WO2024080726A1 - 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 암 예방 및 치료용 약학 조성물 - Google Patents

자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 암 예방 및 치료용 약학 조성물 Download PDF

Info

Publication number
WO2024080726A1
WO2024080726A1 PCT/KR2023/015593 KR2023015593W WO2024080726A1 WO 2024080726 A1 WO2024080726 A1 WO 2024080726A1 KR 2023015593 W KR2023015593 W KR 2023015593W WO 2024080726 A1 WO2024080726 A1 WO 2024080726A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cancer
natural killer
killer cells
topoisomerase
Prior art date
Application number
PCT/KR2023/015593
Other languages
English (en)
French (fr)
Inventor
황도원
김신일
기영욱
Original Assignee
(주) 테라베스트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 테라베스트 filed Critical (주) 테라베스트
Publication of WO2024080726A1 publication Critical patent/WO2024080726A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a pharmaceutical composition for preventing and treating cancer containing natural killer cells and a topoisomerase inhibitor as active ingredients.
  • Cancer is currently one of the diseases causing the most deaths worldwide.
  • the age at which cancer occurs is gradually decreasing, while the average life expectancy is gradually extending, so the cancer incidence rate is expected to increase further.
  • Natural killer cells are morphologically cells with large granules in the cytoplasm, accounting for approximately 5 to 15% of lymphocytes in the blood. Natural killer cells are immune cells that represent the body's primary defense function (innate immune response) and form immune memory in the body. In addition, it plays an important role in antibody-dependent cellular cytotoxicity (ADCC), and has recently been found to have the ability to selectively kill cancer cells and protect against carcinogenesis, attracting attention as an anti-cancer immune cell treatment. . In particular, natural killer cell-based cell therapy has the advantage of having fewer side effects such as cytokine storm and not causing graft-versus-host disease compared to long-term T cell-based therapy. Therefore, research is underway to use the natural killer cells as an off-the-shelf allogeneic cell therapy, but the results are still insufficient (Liu et al. (2021) J Hematol Oncol., 14 :7).
  • the present inventor confirmed that the combined use of natural killer cells and a topoisomerase inhibitor showed improved anti-cancer activity compared to using them alone, thereby discovering the present invention. Completed.
  • one aspect of the present invention provides a pharmaceutical composition and kit for preventing and treating cancer containing natural killer cells and a topoisomerase inhibitor as active ingredients.
  • Another aspect of the present invention provides a method for preventing or treating cancer, comprising administering the pharmaceutical composition to a subject.
  • composition containing natural killer cells and a topoisomerase inhibitor according to the present invention as active ingredients showed cytotoxicity in lung cancer, ovarian cancer, and breast cancer cell lines.
  • the anticancer activity was more effective in the group treated with natural killer cells and a topoisomerase inhibitor compared to the group treated with natural killer cells alone or a topoisomerase inhibitor alone.
  • the composition according to the present invention will be useful as a cancer treatment agent.
  • Figure 1 shows ULBP by treatment with a topoisomerase inhibitor (SN-38, exatecan mesylate) in lung cancer cell line (A549), breast cancer cell line (SKBR3), and ovarian cancer cell line (NIH: OVCAR3, SKOV3).
  • SN-38 topoisomerase inhibitor
  • SKBR3 breast cancer cell line
  • NIH ovarian cancer cell line
  • OVCAR3, SKOV3 ovarian cancer cell line
  • Figures 2A to 2C show the topoisomerase inhibitor (SN-38, Ex. This diagram shows the results of confirming the change in expression of ULBP-2 due to satecan mesylate) treatment through flow cytometry.
  • Figure 3 shows the results of confirming the change in expression of ULBP-2 in ovarian cancer cell line (SKOV3) by treatment with a topoisomerase inhibitor (SN-38, exatecan mesylate) through flow cytometry (left) and qPCR. and graph.
  • Figure 4 is a diagram showing an experimental schedule for confirming the anticancer activity of a topoisomerase inhibitor (SN-38, exatecan mesylate) in a lung cancer cell line (A549).
  • SN-38 topoisomerase inhibitor
  • A549 lung cancer cell line
  • Figure 5 shows the cell survival rate after treatment with a topoisomerase inhibitor (SN-38, exatecan mesylate) in lung cancer cell line (A549) at different concentrations (1 ⁇ M, 10 ⁇ M) and time (24 h, 48 h).
  • SN-38 topoisomerase inhibitor
  • This graph shows the results measured through the MTS assay.
  • Figures 6a and 6b show lung cancer cell line (A549) treated with a topoisomerase inhibitor (SN-38, exatecan mesylate) at different concentrations (1 ⁇ M ( Figure 6a), 10 ⁇ M ( Figure 6b)).
  • SN-38 topoisomerase inhibitor
  • Figure 6b This is a graph showing the results of measuring cell viability through MTS assay.
  • Figure 7 is a diagram showing an experimental schedule for confirming the anticancer activity of a topoisomerase inhibitor (SN-38, exatecan mesylate) in an ovarian cancer cell line (SKOV3).
  • SN-38 topoisomerase inhibitor
  • SKOV3 ovarian cancer cell line
  • Figure 8 shows ovarian cancer cell line (SKOV3) treated with a topoisomerase inhibitor (SN-38, exatecan mesylate) at different concentrations (1 ⁇ M, 10 ⁇ M) and time (24 h, 48 h, 72 h). This is a graph showing the results of measuring cell viability using MTS assay.
  • SKOV3 ovarian cancer cell line
  • SN-38 topoisomerase inhibitor
  • Figure 9 is a diagram showing an experimental schedule to confirm the anticancer activity of the combination of natural killer cells (PBNK, EiNK) and topoisomerase inhibitor (SN-38, exatecan mesylate) in ovarian cancer cell line (SKOV3).
  • PBNK natural killer cells
  • EiNK induced pluripotent stem cell-derived natural killer cells.
  • Figures 10a and 10b show natural killer cells (PBNK, EiNK) and topoisomerase inhibitor (SN-38) in ovarian cancer cell line (SKOV3) at different concentrations (1 ⁇ M ( Figure 10a), 10 ⁇ M ( Figure 10b)).
  • PBNK natural killer cells
  • EiNK topoisomerase inhibitor
  • SN-38 topoisomerase inhibitor
  • Figures 11a and 11b show natural killer cells (PBNK, EiNK) and topoisomerase inhibitor (SN-38) in ovarian cancer cell line (SKOV3) at different concentrations (1 ⁇ M ( Figure 11a), 10 ⁇ M ( Figure 11b))
  • PBNK natural killer cells
  • EiNK induced pluripotent stem cell-derived natural killer cells
  • Figures 12a and 12b show natural killer cells (PBNK, EiNK) and topoisomerase inhibitor (exatecan mesylate) in ovarian cancer cell line (SKOV3) at different concentrations (1 ⁇ M ( Figure 12a), 10 ⁇ M ( Figure 12b) )) and after treatment by time (24h, 48h), the cell viability was confirmed through microscopic observation.
  • PBNK refers to peripheral blood natural killer cells
  • EiNK refers to induced pluripotent stem cell-derived natural killer cells.
  • Figures 13a and 13b show natural killer cells (PBNK, EiNK) and topoisomerase inhibitor (exatecan mesylate) in ovarian cancer cell line (SKOV3) by concentration (1 ⁇ M ( Figure 13a), 10 ⁇ M ( Figure 13b) )) and after treatment at different times (24h, 48h), this is a graph showing the results of measuring cell viability through MTS assay.
  • PBNK refers to peripheral blood natural killer cells
  • EiNK refers to induced pluripotent stem cell-derived natural killer cells.
  • Figure 14 is a breast cancer cell line (SKBR3) treated with natural killer cells (EiNK) and topoisomerase inhibitor (SN-38, exatecan mesylate, 1 ⁇ M) for 24 hours, and cell survival rate was measured using MTS assay.
  • EiNK natural killer cells
  • SN-38 topoisomerase inhibitor
  • Figure 15 shows the expression of MICA, MICB, ULBP-1, ULBP-2 and ULBP-3 in ovarian cancer cell lines (NIH: OVCAR3, SKOV3) by treatment with antibody-topoisomerase inhibitor conjugate (trastuzumab-deruxtecan).
  • This is a diagram showing the experimental schedule to confirm expression changes.
  • FIG. 16a to 16e show MICA (Figure 16a), MICB ( Figure 16b), and ULBP-1 by treatment with antibody-topoisomerase inhibitor conjugate (trastuzumab-deruxtecan) in ovarian cancer cell line (NIH: OVCAR3).
  • FIG. 16C a diagram showing the results of confirming expression changes of ULBP-2 (FIG. 16D) and ULBP-3 (FIG. 16E) through flow cytometry.
  • 17A to 17E show MICA (FIG. 17A), MICB (FIG. 17B), and ULBP-1 (FIG. 17B) by treatment with antibody-topoisomerase inhibitor conjugate (trastuzumab-deruxtecan) in ovarian cancer cell line (SKOV3).
  • 17c ULBP-2 (FIG. 17d), and ULBP-3 (FIG. 17e)
  • SKOV3 ovarian cancer cell line
  • FIG 18 is a diagram showing an experimental schedule to confirm the anticancer activity of the combination of natural killer cells (EiNK) and antibody-topoisomerase inhibitor conjugate (trastuzumab-deruxtecan) in ovarian cancer cell line (SKOV3).
  • EiNK refers to induced pluripotent stem cell-derived natural killer cells.
  • FIG 19 shows cell viability measured through MTS assay after treatment with natural killer cells (EiNK) and antibody-topoisomerase inhibitor conjugate (trastuzumab-deruxtecan) for 24 hours in an ovarian cancer cell line (SKOV3).
  • EiNK natural killer cells
  • trastuzumab-deruxtecan antibody-topoisomerase inhibitor conjugate
  • SKOV3 ovarian cancer cell line
  • Figure 20 is a diagram showing the results confirming the tumor growth inhibition effect by combined treatment with natural killer cells (PBNK) and topoisomerase II inhibitor (doxorubicin) in a lung cancer animal model.
  • PBNK natural killer cells
  • doxorubicin topoisomerase II inhibitor
  • One aspect of the present invention provides a pharmaceutical composition for preventing or treating cancer containing natural killer cells and a topoisomerase inhibitor as active ingredients.
  • NK cell natural killer cell
  • NK cell is a lymphoid cell that accounts for approximately 15% of peripheral blood lymphocytes and plays an important role in the innate immune response.
  • Natural killer cells activate dendritic cells and induce cytotoxic T lymphocytes (CTL) to respond specifically to tumors to eliminate tumor cells.
  • CTL cytotoxic T lymphocytes
  • Natural killer cells directly kill malignant tumors such as sarcoma, myeloma, carcinoma, lymphoma, and leukemia. Most natural killer cells present in the body of normal people exist in an inactive state and are activated in response to interferon or macrophage-derived cytokines.
  • Natural killer cells are hematopoietic cells, such as hematopoietic stems or progenitors, placental or umbilical cord derived stems, from any source, such as placental tissue, placental perfusate, umbilical cord blood, placental blood, peripheral blood, bone marrow, spleen, liver, etc. It may be produced from cells, induced pluripotent stem cells, or cells differentiated therefrom.
  • Natural killer cells of the present invention may be natural killer cells obtained from blood, or may be natural killer cells differentiated from stem cells or induced pluripotent stem cells.
  • stem cell refers to a relatively underdeveloped, undifferentiated cell that has the ability to differentiate into a specific tissue cell under appropriate conditions.
  • the stem cells can self-renew and generate daughter cells with the ability to maintain their own undifferentiated characteristics, and at the same time, they can generate daughter cells that differentiate into specific types of cells.
  • the stem cells include embryonic stem cells, adult stem cells, and induced pluripotent stem cells.
