be proportional to the current air pressure value in the airflow channel.
  • the change of the current frequency value in the suction state relative to the reference frequency value will also be proportional to the current air pressure value in the airflow channel, or the change of the current count value in the suction state relative to the reference count value will also be proportional to the current air pressure value in the airflow channel.
  • the corresponding relationship between the two can be calculated by formula to obtain the current air pressure information, or by pre-storing the corresponding table, and then searching the corresponding table to obtain the current air pressure value, and then the current air pressure change can be obtained by arithmetic operation.
  • the current air pressure value can also be directly obtained by sensor detection.
  • the pressure acquisition unit pre-stores a capacitance value-pressure value table, a frequency value-pressure value table, a count value-pressure value table, a capacitance change-pressure value table, a frequency change-pressure value table or a count change-pressure value table, wherein the capacitance value-pressure value table stores the corresponding relationship between the capacitance value and the pressure value, the frequency value-pressure value table stores the corresponding relationship between the frequency value and the pressure value, the count value-pressure value table stores the corresponding relationship between the count value and the pressure value of the preset counting time, the capacitance change-pressure value table stores the corresponding relationship between the capacitance change and the pressure value, the frequency change-pressure value table stores the corresponding relationship between the frequency change and the pressure value, and the count change-pressure value table stores the corresponding relationship between the count change and the pressure value of the preset counting time, so that when the current capacitance value, the current frequency value, the current count value, the current capacitance change, the current frequency change, and the current count change, the
  • the pressure acquisition unit is preferably implemented by software, or by hardware, or by a combination of software and hardware.
  • the air pressure acquisition unit may not be electrically connected to the state detection unit 150.
  • the air pressure acquisition unit is an air pressure sensor, and the air pressure sensor is at least partially arranged in the airflow channel of the electronic cigarette.
  • the air pressure acquisition unit can directly obtain the current air pressure value, and then obtain the current air pressure change, the ratio of the current air pressure value to the reference air pressure value, and the ratio of the current air pressure change to the reference air pressure value.
  • the current air pressure change can be obtained by subtracting the reference air pressure value from the current air pressure value.
  • the second preset parameter range is the range of the air pressure value and the ratio
  • the upper limit value of the second preset parameter range is smaller than the upper limit value of the first preset parameter range
  • the lower limit value of the second preset parameter range is greater than or equal to the lower limit value of the first preset parameter range.
  • the first parameter information is the current air pressure value
  • the second preset parameter range is (c, C]
  • the first preset parameter range is (d, D]
  • the reference air pressure value is the ambient atmospheric pressure, for example, the ambient atmospheric pressure is 1 standard atmospheric pressure, wherein C is less than D, D is less than the ambient atmospheric pressure, c is greater than or equal to d, C, c, D, d are positive numbers, generally, C is 500Pa less than the ambient atmospheric pressure, D is 300Pa less than the ambient atmospheric pressure, preferably C is 500Pa, 600Pa, 1000Pa, 2000Pa less than the ambient atmospheric pressure, etc.
  • the lower limit value of the second preset parameter range is not limited, that is, the current air pressure value is less than C and falls within the second preset parameter range.
  • the first parameter information is the current air pressure change or the ratio of the current air pressure change to the reference air pressure value
  • the current air pressure change will be larger, and the ratio of the current air pressure change to the reference air pressure value will be larger; when the air pressure in the airflow channel is smaller, the current air pressure change will be larger, and the ratio of the current air pressure change to the reference air pressure value will be larger, so the current air pressure change, the ratio of the current air pressure change to the reference air pressure value are proportional to the air pressure in the airflow channel.
  • the second preset parameter range is the air pressure change range and the ratio range
  • the lower limit of the second preset parameter range is greater than the lower limit of the first preset parameter range
  • the upper limit of the second preset parameter range is less than or equal to the upper limit of the first preset parameter range
  • the second preset parameter range is [E, e), for example, E is 500pa, 1000pa
  • the first preset parameter range is [F, f), for example, F is 300pa, wherein E is greater than F, e is less than or equal to f, and E, e, F, and f are positive numbers.
  • the upper limit value of the second preset parameter range is not limited, that is, as long as the current air pressure change is greater than or equal to E, it falls within the second preset parameter range.
  • the child lock control circuit 200 of the present embodiment further includes a second parameter judgment unit 211.
  • the second parameter judgment unit 211 is connected to the state detection unit 150 or the air pressure acquisition unit.
  • the state detection unit 150 or the air pressure acquisition unit itself knows the first parameter information, so that the state detection unit 150 or the air pressure acquisition unit outputs the first parameter information to the second parameter judgment unit 211.
  • the second parameter judgment unit 211 is used to receive the first parameter information and determine whether the first parameter information is within the second preset parameter range, thereby distinguishing whether the user is inhaling normally or inhaling into the unlocked state.
  • an embodiment of the present application provides a child lock control method for an electronic cigarette, comprising the following steps: S11: receiving first parameter information;
  • the second parameter determination unit 211 is connected to the state detection unit 150, the state detection unit 150 generates the first parameter information and outputs the first parameter information, and the second parameter determination unit 211 receives the first parameter information.
  • the second parameter determination unit 211 is connected to the air pressure acquisition unit.
  • the state detection unit 150 itself can identify whether the electronic cigarette is in the suction state or the blowing state.
  • the state detection unit 150 identifies that the electronic cigarette is in the suction state through the airflow sensor 140. At this time, the state detection unit 150 determines that the first parameter information is within the first preset parameter range, and the state detection unit 150 outputs a suction signal.
  • the state detection unit 150 identifies that the electronic cigarette is in the blowing state through the airflow sensor 140. At this time, the state detection unit 150 outputs a blowing signal.
  • the state detection unit 150 identifies that the electronic cigarette is in the non-inhalation and blowing state, and the state detection unit 150 outputs a non-inhalation and blowing signal.
  • the child lock control circuit 200 receives the output signal of the state detection unit 150 to obtain the state of the electronic cigarette.
  • the state detection unit 150 changes from outputting the non-inhalation and blowing signal to outputting the suction signal or the blowing signal
  • the child lock control circuit 200 obtains that the electronic cigarette changes from the non-inhalation and blowing state to the suction state or the blowing state.
  • the non-suction state includes a non-suction and blowing state and a blowing state.
  • S12 determining whether the first parameter information is within a second preset parameter range, wherein the second preset parameter range is within the first preset parameter range, and the first preset parameter range is used to determine whether the electronic cigarette is in a puffing state;
  • the child lock control circuit 200 includes a second timing unit 216 and a second counting unit 215, the second timing unit 216 is electrically connected to the second parameter judgment unit 211, and the second counting unit 215 is electrically connected to the second parameter judgment unit 211.
  • the second parameter judgment unit 211 If the judgment result of the second parameter judgment unit 211 is yes, the second parameter judgment unit 211 outputs a parameter valid signal, the second timing unit 216 is triggered to start timing, the second timing unit 216 starts timing from 0, the second counting unit 215 is triggered to start counting, and also counts this time, that is, the count of the second counting unit 215 is 1 at this time; if the judgment result of the second parameter judgment unit 211 is no, the second parameter judgment unit 211 outputs a parameter invalid signal, the second timing unit 216 maintains the original state, and the second counting unit 215 maintains the original state. In this embodiment, when the second timing unit 216 is triggered to start timing, the second timing unit 216 will keep timing until the second timing unit 216 is reset to zero, and then the second timing unit 216 stops timing.
  • the second timing unit 216 When the second timing unit 216 is triggered to start timing and the second counting unit 215 is triggered to start counting, when the second parameter judgment unit 211 receives the first parameter information again and once again determines that the first parameter information is within the second preset parameter range, that is, outputs a parameter valid signal again, then the second count of the second counting unit 215 is increased by 1, and the second count is 2 at this time. At the same time, the second timing unit 216 continues the second timing.
  • S14 Determine whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control circuit 200 further includes a second timing counting judgment unit 217, which is connected to the second counting unit 215 and the second timing unit 216 respectively.
  • the second timing counting judgment unit 217 judges that the timing duration of the second timing unit 216 is within the second preset duration, and the second count of the second counting unit 215 is greater than or equal to the second preset number, the second timing counting judgment unit 217 outputs a child lock unlocking signal.
  • the second preset duration is generally less than or equal to 5s, and the second preset duration is, for example, 1s, 1.5s, 1.8s, 2s, 2.3s, 2.5s, 2.8s, 3s, 4s, 5s, etc., preferably 2s.
  • the second preset number is an integer greater than or equal to 2, such as 2, 3, 4, 5, 6, etc., preferably 3, and the second preset number is generally less than or equal to 6 times, which is convenient for user operation.
  • the second preset time length is 2 seconds
  • the second preset number is 3. If the second count is greater than or equal to 3 within 2 seconds, the second timing and counting judgment unit 217 outputs a child lock unlocking signal.
  • the second timing counting judgment unit 217 is electrically connected to the second timing unit 216 and the second counting unit 215 in real time.
  • the second timing counting judgment unit 217 obtains that the second count reaches the second preset number and the second timing unit 216 has not reached the second preset duration
  • the second timing counting judgment unit 217 outputs the child lock unlocking signal, or the second timing counting judgment unit 217 waits until the timing duration of the second timing unit 216 reaches the second preset duration before outputting the child lock unlocking signal.
  • the second timing counting judgment unit 217 is connected to the second timing unit 216 and the second counting unit 215.
  • the second timing unit 216 When the second timing unit 216 reaches the second preset duration, the second timing unit 216 outputs a signal to the second timing counting judgment unit 217.
  • the second timing counting judgment unit 217 obtains the second count of the second counting unit 215 at this time, and then determines whether the second count is greater than or equal to the second preset number. If the second count is greater than or equal to the second preset number, the second timing counting judgment unit 217 outputs the child lock unlocking signal. If the second count is less than the second preset number, the second timing counting judgment unit 217 maintains the original signal output.
  • the child lock control circuit 200 further includes a child lock control unit 240, which is electrically connected to the second timing and counting judgment unit 217. If the judgment result of the second timing and counting judgment unit 217 is yes, that is, the second count is greater than or equal to the second preset number within the second preset time length, the second timing and counting judgment unit 217 outputs a child lock unlocking signal to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter an unlocking state. In the unlocking state, when the electronic cigarette is in the inhalation state, the power MOS tube M1 is continuously turned on or intermittently turned on, that is, at this time, the power MOS tube M1 is controlled by whether the user inhales.
  • the child lock control unit 240 when the electronic cigarette is in the inhalation state, the child lock control unit 240 continuously outputs a low-level signal or intermittently outputs a low-level signal to the power MOS tube M1, and the power MOS tube M1 is continuously turned on or intermittently turned on.
  • the heating element 130 is heated to atomize the smoke oil, so that the atomized smoke oil can be inhaled by the user.
  • the child lock control unit 240 includes a trigger and a switch control unit.
  • the trigger is used to maintain the child lock unlocking signal and the subsequent child lock locking signal.
  • the trigger is, for example, an SR trigger, etc.
  • the switch control unit is electrically connected to the trigger and the state detection unit 150 respectively.
  • the switch control unit is, for example, an AND gate, a NAND gate, an OR gate, or a NOR gate, etc.
  • the switch control unit includes a NAND gate, and the two input ends of the NAND gate are respectively connected to the output end of the trigger and an output end of the state detection unit 150.
  • the child lock unlocking signal keeps the output of the trigger at a high level, so that the output of the NAND gate is affected by the output of the state detection unit 150.
  • the state detection unit 150 determines that the user inhales the electronic cigarette, the state detection unit 150 outputs a suction signal to the NAND gate, and the suction signal is at a high level.
  • the switch control unit controls the power MOS tube M1 to be continuously turned on or intermittently turned on (for example, PWM, PFM control mode); the child lock locking signal keeps the output of the trigger at a low level, so that it remains at a high level after passing through the NAND gate (at this time, the state detection unit 150 outputs a suction signal, and the suction signal is, for example, at a high level), and the power MOS tube M1 remains cut off. If the judgment result of the second timing counting judgment unit 217 is no, that is, the second count is less than the second preset number within the second preset time period, the original child lock state of the electronic cigarette is maintained, the second count is set to 0, and the second timer is reset to zero.
  • the child lock state of the electronic cigarette is divided into a locked state and an unlocked state, wherein the locked state corresponds to the child lock protection function.
  • the child lock control unit 240 continues to control the power MOS tube M1 to remain disconnected and cut off, so that the heating element 130 will not be heated, and then the smoke oil will not be atomized for the user to draw, that is, even if the user draws the electronic cigarette, no smoke will appear.
  • the unlocked state corresponds to the release of the child lock protection function. At this time, whether the smoke oil is atomized is controlled by whether to draw.
  • the child lock control unit 240 controls the power MOS tube M1 to be continuously turned on or intermittently turned on. Intermittently turned on means that the child lock control unit 240 outputs a square wave signal through a PWM mode or a PFM mode, and adjusts the duty cycle of the square wave signal to control the output power and output voltage.
  • the embodiment of the present application further subdivides the puffing state through the first parameter information and the second preset parameter range, and divides it into a puffing state with lower air pressure and a puffing state with relatively high air pressure.
  • the number of puffs for which the first parameter information is within the second preset parameter range is distinguished as a puffing state with lower air pressure (re-puffing), and a second count is performed.
  • the electronic cigarette enters the unlocked state only when the second count is greater than or equal to the second preset number within the second preset time period.
  • the electronic cigarette can further distinguish whether the user is puffing the electronic cigarette normally or wants to trigger the unlocked state by puffing the electronic cigarette, which can reduce the probability of the user being accidentally triggered to unlock when playing with the electronic cigarette, and can reduce the user's use troubles; moreover, it is possible to unlock only when re-puffing is required.
  • it is not easy for children to distinguish puffing as re-puffing and general puffing so it is difficult for children to unlock the locked state of the electronic cigarette, thereby improving the safety of the electronic cigarette.
  • this embodiment can obtain the first parameter information by using the existing state detection unit 150 and airflow sensor 140, without major changes to the electronic cigarette, without increasing the hardware cost or increasing the hardware cost very little, thereby reducing the hardware cost of locking the electronic cigarette for protection and solving the technical problem of high locking cost of the electronic cigarette in the prior art.
  • the child lock control method further includes: obtaining again information that the first parameter information is within the second preset parameter range, and adding 1 to the second count.
  • the second timing unit 216 and the second counting unit 215 do not stop working.
  • the electronic cigarette is turned into a non-inhalation state, thereafter, when the user inhales the electronic cigarette again, the first parameter information is obtained again in real time. If the second counting unit 215 obtains information that the first parameter information is within the second preset parameter range again, that is, the second counting unit 215 receives a valid parameter signal again, then the second counting unit 215 adds 1 to the original second count.
  • the original count value of the second counting unit 215 is 1, and the first parameter information is obtained again within the second preset parameter range, then the second count of the second counting unit 215 is increased by 1, that is, the second count becomes 2.
  • the second timing unit 216 has been timing; if the second counting unit 215 does not obtain information that the first parameter information is within the second preset parameter range this time, that is, the second counting unit 215 does not receive a valid parameter signal, then the second count remains unchanged, and the second timing unit 216 is also timing.
  • the child lock control method further includes: if the second timer reaches a second preset time length, the second count is reset to zero, and the second timer is reset to zero.
  • the second timing counting judgment unit 217 has completed the judgment before the second timing unit 216 and the second counting unit 215 are reset to zero.
  • the child lock control method further includes: if the second timing is less than the second preset time length and the second count reaches the second preset number, the second count is reset to zero and the second timing is reset to zero.
  • the second timing counting judgment unit 217 if the second count obtained by the second timing counting judgment unit 217 reaches the second preset number, and the timing duration of the second timing unit 216 is less than the second preset duration, the second timing counting judgment unit 217 outputs a signal to the second timing unit 216 and the second counting unit 215, the second timing unit 216 is reset to zero, and the second counting unit 215 is reset to zero.
  • the signal can be the same as the child lock unlocking signal or a different signal.
  • the step of receiving the first parameter information specifically includes:
  • the first parameter information output by the receiving state detection unit 150 is a parameter that is input to the receiving state detection unit 150 .
  • the first parameter information is the current capacitance value, the current frequency value, the current count value, the current capacitance change, the current frequency change, the current count change, the ratio of the current capacitance value to the reference capacitance value, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value, the ratio of the current capacitance change to the reference capacitance value, the ratio of the current frequency change to the reference frequency value, or the ratio of the current count change to the reference count value.
  • the state detection unit 150 itself can obtain the first parameter information, and the second parameter judgment unit 211 receives the first parameter information through the state detection unit 150, that is, receives the current capacitance value, the current frequency value, the current count value, the current capacitance change, the current frequency change, the current count change, the ratio of the current capacitance value to the reference capacitance value, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value, the ratio of the current capacitance change to the reference capacitance value, the ratio of the current frequency change to the reference frequency value, or the ratio of the current count change to the reference count value.
  • This embodiment makes full use of the airflow sensor 140 and the state detection unit 150 in the existing electronic cigarette, and only needs to add a second parameter judgment unit 211.
  • the function to be implemented by the second parameter judgment unit 211 can be implemented by software, hardware, or a combination of software and hardware, so there is no need to add new hardware or to add less new hardware, and the problem of the electronic cigarette accidentally entering the unlocked state can be greatly reduced without increasing the cost or with a small amount of cost, thereby improving the user's convenience.
  • the step of receiving the first parameter information specifically includes: S111: acquiring the current capacitance value, the current frequency value, the current count value, the current capacitance change relative to the non-suction and blowing state, the current frequency change relative to the non-suction and blowing state, or the current count change relative to the non-suction and blowing state through the state detection unit 150;
  • S112 searching a pre-stored capacitance value-pressure value table according to the current capacitance value, searching a pre-stored frequency value-pressure value table according to the current frequency value, searching a pre-stored count value-pressure value table according to the current count value, searching a pre-stored capacitance change amount-pressure value table according to the current capacitance change amount, searching a pre-stored frequency change amount-pressure value table according to the current frequency change amount, or searching a pre-stored count change amount-pressure value table according to the current count change amount;
  • S113 Receive first parameter information in the electronic cigarette airflow channel.
  • the pressure acquisition unit pre-stores one of the capacitance value-pressure value table, frequency value-pressure value table, count value-pressure value table, capacitance change-pressure value table, frequency change-pressure value table, and count change-pressure value table.
  • the corresponding table is calculated or tested in advance and pre-stored in the pressure acquisition unit.
  • the two parameters of the capacitance value-pressure value table, frequency value-pressure value table, count value-pressure value table, capacitance change-pressure value table, frequency change-pressure value table, and count change-pressure value table can be a one-to-one correspondence, or a correspondence between a range and a value.
  • the capacitance value G corresponds to the pressure value g
  • the capacitance value H corresponds to the pressure value h
  • the capacitance value range is .
  • the air pressure acquisition unit obtains the current capacitance value, the current frequency value, the current count value, the current capacitance change, the current frequency change, and the current count change through the state detection unit 150, and then obtains the current air pressure value by searching the pre-stored table, and then obtains the current air pressure change.
  • the second parameter judgment unit 211 judges whether the first parameter information is within the second preset parameter range.
  • a parameter valid signal is output to the second counting unit 280, and the second count is increased by 1. If it is not within the second preset parameter range, a parameter invalid signal is output to the second counting unit 280, and the second count remains unchanged.
  • the functions to be realized by the air pressure acquisition unit and the second parameter judgment unit 211 can be realized by software, hardware, or a combination of software and hardware, so that there is no need to add new hardware or to add less new hardware, and the problem of the electronic cigarette accidentally entering the unlocked state can be greatly reduced without increasing the cost or with a small amount of cost, thereby improving the user's convenience.
  • the state detection unit 150 and the airflow sensor 140 may not be shared.
  • the air pressure acquisition unit is an air pressure sensor, which can directly obtain the current air pressure value in the airflow channel, and then obtain the current air pressure change.
  • the air pressure acquisition unit is connected to the second parameter judgment unit 211, and the second parameter judgment unit 211 is connected to the second counting unit 280.
  • the air pressure acquisition unit is used to obtain the current air pressure value or the current air pressure change in the airflow channel when the electronic cigarette is in the inhalation state.
  • the second parameter judgment unit 211 is used to judge whether the current air pressure value or the current air pressure change is within the second preset parameter range. If it is within the second preset parameter range, a parameter valid signal is output to the second counting unit 280, and the second count is increased by 1. If it is not within the second preset parameter range, a parameter invalid signal is output to the second counting unit 280, and the second count remains unchanged.
  • the air pressure sensor is a conventional technology and component in the field, which will not be described here.
  • the air pressure may drop momentarily when in the inhalation state, causing the first parameter information to reach the second preset parameter range.
  • This momentary air pressure drop lasts for a very short time, usually once in a while, causing the second counting unit 215 to miscount, which may mistakenly trigger the electronic cigarette to enter the unlocked state, causing trouble for the user.
  • the step of triggering the second count specifically includes:
  • the child lock control circuit 200 also includes a third timing unit 212 and a third counting unit 213.
  • the third timing unit 212 and the third counting unit 213 are both connected to the second parameter judgment unit 211.
  • the third timing unit 212 and the third counting unit 213 obtain the first parameter information within the second preset parameter range, that is, when the third timing unit 212 receives a valid parameter signal, the third timing unit 212 starts a third timing, and the third timing unit 212 keeps timing until it is reset to zero, after which the third timing unit 212 stops timing; when the third counting unit 213 receives a valid parameter signal, the third counting unit 213 starts a third count, and also performs a third count this time, and the third count is 1 at this time.
  • S132 Determine whether the third count is greater than or equal to a third preset number within a third preset time period
  • the child lock control circuit 200 further includes a third timing counting judgment unit 214, which is connected to the third counting unit 213 and the third timing unit 212 respectively.
  • the third timing counting judgment unit 214 judges that the timing duration of the third timing unit 212 is within the third preset duration, and the third count of the third counting unit 213 is greater than or equal to the third preset number, the third timing counting judgment unit 214 outputs a first counting signal.
  • the third preset duration is generally 30ms-150ms, and the third preset duration is, for example, 30ms, 40ms, 50ms, 60ms, 70ms, 80ms, 90ms, 100ms, 110ms, 120ms, 130ms, 140ms, 150ms, etc., preferably 60ms-100ms.
  • the third preset number is an integer greater than or equal to 2, such as 2, 3, etc. In this embodiment, the third preset number is greater than or equal to 2, such as 2, 3, 4, 5, 6, etc.
  • the third timing counting judgment unit 214 is electrically connected to the third timing unit 212 and the third counting unit 213 in real time.
  • the third timing counting judgment unit 214 obtains that the third count reaches the third preset number and the third timing does not reach the third preset duration, the third timing counting judgment unit 214 outputs a first counting signal, or the third timing counting judgment unit 214 waits until the third timing reaches the third preset duration before outputting the first counting signal.
  • the third timing counting judgment unit 214 is connected to the third timing unit 212 and the third counting unit 213. When the third timing unit 212 reaches the third preset duration, the third timing unit 212 outputs a signal to the third timing counting judgment unit 214.
  • the third timing counting judgment unit 214 obtains the third count of the third counting unit 213 at this time, and then determines whether the third count is greater than or equal to the third preset number. If the third count is greater than or equal to the third preset number, the third timing counting judgment unit 214 outputs a first counting signal. If the third count is less than the third preset number, the third timing is reset to zero and the third count is set to zero.
  • the third timing counting judgment unit 214 is connected to the second counting unit 215. If the judgment result of the third timing counting judgment unit 214 is yes, the second counting unit 215 receives the first counting signal, and the second counting unit 215 is triggered to start counting. At this time, the second counting unit 215 also counts this time, that is, the second count is 1 at this time. In addition, in this embodiment, the second timing unit 216 is also connected to the third timing counting judgment unit 214. The second timing unit 216 receives the first counting signal, and the second timing unit 216 is triggered to start timing, and the second timing starts from 0.
  • the second counting unit 215 when the second counting unit 215 has not been triggered to start counting and the second timing unit 216 has not been triggered to start timing, if the judgment result of the third timing counting judgment unit 214 is no, that is, the third timing counting judgment unit 214 does not output the first counting signal, the second counting unit 215 maintains the original state of not counting and the second timing unit 216 maintains the original state of not timing; when the second counting unit 215 has been triggered to start counting (that is, the second count is at least 1) and the second timing unit 216 has been triggered to start timing, if the judgment result of the third timing counting judgment unit 214 is no, the second count maintains the original count, the second count does not increase, and the second timing continues to count.
  • the air flow crosstalk causes the air pressure in the air flow channel of the electronic cigarette to change in a short time
  • the condition that the third count is greater than or equal to the third preset number within the third preset time period will not be met, and the second count will not change, so the air flow crosstalk will not be misjudged as a situation where the user wants to unlock, which can prevent the electronic cigarette from mistakenly entering the unlocked state and prevent trouble to the user.
  • This embodiment can avoid this situation and improve the user experience.
  • the second timing unit 216 counts.
  • the first parameter information includes the current capacitance value, the current frequency value, the current count value, the current capacitance change, the current frequency change, the current count change, the ratio of the current capacitance value to the reference capacitance value, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value, the ratio of the current capacitance change to the reference capacitance value, the ratio of the current frequency change to the reference frequency value, or the ratio of the current count change to the reference count value.
  • the child lock control method also includes:
  • the state detection unit 150 includes a first parameter generation unit and a first parameter judgment unit.
  • the first parameter generation unit is connected to the first parameter judgment unit and the second parameter judgment unit 211 respectively.
  • the first parameter judgment unit receives the first parameter information.
  • the first parameter judgment unit judges whether the first parameter information is within the first preset parameter range. If the judgment result is yes, the first parameter judgment unit outputs the information that the electronic cigarette changes from a non-inhalation state to a suction state, that is, outputs a suction signal. If the judgment result is no, the first parameter judgment unit maintains the original signal output, such as outputting a non-inhalation signal and a blowing signal.
  • the first parameter judgment unit and the second parameter judgment unit 211 can be the same parameter judgment unit or different parameter judgment units.
  • the first parameter information includes the current air pressure value, the current air pressure change, the ratio of the current air pressure value to the reference air pressure value, and the ratio of the current air pressure change to the reference air pressure value.
  • the child lock control circuit 200 includes a first parameter judgment unit, and the first parameter judgment unit is connected to the air pressure acquisition unit.
  • the first parameter judgment unit receives the current air pressure value, the current air pressure change, and the current The ratio of the air pressure value to the reference air pressure value, the ratio of the current air pressure change to the reference air pressure value, the first parameter judgment unit judges whether the current air pressure value, the current air pressure change, the ratio of the current air pressure value to the reference air pressure value, and the ratio of the current air pressure change to the reference air pressure value are within the first preset parameter range.
  • the first parameter judgment unit outputs the information that the electronic cigarette changes from the non-inhalation state to the inhalation state, that is, outputs the inhalation signal. If the judgment result is no, the first parameter judgment unit maintains the original signal output, such as outputting the non-inhalation and blowing signal and the blowing signal.
  • the first parameter judgment unit is connected to the child lock control unit 240, and is specifically connected to the switch control unit of the child lock control unit 240. Further, it can also be required to be judged as yes for multiple consecutive times before the inhalation signal is output, which is conducive to reducing the probability of false triggering of airflow crosstalk.
  • the electronic cigarette is in the blowing state by the current air pressure value or the current air pressure change. For example, when the current air pressure value or the current air pressure change is within the fourth preset parameter range, the electronic cigarette is in the blowing state and the blowing signal is output.
  • the first parameter determination unit and the second parameter determination unit may be the same determination unit or different determination units.
  • the step of receiving the first parameter information specifically includes: obtaining information that the electronic cigarette changes from a non-puffing state to a puffing state;
  • the second parameter determination unit 211 is connected to the state detection unit 150 or the air pressure acquisition unit, and the second parameter determination unit 211 does not work before receiving the inhalation signal. When the second parameter determination unit 211 receives the inhalation signal, the second parameter determination unit 211 is triggered to start working. This arrangement is conducive to reducing the power consumption of the electronic cigarette.
  • S161 Obtaining information that the electronic cigarette changes from a smoking state to a non-smoking state
  • S162 Trigger the fifth timing and lock the second timing
  • the child lock control circuit 200 includes a fifth timing unit 221 and a fifth duration judgment unit 222.
  • the fifth timing unit 221 is respectively connected to the state detection unit 150 and the third timing and counting judgment unit 214.
  • the fifth duration judgment unit 222 is respectively electrically connected to the fifth timing unit 221 and the second counting unit 215.
  • the second counting unit 215 is also electrically connected to the state detection unit 150.
  • the fifth timing unit 221 obtains the information that the electronic cigarette enters the non-smoking state from the inhalation state after receiving the first counting signal, and the fifth timing unit 221 is triggered to start timing.
  • the second counting unit 215 also obtains the information that the electronic cigarette enters the non-smoking state from the inhalation state after receiving the first counting signal.
  • the second counting unit 215 is locked, that is, it enters the counting locked state. After the second counting unit 215 is locked, even if it receives the first counting signal again, the count will not be increased, that is, in the locked state, the second counting unit 215 maintains the original count value and does not increase the count value.
  • the second counting unit 215 receives the first counting signal and the count is increased by one.
  • the fifth timing unit 221 is always timing (even if it is changing from the non-inhalation state to the inhalation state)
  • the fifth duration judgment unit 222 judges whether the timing duration of the fifth timing unit 221 is greater than or equal to the fifth preset duration.
  • the fifth duration judgment unit 222 judges that the timing of the fifth timing unit 221 reaches the fifth preset duration, the fifth timing unit 221 will stop timing and reset to zero, that is, the fifth timing unit 221 is reset to zero.
  • the fifth duration judgment unit outputs a counting unlocking signal to the second counting unit 215, the second counting unit 215 is unlocked from counting, the second counting unit 215 enters the counting unlocking state, and the third timing unit 212, the third counting unit 213, and the second timing unit 216 are also reset to zero.
  • the second counting unit 215 obtains the first counting signal again, and the second counting unit 215 can perform a counting plus one action, that is, the second count is increased by one on the original basis.
  • the fifth timing unit 221 when the fifth timing unit 221 does not receive the first counting signal, or the fifth timing unit 221 does not obtain the information that the electronic cigarette enters the non-inhalation state from the inhalation state, the fifth timing unit 221 will not trigger the start of timing.
  • the fifth preset time length is, for example, 50ms-150ms, such as 50ms, 60ms, 70ms, 80ms, 90ms, 100ms, 110ms, 120ms, 130ms, 140ms, 150ms, etc.
  • the step of triggering the second count it also includes: judging whether the duration of the first parameter information being within the second preset parameter range is greater than or equal to the seventh preset duration. If the judgment result is yes, the second count and the second timing are reset to zero. In this embodiment, the duration of the re-inhalation is judged. If the duration of the re-inhalation is greater than or equal to the seventh preset duration, the second count and the second timing are reset to zero, the second count is 0, and the second timing stops counting and is reset to zero.
  • the seventh preset duration is greater than or equal to 400ms, for example, 400ms, 450ms, 500ms, 600ms, etc.
  • the user can smoke the electronic cigarette normally.
  • the electronic cigarette needs to be locked for safety.
  • the electronic cigarette needs to be locked.
  • the locking method can be the same as the unlocking method. Please refer to the previous description and will not be repeated here.
  • the child lock control method further includes:
  • the child lock control circuit 200 includes a fourth parameter judgment unit 231, which is used to receive the first parameter information.
  • the fourth parameter judgment unit 231 and the second parameter judgment unit 211 can be different judgment units or the same parameter judgment unit.
  • the air pressure in the airflow channel is relatively large, which will be higher than the air pressure in the non-suction and blowing state, that is, the current air pressure value will be greater than the reference air pressure value, and the distance between the two electrodes of the capacitor of the airflow sensor 140 will be larger than that in the non-suction and blowing state, so that the current capacitance value will be smaller than that in the non-suction and blowing state, the current frequency value will be larger than that in the non-suction and blowing state, and the current count value will be greater than the reference count value.
  • the fourth parameter judgment unit 231 determines whether the first parameter information is within a fourth preset parameter range, and the fourth preset parameter range is pre-calculated or pre-stored in the fourth parameter judgment unit 231.
  • the fourth preset parameter range corresponds to the capacitance value range or the ratio range
  • the upper limit value of the fourth preset parameter range will be less than the lower limit value corresponding to the first preset parameter range
  • the lower limit value of the fourth preset parameter range may be unlimited or limited as needed.
  • the fourth preset parameter range corresponds to the air pressure value range, the frequency value range, the count value range, or the ratio range, the lower limit value of the fourth preset parameter range will be greater than the upper limit value corresponding to the first preset parameter range, and the upper limit value of the fourth preset parameter range may be unlimited or limited as needed.
  • the size relationship between the fourth preset parameter range and the first preset parameter range may not be limited, and the two ranges may be the same or different.
  • the child lock control circuit 200 includes a fourth timing unit 232 and a fourth counting unit 233.
  • the fourth timing unit 232 is electrically connected to the fourth parameter judgment unit 231, and the fourth counting unit 233 is electrically connected to the fourth parameter judgment unit 231. If the judgment result of the fourth parameter judgment unit 231 is yes, the fourth parameter judgment unit 231 outputs a blowing signal, the fourth timing unit 232 is triggered to start timing, the fourth timing unit 232 starts timing from 0, the fourth counting unit 233 is triggered to start counting, and also counts this time, that is, the count of the fourth counting unit 233 is 1 at this time; if the judgment result of the fourth parameter judgment unit 231 is no, the fourth parameter judgment unit 231 will not output a blowing signal, the fourth timing unit 232 maintains the original state, and the fourth counting unit 233 maintains the original state.
  • the fourth timing unit 232 when the fourth timing unit 232 is triggered to start timing, the fourth timing unit 232 will continue to count until the fourth timing unit 232 is reset to zero, and then the fourth timing unit 232 stops timing.
  • the blowing signal is also output to the child lock control unit 240 .
  • the fourth timing unit 232 when the fourth timing unit 232 is triggered to time and the fourth counting unit 233 is triggered to count, when the fourth parameter judgment unit 231 receives the first parameter information again and once again determines that the first parameter information is within the fourth preset parameter range, the fourth count of the fourth counting unit 233 is increased by 1, and the fourth count is 2 at this time. At the same time, the fourth timing unit 232 continues to perform the fourth timing.
  • S24 Determine whether a fourth count is greater than or equal to a fourth preset number within a fourth preset time period, wherein the fourth preset number is greater than or equal to 2;
  • the child lock control circuit 200 further includes a fourth timing counting judgment unit 234, which is electrically connected to the fourth counting unit 233 and the fourth timing unit 232, respectively.
  • the fourth timing counting judgment unit 234 judges that the timing duration of the fourth timing unit 232 is within the fourth preset duration, and the fourth counting unit 233 counts greater than or equal to the fourth preset number, the fourth timing counting judgment unit 234 outputs a child lock locking signal.
  • the fourth preset duration is generally less than or equal to 5s, such as 1s, 1.5s, 1.8s, 2s, 2.3s, 2.5s, 2.8s, 3s, 4s, 5s, etc., preferably 2s.
  • the fourth preset number is greater than or equal to 2, such as 2, 3, 4, 5, 6, etc., preferably 3, and the fourth preset number is generally less than or equal to 6 times, which is convenient for user operation.
  • the fourth timing counting judgment unit 234 is connected to the fourth timing unit 232 and the fourth counting unit 233 in real time.
  • the fourth timing counting judgment unit 234 obtains that the fourth counting unit 233 reaches the fourth preset number and the fourth timing unit 232 does not reach the fourth preset duration
  • the fourth timing counting judgment unit 234 outputs a child lock locking signal, or the fourth timing counting judgment unit 234 waits until the fourth timing unit 232 timing duration reaches the fourth preset duration before outputting the child lock locking signal.
  • the fourth timing counting judgment unit 234 is connected to the fourth timing unit 232 and the fourth counting unit 233.
  • the fourth timing unit 232 When the fourth timing unit 232 reaches the fourth preset duration, the fourth timing unit 232 outputs a signal to the fourth timing counting judgment unit 234.
  • the fourth timing counting judgment obtains the count of the fourth counting unit 233 at this time, and then determines whether the fourth count is greater than or equal to the fourth preset number. If it is greater than or equal to the fourth preset number, the child lock locking signal is output. If it is less than the fourth preset number, the original signal output is maintained.
  • the fourth timing and counting judgment unit 234 if the result of the judgment of the fourth timing and counting judgment unit 234 is yes, that is, the number counted within the fourth preset time length is greater than or equal to the fourth preset number, the fourth timing and counting judgment unit 234 outputs a child lock locking signal to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter a locked state. In the locked state, the power MOS tube M1 remains disconnected. In this embodiment, the child lock control unit 240 continuously outputs a high-level signal to the power MOS tube M1, and the power MOS tube M1 remains cut off.
  • the locking is achieved by timing and counting the blowing, and an effective locking protection effect is achieved without adding Bluetooth/NFC and other designs and mechanical structures, thereby reducing the hardware cost of locking the electronic cigarette and solving the technical problem of high locking cost of electronic cigarettes in the prior art.
  • the locking method of the present application is not easy to be noticed by children, and the electronic cigarette is not easy to be unlocked by children after being locked, which is conducive to improving the safety of the electronic cigarette.
  • the child lock control method further includes: obtaining again information that the first parameter information is within a fourth preset parameter range, and adding 1 to the fourth count.
  • the child lock control method further includes: if the timing duration of the fourth timing unit 232 reaches a fourth preset duration, the fourth counter is reset to zero, and the fourth timing unit 232 is reset to zero.
  • the child lock control method further includes: if the timing duration of the fourth timing unit 232 is less than the fourth preset duration and the fourth count reaches the fourth preset parameter range, the fourth count is reset to zero and the fourth timing unit 232 is reset to zero.
  • FIG. 38 shows a module diagram of the child lock control circuit 200 of the electronic cigarette provided in the embodiment of the present application. For the sake of convenience, only the part related to the embodiment of the present application is shown.
  • the child lock control circuit 200 includes:
  • a second parameter determination unit 211 which is used to receive the first parameter information and to determine whether the first parameter information is within a second preset parameter range, wherein the second preset parameter range is within the first preset parameter range, and the first preset parameter range is used to determine whether the electronic cigarette is in a puffing state;
  • a second timing unit 216 which is used to trigger a second timing if the judgment result of the second parameter judgment unit 211 is yes;
  • a second timing counting judgment unit 217 which is used to judge whether the second count is greater than or equal to a second preset number within a second preset time period, wherein the second preset number is greater than or equal to 2;
  • the child lock control unit 240 is used to control the electronic cigarette to enter an unlocked state if the judgment results of the second timing and counting judgment unit 217 are all yes.
  • the unlocked state when the electronic cigarette is in a puffing state, the power MOS tube M1 is continuously turned on or intermittently turned on.
  • the first parameter information includes the current air pressure value, the current capacitance value, the current frequency value, the current count value, the current air pressure change, the current capacitance change, the current frequency change, the current count change, the ratio of the current air pressure value to the reference air pressure value, the ratio of the current capacitance value to the reference capacitance value, the ratio of the current frequency value to the reference frequency value, the ratio of the current count value to the reference count value, the ratio of the current air pressure change to the reference air pressure value, the ratio of the current capacitance change to the reference capacitance value, the ratio of the current frequency change to the reference frequency value, or the ratio of the current count change to the reference count value.
  • the lower limit value of the second preset parameter range is greater than the lower limit value of the first preset parameter range; or, when the first parameter information is the current air pressure value, the current frequency value, the ratio of the current air pressure value to the reference air pressure value, or the ratio of the current frequency value to the reference frequency value, the upper limit value of the second preset parameter range is less than the upper limit value of the first preset parameter range; or, when the first parameter information is the current count value or the ratio of the current count value to the reference count value, the upper limit value of the second preset parameter range is less than the upper limit value of the first preset parameter range.
  • the child lock control circuit 200 includes a third timing unit 212, a third counting unit 213 and a third timing and counting judgment unit 214, wherein the third timing unit 212 and the third counting unit 213 are respectively connected to the second parameter judgment unit 211.
  • the second parameter judgment unit 211 outputs a parameter valid signal
  • the third timing unit 212 is triggered to perform the third timing
  • the third counting unit 213 is triggered to perform the third counting.
  • the third timing and counting judgment unit 214 is connected to the third timing unit 212 and the third counting unit 213.
  • the third timing and counting judgment unit 214 is used to judge whether the third count is greater than or equal to the third preset number within the third preset time.
  • the second timing unit 216 is triggered to perform the second timing, and the second counting unit 215 is triggered to perform the second counting.
  • the electronic cigarette is in the inhalation state during the third preset time.
  • the state detection unit 150 includes a first parameter generation unit and a first parameter judgment unit, the first parameter generation unit is connected to the first parameter judgment unit, after the first parameter generation unit generates the first parameter information, the first parameter judgment unit is used to receive the first parameter information and judge whether the first parameter information is within the first preset parameter range, if the judgment result of the first parameter judgment unit is yes, then the first parameter judgment unit outputs the information that the electronic cigarette changes from the non-inhalation state to the inhalation state, that is, outputs the inhalation information.
  • the child lock control circuit 200 includes a first parameter judgment unit, the first parameter judgment unit is connected to the air pressure acquisition unit, the first parameter judgment unit is used to receive the first parameter information, and is used to judge whether the first parameter information is within the first preset parameter range, if the judgment result of the first parameter judgment unit is yes, then the first parameter judgment unit outputs the information that the electronic cigarette changes from the non-inhalation state to the inhalation state, that is, outputs the inhalation information.
  • the child lock control circuit 200 also includes a fifth timing unit 221 and a fifth duration judgment unit 222, wherein the fifth timing unit 221 is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state and obtain information for a second count, the fifth timing unit 221 starts the fifth timing, the second counting unit 215 performs a second count and is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state, the second counting unit 215 is locked, and the fifth duration judgment unit 222 is used to judge whether the fifth timing of the fifth timing unit 221 is greater than or equal to a fifth preset duration. If the judgment result of the fifth duration judgment unit 222 is yes, the fifth duration judgment unit 222 is used to output a counting unlocking signal to the second counting unit 215, and the second counting unit 215 is unlocked.
  • the fifth timing unit 221 is used to obtain information that the electronic cigarette enters a non-smoking state from a puffing state and obtain information
  • the second parameter determination unit 211 is connected to the state detection unit 150 , the state detection unit 150 is electrically connected to the capacitive airflow sensor 140 , and the second parameter determination unit 211 is used to receive the first parameter information output by the state detection unit 150 .
  • the child lock control circuit includes an air pressure acquisition unit, which is used to obtain the current capacitance value, the current frequency value, the current count value, the current capacitance change relative to the no-inhalation and blowing state, the current frequency change relative to the no-inhalation and blowing state, or the current count change relative to the no-inhalation and blowing state through the state detection unit;
  • the air pressure acquisition unit is used to search the pre-stored capacitance value-pressure value table according to the current capacitance value, search the pre-stored frequency value-pressure value table according to the current frequency value, search the pre-stored count value-pressure value table according to the current count value, search the pre-stored capacitance change-pressure value table according to the current capacitance change, search the pre-stored frequency change-pressure value table according to the current frequency change, or search the pre-stored count change-pressure value table according to the current count change;
  • the second parameter judgment unit 211 receives the first parameter information in the electronic cigarette airflow channel.
  • the child lock control circuit 200 includes an unlocking unit, and the unlocking unit includes a second timing unit 216, a second counting unit 215, a second timing and counting judgment unit 217, a second parameter judgment unit 211, and the like.
  • the child lock control circuit 200 includes a locking unit, which includes a fourth parameter judgment unit 231, a fourth timing unit 232, a fourth counting unit 233, and a fourth timing and counting judgment unit 234, wherein the fourth parameter judgment unit 231 is used to receive the first parameter information and judge whether the first parameter information is within a fourth preset parameter range, and the fourth preset parameter range is used to judge whether the electronic cigarette is in a blowing state; if the judgment result of the fourth parameter judgment unit 231 is yes, the fourth timing unit 232 is triggered to perform a fourth timing, the fourth counting unit 233 is triggered to perform a fourth counting, and the fourth timing and counting judgment unit 234 is used to judge whether the fourth count is greater than or equal to a fourth preset number within a fourth preset time length, and if the judgment result of the fourth timing and counting judgment unit 234 is yes, a child lock locking signal is output to the child lock control unit 240, and the child lock control unit 240 controls the electronic cigarette to enter a locked state, and
  • the fourth counting unit 233 is further used to obtain information again that the first parameter information is within the fourth preset parameter range, and the fourth count is increased by 1.
  • the fourth timing unit 232 is further configured to reset the fourth count to zero if the timing duration reaches a fourth preset duration, and reset the fourth timing unit 232 to zero.
  • the fourth timing counting judgment unit 234 is further configured to reset the fourth count to zero if the timing duration is less than the fourth preset duration and the fourth count reaches a fourth preset number, and reset the fourth timing unit 232 to zero.
  • the technicians in the relevant field can clearly understand that for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example.
  • the above-mentioned function allocation can be completed by different functional units and modules as needed, that is, the internal structure of the device can be divided into different functional units or modules to complete all or part of the functions described above.
  • the functional units and modules in the embodiment can be integrated into a processing unit, or each unit can exist physically separately, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or in the form of software functional units.
  • FIG39 is a schematic diagram of a child lock control device 400 provided in an embodiment of the present application.
  • the child lock control device 400 of this embodiment includes: at least one processor 420 (only one is shown in FIG39 ), a memory 410, and a computer program stored in the memory 410 and executable on the processor 420.
  • the processor 420 executes the computer program, the steps in the above-mentioned child lock control method embodiment are implemented.
  • FIG39 is merely an example of a child lock control device 400 and does not constitute a limitation on the child lock control device 400.
  • the processor 420 may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the memory 410 may be an internal storage unit of the child lock control device 400, such as a hard disk or memory of the child lock control device 400. In other embodiments, the memory 410 may also be an external storage device of the child lock control device 400, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), etc. equipped on the child lock control device 400. Further, the memory 410 may also include both the internal storage unit of the child lock control device 400 and an external storage device.
  • a plug-in hard disk such as a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), etc. equipped on the child lock control device 400.
  • the memory 410 may also include both the internal storage unit of the child lock control device 400 and an external storage device.
  • the memory 410 is used to store an operating system, an application program, a boot loader (BootLoader), data, and other programs, such as the program code of the computer program.
  • the memory 410 may also be used to temporarily store data that has been output or is to be output.
  • the child lock control device 400 is, for example, an electronic cigarette.
  • the embodiment of the present application further provides a storage medium, which stores a computer program.
  • a storage medium which stores a computer program.
  • An embodiment of the present application provides a computer program product.
  • the terminal can implement the steps in the above-mentioned child lock control method embodiment when executing the computer program product.
  • the electronic cigarette includes the above-mentioned child lock control circuit 200
  • the electronic cigarette also includes a battery 110, a power MOS tube M1 and a heating element 130, the heating element 130 and the power MOS tube M1 are connected in series to form a heating branch, and the two ends of the heating branch are electrically connected to the positive and negative electrodes of the battery 110; it also includes an airflow sensor 140, wherein the control end of the power MOS tube M1 and the airflow sensor 140 are both electrically connected to the child lock control circuit 200, and the airflow sensor 140 is electrically connected to the state detection unit 150 of the child lock control circuit 200.