  • induced pluripotent stem cell refers to cells created to have pluripotency like embryonic stem cells by inducing dedifferentiation in somatic cells without pluripotency. Induced pluripotent stem cells can also be called pluripotent stem cells.
  • the induced pluripotent stem cells can be generated using somatic cells from a fetus, newborn, child, or adult.
  • the induced pluripotent stem cells may be derived from fibroblasts, keratinocytes, blood cells, or kidney epidermal cells.
  • the induced pluripotent stem cells may be produced by reprogramming somatic cells.
  • the induced pluripotent stem cells are all cells constituting one or more types of tissues or organs, or preferably three germ layers: endoderm (inner stomach lining, gastrointestinal tract, lung), mesoderm (muscle, bone, blood, genitourinary system), or Can differentiate into either ectoderm (epidermal tissue and nervous system).
  • the natural killer cells when the natural killer cells are derived from induced pluripotent stem cells, the natural killer cells can be produced by the following method.
  • a specific example is as provided in Korean Patent No. 10-2023-0043038;
  • iPSCs or iPSCs spheroids inoculating the induced pluripotent stem cells with iPSCs or iPSCs spheroids to form 0.5 to 20 colonies per 1 cm 2 of the cell culture vessel area and attaching and culturing them to produce iPSCs colonies;
  • One specific example of producing natural killer cells from the induced pluripotent stem cells of the present invention may be as follows:
  • the natural killer cells may be cells that use the expression of CD56 (i.e., CD56 positive) and the absence of CD3 (i.e., CD3 negative) as biomarkers.
  • the natural killer cells may be cells expressing CD56, CD45, CD7, or a combination thereof.
  • the natural killer cells may be activated natural killer cells expressing NKp30, NKp44, NKp46, or a combination thereof. Activated natural killer cells may be natural killer cells with improved killing ability.
  • the natural killer cells are not limited thereto, but may have the characteristics of natural killer cells presented in Korean Patent No. 10-2023-0043038.
  • the number of cells or spheroids inoculated per 1 cm 2 of the cell culture vessel area of the induced pluripotent stem cells is as described above. Additionally, the number of inoculated cells can be calculated by other methods. As a method of calculating the number of inoculated cells, the number of cells per ml of culture medium can be confirmed as the number of cells per 1 cm2.
  • the induced pluripotent stem cells can be cultured in a medium containing a ROCK inhibitor.
  • the ROCK inhibitor may be selected from the group consisting of Y-27632, Thiazovivin, Fasudil, GSK429286A, RKI-1447, H-1152, and Azaindole 1.
  • the induced pluripotent stem cells are cultured in a medium containing a ROCK inhibitor for about 10 minutes to about 1 week, about 30 minutes to about 6 days, about 1 hour to about 5 days, about 2 hours to about 4 days, about 3 hours to about 3 hours. It can be cultured for 3 days, about 6 hours to about 2 days, about 12 hours to about 2 days, or about 18 hours to about 1 day.
  • the induced pluripotent stem cells can be cultured using an adherent culture method.
  • Single cell induced pluripotent stem cells are attached to a cell culture vessel for about 1 day to about 2 weeks, about 2 days to about 13 days, about 3 days to about 12 days, about 4 days to about 11 days, about 5 days. It can be cultured for about 10 days, about 6 days to about 9 days, or about 7 days to about 8 days.
  • the induced pluripotent stem cell colony may be a mass of cells grown by adherent culture of a single induced pluripotent stem cell.
  • the induced pluripotent stem cell population may be cells having the same genetic information.
  • the number of colonies on the start date of differentiation from iPSCs colonies into mesoderm cells may be 1 to 20. Additionally, the total number of iPSCs on the starting day of differentiation from iPSCs colonies into mesoderm cells may be 0.5 to 1 ⁇ 10 6 cells per 1 cm 2 of the cell culture vessel area. At this time, the total number of stem cells on the differentiation start date is as described above.
  • meoderm cell refers to a layered cell group that exists between the ectoderm and endoderm generated during gastrulation, and can be found in flatworms and larger.
  • Mesodermal cells can differentiate into connective tissues such as muscle, bone, cartilage, and fat, including blood cells, vascular endothelial cells, smooth muscle, and myocardium.
  • the iPSCs may have a size of about 10 um to about 3,000 um per colony.
  • the iPSCs have a colony size of about 10 um to about 3,000 um, about 50 um to about 2,500 um, about 100 um to about 2,000 um, about 300 um to about 1,200 um, about 400 um to about 800 um, or about It may be 500 um to about 700 um. Preferably, it may be about 300 um to about 1,200 um, but is not limited thereto.
  • iPSCs colonies can be cultured in serum-free medium.
  • the iPSCs colony can be cultured in a medium capable of culturing stem cells.
  • the iPSCs colony consists of a glycogen synthase kinase-3 (GSK3) inhibitor, an activin-like receptor kinase 5 (ALK5) inhibitor, bone morphogenetic protein 4 (BMP4), stem cell factor (SCF), and vascular endothelial growth factor (VEGF). It can be cultured in a medium containing one or more selected from the group.
  • GSK3 (glycogen synthase kinase 3) inhibitors include CHIR-99021, SB216763, AT7519, CHIR-98014, TWS119, Tideglusib, SB415286, and BIO (6-bromoindirubin-3-oxime, 6-bromoindirubin-3' -oxime).
  • the ALK5 inhibitor may be selected from the group consisting of SB431542, Galunisertib, LY2109761, SB525334, SB505124, GW788388, and LY364947.
  • the iPSCs colony may be cultured in a medium containing CHIR-99021, BMP4, and VEGF, and then cultured in a medium containing SB431542, SCF, and VEGF.
  • the induced pluripotent stem cell population can be cultured in a medium containing CHIR-99021, SB431542, BMP4, SCF, and VEGF.
  • the iPSCs colonies are grown in the medium for about 1 hour to about 2 weeks, about 12 hours to about 2 weeks, about 1 day to about 2 weeks, about 2 days to about 13 days, about 3 days to about 12 days, about 4 days. It may be cultured for about 11 days, about 5 days to about 10 days, about 6 days to about 9 days, or about 7 days to about 8 days. Preferably, it can be cultured for about 2 to about 4 days, but is not limited thereto.
  • the mesodermal cells may be mesodermal stem cells.
  • hematopoietic stem cell may be used interchangeably with “hematopoietic progenitor cell” or “hematopoietic progenitor cell,” and refers to a progenitor cell capable of differentiating into a hematopoietic cell. That is, a hematopoietic stem cell.
  • HSC hematopoietic stem cell
  • myeloid monocytes and macrophages
  • granulocytes neutrils, basophils, eosinophils, and mast cells
  • erythrocytes neutrils, basophils, eosinophils, and mast cells
  • erythrocytes megakaryocytes/platelets
  • dendritic cells lymphoid
  • the hematopoietic stem cells can express CD34 and CD133 and are negative for CD38 expression.
  • the hematopoietic progenitor cells may include CD34+/CD45+ hematopoietic progenitor cells and CD34+/CD45+/CD43+ hematopoietic progenitor cells.
  • the mesoderm cells can be cultured in serum-free medium. Additionally, the mesoderm cells may be cultured in a medium containing stem cell factor (STF), FMS-like tyrosine kinase 3 ligand (FLT3L), or a combination thereof.
  • STF stem cell factor
  • FLT3L FMS-like tyrosine kinase 3 ligand
  • the mesodermal cells may survive for about 1 day to about 2 weeks, about 2 days to about 13 days, about 3 days to about 12 days, about 4 days to about 11 days, about 5 days to about 10 days, about 6 days to about 9 days. It can be cultured for one day or about 7 to about 8 days. Preferably, it can be cultured for about 2 to about 8 days, but is not limited thereto.
  • the hematopoietic stem cells can be cultured in serum-free medium. Additionally, the hematopoietic stem cells may be cultured in a medium containing stem cell factor (STF), FMS-like tyrosine kinase 3 ligand (FLT3L), or a combination thereof.
  • STF stem cell factor
  • FLT3L FMS-like tyrosine kinase 3 ligand
  • the hematopoietic stem cells may be cultured in a medium containing interleukin (IL)-7, IL-15, or a combination thereof.
  • the hematopoietic stem cells may be cultured in a medium containing STF, FLT3L, IL-7, IL-15, or a combination thereof.
  • the hematopoietic stem cells survive for about 1 day to about 3 months, about 5 days to about 2 months, about 1 week to about 2 months, about 2 weeks to about 2 months, about 3 weeks to about 2 months, about 1 month to about 2 months. months, about 1 month to about 7 weeks, about 1 month to about 6 weeks, about 1 month to about 5 weeks, or about 5 weeks to about 6 weeks (e.g., about 36 days).
  • it can be cultured for about 1 day to about 26 days or about 1 day to about 48 days, but is not limited thereto.
  • the hematopoietic stem cells can be co-cultured with autologous supporting cells.
  • the term “feeder cell” refers to a cell that is co-cultured with a second type of cell and provides growth factors and nutrients so that the second type of cell can grow.
  • the support cells may optionally be derived from the same or different species as the cells they support. For example, certain types of human cells, including stem cells, can be supported by mouse embryonic fibroblasts and cultures of apoptotic mouse embryonic fibroblasts.
  • the support cells may be human-derived support cells such as human skin fibroblasts or human embryonic stem cells.
  • supporting cells can be inactivated through treatment with irradiation or anti-cell division agents such as mitomycin. Through the above inactivation, when co-cultured with a second type of cell, differentiation and growth of the second type of cell can be controlled by producing and secreting cellular metabolites while cell division is halted.
  • the supporting cells may be autologous supporting cells.
  • the autologous support cells of the present invention may be cells that play a role in regulating differentiation and growth from hematopoietic stem cells to natural killer cells.
  • the support cells may be cells that play a role in regulating the proliferation and activity of differentiated natural killer cells.
  • “Autologous supporting cells” of the present invention include cells induced to differentiate into mesoderm from induced pluripotent stem cells.
  • the induced pluripotent stem cell population may include all cells that are not differentiated into hematopoietic stem cells and are attached to the container among cells induced to differentiate into hematopoietic stem cells, but is not limited thereto.
  • CD56/CD45 double positive cells are about 40% or more, about 45% or more, about 50% or more, about 55% or more, about 60% or more, about 65% or more, about 70% or more, about It may be at least 75%, at least about 80%, at least about 85%, at least about 95%, at least about 97%, or at least about 99%.
  • CD56/NKp30 double positive cells are about 40% or more, about 45% or more, about 50% or more, about 55% or more, about 60% or more, about 65% or more, about 70% or more, about It may be at least 75%, at least about 80%, at least about 85%, at least about 95%, at least about 97%, or at least about 99%.
  • CD56/NKp44 double positive cells are about 40% or more, about 45% or more, about 50% or more, about 55% or more, about 60% or more, about 65% or more, about 70% or more, about It may be at least 75%, at least about 80%, at least about 85%, at least about 95%, at least about 97%, or at least about 99%.
  • CD56/NKp46 double positive cells are about 30% or more, about 35% or more, about 40% or more, about 45% or more, about 50% or more, about 55% or more, about 60% or more, about It may be at least 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 95%, at least about 97%, or at least about 99%.
  • CD56/CD3 double positive cells may be about 5% or less, about 4% or less, about 3% or less, about 2% or less, or about 1% or less.
  • the method can be performed in vitro.
  • the medium may be a known medium used in cell culture or a modified medium thereof.
  • EiNK Natural killer cells differentiated from iPSCs as described above were referred to as “EiNK”.
  • topoisomerase is an enzyme that acts on DNA relaxation in processes including DNA replication, transcription, and repair.
  • DNA has a double helix structure, and stability is maintained through this structure.
  • the double helix structure causes twisting of DNA, and during replication, transcription, and repair processes, this unique twist hinders the progress.