Landscapes

  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • General Health & Medical Sciences (AREA)
  • Lock And Its Accessories (AREA)

Abstract

一种电子烟的童锁控制方法及童锁控制电路、装置、电子烟。电子烟的童锁控制方法,电子烟包括功率MOS管(M)和发热元件(130),发热元件(130)和功率MOS管(M)串联,当功率MOS管(M)导通时发热元件(130)加热以使烟油雾化,当功率MOS管(M)断开截止时发热元件(130)停止加热,童锁控制方法包括:接收第一计数信息(S11),其中第一计数信息用于表征电子烟的气流通道内的气压状况;判断第一计数信息是否位于第二预设数值范围内(S12),其中,第二预设数值范围位于第一预设数值范围,第一预设数值范围用于判断电子烟是否处于抽吸状态;若判断结果为是,则触发进行第二计时并触发进行第二计数(S13);判断在第二预设时长内第二计数是否大于或等于第二预设数量(S14),其中,第二预设数量大于或等于2;若判断结果为是,则控制电子烟进入锁定状态(S15),在锁定状态功率MOS管(M)保持断开截止。

Description

一种童锁控制方法及童锁控制电路、装置、电子烟
本申请要求于2022年10月20日提交中国专利局、申请号为CN202211289864.0、申请名称为“一种童锁控制方法及童锁控制电路、装置、电子烟”,以及,要求于2022年10月20日提交中国专利局、申请号为CN202211289873.X、申请名称为“一种童锁控制方法及童锁控制电路、装置、电子烟”,以及,要求于2022年10月20日提交中国专利局、申请号为CN202211292693.7、申请名称为“一种童锁控制方法及童锁控制电路、装置、电子烟”,以及,要求于2022年10月20日提交中国专利局、申请号为CN202211289508.9、申请名称为“一种童锁控制方法及童锁控制电路、装置、电子烟”,以及,要求于2022年10月20日提交中国专利局、申请号为CN202211289465.4、申请名称为“一种童锁控制方法及童锁控制电路、装置、电子烟”的中国专利申请的优先权,上述在先申请的内容通过引用结合在本申请中。
技术领域
本申请涉及电子烟技术领域,尤其涉及一种童锁控制方法及童锁控制电路、装置、电子烟。
背景技术
电子烟是一种模拟香烟的电子设备,其通过模拟真实香烟的口感和烟雾,从而取代了传统的香烟,不仅节省了消费者的开支,还降低了“二手烟”带来的危害。
目前电子烟在日常生活中比较常见,儿童很容易接触到,部分电子烟都没有童锁功能,又由于儿童的好奇心和模仿,极容易造成儿童误吸食电子烟。因此,出于安全考虑,电子烟非常有必要具有防止儿童误吸误触的童锁功能。目前,市面上电子烟的童锁功能一般使用蓝牙、WIFI、NFC、指纹、触摸按键、机械按键等方式实现儿童防护,童锁功能一般包括加锁功能和解锁功能,一般加锁功能、解锁功能实现的方式是一样的,均是通过使用蓝牙、WIFI、NFC、指纹、触摸按键、机械按键等方式实现,但是,在这些实现方式中,蓝牙、WIFI、NFC、指纹等方式会大幅增加硬件成本,触摸按键、机械按键等方式会额外增加结构设计的复杂性,并对电子烟的外观造成一定的影响。
最近市面上还出现了一种电子烟,实现童锁功能不需要增加硬件成本,具体方案为预设时间内电子烟被抽吸阈值数量,例如2秒内电子烟被抽吸3次,触发电子烟进入锁定状态,实现加锁功能,进入锁定状态后可以防止儿童误吸食电子烟。虽然这样设置可以提升电子烟的安全性,然而,当用户正常抽吸电子烟时,如果抽吸比较快,用户正常抽吸时有可能误触发电子烟进入锁定状态,进入锁定状态后用户再抽吸电子烟不会雾化烟油,需要由锁定状态变为解锁状态后才能恢复正常使用,这给部分用户的使用造成极大不便。
发明内容
本申请实施例所要解决的技术问题在于,针对现有技术给用户使用造成不便的技术缺陷,提供一种童锁控制方法及童锁控制电路、装置、电子烟。可方便的具有童锁功能。
为了解决上述技术问题,本申请实施例第一方面提供了一种电子烟的童锁控制方法,所述电子烟包括功率MOS管和发热元件,所述发热元件和所述功率MOS管串联,当所述功率MOS管导通时所述发热元件加热以使烟油雾化,当所述功率MOS管断开截止时所述发热元件停止加热,所述童锁控制方法包括:
接收第一计数信息,其中,所述第一计数信息用于表征电子烟气流通道内的气压状况;
判断第一计数信息是否位于第二预设数值范围内,其中,所述第二预设数值范围位于第一预设数值范围内,所述第一预设数值范围用于判断电子烟是否处于抽吸状态;
若判断结果为是,则触发进行第二计时并触发进行第二计数;
判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
可选的,所述第一计数信息包括在第一计数时长的振荡周期数、在第一计数时长的振荡周期数与基准振荡周期数的比值、在第一计数时长的振荡周期数相对基准振荡周期的差值或者在第一计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值。
可选的,当所述第一计数信息为在第一计数时长的振荡周期数时,所述第二预设数值范围的上限值小于第一预设数值范围的上限值;或者,
当所述第一计数信息为在第一计数时长的振荡周期数与基准振荡周期数的比值时,所述第二预设数值范围的上限值小于第一预设数值范围的上限值,其中,所述基准振荡周期数为电子烟处于未吸吹状态时在第一计数时长的振荡周期数;或者,
当所述第一计数信息为在第一计数时长的振荡周期数相对基准振荡周期的差值时,所述第二预设数值范围的下限值大于第一预设数值范围的下限值,其中,所述基准振荡周期数为电子烟处于未吸吹状态时在第一计数时长的振荡周期数;或者,
当所述第一计数信息为在第一计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值时,所述第二预设数值范围的下限值大于第一预设数值范围的下限值,其中,所述基准振荡周期数为电子烟处于未吸吹状态时在第一计数时长的振荡周期数。
可选的,步骤触发进行第二计数具体包括:触发进行第三计时并触发进行第三计数;
判断在第三预设时长内第三计数是否大于或等于第三预设数量,其中,第三预设数量大于或等于2;
若判断结果为是,则触发进行第二计数。
可选的,在第三预设时长所述电子烟处于抽吸状态。
可选的,步骤接收第一计数信息具体包括:获取电子烟由未抽吸状态转为抽吸状态的信息;
触发接收第一计数信息。
可选的,所述童锁控制方法还包括:
接收第一计数信息并判断第一计数信息是否位于第一预设数值范围内;
若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
可选的,在步骤触发进行第二计数之后还包括:获取电子烟由抽吸状态进入未抽吸状态的信息;
触发第五计时且对第二计数进行锁定;
判断第五计时是否大于或等于第五预设时长;
若判断结果为是,则解除对第二计数的锁定。
可选的,所述童锁控制方法还包括:若在第二预设时长内第二计数小于第二预设数量,则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零。
可选的,所述电子烟包括状态检测单元、气流传感器,所述状态检测单元用于与气流传感器电连接,所述气流传感器至少部分位于气流通道内,步骤接收第一计数信息具体包括:
接收状态检测单元输出的第一计数信息。
可选的,还包括:
若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零;和/或,
若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零;和/或,
再次获取第一计数信息位于第二预设数值范围内的信息,第二计数加1。
可选的,还包括:
接收第四计数信息;
判断第四计数信息是否位于第四预设数值范围内,所述第四预设数值范围用于判断电子 烟是否处于吹气状态;
若判断结果为是,则触发进行第四计时并触发进行第四计数;
判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
若判断结果为是,则控制电子烟进入解锁状态,其中,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管持续导通或者间断导通。
可选的,所述第二预设时长的范围为1秒-5秒;和/或;
所述第二预设数量大于或等于3。
本申请实施例第二方面提供了一种童锁控制电路,应用于电子烟,包括:
状态检测单元,其用于与气流传感器电连接,其用于输出第一计数信息;
第二计数判断单元,其用于接收第一计数信息,并用于判断第一计数信息是否位于第二预设数值范围内,其中,所述第一计数信息用于表征电子烟气流通道内的气压状况;所述第二预设数值范围位于第一预设数值范围内,所述第一预设数值范围用于判断电子烟是否处于抽吸状态;
第二计数单元,其用于若第二计数判断单元的判断结果为是,则触发进行第二计数;
第二计时单元,其用于若第二计数判断单元的判断结果为是,则触发进行第二计时;
第二计时计数判断单元,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
童锁控制单元,其用于若第二计时计数判断单元的判断结果均为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管保持断开截止。
可选的,所述童锁控制电路位于同一个芯片上。
本申请实施例第三方面提供了一种童锁控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的电子烟的童锁控制方法。
本申请实施例第四方面提供了一种电子烟,包括:上述的童锁控制电路;
还包括电池、功率MOS管和发热元件,所述发热元件和所述功率MOS管串联形成发热支路,所述发热支路的两端对应与电池的正、负极电连接,所述功率MOS管的控制端与所述童锁控制电路电连接;
气流传感器,其与所述童锁控制电路的状态检测单元电连接,所述状态检测单元用于判断所述电子烟的抽吸状态。
本申请实施例通过接收第一计数信息;判断第一计数信息是否位于第二预设数值范围内;若判断结果为是,则触发进行第二计时并触发进行第二计数;判断在第二预设时长内第二计数是否大于或等于第二预设数量,若判断结果为是,则控制电子烟进入锁定状态。本申请实施例通过第一计数信息、第二预设数值范围对抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,将第一计数信息位于第二预设数值范围的抽吸次数分辨为气压更小的抽吸状态,并进行第二计数,并且在第二预设时长内第二计数大于或等于第二预设数量才使电子烟进入锁定状态,通过这样设置,电子烟可以进一步分辨用户是正常抽吸电子烟,还是想要通过抽吸电子烟触发烟进入锁定状态,可以降低用户正常抽吸电子烟时被误触发进入锁定状态的几率,可以减少用户的使用困扰。而且,通过在第二预设时长内第二计数大于或等于第二预设数量,可以实现电子烟进入锁定状态,本实施例的电子烟在锁定保护后,可以防止儿童拿起电子烟模仿成人抽吸动作导致电子烟产品开始雾化工作,提升电子烟的使用安全性。
本申请实施例第五方面提供了一种电子烟的童锁控制方法,所述电子烟包括功率MOS管和发热元件,所述发热元件和所述功率MOS管串联,当所述功率MOS管导通时所述发热元件加热以使烟油雾化,当所述功率MOS管断开截止时所述发热元件停止加热,所述童锁控制方法包括:接收电子烟气流通道内的当前气压信息;
判断当前气压信息是否位于第二预设气压范围内,其中,所述第二预设气压范围位于第一预设气压范围内,所述第一预设气压范围用于判断电子烟是否处于抽吸状态;
若判断结果为是,则触发进行第二计时并触发进行第二计数;
判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
可选的,所述当前气压信息包括当前气压值、当前气压值与基准气压值的比值、当前气压值相对基准气压值的差值或者当前气压值相对基准气压值的差值与基准气压值的比值。
可选的,当所述当前气压信息为当前气压值时,所述第二预设气压范围的上限值小于第一预设气压范围的上限值;或者,当所述当前气压信息为当前气压值与基准气压值的比值时,所述第二预设气压范围的上限值小于第一预设气压范围的上限值,其中,所述基准气压值为电子烟处于未吸吹状态时其气流通道内的气压值;或者,当所述当前气压信息为当前气压值相对基准气压值的差值时,所述第二预设气压范围的下限值大于第一预设气压范围的下限值,其中,所述基准气压值为电子烟处于未吸吹状态时其气流通道内的气压值;或者,当所述当前气压信息为当前气压值相对基准气压值的差值与基准气压值的比值时,所述第二预设气压范围的下限值大于第一预设气压范围的下限值,其中,所述基准气压值为电子烟处于未吸吹状态时其气流通道内的气压值。
可选的,步骤触发进行第二计数具体包括:
触发进行第三计时并触发进行第三计数;
判断在第三预设时长内第三计数是否大于或等于第三预设数量,其中,第三预设数量大于或等于2;
若判断结果为是,则触发进行第二计数。
可选的,在第三预设时长所述电子烟处于抽吸状态。
可选的,步骤接收电子烟气流通道内的当前气压信息具体包括:
获取当前电容值、当前频率值、当前计数值、相对未吸吹状态时的当前电容变化量、相对未吸吹状态时的当前频率变化量或者相对未吸吹状态时的当前计数变化量;
根据当前电容值查找预存的电容值-气压值表、根据当前频率值查找预存的频率值-气压值表、根据当前计数值查找预存的计数值-气压值表、根据当前电容变化量查找预存的电容变化量-气压值表、根据当前频率变化量查找预存的频率变化量-气压值表或者根据当前计数变化量查找预存的计数变化量-气压值表;
获得电子烟气流通道内的当前气压信息并输出;
接收当前气压信息。
可选的,所述童锁控制方法还包括:
接收电子烟气流通道内的当前气压信息并判断当前气压信息是否位于第一预设气压范围内;
若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
可选的,所述童锁控制方法还包括:
接收当前计数值,其中,所述当前计数值用于表征电子烟气流通道内的气压状况;
判断当前计数值是否位于第一预设数值范围内,其中,所述第一预设数值范围与所述第一预设气压范围对应;
若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
可选的,在步骤触发进行第二计数之后还包括:
获取电子烟由抽吸状态进入未抽吸状态的信息;
触发第五计时且对第二计数进行锁定;
判断第五计时是否大于或等于第五预设时长;
若判断结果为是,则解除对第二计数的锁定。
可选的,所述童锁控制方法还包括:若在第二预设时长内第二计数小于第二预设数量,则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零;和/或,
若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零;和/或,
若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零;和/或,
再次获取电子烟气流通道内的当前气压信息位于第二预设气压范围内的信息,第二计数加1。
可选的,还包括:
接收电子烟气流通道内的当前气压信息;
判断当前气压信息是否位于第四预设气压范围内,所述第四预设气压范围用于判断电子烟是否处于吹气状态;
若判断结果为是,则触发进行第四计时并触发进行第四计数;
判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
若判断结果为是,则控制电子烟进入解锁状态,其中,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管持续导通或者间断导通。
可选的,所述第二预设时长的范围为1秒-5秒;和/或;
所述第二预设数量大于或等于3。
本申请实施例第六方面提供了一种童锁控制电路,应用于电子烟,包括:
气压获取单元,其用于输出电子烟气流通道内的当前气压信息;
第二气压判断单元,其用于接收当前气压信息,并用于判断当前气压信息是否位于第二预设气压范围内,其中,所述第二预设气压范围位于第一预设气压范围内,所述第一预设气压范围用于判断电子烟是否处于抽吸状态;
第二计数单元,其用于若第二气压判断单元的判断结果为是,则触发进行第二计数;
第二计时单元,其用于若第二气压判断单元的判断结果为是,则触发进行第二计时;
第二计时计数判断单元,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
童锁控制单元,其用于若第二计时计数判断单元的判断结果均为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管保持断开截止。
可选的,所述童锁控制电路位于同一个芯片上;和/或,
所述童锁控制电路还包括状态检测单元,其用于与气流传感器电连接,其还用于与气压获取单元连接。
本申请实施例第七方面提供了一种童锁控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的电子烟的童锁控制方法。
本申请实施例第八方面提供了一种电子烟,包括:上述的童锁控制电路;
还包括电池、功率MOS管和发热元件,所述发热元件和所述功率MOS管串联形成发热支路,所述发热支路的两端对应与电池的正、负极电连接,所述功率MOS管的控制端与所述童锁控制电路电连接。
本申请实施例通过接收电子烟气流通道内的当前气压信息;判断当前气压信息是否位于第二预设气压范围内,若判断结果为是,则触发进行第二计时并触发进行第二计数;判断在第二预设时长内第二计数是否大于或等于第二预设数量,若判断结果为是,则控制电子烟进入锁定状态。本申请实施例通过当前气压信息、第二预设气压范围对抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,将当前气压信息位于第二预设气压范围的抽吸次数分辨为气压更小的抽吸状态,并进行第二计数,并且在第二预设时长内第二计数大于或等于第二预设数量才使电子烟进入锁定状态,通过这样设置,电子烟可以进一步分辨用户是正常抽吸电子烟,还是想要通过抽吸电子烟触发烟进入锁定状态,可以降低用户正常抽 吸电子烟时被误触发进入锁定状态的几率,可以减少用户的使用困扰。而且,通过在第二预设时长内第二计数大于或等于第二预设数量,可以实现电子烟进入锁定状态,本实施例的电子烟在锁定保护后,可以防止儿童拿起电子烟模仿成人抽吸动作导致电子烟产品开始雾化工作,提升电子烟的使用安全性。
本申请实施例第九方面提供了一种电子烟的童锁控制方法,所述电子烟包括功率MOS管和发热元件,所述发热元件和所述功率MOS管串联,当所述功率MOS管导通时所述发热元件加热以使烟油雾化,当所述功率MOS管断开截止时所述发热元件停止加热,所述童锁控制方法包括:
接收第一参数信息,其中,所述第一参数信息用于表征电子烟气流通道内的气压状况;
判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
若判断结果为是,则触发进行第二计时并触发进行第二计数;
判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
可选的,所述第一参数信息包括当前电容值、当前频率值、当前计数值、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值。
可选的,当所述第一参数信息为当前电容值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,所述第二预设参数范围的下限值大于第一预设参数范围的下限值;或者,当所述第一参数信息为当前频率值或者当前频率值与基准频率值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值;或者,当所述第一参数信息为当前计数值或者当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值。
可选的,步骤触发进行第二计数具体包括:
触发进行第三计时并触发进行第三计数;
判断在第三预设时长内第三计数是否大于或等于第三预设数量,其中,第三预设数量大于或等于2;
若判断结果为是,则触发进行第二计数。
可选的,在第三预设时长所述电子烟处于抽吸状态。
可选的,所述童锁控制方法还包括:
接收第一参数信息;
判断第一参数信息是否位于第一预设参数范围内;
若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
可选的,在步骤触发进行第二计数之后还包括:
获取电子烟由抽吸状态进入未抽吸状态的信息;
触发第五计时且对第二计数进行锁定;
判断第五计时是否大于或等于第五预设时长;
若判断结果为是,则解除对第二计数的锁定。
可选的,所述童锁控制方法还包括:若在第二预设时长内第二计数小于第二预设数量, 则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零;和/或,
若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零;和/或,
若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零;和/或,
再次获取电子烟气流通道内的第一参数信息位于第二预设参数范围内的信息,第二计数加1。
可选的,还包括:
接收第一参数信息;
判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;
若判断结果为是,则触发进行第四计时并触发进行第四计数;
判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
若判断结果为是,则控制电子烟进入解锁状态,其中,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管持续导通或者间断导通。
可选的,所述第二预设时长的范围为1秒-5秒;和/或;
所述第二预设数量大于或等于3。
本申请实施例第十方面提供了一种童锁控制电路,应用于电子烟,包括:
状态检测单元,其用于与气流传感器电连接,其还用于输出第一参数信息;
第二参数判断单元,其用于接收第一参数信息,并用于判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
第二计数单元,其用于若第二参数判断单元的判断结果为是,则触发进行第二计数;
第二计时单元,其用于若第二参数判断单元的判断结果为是,则触发进行第二计时;
第二计时计数判断单元,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
童锁控制单元,其用于若第二计时计数判断单元的判断结果均为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管保持断开截止。
可选的,所述童锁控制电路位于同一个芯片上。
本申请实施例第十一方面提供了一种童锁控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的电子烟的童锁控制方法。
本申请实施例第十二方面提供了一种电子烟,包括:
上述的童锁控制电路;
还包括电池、功率MOS管和发热元件,所述发热元件和所述功率MOS管串联形成发热支路,所述发热支路的两端对应与电池的正、负极电连接,所述功率MOS管的控制端与所述童锁控制电路电连接;
气流传感器,其与所述童锁控制电路的状态检测单元电连接。
本申请实施例通过接收第一参数信息;判断第一参数信息是否位于第二预设参数范围内,若判断结果为是,则触发进行第二计时并触发进行第二计数;判断在第二预设时长内第二计数是否大于或等于第二预设数量,若判断结果为是,则控制电子烟进入锁定状态。本申请实施例通过第一参数信息、第二预设参数范围对抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,将第一参数信息位于第二预设参数范围的抽吸次数分辨为气压更小的抽吸状态,并进行第二计数,并且在第二预设时长内第二计数大于或等于第二预设数量才使电子烟进入锁定状态,通过这样设置,电子烟可以进一步分辨用户是正常抽吸电子烟,还是想要通过抽吸电子烟触发烟进入锁定状态,可以降低用户正常抽吸电子烟时被误触发进入锁定状态的几率,可以减少用户的使用困扰。而且,通过在第二预设时长内第二计数大于 或等于第二预设数量,可以实现电子烟进入锁定状态,本实施例的电子烟在锁定保护后,可以防止儿童拿起电子烟模仿成人抽吸动作导致电子烟产品开始雾化工作,提升电子烟的使用安全性。
本申请实施例第十三方面提供了一种电子烟的童锁控制方法,所述电子烟包括功率MOS管和发热元件,所述发热元件和所述功率MOS管串联,当所述功率MOS管导通时所述发热元件加热以使烟油雾化,当所述功率MOS管断开截止时所述发热元件停止加热,所述童锁控制方法包括:
接收第一参数信息,其中,所述第一参数信息用于表征电子烟气流通道内的气压状况;
判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
可选的,所述第一参数信息包括当前气压值、当前电容值、当前频率值、当前计数值、当前气压值与基准气压值的比值、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前气压值与基准气压值的差值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前气压值相对基准气压值的差值与基准气压值的比值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值。
可选的,当所述第一参数信息为当前气压值、当前频率值、当前计数值、当前气压值与基准气压值的比值、当前频率值与基准频率值的比值或者当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值;或者,
当所述第一参数信息为当前电容值、当前电容值与基准电容值的比值、当前气压值与基准气压值的差值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前气压值相对基准气压值的差值与基准气压值的比值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,所述第二预设参数范围的下限值大于第一预设参数范围的下限值。
可选的,当所述第一参数信息为当前气压值、当前频率值或者当前计数值时,所述第二预设参数范围的上限值与第一预设参数范围的上限值的比值小于或等于85%;或者,
当所述第一参数信息为当前电容值时,所述第二预设参数范围的下限值与第一预设参数范围的下限值的比值大于或等于115%;或者,
当所述第一参数信息为当前气压值与基准气压值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于或等于85%;或者,
当所述第一参数信息为当前电容值与基准电容值的比值时,所述第二预设参数范围的下限值大于或等于115%;或者,
当所述第一参数信息为当前气压值相对基准气压值的差值与基准气压值的比值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,所述第二预设参数范围的下限值大于或等于15%。
可选的,当所述第一参数信息为当前气压值时,步骤接收第一参数信息具体包括:
获取当前电容值、当前频率值或者当前计数值;
根据当前电容值查找预存的电容值-气压值表、根据当前频率值查找预存的频率值-气压值表或者根据当前计数值查找预存的计数值-气压值表;
获得电子烟气流通道内的当前气压值并输出;
接收第一参数信息。
可选的,所述童锁控制方法还包括:
接收第一参数信息;
判断第一参数信息是否位于第一预设参数范围内;
若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
可选的,还包括:
接收第一参数信息;
判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;
若判断结果为是,则触发进行第四计时并触发进行第四计数;
判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
若判断结果为是,则控制电子烟进入解锁状态,其中,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管持续导通或者间断导通。
本申请实施例第十四方面提供了一种童锁控制电路,应用于电子烟,包括:
第二参数判断单元,其用于接收第一参数信息,并用于判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
童锁控制单元,其用于若第二参数判断单元的判断结果均为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管保持断开截止。
可选的,所述童锁控制电路位于同一个芯片上;和/或,
所述童锁控制电路还包括状态检测单元,其用于与气流传感器电连接,其还用于输出第一参数信息;和/或,
所述童锁控制电路还包括状态检测单元和气压获取单元,所述状态检测单元用于与气流传感器电连接,所述状态检测单元还用于与气压获取单元连接,所述气压获取单元用于输出第一参数信息。
本申请实施例第十五方面提供了一种童锁控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的电子烟的童锁控制方法。
本申请实施例第十六方面提供了一种电子烟,包括:
上述的童锁控制电路;
还包括电池、功率MOS管和发热元件,所述发热元件和所述功率MOS管串联形成发热支路,所述发热支路的两端对应与电池的正、负极电连接,所述功率MOS管的控制端与所述童锁控制电路电连接。
本申请实施例通过接收第一参数信息;判断第一参数信息是否位于第二预设参数范围内,若判断结果为是,则控制电子烟进入锁定状态。本申请实施例通过第一参数信息、第二预设参数范围对抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,将第一参数信息位于第二预设参数范围的抽吸次数分辨为气压更小的抽吸状态(重吸),并使电子烟进入锁定状态,通过这样设置,电子烟可以进一步分辨用户是正常抽吸电子烟,还是想要通过抽吸电子烟触发进入锁定状态,可以降低用户正常抽吸电子烟时被误触发进入锁定状态的几率,可以减少用户的使用困扰。而且,通过重吸实现电子烟进入锁定状态,本实施例的电子烟在锁定保护后,可以防止儿童拿起电子烟模仿成人抽吸动作导致电子烟产品开始雾化工作,提升电子烟的使用安全性。
本申请实施例第十七方面提供了一种电子烟的童锁控制方法,所述电子烟包括功率MOS管和发热元件,所述发热元件和所述功率MOS管串联,当所述功率MOS管导通时所述发热 元件加热以使烟油雾化,当所述功率MOS管断开截止时所述发热元件停止加热,所述童锁控制方法包括:
接收第一参数信息,其中,所述第一参数信息用于表征电子烟气流通道内的气压状况;
判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
若判断结果为是,则触发进行第二计时并触发进行第二计数;
判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
若判断结果为是,则控制电子烟进入解锁状态,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管持续导通或者间断导通。
可选的,所述第一参数信息包括当前气压值、当前电容值、当前频率值、当前计数值、当前气压变化量、当前电容变化量、当前频率变化量、当前计数变化量、当前气压值与基准气压值的比值、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前气压变化量与基准气压值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值。
可选的,当所述第一参数信息为当前电容值、当前气压变化量、当前电容变化量、当前频率变化量、当前计数变化量、当前气压变化量与基准气压值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值时,所述第二预设参数范围的下限值大于第一预设参数范围的下限值;或者,
当所述第一参数信息为当前气压值、当前频率值、当前气压值与基准气压值的比值或者当前频率值与基准频率值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值;或者,
当所述第一参数信息为当前计数值或者当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值。
可选的,步骤触发进行第二计数具体包括:
触发进行第三计时并触发进行第三计数;
判断在第三预设时长内第三计数是否大于或等于第三预设数量,其中,第三预设数量大于或等于2;
若判断结果为是,则触发进行第二计数。
可选的,在第三预设时长所述电子烟处于抽吸状态。
可选的,所述童锁控制方法还包括:
接收第一参数信息;
判断第一参数信息是否位于第一预设参数范围内;
若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
可选的,在步骤触发进行第二计数之后还包括:
获取电子烟由抽吸状态进入未抽吸状态的信息;
触发第五计时且对第二计数进行锁定;
判断第五计时是否大于或等于第五预设时长;
若判断结果为是,则解除对第二计数的锁定。
可选的,所述童锁控制方法还包括:若在第二预设时长内第二计数小于第二预设数量,则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零;和/或,
若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零;和/或,
若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零;和/或,
再次获取电子烟气流通道内的第一参数信息位于第二预设参数范围内的信息,第二计数加1。
可选的,还包括:
接收第一参数信息;
判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;
若判断结果为是,则触发进行第四计时并触发进行第四计数;
判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
可选的,所述第二预设时长的范围为1秒-5秒;和/或;
所述第二预设数量大于或等于3。
可选的,所述第一参数信息包括当前电容值、当前频率值、当前计数值、当前电容变化量、当前频率变化量、当前计数变化量、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值,所述电子烟包括状态检测单元、电容式气流传感器,所述状态检测单元用于与电容式气流传感器电连接,所述电容式气流传感器包括电容,所述电容位于气流通道内,步骤接收第一参数信息具体包括:接收状态检测单元输出的第一参数信息。
可选的,所述第一参数信息包括当前气压值、当前气压变化量、当前气压值与基准气压值的比值、当前气压变化量与基准气压值的比值,所述电子烟包括状态检测单元、电容式气流传感器,所述状态检测单元用于与电容式气流传感器电连接,所述电容式气流传感器包括电容,所述电容位于电子烟的气流通道内,步骤接收第一参数信息具体包括:
通过状态检测单元获取当前电容值、当前频率值、当前计数值、相对未吸吹状态时的当前电容变化量、相对未吸吹状态时的当前频率变化量或者相对未吸吹状态时的当前计数变化量;
根据当前电容值查找预存的电容值-气压值表、根据当前频率值查找预存的频率值-气压值表、根据当前计数值查找预存的计数值-气压值表、根据当前电容变化量查找预存的电容变化量-气压值表、根据当前频率变化量查找预存的频率变化量-气压值表或者根据当前计数变化量查找预存的计数变化量-气压值表;
接收电子烟气流通道内的第一参数信息。
本申请实施例第十八方面提供了一种童锁控制电路,应用于电子烟,包括:
第二参数判断单元,其用于接收第一参数信息,并用于判断第一参数信息是否位于第二预设参数范围内,其中,所述第一参数信息用于表征电子烟气流通道内的气压状况,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
第二计数单元,其用于若第二参数判断单元的判断结果为是,则触发进行第二计数;
第二计时单元,其用于若第二参数判断单元的判断结果为是,则触发进行计时;
第二计时计数判断单元,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
童锁控制单元,其用于若第二计时计数判断单元的判断结果均为是,则控制电子烟进入解锁状态,在解锁状态所述电子烟处于抽吸状态时功率MOS管持续导通或者间断导通。
可选的,所述童锁控制电路位于同一个芯片上;和/或,
所述童锁控制电路还包括状态检测单元,其用于与气流传感器电连接,其还用于输出第一参数信息;和/或,
所述童锁控制电路还包括状态检测单元和气压获取单元,所述状态检测单元用于与气流传感器电连接,所述状态检测单元还用于与气压获取单元连接,所述气压获取单元用于输出第一参数信息。
本申请实施例第十九方面提供了一种童锁控制装置,包括存储器、处理器以及存储在所 述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的电子烟的童锁控制方法。
本申请实施例第二十方面提供了一种电子烟,包括:
上述的童锁控制电路;
还包括电池、功率MOS管和发热元件,所述发热元件和所述功率MOS管串联形成发热支路,所述发热支路的两端对应与电池的正、负极电连接,所述功率MOS管的控制端与所述童锁控制电路电连接。
本申请实施例通过接收第一参数信息;判断第一参数信息是否位于第二预设参数范围内,若判断结果为是,则触发进行第二计时并触发进行第二计数;判断在第二预设时长内第二计数是否大于或等于第二预设数量,若判断结果为是,则控制电子烟进入解锁状态。本申请实施例通过第一参数信息、第二预设参数范围对抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,将第一参数信息位于第二预设参数范围的抽吸次数分辨为气压更小的抽吸状态,并进行第二计数,并且在第二预设时长内第二计数大于或等于第二预设数量才使电子烟进入解锁状态,通过这样设置,电子烟可以进一步分辨用户是正常抽吸电子烟,还是想要通过抽吸电子烟触发进入解锁状态,可以降低用户把玩抽吸电子烟时被误触发解除锁定的几率,可以减少用户的使用困扰;而且,需要重吸才可能解除锁定,一般小孩不容易将抽吸再分辨为重吸和一般的抽吸,从而小孩解除电子烟锁定状态的难度较大,提升了电子烟的安全性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例的电子烟的电路模块图;
图2是本申请第一实施例的童锁控制方法的流程步骤图;
图3是图2中步骤S13的部分具体流程步骤图;
图4是图2中步骤S13之后流程步骤图;
图5是图2中步骤S15之后一实施例的流程步骤图;
图6是本申请一实施例的童锁控制电路的示意模块图;
图7是本申请一实施例的童锁控制装置的结构示意图;
图8是本申请第二实施例的电子烟的电路模块图;
图9是本申请第二实施例的童锁控制方法的流程步骤图;
图10是图9中步骤S13的部分具体流程步骤图;
图11是本申请一实施例的童锁控制方法的另一部分的流程步骤图;
图12是图9中步骤S13之后流程步骤图;
图13是图9中步骤S15之后一实施例的流程步骤图;
图14是本申请一实施例的童锁控制电路的示意模块图;
图15是本申请一实施例的童锁控制装置的结构示意图。
图16是本申请第三实施例的电子烟的电路模块图;
图17是本申请第三实施例的童锁控制方法的流程步骤图;
图18是图17中步骤S13的部分具体流程步骤图;
图19是本申请一实施例的童锁控制方法的另一部分的流程步骤图;
图20是图17中步骤S13之后流程步骤图;
图21是图17中步骤S15之后一实施例的流程步骤图;
图22是本申请一实施例的童锁控制电路的示意模块图;
图23是本申请一实施例的童锁控制装置的结构示意图;
图24是本申请第四实施例的电子烟的电路模块图;
图25是本申请第四实施例的童锁控制方法的流程步骤图;
图26是图25中步骤S11另一实施例的具体流程步骤图;
图27是本申请一实施例的童锁控制方法的另一部分的流程步骤图;
图28是图25中步骤S13之后一实施例的流程步骤图;
图29是本申请一实施例的童锁控制电路的示意模块图;
图30是本申请一实施例的童锁控制装置的结构示意图;
图31是本申请第五实施例的电子烟的电路模块图;
图32是本申请第五实施例的童锁控制方法的流程步骤图;
图33是图32中步骤S11另一实施例具体流程步骤图;
图34是图32中步骤S13的部分具体流程步骤图;
图35是本申请一实施例的童锁控制方法的另一部分的流程步骤图;
图36是图32中步骤S13之后流程步骤图;
图37是图32中步骤S15之后一实施例的流程步骤图;
图38是本申请一实施例的童锁控制电路的示意模块图;
图39是本申请一实施例的童锁控制装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
第一实施例
本申请实施例提供一种电子烟,请结合参见图1和图6,电子烟包括电池110、童锁控制电路200、发热元件130、气流传感器140、功率MOS管M等,童锁控制电路200包括状态检测单元150。童锁控制电路200分别与电池110、气流传感器140、功率MOS管M等电连接。在本实施例中,电池110例如为锂电池、镍镉电池、镍氢电池等可充电电池,电池110也可以为不可充电电池;状态检测单元150与气流传感器140电连接,状态检测单元150用于判断电子烟是否被抽吸和/或被吹气,并输出对应信号,状态检测单元150的一个具体实现方式可参见本领域的在先申请,或者为本领域技术人员知晓的其他常规的状态检测单元。在本实施例中气流传感器140为电容式气流传感器,例如为电容式MEMS传感器或电容式咪头等,气流传感器140位于电子烟的气流通道内,气流传感器140包括电容,状态检测单元150通过电容的电容值等的变化判断电子烟是否处于抽吸状态、吹气状态、未吸吹状态(对应用户未使用时的状态)。童锁控制电路200与功率MOS管M的控制端电连接,童锁控制电路200用于控制功率MOS管M是否导通,功率MOS管M经由雾化端AT与发热元件130串联形成串联支路,串联支路的一端经由电源供电端BAT与电池110的正极电连接,串联支路的另一端经由电源接地端GND与电池110的负极电连接。在本实施例中以功率MOS管M为PMOS管为例进行说明,当然,功率MOS管M也可以为NMOS管。在本实施例中,功率MOS管M、童锁控制电路200可以位于同一个芯片,该芯片一般称为系统控制芯片。但本申请不限于此,在本申请的其他实施例中,功率MOS管M、童锁控制电路200可以位于不同的芯片上。在本实施例中,发热元件130例如为发热丝、加热丝、包含发热丝或者加热丝的陶瓷座、或者其他常规的发热元件。在本实施例中,当童锁控制电路200输出低电平控制功率MOS管M导通时发热元件130加热以使烟油雾化,当童锁控制电路200输出高电平控制 功率MOS管M断开截止时发热元件130停止加热。
在本实施例中,状态检测单元150与气流传感器140电连接,以用于判断电子烟是否被抽吸或者被吹气或者处于未吹气也未抽吸的状态(未吸吹状态),当用户抽吸电子烟或者向电子烟吹气时,气流传感器140的两个电容电极片之间气压会改变,导致两个电极片之间的距离会随之改变,进而引起气流传感器140的电容值改变,状态检测单元150将电容值改变转换为计数值改变,通过将计数值与预设的数值范围进行比较,状态检测单元150就可以判断电子烟是否被抽吸处于抽吸状态、被吹气处于吹气状态或者未吸吹状态。
为了区分正常抽吸和触发进入锁定状态的抽吸,以降低正常抽吸时被误触发进入锁定状态的概率,本申请的发明人经过大量实验后提出以下方案:对电子烟的抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,气压较小(用户抽吸的吸力较小)的抽吸状态对应用户正常的抽吸,气压更小(用户抽吸的吸力较大)的抽吸状态对应用户想要进入锁定状态的抽吸或者用户偶然的重吸,不管是处于气压较小的抽吸状态,还是处于气压更小的抽吸状态,电子烟均会判断为抽吸状态,本申请通过第一计数信息是否位于第二预设数值范围内判断是否为气压更小的抽吸状态。
具体而言,第一计数信息表征电子烟气流通道内的气压状况,气压状况例如为气压大小、气压的变化状况等,第一计数信息与气流通道内的气压状况呈对应关系,本实施例设计当第一计数信息位于第二预设数值范围内时代表此时处于气压更小的抽吸状态,当第一计数信息位于第二预设数值范围之外且位于第一预设数值范围之内时代表气压较小的抽吸状态,其中,第二预设数值范围位于第一预设数值范围内,也即只要第一计数信息位于第二预设数值范围内,第一计数信息必然位于第一预设数值范围内,表示此时电子烟处于抽吸状态且是重吸,当第一计数信息位于第一预设数值范围内时,第一计数信息可能位于第二预设数值范围内(重吸),也可能不位于第二预设数值范围内(正常抽吸)。
在本实施例中,第一计数信息包括在第一计数时长的振荡周期数、在第一计数时长的振荡周期数与基准振荡周期数的比值、在第一计数时长的振荡周期数相对基准振荡周期数的差值或者在第一计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值等。在本实施例中,第一计数时长是预设的,电子烟可以采集该时长电子烟的振荡器的振荡周期数,振荡器的振荡周期随气流传感器140的电容变化而变化,当第一计数时长为1s时,此时在第一计数时长的振荡周期数即为频率。当电子烟未被抽吸也未被吹气时,也即电子烟处于未吸吹状态时,此时电容的电极片未变形,此时预设计数时长内计数的振荡周期数即为基准振荡周期数,该预设计数时长可以与第一计数时长相等,也可以不相等,较佳为相等,此时基准振荡周期数是采集获得;另外,基准振荡周期数也可以预设。当用户轻吸导致气压较小时,气流传感器140的电容相对未吸吹状态时较大,振荡器的振荡周期会较长,从而第一计数时长内计数的数值会较小,也即此时第一计数时长的振荡周期数会较小,此时第一计数时长的振荡周期数与基准振荡周期数的比值会较小,第一计数时长的振荡周期数相对基准振荡周期的差值会较大,第一计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值会较大;当用户重吸导致气压更小时,气流传感器140的电容相对未吸吹状态时更大,振荡器的振荡周期会更长,从而第一计数时长内计数的数值会更小,也即第一计数时长的振荡周期数会更小,此时第一计数时长的振荡周期数与基准振荡周期数的比值会更小,第一计数时长的振荡周期数相对基准振荡周期的差值会更大,第一计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值会更大。当用户吹气导致气压变大时,气流传感器140的电容的两个电极片之间的距离相对未吸吹状态时的距离会增大,气流传感器140的电容会较小,振荡器的振荡周期会较小。
当第一计数信息为在第一计数时长的振荡周期数时,此时第二预设数值范围为振荡周期数范围。当气流通道内气压更小时气流传感器140的电容变形更大,电容的两个电极片之间的距离更小,从而其电容值会更大,从而第一计数时长的振荡周期数会更小;当气流通道内气压较小时气流传感器140的电容变形较大,电容的两个电极片之间的距离较小,从而其电容值会较大,从而第一计数时长的振荡周期数会较小,因而第一计数信息与气流通道内的气 压呈比例关系。由于本申请设计成用户重吸才可能进入童锁锁定状态,从而第二预设数值范围的上限值要小于第一预设数值范围的上限值,第二预设数值范围的下限值大于或等于第一预设数值范围的下限值,例如第二预设数值范围为(a,A],例如A为950,第一预设数值范围(b,B],例如B为970,例如基准振荡周期数为1000,其中,A小于B,a大于或等于b,A、a、B、b为正整数。另外,在本申请的其他实施例中,第二预设数值范围的下限值不设限,也即当第一计数信息小于A即落入第二预设数值范围内。另外,当第一计数信息为在第一计数时长的振荡周期数与基准振荡周期数的比值时,此时第二预设数值范围为比值范围,其原理与前面描述的第一计数信息为在第一计数时长的振荡周期数的方案类似,在此不再赘述,此比值较佳小于或等于0.95,例如为0.9、0.8、0.7等。
当第一计数信息为在第一计数时长的振荡周期数相对基准振荡周期的差值时,此时第二预设数值范围为差值范围。当气流通道内气压更小时气流传感器140的电容变形更大,电容的两个电极片之间的距离更小,从而其电容值会更大,从而差值会更大,当气流通道内气压较小时气流传感器140的电容变形较大,电容的两个电极片之间的距离较小,从而其电容值会较大,从而差值会较大,因而第一计数信息与气流通道内的气压呈比例关系。此时第二预设数值范围的下限值大于第一预设数值范围的下限值,第二预设数值范围的上限值小于或等于第一预设数值范围的上限值,例如第二预设数值范围为[M,m),例如M为50,第一预设数值范围[N,n),例如N为30,其中,M大于N,m小于或等于n,M、m、N、n为正整数。另外,在本申请的其他实施例中,第二预设数值范围的上限值不设限,也即只要第一计数信息大于或等于M即落入第二预设数值范围内。另外,当第一计数信息为在第一计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值时,此时第二预设数值范围为比值范围,其原理与前面描述的第一计数信息为在第一计数时长的振荡周期数相对基准振荡周期的差值的方案类似,在此不再赘述,此比值较佳大于或等于0.05,例如为0.1、0.2、0.3等。
进一步的,当电子烟处于抽吸状态时,为了判断第一计数信息是否位于第二预设数值范围内,本实施例童锁控制电路200还包括第二计数判断单元211,第二计数判断单元211与状态检测单元150连接,状态检测单元150本身就知道第一计数信息,从而状态检测单元150输出第一计数信息给第二计数判断单元211,第二计数判断单元211用于接收第一计数信息并判断第一计数信息是否位于第二预设数值范围内,进而可以区分用户是正常抽吸还是进入锁定状态的抽吸,经过这样区分,可以降低用户正常抽吸时误判断进入童锁锁定状态的概率。
请结合参见图1、图2和图6,本申请实施例提供一种电子烟的童锁控制方法,包括以下步骤:
S11:接收第一计数信息;
其中,童锁控制电路200包括第二计数判断单元211,第二计数判断单元211与状态检测单元150电连接,状态检测单元150产生第一计数信息,并输出第一计数信息,第二计数判断单元211接收第一计数信息。
在本实施例中,状态检测单元150本身可以识别电子烟是否处于抽吸状态或者吹气状态,当用户抽吸电子烟时,状态检测单元150通过气流传感器140识别电子烟处于抽吸状态,此时状态检测单元150判断第一计数信息位于第一预设数值范围内,状态检测单元150输出抽吸信号,当用户吹气时,状态检测单元150通过气流传感器140识别电子烟处于吹气状态,此时状态检测单元150输出吹气信号,当电子烟既不被抽吸,也不被吹气时,此时状态检测单元150识别电子烟处于未吸吹状态,状态检测单元150输出未吸吹信号。童锁控制电路200接收状态检测单元150的输出信号,从而获取电子烟的状态。当状态检测单元150由输出未吸吹信号转为输出抽吸信号或者吹气信号时,童锁控制电路200获取电子烟由未吸吹状态转为抽吸状态或者吹气状态。在本实施例中,未抽吸状态包括未吸吹状态、吹气状态。
S12:判断第一计数信息是否位于第二预设数值范围内,其中,所述第二预设数值范围位于第一预设数值范围内,所述第一预设数值范围用于判断电子烟是否处于抽吸状态;
S13:若判断结果为是,则触发进行第二计时并触发进行第二计数;
其中,第二计数判断单元211在接收到第二计数信息后,第二计数判断单元211判断第 一计数信息是否位于第二预设数值范围内,第二预设数值范围为预先计算获得,或者预先存储在第二计数判断单元211中。其中,童锁控制电路200包括第二计时单元216和第二计数单元215,第二计时单元216与第二计数判断单元211电连接,第二计数单元215与第二计数判断单元211电连接,若第二计数判断单元211的判断结果为是,则第二计数判断单元211输出计数有效信号,第二计时单元216被触发开始计时,第二计时单元216从0开始计时,第二计数单元215被触发开始计数,并将此次也进行计数,也即此时第二计数单元215的计数为1;若第二计数判断单元211的判断结果为否,则第二计数判断单元211输出计数无效信号,第二计时单元216维持原先的状态,第二计数单元215维持原先的状态。在本实施例中,当第二计时单元216被触发开始计时后,第二计时单元216会一直在计时,直到第二计时单元216被复位置零,此后第二计时单元216停止计时。
当第二计时单元216被触发计时、第二计数单元215被触发计数后,当第二计数判断单元211又接收到第二计数信息,并又一次判断第一计数信息位于第二预设数值范围内,也即又输出计数有效信号,则第二计数单元215的第二计数加1,此时第二计数为2,同时,第二计时单元216在持续进行第二计时。
S14:判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
其中,童锁控制电路200还包括第二计时计数判断单元217,第二计时计数判断单元217分别与第二计数单元215、第二计时单元216连接,当第二计时计数判断单元217判断第二计时单元216的计时时长在第二预设时长内,且第二计数单元215的第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁锁定信号。在本实施例中,第二预设时长一般小于或等于5s,第二预设时长例如为1s、1.5s、1.8s、2s、2.3s、2.5s、2.8s、3s、4s、5s等,较佳为2s。在本实施例中,第二预设数量为大于或等于2的整数,例如为2、3、4、5、6等,较佳为3,第二预设数量一般小于或等于6次,方便用户操作。例如,第二预设时长为2秒,第二预设数量为3,则在2秒内第二计数大于或等于3,第二计时计数判断单元217输出童锁锁定信号。
在本实施例中,第二计时计数判断单元217与第二计时单元216、第二计数单元215实时电连接,当第二计时计数判断单元217获取第二计数到达第二预设数量且第二计时单元216未到达第二预设时长时,第二计时计数判断单元217输出童锁锁定信号,或者第二计时计数判断单元217等第二计时单元216计时时长到达第二预设时长时才输出童锁锁定信号。在本申请的其他实施例中,第二计时计数判断单元217与第二计时单元216、第二计数单元215连接,当第二计时单元216到达第二预设时长时第二计时单元216输出信号给第二计时计数判断单元217,第二计时计数判断单元217获取此时第二计数单元215的第二计数,然后判断第二计数是否大于或等于第二预设数量,若第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁锁定信号,若第二计数小于第二预设数量,则第二计时计数判断单元217维持原来的信号输出。
S15:若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管M保持断开截止。