  • Topoisomerase cleaves and rotates the phosphate bonds of DNA in front of the replication fork to relieve the kink. During this process, excessive twists are released, and the cut DNA is also recombined. Topoisomerases are classified into two types depending on the method of cutting the DNA strand.
  • Type 1 topoisomerase (topoisomerase I) instantly creates a single-strand nick in the DNA substrate and changes the topology of the DNA, and type 2 topoisomerase (topoisomerase II) nicks all double strands of DNA. After cutting, the phase of the DNA is changed.
  • the topoisomerase inhibitor may inhibit the activity of type 1 topoisomerase. Additionally, the topoisomerase inhibitor may inhibit the activity of type 2 topoisomerase.
  • the topoisomerase inhibitor is any one NKG2D ligand selected from the group consisting of ULBP-1, ULBP-2, ULBP-3, ULBP-4, ULBP-5, ULBP-6, MICA and MICB in cancer cells.
  • NKG2D ligand selected from the group consisting of ULBP-1, ULBP-2, ULBP-3, ULBP-4, ULBP-5, ULBP-6, MICA and MICB in cancer cells.
  • ULBP-1 (UL16 binding protein 1) is an NKG2D ligand, which is an immune system activation receptor for NK cells and T cells. When bound to NKG2D, it binds to NKG2D, including JAK2, STAT5, ERK, and PI3K kinases/Akt. Several signaling pathways are activated.
  • ULBP-2 (UL16 binding protein 2) is a cell surface glycoprotein.
  • ULBP-2 is a ligand for the NKG2D receptor of natural killer cells, and binds to NKG2D to induce the activity of natural killer cells.
  • ULBP-3 (UL16 binding protein 3) is one of several related ligands of the NKG2D receptor found on primary NK cells, and binding to NKG2D triggers several signaling pathways, including JAK2, STAT5, and ERK pathways. The path is activated.
  • ULBP-4 (UL16 binding protein 4) is a novel ligand for NKG2D, and unlike other ULBPs, which are glycosylphosphatidylinositol linked proteins (GPI-linked proteins), it has a transmembrane domain and a cytoplasmic domain. It contains and, when bound to NKG2D, mediates increased cytotoxic activity by NK cells.
  • GPI-linked proteins glycosylphosphatidylinositol linked proteins
  • ULBP-5 (UL16 binding protein 5) is one of several related ligands of the NKG2D receptor that functions as an activating receptor in innate and adaptive immunity.
  • ULBP-5 contains a C-terminal transmembrane domain and a cytoplasmic domain, but proteolytic processing removes these domains and is then linked to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor.
  • GPI glycosylphosphatidylinositol
  • ULBP-6 (UL16 binding protein 6)
  • RAETL1 is a GPI-anchored glycoprotein belonging to the MHC-I family of the immunoglobulin superfamily (IgSF), and binding to NKG2D activates several signaling pathways, including JAK2, STAT5, ERK, and PI3K kinase/Akt, leading to the production of cytokines and chemokines. is created.
  • MICA MHC class I polypeptide-related sequence A
  • MICB MHC class I polypeptide-related sequence B
  • the topoisomerase inhibitor can be used to enhance the activity of natural killer cells and enhance the sensitivity of natural killer cells to cancer cells. Additionally, in the present invention, the topoisomerase inhibitor can be used to maximize anticancer activity by enhancing the binding of cancer cells and natural killer cells.
  • topoisomerase inhibitor may further include an antibody or fragment thereof.
  • antibody refers to an immunoglobulin (Ig) molecule that reacts immunologically with a specific antigen, and refers to a protein molecule that acts as a receptor that specifically recognizes the antigen, and refers to a whole antibody and It is a concept that encompasses all antibody fragments.
  • Ig immunoglobulin
  • the antibody or fragment thereof may be a monoclonal antibody, polyclonal antibody, single domain antibody, single chain antibody, multispecific antibody, human antibody, or humanized antibody.
  • (humanized) antibody, chimeric antibody, intrabody, Fv, scFv, Fv linked by disulfide bond (di-scFv), Fab fragment, F(ab') 2 fragment and any of the above epitopes (epitope) may include a binding fragment, but is not limited thereto.
  • the antibody or fragment thereof includes HER2 (human epidermal growth factor receptor 2), HER3 (human epidermal growth factor receptor 3), Trop2, GCC (guanyl cyclase C), CA19-9 (carbohydrate antigen 19-9), and gpA33.
  • the antigen is a tumor associated antigen (TAA), which refers to a protein that is specifically overexpressed in tumor cells compared to normal cells.
  • TAA tumor associated antigen
  • the antigen is not particularly limited as long as it is specifically overexpressed in tumor cells.
  • Her2/neu human epidermal growth factor receptor 2
  • tyrosine kinase receptor also known as ErbB2 or CD340 (cluster of differentiation 340).
  • Her2/neu regulates cell proliferation through activating PI3K/AKT. It is overexpressed in metastatic breast cancer and ovarian cancer, and is known to cause anticancer drug resistance.
  • Her2/neu may be included without limitation as long as it is derived from mammals, including humans, primates such as monkeys, and rodents such as rats and mice. Preferably it may be human Her2/neu.
  • the amino acid sequence and polynucleotide sequence for the Her2/neu protein can be obtained from known databases such as the GenBank of the National Institutes of Health (NCBI).
  • NCBI National Institutes of Health
  • it may be composed of a sequence in which one or several amino acids of the protein are added, deleted, or substituted.
  • Her3 human epidermal growth factor receptor 3
  • Her3 forms homo or hetero dimerization to regulate the activity of signaling pathways involved in cell differentiation, migration, proliferation and survival.
  • Her3 monomers mainly exist in an inactivated form, and upon binding to a ligand, they form dimers and are activated by phosphorylation.
  • Her3 is known to lack autophosphorylation activity and thus acts by forming a heterodimer with other Her family members capable of autophosphorylation, such as Her1 (EGFR), Her2 (ErbB2), or Her4 (ErbB2).
  • Her2-Her3 heterodimer is the most active heterodimer and strongly activates the RAS/RAF/mitogen-activated protein kinase (MAPK) and PI3K/AKT signaling pathways, including cell differentiation, migration, proliferation, and survival. Controls anticancer drug resistance and metastasis in cancer cells.
  • Heregulin (NRG-1) and NRG-2 are known ligands for Her3.
  • Her3 may be included without limitation as long as it is derived from mammals, including humans, primates such as monkeys, and rodents such as rats and mice. Preferably it may be human Her3. Additionally, the amino acid sequence and polynucleotide sequence for the Her3 protein can be obtained from known databases such as the GenBank of the National Institutes of Health (NCBI). In addition, if it has the same activity as the protein or the gene encoding the Her3 on the chromosome is the same, it may be composed of a sequence in which one or several amino acids of the protein are added, deleted, or substituted.
  • Trop2 tumor-associated calcium signal transducer 2
  • GA733-1 gastrointestinal antigen 733-1
  • EGP-1 epidermal glycoprotein-1
  • M1S1 membrane component surface marker 1
  • the TACSTD2 is a gene without an intron and encodes a cancer-related antigen defined by GA733, a monoclonal antibody.
  • the antigen is a group containing two or more type I membrane proteins that transmit intracellular calcium signals and act as cell surface receptors.
  • Trop2 is involved in various intracellular cell signaling processes and is known to be overexpressed in several carcinomas. In particular, overexpression of Trop2 in pancreatic cancer, hilar cholangiocarcinoma, cervical cancer, and stomach cancer has been reported to be correlated with poor prognosis.
  • Trop2 may be included without limitation as long as it is derived from mammals, including humans, primates such as monkeys, and rodents such as rats and mice. Preferably it may be human Trop2. Additionally, the amino acid sequence and polynucleotide sequence for the Trop2 protein can be obtained from known databases such as the GenBank of the National Institutes of Health (NCBI). In addition, if it has the same activity as the protein or the gene encoding the Trop2 on the chromosome is the same, it may be composed of a sequence in which one or several amino acids of the protein are added, deleted, or substituted.
  • the antibody or fragment thereof; And topoisomerase inhibitors can be used in the form of antibody-drug conjugates.
  • the “antibody-drug conjugate (ADC)” is a therapeutic agent that exhibits high anti-cancer effects by chemically combining an antibody and a drug.
  • the antibody or fragment thereof; And the topoisomerase inhibitor may be linked through a linker.
  • a drug may be bound to an antibody by combining a thiol group present in the light or heavy chain of the antibody with a reactive group present in the linker.
  • an example of the reactive group of the linker may be a maleimide group.
  • the linker can be bound to the cysteine location of the antibody.
  • the antibody or fragment thereof; And the antibody-drug conjugate comprising topoisomerase may have the structure of the following structural formula I:
  • Abs include HER2 (human epidermal growth factor receptor 2), HER3 (human epidermal growth factor receptor 3), Trop2, GCC (guanyl cyclase C), CA19-9 (carbohydrate antigen 19-9), gpA33 (glycoprotein A33), and MUC1 ( mucin 1), CEA (carcinoembryonic antigen), IGF1R (insulin-like growth factor 1 receptor), DLL3 (delta-like protein 3), DLL4 (delta-like protein 4), EGFR (epidermal growth factor receptor), GPC3 (glypican) 3), c-MET, VEGFR1 (vascular endothelial growth factor receptor 1), VEGFR2 (vascular endothelial growth factor receptor 2), nectin 4, Liv 1, GPNMB (glycoprotein NMB), PSMA (prostate specific membrane antigen), CA9 (carbonic acid) anhydrase IX), ETBR (endothelin B receptor), STEAP1 (six transmembrane epi
  • L is a linker or direct bond
  • D is a topoisomerase inhibitor
  • n is an integer from 1 to 10.
  • HER2 human epidermal growth factor receptor 2
  • HER3 human epidermal growth factor receptor 3
  • Trop2 GCC (guanyl cyclase C), CA19-9 (carbohydrate antigen 19-9), gpA33 (glycoprotein A33), MUC1 ( mucin 1)
  • CEA carcinoembryonic antigen
  • IGF1R insulin-like growth factor 1 receptor
  • DLL3 delta-like protein 3
  • DLL4 delta-like protein 4
  • EGFR epipidermal growth factor receptor
  • GPC3 glypican 3
  • VEGFR1 vascular endothelial growth factor receptor 1
  • VEGFR2 vascular endothelial growth factor receptor 2
  • nectin 4 Liv 1, GPNMB (glycoprotein NMB), PSMA (prostate specific membrane antigen)
  • CA9 carbonic acid
  • ETBR endothelin B receptor
  • STEAP1 ix transmembrane epidermal growth factor epidermal growth
  • linker refers to a component of an antibody-drug conjugate that connects an antibody or fragment thereof to a drug (drug or payload) through a chemical bond.
  • the linker can covalently bind an antibody and a drug.
  • the linker may be a cleavable linker or a non-cleavable linker.
  • non-cleavable linker refers to a linker in which the drug is released through catabolism by cytoplasmic or lysosomal hydrolases after the antibody-drug conjugate is internalized in the target cell.
  • the maleimide linker may be, for example, a maleimidocaproyl (MC) linker or a succimidyl 4-(N-aleimidomethyl)cyclohexane-1-carboxylate (SMCC) linker.
  • MC maleimidocaproyl
  • SMCC succimidyl 4-(N-aleimidomethyl)cyclohexane-1-carboxylate
  • cleavable linker refers to a linker in which the drug is released by cleavage of the antibody-drug conjugate.
  • the truncated linkers can be classified according to the principle by which cleavage occurs.
  • the linker may be chemically cleavable or enzymatically cleavable.
  • the chemically cleavable linker may be an acid-labile linker or a reducible linker.
  • the term "acid-labile linker” refers to a linker that is stable at neutral pH, such as blood, but is cleaved by acid hydrolysis in an acidic environment (pH 5 to 6) such as the cancer cell microenvironment, lysosomes, or endosomes. It means linker.