其中,童锁控制电路200还包括童锁控制单元240,童锁控制单元240与第二计时计数判断单元217电连接。若第二计时计数判断单元217的判断结果为是,也即在第二预设时长内第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁锁定信号给童锁控制单元240,童锁控制单元240控制电子烟进入锁定状态,在锁定状态功率MOS管M保持断开,在本实施例中童锁控制单元240持续输出高电平信号给功率MOS管M,功率MOS管M保持截止。在本实施例中,童锁控制单元240包括触发器和开关控制单元,触发器用于对童锁锁定信号、后续的童锁解锁信号进行保持,触发器例如为SR触发器等,开关控制单元分别与触发器、状态检测单元150电连接,开关控制单元例如为与门、与非门、或门、或非门等,例如,开关控制单元包括与非门,与非门的两个输入端分别与触发器的输出端、状态检测单元150的一个输出端连接,童锁锁定信号使触发器的输出保持为低电平,从而经过 与非门后保持为高电平(此时状态检测单元150输出抽吸信号,抽吸信号例如为高电平),功率MOS管M保持截止;童锁解锁信号使触发器的输出保持为高电平,从而与非门的输出受状态检测单元150的输出影响,当状态检测单元150判断用户抽吸电子烟时,状态检测单元150输出抽吸信号给与非门,抽吸信号为高电平,此时开关控制单元控制功率MOS管M持续导通或者间断导通(例如PWM、PFM控制方式)。若第二计时计数判断单元217的判断结果为否,也即在第二预设时长内第二计数小于第二预设数量,则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零。
在本实施例中,电子烟的状态分为锁定状态和解锁状态,其中,锁定状态即对应童锁保护功能,当电子烟处于锁定状态时用户抽吸电子烟,童锁控制单元240继续控制功率MOS管M保持断开截止,从而发热元件130不会加热,进而烟油不会雾化以供用户抽吸,也即即使用户抽吸电子烟也不会出现烟雾。解锁状态对应解除童锁保护功能,此时当用户抽吸电子烟时,童锁控制单元240控制功率MOS管M持续导通或者间断导通,间断导通是指童锁控制单元240通过PWM方式、PFM方式输出方波信号,通过调整方波信号的占空比以用于控制输出功率、输出电压。
在本实施例中,通过接收第一计数信息;判断第一计数信息是否位于第二预设数值范围内,其中,所述第二预设数值范围位于第一预设数值范围内,所述第一预设数值范围用于判断电子烟是否处于抽吸状态,若判断结果为是,则触发进行第二计时并触发进行第二计数;判断在第二预设时长内第二计数是否大于或等于第二预设数量,若判断结果为是,则控制电子烟进入锁定状态。本申请实施例通过第一计数信息、第二预设数值范围对抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,将第一计数信息位于第二预设数值范围的抽吸次数分辨为气压更小的抽吸状态,并进行第二计数,并且在第二预设时长内第二计数大于或等于第二预设数量才使电子烟进入锁定状态,通过这样设置,电子烟可以进一步分辨用户是正常抽吸电子烟,还是想要通过抽吸电子烟触发烟进入锁定状态,电子烟不容易混淆两者,可以降低用户正常抽吸电子烟时被误触发进入锁定状态的几率,可以减少用户的使用困扰。而且,通过在第二预设时长内第二计数大于或等于第二预设数量,可以实现电子烟进入锁定状态,本实施例的电子烟在锁定保护后,可以防止儿童拿起电子烟模仿成人抽吸动作导致电子烟产品开始雾化工作,提升电子烟的使用安全性。而且,本实施例利用现有的状态检测单元150、气流传感器140就可以得到第一计数信息,不需要对电子烟进行大改,不需要增加硬件成本或者增加的硬件成本很小,从而缩减了电子烟进行锁定保护的硬件成本,解决现有技术中电子烟锁定成本较高的技术问题。
在本实施例中,童锁控制方法还包括:再次获取第一计数信息位于第二预设数值范围内的信息,第二计数加1。
具体而言,在第二计数单元215触发第二计数和第二计时单元216触发第二计时后,第二计时单元216和第二计数单元215未停止工作,当电子烟转为未抽吸状态,其后,当用户再次抽吸电子烟,再次实时获取第一计数信息,若第二计数单元215再次获取第一计数信息位于第二预设数值范围内的信息,也即第二计数单元215又收到计数有效信号,则第二计数单元215在原来第二计数的基础上加1,例如原来第二计数单元215的计数值为1,再次获取第一计数信息位于第二预设数值范围内的信息,则第二计数单元215的第二计数加1,也即第二计数变为2;若此次第二计数单元215没有获取第一计数信息位于第二预设数值范围内的信息,也即第二计数单元215没有收到计数有效信号,则第二计数保持不变。
在本实施例中,童锁控制方法还包括:若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零。
其中,不论第二计时计数判断单元217的判断结果为是还是不为是,只要第二计时单元216的计时时长达到第二预设时长,则第二计时单元216复位置零,同时第二计时单元216发送信号给第二计数单元215,第二计数单元215进行置零,也即此时第二计时单元216停止计时,计时时长置零,第二计时单元216、第二计数单元215恢复初始状态,方便后面信号的检测。在本实施例中,第二计时计数判断单元217在第二计时单元216、第二计数单元 215复位置零前已完成判断。
在本实施例中,童锁控制方法还包括:若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零。
其中,若第二计时计数判断单元217获取第二计数达到第二预设数量,且第二计时单元216计时时长小于第二预设时长,则第二计时计数判断单元217输出信号给第二计时单元216、第二计数单元215,第二计时单元216进行复位置零,第二计数单元215置零,该信号可以与童锁锁定信号一样,也可以是不同的信号。
请参见图6,在本实施例中,步骤接收第一计数信息具体包括:
接收状态检测单元150输出的第一计数信息。
其中,状态检测单元150本身可以得到第一计数信息,第二计数判断单元211通过状态检测单元150接收第一计数信息。本实施例充分利用现有电子烟中的气流传感器140、状态检测单元150,只需要增设第二计数判断单元211,第二计数判断单元211所要实现的功能既可以通过软体实现,也可以通过硬件实现,也可以通过软体和硬件结合实现,从而不需要增加新的硬件或者增加新的硬件较少,可以实现不增加成本或者增加少量成本就可以极大的降低电子烟误进入锁定状态的问题,提升了用户的使用便利性。
在应用上述的方案进行实际测试过程中发明人发现:由于空气中气流的扰动,可能会导致处于抽吸状态时瞬间的气压下降,导致第一计数信息到达第二预设数值范围,这个瞬间的气压下降持续时间很短,一般偶尔的一次,造成第二计数单元215误计数,可能误触发电子烟进入锁定状态,给用户的使用造成困扰。为了解决该问题,请结合参阅图3和图6,步骤触发进行第二计数具体包括:
S131:触发进行第三计时并触发进行第三计数;
其中,童锁控制电路200还包括第三计时单元212和第三计数单元213,第三计时单元212、第三计数单元213均与第二计数判断单元211连接,当第三计时单元212、第三计数单元213获取第一计数信息位于第二预设数值范围内时,也即第三计时单元212接收到计数有效信号时,第三计时单元212开始第三计时,第三计时单元212一直计时,直到进行复位置零,此后第三计时单元212停止计时;第三计数单元213接收到计数有效信号时,第三计数单元213开始第三计数,且此次也进行第三计数,此时第三计数为1。
S132:判断在第三预设时长内第三计数是否大于或等于第三预设数量;
其中,童锁控制电路200还包括第三计时计数判断单元214,第三计时计数判断单元214分别与第三计数单元213、第三计时单元212连接,当第三计时计数判断单元214判断第三计时单元212的计时时长在第三预设时长内,且第三计数单元213的第三计数大于或等于第三预设数量,则第三计时计数判断单元214输出第一计数信号。在本实施例中,第三预设时长一般为30ms-150ms,第三预设时长例如为30ms、40ms、50ms、60ms、70ms、80ms、90ms、100ms、110ms、120ms、130ms、140ms、150ms等,较佳为60ms-100ms。在本实施例中,第三预设数量为大于或等于2的整数,例如为2、3等。在本实施例中,第三预设数量大于或等于2,例如为2、3、4、5、6等。
在本实施例中,第三计时计数判断单元214与第三计时单元212、第三计数单元213实时电连接,当第三计时计数判断单元214获取第三计数到达第三预设数量且第三计时未到达第三预设时长时,第三计时计数判断单元214输出第一计数信号,或者第三计时计数判断单元214等第三计时到达第三预设时长时才输出第一计数信号。在本申请的其他实施例中,第三计时计数判断单元214与第三计时单元212、第三计数单元213连接,当第三计时单元212到达第三预设时长时第三计时单元212输出信号给第三计时计数判断单元214,第三计时计数判断单元214获取此时第三计数单元213的第三计数,然后判断第三计数是否大于或等于第三预设数量,若第三计数大于或等于第三预设数量,则第三计时计数判断单元214输出第一计数信号,若第三计数小于第三预设数量,则第三计时复位置零,第三计数置零。
S133:若判断结果为是,则触发进行第二计数。
其中,第三计时计数判断单元214与第二计时单元216、第二计数单元215连接。若第 三计时计数判断单元214的判断结果为是,则第二计时单元216接收到第一计数信号,第二计时单元216被触发开始计时,第二计时从0开始计时;第二计数单元215接收到第一计数信号,第二计数单元215被触发开始计数,此时第二计数单元215对本次也进行计数,也即此时第二计数为1。
在本实施例中,当此前第二计数单元215没有被触发开始计数,第二计时单元216没有被触发开始计时,若第三计时计数判断单元214的判断结果为否,也即第三计时计数判断单元214不输出第一计数信号,第二计数单元215维持原来不进行计数,第二计时单元216维持原来不进行计时;当此前第二计数单元215已被触发开始计数(也即第二计数至少为1),第二计时单元216已被触发计时,若第三计时计数判断单元214的判断结果为否,则第二计数维持原来的计数,第二计数不增加,第二计时继续计时。
在本实施例中,当空气气流串扰导致电子烟气流通道内气压短时间变化时,由于气压降低的时长很短,从而不会符合在第三预设时长内第三计数大于或等于第三预设数量的条件,从而第二计数不会变化,从而不会将空气气流串扰误判为用户想要进入童锁保护的情况,可以防止电子烟误进入锁定状态,可以防止对用户的使用造成困扰,本实施例可以避免这种情况发生,提升了用户的使用体验。
在本实施例中,在整个第三预设时长电子烟处于抽吸状态,在第三预设时长的部分时长或者整个时长均属于重吸,则第二计时单元216进行计数。
为了判断电子烟是否处于抽吸状态,在本实施例中,童锁控制方法还包括:
接收第一计数信息并判断第一计数信息是否位于第一预设数值范围内;
若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
其中,状态检测单元150包括第一计数生成单元、第一计数判断单元,第一计数生成单元分别与第一计数判断单元、第二计数判断单元211连接,第一计数生成单元生成第一计数信息后,第一计数判断单元接收第一计数信息,第一计数判断单元判断第一计数信息是否位于第一预设数值范围内,若判断结果为是,则第一计数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信号,若判断结果为否,则第一计数判断单元维持原来的信号输出,例如输出未吸吹信号、吹气信号。进一步的,还可以要求连续多次判断为是,才输出抽吸信号,这样有利于降低气流串扰误触发的几率。在本实施例中,第一计数判断单元、第二计数判断单元211可以为同一判断单元,也可以为不同的判断单元。
在本实施例中,为了降低电子烟处于未抽吸状态时的功耗,步骤接收第一计数信息具体包括:
获取电子烟由未抽吸状态转为抽吸状态的信息;
触发接收第一计数信息。
其中,第二计数判断单元211与状态检测单元150连接,第二计数判断单元211在未收到抽吸信号前不工作,当第二计数判断单元211在接收到抽吸信号后,第二计数判断单元211被触发开始工作,此时第二计数判断单元211接收第一计数信息。这样设置,有利于降低电子烟的功耗。
另外,在本实施例中,请结合参阅图4和图6,在步骤触发进行第二计数之后还包括:
S161:获取电子烟由抽吸状态进入未抽吸状态的信息;
S162:触发第五计时且对第二计数进行锁定;
S163:判断第五计时是否大于或等于第五预设时长;
S164:若判断结果为是,则解除对第二计数的锁定。
本实施例还对两次抽吸状态(包含两次重吸)之间的间隔时长进行规定,防止抽吸状态时气流抖动、串扰等而导致误第二计数。具体而言,在本实施例中,童锁控制电路200包括第五计时单元221和第五时长判断单元222,第五计时单元221分别与状态检测单元150、第三计时计数判断单元214连接,第五时长判断单元222分别与第五计时单元221、第二计数单元215电连接,第二计数单元215还与所述状态检测单元150电连接。当第三计时计数判断单元214输出第一计数信号后,第五计时单元221收到第一计数信号后又获取电子烟由抽 吸状态进入未抽吸状态的信息,第五计时单元221被触发开始计时,同时第二计数单元215也在接收第一计数信号后又获取电子烟由抽吸状态进入未抽吸状态的信息,第二计数单元215被锁定,也即进入计数锁定状态,第二计数单元215被锁定后即使再接收到第一计数信号也不会进行计数增加,也即在锁定状态第二计数单元215保持原来的计数值,不会增加计数值,只有被解除锁定后处于计数解锁状态第二计数单元215收到第一计数信号才会计数加一。在本实施例中,当第五计时单元221开始第五计时后,第五计时单元221一直在计时(即使由未抽吸状态转为抽吸状态也在计时),第五时长判断单元222判断第五计时单元221的计时时长是否大于或等于第五预设时长,当第五时长判断单元222判断第五计时单元221计时到达第五预设时长,第五计时单元221会停止计时并置零,也即第五计时单元221复位置零,同时,第五时长判断元输出计数解锁信号给第二计数单元215,第二计数单元215被解除对计数的锁定,第二计数单元215进入计数解锁状态,而且第三计时单元212、第三计数单元213、第二计时单元216也复位置零,此后第二计数单元215再次获取第一计数信号,第二计数单元215可以执行计数加一动作,也即第二计数在原来的基础上加一。在此实施例中,当第五计时单元221没有收到第一计数信号,或者第五计时单元221没有获取电子烟由抽吸状态进入未抽吸状态的信息,第五计时单元221也不会触发开始计时。
在本实施例中,在步骤触发进行第二计数之后还包括:判断第一计数信息位于第二预设数值范围内持续的时长是否大于或等于第七预设时长,若判断结果为是,则第二计数、第二计时均复位置零。本实施例中对重吸持续的时长进行判断,若重吸持续的时长大于或等于第七预设时长,则第二计数、第二计时均复位置零,第二计数为0,第二计时停止计时并置零,这样设置可以防止用户比较长时间抽吸后误动作进入童锁锁定状态,符合用户的使用预期。在本实施例中,第七预设时长大于或等于400ms,例如为400ms、450ms、500ms、600ms等。
在本实施例中,电子烟进入童锁锁定状态后,用户没法正常抽吸电子烟,当用户需要使用电子烟时,此时需要对电子烟进行解锁,以下描述电子烟如何进行解锁,以下描述的仅是一种进入童锁解锁状态的方式,本领域的技术人员还可以通过其他常规的方式使电子烟进入童锁解锁状态。另外,在本申请的其他实施例中,解锁方式可以与加锁方式一样,可以参见前面的描述,在此不再赘述。
请结合参阅图5和图6,在本实施例中,童锁控制方法还包括:
S21:接收第四计数信息;
其中,状态检测单元150包括第四计数判断单元231,第四计数判断单元231用于接收第四计数信息,其中,第四计数信息与第一计数信息可以是同一个计数信息,也可以是不同的计数信息,第四计数判断单元231与第二计数判断单元211可以为不同的判断单元,也可以为同一计数判断单元。在本实施例中,第四计数信息包括在第四计数时长的振荡周期数、在第四计数时长的振荡周期数与基准振荡周期数的比值、在第四计数时长的振荡周期数相对基准振荡周期的差值或者在第四计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值,第四计数时长可以与第一计数时长相同,也可以不同。第四计数判断单元231接收第四计数信息。
在本实施例中,当处于吹气状态时,气流通道中气压较大,会高于未吸吹状态的气压,气流传感器140的电容的两个电极的间距相对未吸吹状态时要大,从而电容值会比未吸吹状态时小,频率会比未吸吹状态时大,假设第四计数时长与第一计数时长相同,则吹气状态时在第四计数时长的振荡周期数大于未吸吹状态时对应时长的振荡周期数(基准振荡周期数),在抽吸状态时第一计数时长的振荡周期数会小于未吸吹状态时对应时长的振荡周期数(基准振荡周期数)。
S22:判断第四计数信息是否位于第四预设数值范围内,所述第四预设数值范围用于判断电子烟是否处于吹气状态;
S23:若判断结果为是,则触发进行第四计时并触发进行第四计数;
其中,第四计数判断单元231在接收到第四计数信息后,第四计数判断单元231判断第四计数信息是否位于第四预设数值范围内,第四预设数值范围为预先计算获得,或者预先存 储在第四计数判断单元231中。
当第四计数信息为在第四计数时长的振荡周期数,第四预设数值范围为周期数范围,第四计数时长与第一计数时长相同时,此时第四预设数值范围的下限值例如为1030、1040、1050等,会大于第一预设数值范围对应的上限值,第四预设数值范围的下限值大于基准振荡周期数;当第四计数信息为在第四计数时长的振荡周期数与基准振荡周期数的比值,第四预设数值范围为比值范围,第四计数时长与第一计数时长相同时,此时第四预设数值范围的下限值例如为1.03、1.04、1.05等,会大于第一预设数值范围对应的上限值;第四预设数值范围的上限值可以不设限,也可以根据需要设限。当第四计数信息为在第四计数时长的振荡周期数相对基准振荡周期的差值或者在第四计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值时,此时第四预设数值范围对应为差值范围或者比值范围,此时可以参见第一计数信息的描述,本领域的技术人员根据现有知识可以知道如何区分吸气状态、吹气状态。
其中,童锁控制电路200包括第四计时单元232和第四计数单元233,第四计时单元232与第四计数判断单元231电连接,第四计数单元233与第四计数判断单元231电连接,若第四计数判断单元231的判断结果为是,则第四计数判断单元231输出吹气信号,第四计时单元232被触发开始计时,第四计时单元232从0开始计时,第四计数单元233被触发开始计数,并将此次也进行计数,也即此时第四计数单元233的计数为1;若第四计数判断单元231的判断结果为否,则第四计数判断单元231不会输出吹气信号,第四计时单元232维持原先的状态,第四计数单元233维持原先的状态。在本实施例中,当第四计时单元232被触发开始计时后,第四计时单元232会一直在计时,直到第四计时单元232被复位置零,此后第四计时单元232停止计时。在本实施例中,吹气信号也会输出给童锁控制单元240。
在本实施例中,当第四计时单元232被触发计时、第四计数单元233被触发计数后,当第四计数判断单元231又接收到第四计数信息,并又一次判断第四计数信息位于第四预设数值范围内,则第四计数单元233的第四计数加1,此时第四计数为2,同时,第四计时单元232在持续进行第四计时。
S24:判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
其中,童锁控制电路200还包括第四计时计数判断单元234,第四计时计数判断单元234分别与第四计数单元233、第四计时单元232电连接,当第四计时计数判断单元234判断第四计时单元232的计时时长在第四预设时长内,且第四计数单元233计数大于或等于第四预设数量,第四计时计数判断单元234输出童锁解锁信号。在本实施例中,第四预设时长一般小于或等于5s,例如为1s、1.5s、1.8s、2s、2.3s、2.5s、2.8s、3s、4s、5s等,较佳为2s。在本实施例中,第四预设数量大于或等于2,例如为2、3、4、5、6等,较佳为3,第四预设数量一般小于或等于6次,方便用户操作。
在本实施例中,第四计时计数判断单元234与第四计时单元232、第四计数单元233实时连接,当第四计时计数判断单元234获取第四计数单元233到达第四预设数量且第四计时单元232未到达第四预设时长时,第四计时计数判断单元234输出童锁解锁信号,或者第四计时计数判断单元234等第四计时单元232计时时长到达第四预设时长时才输出童锁解锁信号。在本申请的其他实施例中,第四计时计数判断单元234与第四计时单元232、第四计数单元233连接,当第四计时单元232到达第四预设时长时第四计时单元232输出信号给第四计时计数判断单元234,第四计时计数判断获取此时第四计数单元233的计数,然后判断第四计数是否大于或等于第四预设数量,若大于或等于第四预设数量,则输出童锁解锁信号,若小于第四预设数量,则维持原来的信号输出。
S24:若判断结果为是,则控制电子烟进入解锁状态,其中,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管M持续导通或者间断导通。
其中,若第四计时计数判断单元234判断的结果为是,也即在第四预设时长内计数的数量大于或等于第四预设数量,则第四计时计数判断单元234输出童锁解锁信号给童锁控制单 元240,童锁控制单元240控制电子烟进入解锁状态,在解锁状态电子烟处于抽吸状态时功率MOS管M持续导通或者间断导通,也即此时功率MOS管M受用户是否抽吸的控制,在本实施例中电子烟处于抽吸状态时童锁控制单元240持续输出低电平信号或者间断输出低电平信号给功率MOS管M,功率MOS管M持续导通或者间断导通,当功率MOS管M导通时,发热元件130加热以雾化烟油,从而雾化后的烟油可供被用户抽吸。
在本实施例中,通过对吹气进行计时和计数实现解锁,在没有增加蓝牙/NFC等设计以及机械结构的同时,实现了有效的解锁效果,从而缩减了电子烟的进行解锁的硬件成本,解决现有技术中电子烟解锁成本较高的技术问题。而且,本申请的解锁方式不容易被儿童察觉,电子烟在锁定后不容易被儿童解锁,有利于提升电子烟的安全性。
在本实施例中,童锁控制方法还包括:再次获取第四计数信息位于第四预设数值范围内的信息,第四计数加1。
具体而言,在第四计数单元233触发第四计数和第四计时单元232触发第四计时后,第四计时单元232和第四计数单元233未停止工作,第四计时单元232、第四计数单元233再次(再次是指第四计数单元233中第四计数的数值至少为1)获取第四计数信息位于第四预设数值范围内的信息,则第四计数单元233在原来计数的基础上加1,例如原来第四计数单元233的计数值为1,再次获取第四计数信息位于第四预设数值范围内的信息,也即接收到由未吸吹状态转为吹气状态的信息,则第四计数单元233的计数加1,也即计数值变为2;第四计时单元232继续工作持续计时,也即第四计时单元232在触发计时后,只要不收到停止计时或者复位的信号,则第四计时单元232一直在计时。
在本实施例中,童锁控制方法还包括:若第四计时单元232的计时时长达到第四预设时长,则第四计数置零,且第四计时单元232复位置零。
其中,不论第四计时计数判断单元234的判断结果为是还是否,只要第四计时单元232的计时时长达到第四预设时长,则第四计时单元232复位置零,同时第四计时单元232发送信号给第四计数单元233,第四计数单元233进行置零,也即此时第四计时单元232停止计时,第四计数单元233停止计数,而且,计时时长置零,第四计数均置零,第四计时单元232、第四计数单元233恢复初始状态,方便后面的检测。
在本实施例中,童锁控制方法还包括:若第四计时单元232的计时时长小于第四预设时长且第四计数达到第四预设数量,则第四计数置零,且第四计时单元232复位置零。
其中,若第四计时计数判断单元234获取第四计数单元233的第四计数达到第四预设数量,且第四计时单元232计时时长小于第四预设时长,则第四计时计数判断单元234输出信号给第四计时单元232、第四计数单元233,第四计时单元232复位置零,第四计数单元233进行置零,该信号可以与童锁解锁信号一样,也可以是不同的信号。
对应于上面实施例的电子烟的童锁控制方法,图6示出了本申请实施例提供的电子烟的童锁控制电路200的模块图,为了便于说明,仅示出了与本申请实施例相关的部分。
请结合参照图1和图6,童锁控制电路200包括:
状态检测单元150,其用于与气流传感器140电连接,其用于输出第一计数信息;
第二计数判断单元211,其用于接收第一计数信息,并用于判断第一计数信息是否位于第二预设数值范围内,其中,所述第一计数信息用于表征电子烟气流通道内的气压状况;所述第二预设数值范围位于第一预设数值范围内,所述第一预设数值范围用于判断电子烟是否处于抽吸状态;
第二计数单元215,其用于若第二计数判断单元211的判断结果为是,则触发进行第二计数;
第二计时单元216,其用于若第二计数判断单元211的判断结果为是,则触发进行计时;
第二计时计数判断单元217,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
童锁控制单元240,其用于若第二计时计数判断单元217的判断结果均为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管M保持断开截止。
在本实施例中,第一计数信息包括在第一计数时长的振荡周期数、在第一计数时长的振荡周期数与基准振荡周期数的比值、在第一计数时长的振荡周期数相对基准振荡周期的差值或者在第一计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值。
在本实施例中,当所述第一计数信息为在第一计数时长的振荡周期数时,所述第二预设数值范围的上限值小于第一预设数值范围的上限值;或者,当所述第一计数信息为在第一计数时长的振荡周期数与基准振荡周期数的比值时,所述第二预设数值范围的上限值小于第一预设数值范围的上限值,其中,所述基准振荡周期数为电子烟处于未吸吹状态时在第一计数时长的振荡周期数;或者,当所述第一计数信息为在第一计数时长的振荡周期数相对基准振荡周期的差值时,所述第二预设数值范围的下限值大于第一预设数值范围的下限值,其中,所述基准振荡周期数为电子烟处于未吸吹状态时在第一计数时长的振荡周期数;或者,当所述第一计数信息为在第一计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值时,所述第二预设数值范围的下限值大于第一预设数值范围的下限值,其中,所述基准振荡周期数为电子烟处于未吸吹状态时在第一计数时长的振荡周期数。
在本实施例中,童锁控制电路200包括第三计时单元212、第三计数单元213和第三计时计数判断单元214,其中,第三计时单元212、第三计数单元213分别与第二计数判断单元211连接,当第二计数判断单元211输出计数有效信号后,第三计时单元212被触发进行第三计时,第三计数单元213被触发进行第三计数,第三计时计数判断单元214均与第三计时单元212、第三计数单元213连接,第三计时计数判断单元214用于判断在第三预设时长内第三计数是否大于或等于第三预设数量,若第三计时计数判断单元214的判断结果为是,则第二计时单元216被触发进行第二计时,第二计数单元215被触发进行第二计数。在本实施例中,在第三预设时长状态检测单元150一直在输出抽吸信号。
在本实施例中,第二计数判断单元211用于获取电子烟由未抽吸状态转为抽吸状态的信息,第二计数判断单元211被触发接收第一计数信息。
在本实施例中,状态检测单元150包括第一计数生成单元、第一计数判断单元,第一计数生成单元与第一计数判断单元连接,第一计数生成单元生成第一计数信息后,第一计数判断单元用于接收第一计数信息并判断第一计数信息是否位于第一预设数值范围内,若第一计数判断单元的判断结果为是,则第一计数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信息。
在本实施例中,童锁控制电路200还包括第五计时单元221、第五时长判断单元222,其中,第五计时单元221用于获取电子烟由抽吸状态进入未抽吸状态的信息且获取进行第二计数的信息,第五计时单元221开始第五计时,第二计数单元215进行第二计数且用于获取电子烟由抽吸状态进入未抽吸状态的信息,第二计数单元215被锁定,第五时长判断单元222用于判断第五计时单元221的第五计时是否大于或等于第五预设时长,若第五时长判断单元222的判断结果为是,则第五时长判断单元222用于输出计数解锁信号给第二计数单元215,第二计数单元215解除锁定。
在本实施例中,第二计数判断单元211与状态检测单元150连接,状态检测单元150与电容式气流传感器140电连接,第二计数判断单元211用于接收状态检测单元150输出的第一计数信息。
在本实施例中,童锁控制电路200包括锁定单元,锁定单元包括第二计时单元216、第二计数单元215、第二计时计数判断单元217、第二计数判断单元211等。
在本实施例中,童锁控制电路200包括解锁单元,解锁单元包括第四计数判断单元231、第四计时单元232、第四计数单元233、第四计时计数判断单元234,其中,第四计数判断单元231用于接收第四计数信息,并判断第四计数信息是否位于第四预设数值范围内,所述第四预设数值范围用于判断电子烟是否处于吹气状态;若第四计数判断单元231的判断结果为是,则第四计时单元232被触发进行第四计时,第四计数单元233被触发进行第四计数,第四计时计数判断单元234用于判断在第四预设时长内第四计数是否大于或等于第四预设数量,若第四计时计数判断单元234的判断结果为是,则输出童锁解锁信号给童锁控制单元240, 童锁控制单元240控制电子烟进入解锁状态,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管M持续导通或者间断导通。
在本实施例中,第四计数单元233还用于再次获取第四计数信息位于第四预设数值范围内的信息,第四计数加1。
在本实施例中,第四计时单元232还用于若计时时长达到第四预设时长,则第四计数置零,且第四计时单元232复位置零。在本申请的其他实施例中,第四计时计数判断单元234还用于若计时时长小于第四预设时长且第四计数达到第四预设数量,则第四计数置零,且第四计时单元232复位置零。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图7为本申请一实施例提供的童锁控制装置400的示意图。如图7所示,该实施例的童锁控制装置400包括:至少一个处理器420(图7中仅示出一个)、存储器410以及存储在所述存储器410中并可在所述处理器420上运行的计算机程序,所述处理器420执行所述计算机程序时实现上述童锁控制方法实施例中的步骤。本领域技术人员可以理解,图7仅仅是童锁控制装置400的举例,并不构成对童锁控制装置400的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。所称处理器420可以是中央处理单元(Central Processing Unit,CPU),该处理器420还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-PrograMable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器410在一些实施例中可以是童锁控制装置400的内部存储单元,例如童锁控制装置400的硬盘或内存。所述存储器410在另一些实施例中也可以是童锁控制装置400的外部存储设备,例如童锁控制装置400上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器410还可以既包括童锁控制装置400的内部存储单元也包括外部存储设备。所述存储器410用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器410还可以用于暂时地存储已经输出或者将要输出的数据。童锁控制装置400例如为电子烟。
本申请实施例还提供了一种存储介质,存储介质存储有计算机程序,计算机程序被处理器420执行时可实现上述童锁控制方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端上运行时,使得终端执行时可实现上述童锁控制方法实施例中的步骤。
本申请实施例还提供一种电子烟,请结合参见图1和图6,电子烟包括上述的童锁控制电路200,电子烟还包括电池110、功率MOS管M和发热元件130,发热元件130和功率MOS管M串联形成发热支路,发热支路的两端对应与电池110的正、负极电连接;还包括气流传感器140,其中,功率MOS管M的控制端、气流传感器140均与童锁控制电路200电连接,所述气流传感器140与童锁控制电路200的状态检测单元150电连接。
第二实施例
本申请第二实施例提供一种电子烟,请结合参见图8和图14,电子烟包括电池110、童 锁控制电路200、发热元件130、气流传感器140、功率MOS管M1等,童锁控制电路200包括状态检测单元150。童锁控制电路200分别与电池110、气流传感器140、功率MOS管M1等电连接。在本实施例中,电池110例如为锂电池、镍镉电池、镍氢电池等可充电电池,电池110也可以为不可充电电池;状态检测单元150与气流传感器140电连接,状态检测单元150的一个具体实现方式可参见本领域的在先申请,或者为本领域技术人员知晓的其他常规的状态检测单元。在本实施例中气流传感器140为电容式气流传感器140,例如为电容式MEMS传感器或电容式咪头等,气流传感器140位于电子烟的气流通道内,气流传感器140包括电容,状态检测单元150通过电容的电容值等的变化输出对应的信号。童锁控制电路200与功率MOS管M1的控制端电连接,童锁控制电路200用于控制功率MOS管M1是否导通,功率MOS管M1经由雾化端AT与发热元件130串联形成串联支路,串联支路的一端经由电源供电端BAT与电池110的正极电连接,串联支路的另一端经由电源接地端GND与电池110的负极电连接。在本实施例中以功率MOS管M1为PMOS管为例进行说明,当然,功率MOS管M1也可以为NMOS管。在本实施例中,功率MOS管M1、童锁控制电路200可以位于同一个芯片,该芯片一般称为系统控制芯片。但本申请不限于此,在本申请的其他实施例中,功率MOS管M1、童锁控制电路200可以位于不同的芯片上。在本实施例中,发热元件130例如为发热丝、加热丝、包含发热丝或者加热丝的陶瓷座、或者其他常规的发热元件130。在本实施例中,当童锁控制电路200输出低电平控制功率MOS管M1导通时发热元件130加热以使烟油雾化,当童锁控制电路200输出高电平控制功率MOS管M1断开截止时发热元件130停止加热。
在本实施例中,状态检测单元150与气流传感器140电连接;当用户抽吸电子烟或者向电子烟吹气时,气流传感器140的电容的两个电极片之间气压相对未吸吹状态(未使用时)会改变,导致两个电极片之间的距离会随之改变,进而引起气流传感器140的电容值改变,状态检测单元150将电容值改变转换为频率值改变、计数值改变,状态检测单元150输出对应的信号,从而电子烟可以判断是否被抽吸处于抽吸状态、被吹气处于吹气状态或者处于未吸吹状态。
为了区分正常抽吸和触发进入锁定状态的抽吸,以降低正常抽吸时被误触发进入锁定状态的概率,本申请的发明人经过大量实验后提出以下方案:对电子烟的抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,气压较小(用户抽吸的吸力较小)的抽吸状态一般对应用户正常的抽吸,气压更小(用户抽吸的吸力较大)的抽吸状态对应用户想要进入锁定状态的抽吸或者用户偶然的重吸,不管是处于气压较小的抽吸状态,还是处于气压更小的抽吸状态,电子烟均会判断为抽吸状态,本申请通过当前气压信息是否位于第二预设气压范围内判断是否为气压更小的抽吸状态。
具体而言,本实施例设计当当前气压信息位于第二预设气压范围内时代表此时处于气压更小的抽吸状态,当当前气压信息位于第二预设气压范围之外且位于第一预设气压范围之内时代表气压较小的抽吸状态,其中,第二预设气压范围位于第一预设气压范围内,也即只要当前气压信息位于第二预设气压范围内,当前气压信息必然位于第一预设气压范围内,表示此时电子烟处于抽吸状态且是重吸,当当前气压信息位于第一预设气压范围内时,当前气压信息可能位于第二预设气压范围内(重吸),也可能不位于第二预设气压范围内(正常抽吸)。
在本实施例中,当前气压信息包括当前气压值、当前气压值与基准气压值的比值、当前气压值相对基准气压值的差值或者当前气压值相对基准气压值的差值与基准气压值的比值等。当电子烟未被抽吸也未被吹气时,也即电子烟处于未吸吹状态时,此时电容的电极片未变形,此时电子烟气流通道内的气压值即为基准气压值,也即为大气压值,此时基准气压值是采集获得或者转换获得,此时预设计数时长内的振荡周期数为基准振荡周期数;另外,基准气压值也可以预设。当用户轻吸导致电子烟气流通道内的当前气压值较小时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时会变小,电容会较大,频率值会较小,预设计数时长内的振荡周期数会较小(当前计数值),当前计数值会相对基准振荡周期数较小,此时当前气压值与基准气压值的比值会较小,当前气压值相对基准气压值的差值会 较大,当前气压值相对基准气压值的差值与基准气压值的比值会较大;当用户重吸导致电子烟气流通道内的当前气压值更小时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时会变更小,电容会更大,频率值会更小,预设计数时长内的振荡周期数会更小,当前计数值会相对基准振荡周期数更小,此时当前气压值与基准气压值的比值会更小,当前气压值相对基准气压值的差值会更大,当前气压值相对基准气压值的差值与基准气压值的比值会更大。当用户吹气导致电子烟气流通道内的当前气压值相对未吹吸状态变大时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时会变大,气流传感器140的电容会变小,频率值会变大,当前计数值会比基准振荡周期数大。
为了获得电子烟的气流通道内的当前气压信息,本实施例童锁控制电路200还包括气压获取单元241、第二气压判断单元211,气压获取单元241与状态检测单元150连接,第二气压判断单元211与气压获取单元241连接,气压获取单元241通过状态检测单元150、气流传感器140用于获取电子烟处于抽吸状态时气流通道内的当前气压信息,第二气压判断单元211用于判断当前气压信息是否位于第二预设气压范围内。具体说来,当吹气导致气流通道内气压较大时气流传感器140的电容的两个电极片之间的距离会比较大,从而其电容值会比较小,当抽吸导致气流通道内气压较小时气流传感器140电容的两个电极片之间距离比较小,从而其电容值相对会比较大,因而电容值与气流通道内的气压呈比例关系。在本申请的其他实施例中,电容值与频率值、计数值成反比例关系,从而频率值、计数值与气压也呈比例关系。在本申请的其他实施例中,处于抽吸状态的电容值相对未吸吹状态时的电容值的变化量也会与气流通道内的气压呈比例关系。在本申请的其他实施例中,处于抽吸状态的频率值相对未吸吹状态时的频率值的变化量也会与气流通道内的气压呈比例关系,或者处于抽吸状态的计数值相对未吸吹状态时的计数值的变化量也会与气流通道内的气压呈比例关系。从而通过获得电容值、电容变化量、频率值、频率变化量、计数值、计数变化量就可以对应获得气流通道内的当前气压信息,两者的对应关系可以通过公式计算获得当前气压信息,或者通过预先预存对应表格,其后查找对应表格获得当前气压信息。另外,在本申请的其他实施例中,当前气压信息也可以直接通过传感器侦测获得。
在本实施例中,气压获取单元241预存有电容值-气压值表、频率值-气压值表、计数值-气压值表、电容变化量-气压值表、频率变化量-气压值表或者计数变化量-气压值表,其中,电容值-气压值表存储电容值与气压值的对应关系,频率值-气压值表存储频率值与气压值的对应关系,计数值-气压值表存储预设计数时长的计数值与气压值的对应关系,电容变化量-气压值表存储电容变化量与气压值的对应关系,频率变化量-气压值表存储频率变化量与气压值的对应关系,计数变化量-气压值表存储预设计数时长的计数变化量与气压值的对应关系,从而当获得电容值、频率值、计数值、电容变化量、频率变化量、计数变化量时通过查表就可以对应获得当前气压值。在本实施例中,气压获取单元241、第二气压判断单元211较佳可以通过软体实现,也可以通过硬件实现。另外,在本申请的其他实施例中,气压获取单元241可以不与状态检测单元150电连接,此时气压获取单元241为气压传感器,气压传感器至少部分设置在电子烟的气流通道内,气压获取单元241可以直接获得当前气压值。
在本实施例中,通过当前气压值经过转换可以得到当前气压信息。例如,当当前气压信息为当前气压值时,此时可以直接获得当前气压信息;当当前气压信息为当前气压值与基准气压值的比值、当前气压值相对基准气压值的差值或者当前气压值相对基准气压值的差值与基准气压值的比值时,获得当前气压值后经过算数运算就可以获得当前气压信息。
当当前气压信息为当前气压值时,由于本申请设计成用户重吸才可能进入童锁锁定状态,从而第二预设气压范围为气压值的范围,第二预设气压范围的上限值要小于第一预设气压范围的上限值,第二预设气压范围的下限值大于或等于第一预设气压范围的下限值,例如第二预设气压范围为(a,A],第一预设气压范围为(b,B],例如基准气压值为环境大气压,例如环境大气压为1个标准大气压,其中,A小于B,B小于环境大气压,a大于或等于b,A、a、B、b为正数,一般的,A比环境大气压小500pa,B比环境大气压小300pa,较佳A比环境大气压小500pa、600pa、1000pa、2000pa等。另外,在本申请的其他实施例中,第二预设气 压范围的下限值不设限,也即当当前气压信息小于A即落入第二预设气压范围内。另外,当当前气压信息为当前气压值与基准气压值的比值时,第二预设气压范围为比值范围,其原理与前面描述的当前气压信息为当前气压值的方案类似,在此不再赘述,此比值较佳小于或等于0.95,例如为0.9、0.8、0.7等。
当当前气压信息为当前气压值相对基准气压值的差值时,当气流通道内气压更小时,差值会更大,当气流通道内气压较小时,差值会较大,因而当前气压信息与气流通道内的气压呈比例关系。此时第二预设气压范围为差值范围,第二预设气压范围的下限值大于第一预设气压范围的下限值,第二预设气压范围的上限值小于或等于第一预设气压范围的上限值,例如第二预设气压范围为[M,m),例如M为500pa,第一预设气压范围[N,n),例如N为300pa,其中,M大于N,m小于或等于n,M、m、N、n为正数。另外,在本申请的其他实施例中,第二预设气压范围的上限值不设限,也即只要当前气压信息大于或等于M即落入第二预设气压范围内。另外,当当前气压信息为当前气压值相对基准气压值的差值与基准气压值的比值时,第二预设气压范围为比值范围,其原理与前面描述的当前气压信息为当前气压值相对基准气压值的差值的方案类似,在此不再赘述,此比值较佳大于或等于0.05,例如为0.1、0.2、0.3等。
请结合参见图8、图9和图14,本申请实施例提供一种电子烟的童锁控制方法,包括以下步骤:S11:接收电子烟气流通道内的当前气压信息;
其中,气压获取单元241与状态检测单元150连接,状态检测单元150输出当前电容值、当前电容变化量、当前频率值、当前频率变化量、当前计数值(预设计数时长的振荡周期数)或者当前计数变化量给气压获取单元241,气压获取单元241根据预存的电容值-气压值表、电容变化量-气压值表、频率值-气压值表、频率变化量-气压值表、计数值-气压值表或者计数变化量-气压值表,通过查表可以得到电子烟气流通道内的当前气压值,进而获得当前气压信息。另外,在本申请的其他实施例中,气压获取单元241不与状态检测单元150连接,气压获取单元241本身就可以直接得到当前气压值,进而获得当前气压信息。本实施例利用现有的气流传感器140、状态检测单元150输出的当前电容值、当前电容变化量、当前频率值、当前频率变化量、当前计数值或者当前计数变化量,通过简单改变就可以获得当前气压信息,有利于降低成本。
在本实施例中,第二气压判断单元211与气压获取单元241连接,气压获取单元241产生当前气压信息,并输出当前气压信息,第二气压判断单元211接收当前气压信息。
S12:判断当前气压信息是否位于第二预设气压范围内,其中,所述第二预设气压范围位于第一预设气压范围内,所述第一预设气压范围用于判断电子烟是否处于抽吸状态;
S13:若判断结果为是,则触发进行第二计时并触发进行第二计数;
其中,第二气压判断单元211在接收到当前气压信息后,第二气压判断单元211判断当前气压信息是否位于第二预设气压范围内,第二预设气压范围为预先计算获得,或者预先存储在第二气压判断单元211中。其中,童锁控制电路200包括第二计时单元216和第二计数单元215,第二计时单元216与第二气压判断单元211电连接,第二计数单元215与第二气压判断单元211电连接,若第二气压判断单元211的判断结果为是,则第二气压判断单元211输出气压有效信号,第二计时单元216被触发开始计时,第二计时单元216从0开始计时,第二计数单元215被触发开始计数,并将此次也进行计数,也即此时第二计数单元215的计数为1;若第二气压判断单元211的判断结果为否,则第二气压判断单元211输出气压无效信号,第二计时单元216维持原先的状态,第二计数单元215维持原先的状态。在本实施例中,当第二计时单元216被触发开始计时后,第二计时单元216会一直在计时,直到第二计时单元216被复位置零,此后第二计时单元216停止计时。
当第二计时单元216被触发计时、第二计数单元215被触发计数后,当第二气压判断单元211又接收到当前气压信息,并又一次判断当前气压信息位于第二预设气压范围内,也即又输出气压有效信号,则第二计数单元215的第二计数加1,此时第二计数为2,同时,第二计时单元216在持续进行第二计时。
S14:判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
其中,童锁控制电路200还包括第二计时计数判断单元217,第二计时计数判断单元217分别与第二计数单元215、第二计时单元216连接,当第二计时计数判断单元217判断第二计时单元216的计时时长在第二预设时长内,且第二计数单元215的第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁锁定信号。在本实施例中,第二预设时长一般小于或等于5s,第二预设时长例如为1s、1.5s、1.8s、2s、2.3s、2.5s、2.8s、3s、4s、5s等,较佳为2s。在本实施例中,第二预设数量为大于或等于2的整数,例如为2、3、4、5、6等,较佳为3,第二预设数量一般小于或等于6次,方便用户操作。例如,第二预设时长为2秒,第二预设数量为3,则在2秒内第二计数大于或等于3,第二计时计数判断单元217输出童锁锁定信号。
在本实施例中,第二计时计数判断单元217与第二计时单元216、第二计数单元215实时电连接,当第二计时计数判断单元217获取第二计数到达第二预设数量且第二计时单元216未到达第二预设时长时,第二计时计数判断单元217输出童锁锁定信号,或者第二计时计数判断单元217等第二计时单元216计时时长到达第二预设时长时才输出童锁锁定信号。在本申请的其他实施例中,第二计时计数判断单元217与第二计时单元216、第二计数单元215连接,当第二计时单元216到达第二预设时长时第二计时单元216输出信号给第二计时计数判断单元217,第二计时计数判断单元217获取此时第二计数单元215的第二计数,然后判断第二计数是否大于或等于第二预设数量,若第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁锁定信号,若第二计数小于第二预设数量,则第二计时计数判断单元217维持原来的信号输出。
S15:若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管M1保持断开截止。
其中,童锁控制电路200还包括童锁控制单元240,童锁控制单元240与第二计时计数判断单元217电连接。若第二计时计数判断单元217的判断结果为是,也即在第二预设时长内第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁锁定信号给童锁控制单元240,童锁控制单元240控制电子烟进入锁定状态,在锁定状态功率MOS管M1保持断开,在本实施例中童锁控制单元240持续输出高电平信号给功率MOS管M1,功率MOS管M1保持截止。在本实施例中,童锁控制单元240包括触发器和开关控制单元,触发器用于对童锁锁定信号、后续的童锁解锁信号进行保持,触发器例如为SR触发器等,开关控制单元与触发器电连接,开关控制单元还接收抽吸信号(抽吸状态时输出的信号)、吹气信号(吹气状态时输出的信号)或者未吸吹信号(未使用时输出的信号),开关控制单元例如为与门、与非门、或门、或非门等,例如,开关控制单元包括与非门,与非门的第一输入端与触发器的输出端连接,与非门的第二输入端接收抽吸信号、吹气信号或者未吸吹信号,童锁锁定信号使触发器的输出保持为低电平,从而经过与非门后保持为高电平(此时第二输入端接收抽吸信号,抽吸信号例如为高电平),功率MOS管M1保持截止;童锁解锁信号使触发器的输出保持为高电平,从而与非门的输出受电子烟的抽吸、吹气状态的影响,当用户抽吸电子烟时,与非门的第二输入端接收抽吸信号,抽吸信号为高电平,此时开关控制单元控制功率MOS管M1持续导通或者间断导通(例如PWM、PFM控制方式)。若第二计时计数判断单元217的判断结果为否,也即在第二预设时长内第二计数小于第二预设数量,则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零。
在本实施例中,电子烟的童锁状态分为锁定状态和解锁状态,其中,锁定状态即对应童锁保护功能,当电子烟处于锁定状态时用户抽吸电子烟,童锁控制单元240继续控制功率MOS管M1保持断开截止,从而发热元件130不会加热,进而烟油不会雾化以供用户抽吸,也即即使用户抽吸电子烟也不会出现烟雾。解锁状态对应解除童锁保护功能,此时烟油是否雾化受是否抽吸的控制,当用户抽吸电子烟时,童锁控制单元240控制功率MOS管M1持续导通或者间断导通,间断导通是指童锁控制单元240通过PWM方式、PFM方式输出方波信号, 通过调整方波信号的占空比以用于控制输出功率、输出电压。
在本实施例中,通过接收电子烟气流通道内的当前气压信息;判断当前气压信息是否位于第二预设气压范围内,若判断结果为是,则触发进行第二计时并触发进行第二计数;判断在第二预设时长内第二计数是否大于或等于第二预设数量,若判断结果为是,则控制电子烟进入锁定状态。本申请实施例通过当前气压信息、第二预设气压范围对抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,将当前气压信息位于第二预设气压范围的抽吸次数分辨为气压更小的抽吸状态(重吸),并进行第二计数,并且在第二预设时长内第二计数大于或等于第二预设数量才使电子烟进入锁定状态,通过这样设置,电子烟可以进一步分辨用户是正常抽吸电子烟,还是想要通过抽吸电子烟触发烟进入锁定状态,电子烟不容易混淆两者,可以降低用户正常抽吸电子烟时被误触发进入锁定状态的几率,可以减少用户的使用困扰。而且,通过在第二预设时长内第二计数大于或等于第二预设数量,可以实现电子烟进入锁定状态,本实施例的电子烟在锁定保护后,可以防止儿童拿起电子烟模仿成人抽吸动作导致电子烟产品开始雾化工作,提升电子烟的使用安全性。而且,本实施例利用现有的状态检测单元150、气流传感器140经过转换就可以得到当前气压信息,不需要对电子烟进行大改,不需要增加硬件成本或者增加的硬件成本很小,从而缩减了电子烟进行锁定保护的硬件成本,解决现有技术中电子烟锁定成本较高的技术问题。
在本实施例中,童锁控制方法还包括:再次获取当前气压信息位于第二预设气压范围内的信息,第二计数加1。
具体而言,在第二计数单元215触发第二计数和第二计时单元216触发第二计时后,第二计时单元216和第二计数单元215未停止工作,当电子烟转为未抽吸状态,其后,当用户再次抽吸电子烟,再次实时获取当前气压信息,若第二计数单元215再次获取当前气压信息位于第二预设气压范围内的信息,也即第二计数单元215又收到气压有效信号,则第二计数单元215在原来第二计数的基础上加1,例如原来第二计数单元215的计数值为1,再次获取当前气压信息位于第二预设气压范围内的信息,则第二计数单元215的第二计数加1,也即第二计数变为2,同时,第二计时单元216在触发第二计时后,第二计时单元216一直在计时;若此次第二计数单元215没有获取当前气压信息位于第二预设气压范围内的信息,也即第二计数单元215没有收到气压有效信号,则第二计数保持不变,此时第二计时单元216也在计时。
在本实施例中,童锁控制方法还包括:若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零。
其中,不论第二计时计数判断单元217的判断结果为是还是不为是,只要第二计时单元216的计时时长达到第二预设时长,则第二计时单元216复位置零,同时第二计时单元216发送信号给第二计数单元215,第二计数单元215进行置零,也即此时第二计时单元216停止计时,计时时长置零,第二计时单元216、第二计数单元215恢复初始状态,方便后面信号的检测。在本实施例中,第二计时计数判断单元217在第二计时单元216、第二计数单元215复位置零前已完成判断。
在本实施例中,童锁控制方法还包括:若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零。
其中,若第二计时计数判断单元217获取第二计数达到第二预设数量,且第二计时单元216计时时长小于第二预设时长,则第二计时计数判断单元217输出信号给第二计时单元216、第二计数单元215,第二计时单元216进行复位置零,第二计数单元215置零,该信号可以与童锁锁定信号一样,也可以是不同的信号。
在应用上述的方案进行实际测试过程中发明人发现:由于空气中气流的扰动,可能会导致处于抽吸状态时瞬间的气压下降,导致当前气压信息到达第二预设气压范围,这个瞬间的气压下降持续时间很短,一般偶尔的一次,造成第二计数单元215误计数,可能误触发电子烟进入锁定状态,给用户的使用造成困扰。为了解决该问题,请结合参阅图10和图14,步骤触发进行第二计数具体包括:S131:触发进行第三计时并触发进行第三计数;
其中,童锁控制电路200还包括第三计时单元212和第三计数单元213,第三计时单元212、第三计数单元213均与第二气压判断单元211连接,当第三计时单元212、第三计数单元213获取当前气压信息位于第二预设气压范围内时,也即第三计时单元212接收到气压有效信号时,第三计时单元212开始第三计时,第三计时单元212一直计时,直到进行复位置零,此后第三计时单元212停止计时;第三计数单元213接收到气压有效信号时,第三计数单元213开始第三计数,且此次也进行第三计数,此时第三计数为1。
S132:判断在第三预设时长内第三计数是否大于或等于第三预设数量;
其中,童锁控制电路200还包括第三计时计数判断单元214,第三计时计数判断单元214分别与第三计数单元213、第三计时单元212连接,当第三计时计数判断单元214判断第三计时单元212的计时时长在第三预设时长内,且第三计数单元213的第三计数大于或等于第三预设数量,则第三计时计数判断单元214输出第一计数信号。在本实施例中,第三预设时长一般为30ms-150ms,第三预设时长例如为30ms、40ms、50ms、60ms、70ms、80ms、90ms、100ms、110ms、120ms、130ms、140ms、150ms等,较佳为60ms-100ms。在本实施例中,第三预设数量为大于或等于2的整数,例如为2、3等。在本实施例中,第三预设数量大于或等于2,例如为2、3、4、5、6等。
在本实施例中,第三计时计数判断单元214与第三计时单元212、第三计数单元213实时电连接,当第三计时计数判断单元214获取第三计数到达第三预设数量且第三计时未到达第三预设时长时,第三计时计数判断单元214输出第一计数信号,或者第三计时计数判断单元214等第三计时到达第三预设时长时才输出第一计数信号。在本申请的其他实施例中,第三计时计数判断单元214与第三计时单元212、第三计数单元213连接,当第三计时单元212到达第三预设时长时第三计时单元212输出信号给第三计时计数判断单元214,第三计时计数判断单元214获取此时第三计数单元213的第三计数,然后判断第三计数是否大于或等于第三预设数量,若第三计数大于或等于第三预设数量,则第三计时计数判断单元214输出第一计数信号,若第三计数小于第三预设数量,则第三计时复位置零,第三计数置零。
S133:若判断结果为是,则触发进行第二计数。
其中,第三计时计数判断单元214与第二计时单元216、第二计数单元215连接。若第三计时计数判断单元214的判断结果为是,则第二计时单元216接收到第一计数信号,第二计时单元216被触发开始计时,第二计时从0开始计时;第二计数单元215接收到第一计数信号,第二计数单元215被触发开始计数,此时第二计数单元215对本次也进行计数,也即此时第二计数为1。
在本实施例中,当此前第二计数单元215没有被触发开始计数,第二计时单元216没有被触发开始计时,若第三计时计数判断单元214的判断结果为否,也即第三计时计数判断单元214不输出第一计数信号,第二计数单元215维持原来不进行计数,第二计时单元216维持原来不进行计时;当此前第二计数单元215已被触发开始计数(也即第二计数至少为1),第二计时单元216已被触发计时,若第三计时计数判断单元214的判断结果为否,则第二计数维持原来的计数,第二计数不增加,第二计时继续计时。
在本实施例中,当空气气流串扰导致电子烟气流通道内气压短时间变化时,由于气压降低的时长很短,从而不会符合在第三预设时长内第三计数大于或等于第三预设数量的条件,从而第二计数不会变化,从而不会将空气气流串扰误判为用户想要进入童锁保护的情况,可以防止电子烟误进入锁定状态,可以防止对用户的使用造成困扰,本实施例可以避免这种情况发生,提升了用户的使用体验。
在本实施例中,在整个第三预设时长电子烟处于抽吸状态,在第三预设时长的部分时长或者整个时长均属于重吸,则第二计时单元216进行计数。
为了判断电子烟是否处于抽吸状态,请结合参见图11和图14,在本实施例中,童锁控制方法还包括:S171:接收电子烟气流通道内的当前气压信息;
S172:判断当前气压信息是否位于第一预设气压范围内;
S173:若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
其中,童锁控制电路200包括第一气压判断单元242,第一气压判断单元242与气压获取单元241连接,气压获取单元241输出当前气压信息后,第一气压判断单元242接收当前气压信息,第一气压判断单元242判断当前气压信息是否位于第一预设气压范围内,若判断结果为是,则第一气压判断单元242输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信号,若判断结果为否,则第一气压判断单元242维持原来的信号输出,例如输出未吸吹信号、吹气信号。在本实施例中,第一气压判断单元242与童锁控制单元240连接,具体与童锁控制单元240的开关控制单元连接。进一步的,还可以要求连续多次判断为是,才输出抽吸信号,这样有利于降低气流串扰误触发的几率。在本实施例中,第一气压判断单元242、第二气压判断单元211可以为同一判断单元,也可以为不同的判断单元。
另外,在本申请的其他实施例中,可以与现有技术一样,通过状态检测单元150直接判断电子烟是否处于抽吸状态、吹气状态,具体说来,童锁控制方法还包括:
接收当前计数值,其中,所述当前计数值用于表征电子烟气流通道内的气压大小;
判断当前计数值是否位于第一预设数值范围内,其中,所述第一预设数值范围与所述第一预设气压范围对应;
若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
其中,状态检测单元150包括第一计数生成单元、第一计数判断单元,第一计数生成单元与第一计数判断单元连接,第一计数生成单元生成当前计数值后,第一计数判断单元接收当前计数值,第一计数判断单元判断当前计数值是否位于第一预设数值范围内,第一预设数值范围与第一预设气压范围呈对应关系,也即通过第一预设数值范围经过转换可以得到第一预设气压范围,通过第一预设气压范围经过转换也可以得到第一预设数值范围。若第一计数判断单元的判断结果为是,则第一计数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信号,若判断结果为否,则第一计数判断单元维持原来的信号输出,例如输出未吸吹信号、吹气信号。进一步的,还可以要求连续多次判断为是,才输出抽吸信号,这样有利于降低气流串扰误触发的几率。在本实施例中,当前计数值为预设计数时长的振荡周期的计数值,这是本领域的常规技术,在此不再赘述。另外,在现有技术中,同样可以通过当前计数值判断电子烟是否处于吹气状态,例如当前气压值位于第四预设数值范围内时,此时电子烟处于吹气状态,输出吹气信号。
另外,在本实施例中,请结合参阅图12和图14,在步骤触发进行第二计数之后还包括:
S161:获取电子烟由抽吸状态进入未抽吸状态的信息;
S162:触发第五计时且对第二计数进行锁定;
S163:判断第五计时是否大于或等于第五预设时长;
S164:若判断结果为是,则解除对第二计数的锁定。
本实施例还对两次抽吸状态(包含两次重吸)之间的间隔时长进行规定,防止抽吸状态时气流抖动、串扰等而导致误第二计数。具体而言,在本实施例中,童锁控制电路200包括第五计时单元221和第五时长判断单元222,第五计时单元221分别与第一气压判断单元242、第三计时计数判断单元214连接,第五时长判断单元222分别与第五计时单元221、第二计数单元215电连接,第二计数单元215还与第一气压判断单元242电连接。当第三计时计数判断单元214输出第一计数信号后,第五计时单元221收到第一计数信号后又获取电子烟由抽吸状态进入未抽吸状态的信息,第五计时单元221被触发开始计时,同时第二计数单元215也在接收第一计数信号后又获取电子烟由抽吸状态进入未抽吸状态的信息,第二计数单元215被锁定,也即进入计数锁定状态,第二计数单元215被锁定后即使再接收到第一计数信号也不会进行计数增加,也即在锁定状态第二计数单元215保持原来的计数值,不会增加计数值,只有被解除锁定后处于计数解锁状态第二计数单元215收到第一计数信号才会计数加一。在本实施例中,当第五计时单元221开始第五计时后,第五计时单元221一直在计时(即使由未抽吸状态转为抽吸状态也在计时),第五时长判断单元222判断第五计时单元221的计时时长是否大于或等于第五预设时长,当第五时长判断单元222判断第五计时单元221计时到达第五预设时长,第五计时单元221会停止计时并置零,也即第五计时单元221复位置零, 同时,第五时长判断元输出计数解锁信号给第二计数单元215,第二计数单元215被解除对计数的锁定,第二计数单元215进入计数解锁状态,而且第三计时单元212、第三计数单元213、第二计时单元216也复位置零,此后第二计数单元215再次获取第一计数信号,第二计数单元215可以执行计数加一动作,也即第二计数在原来的基础上加一。在此实施例中,当第五计时单元221没有收到第一计数信号,或者第五计时单元221没有获取电子烟由抽吸状态进入未抽吸状态的信息,第五计时单元221也不会触发开始计时。
在本实施例中,在步骤触发进行第二计数之后还包括:判断当前气压信息位于第二预设气压范围内持续的时长是否大于或等于第七预设时长,若判断结果为是,则第二计数、第二计时均复位置零。本实施例中对重吸持续的时长进行判断,若重吸持续的时长大于或等于第七预设时长,则第二计数、第二计时均复位置零,第二计数为0,第二计时停止计时并置零,这样设置可以防止用户比较长时间抽吸后误动作进入童锁锁定状态,符合用户的使用预期。在本实施例中,第七预设时长大于或等于400ms,例如为400ms、450ms、500ms、600ms等。
在本实施例中,电子烟进入童锁锁定状态后,用户没法正常抽吸电子烟,当用户需要使用电子烟时,此时需要对电子烟进行解锁,以下描述电子烟如何进行解锁,以下描述的仅是一种进入童锁解锁状态的方式,本领域的技术人员还可以通过其他常规的方式使电子烟进入童锁解锁状态。另外,在本申请的其他实施例中,解锁方式可以与加锁方式一样,可以参见前面的描述,在此不再赘述。
请结合参阅图13和图14,在本实施例中,童锁控制方法还包括:
S21:接收电子烟气流通道内的当前气压信息;
其中,童锁控制电路200包括第四气压判断单元231,第四气压判断单元231用于接收当前气压信息,其中,第四气压判断单元231与第二气压判断单元211可以为不同的判断单元,也可以为同一气压判断单元。
在本实施例中,当处于吹气状态时,气流通道中气压较大,会高于未吸吹状态的气压,也即当前气压值会大于基准气压值,气流传感器140的电容的两个电极的间距相对未吸吹状态时要大,从而电容值会比未吸吹状态时小,频率会比未吸吹状态时大,吹气状态时在预设计数时长内的振荡周期数(当前计数值)大于未吸吹状态时对应时长的振荡周期数(基准振荡周期数),在抽吸状态时预设计数时长内的振荡周期数(当前计数值)会小于未吸吹状态时对应时长的振荡周期数(基准振荡周期数)。
S22:判断当前气压信息是否位于第四预设气压范围内,所述第四预设气压范围用于判断电子烟是否处于吹气状态;
S23:若判断结果为是,则触发进行第四计时并触发进行第四计数;
其中,第四气压判断单元231在接收到当前气压信息后,第四气压判断单元231判断当前气压信息是否位于第四预设气压范围内,第四预设气压范围为预先计算获得,或者预先存储在第四气压判断单元231中。
当当前气压信息为当前气压值时,第四预设气压范围为气压值范围,此时第四预设气压范围的下限值例如为1.03倍基准气压值等,会大于第一预设气压范围对应的上限值,第四预设气压范围的下限值大于基准气压值;当当前气压信息为当前气压值与基准气压值的比值时,第四预设气压范围为比值范围,此时第四预设气压范围的下限值例如为1.03、1.04、1.05等,会大于第一预设气压范围对应的上限值;第四预设气压范围的上限值可以不设限,也可以根据需要设限。当当前气压信息为当前气压值相对基准气压值的差值或者当前气压值相对基准气压值的差值与基准气压值的比值时,第四预设气压范围对应为差值范围或者比值范围,此时可以参见前面的描述,本领域的技术人员根据现有知识可以知道如何区分吸气状态、吹气状态。
其中,童锁控制电路200包括第四计时单元232和第四计数单元233,第四计时单元232与第四气压判断单元231电连接,第四计数单元233与第四气压判断单元231电连接,若第四气压判断单元231的判断结果为是,则第四气压判断单元231输出吹气信号,第四计时单元232被触发开始计时,第四计时单元232从0开始计时,第四计数单元233被触发开始计 数,并将此次也进行计数,也即此时第四计数单元233的计数为1;若第四气压判断单元231的判断结果为否,则第四气压判断单元231不会输出吹气信号,第四计时单元232维持原先的状态,第四计数单元233维持原先的状态。在本实施例中,当第四计时单元232被触发开始计时后,第四计时单元232会一直在计时,直到第四计时单元232被复位置零,此后第四计时单元232停止计时。在本实施例中,吹气信号也会输出给童锁控制单元240。另外,在本申请的其他实施例中,状态检测单元150可以通过当前计数值是否位于第四预设数值范围内,判断电子烟是否处于吹气状态,其中,第四预设数值范围与第四预设气压范围对应;当判断为吹气状态时,状态检测单元150输出吹气信号,这是本领域的常规技术,在此不再赘述。
在本实施例中,当第四计时单元232被触发计时、第四计数单元233被触发计数后,当第四气压判断单元231又接收到当前气压信息,并又一次判断当前气压信息位于第四预设气压范围内,则第四计数单元233的第四计数加1,此时第四计数为2,同时,第四计时单元232在持续进行第四计时。
S24:判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
其中,童锁控制电路200还包括第四计时计数判断单元234,第四计时计数判断单元234分别与第四计数单元233、第四计时单元232电连接,当第四计时计数判断单元234判断第四计时单元232的计时时长在第四预设时长内,且第四计数单元233计数大于或等于第四预设数量,第四计时计数判断单元234输出童锁解锁信号。在本实施例中,第四预设时长一般小于或等于5s,例如为1s、1.5s、1.8s、2s、2.3s、2.5s、2.8s、3s、4s、5s等,较佳为2s。在本实施例中,第四预设数量大于或等于2,例如为2、3、4、5、6等,较佳为3,第四预设数量一般小于或等于6次,方便用户操作。
在本实施例中,第四计时计数判断单元234与第四计时单元232、第四计数单元233实时连接,当第四计时计数判断单元234获取第四计数单元233到达第四预设数量且第四计时单元232未到达第四预设时长时,第四计时计数判断单元234输出童锁解锁信号,或者第四计时计数判断单元234等第四计时单元232计时时长到达第四预设时长时才输出童锁解锁信号。在本申请的其他实施例中,第四计时计数判断单元234与第四计时单元232、第四计数单元233连接,当第四计时单元232到达第四预设时长时第四计时单元232输出信号给第四计时计数判断单元234,第四计时计数判断获取此时第四计数单元233的计数,然后判断第四计数是否大于或等于第四预设数量,若大于或等于第四预设数量,则输出童锁解锁信号,若小于第四预设数量,则维持原来的信号输出。
S24:若判断结果为是,则控制电子烟进入解锁状态,其中,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管M1持续导通或者间断导通。
其中,若第四计时计数判断单元234判断的结果为是,也即在第四预设时长内计数的数量大于或等于第四预设数量,则第四计时计数判断单元234输出童锁解锁信号给童锁控制单元240,童锁控制单元240控制电子烟进入解锁状态,在解锁状态电子烟处于抽吸状态时功率MOS管M1持续导通或者间断导通,也即此时功率MOS管M1受用户是否抽吸的控制,在本实施例中电子烟处于抽吸状态时童锁控制单元240持续输出低电平信号或者间断输出低电平信号给功率MOS管M1,功率MOS管M1持续导通或者间断导通,当功率MOS管M1导通时,发热元件130加热以雾化烟油,从而雾化后的烟油可供被用户抽吸。
在本实施例中,通过对吹气进行计时和计数实现解锁,在没有增加蓝牙/NFC等设计以及机械结构的同时,实现了有效的解锁效果,从而缩减了电子烟的进行解锁的硬件成本,解决现有技术中电子烟解锁成本较高的技术问题。而且,本申请的解锁方式不容易被儿童察觉,电子烟在锁定后不容易被儿童解锁,有利于提升电子烟的安全性。另外,在本申请的其他实施例中,同判断抽吸状态一样,也可以通过当前计数值来判断是否进行吹气。
在本实施例中,童锁控制方法还包括:再次获取当前气压信息位于第四预设气压范围内的信息,第四计数加1。
具体而言,在第四计数单元233触发第四计数和第四计时单元232触发第四计时后,第四计时单元232和第四计数单元233未停止工作,第四计时单元232、第四计数单元233再次(再次是指第四计数单元233中第四计数的数值至少为1)获取当前气压信息位于第四预设气压范围内的信息,则第四计数单元233在原来计数的基础上加1,例如原来第四计数单元233的计数值为1,再次获取当前气压信息位于第四预设气压范围内的信息,也即接收到由未吸吹状态转为吹气状态的信息,则第四计数单元233的计数加1,也即计数值变为2;第四计时单元232继续工作持续计时,也即第四计时单元232在触发计时后,只要不收到停止计时或者复位的信号,则第四计时单元232一直在计时。
在本实施例中,童锁控制方法还包括:若第四计时单元232的计时时长达到第四预设时长,则第四计数置零,且第四计时单元232复位置零。
在本实施例中,童锁控制方法还包括:若第四计时单元232的计时时长小于第四预设时长且第四计数达到第四预设数量,则第四计数置零,且第四计时单元232复位置零。
对应于上面实施例的电子烟的童锁控制方法,图14示出了本申请实施例提供的电子烟的童锁控制电路200的模块图,为了便于说明,仅示出了与本申请实施例相关的部分。
请结合参照图8和图14,童锁控制电路200包括:
状态检测单元150,其用于与气流传感器140电连接;
气压获取单元241,用于与状态检测单元150连接,其用于输出电子烟气流通道内的当前气压信息;另外,在本申请的其他实施例中,童锁控制电路200还可以没有状态检测单元150,此时气压获取单元241不与状态检测单元150连接;
第二气压判断单元211,其用于接收电子烟气流通道内的当前气压信息,并用于判断当前气压信息是否位于第二预设气压范围内,其中,所述第二预设气压范围位于第一预设气压范围内,所述第一预设气压范围用于判断电子烟是否处于抽吸状态;
第二计数单元215,其用于若第二气压判断单元211的判断结果为是,则触发进行第二计数;
第二计时单元216,其用于若第二气压判断单元211的判断结果为是,则触发进行计时;
第二计时计数判断单元217,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
童锁控制单元240,其用于若第二计时计数判断单元217的判断结果均为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管M1保持断开截止。
在本实施例中,当前气压信息包括当前气压值、当前气压值与基准气压值的比值、当前气压值相对基准气压值的差值或者当前气压值相对基准气压值的差值与基准气压值的比值。
在本实施例中,当所述当前气压信息为当前气压值时,所述第二预设气压范围的上限值小于第一预设气压范围的上限值;或者,当所述当前气压值与基准气压值的比值时,所述第二预设气压范围的上限值小于第一预设气压范围的上限值;或者,当所述当前气压值相对基准气压值的差值时,所述第二预设气压范围的下限值大于第一预设气压范围的下限值;或者,当所述当前气压值相对基准气压值的差值与基准气压值的比值时,所述第二预设气压范围的下限值大于第一预设气压范围的下限值。其中,所述基准气压值为电子烟处于未吸吹状态时其气流通道内的气压值。
在本实施例中,童锁控制电路200包括第三计时单元212、第三计数单元213和第三计时计数判断单元214,其中,第三计时单元212、第三计数单元213分别与第二气压判断单元211连接,当第二气压判断单元211输出气压有效信号后,第三计时单元212被触发进行第三计时,第三计数单元213被触发进行第三计数,第三计时计数判断单元214均与第三计时单元212、第三计数单元213连接,第三计时计数判断单元214用于判断在第三预设时长内第三计数是否大于或等于第三预设数量,若第三计时计数判断单元214的判断结果为是,则第二计时单元216被触发进行第二计时,第二计数单元215被触发进行第二计数。在本实施例中,在第三预设时长期间电子烟处于抽吸状态。
在本实施例中,气压获取单元241用于获取当前电容值、当前频率值、当前计数值、相 对未吸吹状态时的当前电容变化量、相对未吸吹状态时的当前频率变化量或者相对未吸吹状态时的当前计数变化量,且还用于根据当前电容值查找预存的电容值-气压值表、根据当前频率值查找预存的频率值-气压值表、根据当前计数值查找预存的计数值-气压值表、根据当前电容变化量查找预存的电容变化量-气压值表、根据当前频率变化量查找预存的频率变化量-气压值表或者根据当前计数变化量查找预存的计数变化量-气压值表;气压获取单元用于获得电子烟气流通道内的当前气压信息并输出,第二气压判断单元接收当前气压信息。
在本实施例中,童锁控制电路200还包括第一气压判断单元242,第一气压判断单元242与气压获取单元241连接,第一气压判断单元242用于接收电子烟气流通道内的当前气压信息并判断当前气压信息是否位于第一预设气压范围内,若第一气压判断单元242的判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信息。
在本实施例中,童锁控制电路200还包括第五计时单元221、第五时长判断单元222,其中,第五计时单元221用于获取电子烟由抽吸状态进入未抽吸状态的信息且获取进行第二计数的信息,第五计时单元221开始第五计时,第二计数单元215进行第二计数且用于获取电子烟由抽吸状态进入未抽吸状态的信息,第二计数单元215被锁定,第五时长判断单元222用于判断第五计时单元221的第五计时是否大于或等于第五预设时长,若第五时长判断单元222的判断结果为是,则第五时长判断单元222用于输出计数解锁信号给第二计数单元215,第二计数单元215解除锁定。
在本实施例中,第二气压判断单元211与气压获取单元241连接,气压获取单元241与状态检测单元150连接,状态检测单元150与电容式气流传感器140电连接,第二气压判断单元211用于接收气压获取单元24输出的当前气压信息。
在本实施例中,童锁控制电路200包括锁定单元,锁定单元包括第二计时单元216、第二计数单元215、第二计时计数判断单元217、第二气压判断单元211等。
在本实施例中,童锁控制电路200包括解锁单元,解锁单元包括第四气压判断单元231、第四计时单元232、第四计数单元233、第四计时计数判断单元234,其中,第四气压判断单元231用于接收当前气压信息,并判断当前气压信息是否位于第四预设气压范围内,所述第四预设气压范围用于判断电子烟是否处于吹气状态;若第四气压判断单元231的判断结果为是,则第四计时单元232被触发进行第四计时,第四计数单元233被触发进行第四计数,第四计时计数判断单元234用于判断在第四预设时长内第四计数是否大于或等于第四预设数量,若第四计时计数判断单元234的判断结果为是,则输出童锁解锁信号给童锁控制单元240,童锁控制单元240控制电子烟进入解锁状态,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管M1持续导通或者间断导通。
在本实施例中,第四计数单元233还用于再次获取当前气压信息位于第四预设气压范围内的信息,第四计数加1。
在本实施例中,第四计时单元232还用于若计时时长达到第四预设时长,则第四计数置零,且第四计时单元232复位置零。在本申请的其他实施例中,第四计时计数判断单元234还用于若计时时长小于第四预设时长且第四计数达到第四预设数量,则第四计数置零,且第四计时单元232复位置零。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图15为本申请一实施例提供的童锁控制装置400的示意图。如图15所示,该实施例的童锁控制装置400包括:至少一个处理器420(图15中仅示出一个)、存储器410以及存储在 所述存储器410中并可在所述处理器420上运行的计算机程序,所述处理器420执行所述计算机程序时实现上述童锁控制方法实施例中的步骤。本领域技术人员可以理解,图15仅仅是童锁控制装置400的举例,并不构成对童锁控制装置400的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。所称处理器420可以是中央处理单元(Central Processing Unit,CPU),该处理器420还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-PrograMable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器410在一些实施例中可以是童锁控制装置400的内部存储单元,例如童锁控制装置400的硬盘或内存。所述存储器410在另一些实施例中也可以是童锁控制装置400的外部存储设备,例如童锁控制装置400上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器410还可以既包括童锁控制装置400的内部存储单元也包括外部存储设备。所述存储器410用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器410还可以用于暂时地存储已经输出或者将要输出的数据。童锁控制装置400例如为电子烟。
本申请实施例还提供了一种存储介质,存储介质存储有计算机程序,计算机程序被处理器420执行时可实现上述童锁控制方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端上运行时,使得终端执行时可实现上述童锁控制方法实施例中的步骤。
本申请实施例还提供一种电子烟,请结合参见图8和图14,电子烟包括上述的童锁控制电路200,电子烟还包括电池110、功率MOS管M1和发热元件130,发热元件130和功率MOS管M1串联形成发热支路,发热支路的两端对应与电池110的正、负极电连接;还包括气流传感器140,其中,功率MOS管M1的控制端、气流传感器140均与童锁控制电路200电连接,所述气流传感器140与童锁控制电路200的状态检测单元150电连接。
第三实施例
本申请第三实施例提供一种电子烟,请结合参见图16和图22,电子烟包括电池110、童锁控制电路200、发热元件130、气流传感器140、功率MOS管M1等,童锁控制电路200包括状态检测单元150。童锁控制电路200分别与电池110、气流传感器140、功率MOS管M1等电连接。在本实施例中,电池110例如为锂电池、镍镉电池、镍氢电池等可充电电池,电池110也可以为不可充电电池;状态检测单元150与气流传感器140电连接,状态检测单元150用于判断电子烟是否被抽吸和/或被吹气,并输出对应信号,状态检测单元150的一个具体实现方式可参见本领域的在先申请,或者为本领域技术人员知晓的其他常规的状态检测单元。在本实施例中气流传感器140为电容式气流传感器140,例如为电容式MEMS传感器或电容式咪头等,气流传感器140位于电子烟的气流通道内,气流传感器140包括电容,状态检测单元150通过电容的电容值等的变化判断电子烟是否处于抽吸状态、吹气状态、未吸吹状态(对应用户未使用时的状态)。童锁控制电路200与功率MOS管M1的控制端电连接,童锁控制电路200用于控制功率MOS管M1是否导通,功率MOS管M1经由雾化端AT与发热元件130串联形成串联支路,串联支路的一端经由电源供电端BAT与电池110的正极电连接,串联支路的另一端经由电源接地端GND与电池110的负极电连接。在本实施例中以功率MOS管M1为PMOS管为例进行说明,当然,功率MOS管M1也可以为NMOS管。在本实施例中,功率MOS管M1、童锁控制电路200可以位于同一个芯片,该芯片一般称为系统控制芯片。但本申请不限于此,在本申请的其他实施例中,功率MOS管M1、童锁控制电路200可以位于不同的芯片上。在本实施例中,发热元件130例如为发热丝、加热丝、包含发热丝或者加热丝的陶瓷座、或者其他常规的发热元件130。在本实施例中,当童锁控制电 路200输出低电平控制功率MOS管M1导通时发热元件130加热以使烟油雾化,当童锁控制电路200输出高电平控制功率MOS管M1断开截止时发热元件130停止加热。
在本实施例中,状态检测单元150与气流传感器140电连接,以用于判断电子烟是否被抽吸或者被吹气或者处于未吹气也未抽吸的状态(未吸吹状态),当用户抽吸电子烟或者向电子烟吹气时,气流传感器140的电容的两个电极片之间气压会改变,导致两个电极片之间的距离会随之改变,进而引起气流传感器140的电容值改变,状态检测单元150将电容值改变转换为频率值改变或者计数值改变,通过将电容值、频率值或者计数值与预设的参数范围进行比较,状态检测单元150就可以判断电子烟是否被抽吸处于抽吸状态、被吹气处于吹气状态或者处于未吸吹状态。
为了区分正常抽吸和触发进入锁定状态的抽吸,以降低正常抽吸时被误触发进入锁定状态的概率,本申请的发明人经过大量实验后提出以下方案:对电子烟的抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,气压较小(用户抽吸的吸力较小)的抽吸状态一般对应用户正常的抽吸,气压更小(用户抽吸的吸力较大)的抽吸状态对应用户想要进入锁定状态的抽吸或者用户偶然的重吸,不管是处于气压较小的抽吸状态,还是处于气压更小的抽吸状态,电子烟均会判断为抽吸状态,本申请通过第一参数信息是否位于第二预设参数范围内判断是否为气压更小的抽吸状态。
具体而言,第一参数信息表征电子烟气流通道内的气压状况,气压状况例如为气压大小、气压的变化状况等,第一参数信息与气流通道内的气压状况呈对应关系,本实施例设计当第一参数信息位于第二预设参数范围内时代表此时处于气压更小的抽吸状态,当第一参数信息位于第二预设参数范围之外且位于第一预设参数范围之内时代表气压较小的抽吸状态,其中,第二预设参数范围位于第一预设参数范围内,也即只要第一参数信息位于第二预设参数范围内,第一参数信息必然位于第一预设参数范围内,表示此时电子烟处于抽吸状态且是重吸,当第一参数信息位于第一预设参数范围内时,第一参数信息可能位于第二预设参数范围内(重吸),也可能不位于第二预设参数范围内(正常抽吸)。
在本实施例中,第一参数信息包括当前电容值、当前频率值、当前计数值、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值等,或者当前电容值、当前频率值或者当前计数值的变形。当电子烟未被抽吸也未被吹气时,也即电子烟处于未吸吹状态时,此时电容的电极片未变形,此时的当前电容值即为基准电容值,此时基准电容值是采集获得或者转换获得,此时对应的当前频率值即为基准频率值,此时预设计数时长的振荡周期数为当前计数值,也为基准计数值;另外,基准电容值、基准频率值、基准计数值也可以预设。当用户轻吸导致电子烟气流通道内的当前气压较小时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时变小,当前电容值会较大,当前电容值与基准电容值的比值会较大,当前频率值会较小,预设计数时长的振荡周期数会较小,也即当前计数值会较小,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会较小,对应差值会较大,对应差值与对应基准值的比值会较大;当用户重吸导致电子烟气流通道内的当前气压值更小时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时变更小,当前电容值会更大,当前电容值与基准电容值的比值会更大,当前频率值会更小,预设计数时长的振荡周期数会更小,当前计数值会更小,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会更小,对应差值会更大,对应差值与对应基准值的比值会更大。当用户吹气导致电子烟气流通道内的当前气压值相对未吹吸状态变大时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时变大,气流传感器140的当前电容值会变小,当前频率值会变大,当前计数值会比基准计数值大。
当气流通道内气压更小时气流传感器140的电容变形更大,电容的两个电极片之间的距离更小,从而其当前电容值会更大,当前电容值与基准电容值的比值会更大,当前计数值会 更小,当前频率值会更小,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会更小,对应差值会更大,对应差值与对应基准值的比值会更大;当气流通道内气压较小时气流传感器140的电容变形较大,电容的两个电极片之间的距离较小,从而其电容值会较大,当前电容值与基准电容值的比值会较大,当前计数值会较小,当前频率值会较小,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会较小,对应差值会较大,对应差值与对应基准值的比值会较大。因而当前电容值、当前计数值、当前频率值等均与气流通道内的气压呈比例关系。
由于本申请设计成用户重吸才可能进入童锁锁定状态,当第一参数信息为当前电容值时,第二预设参数范围对应为电容值范围,第二预设参数范围的下限值要大于第一预设参数范围的下限值,第二预设参数范围的上限值小于或等于第一预设参数范围的上限值,例如第二预设参数范围为(a,A],第一预设参数范围(b,B],其中,a大于b,A小于或等于B,A、a、B、b为正数。当所述第一参数信息为当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,此时第二预设参数范围对应为差值范围、比值范围,第二预设参数范围的下限值大于第一预设参数范围的下限值。另外,在本申请的其他实施例中,第二预设参数范围的上限值不设限,也即当前电容值大于a即落入第二预设参数范围内。当第一参数信息为当前频率值、当前计数值、当前频率值与基准频率值的比值或者当前计数值与基准计数值的比值时,第二预设参数范围对应为频率值范围、计数值范围或者比值范围,第二预设参数范围的上限值要小于第一预设参数范围的上限值,第二预设参数范围的下限值大于或等于第一预设参数范围的下限值,例如第一参数信息为当前计数值时,第二预设参数范围为[m,M),例如M为950,第一预设参数范围为[n,N),例如N为970,其中,M小于N,m大于或等于n,M、m、N、n为正整数。另外,在本申请的其他实施例中,第二预设参数范围的下限值不设限,也即当前频率值或者当前计数值小于M即落入第二预设参数范围内。
进一步的,当电子烟处于抽吸状态时,为了判断第一参数信息是否位于第二预设参数范围内,本实施例童锁控制电路200还包括第二参数判断单元211,第二参数判断单元211与状态检测单元150连接,状态检测单元150本身就知道第一参数信息,也即状态检测单元150本身就知道当前电容值、当前频率值或者当前计数值等,从而状态检测单元150输出第一参数信息给第二参数判断单元211,第二参数判断单元211用于接收第一参数信息并判断第一参数信息是否位于第二预设参数范围内,进而可以区分用户是正常抽吸还是进入锁定状态的抽吸,经过这样区分,可以降低用户正常抽吸时误判断进入童锁锁定状态的概率。
请结合参见图16、图17和图22,本申请实施例提供一种电子烟的童锁控制方法,包括以下步骤:
S11:接收第一参数信息;
其中,第二参数判断单元211与状态检测单元150连接,状态检测单元150产生第一参数信息,并输出第一参数信息,第二参数判断单元211接收第一参数信息。
在本实施例中,状态检测单元150本身可以识别电子烟是否处于抽吸状态或者吹气状态,当用户抽吸电子烟时,状态检测单元150通过气流传感器140识别电子烟处于抽吸状态,此时状态检测单元150判断第一参数信息位于第一预设参数范围内,状态检测单元150输出抽吸信号,当用户吹气时,状态检测单元150通过气流传感器140识别电子烟处于吹气状态,此时状态检测单元150输出吹气信号,当电子烟既不被抽吸,也不被吹气时,此时状态检测单元150识别电子烟处于未吸吹状态,状态检测单元150输出未吸吹信号。童锁控制电路200接收状态检测单元150的输出信号,从而获取电子烟的状态。当状态检测单元150由输出未吸吹信号转为输出抽吸信号或者吹气信号时,童锁控制电路200获取电子烟由未吸吹状态转为抽吸状态或者吹气状态。在本实施例中,未抽吸状态包括未吸吹状态、吹气状态。
S12:判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位 于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
S13:若判断结果为是,则触发进行第二计时并触发进行第二计数;
其中,第二参数判断单元211在接收到第一参数信息后,第二参数判断单元211判断第一参数信息是否位于第二预设参数范围内,第二预设参数范围为预先计算获得,或者预先存储在第二参数判断单元211中。其中,童锁控制电路200包括第二计时单元216和第二计数单元215,第二计时单元216与第二参数判断单元211电连接,第二计数单元215与第二参数判断单元211电连接,若第二参数判断单元211的判断结果为是,则第二参数判断单元211输出参数有效信号,第二计时单元216被触发开始计时,第二计时单元216从0开始计时,第二计数单元215被触发开始计数,并将此次也进行计数,也即此时第二计数单元215的计数为1;若第二参数判断单元211的判断结果为否,则第二参数判断单元211输出参数无效信号,第二计时单元216维持原先的状态,第二计数单元215维持原先的状态。在本实施例中,当第二计时单元216被触发开始计时后,第二计时单元216会一直在计时,直到第二计时单元216被复位置零,此后第二计时单元216停止计时。
当第二计时单元216被触发计时、第二计数单元215被触发计数后,当第二参数判断单元211又接收到第一参数信息,并又一次判断第一参数信息位于第二预设参数范围内,也即又输出参数有效信号,则第二计数单元215的第二计数加1,此时第二计数为2,同时,第二计时单元216在持续进行第二计时。
S14:判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
其中,童锁控制电路200还包括第二计时计数判断单元217,第二计时计数判断单元217分别与第二计数单元215、第二计时单元216连接,当第二计时计数判断单元217判断第二计时单元216的计时时长在第二预设时长内,且第二计数单元215的第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁锁定信号。在本实施例中,第二预设时长一般小于或等于5s,第二预设时长例如为1s、1.5s、1.8s、2s、2.3s、2.5s、2.8s、3s、4s、5s等,较佳为2s。在本实施例中,第二预设数量为大于或等于2的整数,例如为2、3、4、5、6等,较佳为3,第二预设数量一般小于或等于6次,方便用户操作。例如,第二预设时长为2秒,第二预设数量为3,则在2秒内第二计数大于或等于3,第二计时计数判断单元217输出童锁锁定信号。
在本实施例中,第二计时计数判断单元217与第二计时单元216、第二计数单元215实时电连接,当第二计时计数判断单元217获取第二计数到达第二预设数量且第二计时单元216未到达第二预设时长时,第二计时计数判断单元217输出童锁锁定信号,或者第二计时计数判断单元217等第二计时单元216计时时长到达第二预设时长时才输出童锁锁定信号。在本申请的其他实施例中,第二计时计数判断单元217与第二计时单元216、第二计数单元215连接,当第二计时单元216到达第二预设时长时第二计时单元216输出信号给第二计时计数判断单元217,第二计时计数判断单元217获取此时第二计数单元215的第二计数,然后判断第二计数是否大于或等于第二预设数量,若第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁锁定信号,若第二计数小于第二预设数量,则第二计时计数判断单元217维持原来的信号输出。
S15:若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管M1保持断开截止。
其中,童锁控制电路200还包括童锁控制单元240,童锁控制单元240与第二计时计数判断单元217电连接。若第二计时计数判断单元217的判断结果为是,也即在第二预设时长内第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁锁定信号给童锁控制单元240,童锁控制单元240控制电子烟进入锁定状态,在锁定状态功率MOS管M保持断开,在本实施例中童锁控制单元240持续输出高电平信号给功率MOS管M,功率MOS管M保持截止。在本实施例中,童锁控制单元240包括触发器和开关控制单元,触发器用于对童锁锁定信号、后续的童锁解锁信号进行保持,触发器例如为SR触发器等,开关控制单 元分别与触发器、状态检测单元150电连接,开关控制单元例如为与门、与非门、或门、或非门等,例如,开关控制单元包括与非门,与非门的两个输入端分别与触发器的输出端、状态检测单元150的一个输出端连接,童锁锁定信号使触发器的输出保持为低电平,从而经过与非门后保持为高电平(此时状态检测单元150输出抽吸信号,抽吸信号例如为高电平),功率MOS管M保持截止;童锁解锁信号使触发器的输出保持为高电平,从而与非门的输出受状态检测单元150的输出影响,当状态检测单元150判断用户抽吸电子烟时,状态检测单元150输出抽吸信号给与非门,抽吸信号为高电平,此时开关控制单元控制功率MOS管M持续导通或者间断导通(例如PWM、PFM控制方式)。若第二计时计数判断单元217的判断结果为否,也即在第二预设时长内第二计数小于第二预设数量,则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零。
在本实施例中,电子烟的童锁状态分为锁定状态和解锁状态,其中,锁定状态即对应童锁保护功能,当电子烟处于锁定状态时用户抽吸电子烟,童锁控制单元240继续控制功率MOS管M1保持断开截止,从而发热元件130不会加热,进而烟油不会雾化以供用户抽吸,也即即使用户抽吸电子烟也不会出现烟雾。解锁状态对应解除童锁保护功能,此时烟油是否雾化受是否抽吸的控制,当用户抽吸电子烟时,童锁控制单元240控制功率MOS管M1持续导通或者间断导通,间断导通是指童锁控制单元240通过PWM方式、PFM方式输出方波信号,通过调整方波信号的占空比以用于控制输出功率、输出电压。
在本实施例中,通过接收第一参数信息;判断第一参数信息是否位于第二预设参数范围内,若判断结果为是,则触发进行第二计时并触发进行第二计数;判断在第二预设时长内第二计数是否大于或等于第二预设数量,若判断结果为是,则控制电子烟进入锁定状态。本申请实施例通过第一参数信息、第二预设参数范围对抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,将第一参数信息位于第二预设参数范围的抽吸次数分辨为气压更小的抽吸状态(重吸),并进行第二计数,并且在第二预设时长内第二计数大于或等于第二预设数量才使电子烟进入锁定状态,通过这样设置,电子烟可以进一步分辨用户是正常抽吸电子烟,还是想要通过抽吸电子烟触发进入锁定状态,电子烟不容易混淆两者,可以降低用户正常抽吸电子烟时被误触发进入锁定状态的几率,可以减少用户的使用困扰。而且,通过在第二预设时长内第二计数大于或等于第二预设数量,可以实现电子烟进入锁定状态,本实施例的电子烟在锁定保护后,可以防止儿童拿起电子烟模仿成人抽吸动作导致电子烟产品开始雾化工作,提升电子烟的使用安全性。再有,本实施例利用现有的状态检测单元150、气流传感器140就可以得到第一参数信息,不需要对电子烟进行大改,不需要增加硬件成本或者增加的硬件成本很小,从而缩减了电子烟进行锁定保护的硬件成本,解决现有技术中电子烟锁定成本较高的技术问题。
在本实施例中,童锁控制方法还包括:再次获取第一参数信息位于第二预设参数范围内的信息,第二计数加1。
具体而言,在第二计数单元215触发第二计数和第二计时单元216触发第二计时后,第二计时单元216和第二计数单元215未停止工作,当电子烟转为未抽吸状态,其后,当用户再次抽吸电子烟,再次实时获取第一参数信息,若第二计数单元215再次获取第一参数信息位于第二预设参数范围内的信息,也即第二计数单元215又收到参数有效信号,则第二计数单元215在原来第二计数的基础上加1,例如原来第二计数单元215的计数值为1,再次获取第一参数信息位于第二预设参数范围内的信息,则第二计数单元215的第二计数加1,也即第二计数变为2,同时,第二计时单元216在触发第二计时后,第二计时单元216一直在计时;若此次第二计数单元215没有获取第一参数信息位于第二预设参数范围内的信息,也即第二计数单元215没有收到参数有效信号,则第二计数保持不变,此时第二计时单元216也在计时。
在本实施例中,童锁控制方法还包括:若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零。
其中,不论第二计时计数判断单元217的判断结果为是还是不为是,只要第二计时单元 216的计时时长达到第二预设时长,则第二计时单元216复位置零,同时第二计时单元216发送信号给第二计数单元215,第二计数单元215进行置零,也即此时第二计时单元216停止计时,计时时长置零,第二计时单元216、第二计数单元215恢复初始状态,方便后面信号的检测。在本实施例中,第二计时计数判断单元217在第二计时单元216、第二计数单元215复位置零前已完成判断。
在本实施例中,童锁控制方法还包括:若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零。
其中,若第二计时计数判断单元217获取第二计数达到第二预设数量,且第二计时单元216计时时长小于第二预设时长,则第二计时计数判断单元217输出信号给第二计时单元216、第二计数单元215,第二计时单元216进行复位置零,第二计数单元215置零,该信号可以与童锁锁定信号一样,也可以是不同的信号。
请参见图22,在本实施例中,步骤接收第一参数信息具体包括:
接收状态检测单元150输出的第一参数信息。
其中,状态检测单元150本身可以得到第一参数信息,第二参数判断单元211通过状态检测单元150接收第一参数信息。本实施例充分利用现有电子烟中的气流传感器140、状态检测单元150,只需要增设第二参数判断单元211,第二参数判断单元211所要实现的功能既可以通过软体实现,也可以通过硬件实现,也可以通过软体和硬件结合实现,从而不需要增加新的硬件或者增加新的硬件较少,可以实现不增加成本或者增加少量成本就可以极大的降低电子烟误进入锁定状态的问题,提升了用户的使用便利性。
在应用上述的方案进行实际测试过程中发明人发现:由于空气中气流的扰动,可能会导致处于抽吸状态时瞬间的气压下降,导致第一参数信息到达第二预设参数范围,这个瞬间的气压下降持续时间很短,一般偶尔的一次,造成第二计数单元215误计数,可能误触发电子烟进入锁定状态,给用户的使用造成困扰。为了解决该问题,请结合参阅图18和图22,步骤触发进行第二计数具体包括:
S131:触发进行第三计时并触发进行第三计数;
其中,童锁控制电路200还包括第三计时单元212和第三计数单元213,第三计时单元212、第三计数单元213均与第二参数判断单元211连接,当第三计时单元212、第三计数单元213获取第一参数信息位于第二预设参数范围内时,也即第三计时单元212接收到参数有效信号时,第三计时单元212开始第三计时,第三计时单元212一直计时,直到进行复位置零,此后第三计时单元212停止计时;第三计数单元213接收到参数有效信号时,第三计数单元213开始第三计数,且此次也进行第三计数,此时第三计数为1。
S132:判断在第三预设时长内第三计数是否大于或等于第三预设数量;
其中,童锁控制电路200还包括第三计时计数判断单元214,第三计时计数判断单元214分别与第三计数单元213、第三计时单元212连接,当第三计时计数判断单元214判断第三计时单元212的计时时长在第三预设时长内,且第三计数单元213的第三计数大于或等于第三预设数量,则第三计时计数判断单元214输出第一计数信号。在本实施例中,第三预设时长一般为30ms-150ms,第三预设时长例如为30ms、40ms、50ms、60ms、70ms、80ms、90ms、100ms、110ms、120ms、130ms、140ms、150ms等,较佳为60ms-100ms。在本实施例中,第三预设数量为大于或等于2的整数,例如为2、3等。在本实施例中,第三预设数量大于或等于2,例如为2、3、4、5、6等。
在本实施例中,第三计时计数判断单元214与第三计时单元212、第三计数单元213实时电连接,当第三计时计数判断单元214获取第三计数到达第三预设数量且第三计时未到达第三预设时长时,第三计时计数判断单元214输出第一计数信号,或者第三计时计数判断单元214等第三计时到达第三预设时长时才输出第一计数信号。在本申请的其他实施例中,第三计时计数判断单元214与第三计时单元212、第三计数单元213连接,当第三计时单元212到达第三预设时长时第三计时单元212输出信号给第三计时计数判断单元214,第三计时计数判断单元214获取此时第三计数单元213的第三计数,然后判断第三计数是否大于或等于 第三预设数量,若第三计数大于或等于第三预设数量,则第三计时计数判断单元214输出第一计数信号,若第三计数小于第三预设数量,则第三计时复位置零,第三计数置零。
S133:若判断结果为是,则触发进行第二计数。
其中,第三计时计数判断单元214与第二计时单元216、第二计数单元215连接。若第三计时计数判断单元214的判断结果为是,则第二计时单元216接收到第一计数信号,第二计时单元216被触发开始计时,第二计时从0开始计时;第二计数单元215接收到第一计数信号,第二计数单元215被触发开始计数,此时第二计数单元215对本次也进行计数,也即此时第二计数为1。
在本实施例中,当此前第二计数单元215没有被触发开始计数,第二计时单元216没有被触发开始计时,若第三计时计数判断单元214的判断结果为否,也即第三计时计数判断单元214不输出第一计数信号,第二计数单元215维持原来不进行计数,第二计时单元216维持原来不进行计时;当此前第二计数单元215已被触发开始计数(也即第二计数至少为1),第二计时单元216已被触发计时,若第三计时计数判断单元214的判断结果为否,则第二计数维持原来的计数,第二计数不增加,第二计时继续计时。
在本实施例中,当空气气流串扰导致电子烟气流通道内气压短时间变化时,由于气压降低的时长很短,从而不会符合在第三预设时长内第三计数大于或等于第三预设数量的条件,从而第二计数不会变化,从而不会将空气气流串扰误判为用户想要进入童锁保护的情况,可以防止电子烟误进入锁定状态,可以防止对用户的使用造成困扰,本实施例可以避免这种情况发生,提升了用户的使用体验。
在本实施例中,在整个第三预设时长电子烟处于抽吸状态,在第三预设时长的部分时长或者整个时长均属于重吸,则第二计时单元216进行计数。
为了判断电子烟是否处于抽吸状态,请结合参见图19和图22,在本实施例中,童锁控制方法还包括:
S171:接收第一参数信息;
S172:判断第一参数信息是否位于第一预设参数范围内;
S173:若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
其中,状态检测单元150包括第一参数生成单元、第一参数判断单元,第一参数生成单元分别与第一参数判断单元、第二参数判断单元211连接,第一参数生成单元生成第一参数信息后,第一参数判断单元接收第一参数信息,第一参数判断单元判断第一参数信息是否位于第一预设参数范围内,若判断结果为是,则第一参数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信号,若判断结果为否,则第一参数判断单元维持原来的信号输出,例如输出未吸吹信号、吹气信号。进一步的,还可以要求连续多次判断为是,才输出抽吸信号,这样有利于降低气流串扰误触发的几率。在本实施例中,第一参数判断单元、第二参数判断单元211可以为同一个参数判断单元,也可以为不同的参数判断单元。
在本实施例中,为了降低电子烟处于未抽吸状态时的功耗,步骤接收第一参数信息具体包括:
获取电子烟由未抽吸状态转为抽吸状态的信息;
触发接收第一参数信息。
其中,第二参数判断单元211与状态检测单元150连接,第二参数判断单元211在未收到抽吸信号前不工作,当第二参数判断单元211在接收到抽吸信号后,第二参数判断单元211被触发开始工作,此时第二参数判断单元211接收第一参数信息。这样设置,有利于降低电子烟的功耗。
另外,在本实施例中,请结合参阅图20和图22,在步骤触发进行第二计数之后还包括:
S161:获取电子烟由抽吸状态进入未抽吸状态的信息;
S162:触发第五计时且对第二计数进行锁定;
S163:判断第五计时是否大于或等于第五预设时长;
S164:若判断结果为是,则解除对第二计数的锁定。
本实施例还对两次抽吸状态(包含两次重吸)之间的间隔时长进行规定,防止抽吸状态时气流抖动、串扰等而导致误第二计数。具体而言,在本实施例中,童锁控制电路200包括第五计时单元221和第五时长判断单元222,第五计时单元221分别与第一参数判断单元、第三计时计数判断单元214连接,第五时长判断单元222分别与第五计时单元221、第二计数单元215电连接,第二计数单元215还与第一参数判断单元电连接。当第三计时计数判断单元214输出第一计数信号后,第五计时单元221收到第一计数信号后又获取电子烟由抽吸状态进入未抽吸状态的信息,第五计时单元221被触发开始计时,同时第二计数单元215也在接收第一计数信号后又获取电子烟由抽吸状态进入未抽吸状态的信息,第二计数单元215被锁定,也即进入计数锁定状态,第二计数单元215被锁定后即使再接收到第一计数信号也不会进行计数增加,也即在锁定状态第二计数单元215保持原来的计数值,不会增加计数值,只有被解除锁定后处于计数解锁状态第二计数单元215收到第一计数信号才会计数加一。在本实施例中,当第五计时单元221开始第五计时后,第五计时单元221一直在计时(即使由未抽吸状态转为抽吸状态也在计时),第五时长判断单元222判断第五计时单元221的计时时长是否大于或等于第五预设时长,当第五时长判断单元222判断第五计时单元221计时到达第五预设时长,第五计时单元221会停止计时并置零,也即第五计时单元221复位置零,同时,第五时长判断元输出计数解锁信号给第二计数单元215,第二计数单元215被解除对计数的锁定,第二计数单元215进入计数解锁状态,而且第三计时单元212、第三计数单元213、第二计时单元216也复位置零,此后第二计数单元215再次获取第一计数信号,第二计数单元215可以执行计数加一动作,也即第二计数在原来的基础上加一。在此实施例中,当第五计时单元221没有收到第一计数信号,或者第五计时单元221没有获取电子烟由抽吸状态进入未抽吸状态的信息,第五计时单元221也不会触发开始计时。
在本实施例中,在步骤触发进行第二计数之后还包括:判断第一参数信息位于第二预设参数范围内持续的时长是否大于或等于第七预设时长,若判断结果为是,则第二计数、第二计时均复位置零。本实施例中对重吸持续的时长进行判断,若重吸持续的时长大于或等于第七预设时长,则第二计数、第二计时均复位置零,第二计数为0,第二计时停止计时并置零,这样设置可以防止用户比较长时间抽吸后误动作进入童锁锁定状态,符合用户的使用预期。在本实施例中,第七预设时长大于或等于400ms,例如为400ms、450ms、500ms、600ms等。
在本实施例中,电子烟进入童锁锁定状态后,用户没法正常抽吸电子烟,当用户需要使用电子烟时,此时需要对电子烟进行解锁,以下描述电子烟如何进行解锁,以下描述的仅是一种进入童锁解锁状态的方式,本领域的技术人员还可以通过其他常规的方式使电子烟进入童锁解锁状态。另外,在本申请的其他实施例中,解锁方式可以与加锁方式一样,可以参见前面的描述,在此不再赘述。
请结合参阅图21和图22,在本实施例中,童锁控制方法还包括:
S21:接收第一参数信息;
其中,童锁控制电路200包括第四参数判断单元231,第四参数判断单元231用于接收第一参数信息,其中,第四参数判断单元231与第二参数判断单元211可以为不同的判断单元,也可以为同一参数判断单元。
在本实施例中,当处于吹气状态时,气流通道中气压较大,会高于未吸吹状态的气压,也即当前气压值会大于基准气压值,气流传感器140的电容的两个电极的间距相对未吸吹状态时要大,从而当前电容值会比未吸吹状态时小,当前频率值会比未吸吹状态时大,当前计数值会大于基准计数值。
S22:判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;
S23:若判断结果为是,则触发进行第四计时并触发进行第四计数;
其中,第四参数判断单元231在接收到第一参数信息后,第四参数判断单元231判断第一参数信息是否位于第四预设参数范围内,第四预设参数范围为预先计算获得,或者预先存储在第四参数判断单元231中。