  • the acid-labile linker includes a hydrazone linker or an ester linker.
  • reducible linker refers to a linker that is reduced by a reducing substance and undergoes cleavage.
  • the reducible linker may be a disulfide linker.
  • enzyme-cleavable linker refers to a linker that is cleaved by reducing substances within cells.
  • the enzyme-cleavable linker may be a peptide-based linker or a specific enzyme-based linker.
  • peptide-based linker refers to a linker that is cleaved by an enzyme that is relatively present in cells and includes a specific peptide bond cleavage site.
  • the peptide-based linker may be a linker containing one or more binding sites selected from the group consisting of valine-citruline, valine-alanine, and phenylalanine-glycine. In one embodiment, it may be one or more selected from the group consisting of a valine-citrulline linker, a valine-alanine linker, and a phenylalanine-glycine linker.
  • the term “specific enzyme-based linker” refers to a linker designed to be cleaved by a specific enzyme.
  • the specific-enzyme-based linker is cleaved by one or more enzymes selected from the group consisting of ⁇ -galactoside, ⁇ -glucuronide, and phosphodiester. It could be.
  • the specific-enzyme-based linker may be one or more selected from the group consisting of a ⁇ -galactoside linker, a ⁇ -glucuronide linker, and a phosphodiester linker.
  • the linker is a peptide-based linker and may be a linker containing phenylalanine-glycine.
  • it may be the MC-GGFG-glycolic acid linker of Formula 1 below, or it may have some structures substituted.
  • the antibody-drug conjugate may be an [anti-Her2/neu antibody]-[deruxtecan (exatecan derivative)] conjugate. More specifically, the antibody-drug conjugate may be Enhertu® (trastuzumab-deruxtecan).
  • the antibody-drug conjugate may be an [anti-Her3 antibody]-[deruxtecan (exatecan derivative)] conjugate. More specifically, the antibody-drug conjugate may be U3-1402 (patritumab-deruxtecan).
  • the antibody-drug conjugate may be an [anti-Trop2 antibody]-[deruxtecan (exatecan derivative)] conjugate. More specifically, the antibody-drug conjugate may be DS-1602 (datopotamab-deruxtecan).
  • the linker is an acid-labile linker and may be CL2A of Formula 2 below.
  • CL2A is a cleavable polyethylene glycol (PEG8, hylene glycol 8) and triazole-containing PABC (p-aminocarbamate)-peptide-mc linker. CL2A is cleaved through pH sensitivity and binds to antibodies at cysteine residues via disulfide bonds.
  • the linker may contain polyethylene glycol in some of its structures.
  • the antibody-drug conjugate may be an [anti-Trop2 antibody]-[SN-38] conjugate. More specifically, the antibody-drug conjugate may be Trodelvy® (sacituzumab-govitecan).
  • the pharmaceutical composition containing natural killer cells and topoisomerase inhibitors of the present invention as active ingredients can be used for the prevention or treatment of cancer.
  • the natural killer cells and topoisomerase inhibitors are the same as described above.
  • cancer refers to the aggressive nature of cells dividing and proliferating in defiance of normal growth limits, the invasive nature of infiltrating surrounding tissues, and the ability to spread to other parts of the body. It refers to a general term for diseases caused by cells with metastatic characteristics, and is used in the same sense as malignant tumor.
  • the above cancers include stomach cancer, liver cancer, lung cancer, non-small cell lung cancer, colon cancer, bladder cancer, bone cancer, blood cancer, breast cancer, melanoma, thyroid cancer, parathyroid cancer, bone marrow cancer, rectal cancer, throat cancer, larynx cancer, esophagus cancer, pancreatic cancer, tongue cancer, skin cancer, It may be selected from the group consisting of sinus tumor, uterine cancer, head or neck cancer, gallbladder cancer, oral cancer, anal cancer, colon cancer, and central nervous system tumor, but is not limited thereto.
  • the cancer may be a cancer with increased expression of Her2/neu or Trop2.
  • the “treatment” means inhibiting or preventing the growth of cancer cells or tissues, which reduces cancer growth and metastasis compared to when not treated or treated, and reduces resistance to anticancer drugs, thereby increasing the therapeutic effect. It is a concept that also includes making it more effective.
  • the cancer metastasis refers to the process by which tumor (cancer) cells spread to distant parts of the body, and "resistance to anticancer drugs” or “anticancer drug resistance” refers to the initial stage of treatment when treating cancer patients using anticancer drugs. This means that there is no treatment effect or that the cancer treatment effect is initially effective but the cancer treatment effect is lost during the continuous treatment process.
  • Prevention refers to all actions that inhibit the occurrence of cancer or delay its onset by administering the pharmaceutical composition.
  • natural killer cells and topoisomerase inhibitors which are active ingredients of the pharmaceutical composition
  • effective amount refers to the amount of active ingredient that can induce an effect.
  • effective amounts can be determined experimentally within the scope of the ordinary ability of those skilled in the art.
  • the pharmaceutical composition of the present invention contains the antibody or fragment thereof as an active ingredient in an amount of about 0.1% to about 90% by weight, specifically about 0.5% by weight to about 75% by weight, and more specifically about 1% by weight, based on the total weight of the composition. It may contain from % to about 50% by weight.
  • “enhanced efficacy” e.g., improvement in efficacy
  • improved efficacy measured by comparing parameters such as clearance rate and treatment or amelioration of cancer disease in test animals or human subjects. It can be.
  • the pharmaceutical composition of the present invention may contain a conventional, non-toxic pharmaceutically acceptable carrier that is formulated into a preparation according to a conventional method.
  • the pharmaceutically acceptable carrier may be any carrier that is a non-toxic material suitable for delivery to a patient. Distilled water, alcohol, fats, waxes and inert solids may be included as carriers. Pharmacologically acceptable adjuvants (buffers, dispersants) may also be included in the pharmacological composition.
  • the term “pharmaceutically acceptable carrier” refers to a carrier or diluent that does not irritate living organisms and does not inhibit the biological activity and properties of the administered compound.
  • Acceptable pharmaceutical carriers in compositions formulated as liquid solutions include those that are sterile and biocompatible, such as saline solution, sterile water, Ringer's solution, buffered saline solution, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and One or more of these ingredients can be mixed and used, and other common additives such as sweeteners, solubilizers, wetting agents, emulsifiers, isotonic agents, absorbents, antioxidants, preservatives, lubricants, fillers, buffers, and bacteriostatic agents are added as needed. can do.
  • compositions of the present invention can be prepared in a variety of formulations for parenteral administration (e.g., intramuscular, intravenous, or subcutaneous injection).
  • parenteral administration e.g., intramuscular, intravenous, or subcutaneous injection.
  • the pharmaceutical composition of the present invention can be formulated in the form of injections, transdermal administration, nasal inhalation, and suppositories along with a suitable carrier according to methods known in the art.
  • injectable preparations include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations, and suppositories.
  • Non-aqueous solvents and suspensions include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable esters such as ethyl oleate.
  • injectables may contain conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifiers, stabilizers, preservatives, etc.
  • the antibody or composition of the present invention may be administered to an individual in a therapeutically effective or pharmaceutically effective amount.
  • the term "administration” means introducing a predetermined substance into an individual by an appropriate method, and the composition may be administered through any general route as long as it can reach the target tissue. . It may be administered intraperitoneally, intravenously, intramuscularly, subcutaneously, intradermally, topically, intranasally, or rectally, but is not limited thereto.
  • the “therapeutically effective amount” or “pharmaceutically effective amount” refers to the amount of a composition effective in preventing or treating a target disease, which is sufficient to treat the disease at a reasonable benefit/risk ratio applicable to medical treatment and has no side effects. It means an amount that does not cause any damage.
  • the level of the effective amount is determined by factors including the patient's health status, type and severity of the disease, activity of the drug, sensitivity to the drug, method of administration, time of administration, route of administration and excretion rate, treatment period, drugs combined or used simultaneously, and It may be determined based on factors well known in the medical field.
  • the therapeutically effective amount refers to the amount of drug effective in treating cancer.
  • the dosage of the composition of the present invention may vary depending on the patient's age, gender, and weight.
  • the natural killer cells are about 1 ⁇ 10 1 to about 1 ⁇ 10 2 cells, about 1 ⁇ 10 1 to about 1 ⁇ 10 3 cells, about 1 ⁇ 10 1 to about 1 ⁇ 10 4 cells per kg of body weight, about 1 ⁇ 10 1 to about 1 ⁇ 10 5 cells, about 1 ⁇ 10 1 to about 1 ⁇ 10 6 cells, about 1 ⁇ 10 1 to about 1 ⁇ 10 7 cells, about 1 ⁇ 10 1 to about 1 ⁇ 10 8 cells
  • about 1 ⁇ 10 1 to about 1 ⁇ 10 9 cells may be administered daily or every other day, or may be administered once to three times a day.
  • the topoisomerase inhibitor may be administered in an amount of about 0.1 mg to about 100 mg or about 0.5 mg to about 20 mg per kg of body weight every day or every other day, or divided into one to three times a day.
  • the topoisomerase inhibitor when the topoisomerase inhibitor is administered in the form of an antibody-drug conjugate conjugated with an antibody, the antibody-drug conjugate is administered in an amount of about 0.1 mg to about 100 mg or about 0.5 mg to about 20 mg per kg of body weight per day.
  • it can be administered every other day or divided into 1 to 3 doses per day.
  • the scope of the present invention is not limited thereto.
  • the natural killer cells and topoisomerase inhibitors may be administered simultaneously or sequentially. Natural killer cells, topoisomerase inhibitors, and administration are the same as described above.
  • the natural killer cells and the topoisomerase inhibitor when administered simultaneously, the natural killer cells and the topoisomerase may be mixed and administered as a mixture. Alternatively, it can be administered by attaching a topoisomerase inhibitor to natural killer cells. At this time, the topoisomerase inhibitor can be conjugated to natural killer cells in the form of nanoparticles.
  • the topoisomerase inhibitor may be administered after the natural killer cells are administered. Additionally, natural killer cells can be administered after administration of a topoisomerase inhibitor. At this time, natural killer cells and topoisomerase inhibitors may be administered continuously or at regular time intervals.
  • the “individual” may be, but is not limited to, a mammal that has developed or may develop cancer. Preferably, it may be a human.
  • the pharmaceutical composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered singly or multiple times.
  • the other therapeutic agent may additionally include any compound or natural extract whose safety has already been verified and which is known to have anticancer activity in order to increase or reinforce anticancer activity. Considering all of the above factors, it is important to administer an amount that can achieve the maximum effect with minimal or no side effects, and this can be easily determined by a person skilled in the art.
  • Another aspect of the present invention provides the use of a pharmaceutical composition containing natural killer cells and a topoisomerase inhibitor as active ingredients for preparing a drug for preventing or treating cancer.
  • Natural killer cells, topoisomerase inhibitors, pharmaceutical compositions, cancer, prevention and treatment are the same as described above.
  • Another aspect of the present invention provides a method for preventing or treating cancer, comprising administering to a subject a pharmaceutical composition containing natural killer cells and a topoisomerase inhibitor as active ingredients.
  • Natural killer cells, topoisomerase inhibitors, pharmaceutical compositions, cancer, prevention, treatment, and administration are the same as described above.
  • the subject may be a mammal, preferably a human. Additionally, the individual may be a patient suffering from cancer or an individual with a high risk of suffering from cancer.
  • the administration route, dosage, and frequency of administration of the pharmaceutical composition may be administered to the subject in various ways and amounts depending on the patient's condition and presence or absence of side effects, and the optimal administration method, dosage, and frequency of administration may be determined by a person skilled in the art. You can select by range.