当第一参数信息为当前电容值时,此时第四预设参数范围对应为电容值范围,第四预设参数范围的上限值会小于第一预设参数范围对应的下限值,第四预设参数范围的下限值可以不设限,也可以根据需要设限;当第一参数信息为当前频率值或者当前计数值时,此时第四预设参数范围对应为频率值范围或者计数值范围,第四预设参数范围的下限值会大于第一预设参数范围对应的上限值,第四预设参数范围的上限值可以不设限,也可以根据需要设限;当第一参数为当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,此时第四预设参数范围对应为差值范围、比值范围。
其中,童锁控制电路200包括第四计时单元232和第四计数单元233,第四计时单元232与第四参数判断单元231电连接,第四计数单元233与第四参数判断单元231电连接,若第四参数判断单元231的判断结果为是,则第四参数判断单元231输出吹气信号,第四计时单元232被触发开始计时,第四计时单元232从0开始计时,第四计数单元233被触发开始计数,并将此次也进行计数,也即此时第四计数单元233的计数为1;若第四参数判断单元231的判断结果为否,则第四参数判断单元231不会输出吹气信号,第四计时单元232维持原先的状态,第四计数单元233维持原先的状态。在本实施例中,当第四计时单元232被触发开始计时后,第四计时单元232会一直在计时,直到第四计时单元232被复位置零,此后第四计时单元232停止计时。在本实施例中,吹气信号也会输出给童锁控制单元240。
在本实施例中,当第四计时单元232被触发计时、第四计数单元233被触发计数后,当第四参数判断单元231又接收到第一参数信息,并又一次判断第一参数信息位于第四预设参数范围内,则第四计数单元233的第四计数加1,此时第四计数为2,同时,第四计时单元232在持续进行第四计时。
S24:判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
其中,童锁控制电路200还包括第四计时计数判断单元234,第四计时计数判断单元234分别与第四计数单元233、第四计时单元232电连接,当第四计时计数判断单元234判断第四计时单元232的计时时长在第四预设时长内,且第四计数单元233计数大于或等于第四预设数量,第四计时计数判断单元234输出童锁解锁信号。在本实施例中,第四预设时长一般小于或等于5s,例如为1s、1.5s、1.8s、2s、2.3s、2.5s、2.8s、3s、4s、5s等,较佳为2s。在本实施例中,第四预设数量大于或等于2,例如为2、3、4、5、6等,较佳为3,第四预设数量一般小于或等于6次,方便用户操作。
在本实施例中,第四计时计数判断单元234与第四计时单元232、第四计数单元233实时连接,当第四计时计数判断单元234获取第四计数单元233到达第四预设数量且第四计时单元232未到达第四预设时长时,第四计时计数判断单元234输出童锁解锁信号,或者第四计时计数判断单元234等第四计时单元232计时时长到达第四预设时长时才输出童锁解锁信号。在本申请的其他实施例中,第四计时计数判断单元234与第四计时单元232、第四计数单元233连接,当第四计时单元232到达第四预设时长时第四计时单元232输出信号给第四计时计数判断单元234,第四计时计数判断获取此时第四计数单元233的计数,然后判断第四计数是否大于或等于第四预设数量,若大于或等于第四预设数量,则输出童锁解锁信号,若小于第四预设数量,则维持原来的信号输出。
S24:若判断结果为是,则控制电子烟进入解锁状态,其中,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管M1持续导通或者间断导通。
其中,若第四计时计数判断单元234判断的结果为是,也即在第四预设时长内计数的数量大于或等于第四预设数量,则第四计时计数判断单元234输出童锁解锁信号给童锁控制单元240,童锁控制单元240控制电子烟进入解锁状态,在解锁状态电子烟处于抽吸状态时功率MOS管M1持续导通或者间断导通,也即此时功率MOS管M1受用户是否抽吸的控制, 在本实施例中电子烟处于抽吸状态时童锁控制单元240持续输出低电平信号或者间断输出低电平信号给功率MOS管M1,功率MOS管M1持续导通或者间断导通,当功率MOS管M1导通时,发热元件130加热以雾化烟油,从而雾化后的烟油可供被用户抽吸。
在本实施例中,通过对吹气进行计时和计数实现解锁,在没有增加蓝牙/NFC等设计以及机械结构的同时,实现了有效的解锁效果,从而缩减了电子烟的进行解锁的硬件成本,解决现有技术中电子烟解锁成本较高的技术问题。而且,本申请的解锁方式不容易被儿童察觉,电子烟在锁定后不容易被儿童解锁,有利于提升电子烟的安全性。另外,在本申请的其他实施例中,同判断抽吸状态一样,也可以通过当前计数值来判断是否进行吹气。
在本实施例中,童锁控制方法还包括:再次获取第一参数信息位于第四预设参数范围内的信息,第四计数加1。
具体而言,在第四计数单元233触发第四计数和第四计时单元232触发第四计时后,第四计时单元232和第四计数单元233未停止工作,第四计时单元232、第四计数单元233再次(再次是指第四计数单元233中第四计数的数值至少为1)获取第一参数信息位于第四预设参数范围内的信息,则第四计数单元233在原来计数的基础上加1,例如原来第四计数单元233的计数值为1,再次获取第一参数信息位于第四预设参数范围内的信息,也即接收到由未吸吹状态转为吹气状态的信息,则第四计数单元233的计数加1,也即计数值变为2;第四计时单元232继续工作持续计时,也即第四计时单元232在触发计时后,只要不收到停止计时或者复位的信号,则第四计时单元232一直在计时。
在本实施例中,童锁控制方法还包括:若第四计时单元232的计时时长达到第四预设时长,则第四计数置零,且第四计时单元232复位置零。
其中,不论第四计时计数判断单元234的判断结果为是还是否,只要第四计时单元232的计时时长达到第四预设时长,则第四计时单元232复位置零,同时第四计时单元232发送信号给第四计数单元233,第四计数单元233进行置零,也即此时第四计时单元232停止计时,第四计数单元233停止计数,而且,计时时长置零,第四计数均置零,第四计时单元232、第四计数单元233恢复初始状态,方便后面的检测。
在本实施例中,童锁控制方法还包括:若第四计时单元232的计时时长小于第四预设时长且第四计数达到第四预设参数范围,则第四计数置零,且第四计时单元232复位置零。
其中,若第四计时计数判断单元234获取第四计数单元233的第四计数达到第四预设参数范围,且第四计时单元232计时时长小于第四预设时长,则第四计时计数判断单元234输出信号给第四计时单元232、第四计数单元233,第四计时单元232复位置零,第四计数单元233进行置零,该信号可以与童锁解锁信号一样,也可以是不同的信号。
对应于上面实施例的电子烟的童锁控制方法,图22示出了本申请实施例提供的电子烟的童锁控制电路200的模块图,为了便于说明,仅示出了与本申请实施例相关的部分。
请结合参照图16和图22,童锁控制电路200包括:
状态检测单元150,其用于与气流传感器140电连接,其还用于输出第一参数信息;
第二参数判断单元211,其用于接收第一参数信息,并用于判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
第二计数单元215,其用于若第二参数判断单元211的判断结果为是,则触发进行第二计数;
第二计时单元216,其用于若第二参数判断单元211的判断结果为是,则触发进行第二计时;
第二计时计数判断单元217,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
童锁控制单元240,其用于若第二计时计数判断单元217的判断结果均为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管M1保持断开截止。
在本实施例中,第一参数信息包括当前电容值、当前频率值、当前计数值、当前电容值 与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值。
在本实施例中,当所述第一参数信息为当前电容值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,所述第二预设参数范围的下限值大于第一预设参数范围的下限值;或者,当所述第一参数信息为当前频率值或者当前频率值与基准频率值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值;或者,当所述第一参数信息为当前计数值或者当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值。
在本实施例中,童锁控制电路200包括第三计时单元212、第三计数单元213和第三计时计数判断单元214,其中,第三计时单元212、第三计数单元213分别与第二参数判断单元211连接,当第二参数判断单元211输出参数有效信号后,第三计时单元212被触发进行第三计时,第三计数单元213被触发进行第三计数,第三计时计数判断单元214均与第三计时单元212、第三计数单元213连接,第三计时计数判断单元214用于判断在第三预设时长内第三计数是否大于或等于第三预设数量,若第三计时计数判断单元214的判断结果为是,则第二计时单元216被触发进行第二计时,第二计数单元215被触发进行第二计数。在本实施例中,在第三预设时长期间电子烟处于抽吸状态。
在本实施例中,状态检测单元150包括第一参数生成单元、第一参数判断单元,第一参数生成单元与第一参数判断单元连接,第一参数生成单元生成第一参数信息后,第一参数判断单元用于接收第一参数信息并判断第一参数信息是否位于第一预设参数范围内,若第一参数判断单元的判断结果为是,则第一参数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信息。
在本实施例中,童锁控制电路200还包括第五计时单元221、第五时长判断单元222,其中,第五计时单元221用于获取电子烟由抽吸状态进入未抽吸状态的信息且获取进行第二计数的信息,第五计时单元221开始第五计时,第二计数单元215进行第二计数且用于获取电子烟由抽吸状态进入未抽吸状态的信息,第二计数单元215被锁定,第五时长判断单元222用于判断第五计时单元221的第五计时是否大于或等于第五预设时长,若第五时长判断单元222的判断结果为是,则第五时长判断单元222用于输出计数解锁信号给第二计数单元215,第二计数单元215解除锁定。
在本实施例中,第二参数判断单元211与状态检测单元150连接,状态检测单元150与电容式气流传感器140电连接,第二参数判断单元211用于接收状态检测单元150输出的第一参数信息。
在本实施例中,童锁控制电路200包括锁定单元,锁定单元包括第二计时单元216、第二计数单元215、第二计时计数判断单元217、第二参数判断单元211等。
在本实施例中,童锁控制电路200包括解锁单元,解锁单元包括第四参数判断单元231、第四计时单元232、第四计数单元233、第四计时计数判断单元234,其中,第四参数判断单元231用于接收第一参数信息,并判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;若第四参数判断单元231的判断结果为是,则第四计时单元232被触发进行第四计时,第四计数单元233被触发进行第四计数,第四计时计数判断单元234用于判断在第四预设时长内第四计数是否大于或等于第四预设数量,若第四计时计数判断单元234的判断结果为是,则输出童锁解锁信号给童锁控制单元240,童锁控制单元240控制电子烟进入解锁状态,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管M1持续导通或者间断导通。
在本实施例中,第四计数单元233还用于再次获取第一参数信息位于第四预设参数范围内的信息,第四计数加1。
在本实施例中,第四计时单元232还用于若计时时长达到第四预设时长,则第四计数置零,且第四计时单元232复位置零。在本申请的其他实施例中,第四计时计数判断单元234还用于若计时时长小于第四预设时长且第四计数达到第四预设数量,则第四计数置零,且第四计时单元232复位置零。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图23为本申请一实施例提供的童锁控制装置400的示意图。如图23所示,该实施例的童锁控制装置400包括:至少一个处理器420(图23中仅示出一个)、存储器410以及存储在所述存储器410中并可在所述处理器420上运行的计算机程序,所述处理器420执行所述计算机程序时实现上述童锁控制方法实施例中的步骤。本领域技术人员可以理解,图23仅仅是童锁控制装置400的举例,并不构成对童锁控制装置400的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。所称处理器420可以是中央处理单元(Central Processing Unit,CPU),该处理器420还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-PrograMable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器410在一些实施例中可以是童锁控制装置400的内部存储单元,例如童锁控制装置400的硬盘或内存。所述存储器410在另一些实施例中也可以是童锁控制装置400的外部存储设备,例如童锁控制装置400上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器410还可以既包括童锁控制装置400的内部存储单元也包括外部存储设备。所述存储器410用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器410还可以用于暂时地存储已经输出或者将要输出的数据。童锁控制装置400例如为电子烟。
本申请实施例还提供了一种存储介质,存储介质存储有计算机程序,计算机程序被处理器420执行时可实现上述童锁控制方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端上运行时,使得终端执行时可实现上述童锁控制方法实施例中的步骤。
本申请实施例还提供一种电子烟,请结合参见图16和图22,电子烟包括上述的童锁控制电路200,电子烟还包括电池110、功率MOS管M1和发热元件130,发热元件130和功率MOS管M1串联形成发热支路,发热支路的两端对应与电池110的正、负极电连接;还包括气流传感器140,其中,功率MOS管M1的控制端、气流传感器140均与童锁控制电路200电连接,所述气流传感器140与童锁控制电路200的状态检测单元150电连接。
第四实施例
本申请第四实施例提供一种电子烟,请结合参见图24和图29,电子烟包括电池110、童锁控制电路200、发热元件130、气流传感器140、功率MOS管M1等,童锁控制电路200包括状态检测单元150。童锁控制电路200分别与电池110、气流传感器140、功率MOS管 M1等电连接。在本实施例中,电池110例如为锂电池、镍镉电池、镍氢电池等可充电电池,电池110也可以为不可充电电池;状态检测单元150与气流传感器140电连接,状态检测单元150用于判断电子烟是否被抽吸和/或被吹气,并输出对应信号,状态检测单元150的一个具体实现方式可参见本领域的在先申请,或者为本领域技术人员知晓的其他常规的状态检测单元。在本实施例中气流传感器140为电容式气流传感器140,例如为电容式MEMS传感器或电容式咪头等,气流传感器140位于电子烟的气流通道内,气流传感器140包括电容,状态检测单元150通过电容的电容值等的变化判断电子烟是否处于抽吸状态、吹气状态、未吸吹状态(对应用户未使用时的状态)。童锁控制电路200与功率MOS管M1的控制端电连接,童锁控制电路200用于控制功率MOS管M1是否导通,功率MOS管M1与发热元件130串联形成串联支路,串联支路的一端经由电源供电端BAT与电池110的正极电连接,串联支路的另一端经由电源接地端GND与电池110的负极电连接。在本实施例中以功率MOS管M1为PMOS管为例进行说明,当然,功率MOS管M1也可以为NMOS管。在本实施例中,功率MOS管M1、童锁控制电路200可以位于同一个芯片,该芯片一般称为系统控制芯片。但本申请不限于此,在本申请的其他实施例中,功率MOS管M1、童锁控制电路200可以位于不同的芯片上。在本实施例中,发热元件130例如为发热丝、加热丝、包含发热丝或者加热丝的陶瓷座、或者其他常规的发热元件130。在本实施例中,当童锁控制电路200输出低电平控制功率MOS管M1导通时发热元件130加热以使烟油雾化,当童锁控制电路200输出高电平控制功率MOS管M1断开截止时发热元件130停止加热。
在本实施例中,状态检测单元150与气流传感器140电连接;当用户抽吸电子烟或者向电子烟吹气时,气流传感器140的电容的两个电极片之间气压值相对未吸吹状态(未使用时)会改变,导致两个电极片之间的距离会随之改变,进而引起气流传感器140的电容值改变,状态检测单元150将电容值改变转换为频率值改变、计数值改变,状态检测单元150输出对应的信号,从而电子烟可以判断是否被抽吸处于抽吸状态、被吹气处于吹气状态或者处于未吸吹状态。
为了区分正常抽吸和触发进入锁定状态的抽吸,以降低正常抽吸时被误触发进入锁定状态的概率,本申请的发明人经过大量实验后提出以下方案:对电子烟的抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,气压较小(用户抽吸的吸力较小)的抽吸状态一般对应用户正常的抽吸,气压更小(用户抽吸的吸力较大)的抽吸状态对应用户想要进入锁定状态的抽吸,不管是处于气压较小的抽吸状态,还是处于气压较大的抽吸状态,电子烟均会判断为抽吸状态,本申请通过第一参数信息是否位于第二预设参数范围内判断是否为气压更小的抽吸状态。
具体而言,第一参数信息表征电子烟气流通道内的气压状况,气压状况例如为气压大小、气压的变化状况等,第一参数信息与气流通道内的气压呈对应关系,本实施例设计当第一参数信息位于第二预设参数范围内时代表此时处于气压更小的抽吸状态,当第一参数信息位于第二预设参数范围之外且位于第一预设参数范围之内时代表气压较小的抽吸状态,其中,第二预设参数范围位于第一预设参数范围内,也即只要第一参数信息位于第二预设参数范围内,第一参数信息必然位于第一预设参数范围内,表示此时电子烟处于抽吸状态且是重吸,当第一参数信息位于第一预设参数范围内时,第一参数信息可能位于第二预设参数范围内(重吸),也可能不位于第二预设参数范围内(正常抽吸)。
在本实施例中,第一参数信息包括当前电容值、当前频率值、当前计数值、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值等,或者当前电容值、当前频率值或者当前计数值的变形。当电子烟未被抽吸也未被吹气时,也即电子烟处于未吸吹状态时,此时电容的电极片未变形,此时的电子烟气流通道内的当前气压值为大气压,即为基准气压值,当前电容值即为基准电容值,此时基准电容值是 采集获得或者转换获得,此时对应的当前频率值即为基准频率值,此时预设计数时长内的振荡周期数为当前计数值,也为基准计数值;另外,基准气压值、基准电容值、基准频率值、基准计数值也可以预设。当用户轻吸导致电子烟气流通道内的当前气压值较小时,此时当前气压值小于基准气压值,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时变小,当前电容值会较大,当前电容值与基准电容值的比值会较大,当前频率值会较小,预设计数时长内的振荡周期数会较小,当前计数值会较小,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会较小,对应差值会较大,对应差值与对应基准值的比值会较大;当用户重吸导致电子烟气流通道内的当前气压值更小时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时变更小,当前电容值会更大,当前电容值与基准电容值的比值会更大,当前频率值会更小,预设计数时长内的振荡周期数会更小,当前计数值会更小,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会更小,对应差值会更大,对应差值与对应基准值的比值会更大。当用户吹气导致电子烟气流通道内的当前气压值相对未吹吸状态变大时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时变大,气流传感器140的当前电容值会变小,当前频率值会变大,当前计数值会比基准计数值大。
当气流通道内当前气压值更小时气流传感器140的电容变形更大,电容的两个电极片之间的距离更小,从而其当前电容值会更大,当前电容值与基准电容值的比值会更大,当前计数值会更小,当前频率值会更小,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会更小,对应差值会更大,对应差值与对应基准值的比值会更大;当气流通道内当前气压值较小时气流传感器140的电容变形较大,电容的两个电极片之间的距离较小,从而其电容值会较大,当前电容值与基准电容值的比值会较大,当前计数值会较小,当前频率值会较小,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会较小,对应差值会较大,对应差值与对应基准值的比值会较大。因而当前电容值、当前计数值、当前频率值等均与气流通道内的当前气压值呈比例关系。
由于本申请设计成用户重吸才进入童锁锁定状态,当第一参数信息为当前电容值时,第二预设参数范围对应为电容值范围,第二预设参数范围的下限值要大于第一预设参数范围的下限值,第二预设参数范围的上限值小于或等于第一预设参数范围的上限值,例如第二预设参数范围为(a,A],第一预设参数范围(b,B],其中,a大于b,A小于或等于B,A、a、B、b为正数。当所述第一参数信息为当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,此时第二预设参数范围对应为差值范围、比值范围,第二预设参数范围的下限值大于第一预设参数范围的下限值。另外,在本申请的其他实施例中,第二预设参数范围的上限值不设限,也即当前电容值大于a即落入第二预设参数范围内。当第一参数信息为当前频率值、当前计数值、当前频率值与基准频率值的比值或者当前计数值与基准计数值的比值时,第二预设参数范围对应为频率值范围、计数值范围或者比值范围,第二预设参数范围的上限值要小于第一预设参数范围的上限值,第二预设参数范围的下限值大于或等于第一预设参数范围的下限值,例如第一参数信息为当前计数值时,第二预设参数范围为[m,M),例如M为950,第一预设参数范围为[n,N),例如N为970,其中,M小于N,m大于或等于n,M、m、N、n为正整数。另外,在本申请的其他实施例中,第二预设参数范围的下限值不设限,也即当前频率值或者当前计数值小于M即落入第二预设参数范围内。
进一步的,当电子烟处于抽吸状态时,为了判断第一参数信息是否位于第二预设参数范围内,本实施例童锁控制电路200还包括第二参数判断单元211,第二参数判断单元211与状态检测单元150连接,状态检测单元150知道第一参数信息,状态检测单元150本身就知道当前电容值、当前频率值或者当前计数值,从而状态检测单元150输出第一参数信息给第二参数判断单元211,第二参数判断单元211用于接收第一参数信息并判断第一参数信息是 否位于第二预设参数范围内,进而可以区分用户是正常抽吸还是进入锁定状态的抽吸,经过这样区分,可以降低用户正常抽吸时误判断进入童锁锁定状态的概率。
请结合参见图24、图25和图29,本申请实施例提供一种电子烟的童锁控制方法,包括以下步骤:
S11:接收第一参数信息,其中,所述第一参数信息用于表征电子烟气流通道内的气压大小
其中,第二参数判断单元211与状态检测单元150连接,状态检测单元150产生第一参数信息,并输出第一参数信息,第二参数判断单元211接收第一参数信息。
在本实施例中,状态检测单元150本身可以识别电子烟是否处于抽吸状态或者吹气状态,当用户抽吸电子烟时,状态检测单元150通过气流传感器140识别电子烟处于抽吸状态,此时状态检测单元150判断第一参数信息位于第一预设参数范围内,状态检测单元150输出抽吸信号,当用户吹气时,状态检测单元150通过气流传感器140识别电子烟处于吹气状态,此时状态检测单元150输出吹气信号,当电子烟既不被抽吸,也不被吹气时,此时状态检测单元150识别电子烟处于未吸吹状态,状态检测单元150输出未吸吹信号。童锁控制电路200接收状态检测单元150的输出信号,从而获取电子烟的状态。当状态检测单元150由输出未吸吹信号转为输出抽吸信号或者吹气信号时,童锁控制电路200获取电子烟由未吸吹状态转为抽吸状态或者吹气状态。在本实施例中,未抽吸状态包括未吸吹状态、吹气状态。
S12:判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
S13:若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
其中,第二参数判断单元211在接收到第一参数信息后,第二参数判断单元211判断第一参数信息是否位于第二预设参数范围内,第二预设参数范围为预先计算获得,或者预先存储在第二参数判断单元211中。
其中,童锁控制电路200还包括童锁控制单元240,童锁控制单元240与第二参数判断单元211电连接。若第二参数判断单元211的判断结果为是,也即第一参数信息位于第二预设参数范围内,则第二参数判断单元211输出童锁锁定信号给童锁控制单元240,童锁控制单元240控制电子烟进入锁定状态,在锁定状态功率MOS管M保持断开,在本实施例中童锁控制单元240持续输出高电平信号给功率MOS管M,功率MOS管M保持截止。在本实施例中,童锁控制单元240包括触发器和开关控制单元,触发器用于对童锁锁定信号、后续的童锁解锁信号进行保持,触发器例如为SR触发器等,开关控制单元分别与触发器、状态检测单元150电连接,开关控制单元例如为与门、与非门、或门、或非门等,例如,开关控制单元包括与非门,与非门的两个输入端分别与触发器的输出端、状态检测单元150的一个输出端连接,童锁锁定信号使触发器的输出保持为低电平,从而经过与非门后保持为高电平(此时状态检测单元150输出抽吸信号,抽吸信号例如为高电平),功率MOS管M保持截止;童锁解锁信号使触发器的输出保持为高电平,从而与非门的输出受状态检测单元150的输出影响,当状态检测单元150判断用户抽吸电子烟时,状态检测单元150输出抽吸信号给与非门,抽吸信号为高电平,此时开关控制单元控制功率MOS管M持续导通或者间断导通(例如PWM、PFM控制方式)。若第二参数判断单元211的判断结果为否,也即第一参数信息不位于第二预设参数范围内,则维持电子烟原先的童锁状态。
在本实施例中,电子烟的童锁状态分为锁定状态和解锁状态,其中,锁定状态即对应童锁保护功能,当电子烟处于锁定状态时用户抽吸电子烟,童锁控制单元240继续控制功率MOS管M1保持断开截止,从而发热元件130不会加热,进而烟油不会雾化以供用户抽吸,也即即使用户抽吸电子烟也不会出现烟雾。解锁状态对应解除童锁保护功能,此时烟油是否雾化受是否抽吸的控制,当用户抽吸电子烟时,童锁控制单元240控制功率MOS管M1持续导通或者间断导通,间断导通是指童锁控制单元240通过PWM方式、PFM方式输出方波信号,通过调整方波信号的占空比以用于控制输出功率、输出电压。
在本实施例中,通过接收第一参数信息;判断第一参数信息是否位于第二预设参数范围内,若判断结果为是,则控制电子烟进入锁定状态。本申请实施例通过第一参数信息、第二预设参数范围对抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,将第一参数信息位于第二预设参数范围的抽吸次数分辨为气压更小的抽吸状态(重吸),并使电子烟进入锁定状态,通过这样设置,电子烟可以进一步分辨用户是正常抽吸电子烟,还是想要通过抽吸电子烟触发进入锁定状态,电子烟不容易混淆两者,可以降低用户正常抽吸电子烟时被误触发进入锁定状态的几率,可以减少用户的使用困扰。而且,通过重吸实现电子烟进入锁定状态,本实施例的电子烟在锁定保护后,可以防止儿童拿起电子烟模仿成人抽吸动作导致电子烟产品开始雾化工作,提升电子烟的使用安全性。再有,本实施例利用现有的状态检测单元150、气流传感器140就可以得到第一参数信息,不需要对电子烟进行大改,不需要增加硬件成本或者增加的硬件成本很小,从而缩减了电子烟进行锁定保护的硬件成本,解决现有技术中电子烟锁定成本较高的技术问题。
为了将重吸与一般的抽吸进一步区隔开,防止电子烟被轻易触发进入童锁锁定状态,降低误触发的概率,本申请实施例设置用户抽吸电子烟的吸力比较大,也即电子烟气流通道内的当前气压值要比较低,在本实施例中,当第一参数信息为当前频率值或者当前计数值时,第二预设参数范围的上限值与第一预设参数范围的上限值的比值小于或等于85%,较佳小于或等于70%,例如第一预设参数范围的上限值为970(以计数值为例进行说明),基准计数值为1000时,此时第二预设参数范围的上限值小于或等于824,很明显比基准计数值小比较多,用户抽吸的吸力比较重才能到达这个范围,因此可以降低误触发的概率;当第一参数信息为当前电容值时,类似的,第二预设参数范围的下限值与第一预设参数范围的下限值的比值大于或等于115%,较佳大于或等于130%。在本申请的其他实施例中,当第一参数信息为当前频率值与基准频率值的比值、当前计数值与基准计数值的比值时,第二预设参数范围的上限值小于或等于85%。在本申请的其他实施例中,当所述第一参数信息为当前电容值与基准电容值的比值时,所述第二预设参数范围的下限值大于或等于115%。在本申请的其他实施例中,当所述第一参数信息为当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,所述第二预设参数范围的下限值大于或等于15%。
请参见图29,在本实施例中,当第一参数信息为当前电容值、当前频率值或者当前计数值时,步骤接收第一参数信息具体包括:
接收状态检测单元150输出的第一参数信息。
其中,状态检测单元150本身可以得到第一参数信息,第二参数判断单元211通过状态检测单元150接收第一参数信息。本实施例充分利用现有电子烟中的气流传感器140、状态检测单元150,只需要增设第二参数判断单元211,第二参数判断单元211所要实现的功能既可以通过软体实现,也可以通过硬件实现,也可以通过软体和硬件结合实现,从而不需要增加新的硬件或者增加新的硬件较少,可以实现不增加成本或者增加少量成本就可以极大的降低电子烟误进入锁定状态的问题,提升了用户的使用便利性。
另外,在本申请另一实施例中,第一参数信息还可以为当前气压值、当前气压值与基准气压值的比值、当前气压值与基准气压值的差值或者当前气压值相对基准气压值的差值与基准气压值的比值,此时,第二预设参数范围对应为气压值范围、比值范围、差值范围。当第一参数信息为当前气压值或者当前气压值与基准气压值的比值时,此时第二预设参数范围的上限值小于第一预设参数范围的上限值,例如第一参数信息为当前气压值,此时第二预设参数范围为(a,A],第二预设参数范围为(b,B],例如基准气压值为环境大气压,例如环境大气压为1个标准大气压,其中,A小于B,B小于环境大气压,a大于或等于b,A、a、B、b为正数,一般的,A比环境大气压小500pa,B比环境大气压小300pa,较佳A比环境大气压小500pa、600pa、800pa、1000pa、2000pa、3000pa,或者更小。另外,在本申请的其他实施例中,第二预设参数范围的下限值不设限,也即当当前气压值小于A即落入第二预设参数范 围内。另外,在本申请的其他实施例中,当第一参数信息为当前气压值与基准气压值的差值或者当前气压值相对基准气压值的差值与基准气压值的比值时,此时第二预设参数范围的下限值大于第一预设参数范围的下限值,第二预设参数范围的上限值小于或等于第一预设参数范围的上限值。类似的,第二预设参数范围的上限值与第一预设参数范围的上限值的比值小于或等于85%,较佳小于或等于70%、60%。在本申请的其他实施例中,当所述第一参数信息为当前气压值与基准气压值的比值时,所述第二预设参数范围的上限值小于或等于85%。在本申请的其他实施例中,当所述第一参数信息为当前气压值相对基准气压值的差值与基准气压值的比值时,所述第二预设参数范围的下限值大于或等于15%。在此实施例中,请参照图26,步骤接收第一参数信息具体包括:
S111:获取当前电容值、当前频率值或者当前计数值;
S112:根据当前电容值查找预存的电容值-气压值表、根据当前频率值查找预存的频率值-气压值表或者根据当前计数值查找预存的计数值-气压值表;
S113:获得电子烟气流通道内的当前气压值并输出;
S114:接收第一参数信息。
在此实施例中,为了获得电子烟的气流通道内的当前气压值,童锁控制电路200还包括气压获取单元,气压获取单元与状态检测单元150连接,第二参数判断单元211与气压获取单元连接,气压获取单元通过状态检测单元150、气流传感器140用于获取电子烟处于抽吸状态时气流通道内的当前气压值,第二参数判断单元211用于判断当前气压值是否位于第二预设参数范围内。具体说来,当吹气导致气流通道内气压较大时气流传感器140的电容的两个电极片之间的距离会比较大,从而其电容值会比较小,当抽吸导致气流通道内气压较小时气流传感器140电容的两个电极片之间距离比较小,从而其电容值相对会比较大,因而电容值与气流通道内的气压呈比例关系。在本申请的其他实施例中,电容值与频率值、计数值成反比例关系,从而频率值、计数值与气压值也呈比例关系。从而通过获得电容值、频率值或者计数值就可以对应获得气流通道内的当前气压值,两者的对应关系可以通过公式计算获得当前电压值,或者通过预先预存对应表格,其后查找对应表格获得当前电压信息。另外,在本申请的其他实施例中,当前气压值也可以直接通过传感器侦测获得。
在此实施例中,气压获取单元预存有电容值-气压值表、频率值-气压值表或者计数值-气压值表,其中,电容值-气压值表存储电容值与气压值的对应关系,频率值-气压值表存储频率值与气压值的对应关系,计数值-气压值表存储预设计数时长的计数值与气压值的对应关系,从而当获得当前电容值、当前频率值、当前计数值时通过查表就可以对应获得当前气压值。在本实施例中,气压获取单元、第二参数判断单元211较佳可以通过软体实现,也可以通过硬件实现。另外,在本申请的其他实施例中,气压获取单元可以不与状态检测单元150电连接,此时气压获取单元为气压传感器,气压传感器至少部分设置在电子烟的气流通道内,气压获取单元可以直接获得当前气压值,也即可以获得第一参数信息。
为了判断电子烟是否处于抽吸状态,请结合参见图27和图29,在本实施例中,童锁控制方法还包括:
S171:接收第一参数信息;
S172:判断第一参数信息是否位于第一预设参数范围内;
S173:若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
其中,当第一参数信息为当前电容值、当前频率值或者当前计数值,状态检测单元150包括第一参数生成单元、第一参数判断单元,第一参数生成单元分别与第一参数判断单元、第二参数判断单元211连接,第一参数生成单元生成第一参数信息后,第一参数判断单元接收第一参数信息,第一参数判断单元判断第一参数信息是否位于第一预设参数范围内,若判断结果为是,则第一参数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信号,若判断结果为否,则第一参数判断单元维持原来的信号输出,例如输出未吸吹信号、吹气信号。另外,在本申请的其他实施例中,当第一参数信息为当前气压值时,童锁控 制电路包括第一参数判断单元,第一参数判断单元与气压获取单元连接,气压获取单元可以获得当前气压值,第一参数判断单元判断第一参数信息是否位于第一预设参数范围内,若判断结果为是,则第一参数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信号,若判断结果为否,则第一参数判断单元维持原来的信号输出,例如输出未吸吹信号、吹气信号。进一步的,还可以要求连续多次判断为是,才输出抽吸信号,这样有利于降低气流串扰误触发的几率。在本申请中,第一参数判断单元、第二参数判断单元211可以为同一个参数判断单元,也可以为不同的参数判断单元。
在本实施例中,为了降低电子烟处于未抽吸状态时的功耗,步骤接收第一参数信息具体包括:
获取电子烟由未抽吸状态转为抽吸状态的信息;
触发接收第一参数信息。
其中,第二参数判断单元211在未收到抽吸信号前不工作,当第二参数判断单元211在接收到抽吸信号后,第二参数判断单元211被触发开始工作,第二参数判断单元211接收第一参数信息。这样设置,有利于降低电子烟的功耗。
在本实施例中,电子烟进入童锁锁定状态后,用户没法正常抽吸电子烟,当用户需要使用电子烟时,此时需要对电子烟进行解锁,以下描述电子烟如何进行解锁,以下描述的仅是一种进入童锁解锁状态的方式,本领域的技术人员还可以通过其他常规的方式使电子烟进入童锁解锁状态。另外,在本申请的其他实施例中,解锁方式可以与加锁方式一样,可以参见前面的描述,在此不再赘述。
请结合参阅图28和图29,在本实施例中,童锁控制方法还包括:
S21:接收第一参数信息;
其中,童锁控制电路200包括第四参数判断单元231,第四参数判断单元231用于接收第一参数信息,其中,第四参数判断单元231与第二参数判断单元211可以为不同的判断单元,也可以为同一参数判断单元。
在本实施例中,当处于吹气状态时,气流通道中气压较大,会高于未吸吹状态的气压,也即当前气压值会大于基准气压值,气流传感器140的电容的两个电极的间距相对未吸吹状态时要大,从而当前电容值会比未吸吹状态时小,当前频率值会比未吸吹状态时大,当前计数值会大于基准计数值。
S22:判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;
S23:若判断结果为是,则触发进行第四计时并触发进行第四计数;
其中,第四参数判断单元231在接收到第一参数信息后,第四参数判断单元231判断第一参数信息是否位于第四预设参数范围内,第四预设参数范围为预先计算获得,或者预先存储在第四参数判断单元231中。
当第一参数信息为当前电容值、当前电容值与基准电容值的比值时,此时第四预设参数范围对应为电容值范围、比值范围,第四预设参数范围的上限值会小于第一预设参数范围对应的下限值,第四预设参数范围的下限值可以不设限,也可以根据需要设限;当第一参数信息为当前气压值、当前频率值、当前计数值、当前气压值与基准气压值的比值、当前频率值与基准频率值的比值或者当前计数值与基准计数值的比值时,此时第四预设参数范围对应为气压值值范围、频率值范围、计数值范围或者比值范围,第四预设参数范围的下限值会大于第一预设参数范围对应的上限值,第四预设参数范围的上限值可以不设限,也可以根据需要设限。当第一参数信息为当前气压值与基准气压值的差值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前气压值相对基准气压值的差值与基准气压值的比值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,此时第四预设参数范围与第一预设参数范围的大小关系可以不做限定,两者范围可以相同,也可以不同。
其中,童锁控制电路200包括第四计时单元232和第四计数单元233,第四计时单元232与第四参数判断单元231电连接,第四计数单元233与第四参数判断单元231电连接,若第四参数判断单元231的判断结果为是,则第四参数判断单元231输出吹气信号,第四计时单元232被触发开始计时,第四计时单元232从0开始计时,第四计数单元233被触发开始计数,并将此次也进行计数,也即此时第四计数单元233的计数为1;若第四参数判断单元231的判断结果为否,则第四参数判断单元231不会输出吹气信号,第四计时单元232维持原先的状态,第四计数单元233维持原先的状态。在本实施例中,当第四计时单元232被触发开始计时后,第四计时单元232会一直在计时,直到第四计时单元232被复位置零,此后第四计时单元232停止计时。在本实施例中,吹气信号也会输出给童锁控制单元240。
在本实施例中,当第四计时单元232被触发计时、第四计数单元233被触发计数后,当第四参数判断单元231又接收到第一参数信息,并又一次判断第一参数信息位于第四预设参数范围内,则第四计数单元233的第四计数加1,此时第四计数为2,同时,第四计时单元232在持续进行第四计时。
S24:判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
其中,童锁控制电路200还包括第四计时计数判断单元234,第四计时计数判断单元234分别与第四计数单元233、第四计时单元232电连接,当第四计时计数判断单元234判断第四计时单元232的计时时长在第四预设时长内,且第四计数单元233计数大于或等于第四预设数量,第四计时计数判断单元234输出童锁解锁信号。在本实施例中,第四预设时长一般小于或等于5s,例如为1s、1.5s、1.8s、2s、2.3s、2.5s、2.8s、3s、4s、5s等,较佳为2s。在本实施例中,第四预设数量大于或等于2,例如为2、3、4、5、6等,较佳为3,第四预设数量一般小于或等于6次,方便用户操作。
在本实施例中,第四计时计数判断单元234与第四计时单元232、第四计数单元233实时连接,当第四计时计数判断单元234获取第四计数单元233到达第四预设数量且第四计时单元232未到达第四预设时长时,第四计时计数判断单元234输出童锁解锁信号,或者第四计时计数判断单元234等第四计时单元232计时时长到达第四预设时长时才输出童锁解锁信号。在本申请的其他实施例中,第四计时计数判断单元234与第四计时单元232、第四计数单元233连接,当第四计时单元232到达第四预设时长时第四计时单元232输出信号给第四计时计数判断单元234,第四计时计数判断获取此时第四计数单元233的计数,然后判断第四计数是否大于或等于第四预设数量,若大于或等于第四预设数量,则输出童锁解锁信号,若小于第四预设数量,则维持原来的信号输出。
S24:若判断结果为是,则控制电子烟进入解锁状态,其中,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管M1持续导通或者间断导通。
其中,若第四计时计数判断单元234判断的结果为是,也即在第四预设时长内计数的数量大于或等于第四预设数量,则第四计时计数判断单元234输出童锁解锁信号给童锁控制单元240,童锁控制单元240控制电子烟进入解锁状态,在解锁状态电子烟处于抽吸状态时功率MOS管M1持续导通或者间断导通,也即此时功率MOS管M1受用户是否抽吸的控制,在本实施例中电子烟处于抽吸状态时童锁控制单元240持续输出低电平信号或者间断输出低电平信号给功率MOS管M1,功率MOS管M1持续导通或者间断导通,当功率MOS管M1导通时,发热元件130加热以雾化烟油,从而雾化后的烟油可供被用户抽吸。
在本实施例中,通过对吹气进行计时和计数实现解锁,在没有增加蓝牙/NFC等设计以及机械结构的同时,实现了有效的解锁效果,从而缩减了电子烟的进行解锁的硬件成本,解决现有技术中电子烟解锁成本较高的技术问题。而且,本申请的解锁方式不容易被儿童察觉,电子烟在锁定后不容易被儿童解锁,有利于提升电子烟的安全性。另外,在本申请的其他实施例中,同判断抽吸状态一样,也可以通过当前计数值来判断是否进行吹气。
在本实施例中,童锁控制方法还包括:再次获取第一参数信息位于第四预设参数范围内的信息,第四计数加1。
具体而言,在第四计数单元233触发第四计数和第四计时单元232触发第四计时后,第四计时单元232和第四计数单元233未停止工作,第四计时单元232、第四计数单元233再次(再次是指第四计数单元233中第四计数的数值至少为1)获取第一参数信息位于第四预设参数范围内的信息,则第四计数单元233在原来计数的基础上加1,例如原来第四计数单元233的计数值为1,再次获取第一参数信息位于第四预设参数范围内的信息,也即接收到由未吸吹状态转为吹气状态的信息,则第四计数单元233的计数加1,也即计数值变为2;第四计时单元232继续工作持续计时,也即第四计时单元232在触发计时后,只要不收到停止计时或者复位的信号,则第四计时单元232一直在计时。
在本实施例中,童锁控制方法还包括:若第四计时单元232的计时时长达到第四预设时长,则第四计数置零,且第四计时单元232复位置零。
其中,不论第四计时计数判断单元234的判断结果为是还是否,只要第四计时单元232的计时时长达到第四预设时长,则第四计时单元232复位置零,同时第四计时单元232发送信号给第四计数单元233,第四计数单元233进行置零,也即此时第四计时单元232停止计时,第四计数单元233停止计数,而且,计时时长置零,第四计数均置零,第四计时单元232、第四计数单元233恢复初始状态,方便后面的检测。
在本实施例中,童锁控制方法还包括:若第四计时单元232的计时时长小于第四预设时长且第四计数达到第四预设参数范围,则第四计数置零,且第四计时单元232复位置零。
其中,若第四计时计数判断单元234获取第四计数单元233的第四计数达到第四预设参数范围,且第四计时单元232计时时长小于第四预设时长,则第四计时计数判断单元234输出信号给第四计时单元232、第四计数单元233,第四计时单元232复位置零,第四计数单元233进行置零,该信号可以与童锁解锁信号一样,也可以是不同的信号。
对应于上面实施例的电子烟的童锁控制方法,图29示出了本申请实施例提供的电子烟的童锁控制电路200的模块图,为了便于说明,仅示出了与本申请实施例相关的部分。
请结合参照图24和图29,童锁控制电路200包括:
第二参数判断单元211,其用于接收第一参数信息,并用于判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
童锁控制单元240,其用于若第二参数判断单元211的判断结果均为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管M1保持断开截止。
在本实施例中,第一参数信息包括当前气压值、当前电容值、当前频率值、当前计数值、当前气压值与基准气压值的比值、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前气压值与基准气压值的差值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前气压值相对基准气压值的差值与基准气压值的比值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值。
在本实施例中,当所述第一参数信息为当前气压值、当前频率值、当前计数值、当前气压值与基准气压值的比值、当前频率值与基准频率值的比值或者当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值;或者,当所述第一参数信息为当前电容值、当前电容值与基准电容值的比值、当前气压值与基准气压值的差值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前气压值相对基准气压值的差值与基准气压值的比值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,所述第二预设参数范围的下限值大于第一预设参数范围的下限值。
在本实施例中,当所述第一参数信息为当前气压值、当前频率值或者当前计数值时,所述第二预设参数范围的上限值与第一预设参数范围的上限值的比值小于或等于85%;或者,当所述第一参数信息为当前电容值时,所述第二预设参数范围的下限值与第一预设参数范围的下限值的比值大于或等于115%;或者,当所述第一参数信息为当前气压值与基准气压值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于或等于85%;或者,当所述第一参数信息为当前电容值与基准电容值的比值时,所述第二预设参数范围的下限值大于或等于115%;或者,当所述第一参数信息为当前气压值相对基准气压值的差值与基准气压值的比值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,所述第二预设参数范围的下限值大于或等于15%。
在本实施例中,当所述第一参数信息为当前气压值时,童锁控制电路200包括气压获取单元241,气压获取单元用于获取当前电容值、当前频率值或者当前计数值,且还用于根据当前电容值查找预存的电容值-气压值表、根据当前频率值查找预存的频率值-气压值表或者根据当前计数值查找预存的计数值-气压值表;气压获取单元用于获得电子烟气流通道内的当前气压值并输出,第二参数判断单元接收第一参数信息。
在本实施例中,当第一参数信息为当前电容值、当前频率值或者当前计数值时,状态检测单元150包括第一参数生成单元、第一参数判断单元,第一参数生成单元与第一参数判断单元连接,第一参数生成单元生成第一参数信息后,第一参数判断单元用于接收第一参数信息并判断第一参数信息是否位于第一预设参数范围内,若第一参数判断单元的判断结果为是,则第一参数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信息;当第一参数信息为当前气压值时,童锁控制电路包括第一参数判断单元,气压获取单元与第一参数判断单元连接,气压获取单元生成第一参数信息后,第一参数判断单元用于接收第一参数信息并判断第一参数信息是否位于第一预设参数范围内,若第一参数判断单元的判断结果为是,则第一参数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信息。
在本实施例中,童锁控制电路200包括锁定单元,锁定单元包括第二参数判断单元211等。
在本实施例中,童锁控制电路200包括解锁单元,解锁单元包括第四参数判断单元231、第四计时单元232、第四计数单元233、第四计时计数判断单元234,其中,第四参数判断单元231用于接收第一参数信息,并判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;若第四参数判断单元231的判断结果为是,则第四计时单元232被触发进行第四计时,第四计数单元233被触发进行第四计数,第四计时计数判断单元234用于判断在第四预设时长内第四计数是否大于或等于第四预设数量,若第四计时计数判断单元234的判断结果为是,则输出童锁解锁信号给童锁控制单元240,童锁控制单元240控制电子烟进入解锁状态,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管M1持续导通或者间断导通。
在本实施例中,第四计数单元233还用于再次获取第一参数信息位于第四预设参数范围内的信息,第四计数加1。
在本实施例中,第四计时单元232还用于若计时时长达到第四预设时长,则第四计数置零,且第四计时单元232复位置零。在本申请的其他实施例中,第四计时计数判断单元234还用于若计时时长小于第四预设时长且第四计数达到第四预设数量,则第四计数置零,且第四计时单元232复位置零。
在本实施例中,所述童锁控制电路位于同一个芯片上;和/或,所述童锁控制电路还包括状态检测单元150,其用于与气流传感器140电连接,其还用于输出第一参数信息;和/或,所述童锁控制电路还包括状态检测单元150和气压获取单元,所述状态检测单元用于与气流传感器140电连接,所述状态检测单元150还用于与气压获取单元连接,所述气压获取单元 用于输出第一参数信息。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图30为本申请一实施例提供的童锁控制装置400的示意图。如图30所示,该实施例的童锁控制装置400包括:至少一个处理器420(图30中仅示出一个)、存储器410以及存储在所述存储器410中并可在所述处理器420上运行的计算机程序,所述处理器420执行所述计算机程序时实现上述童锁控制方法实施例中的步骤。本领域技术人员可以理解,图30仅仅是童锁控制装置400的举例,并不构成对童锁控制装置400的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。所称处理器420可以是中央处理单元(Central Processing Unit,CPU),该处理器420还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-PrograMable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器410在一些实施例中可以是童锁控制装置400的内部存储单元,例如童锁控制装置400的硬盘或内存。所述存储器410在另一些实施例中也可以是童锁控制装置400的外部存储设备,例如童锁控制装置400上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器410还可以既包括童锁控制装置400的内部存储单元也包括外部存储设备。所述存储器410用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器410还可以用于暂时地存储已经输出或者将要输出的数据。童锁控制装置400例如为电子烟。
本申请实施例还提供了一种存储介质,存储介质存储有计算机程序,计算机程序被处理器420执行时可实现上述童锁控制方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端上运行时,使得终端执行时可实现上述童锁控制方法实施例中的步骤。
本申请实施例还提供一种电子烟,请结合参见图24和图29,电子烟包括上述的童锁控制电路200,电子烟还包括电池110、功率MOS管M1和发热元件130,发热元件130和功率MOS管M1串联形成发热支路,发热支路的两端对应与电池110的正、负极电连接;功率MOS管M1的控制端与童锁控制电路200电连接。
第五实施例
本申请第五实施例提供一种电子烟,请结合参见图31和图38,电子烟包括电池110、童锁控制电路200、发热元件130、气流传感器140、功率MOS管M1等,童锁控制电路200包括状态检测单元150。童锁控制电路200分别与电池110、气流传感器140、功率MOS管M1等电连接。在本实施例中,电池110例如为锂电池、镍镉电池、镍氢电池等可充电电池,电池110也可以为不可充电电池;状态检测单元150与气流传感器140电连接,状态检测单元150用于判断电子烟是否被抽吸和/或被吹气,并输出对应信号,状态检测单元150的一个具体实现方式可参见本领域的在先申请,或者为本领域技术人员知晓的其他常规的状态检测单元。在本实施例中气流传感器140为电容式气流传感器140,例如为电容式MEMS传感器或电容式咪头等,气流传感器140位于电子烟的气流通道内,气流传感器140包括电容,状 态检测单元150通过电容的电容值等的变化判断电子烟是否处于抽吸状态、吹气状态、未吸吹状态(对应用户未使用时的状态)。童锁控制电路200与功率MOS管M1的控制端电连接,童锁控制电路200用于控制功率MOS管M1是否导通,功率MOS管M1经由雾化端AT与发热元件130串联形成串联支路,串联支路的一端经由电源供电端BAT与电池110的正极电连接,串联支路的另一端经由电源接地端GND与电池110的负极电连接。在本实施例中以功率MOS管M1为PMOS管为例进行说明,当然,功率MOS管M1也可以为NMOS管。在本实施例中,功率MOS管M1、童锁控制电路200可以位于同一个芯片,该芯片一般称为系统控制芯片。但本申请不限于此,在本申请的其他实施例中,功率MOS管M1、童锁控制电路200可以位于不同的芯片上。在本实施例中,发热元件130例如为发热丝、加热丝、包含发热丝或者加热丝的陶瓷座、或者其他常规的发热元件130。在本实施例中,当童锁控制电路200输出低电平控制功率MOS管M1导通时发热元件130加热以使烟油雾化,当童锁控制电路200输出高电平控制功率MOS管M1断开截止时发热元件130停止加热。
在本实施例中,状态检测单元150与气流传感器140电连接,以用于判断电子烟是否被抽吸或者被吹气或者处于未吹气也未抽吸的状态(未吸吹状态),当用户抽吸电子烟或者向电子烟吹气时,气流传感器140的电容的两个电极片之间气压会改变,导致两个电极片之间的距离会随之改变,进而引起气流传感器140的电容值改变,状态检测单元150将电容值改变转换为频率值改变或者计数值改变,通过将电容值、频率值或者计数值与预设的参数范围进行比较,状态检测单元150就可以判断电子烟是否被抽吸处于抽吸状态、被吹气处于吹气状态或者处于未吸吹状态。另外,在本申请的其他实施例中,还可以不通过状态检测单元判断电子烟是否处于抽吸状态、吹气状态。
为了区分正常抽吸和触发进入解锁状态的抽吸,以降低正常抽吸时被误触发进入解锁状态的概率,并增加小孩操作进入解锁状态的难度,本申请的发明人经过大量实验后提出以下方案:对电子烟的抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,气压较小(用户抽吸的吸力较小)的抽吸状态一般对应用户正常的抽吸,气压更小(用户抽吸的吸力较大)的抽吸状态对应用户想要进入解锁状态的抽吸或者用户偶然的重吸,不管是处于气压较小的抽吸状态,还是处于气压更小的抽吸状态,电子烟均会判断为抽吸状态,本申请通过第一参数信息是否位于第二预设参数范围内判断是否为气压更小的抽吸状态。
具体而言,第一参数信息表征电子烟气流通道内的气压状况,气压状况例如为气压大小、气压的变化状况等,第一参数信息与气流通道内的气压呈对应关系,本实施例设计当第一参数信息位于第二预设参数范围内时代表此时处于气压更小的抽吸状态,当第一参数信息位于第二预设参数范围之外且位于第一预设参数范围之内时代表气压较小的抽吸状态,其中,第二预设参数范围位于第一预设参数范围内,也即只要第一参数信息位于第二预设参数范围内,第一参数信息必然位于第一预设参数范围内,表示此时电子烟处于抽吸状态且是重吸,当第一参数信息位于第一预设参数范围内时,第一参数信息可能位于第二预设参数范围内(重吸),也可能不位于第二预设参数范围内(正常抽吸)。
在本实施例中,第一参数信息包括当前电容值、当前电容变化量、当前频率值、当前频率变化量、当前计数值、当前计数变化量、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值等,此时第一参数信息可以通过状态检测单元150直接获得。当电子烟未被抽吸也未被吹气时,也即电子烟处于未吸吹状态时,此时电容的电极片未变形,此时的当前电容值即为基准电容值,此时基准电容值是采集获得或者转换获得,此时对应的当前频率值即为基准频率值,此时预设计数时长内的振荡周期数为当前计数值,也即为基准计数值;另外,基准电容值、基准频率值、基准计数值也可以预设;当前电容变化量、当前频率变化量或者当前计数变化量为对应当前值与对应基准值之间的差值。当用户轻吸导致电子烟气流通道内的当前气压较小时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时变小,当前电容值会较大,当前频率值会较小,预设计数时长内的振荡周期数会较小,也即当前计数值会较小,当前电容 变化量、当前频率变化量或者当前计数变化量会较大,当前电容值与基准电容值的比值会较大,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会较小,当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值会较大;当用户重吸导致电子烟气流通道内的当前气压值更小时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时变更小,当前电容值会更大,当前频率值会更小,预设计数时长内的振荡周期数会更小,也即当前计数值会更小,当前电容变化量、当前频率变化量或者当前计数变化量会更大,当前电容值与基准电容值的比值会更大,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会更小,当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值会更大。当用户吹气导致电子烟气流通道内的当前气压值相对未吹吸状态变大时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时变大,气流传感器140的当前电容值会变小,当前频率值会变大,当前计数值会比基准计数值大。
当气流通道内气压更小时气流传感器140的电容变形更大,电容的两个电极片之间的距离更小,从而其当前电容值会更大,当前计数值会更小,当前频率值会更小,当前电容变化量、当前频率变化量或者当前计数变化量会更大,当前电容值与基准电容值的比值会更大,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会更小,当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值会更大;当气流通道内气压较小时气流传感器140的电容变形较大,电容的两个电极片之间的距离较小,从而其电容值会较大,当前计数值会较小,当前频率值会较小,当前电容变化量、当前频率变化量或者当前计数变化量会较大,当前电容值与基准电容值的比值会较大,当前频率值与基准频率值的比值、当前计数值与基准计数值的比值会较小,当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值会较大。因而当前电容值、当前计数值、当前频率值、当前电容变化量、当前频率变化量、当前计数变化量等均与气流通道内的气压呈比例关系。
由于本申请设计成用户重吸才可能进入童锁解锁状态,当第一参数信息为当前电容值、当前电容变化量、当前频率变化量、当前计数变化量、当前电容值与基准电容值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值时,第二预设参数范围对应为电容值范围、电容变化量范围、频率变化量范围、计数变化量范围或者比值范围,第二预设参数范围的下限值要大于第一预设参数范围的下限值,第二预设参数范围的上限值小于或等于第一预设参数范围的上限值,例如第二预设参数范围为(a,A],第一预设参数范围(b,B],其中,a大于b,A小于或等于B,A、a、B、b为正数。另外,在本申请的其他实施例中,第二预设参数范围的上限值不设限,也即当前电容值、当前电容变化量、当前频率变化量或者当前计数变化量大于a即落入第二预设参数范围内。当第一参数信息为当前频率值、当前计数值、当前频率值与基准频率值的比值或者当前计数值与基准计数值的比值时,第二预设参数范围对应为频率值范围、计数值范围或者比值范围,第二预设参数范围的上限值要小于第一预设参数范围的上限值,第二预设参数范围的下限值大于或等于第一预设参数范围的下限值,例如第一参数信息为当前计数值时,第二预设参数范围为[m,M),例如M为950,第一预设参数范围为[n,N),例如N为970,其中,M小于N,m大于或等于n,M、m、N、n为正整数。另外,在本申请的其他实施例中,第二预设参数范围的下限值不设限,也即当前频率值或者当前计数值小于M即落入第二预设参数范围内。
另外,在本申请的其他实施例中,第一参数信息还可以包括当前气压值、当前气压变化量(当前气压值相对基准气压值的差值)、当前气压值与基准气压值的比值、当前气压变化量与基准气压值的比值等。当电子烟未被抽吸也未被吹气时,也即电子烟处于未吸吹状态时,此时电容的电极片未变形,此时电子烟气流通道内的气压值即为基准气压值,也即为大气压值,此时基准气压值是采集获得或者转换获得;另外,基准气压值也可以预设。当用户轻吸导致电子烟气流通道内的当前气压值较小时,气流传感器140的电容的两个电极片之间的距 离会相对未吸吹状态时会变小,当前电容值会较大,当前气压值相对基准气压值的差值会较大,也即当前气压变化量会较大,当前气压值与基准气压值的比值会较小,当前气压变化量与基准气压值的比值会较大;当用户重吸导致电子烟气流通道内的当前气压值更小时,气流传感器140的电容的两个电极片之间的距离会相对未吸吹状态时会变更小,当前电容值会更大,当前气压值相对基准气压值的差值会更大,也即当前气压变化量会更大,当前气压值与基准气压值的比值会更小,当前气压变化量与基准气压值的比值会更大。
为了获得电子烟的气流通道内的当前气压值或当前气压变化量,在此实施例中童锁控制电路200还包括气压获取单元,气压获取单元与状态检测单元150连接,气压获取单元通过状态检测单元150、气流传感器140用于获取电子烟气流通道内的当前气压值,进而通过运算可以获得当前气压变化量。具体说来,当吹气导致气流通道内当前气压值较大时气流传感器140的电容的两个电极片之间的距离会比较大,从而其当前电容值会比较小,当抽吸导致气流通道内当前气压值较小时气流传感器140电容的两个电极片之间距离比较小,从而其当前电容值相对会比较大,因而当前电容值与气流通道内的当前气压值呈比例关系。在本申请的其他实施例中,当前电容值与当前频率值、当前计数值成反比例关系,从而当前频率值、当前计数值与当前气压值也呈比例关系。在本申请的其他实施例中,处于抽吸状态的当前电容值相对基准电容值的变化量也会与气流通道内的当前气压值呈比例关系。在本申请的其他实施例中,处于抽吸状态的当前频率值相对基准频率值的变化量也会与气流通道内的当前气压值呈比例关系,或者处于抽吸状态的当前计数值相对基准计数值的变化量也会与气流通道内的当前气压值呈比例关系。从而通过获得当前电容值、相对未吸吹状态时的当前电容变化量、当前频率值、相对未吸吹状态时的当前频率变化量、当前计数值、相对未吸吹状态时的当前计数变化量就可以对应获得气流通道内的当前气压值,两者的对应关系可以通过公式计算获得当前气压信息,或者通过预先预存对应表格,其后查找对应表格获得当前气压值,进而通过算术运算就可以得到当前气压变化量。另外,在本申请的其他实施例中,当前气压值也可以直接通过传感器侦测获得。
在此实施例中,气压获取单元预存有电容值-气压值表、频率值-气压值表、计数值-气压值表、电容变化量-气压值表、频率变化量-气压值表或者计数变化量-气压值表,其中,电容值-气压值表存储电容值与气压值的对应关系,频率值-气压值表存储频率值与气压值的对应关系,计数值-气压值表存储预设计数时长的计数值与气压值的对应关系,电容变化量-气压值表存储电容变化量与气压值的对应关系,频率变化量-气压值表存储频率变化量与气压值的对应关系,计数变化量-气压值表存储预设计数时长的计数变化量与气压值的对应关系,从而当获得当前电容值、当前频率值、当前计数值、当前电容变化量、当前频率变化量、当前计数变化量时通过查表就可以对应获得当前气压值。在此实施例中,气压获取单元较佳可以通过软体实现,也可以通过硬件实现,还可以通过软硬件结合实现。另外,在本申请的其他实施例中,气压获取单元可以不与状态检测单元150电连接,此时气压获取单元为气压传感器,气压传感器至少部分设置在电子烟的气流通道内,气压获取单元可以直接获得当前气压值,进而获得当前气压变化量、当前气压值与基准气压值的比值、当前气压变化量与基准气压值的比值,例如当前气压值减去基准气压值就可以获得当前气压变化量。
在此实施例中,当第一参数信息为当前气压值或者当前气压值与基准气压值的比值时,由于本申请设计成用户重吸才可能进入童锁锁定状态,从而第二预设参数范围为气压值、比值的范围,第二预设参数范围的上限值要小于第一预设参数范围的上限值,第二预设参数范围的下限值大于或等于第一预设参数范围的下限值,例如第一参数信息为当前气压值,第二预设参数范围为(c,C],第一预设参数范围(d,D],例如基准气压值为环境大气压,例如环境大气压为1个标准大气压,其中,C小于D,D小于环境大气压,c大于或等于d,C、c、D、d为正数,一般的,C比环境大气压小500pa,D比环境大气压小300pa,较佳C比环境大气压小500pa、600pa、1000pa、2000pa等。另外,在本申请的其他实施例中,第二预设参数范围的下限值不设限,也即当前气压值小于C即落入第二预设参数范围内。
当第一参数信息为当前气压变化量或者当前气压变化量与基准气压值的比值时,当气流 通道内气压更小时,当前气压变化量会更大,当前气压变化量与基准气压值的比值更大;当气流通道内气压较小时,当前气压变化量会较大,当前气压变化量与基准气压值的比值较大,因而当前气压变化量、当前气压变化量与基准气压值的比值与气流通道内的气压呈比例关系。此时第二预设参数范围为气压变化量范围、比值范围,第二预设参数范围的下限值大于第一预设参数范围的下限值,第二预设参数范围的上限值小于或等于第一预设参数范围的上限值,例如第二预设参数范围为[E,e),例如E为500pa、1000pa,第一预设参数范围[F,f),例如F为300pa,其中,E大于F,e小于或等于f,E、e、F、f为正数。另外,在本申请的其他实施例中,第二预设参数范围的上限值不设限,也即只要当前气压变化量大于或等于E即落入第二预设参数范围内。
请继续参见图38,在本申请中,当电子烟处于抽吸状态时,为了判断第一参数信息是否位于第二预设参数范围内,本实施例童锁控制电路200还包括第二参数判断单元211,第二参数判断单元211与状态检测单元150或者气压获取单元连接,状态检测单元150或者气压获取单元本身就知道第一参数信息,从而状态检测单元150或者气压获取单元输出第一参数信息给第二参数判断单元211,第二参数判断单元211用于接收第一参数信息并判断第一参数信息是否位于第二预设参数范围内,进而可以区分用户是正常抽吸还是进入解锁状态的抽吸,经过这样区分,可以降低用户把玩电子烟时误触发解锁的概率,而且可以增加儿童对电子烟解锁的难度:儿童不太容易通过视觉区分开用户的轻吸或者重吸。
请结合参见图31、图32和图38,本申请实施例提供一种电子烟的童锁控制方法,包括以下步骤:S11:接收第一参数信息;
其中,第二参数判断单元211与状态检测单元150连接,状态检测单元150产生第一参数信息,并输出第一参数信息,第二参数判断单元211接收第一参数信息。另外,在本申请的其他实施例中,第二参数判断单元211与气压获取单元连接。
在本实施例中,状态检测单元150本身可以识别电子烟是否处于抽吸状态或者吹气状态,当用户抽吸电子烟时,状态检测单元150通过气流传感器140识别电子烟处于抽吸状态,此时状态检测单元150判断第一参数信息位于第一预设参数范围内,状态检测单元150输出抽吸信号,当用户吹气时,状态检测单元150通过气流传感器140识别电子烟处于吹气状态,此时状态检测单元150输出吹气信号,当电子烟既不被抽吸,也不被吹气时,此时状态检测单元150识别电子烟处于未吸吹状态,状态检测单元150输出未吸吹信号。童锁控制电路200接收状态检测单元150的输出信号,从而获取电子烟的状态。当状态检测单元150由输出未吸吹信号转为输出抽吸信号或者吹气信号时,童锁控制电路200获取电子烟由未吸吹状态转为抽吸状态或者吹气状态。在本实施例中,未抽吸状态包括未吸吹状态、吹气状态。
S12:判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
S13:若判断结果为是,则触发进行第二计时并触发进行第二计数;
其中,第二参数判断单元211在接收到第一参数信息后,第二参数判断单元211判断第一参数信息是否位于第二预设参数范围内,第二预设参数范围为预先计算获得,或者预先存储在第二参数判断单元211中。其中,童锁控制电路200包括第二计时单元216和第二计数单元215,第二计时单元216与第二参数判断单元211电连接,第二计数单元215与第二参数判断单元211电连接,若第二参数判断单元211的判断结果为是,则第二参数判断单元211输出参数有效信号,第二计时单元216被触发开始计时,第二计时单元216从0开始计时,第二计数单元215被触发开始计数,并将此次也进行计数,也即此时第二计数单元215的计数为1;若第二参数判断单元211的判断结果为否,则第二参数判断单元211输出参数无效信号,第二计时单元216维持原先的状态,第二计数单元215维持原先的状态。在本实施例中,当第二计时单元216被触发开始计时后,第二计时单元216会一直在计时,直到第二计时单元216被复位置零,此后第二计时单元216停止计时。
当第二计时单元216被触发计时、第二计数单元215被触发计数后,当第二参数判断单元211又接收到第一参数信息,并又一次判断第一参数信息位于第二预设参数范围内,也即 又输出参数有效信号,则第二计数单元215的第二计数加1,此时第二计数为2,同时,第二计时单元216在持续进行第二计时。
S14:判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
其中,童锁控制电路200还包括第二计时计数判断单元217,第二计时计数判断单元217分别与第二计数单元215、第二计时单元216连接,当第二计时计数判断单元217判断第二计时单元216的计时时长在第二预设时长内,且第二计数单元215的第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁解锁信号。在本实施例中,第二预设时长一般小于或等于5s,第二预设时长例如为1s、1.5s、1.8s、2s、2.3s、2.5s、2.8s、3s、4s、5s等,较佳为2s。在本实施例中,第二预设数量为大于或等于2的整数,例如为2、3、4、5、6等,较佳为3,第二预设数量一般小于或等于6次,方便用户操作。例如,第二预设时长为2秒,第二预设数量为3,则在2秒内第二计数大于或等于3,第二计时计数判断单元217输出童锁解锁信号。
在本实施例中,第二计时计数判断单元217与第二计时单元216、第二计数单元215实时电连接,当第二计时计数判断单元217获取第二计数到达第二预设数量且第二计时单元216未到达第二预设时长时,第二计时计数判断单元217输出童锁解锁信号,或者第二计时计数判断单元217等第二计时单元216计时时长到达第二预设时长时才输出童锁解锁信号。在本申请的其他实施例中,第二计时计数判断单元217与第二计时单元216、第二计数单元215连接,当第二计时单元216到达第二预设时长时第二计时单元216输出信号给第二计时计数判断单元217,第二计时计数判断单元217获取此时第二计数单元215的第二计数,然后判断第二计数是否大于或等于第二预设数量,若第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁解锁信号,若第二计数小于第二预设数量,则第二计时计数判断单元217维持原来的信号输出。
S15:若判断结果为是,则控制电子烟进入解锁状态,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管持续导通或者间断导通。
其中,童锁控制电路200还包括童锁控制单元240,童锁控制单元240与第二计时计数判断单元217电连接。若第二计时计数判断单元217的判断结果为是,也即在第二预设时长内第二计数大于或等于第二预设数量,则第二计时计数判断单元217输出童锁解锁信号给童锁控制单元240,童锁控制单元240控制电子烟进入解锁状态,在解锁状态电子烟处于抽吸状态时功率MOS管M1持续导通或者间断导通,也即此时功率MOS管M1受用户是否抽吸的控制,在本实施例中电子烟处于抽吸状态时童锁控制单元240持续输出低电平信号或者间断输出低电平信号给功率MOS管M1,功率MOS管M1持续导通或者间断导通,当功率MOS管M1导通时,发热元件130加热以雾化烟油,从而雾化后的烟油可供被用户抽吸。在本实施例中,童锁控制单元240包括触发器和开关控制单元,触发器用于对童锁解锁信号、后续的童锁锁定信号进行保持,触发器例如为SR触发器等,开关控制单元分别与触发器、状态检测单元150电连接,开关控制单元例如为与门、与非门、或门、或非门等,例如,开关控制单元包括与非门,与非门的两个输入端分别与触发器的输出端、状态检测单元150的一个输出端连接,童锁解锁信号使触发器的输出保持为高电平,从而与非门的输出受状态检测单元150的输出影响,当状态检测单元150判断用户抽吸电子烟时,状态检测单元150输出抽吸信号给与非门,抽吸信号为高电平,此时开关控制单元控制功率MOS管M1持续导通或者间断导通(例如PWM、PFM控制方式);童锁锁定信号使触发器的输出保持为低电平,从而经过与非门后保持为高电平(此时状态检测单元150输出抽吸信号,抽吸信号例如为高电平),功率MOS管M1保持截止。若第二计时计数判断单元217的判断结果为否,也即在第二预设时长内第二计数小于第二预设数量,则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零。
在本实施例中,电子烟的童锁状态分为锁定状态和解锁状态,其中,锁定状态即对应童锁保护功能,当电子烟处于锁定状态时用户抽吸电子烟,童锁控制单元240继续控制功率MOS 管M1保持断开截止,从而发热元件130不会加热,进而烟油不会雾化以供用户抽吸,也即即使用户抽吸电子烟也不会出现烟雾。解锁状态对应解除童锁保护功能,此时烟油是否雾化受是否抽吸的控制,当用户抽吸电子烟时,童锁控制单元240控制功率MOS管M1持续导通或者间断导通,间断导通是指童锁控制单元240通过PWM方式、PFM方式输出方波信号,通过调整方波信号的占空比以用于控制输出功率、输出电压。
在本实施例中,通过接收第一参数信息;判断第一参数信息是否位于第二预设参数范围内,若判断结果为是,则触发进行第二计时并触发进行第二计数;判断在第二预设时长内第二计数是否大于或等于第二预设数量,若判断结果为是,则控制电子烟进入解锁状态。本申请实施例通过第一参数信息、第二预设参数范围对抽吸状态进一步细分,分为气压更小的抽吸状态和气压较小的抽吸状态,将第一参数信息位于第二预设参数范围的抽吸次数分辨为气压更小的抽吸状态(重吸),并进行第二计数,并且在第二预设时长内第二计数大于或等于第二预设数量才使电子烟进入解锁状态,通过这样设置,电子烟可以进一步分辨用户是正常抽吸电子烟,还是想要通过抽吸电子烟触发进入解锁状态,可以降低用户把玩抽吸电子烟时被误触发解除锁定的几率,可以减少用户的使用困扰;而且,需要重吸才可能解除锁定,一般小孩不容易将抽吸再分辨为重吸和一般的抽吸,从而小孩解除电子烟锁定状态的难度较大,提升了电子烟的安全性。而且,本实施例利用现有的状态检测单元150、气流传感器140就可以得到第一参数信息,不需要对电子烟进行大改,不需要增加硬件成本或者增加的硬件成本很小,从而缩减了电子烟进行锁定保护的硬件成本,解决现有技术中电子烟锁定成本较高的技术问题。
在本实施例中,童锁控制方法还包括:再次获取第一参数信息位于第二预设参数范围内的信息,第二计数加1。
具体而言,在第二计数单元215触发第二计数和第二计时单元216触发进行第二计时后,第二计时单元216和第二计数单元215未停止工作,当电子烟转为未抽吸状态,其后,当用户再次抽吸电子烟,再次实时获取第一参数信息,若第二计数单元215再次获取第一参数信息位于第二预设参数范围内的信息,也即第二计数单元215又收到参数有效信号,则第二计数单元215在原来第二计数的基础上加1,例如原来第二计数单元215的计数值为1,再次获取第一参数信息位于第二预设参数范围内的信息,则第二计数单元215的第二计数加1,也即第二计数变为2,同时,第二计时单元216在触发第二计时后,第二计时单元216一直在计时;若此次第二计数单元215没有获取第一参数信息位于第二预设参数范围内的信息,也即第二计数单元215没有收到参数有效信号,则第二计数保持不变,此时第二计时单元216也在计时。
在本实施例中,童锁控制方法还包括:若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零。
其中,不论第二计时计数判断单元217的判断结果为是还是不为是,只要第二计时单元216的计时时长达到第二预设时长,则第二计时单元216复位置零,同时第二计时单元216发送信号给第二计数单元215,第二计数单元215进行置零,也即此时第二计时单元216停止计时,计时时长置零,第二计时单元216、第二计数单元215恢复初始状态,方便后面信号的检测。在本实施例中,第二计时计数判断单元217在第二计时单元216、第二计数单元215复位置零前已完成判断。
在本实施例中,童锁控制方法还包括:若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零。
其中,若第二计时计数判断单元217获取第二计数达到第二预设数量,且第二计时单元216计时时长小于第二预设时长,则第二计时计数判断单元217输出信号给第二计时单元216、第二计数单元215,第二计时单元216进行复位置零,第二计数单元215置零,该信号可以与童锁解锁信号一样,也可以是不同的信号。
请参见图38,在本实施例中,步骤接收第一参数信息具体包括:
接收状态检测单元150输出的第一参数信息。
在本实施例中,第一参数信息为当前电容值、当前频率值、当前计数值、当前电容变化量、当前频率变化量、当前计数变化量、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值,状态检测单元150本身可以得到第一参数信息,第二参数判断单元211通过状态检测单元150接收第一参数信息,也即接收当前电容值、当前频率值、当前计数值、当前电容变化量、当前频率变化量、当前计数变化量、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值。本实施例充分利用现有电子烟中的气流传感器140、状态检测单元150,只需要增设第二参数判断单元211,第二参数判断单元211所要实现的功能既可以通过软体实现,也可以通过硬件实现,也可以通过软体和硬件结合实现,从而不需要增加新的硬件或者增加新的硬件较少,可以实现不增加成本或者增加少量成本就可以极大的降低电子烟误进入解锁状态的问题,提升了用户的使用便利性。
另外,在本申请的其他实施例中,请参见图33和图38,当第一参数信息为当前气压值、当前气压变化量、当前气压值与基准气压值的比值、当前气压变化量与基准气压值的比值时,步骤接收第一参数信息具体包括:S111:通过状态检测单元150获取当前电容值、当前频率值、当前计数值、相对未吸吹状态时的当前电容变化量、相对未吸吹状态时的当前频率变化量或者相对未吸吹状态时的当前计数变化量;
S112:根据当前电容值查找预存的电容值-气压值表、根据当前频率值查找预存的频率值-气压值表、根据当前计数值查找预存的计数值-气压值表、根据当前电容变化量查找预存的电容变化量-气压值表、根据当前频率变化量查找预存的频率变化量-气压值表或者根据当前计数变化量查找预存的计数变化量-气压值表;
S113:接收电子烟气流通道内的第一参数信息。
在此实施例中,气压获取单元中预存有电容值-气压值表、频率值-气压值表、计数值-气压值表、电容变化量-气压值表、频率变化量-气压值表、计数变化量-气压值表其中之一,该对应表是提前计算好或者测试好并预存在气压获取单元中,电容值-气压值表、频率值-气压值表、计数值-气压值表、电容变化量-气压值表、频率变化量-气压值表、计数变化量-气压值表的两个参数可以是一一对应关系,也可以是范围与值的对应关系,例如电容值G对应气压值g,电容值H对应气压值h,电容值范围[G,H]对应气压值g,等情形,气压获取单元通过状态检测单元150获取当前电容值、当前频率值、当前计数值、当前电容变化量、当前频率变化量、当前计数变化量,然后通过查找预存的表获得当前气压值,进而获得当前气压变化量,其后第二参数判断单元211判断第一参数信息是否位于第二预设参数范围内,若位于第二预设参数范围内,则输出参数有效信号给第二计数单元280,第二计数加1,若不位于第二预设参数范围内,则输出参数无效信号给第二计数单元280,第二计数不变。此实施例充分利用现有的气流传感器140、状态检测单元150,只需要增设气压获取单元、第二参数判断单元211,气压获取单元、第二参数判断单元211所要实现的功能既可以通过软体实现,也可以通过硬件实现,也可以通过软体和硬件结合实现,从而不需要增加新的硬件或者增加新的硬件较少,可以实现不增加成本或者增加少量成本就可以极大的降低电子烟误进入解锁状态的问题,提升了用户的使用便利性。另外,在本申请的其他实施例中,也可以不共用状态检测单元150、气流传感器140,此时气压获取单元为气压传感器,气压传感器可以直接获得气流通道内的当前气压值,进而获得当前气压变化量,气压获取单元与第二参数判断单元211连接,第二参数判断单元211与第二计数单元280连接,气压获取单元用于电子烟处于抽吸状态时获得气流通道内的当前气压值或者当前气压变化量,第二参数判断单元211用于判断当前气压值或者当前气压变化量是否位于第二预设参数范围内,若位于第二预设参数范围内,则输出参数有效信号给第二计数单元280,第二计数加1,若不位于第二预设参数范围内,则输出参数无效信号给第二计数单元280,第二计数不变,气压传感器为本领域的常规技术和元器件,在此不再赘述。
在应用上述的方案进行实际测试过程中发明人发现:由于空气中气流的扰动,可能会导致处于抽吸状态时瞬间的气压下降,导致第一参数信息到达第二预设参数范围,这个瞬间的气压下降持续时间很短,一般偶尔的一次,造成第二计数单元215误计数,可能误触发电子烟进入解锁状态,给用户的使用造成困扰。为了解决该问题,请结合参阅图34和图38,步骤触发进行第二计数具体包括:
S131:触发进行第三计时并触发进行第三计数;
其中,童锁控制电路200还包括第三计时单元212和第三计数单元213,第三计时单元212、第三计数单元213均与第二参数判断单元211连接,当第三计时单元212、第三计数单元213获取第一参数信息位于第二预设参数范围内时,也即第三计时单元212接收到参数有效信号时,第三计时单元212开始第三计时,第三计时单元212一直计时,直到进行复位置零,此后第三计时单元212停止计时;第三计数单元213接收到参数有效信号时,第三计数单元213开始第三计数,且此次也进行第三计数,此时第三计数为1。
S132:判断在第三预设时长内第三计数是否大于或等于第三预设数量;
其中,童锁控制电路200还包括第三计时计数判断单元214,第三计时计数判断单元214分别与第三计数单元213、第三计时单元212连接,当第三计时计数判断单元214判断第三计时单元212的计时时长在第三预设时长内,且第三计数单元213的第三计数大于或等于第三预设数量,则第三计时计数判断单元214输出第一计数信号。在本实施例中,第三预设时长一般为30ms-150ms,第三预设时长例如为30ms、40ms、50ms、60ms、70ms、80ms、90ms、100ms、110ms、120ms、130ms、140ms、150ms等,较佳为60ms-100ms。在本实施例中,第三预设数量为大于或等于2的整数,例如为2、3等。在本实施例中,第三预设数量大于或等于2,例如为2、3、4、5、6等。
在本实施例中,第三计时计数判断单元214与第三计时单元212、第三计数单元213实时电连接,当第三计时计数判断单元214获取第三计数到达第三预设数量且第三计时未到达第三预设时长时,第三计时计数判断单元214输出第一计数信号,或者第三计时计数判断单元214等第三计时到达第三预设时长时才输出第一计数信号。在本申请的其他实施例中,第三计时计数判断单元214与第三计时单元212、第三计数单元213连接,当第三计时单元212到达第三预设时长时第三计时单元212输出信号给第三计时计数判断单元214,第三计时计数判断单元214获取此时第三计数单元213的第三计数,然后判断第三计数是否大于或等于第三预设数量,若第三计数大于或等于第三预设数量,则第三计时计数判断单元214输出第一计数信号,若第三计数小于第三预设数量,则第三计时复位置零,第三计数置零。
S133:若判断结果为是,则触发进行第二计数。
其中,第三计时计数判断单元214与第二计数单元215连接。若第三计时计数判断单元214的判断结果为是,则第二计数单元215接收到第一计数信号,第二计数单元215被触发开始计数,此时第二计数单元215对本次也进行计数,也即此时第二计数为1。另外,在本实施例中,第二计时单元216也与第三计时计数判断单元214连接,第二计时单元216接收到第一计数信号,第二计时单元216被触发开始计时,第二计时从0开始计时。
在本实施例中,当此前第二计数单元215没有被触发开始计数,第二计时单元216没有被触发开始计时,若第三计时计数判断单元214的判断结果为否,也即第三计时计数判断单元214不输出第一计数信号,第二计数单元215维持原来不进行计数,第二计时单元216维持原来不进行计时;当此前第二计数单元215已被触发开始计数(也即第二计数至少为1),第二计时单元216已被触发计时,若第三计时计数判断单元214的判断结果为否,则第二计数维持原来的计数,第二计数不增加,第二计时继续计时。
在本实施例中,当空气气流串扰导致电子烟气流通道内气压短时间变化时,由于气压降低的时长很短,从而不会符合在第三预设时长内第三计数大于或等于第三预设数量的条件,从而第二计数不会变化,从而不会将空气气流串扰误判为用户想要解锁的情况,可以防止电子烟误进入解锁状态,可以防止对用户的使用造成困扰,本实施例可以避免这种情况发生,提升了用户的使用体验。
在本实施例中,在整个第三预设时长电子烟处于抽吸状态,在第三预设时长的部分时长或者整个时长均属于重吸,则第二计时单元216进行计数。
为了判断电子烟是否处于抽吸状态,本实施例采用与现有技术一样,通过状态检测单元150直接判断电子烟是否处于抽吸状态、吹气状态。具体说来,第一参数信息包括当前电容值、当前频率值、当前计数值、当前电容变化量、当前频率变化量、当前计数变化量、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值,请结合参见图35和图38,在本实施例中,童锁控制方法还包括:
S171:接收第一参数信息;
S172:判断第一参数信息是否位于第一预设参数范围内;
S173:若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
其中,状态检测单元150包括第一参数生成单元、第一参数判断单元,第一参数生成单元分别与第一参数判断单元、第二参数判断单元211连接,第一参数生成单元生成第一参数信息后,第一参数判断单元接收第一参数信息,第一参数判断单元判断第一参数信息是否位于第一预设参数范围内,若判断结果为是,则第一参数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信号,若判断结果为否,则第一参数判断单元维持原来的信号输出,例如输出未吸吹信号、吹气信号。进一步的,还可以要求连续多次判断为是,才输出抽吸信号,这样有利于降低气流串扰误触发的几率。在本实施例中,第一参数判断单元、第二参数判断单元211可以为同一个参数判断单元,也可以为不同的参数判断单元。
另外,在本申请的其他实施例中,第一参数信息包括当前气压值、当前气压变化量、当前气压值与基准气压值的比值、当前气压变化量与基准气压值的比值,童锁控制电路200包括第一参数判断单元,第一参数判断单元与气压获取单元连接,气压获取单元输出当前气压值、当前气压变化量、当前气压值与基准气压值的比值、当前气压变化量与基准气压值的比值后,第一参数判断单元接收当前气压值、当前气压变化量、当前气压值与基准气压值的比值、当前气压变化量与基准气压值的比值,第一参数判断单元判断当前气压值、当前气压变化量、当前气压值与基准气压值的比值、当前气压变化量与基准气压值的比值是否位于第一预设参数范围内,若判断结果为是,则第一参数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信号,若判断结果为否,则第一参数判断单元维持原来的信号输出,例如输出未吸吹信号、吹气信号。在本实施例中,第一参数判断单元与童锁控制单元240连接,具体与童锁控制单元240的开关控制单元连接。进一步的,还可以要求连续多次判断为是,才输出抽吸信号,这样有利于降低气流串扰误触发的几率。另外,在本申请的其他实施例中,同样可以通过当前气压值或者当前气压变化量判断电子烟是否处于吹气状态,例如当前气压值或者当前气压变化量位于第四预设参数范围内时,此时电子烟处于吹气状态,输出吹气信号。在本实施例中,第一参数判断单元与第二参数判断单元可以是同一个判断单元,也可以是不同的判断单元。
在本实施例中,为了降低电子烟处于未抽吸状态时的功耗,步骤接收第一参数信息具体包括:获取电子烟由未抽吸状态转为抽吸状态的信息;
触发接收第一参数信息。
其中,第二参数判断单元211与状态检测单元150或者气压获取单元连接,第二参数判断单元211在未收到抽吸信号前不工作,当第二参数判断单元211在接收到抽吸信号后,第二参数判断单元211被触发开始工作。这样设置,有利于降低电子烟的功耗。
另外,在本实施例中,请结合参阅图36和图38,在步骤触发进行第二计数之后还包括:
S161:获取电子烟由抽吸状态进入未抽吸状态的信息;
S162:触发第五计时且对第二计数进行锁定;
S163:判断第五计时是否大于或等于第五预设时长;
S164:若判断结果为是,则解除对第二计数的锁定。
本实施例还对两次重吸之间的间隔时长进行规定,防止抽吸状态时气流抖动、串扰等而导致误第二计数。具体而言,在本实施例中,童锁控制电路200包括第五计时单元221和第五时长判断单元222,第五计时单元221分别与状态检测单元150、第三计时计数判断单元214连接,第五时长判断单元222分别与第五计时单元221、第二计数单元215电连接,第二计数单元215还与状态检测单元150电连接。当第三计时计数判断单元214输出第一计数信号后,第五计时单元221收到第一计数信号后又获取电子烟由抽吸状态进入未抽吸状态的信息,第五计时单元221被触发开始计时,同时第二计数单元215也在接收第一计数信号后又获取电子烟由抽吸状态进入未抽吸状态的信息,第二计数单元215被锁定,也即进入计数锁定状态,第二计数单元215被锁定后即使再接收到第一计数信号也不会进行计数增加,也即在锁定状态第二计数单元215保持原来的计数值,不会增加计数值,只有被解除锁定后处于计数解锁状态第二计数单元215收到第一计数信号才会计数加一。在本实施例中,当第五计时单元221开始第五计时后,第五计时单元221一直在计时(即使由未抽吸状态转为抽吸状态也在计时),第五时长判断单元222判断第五计时单元221的计时时长是否大于或等于第五预设时长,当第五时长判断单元222判断第五计时单元221计时到达第五预设时长,第五计时单元221会停止计时并置零,也即第五计时单元221复位置零,同时,第五时长判断元输出计数解锁信号给第二计数单元215,第二计数单元215被解除对计数的锁定,第二计数单元215进入计数解锁状态,而且第三计时单元212、第三计数单元213、第二计时单元216也复位置零,此后第二计数单元215再次获取第一计数信号,第二计数单元215可以执行计数加一动作,也即第二计数在原来的基础上加一。在此实施例中,当第五计时单元221没有收到第一计数信号,或者第五计时单元221没有获取电子烟由抽吸状态进入未抽吸状态的信息,第五计时单元221也不会触发开始计时。在本实施例中,第五预设时长例如为50ms-150ms,例如为50ms、60ms、70ms、80ms、90ms、100ms、110ms、120ms、130ms、140ms、150ms等。
在本实施例中,在步骤触发进行第二计数之后还包括:判断第一参数信息位于第二预设参数范围内持续的时长是否大于或等于第七预设时长,若判断结果为是,则第二计数、第二计时均复位置零。本实施例中对重吸持续的时长进行判断,若重吸持续的时长大于或等于第七预设时长,则第二计数、第二计时均复位置零,第二计数为0,第二计时停止计时并置零,这样设置可以防止用户比较长时间抽吸后误动作进入童锁锁定状态,符合用户的使用预期。在本实施例中,第七预设时长大于或等于400ms,例如为400ms、450ms、500ms、600ms等。
在本实施例中,电子烟进入解锁状态后,用户可以正常抽吸电子烟,当用户不使用时,为了安全需要锁定电子烟时,此时需要对电子烟进行加锁,以下描述电子烟如何进行加锁,以下描述的仅是电子烟一种进入锁定状态的方式,本领域的技术人员还可以通过其他常规的方式使电子烟进入童锁锁定状态。另外,在本申请的其他实施例中,加锁方式可以与解锁方式一样,可以参见前面的描述,在此不再赘述。
请结合参阅图37和图38,在本实施例中,童锁控制方法还包括:
S21:接收第一参数信息;
其中,童锁控制电路200包括第四参数判断单元231,第四参数判断单元231用于接收第一参数信息,其中,第四参数判断单元231与第二参数判断单元211可以为不同的判断单元,也可以为同一参数判断单元。
在本实施例中,当处于吹气状态时,气流通道中气压较大,会高于未吸吹状态的气压,也即当前气压值会大于基准气压值,气流传感器140的电容的两个电极的间距相对未吸吹状态时要大,从而当前电容值会比未吸吹状态时小,当前频率值会比未吸吹状态时大,当前计数值会大于基准计数值。
S22:判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;
S23:若判断结果为是,则触发进行第四计时并触发进行第四计数;
其中,第四参数判断单元231在接收到第一参数信息后,第四参数判断单元231判断第 一参数信息是否位于第四预设参数范围内,第四预设参数范围为预先计算获得,或者预先存储在第四参数判断单元231中。
当第一参数信息为当前电容值、当前电容值与基准电容值的比值,此时第四预设参数范围对应为电容值范围或者比值范围,第四预设参数范围的上限值会小于第一预设参数范围对应的下限值,第四预设参数范围的下限值可以不设限,也可以根据需要设限。当第一参数信息为当前气压值、当前频率值、当前计数值、当前气压值与基准气压值的比值、当前频率值与基准频率值的比值或者当前计数值与基准计数值的比值时,此时第四预设参数范围对应为气压值值范围、频率值范围、计数值范围或者比值范围,第四预设参数范围的下限值会大于第一预设参数范围对应的上限值,第四预设参数范围的上限值可以不设限,也可以根据需要设限。当第一参数信息为当前气压变化量、当前电容变化量、当前频率变化量、当前计数变化量、当前气压变化量与基准气压值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值,此时第四预设参数范围与第一预设参数范围的大小关系可以不做限定,两者范围可以相同,也可以不同。
其中,童锁控制电路200包括第四计时单元232和第四计数单元233,第四计时单元232与第四参数判断单元231电连接,第四计数单元233与第四参数判断单元231电连接,若第四参数判断单元231的判断结果为是,则第四参数判断单元231输出吹气信号,第四计时单元232被触发开始计时,第四计时单元232从0开始计时,第四计数单元233被触发开始计数,并将此次也进行计数,也即此时第四计数单元233的计数为1;若第四参数判断单元231的判断结果为否,则第四参数判断单元231不会输出吹气信号,第四计时单元232维持原先的状态,第四计数单元233维持原先的状态。在本实施例中,当第四计时单元232被触发开始计时后,第四计时单元232会一直在计时,直到第四计时单元232被复位置零,此后第四计时单元232停止计时。在本实施例中,吹气信号也会输出给童锁控制单元240。
在本实施例中,当第四计时单元232被触发计时、第四计数单元233被触发计数后,当第四参数判断单元231又接收到第一参数信息,并又一次判断第一参数信息位于第四预设参数范围内,则第四计数单元233的第四计数加1,此时第四计数为2,同时,第四计时单元232在持续进行第四计时。
S24:判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
其中,童锁控制电路200还包括第四计时计数判断单元234,第四计时计数判断单元234分别与第四计数单元233、第四计时单元232电连接,当第四计时计数判断单元234判断第四计时单元232的计时时长在第四预设时长内,且第四计数单元233计数大于或等于第四预设数量,第四计时计数判断单元234输出童锁锁定信号。在本实施例中,第四预设时长一般小于或等于5s,例如为1s、1.5s、1.8s、2s、2.3s、2.5s、2.8s、3s、4s、5s等,较佳为2s。在本实施例中,第四预设数量大于或等于2,例如为2、3、4、5、6等,较佳为3,第四预设数量一般小于或等于6次,方便用户操作。
在本实施例中,第四计时计数判断单元234与第四计时单元232、第四计数单元233实时连接,当第四计时计数判断单元234获取第四计数单元233到达第四预设数量且第四计时单元232未到达第四预设时长时,第四计时计数判断单元234输出童锁锁定信号,或者第四计时计数判断单元234等第四计时单元232计时时长到达第四预设时长时才输出童锁锁定信号。在本申请的其他实施例中,第四计时计数判断单元234与第四计时单元232、第四计数单元233连接,当第四计时单元232到达第四预设时长时第四计时单元232输出信号给第四计时计数判断单元234,第四计时计数判断获取此时第四计数单元233的计数,然后判断第四计数是否大于或等于第四预设数量,若大于或等于第四预设数量,则输出童锁锁定信号,若小于第四预设数量,则维持原来的信号输出。
S24:若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
其中,若第四计时计数判断单元234判断的结果为是,也即在第四预设时长内计数的数 量大于或等于第四预设数量,则第四计时计数判断单元234输出童锁锁定信号给童锁控制单元240,童锁控制单元240控制电子烟进入锁定状态,在锁定状态功率MOS管M1保持断开,在本实施例中童锁控制单元240持续输出高电平信号给功率MOS管M1,功率MOS管M1保持截止。
在本实施例中,通过对吹气进行计时和计数实现加锁,在没有增加蓝牙/NFC等设计以及机械结构的同时,实现了有效的加锁保护效果,从而缩减了电子烟的进行加锁的硬件成本,解决现有技术中电子烟加锁成本较高的技术问题。而且,本申请的加锁方式不容易被儿童察觉,电子烟在锁定后不容易被儿童解锁,有利于提升电子烟的安全性。
在本实施例中,童锁控制方法还包括:再次获取第一参数信息位于第四预设参数范围内的信息,第四计数加1。
在本实施例中,童锁控制方法还包括:若第四计时单元232的计时时长达到第四预设时长,则第四计数置零,且第四计时单元232复位置零。
在本实施例中,童锁控制方法还包括:若第四计时单元232的计时时长小于第四预设时长且第四计数达到第四预设参数范围,则第四计数置零,且第四计时单元232复位置零。
对应于上面实施例的电子烟的童锁控制方法,图38示出了本申请实施例提供的电子烟的童锁控制电路200的模块图,为了便于说明,仅示出了与本申请实施例相关的部分。
请结合参照图31和图38,童锁控制电路200包括:
第二参数判断单元211,其用于接收第一参数信息,并用于判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
第二计数单元215,其用于若第二参数判断单元211的判断结果为是,则触发进行第二计数;
第二计时单元216,其用于若第二参数判断单元211的判断结果为是,则触发进行第二计时;
第二计时计数判断单元217,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
童锁控制单元240,其用于若第二计时计数判断单元217的判断结果均为是,则控制电子烟进入解锁状态,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管M1持续导通或者间断导通。
在本实施例中,第一参数信息包括当前气压值、当前电容值、当前频率值、当前计数值、当前气压变化量、当前电容变化量、当前频率变化量、当前计数变化量、当前气压值与基准气压值的比值、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前气压变化量与基准气压值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值。
在本实施例中,当所述第一参数信息为当前电容值、当前气压变化量、当前电容变化量、当前频率变化量、当前计数变化量、当前气压变化量与基准气压值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值时,所述第二预设参数范围的下限值大于第一预设参数范围的下限值;或者,当所述第一参数信息为当前气压值、当前频率值、当前气压值与基准气压值的比值或者当前频率值与基准频率值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值;或者,当所述第一参数信息为当前计数值或者当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值。
在本实施例中,童锁控制电路200包括第三计时单元212、第三计数单元213和第三计时计数判断单元214,其中,第三计时单元212、第三计数单元213分别与第二参数判断单元211连接,当第二参数判断单元211输出参数有效信号后,第三计时单元212被触发进行第三计时,第三计数单元213被触发进行第三计数,第三计时计数判断单元214均与第三计时单元212、第三计数单元213连接,第三计时计数判断单元214用于判断在第三预设时长内 第三计数是否大于或等于第三预设数量,若第三计时计数判断单元214的判断结果为是,则第二计时单元216被触发进行第二计时,第二计数单元215被触发进行第二计数。在本实施例中,在第三预设时长电子烟处于抽吸状态。
在本实施例中,状态检测单元150包括第一参数生成单元、第一参数判断单元,第一参数生成单元与第一参数判断单元连接,第一参数生成单元生成第一参数信息后,第一参数判断单元用于接收第一参数信息并判断第一参数信息是否位于第一预设参数范围内,若第一参数判断单元的判断结果为是,则第一参数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信息。另外,在本申请的其他实施例中,童锁控制电路200包括第一参数判断单元,第一参数判断单元与气压获取单元连接,第一参数判断单元用于接收第一参数信息,并用于判断第一参数信息是否位于第一预设参数范围内,若第一参数判断单元的判断结果为是,则第一参数判断单元输出电子烟由未抽吸状态转为抽吸状态的信息,也即输出抽吸信息。
在本实施例中,童锁控制电路200还包括第五计时单元221、第五时长判断单元222,其中,第五计时单元221用于获取电子烟由抽吸状态进入未抽吸状态的信息且获取进行第二计数的信息,第五计时单元221开始第五计时,第二计数单元215进行第二计数且用于获取电子烟由抽吸状态进入未抽吸状态的信息,第二计数单元215被锁定,第五时长判断单元222用于判断第五计时单元221的第五计时是否大于或等于第五预设时长,若第五时长判断单元222的判断结果为是,则第五时长判断单元222用于输出计数解锁信号给第二计数单元215,第二计数单元215解除锁定。
在本实施例中,第二参数判断单元211与状态检测单元150连接,状态检测单元150与电容式气流传感器140电连接,第二参数判断单元211用于接收状态检测单元150输出的第一参数信息。
在本申请的其他实施例中,童锁控制电路包括气压获取单元,气压获取单元用于通过状态检测单元获取当前电容值、当前频率值、当前计数值、相对未吸吹状态时的当前电容变化量、相对未吸吹状态时的当前频率变化量或者相对未吸吹状态时的当前计数变化量;气压获取单元用于根据当前电容值查找预存的电容值-气压值表、根据当前频率值查找预存的频率值-气压值表、根据当前计数值查找预存的计数值-气压值表、根据当前电容变化量查找预存的电容变化量-气压值表、根据当前频率变化量查找预存的频率变化量-气压值表或者根据当前计数变化量查找预存的计数变化量-气压值表;第二参数判断单元211接收电子烟气流通道内的第一参数信息。
在本实施例中,童锁控制电路200包括解锁单元,解锁单元包括第二计时单元216、第二计数单元215、第二计时计数判断单元217、第二参数判断单元211等。
在本实施例中,童锁控制电路200包括锁定单元,锁定单元包括第四参数判断单元231、第四计时单元232、第四计数单元233、第四计时计数判断单元234,其中,第四参数判断单元231用于接收第一参数信息,并判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;若第四参数判断单元231的判断结果为是,则第四计时单元232被触发进行第四计时,第四计数单元233被触发进行第四计数,第四计时计数判断单元234用于判断在第四预设时长内第四计数是否大于或等于第四预设数量,若第四计时计数判断单元234的判断结果为是,则输出童锁加锁信号给童锁控制单元240,童锁控制单元240控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
在本实施例中,第四计数单元233还用于再次获取第一参数信息位于第四预设参数范围内的信息,第四计数加1。
在本实施例中,第四计时单元232还用于若计时时长达到第四预设时长,则第四计数置零,且第四计时单元232复位置零。在本申请的其他实施例中,第四计时计数判断单元234还用于若计时时长小于第四预设时长且第四计数达到第四预设数量,则第四计数置零,且第四计时单元232复位置零。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、 模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图39为本申请一实施例提供的童锁控制装置400的示意图。如图39所示,该实施例的童锁控制装置400包括:至少一个处理器420(图39中仅示出一个)、存储器410以及存储在所述存储器410中并可在所述处理器420上运行的计算机程序,所述处理器420执行所述计算机程序时实现上述童锁控制方法实施例中的步骤。本领域技术人员可以理解,图39仅仅是童锁控制装置400的举例,并不构成对童锁控制装置400的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。所称处理器420可以是中央处理单元(Central Processing Unit,CPU),该处理器420还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-PrograMable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器410在一些实施例中可以是童锁控制装置400的内部存储单元,例如童锁控制装置400的硬盘或内存。所述存储器410在另一些实施例中也可以是童锁控制装置400的外部存储设备,例如童锁控制装置400上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器410还可以既包括童锁控制装置400的内部存储单元也包括外部存储设备。所述存储器410用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器410还可以用于暂时地存储已经输出或者将要输出的数据。童锁控制装置400例如为电子烟。
本申请实施例还提供了一种存储介质,存储介质存储有计算机程序,计算机程序被处理器420执行时可实现上述童锁控制方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端上运行时,使得终端执行时可实现上述童锁控制方法实施例中的步骤。
本申请实施例还提供一种电子烟,请结合参见图31和图38,电子烟包括上述的童锁控制电路200,电子烟还包括电池110、功率MOS管M1和发热元件130,发热元件130和功率MOS管M1串联形成发热支路,发热支路的两端对应与电池110的正、负极电连接;还包括气流传感器140,其中,功率MOS管M1的控制端、气流传感器140均与童锁控制电路200电连接,所述气流传感器140与童锁控制电路200的状态检测单元150电连接。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (73)