  • the natural killer cells and topoisomerase inhibitors may be administered simultaneously or sequentially. Natural killer cells, topoisomerase inhibitors, and administration are the same as described above.
  • the natural killer cells and the topoisomerase inhibitor when administered simultaneously, the natural killer cells and the topoisomerase may be mixed and administered as a mixture. Alternatively, it can be administered by attaching a topoisomerase inhibitor to natural killer cells. At this time, the topoisomerase inhibitor can be conjugated to natural killer cells in the form of nanoparticles.
  • the topoisomerase inhibitor may be administered after the natural killer cells are administered. Additionally, natural killer cells can be administered after administration of a topoisomerase inhibitor. At this time, natural killer cells and topoisomerase inhibitors may be administered continuously or at regular time intervals.
  • the pharmaceutical composition may be administered in combination with any compound or natural extract known to have a cancer treatment effect, or may be formulated in the form of a combination preparation with other drugs.
  • Another aspect of the present invention provides a kit for preventing or treating cancer containing natural killer cells and a topoisomerase inhibitor. Natural killer cells, topoisomerase inhibitors, cancer, prevention and treatment are the same as described above.
  • kit of the present invention is not particularly limited, and kits commonly used in the art can be used.
  • natural killer cells and topoisomerase inhibitors may be packaged in individual containers or in one container divided into one or more compartments.
  • the natural killer cells and topoisomerase inhibitors may each be packaged in unit dose form for one-time administration, but are not limited thereto.
  • the natural killer cells and topoisomerase inhibitors in the kit can be administered individually and in combination at an appropriate time depending on the health status of the subject to be administered.
  • the natural killer cells and topoisomerase inhibitors may be administered simultaneously or sequentially.
  • the natural killer cells and the topoisomerase inhibitor are administered simultaneously, they can be mixed immediately before using the topoisomerase on the natural killer cells and administered as a mixture.
  • the topoisomerase inhibitor may be administered after the natural killer cells are administered, or the topoisomerase inhibitor may be administered in the reverse order.
  • natural killer cells and topoisomerase inhibitors may be administered continuously or at regular time intervals.
  • topoisomerase I inhibitors can exert anticancer effects by activating natural killer cells through NKG2D
  • various cancer cell lines were first treated with SN-38 or exatecan mesylate and then NKG2D ligand. Expression of ULBP-2 was confirmed through FACS analysis ( Figure 1).
  • lung cancer cell line A549
  • breast cancer cell line SKBR3
  • ovarian cancer cell line NASH:OVCAR3, SKOV3
  • the cells were treated with the topoisomerase I inhibitors exatecan mesylate (Medchemexpress, Cat. HY-13631A) or SN-38 (Medchemexpress, Cat. HY-13704) at a concentration of 0.01 to 10 ⁇ M, respectively, for 24 hours. Additional time was cultured. At this time, DMSO was used as a negative control, and cisplatin was used as a control.
  • the ovarian cancer cell line (SKOV3) was treated with exatecan mesylate at a concentration of 1 or 10 ⁇ M for 3, 6, 12, or 24 hours, respectively, and then the cells were collected and the gene expression of ULBP-2 in the cells was analyzed. was confirmed through real time PCR.
  • topoisomerase I inhibitor In order to establish the conditions for combined treatment of topoisomerase I inhibitor and natural killer cells in lung cancer cell lines, first, the topoisomerase I inhibitor was treated at different concentrations and times to confirm the conditions under which cell survival rate was 50%.
  • A549 cells, a lung cancer cell line were inoculated into a 96-well plate at a concentration of 2 ⁇ 10 4 cells/well and cultured for 24 hours. Then, SN-38 or exatecan mesylate was treated to 1 ⁇ M or 10 ⁇ M, respectively, and then cultured for an additional 24 or 48 hours, and cell viability was confirmed through MTS assay. At this time, DMSO was used as a control (vehicle) ( Figure 4).
  • Example 2.2 Combined treatment of topoisomerase I inhibitor and natural killer cells in lung cancer cell lines Anticancer activity evaluation
  • Anticancer activity was confirmed in lung cancer cell lines by combined treatment with topoisomerase I inhibitor and natural killer cells.
  • lung cancer cell lines were treated in the same manner as Example 2.1. At this time, cisplatin was used as a control. 24 hours after treatment with topoisomerase I inhibitor, peripheral blood natural killer cells (PBNK) or induced pluripotent stem cell-derived natural killer cells (EiNK) were inoculated into each well at a concentration of 3 ⁇ 10 4 cells/well. Afterwards, the cells were cultured for an additional 24 hours, and cell viability was confirmed through MTS assay.
  • PBNK peripheral blood natural killer cells
  • EiNK induced pluripotent stem cell-derived natural killer cells
  • the group treated with topoisomerase I inhibitor alone (Non-treated) and the group treated with natural killer cells alone (EiNK+No Treated, EiNK+DMSO, PBNK+No treated, PBNK +DMSO) did not show an excellent anticancer effect.
  • the group treated with a combination of topoisomerase I inhibitor and natural killer cells showed higher anticancer activity than the group treated with topoisomerase I inhibitor alone and the group treated with natural killer cells alone.
  • the anticancer activity was shown to be concentration dependent. At this time, in the case of cisplatin, increased anticancer activity was observed when combined with natural killer cells (PBNK or EiNK) only at a concentration of 10 ⁇ M.
  • Example 3.1 Evaluation of anticancer activity of treatment with topoisomerase I inhibitor alone in ovarian cancer cell lines
  • topoisomerase I inhibitors In order to establish the conditions for combined treatment of topoisomerase I inhibitors and natural killer cells in ovarian cancer cell lines, the conditions under which cell viability was 50% were confirmed by first treating the topoisomerase I inhibitors at different concentrations and times.
  • SKOV3 cells were used as an ovarian cancer cell line.
  • the same method as Example 2.1 was performed, and cell viability was confirmed after treatment with a topoisomerase I inhibitor for 24, 48, or 72 hours, respectively (FIG. 7). Additionally, cisplatin was used as a control.
  • Example 3.2 Combined treatment of topoisomerase I inhibitor and natural killer cells in ovarian cancer cell lines Anticancer activity evaluation
  • SKOV3 cells were used as the ovarian cancer cell line, and cell survival rate was confirmed in the same manner as in Example 2.2 (FIG. 9). At this time, each well was treated with PBNK or EiNK and then cultured for an additional 24 or 48 hours, and microscopic observation was also performed (FIGS. 10A to 12B).
  • SKBR3 cells were used as a breast cancer cell line.
  • SKRB3 cells were inoculated into a 96-well plate at a concentration of 2 ⁇ 10 4 cells/well and cultured for 24 hours. Then, 1 ⁇ M of SN-38 or exatecan mesylate was applied to each well and cultured for an additional 24 hours. After 24 hours, EiNK was treated in each well at a concentration of 4 ⁇ 10 4 cells/well, cultured for an additional 24 hours, and cell viability was confirmed using MTS assay.
  • Example 5 Evaluation of anticancer activity of antibody-topoisomerase I inhibitor conjugate in benign ovarian cancer cell lines
  • Example 5.1 Confirmation of increase in stress ligand expression by treatment with antibody-topoisomerase I inhibitor conjugate in ovarian cancer cell lines
  • NIH:OVCAR3 cells and SKOV3 cells were used as Her2-positive ovarian cancer cell lines.
  • Trastuzumab-deruxtecan was treated at a concentration of 1 ⁇ g/ml or 10 ⁇ g/ml, respectively, and cisplatin, used as a positive control for drug treatment, was treated at a concentration of 1 ⁇ M.
  • DMSO was used as a negative control.
  • the antibodies used in FACS analysis were all PE (phycoerthrin)-conjugated antibodies from R&D Systems, including anti-MICA antibody (Cat. FAB1300P), anti-MICB antibody (Cat. FAB1599), and anti-ULBP-1 antibody (Cat.
  • Anti-mouse IgG2a antibody (Cat. IC003P) and anti-mouse IgG2b antibody (Cat. IC0041P) were used as negative controls for the antibody reaction.
  • Example 5.2 Combined treatment of antibody-topoisomerase I inhibitor conjugate and natural killer cells in ovarian cancer cell lines Anticancer activity evaluation
  • Anticancer activity was confirmed in ovarian cancer cell lines by combined treatment with antibody-topoisomerase I inhibitor and natural killer cells.
  • SKOV3 cells a Her2-positive ovarian cancer cell line
  • trastuzumab-deruxtecan was treated to a concentration of 10 ng/ml, 100 ng/ml, 1 ⁇ g/ml, or 10 ⁇ g/ml, respectively, and then cultured for an additional 24 hours.
  • exatecan mesylate was treated to concentrations of 10 nM, 100 nM, 1 ⁇ M, and 10 ⁇ M, and then cultured for an additional 24 hours.
  • induced pluripotent stem cell-derived natural killer cells (EiNK) were inoculated into each well at a concentration of 6 ⁇ 10 4 cells/well. Afterwards, the cells were cultured for an additional 24 hours, and cell viability was confirmed through MTS assay.
  • EiNK induced pluripotent stem cell-derived natural killer cells
  • Example 6 Combined treatment of topoisomerase II inhibitor and natural killer cells in lung cancer animal model Anticancer activity evaluation
  • NPG mice female, 6 weeks old, manufacturer Vitalstar
  • the A549 cell line was mixed 1:1 with Matrigel matrix and then mixed to prevent bubbles from forming.
  • A549 cells were injected subcutaneously into the right flank of NPG immunodeficient mice at a cell count of 1 ⁇ 10 6 .
  • the tumor volume reaches about 70 mm 3 , it is classified into groups with similar tumor sizes, and is divided into three test groups as shown in Table 1 below: a group treated only with Doxorubicin (Dox), a topoisomerase II inhibitor, and NK.
  • Dox Dox
  • a topoisomerase II inhibitor a topoisomerase II inhibitor
  • NK a topoisomerase II inhibitor
  • Anticancer activity was evaluated for the group treated with cells (PBNK) alone and the group treated with doxorubicin and NK cells combined. At this time, the untreated group was used as the control group.
  • Dox Doxorubicin 3mg/kg - Doxorubicin: Days 3, 4 and 5 - NK cells: Day 6
  • Doxorubicin and NK cells Dox + NK cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 약학 조성물에 관한 것이다. 본 발명의 약학 조성물은 폐암, 난소암 및 유방암 세포주에서 세포 독성을 나타내었다. 특히, 상기 항암 활성은 자연살해세포 단독 또는 토포이소머라제 저해제 단독 처리군과 비교하여 자연살해세포 및 토포이소머라제 저해제 병용 처리군에서 보다 상승된 효과를 나타내었다. 또한, 상기 항원 특이적 항체와 접합된 토포이소머라제 저해제 및 자연살해세포를 병용 사용 시, 항체-토포이소머라제 저해제 접합체 단독 처리군과 비교하여 월등한 항암 활성을 나타내었다. 따라서, 본 발명에 의한 조성물은 암 치료제로서 유용하게 활용될 것이다.

Description

자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 암 예방 및 치료용 약학 조성물
본 발명은 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 암 예방 및 치료용 약학 조성물에 관한 것이다.
암은 현재 전세계적으로 가장 많은 사망자를 내는 질병 중 하나로서, 암 발생 연령은 점차 낮아지고 있는 반면 평균 수명은 점차 연장되어가고 있어 암 발생률은 더욱 증가할 것으로 전망되고 있다.