  1. 一种电子烟的童锁控制方法,所述电子烟包括功率MOS管和发热元件,所述发热元件和所述功率MOS管串联,当所述功率MOS管导通时所述发热元件加热以使烟油雾化,当所述功率MOS管断开截止时所述发热元件停止加热,其特征在于,所述童锁控制方法包括:
    接收第一计数信息,其中,所述第一计数信息用于表征电子烟气流通道内的气压状况;
    判断第一计数信息是否位于第二预设数值范围内,其中,所述第二预设数值范围位于第一预设数值范围内,所述第一预设数值范围用于判断电子烟是否处于抽吸状态;
    若判断结果为是,则触发进行第二计时并触发进行第二计数;
    判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
    若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
  2. 根据权利要求1所述的童锁控制方法,其特征在于,所述第一计数信息包括在第一计数时长的振荡周期数、在第一计数时长的振荡周期数与基准振荡周期数的比值、在第一计数时长的振荡周期数相对基准振荡周期的差值或者在第一计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值。
  3. 根据权利要求2所述的童锁控制方法,其特征在于,
    当所述第一计数信息为在第一计数时长的振荡周期数时,所述第二预设数值范围的上限值小于第一预设数值范围的上限值;或者,
    当所述第一计数信息为在第一计数时长的振荡周期数与基准振荡周期数的比值时,所述第二预设数值范围的上限值小于第一预设数值范围的上限值,其中,所述基准振荡周期数为电子烟处于未吸吹状态时在第一计数时长的振荡周期数;或者,
    当所述第一计数信息为在第一计数时长的振荡周期数相对基准振荡周期的差值时,所述第二预设数值范围的下限值大于第一预设数值范围的下限值,其中,所述基准振荡周期数为电子烟处于未吸吹状态时在第一计数时长的振荡周期数;或者,
    当所述第一计数信息为在第一计数时长内振荡周期数相对基准振荡周期数的差值与基准振荡周期数的比值时,所述第二预设数值范围的下限值大于第一预设数值范围的下限值,其中,所述基准振荡周期数为电子烟处于未吸吹状态时在第一计数时长的振荡周期数。
  4. 根据权利要求1所述的童锁控制方法,其特征在于,步骤触发进行第二计数具体包括:
    触发进行第三计时并触发进行第三计数;
    判断在第三预设时长内第三计数是否大于或等于第三预设数量,其中,第三预设数量大于或等于2;
    若判断结果为是,则触发进行第二计数。
  5. 根据权利要求4所述的童锁控制方法,其特征在于,在第三预设时长所述电子烟处于抽吸状态。
  6. 根据权利要求1所述的童锁控制方法,其特征在于,步骤接收第一计数信息具体包括:
    获取电子烟由未抽吸状态转为抽吸状态的信息;
    触发接收第一计数信息。
  7. 根据权利要求1所述的童锁控制方法,其特征在于,所述童锁控制方法还包括:
    接收第一计数信息并判断第一计数信息是否位于第一预设数值范围内;
    若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
  8. 根据权利要求1所述的童锁控制方法,其特征在于,在步骤触发进行第二计数之后还包括:
    获取电子烟由抽吸状态进入未抽吸状态的信息;
    触发第五计时且对第二计数进行锁定;
    判断第五计时是否大于或等于第五预设时长;
    若判断结果为是,则解除对第二计数的锁定。
  9. 根据权利要求1-8任意一项所述的童锁控制方法,其特征在于,所述童锁控制方法还包括:
    若在第二预设时长内第二计数小于第二预设数量,则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零;和/或,
    若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零;和/或,
    若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零;和/或,
    再次获取第一计数信息位于第二预设数值范围内的信息,第二计数加1。
  10. 根据权利要求1-8任意一项所述的童锁控制方法,其特征在于,所述电子烟包括状态检测单元、气流传感器,所述状态检测单元用于与气流传感器电连接,所述气流传感器至少部分位于气流通道内,步骤接收第一计数信息具体包括:
    接收状态检测单元输出的第一计数信息。
  11. 根据权利要求1-8任意一项所述的童锁控制方法,其特征在于,还包括:
    接收第四计数信息;
    判断第四计数信息是否位于第四预设数值范围内,所述第四预设数值范围用于判断电子烟是否处于吹气状态;
    若判断结果为是,则触发进行第四计时并触发进行第四计数;
    判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
    若判断结果为是,则控制电子烟进入解锁状态,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管持续导通或者间断导通。
  12. 根据权利要求1-8任意一项所述的童锁控制方法,其特征在于,
    所述第二预设时长的范围为1秒-5秒;和/或;
    所述第二预设数量大于或等于3。
  13. 一种童锁控制电路,应用于电子烟,其特征在于,包括:
    状态检测单元,其用于与气流传感器电连接,其用于输出第一计数信息;
    第二计数判断单元,其用于接收第一计数信息,并用于判断第一计数信息是否位于第二预设数值范围内,其中,所述第一计数信息用于表征电子烟气流通道内的气压状况;所述第二预设数值范围位于第一预设数值范围内,所述第一预设数值范围用于判断电子烟是否处于抽吸状态;
    第二计数单元,其用于若第二计数判断单元的判断结果为是,则触发进行第二计数;
    第二计时单元,其用于若第二计数判断单元的判断结果为是,则触发进行第二计时;
    第二计时计数判断单元,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
    童锁控制单元,其用于若第二计时计数判断单元的判断结果为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管保持断开截止。
  14. 根据权利要求13所述的童锁控制电路,其特征在于,所述童锁控制电路位于同一个芯片上。
  15. 一种童锁控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至12中任一项所述的电子烟的童锁控制方法。
  16. 一种电子烟,其特征在于,包括:如权利要求13或14所述的童锁控制电路;
    还包括电池、功率MOS管和发热元件,所述发热元件和所述功率MOS管串联形成发热支路,所述发热支路的两端对应与电池的正、负极电连接,所述功率MOS管的控制端与所述童锁控制电路电连接;
    气流传感器,其与所述童锁控制电路的状态检测单元电连接,所述状态检测单元用于判 断所述电子烟的抽吸状态。
  17. 一种电子烟的童锁控制方法,所述电子烟包括功率MOS管和发热元件,所述发热元件和所述功率MOS管串联,当所述功率MOS管导通时所述发热元件加热以使烟油雾化,当所述功率MOS管断开截止时所述发热元件停止加热,其特征在于,所述童锁控制方法包括:
    接收电子烟气流通道内的当前气压信息;
    判断当前气压信息是否位于第二预设气压范围内,其中,所述第二预设气压范围位于第一预设气压范围内,所述第一预设气压范围用于判断电子烟是否处于抽吸状态;
    若判断结果为是,则触发进行第二计时并触发进行第二计数;
    判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
    若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
  18. 根据权利要求17所述的童锁控制方法,其特征在于,所述当前气压信息包括当前气压值、当前气压值与基准气压值的比值、当前气压值相对基准气压值的差值或者当前气压值相对基准气压值的差值与基准气压值的比值。
  19. 根据权利要求18所述的童锁控制方法,其特征在于,
    当所述当前气压信息为当前气压值时,所述第二预设气压范围的上限值小于第一预设气压范围的上限值;或者,
    当所述当前气压信息为当前气压值与基准气压值的比值时,所述第二预设气压范围的上限值小于第一预设气压范围的上限值,其中,所述基准气压值为电子烟处于未吸吹状态时其气流通道内的气压值;或者,
    当所述当前气压信息为当前气压值相对基准气压值的差值时,所述第二预设气压范围的下限值大于第一预设气压范围的下限值,其中,所述基准气压值为电子烟处于未吸吹状态时其气流通道内的气压值;或者,
    当所述当前气压信息为当前气压值相对基准气压值的差值与基准气压值的比值时,所述第二预设气压范围的下限值大于第一预设气压范围的下限值,其中,所述基准气压值为电子烟处于未吸吹状态时其气流通道内的气压值。
  20. 根据权利要求17所述的童锁控制方法,其特征在于,步骤触发进行第二计数具体包括:
    触发进行第三计时并触发进行第三计数;
    判断在第三预设时长内第三计数是否大于或等于第三预设数量,其中,第三预设数量大于或等于2;
    若判断结果为是,则触发进行第二计数。
  21. 根据权利要求20所述的童锁控制方法,其特征在于,在第三预设时长所述电子烟处于抽吸状态。
  22. 根据权利要求17所述的童锁控制方法,其特征在于,步骤接收电子烟气流通道内的当前气压信息具体包括:
    获取当前电容值、当前频率值、当前计数值、相对未吸吹状态时的当前电容变化量、相对未吸吹状态时的当前频率变化量或者相对未吸吹状态时的当前计数变化量;
    根据当前电容值查找预存的电容值-气压值表、根据当前频率值查找预存的频率值-气压值表、根据当前计数值查找预存的计数值-气压值表、根据当前电容变化量查找预存的电容变化量-气压值表、根据当前频率变化量查找预存的频率变化量-气压值表或者根据当前计数变化量查找预存的计数变化量-气压值表;
    获得电子烟气流通道内的当前气压信息并输出;
    接收当前气压信息。
  23. 根据权利要求17所述的童锁控制方法,其特征在于,所述童锁控制方法还包括:接收电子烟气流通道内的当前气压信息并判断当前气压信息是否位于第一预设气压范围内;
    若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
  24. 根据权利要求17所述的童锁控制方法,其特征在于,所述童锁控制方法还包括:
    接收当前计数值,其中,所述当前计数值用于表征电子烟气流通道内的气压状况;
    判断当前计数值是否位于第一预设数值范围内,其中,所述第一预设数值范围与所述第一预设气压范围对应;
    若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
  25. 根据权利要求17所述的童锁控制方法,其特征在于,在步骤触发进行第二计数之后还包括:获取电子烟由抽吸状态进入未抽吸状态的信息;
    触发第五计时且对第二计数进行锁定;
    判断第五计时是否大于或等于第五预设时长;
    若判断结果为是,则解除对第二计数的锁定。
  26. 根据权利要求17-25任意一项所述的童锁控制方法,其特征在于,所述童锁控制方法还包括:若在第二预设时长内第二计数小于第二预设数量,则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零;和/或,
    若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零;和/或,
    若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零;和/或,
    再次获取电子烟气流通道内的当前气压信息位于第二预设气压范围内的信息,第二计数加1。
  27. 根据权利要求17-25任意一项所述的童锁控制方法,其特征在于,还包括:
    接收电子烟气流通道内的当前气压信息;
    判断当前气压信息是否位于第四预设气压范围内,所述第四预设气压范围用于判断电子烟是否处于吹气状态;
    若判断结果为是,则触发进行第四计时并触发进行第四计数;
    判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
    若判断结果为是,则控制电子烟进入解锁状态,其中,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管持续导通或者间断导通。
  28. 根据权利要求17-25任意一项所述的童锁控制方法,其特征在于,
    所述第二预设时长的范围为1秒-5秒;和/或;
    所述第二预设数量大于或等于3。
  29. 一种童锁控制电路,应用于电子烟,其特征在于,包括:
    气压获取单元,其用于输出电子烟气流通道内的当前气压信息;
    第二气压判断单元,其用于接收当前气压信息,并用于判断当前气压信息是否位于第二预设气压范围内,其中,所述第二预设气压范围位于第一预设气压范围内,所述第一预设气压范围用于判断电子烟是否处于抽吸状态;
    第二计数单元,其用于若第二气压判断单元的判断结果为是,则触发进行第二计数;
    第二计时单元,其用于若第二气压判断单元的判断结果为是,则触发进行第二计时;
    第二计时计数判断单元,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
    童锁控制单元,其用于若第二计时计数判断单元的判断结果均为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管保持断开截止。
  30. 根据权利要求29所述的童锁控制电路,其特征在于,所述童锁控制电路位于同一个芯片上;和/或,
    所述童锁控制电路还包括状态检测单元,其用于与气流传感器电连接,其还用于与气压获取单元连接。
  31. 一种童锁控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器 上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求17至28中任一项所述的电子烟的童锁控制方法。
  32. 一种电子烟,其特征在于,包括:如权利要求29或30所述的童锁控制电路;
    还包括电池、功率MOS管和发热元件,所述发热元件和所述功率MOS管串联形成发热支路,所述发热支路的两端对应与电池的正、负极电连接,所述功率MOS管的控制端与所述童锁控制电路电连接。
  33. 一种电子烟的童锁控制方法,所述电子烟包括功率MOS管和发热元件,所述发热元件和所述功率MOS管串联,当所述功率MOS管导通时所述发热元件加热以使烟油雾化,当所述功率MOS管断开截止时所述发热元件停止加热,其特征在于,所述童锁控制方法包括:
    接收第一参数信息,其中,所述第一参数信息用于表征电子烟气流通道内的气压状况;
    判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
    若判断结果为是,则触发进行第二计时并触发进行第二计数;
    判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
    若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
  34. 根据权利要求33所述的童锁控制方法,其特征在于,所述第一参数信息包括当前电容值、当前频率值、当前计数值、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值。
  35. 根据权利要求34所述的童锁控制方法,其特征在于,
    当所述第一参数信息为当前电容值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,所述第二预设参数范围的下限值大于第一预设参数范围的下限值;或者,
    当所述第一参数信息为当前频率值或者当前频率值与基准频率值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值;或者,
    当所述第一参数信息为当前计数值或者当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值。
  36. 根据权利要求33所述的童锁控制方法,其特征在于,步骤触发进行第二计数具体包括:
    触发进行第三计时并触发进行第三计数;
    判断在第三预设时长内第三计数是否大于或等于第三预设数量,其中,第三预设数量大于或等于2;
    若判断结果为是,则触发进行第二计数。
  37. 根据权利要求36所述的童锁控制方法,其特征在于,在第三预设时长所述电子烟处于抽吸状态。
  38. 根据权利要求33所述的童锁控制方法,其特征在于,所述童锁控制方法还包括:
    接收第一参数信息;
    判断第一参数信息是否位于第一预设参数范围内;
    若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
  39. 根据权利要求33所述的童锁控制方法,其特征在于,在步骤触发进行第二计数之后还包括:
    获取电子烟由抽吸状态进入未抽吸状态的信息;
    触发第五计时且对第二计数进行锁定;
    判断第五计时是否大于或等于第五预设时长;
    若判断结果为是,则解除对第二计数的锁定。
  40. 根据权利要求33-39任意一项所述的童锁控制方法,其特征在于,所述童锁控制方法还包括:若在第二预设时长内第二计数小于第二预设数量,则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零;和/或,
    若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零;和/或,
    若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零;和/或,
    再次获取电子烟气流通道内的第一参数信息位于第二预设参数范围内的信息,第二计数加1。
  41. 根据权利要求33-39任意一项所述的童锁控制方法,其特征在于,还包括:
    接收第一参数信息;
    判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;
    若判断结果为是,则触发进行第四计时并触发进行第四计数;
    判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
    若判断结果为是,则控制电子烟进入解锁状态,其中,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管持续导通或者间断导通。
  42. 根据权利要求33-39任意一项所述的童锁控制方法,其特征在于,
    所述第二预设时长的范围为1秒-5秒;和/或;
    所述第二预设数量大于或等于3。
  43. 一种童锁控制电路,应用于电子烟,其特征在于,包括:
    状态检测单元,其用于与气流传感器电连接,其还用于输出第一参数信息;
    第二参数判断单元,其用于接收第一参数信息,并用于判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
    第二计数单元,其用于若第二参数判断单元的判断结果为是,则触发进行第二计数;
    第二计时单元,其用于若第二参数判断单元的判断结果为是,则触发进行第二计时;
    第二计时计数判断单元,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
    童锁控制单元,其用于若第二计时计数判断单元的判断结果均为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管保持断开截止。
  44. 根据权利要求43所述的童锁控制电路,其特征在于,所述童锁控制电路位于同一个芯片上。
  45. 一种童锁控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求33至42中任一项所述的电子烟的童锁控制方法。
  46. 一种电子烟,其特征在于,包括:如权利要求43或44所述的童锁控制电路;
    还包括电池、功率MOS管和发热元件,所述发热元件和所述功率MOS管串联形成发热支路,所述发热支路的两端对应与电池的正、负极电连接,所述功率MOS管的控制端与所述童锁控制电路电连接;
    气流传感器,其与所述童锁控制电路的状态检测单元电连接。
  47. 一种电子烟的童锁控制方法,所述电子烟包括功率MOS管和发热元件,所述发热元件和所述功率MOS管串联,当所述功率MOS管导通时所述发热元件加热以使烟油雾化,当 所述功率MOS管断开截止时所述发热元件停止加热,其特征在于,所述童锁控制方法包括:
    接收第一参数信息,其中,所述第一参数信息用于表征电子烟气流通道内的气压状况;
    判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
    若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
  48. 根据权利要求47所述的童锁控制方法,其特征在于,所述第一参数信息包括当前气压值、当前电容值、当前频率值、当前计数值、当前气压值与基准气压值的比值、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前气压值与基准气压值的差值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前气压值相对基准气压值的差值与基准气压值的比值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值。
  49. 根据权利要求48所述的童锁控制方法,其特征在于,
    当所述第一参数信息为当前气压值、当前频率值、当前计数值、当前气压值与基准气压值的比值、当前频率值与基准频率值的比值或者当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值;或者,
    当所述第一参数信息为当前电容值、当前电容值与基准电容值的比值、当前气压值与基准气压值的差值、当前电容值与基准电容值的差值、当前频率值与基准频率值的差值、当前计数值与基准计数值的差值、当前气压值相对基准气压值的差值与基准气压值的比值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,所述第二预设参数范围的下限值大于第一预设参数范围的下限值。
  50. 根据权利要求49所述的童锁控制方法,其特征在于,
    当所述第一参数信息为当前气压值、当前频率值或者当前计数值时,所述第二预设参数范围的上限值与第一预设参数范围的上限值的比值小于或等于85%;或者,
    当所述第一参数信息为当前电容值时,所述第二预设参数范围的下限值与第一预设参数范围的下限值的比值大于或等于115%;或者,
    当所述第一参数信息为当前气压值与基准气压值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于或等于85%;或者,
    当所述第一参数信息为当前电容值与基准电容值的比值时,所述第二预设参数范围的下限值大于或等于115%;或者,
    当所述第一参数信息为当前气压值相对基准气压值的差值与基准气压值的比值、当前电容值相对基准电容值的差值与基准振荡电容值的比值、当前频率值相对基准频率值的差值与基准频率值的比值或者当前计数值相对基准计数值的差值与基准计数值的比值时,所述第二预设参数范围的下限值大于或等于15%。
  51. 根据权利要求48所述的童锁控制方法,其特征在于,当所述第一参数信息为当前气压值时,步骤接收第一参数信息具体包括:
    获取当前电容值、当前频率值或者当前计数值;
    根据当前电容值查找预存的电容值-气压值表、根据当前频率值查找预存的频率值-气压值表或者根据当前计数值查找预存的计数值-气压值表;
    获得电子烟气流通道内的当前气压值并输出;
    接收第一参数信息。
  52. 根据权利要求47所述的童锁控制方法,其特征在于,所述童锁控制方法还包括:
    接收第一参数信息;
    判断第一参数信息是否位于第一预设参数范围内;
    若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
  53. 根据权利要求47-52任意一项所述的童锁控制方法,其特征在于,还包括:
    接收第一参数信息;
    判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;
    若判断结果为是,则触发进行第四计时并触发进行第四计数;
    判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
    若判断结果为是,则控制电子烟进入解锁状态,其中,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管持续导通或者间断导通。
  54. 一种童锁控制电路,应用于电子烟,其特征在于,包括:
    第二参数判断单元,其用于接收第一参数信息,并用于判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
    童锁控制单元,其用于若第二参数判断单元的判断结果均为是,则控制电子烟进入锁定状态,在锁定状态电子烟的功率MOS管保持断开截止。
  55. 根据权利要求54所述的童锁控制电路,其特征在于,所述童锁控制电路位于同一个芯片上;和/或,
    所述童锁控制电路还包括状态检测单元,其用于与气流传感器电连接,其还用于输出第一参数信息;和/或,
    所述童锁控制电路还包括状态检测单元和气压获取单元,所述状态检测单元用于与气流传感器电连接,所述状态检测单元还用于与气压获取单元连接,所述气压获取单元用于输出第一参数信息。
  56. 一种童锁控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求47至53中任一项所述的电子烟的童锁控制方法。
  57. 一种电子烟,其特征在于,包括:如权利要求54或55所述的童锁控制电路;
    还包括电池、功率MOS管和发热元件,所述发热元件和所述功率MOS管串联形成发热支路,所述发热支路的两端对应与电池的正、负极电连接,所述功率MOS管的控制端与所述童锁控制电路电连接。
  58. 一种电子烟的童锁控制方法,所述电子烟包括功率MOS管和发热元件,所述发热元件和所述功率MOS管串联,当所述功率MOS管导通时所述发热元件加热以使烟油雾化,当所述功率MOS管断开截止时所述发热元件停止加热,其特征在于,所述童锁控制方法包括:
    接收第一参数信息,其中,所述第一参数信息用于表征电子烟气流通道内的气压状况;
    判断第一参数信息是否位于第二预设参数范围内,其中,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
    若判断结果为是,则触发进行第二计时并触发进行第二计数;
    判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
    若判断结果为是,则控制电子烟进入解锁状态,在解锁状态所述电子烟处于抽吸状态时所述功率MOS管持续导通或者间断导通。
  59. 根据权利要求58所述的童锁控制方法,其特征在于,所述第一参数信息包括当前气压值、当前电容值、当前频率值、当前计数值、当前气压变化量、当前电容变化量、当前频率变化量、当前计数变化量、当前气压值与基准气压值的比值、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前气压变化量与基准气压值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值 的比值或者当前计数变化量与基准计数值的比值。
  60. 根据权利要求59所述的童锁控制方法,其特征在于,
    当所述第一参数信息为当前电容值、当前气压变化量、当前电容变化量、当前频率变化量、当前计数变化量、当前气压变化量与基准气压值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值时,所述第二预设参数范围的下限值大于第一预设参数范围的下限值;或者,
    当所述第一参数信息为当前气压值、当前频率值、当前气压值与基准气压值的比值或者当前频率值与基准频率值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值;或者,
    当所述第一参数信息为当前计数值或者当前计数值与基准计数值的比值时,所述第二预设参数范围的上限值小于第一预设参数范围的上限值。
  61. 根据权利要求58所述的童锁控制方法,其特征在于,步骤触发进行第二计数具体包括:
    触发进行第三计时并触发进行第三计数;
    判断在第三预设时长内第三计数是否大于或等于第三预设数量,其中,第三预设数量大于或等于2;
    若判断结果为是,则触发进行第二计数。
  62. 根据权利要求61所述的童锁控制方法,其特征在于,在第三预设时长所述电子烟处于抽吸状态。
  63. 根据权利要求58所述的童锁控制方法,其特征在于,所述童锁控制方法还包括:
    接收第一参数信息;
    判断第一参数信息是否位于第一预设参数范围内;
    若判断结果为是,则输出电子烟由未抽吸状态转为抽吸状态的信息。
  64. 根据权利要求58所述的童锁控制方法,其特征在于,在步骤触发进行第二计数之后还包括:获取电子烟由抽吸状态进入未抽吸状态的信息;
    触发第五计时且对第二计数进行锁定;
    判断第五计时是否大于或等于第五预设时长;
    若判断结果为是,则解除对第二计数的锁定。
  65. 根据权利要求58-64任意一项所述的童锁控制方法,其特征在于,所述童锁控制方法还包括:若在第二预设时长内第二计数小于第二预设数量,则维持电子烟原先的童锁状态,且第二计数置0,第二计时复位置零;和/或,
    若第二计时达到第二预设时长,则第二计数置零,且第二计时复位置零;和/或,
    若第二计时小于第二预设时长且第二计数达到第二预设数量,则第二计数置零,且第二计时复位置零;和/或,
    再次获取电子烟气流通道内的第一参数信息位于第二预设参数范围内的信息,第二计数加1。
  66. 根据权利要求58-64任意一项所述的童锁控制方法,其特征在于,还包括:
    接收第一参数信息;
    判断第一参数信息是否位于第四预设参数范围内,所述第四预设参数范围用于判断电子烟是否处于吹气状态;
    若判断结果为是,则触发进行第四计时并触发进行第四计数;
    判断在第四预设时长内第四计数是否大于或等于第四预设数量,其中,第四预设数量大于或等于2;
    若判断结果为是,则控制电子烟进入锁定状态,在锁定状态所述功率MOS管保持断开截止。
  67. 根据权利要求58-64任意一项所述的童锁控制方法,其特征在于,所述第二预设时长的范围为1秒-5秒;和/或;所述第二预设数量大于或等于3。
  68. 根据权利要求58-64任意一项所述的童锁控制方法,其特征在于,所述第一参数信息包括当前电容值、当前频率值、当前计数值、当前电容变化量、当前频率变化量、当前计数变化量、当前电容值与基准电容值的比值、当前频率值与基准频率值的比值、当前计数值与基准计数值的比值、当前电容变化量与基准电容值的比值、当前频率变化量与基准频率值的比值或者当前计数变化量与基准计数值的比值,所述电子烟包括状态检测单元、电容式气流传感器,所述状态检测单元用于与电容式气流传感器电连接,所述电容式气流传感器包括电容,所述电容位于气流通道内,步骤接收第一参数信息具体包括:接收状态检测单元输出的第一参数信息。
  69. 根据权利要求58-64任意一项所述的童锁控制方法,其特征在于,所述第一参数信息包括当前气压值、当前气压变化量、当前气压值与基准气压值的比值、当前气压变化量与基准气压值的比值,所述电子烟包括状态检测单元、电容式气流传感器,所述状态检测单元用于与电容式气流传感器电连接,所述电容式气流传感器包括电容,所述电容位于电子烟的气流通道内,步骤接收第一参数信息具体包括:
    通过状态检测单元获取当前电容值、当前频率值、当前计数值、相对未吸吹状态时的当前电容变化量、相对未吸吹状态时的当前频率变化量或者相对未吸吹状态时的当前计数变化量;
    根据当前电容值查找预存的电容值-气压值表、根据当前频率值查找预存的频率值-气压值表、根据当前计数值查找预存的计数值-气压值表、根据当前电容变化量查找预存的电容变化量-气压值表、根据当前频率变化量查找预存的频率变化量-气压值表或者根据当前计数变化量查找预存的计数变化量-气压值表;
    接收电子烟气流通道内的第一参数信息。
  70. 一种童锁控制电路,应用于电子烟,其特征在于,包括:
    第二参数判断单元,其用于接收第一参数信息,并用于判断第一参数信息是否位于第二预设参数范围内,其中,所述第一参数信息用于表征电子烟气流通道内的气压状况,所述第二预设参数范围位于第一预设参数范围内,所述第一预设参数范围用于判断电子烟是否处于抽吸状态;
    第二计数单元,其用于若第二参数判断单元的判断结果为是,则触发进行第二计数;
    第二计时单元,其用于若第二参数判断单元的判断结果为是,则触发进行计时;
    第二计时计数判断单元,其用于判断在第二预设时长内第二计数是否大于或等于第二预设数量,其中,第二预设数量大于或等于2;
    童锁控制单元,其用于若第二计时计数判断单元的判断结果均为是,则控制电子烟进入解锁状态,在解锁状态所述电子烟处于抽吸状态时功率MOS管持续导通或者间断导通。
  71. 根据权利要求70所述的童锁控制电路,其特征在于,所述童锁控制电路位于同一个芯片上;和/或,
    所述童锁控制电路还包括状态检测单元,其用于与气流传感器电连接,其还用于输出第一参数信息;和/或,
    所述童锁控制电路还包括状态检测单元和气压获取单元,所述状态检测单元用于与气流传感器电连接,所述状态检测单元还用于与气压获取单元连接,所述气压获取单元用于输出第一参数信息。
  72. 一种童锁控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求58至12中任一项所述的电子烟的童锁控制方法。
  73. 一种电子烟,其特征在于,包括:如权利要求70或71所述的童锁控制电路;
    还包括电池、功率MOS管和发热元件,所述发热元件和所述功率MOS管串联形成发热支路,所述发热支路的两端对应与电池的正、负极电连接,所述功率MOS管的控制端与所述童锁控制电路电连接。
PCT/CN2022/143781 2022-10-20 2022-12-30 一种童锁控制方法及童锁控制电路、装置、电子烟 WO2024082449A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202211289864 2022-10-20
CN202211289864.0 2022-10-20
CN202211289873.X 2022-10-20
CN202211289465.4 2022-10-20
CN202211289508 2022-10-20
CN202211292693 2022-10-20
CN202211289465 2022-10-20
CN202211289508.9 2022-10-20
CN202211289873 2022-10-20
CN202211292693.7 2022-10-20

Publications (1)

Publication Number Publication Date
WO2024082449A1 true WO2024082449A1 (zh) 2024-04-25

Family

ID=90736718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143781 WO2024082449A1 (zh) 2022-10-20 2022-12-30 一种童锁控制方法及童锁控制电路、装置、电子烟

Country Status (1)

Country Link
WO (1) WO2024082449A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017031662A1 (zh) * 2015-08-24 2017-03-02 惠州市吉瑞科技有限公司深圳分公司 一种电子烟雾化控制方法以及控制电路
US20180263283A1 (en) * 2017-03-15 2018-09-20 Canopy Growth Corporation System and method for an improved personal vapourization device
CN110037350A (zh) * 2019-04-30 2019-07-23 深圳麦克韦尔股份有限公司 一种电子雾化装置及其控制方法
US20200022411A1 (en) * 2018-06-29 2020-01-23 Mark Krietzman Child Resistant Vaporizer Devices
CN113100501A (zh) * 2021-04-15 2021-07-13 济南海马机械设计有限公司 一种电子烟控制方法及控制系统
CN113615882A (zh) * 2021-09-27 2021-11-09 中国烟草总公司郑州烟草研究院 一种防儿童开启的电子烟
CN114403511A (zh) * 2021-12-17 2022-04-29 深圳麦克韦尔科技有限公司 雾化装置的童锁控制方法、装置、存储介质、产品
CN115363256A (zh) * 2022-07-27 2022-11-22 无锡市稳先微电子有限公司 一种童锁控制电路、方法及电子烟

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017031662A1 (zh) * 2015-08-24 2017-03-02 惠州市吉瑞科技有限公司深圳分公司 一种电子烟雾化控制方法以及控制电路
US20180263283A1 (en) * 2017-03-15 2018-09-20 Canopy Growth Corporation System and method for an improved personal vapourization device
US20200022411A1 (en) * 2018-06-29 2020-01-23 Mark Krietzman Child Resistant Vaporizer Devices
CN110037350A (zh) * 2019-04-30 2019-07-23 深圳麦克韦尔股份有限公司 一种电子雾化装置及其控制方法
CN113100501A (zh) * 2021-04-15 2021-07-13 济南海马机械设计有限公司 一种电子烟控制方法及控制系统
CN113615882A (zh) * 2021-09-27 2021-11-09 中国烟草总公司郑州烟草研究院 一种防儿童开启的电子烟
CN114403511A (zh) * 2021-12-17 2022-04-29 深圳麦克韦尔科技有限公司 雾化装置的童锁控制方法、装置、存储介质、产品
CN115363256A (zh) * 2022-07-27 2022-11-22 无锡市稳先微电子有限公司 一种童锁控制电路、方法及电子烟

Similar Documents

Publication Publication Date Title
US10912332B2 (en) Electronic cigarette and control method thereof
US20190387804A1 (en) Electronic smoke apparatus
CN102793276B (zh) 电子烟芯片及电子烟
EP3120720A1 (en) Method for preventing a child from accidentally puffing an electronic cigarette
EP3127439A1 (en) Electronic cigarette with lung capacity detection function and control method
CN103734915B (zh) 一种限定使用寿命的电子烟及限定电子烟使用寿命的方法
JP5639176B2 (ja) 電子スモーク
CN110801055B (zh) 电子烟电路及电子烟
CN108294363A (zh) 电子烟及电子烟雾化器功率的控制方法
CN110037350B (zh) 一种电子雾化装置及其控制方法
CA3201693A1 (en) Smart valved holding chamber
EP3342442A1 (en) Aerosol generating system and method of controlling the operation of an aerosol generating system
CN111669982A (zh) 抽吸成分生成装置的电源单元、抽吸成分生成装置的电源单元中的已知电阻的电阻值的选择方法
CN110623310A (zh) 可控制剂量的电子烟及其控制方法
US20200057844A1 (en) Unlocking method for electronic cigarette, unlocking device using same and computer readable storage medium
CN115363256A (zh) 一种童锁控制电路、方法及电子烟
WO2024082449A1 (zh) 一种童锁控制方法及童锁控制电路、装置、电子烟
CN113100501B (zh) 一种电子烟控制方法及控制系统
CN210005908U (zh) 电子烟插拔检测控制机构及电子烟
CN111655060A (zh) 抽吸成分生成装置用的外部单元、抽吸成分生成系统、控制抽吸成分生成装置用的外部单元的方法以及程序
CN112021666A (zh) 电子烟电路及电子烟
CN115039924B (zh) 一种带童锁功能的电子烟电路
CN113243573A (zh) 防止重复注液使用的电子雾化设备及其控制方法
CN106094039A (zh) 电子雾化装置电路检测方法及装置
CN115336815A (zh) 防儿童误吸的气溶胶生成装置工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962624

Country of ref document: EP

Kind code of ref document: A1