수십 년 동안 암을 치료하는 방법들은 꾸준히 변화하고 발전해왔다. 1800년대에서부터 1900년대까지는 외과적인 수술(surgery), 화학요법(chemotherapy) 및 방사선 요법(radiation therapy)과 같은 방법들이 주로 이루어졌지만, 이들에 대한 한계점들이 드러나기 시작했다. 가장 대표적으로 기존 치료 방법들은 암이 전이되지 않는 초기의 경우에만 효과가 있을 뿐, 이미 전이가 진행된 상태라면 외과적인 수술 후에도 재발의 가능성이 높게 나타났다. 또한, 화학요법은 고형암(solid tumor)에서는 치료 효과가 낮고, 암세포 이외의 정상세포의 성장도 함께 억제시키는 부작용을 야기시키는 것이 보고되고 있다. 이와 같은 문제점을 해소하고자 최근 항암 면역 치료에 대한 연구가 활발히 진행 중이다.
자연살해세포(natural killer cell)는 형태학적으로 세포질에 큰 과립을 가지는 세포로, 혈액 내 림프구의 약 5 ~ 15%를 차지한다. 자연살해세포는 체내 1차 방어작용(선천성 면역반응)을 대표하는 면역세포로, 체내에 면역기억을 형성한다. 또한, 항체-의존성 세포 독성(ADCC, antibody-dependent cellular cytotoxicity) 작용에 중요한 역할을 담당하고 있으며, 최근 암세포를 선택적으로 살상하는 능력 및 발암과정에 대한 방어 능력이 밝혀져 항암 면역 세포 치료제로서 주목받고 있다. 특히, 자연살해세포 기반 세포 치료법은 장기간 존재하는 T 세포 기반 치료법에 비해 사이토카인 폭풍(cytokine storm) 등의 부작용이 적고, 이식편대숙주병을 유발하지 않는 장점을 가진다. 따라서 상기 자연살해세포를 기성품(off-the-shelf) 형태의 동종 세포치료제로 사용하기 위한 연구가 진행되고 있으나, 아직 그 성과가 미비한 실정이다(Liu et al. (2021) J Hematol Oncol., 14:7).
이에, 본 발명자는 자연살해세포를 이용한 항암 물질을 개발하기 위해 연구하던 중, 자연살해세포 및 토포이소머라제(topoisomerase) 저해제를 병용 시 단독 사용에 비하여 향상된 항암 활성이 나타나는 것을 확인함으로써 본 발명을 완성하였다.
상기 목적을 달성하기 위해, 본 발명의 일 측면은, 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 암 예방 및 치료용 약학 조성물, 및 키트를 제공한다.
본 발명의 다른 측면은, 상기 약학 조성물을 개체에 투여하는 단계를 포함하는 암 예방 또는 치료 방법을 제공한다.
본 발명에 따른 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 조성물은 폐암, 난소암 및 유방암 세포주에서 세포 독성을 나타내었다. 특히, 상기 항암 활성은 자연살해세포 단독 또는 토포이소머라제 저해제 단독 처리군과 비교하여 자연살해세포 및 토포이소머라제 저해제 병용 처리군에서 보다 상승된 효과를 나타내었다. 또한, 상기 항원 특이적 항체와 접합된 토포이소머라제 저해제 및 자연살해세포를 병용 사용 시, 항체-토포이소머라제 저해제 접합체 단독 처리군과 비교하여 월등한 항암 활성을 나타내었다. 따라서, 본 발명에 의한 조성물은 암 치료제로서 유용하게 활용될 것이다.
도 1은 폐암 세포주(A549), 유방암 세포주(SKBR3), 난소암 세포주(NIH:OVCAR3, SKOV3)에서 토포이소머라제 저해제(SN-38, 엑사테칸 메실레이트(exatecan mesylate)) 처리에 의한 ULBP-2의 발현 변화를 확인하기 위한 실험 스케쥴을 나타낸 도면이다.
도 2a 내지 도 2c는 폐암 세포주(A549)(도 2a), 유방암 세포주(SKBR3)(도 2b) 및 난소암 세포주(NIH:OVCAR3)(도 2c)에서 토포이소머라제 저해제(SN-38, 엑사테칸 메실레이트) 처리에 의한 ULBP-2의 발현 변화를 유세포 분석을 통해 확인한 결과를 나타낸 도면이다.
도 3은 난소암 세포주(SKOV3)에서 토포이소머라제 저해제(SN-38, 엑사테칸 메실레이트) 처리에 의한 ULBP-2의 발현 변화를 유세포 분석(좌측) 및 qPCR을 통해 확인한 결과를 나타낸 도면 및 그래프이다.
도 4는 폐암 세포주(A549)에서 토포이소머라제 저해제(SN-38, 엑사테칸 메실레이트)의 항암 활성을 확인하기 위한 실험 스케쥴을 나타낸 도면이다.
도 5는 폐암 세포주(A549)에서 토포이소머라제 저해제(SN-38, 엑사테칸 메실레이트)를 농도별(1 μM, 10 μM) 및 시간별(24h, 48h)로 처리한 후, 세포 생존율을 MTS assay를 통해 측정한 결과를 나타낸 그래프이다.
도 6a 및 도 6b는 폐암 세포주(A549)에서 토포이소머라제 저해제(SN-38, 엑사테칸 메실레이트)를 농도별(1 μM(도 6a), 10 μM(도 6b))로 처리한 후, 세포 생존율을 MTS assay를 통해 측정한 결과를 나타낸 그래프이다.
도 7은 난소암 세포주(SKOV3)에서 토포이소머라제 저해제(SN-38, 엑사테칸 메실레이트)의 항암 활성을 확인하기 위한 실험 스케쥴을 나타낸 도면이다.
도 8은 난소암 세포주(SKOV3)에서 토포이소머라제 저해제(SN-38, 엑사테칸 메실레이트)를 농도별(1 μM, 10 μM) 및 시간별(24h, 48h, 72h)로 처리한 후, 세포 생존율을 MTS assay를 통해 측정한 결과를 나타낸 그래프이다.
도 9는 난소암 세포주(SKOV3)에서 자연살해세포(PBNK, EiNK) 및 토포이소머라제 저해제(SN-38, 엑사테칸 메실레이트) 병용의 항암 활성을 확인하기 위한 실험 스케쥴을 나타낸 도면이다. 이때, PBNK는 말초혈액 자연살해세포를 EiNK는 유도만능줄기세포 유래 자연살해세포를 의미한다.
도 10a 및 도 10b는 난소암 세포주(SKOV3)에서 자연살해세포(PBNK, EiNK) 및 토포이소머라제 저해제(SN-38)를 농도별(1 μM(도 10a), 10 μM(도 10b)) 및 시간별(24h, 48h)로 처리한 후, 세포 생존율을 현미경 관찰을 통해 확인한 결과를 나타낸 도면이다. 이때, PBNK는 말초혈액 자연살해세포를 EiNK는 유도만능줄기세포 유래 자연살해세포를 의미한다.
도 11a 및 도 11b는 난소암 세포주(SKOV3)에서 자연살해세포(PBNK, EiNK) 및 토포이소머라제 저해제(SN-38)를 농도별(1 μM(도 11a), 10 μM(도 11b)) 및 시간별(24h, 48h)로 처리한 후, 세포 생존율을 MTS assay를 통해 측정한 결과를 나타낸 그래프이다. 이때, PBNK는 말초혈액 자연살해세포를 EiNK는 유도만능줄기세포 유래 자연살해세포를 의미한다.
도 12a 및 도 12b는 난소암 세포주(SKOV3)에서 자연살해세포(PBNK, EiNK) 및 토포이소머라제 저해제(엑사테칸 메실레이트)를 농도별(1 μM(도 12a), 10 μM(도 12b)) 및 시간별(24h, 48h)로 처리한 후, 세포 생존율을 현미경 관찰을 통해 확인한 결과를 나타낸 도면이다. 이때, PBNK는 말초혈액 자연살해세포를 EiNK는 유도만능줄기세포 유래 자연살해세포를 의미한다.
도 13a 및 도 13b는 난소암 세포주(SKOV3)에서 자연살해세포(PBNK, EiNK) 및 토포이소머라제 저해제(엑사테칸 메실레이트)를 농도별(1 μM(도 13a), 10 μM(도 13b)) 및 시간별(24h, 48h)로 처리한 후, 세포 생존율을 MTS assay를 통해 측정한 결과를 나타낸 그래프이다. 이때, PBNK는 말초혈액 자연살해세포를 EiNK는 유도만능줄기세포 유래 자연살해세포를 의미한다.
도 14는 유방암 세포주(SKBR3)에서 자연살해세포(EiNK) 및 토포이소머라제 저해제(SN-38, 엑사테칸 메실레이트, 1 μM)을 24시간 처리한 후, 세포 생존율을 MTS assay를 통해 측정한 결과를 나타낸 그래프이다. 이때, EiNK는 유도만능줄기세포 유래 자연살해세포를 의미한다.
도 15는 난소암 세포주(NIH:OVCAR3, SKOV3)에서 항체-토포이소머라제 저해제 접합체(트라스투주맙-데룩스테칸) 처리에 의한 MICA, MICB, ULBP-1, ULBP-2 및 ULBP-3의 발현 변화를 확인하기 위한 실험 스케쥴을 나타낸 도면이다.
도 16a 내지 도 16e는 난소암 세포주(NIH:OVCAR3)에서 항체-토포이소머라제 저해제 접합체(트라스투주맙-데룩스테칸) 처리에 의한 MICA(도 16a), MICB(도 16b), ULBP-1(도 16c), ULBP-2(도 16d) 및 ULBP-3(도 16e)의 발현 변화를 유세포 분석을 통해 확인한 결과를 나타낸 도면이다.
도 17a 내지 도 17e는 난소암 세포주(SKOV3)에서 항체-토포이소머라제 저해제 접합체(트라스투주맙-데룩스테칸) 처리에 의한 MICA(도 17a), MICB(도 17b), ULBP-1(도 17c), ULBP-2(도 17d) 및 ULBP-3(도 17e)의 발현 변화를 유세포 분석을 통해 확인한 결과를 나타낸 도면이다.
도 18은 난소암 세포주(SKOV3)에서 자연살해세포(EiNK) 및 항체-토포이소머라제 저해제 접합체(트라스투주맙-데룩스테칸) 병용의 항암 활성을 확인하기 위한 실험 스케쥴을 나타낸 도면이다. 이때, EiNK는 유도만능줄기세포 유래 자연살해세포를 의미한다.
도 19는 난소암 세포주(SKOV3)에서 자연살해세포(EiNK) 및 항체-토포이소머라제 저해제 접합체(트라스투주맙-데룩스테칸)를 24시간 처리한 후, 세포 생존율을 MTS assay를 통해 측정한 결과를 나타낸 그래프이다. 이때, EiNK는 유도만능줄기세포 유래 자연살해세포를 의미한다.
도 20은 폐암 동물 모델에서 자연살해세포(PBNK) 및 토포이소머라제 II 저해제(독소루비신) 병용 처리에 의한 종양 성장 억제 효과를 확인한 결과를 나타낸 도면이다.
본 발명의 일 측면은 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 암 예방 또는 치료용 약학 조성물을 제공한다.
자연살해세포
본 명세서에서 사용하는 용어, "자연살해세포(NK cell, natural killer cell)"는 말초혈 림프구(peripheral blood lymphocyte)의 약 15% 정도를 차지하는 림프구계 세포로서, 선천성 면역 반응에 있어서 중요한 역할을 한다. 자연살해세포는 수지상 세포를 활성화시키고, 세포독성 T 림프구(CTL, cytotoxic T lymphocyte)를 종양에 특이적으로 반응하도록 유도하여 종양세포를 제거한다. 자연살해세포는 육종, 골수종, 암종, 림프종 및 백혈병과 같은 악성 종양을 직접적으로 사멸시킨다. 정상인의 체내에 존재하는 대부분의 자연살해세포는 비활성화 상태로 존재하며, 인터페론 또는 대식세포-유래 사이토카인에 대한 반응으로 활성화된다.
자연살해세포는 임의의 공급원, 예를 들어 태반 조직, 태반 관류액, 제대혈, 태반혈, 말초혈, 골수, 비장, 간 등으로부터의 조혈 세포, 예를 들어 조혈 줄기 또는 전구체, 태반 또는 탯줄 유래 줄기세포, 유도만능 줄기세포, 또는 이로부터 분화된 세포로부터 생성될 수 있다.
본 발명의 자연살해세포 혈액에서 수득한 자연살해세포일 수 있으며, 줄기세포 또는 유도만능줄기세포로부터 분화된 자연살해세포일 수 있다.
본 명세서에서 사용하는 용어, "줄기 세포(stem cell)"는 상대적으로 발생이 덜된 미분화된 세포로서, 적합한 조건 하에서 특정 조직 세포로 분화할 수 있는 능력을 갖는 세포를 말한다. 상기 줄기세포는 자기 재생하여 미분화된 자신의 특성을 유지하는 능력을 지닌 딸세포를 생성할 수 있고, 동시에 특정 유형의 세포로 분화하는 딸세포를 생성할 수 있다. 상기 줄기 세포는 배아줄기세포, 성체줄기세포 및 유도만능줄기세포를 포함한다.
본 명세서에서 사용하는 용어, "유도만능줄기세포(iPSC, induced pluripotent stem cell)"는 다능성이 없는 체세포에 역분화를 유도하여 배아줄기세포와 같은 다능성을 갖도록 생성된 세포를 말한다. 유도만능줄기세포는 역분화 줄기세포라고도 불릴 수 있다. 상기 유도만능줄기세포는 태아, 신생아, 어린이, 또는 성인의 체세포를 이용하여 생성될 수 있다. 상기 유도만능줄기세포는 섬유아세포, 각질세포, 혈구 세포, 또는 신장 표피세포 유래일 수 있다. 상기 유도만능줄기세포는 체세포를 재프로그래밍함으로써 생산된 것일 수 있다. 체세포를 재프로그래밍하여 유도만능줄기세포로 제작하는 방법은 공지된 방법, 예컨대 Takahashi K, Yamanaka S(August 2006), Cell. vol.126, no.4, pp.663-676에 기재된 방법을 이용할 수 있다. 상기 유도만능줄기세포는 1종 이상의 조직 또는 장기를 구성하는 모든 세포, 또는 바람직하게는 3개의 배엽층: 내배엽(내부 위 내막, 위장관, 폐), 중배엽(근육, 골, 혈액, 비뇨생식기) 또는 외배엽(표피 조직 및 신경계) 중 어느 하나로 분화될 수 있다.
본 발명에서 상기 자연살해세포가 유도만능줄기세포에서 유래된 경우, 자연살해세포는 하기의 방법으로 제조될 수 있다. 구체적인, 일례는 한국특허 제10-2023-0043038호에 제시된 바와 같다;
i) 유도만능줄기세포를 세포배양용기 면적 1 ㎠ 당 0.5개 내지 20개의 콜로니가 형성되도록 iPSC 또는 iPSCs 스페로이드를 접종하고 부착 배양하여 iPSCs 콜로니를 생산하는 단계;
ii) 상기 iPSCs 콜로니를 중배엽 세포(mesoderm cells)로 분화시켜 중배엽 세포를 생산하는 단계;
iii) 상기 중배엽 세포를 조혈모세포로 분화시켜 조혈모세포를 생산하는 단계; 및
iv) 상기 조혈모세포를 자연살해세포로 분화시켜 자연살해세포를 생산하는 단계.
본 발명의 유도만능줄기세포에서 자연살해세포를 제조하는 일 구체예는 하기와 같을 수 있다:
첫째, 유도만능줄기세포(iPSCs)를 세포배양용기 면적 1 ㎠ 당 0.5개 내지 20개의 콜로니가 형성되도록 iPSC 또는 iPSCs 스페로이드를 접종하고 부착 배양하여 iPSCs 콜로니를 생산하는 단계를 포함한다. 이때, 유도만능줄기세포 및 자연살해세포는 상술한 바와 동일하다.
본 발명에서 상기 자연살해세포는 CD56의 발현(즉, CD56 양성) 및 CD3의 부재(즉, CD3 음성)를 바이오마커로 하는 세포일 수 있다. 상기 자연살해세포는 CD56, CD45, CD7, 또는 이들의 조합을 발현하는 세포일 수 있다. 상기 자연살해세포는 NKp30, NKp44, NKp46, 또는 이들의 조합을 발현하는 활성화된 자연살해세포일 수 있다. 활성화된 자연살해세포는 살상능이 향상된 자연살해세포 세포일 수 있다.
본 발명에서 상기 자연살해세포는 이에 제한되지는 않으나, 한국특허 제10-2023-0043038호에 제시된 자연살해세포의 특징을 지닐 수 있다.
상기 유도만능줄기세포의 세포배양용기 면적 1 ㎠ 당 접종된 세포수 또는 스페로이드는 상술한 바와 같다. 또한, 접종된 세포수는 다른 방법으로 산정될 수 있다. 접종된 세포수를 계산하는 방법으로는 배양액 ml 당 세포수가 존재하는 것으로 1 ㎠ 당 세포수로 확인할 수 있다.
상기 유도만능줄기세포는 ROCK 억제제를 포함하는 배지에서 배양될 수 있다. 상기 ROCK 억제제는 Y-27632, 티아조비빈(Thiazovivin), 파수딜(Fasudil), GSK429286A, RKI-1447, H-1152, 및 아자인돌 1(Azaindole 1)로 이루어진 군으로부터 선택될 수 있다. 상기 유도만능줄기세포는 ROCK 억제제를 포함하는 배지에서 약 10분 내지 약 1주, 약 30분 내지 약 6일, 약 1시간 내지 약 5일, 약 2시간 내지 약 4일, 약 3시간 내지 약 3일, 약 6시간 내지 약 2일, 약 12시간 내지 약 2일, 약 18시간 내지 약 1일 동안 배양될 수 있다.
상기 유도만능줄기세포는 부착 배양 방법으로 배양될 수 있다. 단일세포의 유도만능줄기세포는 세포배양용기에 부착된 후 약 1일 내지 약 2주, 약 2일 내지 약 13일, 약 3일 내지 약 12일, 약 4일 내지 약 11일, 약 5일 내지 약 10일, 약 6일 내지 약 9일 또는 약 7일 내지 약 8일 동안 배양될 수 있다.
상기 유도만능줄기세포 군집(colony)은 단일 유도만능줄기세포 세포가 부착배양하여 증식한 세포들의 덩어리일 수 있다. 상기 유도만능줄기세포 군집은 동일한 유전정보를 갖는 세포들일 수 있다.
둘째, 상기 iPSCs 콜로니를 중배엽 세포(mesodermal cell)로 분화시켜 중배엽 세포를 생산하는 단계를 포함한다.
이때, iPSCs 콜로니에서 중배엽 세포로 분화시키는 시작일의 콜로니수는 1 내지 20개일 수 있다. 또한, iPSCs 콜로니에서 중배엽 세포로 분화시키는 시작일의 총 iPSCs의 세포수가 세포배양용기 면적 1 ㎠ 당 0.5개 내지 1×106개의 세포수일 수 있다. 이때, 분화 시작일의 총 줄기세포의 숫자는 상술한 바와 같다.
본 명세서에서 사용하는 용어, "중배엽 세포(mesoderm cell)"는 낭배 형성 과정에서 생성되는 외배엽과 내배엽 사이에 존재하는 층상의 세포집단으로, 편형동물 이상에서 볼 수 있다. 중배엽 세포는 혈액 세포, 혈관내피세포, 평활근 및 심근 등을 포함한 근육, 골, 연골, 지방 등의 결합조직으로 분화할 수 있다.
이때, 상기 iPSCs는 콜로니 당 크기가 약 10 um 내지 약 3,000 um일 수 있다.
구체적으로, 상기 iPSCs는 콜로니 크기당 약 10 um 내지 약 3,000 um, 약 50 um 내지 약 2,500 um, 약 100 um 내지 약 2,000 um, 약 300 um 내지 약 1,200 um, 약 400 um 내지 약 800 um 또는 약 500 um 내지 약 700 um 일 수 있다. 바람직하게는 약 300 um 내지 약 1,200 um일 수 있으나, 이에 제한되지 않는다.
또한, iPSCs 콜로니는 무혈청 배지에서 배양될 수 있다. 상기 iPSCs 콜로니는 줄기세포를 배양할 수 있는 배지에서 배양될 수 있다.
상기 iPSCs 콜로니는 GSK3(glycogen synthase kinase-3) 억제제, ALK5(activin-like receptor kinase 5) 억제제, BMP4(bone morphogenetic protein 4), SCF(stem cell factor), 및 VEGF(vascular endothelial growth factor)로 이루어진 군으로부터 선택된 하나 이상을 포함하는 배지에서 배양될 수 있다. 상기 GSK3(glycogen synthase kinase 3) 억제제는 CHIR-99021, SB216763, AT7519, CHIR-98014, TWS119, 티데글루십(Tideglusib), SB415286, 및 BIO(6-bromoindirubin-3-oxime, 6-bromoindirubin-3'-oxime)로 이루어진 군으로부터 선택될 수 있다. 상기 ALK5 억제제는 SB431542, 갈루니서팁(Galunisertib), LY2109761, SB525334, SB505124, GW788388 및 LY364947로 이루어진 군으로부터 선택될 수 있다.
상기 iPSCs 콜로니는 CHIR-99021, BMP4 및 VEGF를 포함하는 배지에서 배양된 후, SB431542, SCF 및 VEGF를 포함하는 배지에서 배양될 수 있다. 상기 유도만능줄기세포 군집은 CHIR-99021, SB431542, BMP4, SCF 및 VEGF를 포함하는 배지에서 배양될 수 있다.
상기 iPSCs 콜로니는 상기 배지에서 약 1시간 내지 약 2주, 약 12시간 내지 약 2주, 약 1일 내지 약 2주, 약 2일 내지 약 13일, 약 3일 내지 약 12일, 약 4일 내지 약 11일, 약 5일 내지 약 10일, 약 6일 내지 약 9일 또는 약 7일 내지 약 8일 동안 배양될 수 있다. 바람직하게는 약 2일 내지 약 4일 동안 배양될 수 있으나, 이에 제한되지 않는다.
상기 중배엽 세포는 중배엽 줄기세포일 수 있다.
셋째, 상기 중배엽 세포를 조혈모세포로 분화시켜 조혈모세포를 생산하는 단계를 포함한다.
본 명세서에서 사용하는 용어, "조혈모세포(hematopoietic stem cell, HSC)"는 조혈 선조 세포" 또는 "조혈 전구 세포"와 혼용될 수 있으며, 조혈세포로 분화 가능한 전구세포를 의미한다. 즉, 조혈모세포(HSC)는 골수계(단핵구 및 대식 세포, 과립구(중성구, 호염구, 호산구 및 비만 세포), 적혈구, 거대핵세포/혈소판, 수지상 세포) 및 림프계(T 세포, B 세포, NK 세포)를 비롯한 혈액 세포 유형 모두를 생산하는 다능성 줄기 세포를 의미한다([Doulatov et al., 2012; Notta et al., 2015] 참조). 상기 조혈모세포는 CD34 및 CD133를 발현할 수 있으며, CD38 발현에 대해 음성일 수 있다. 조혈 전구 세포는 CD34+/CD45+ 조혈 전구 세포 및 CD34+/CD45+/CD43+ 조혈 전구 세포를 포함할 수 있다.
이때, 상기 중배엽 세포는 무혈청 배지에서 배양될 수 있다. 또한, 상기 중배엽 세포는 STF(stem cell factor), FLT3L(FMS-like tyrosine kinase 3 ligand) 또는 이들의 조합을 포함하는 배지에서 배양될 수 있다.
상기 중배엽 세포는 약 1일 내지 약 2주, 약 2일 내지 약 13일, 약 3일 내지 약 12일, 약 4일 내지 약 11일, 약 5일 내지 약 10일, 약 6일 내지 약 9일 또는 약 7일 내지 약 8일 동안 배양될 수 있다. 바람직하게는 약 2일 내지 약 8일 동안 배양될 수 있으나, 이에 제한되지 않는다.
넷째, 상기 조혈모세포를 자연살해세포로 분화시켜 자연살해세포를 생산하는 단계를 포함한다.
이때, 상기 조혈모세포는 무혈청 배지에서 배양될 수 있다. 또한, 상기 조혈모세포는 STF(stem cell factor), FLT3L(FMS-like tyrosine kinase 3 ligand) 또는 이들의 조합을 포함하는 배지에서 배양될 수 있다.
상기 조혈모세포는 IL(interleukin)-7, IL-15 또는 이들의 조합을 포함하는 배지에서 배양될 수 있다. 상기 조혈모세포는 STF, FLT3L, IL-7, IL-15 또는 이들의 조합을 포함하는 배지에서 배양될 수 있다.
상기 조혈모세포는 약 1일 내지 약 3개월, 약 5일 내지 약 2개월, 약 1주 내지 약 2개월, 약 2주 내지 약 2개월, 약 3주 내지 약 2개월, 약 1개월 내지 약 2개월, 약 1개월 내지 약 7주, 약 1개월 내지 약 6주, 약 1개월 내지 약 5주 또는 약 5주 내지 약 6주(예, 약 36일) 동안 배양될 수 있다. 바람직하게는 약 1일 내지 약 26일 또는 약 1일 내지 약 48일 동안 배양될 수 있으나, 이에 제한되지 않는다.
본 발명에 있어서, 상기 조혈모세포는 자가 지지세포와 공배양할 수 있다.
본 명세서에서 사용하는 용어, "지지세포(feeder cell)"은 제2 유형의 세포와 공배양되어 제2 유형의 세포가 성장할 수 있도록 성장인자 및 영양소를 제공하는 세포를 의미한다. 상기 지지세포는 이들이 지지하고 있는 세포와 동종 또는 이종으로부터 임의로 유래될 수 있다. 예를 들면, 줄기 세포를 포함하는 특정 유형의 인간 세포는 마우스 배아 섬유아세포(mouse embryonic fibroblast) 및 비사멸 마우스 배아 섬유아세포의 배양물에 의해 지지될 수 있다. 상기 지지세포는 인간 피부 섬유아세포 또는 인간 배아 줄기 세포 등의 인간 유래의 지지세포일 수 있다. 이때, 지지세포는 방사선조사 또는 미토마이신 등의 항-세포분열 제제를 사용한 처리를 통해 불활성화 될 수 있다. 상기 불활성화를 통해 제2 유형의 세포와 공배양 시, 세포분열이 정지된 상태로 세포 대사산물을 생산하여 분비함으로써 제2 유형 세포의 분화 및 성장을 조절할 수 있다.
이때, 본 발명에서 지지세포는 자가 지지세포일 수 있다.
일 구체예로 본 발명의 자가 지지세포는 조혈모세포에서 자연살해세포로 분화 및 성장을 조절하는 역할을 하는 세포일 수 있다. 본 발명에서 상기 지지세포는 분화된 자연살해세포의 증식 및 활성을 조절하는 역할을 하는 세포일 수 있다.
본 발명의 "자가 지지세포"는 유도만능줄기세포에서 중배엽으로 분화 유도된 세포를 포함한다. 바람직하게는, 상기 유도만능줄기세포 군집에서 상기 조혈모세포로 함께 분화 유도된 세포 중 조혈모세포로 분화되지 않고 용기에 부착되어 있는 모든 세포를 포함할 수 있으나, 이에 제한되지 않는다.
상기 생산된 자연살해세포 중 CD56/CD45 이중 양성 세포는 약 40% 이상, 약 45% 이상, 약 50% 이상, 약 55% 이상, 약 60% 이상, 약 65% 이상, 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85% 이상, 약 95% 이상, 약 97% 이상, 또는 약 99% 이상일 수 있다.
상기 생산된 자연살해세포 중 CD56/NKp30 이중 양성 세포는 약 40% 이상, 약 45% 이상, 약 50% 이상, 약 55% 이상, 약 60% 이상, 약 65% 이상, 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85% 이상, 약 95% 이상, 약 97% 이상, 또는 약 99% 이상일 수 있다.
상기 생산된 자연살해세포 중 CD56/NKp44 이중 양성 세포는 약 40% 이상, 약 45% 이상, 약 50% 이상, 약 55% 이상, 약 60% 이상, 약 65% 이상, 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85% 이상, 약 95% 이상, 약 97% 이상, 또는 약 99% 이상일 수 있다.
상기 생산된 자연살해세포 중 CD56/NKp46 이중 양성 세포는 약 30% 이상, 약 35% 이상, 약 40% 이상, 약 45% 이상, 약 50% 이상, 약 55% 이상, 약 60% 이상, 약 65% 이상, 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85% 이상, 약 95% 이상, 약 97% 이상, 또는 약 99% 이상일 수 있다.
상기 생산된 자연살해세포 중 CD56/CD3 이중 양성 세포는 약 5% 이하, 약 4% 이하, 약 3% 이하, 약 2% 이하, 또는 약 1% 이하일 수 있다.
상기 방법은 시험관 내(in vitro)에서 수행될 수 있다.
상기 배지는 세포 배양시 사용되는 공지된 배지 또는 이의 변형된 배지일 수 있다.
상기와 같이 iPSC에서 분화된 자연살해세포를 "EiNK"로 지칭하였다.
토포이소머라제 저해제
본 명세서에서 사용하는 용어, "토포이소머라제(topoisomerase)"는 DNA의 복제, 전사 및 수선(repair)을 포함한 과정에서 DNA 이완에 작용하는 효소이다. DNA는 이중나선 구조로 되어 있으며, 상기 구조를 통해 안정성을 유지한다. 하지만 상기 이중나선 구조는 DNA의 꼬임 현상을 유발하며, 복제, 전사 및 수선 과정 시, 이 특유의 꼬임이 진행 과정을 방해한다. 토포이소머레이즈는 상기 꼬임을 완화하기 위하여 복제 분기점 앞에서 DNA의 인산 결합을 절단하고 회전시킨다. 이 과정에서 과도한 꼬임이 풀리며, 절단된 DNA도 재결합된다. 토포이소머라제는 DNA 가닥의 절단 방식에 따라 2가지로 분류된다. 1형 토포이소머라제(topoisomerase Ⅰ)는 DNA 기질에 순간적으로 단일가닥 닉(nick)이 생기도록 한 후 DNA의 위상을 변화시키고, 2형 토포이소머라제(topoisomerase Ⅱ)는 DNA 이중가닥을 모두 자른 후 DNA의 위상을 변화시킨다.
본 발명에서 상기 토포이소머라제 저해제는 1형 토포이소머라제의 활성을 저해하는 것일 수 있다. 또한, 상기 토포이소머라제 저해제는 2형 토포이소머라제의 활성을 저해하는 것일 수 있다. 예를 들어, 이리노테칸(irinotecan), SN-38, GI-147211C, 토포테칸(topotecan), 9-아미노캠토테신(9-aminocamptothecin), 7-하이드록시메틸 캄프토테신(7-hydroxymethylcamptothecin), 7-아미노메틸 캄프토테신(7-aminometyl camptothecin), 10-하이드록시캄프토테신(10-hydroxycamptothecin), 캄프토테신(camptothecin), 루비테칸(rubitecan), 지마테칸(gimatecan), 카레니테신(karenitecin; BNP1350), 루르토테칸(lurtotecan), 엑사테칸(exatecan), 디플로모테칸(diflomotecan), 벨로테칸(belotecan), S39625 에토포시드(etoposide), 에토포시드 포스페이트(etoposide phosphate), 테니포시드(teniposide), 독소루비신(doxorubicin), 다우노루비신(daunorubicin), 에피루비신(epirubicin), 이다루비신(idarubicin), 미톡산트론(mitoxantrone), 크리스나톨(crisnatol), 노반트론(novantrone) 및 레티노산(retinoic acid;retinols)으로 이루어진 군으로부터 선택되는 어느 하나인 것일 수 있으나, 이에 제한되지 않는다. 본 발명의 일 구체예로 상기 토포이소머라제 저해제는 SN-38 또는 엑사테칸 메실레이트일 수 있다.
본 발명에서 상기 토포이소머라제 저해제는 암세포에서 ULBP-1, ULBP-2, ULBP-3, ULBP-4, ULBP-5, ULBP-6, MICA 및 MICB로 이루어진 군에서 선택되는 어느 하나의 NKG2D 리간드의 발현을 증가시킬 수 있다.
본 명세서에서 사용하는 용어, "ULBP-1(UL16 binding protein 1)"은 NK 세포와 T 세포의 면역체계 활성화 수용체인 NKG2D 리간드로서, NKG2D에 결합하면 JAK2, STAT5, ERK 및 PI3K 키나제/Akt를 포함한 여러 신호전달 경로가 활성화된다.
본 명세서에서 사용하는 용어, "ULBP-2(UL16 binding protein 2)"는 세포 표면 당단백질(glycoprotein)이다. ULBP-2는 자연살해세포의 NKG2D 수용체에 대한 리간드로서, NKG2D와 결합하여 자연살해세포의 활성을 유도한다.
본 명세서에서 사용하는 용어, "ULBP-3(UL16 binding protein 3)"은 일차 NK 세포에서 발견되는 NKG2D 수용체의 여러 관련 리간드 중 하나로서, NKG2D에 결합하면 JAK2, STAT5 및 ERK 경로를 포함한 여러 신호전달 경로가 활성화된다.
본 명세서에서 사용하는 용어, "ULBP-4(UL16 binding protein 4)"는 NKG2D에 대한 신규한 리간드로서, 글리코실포스파티딜이노시톨 연결 단백질(GPI-linked protein)인 다른 ULBP와 달리 막관통 도메인 및 세포질 도메인을 포함하고 있으며, NKG2D에 결합하면 NK 세포에 의해 증가된 세포독성 활성을 중재한다.
본 명세서에서 사용하는 용어, "ULBP-5(UL16 binding protein 5)"는 선천성 및 적응성 면역에서 활성화 수용체로 기능하는 NKG2D 수용체의 여러 관련 리간드 중 하나이다. ULBP-5는 C 말단 막관통 도메인과 세포질 도메인이 포함되어 있지만 단백질 분해 과정으로 인해 이러한 도메인이 제거되고 이후 글리코실포스파티딜이노시톨(GPI) 앵커에 의해 원형질막에 연결된다.
본 명세서에서 사용하는 용어, "ULBP-6(UL16 binding protein 6)"은 NK 세포 및 T 세포의 면역 체계 활성화 수용체인 NKG2D의 리간드로, RAETL1(retinoic acid early transcript 1L)으로도 칭해진다. RAETL1은 면역글로불린 슈퍼패밀리(IgSF)의 MHC-I 패밀리에 속하는 GPI 고정 당단백질이며, NKG2D에 결합하면 JAK2, STAT5, ERK 및 PI3K 키나제/Akt를 포함한 여러 신호전달 경로가 활성화되어 사이토카인 및 케모카인이 생성된다.
본 명세서에서 사용하는 용어, "MICA(MHC class I polypeptide-related sequence A)" 및 "MICB(MHC class I polypeptide-related sequence B)"는 구조적으로 MHC 클래스와 유사하며, DNA 손상 및 미스폴딩된 단백질의 축적 등과 관련된 세포 스트레스 경로에 반응하여 많은 인간 암에 의해 상향조절되는 NKG2D 리간드이다.
본 발명의 일 실시예에서, 폐암, 난소암, 유방암 및 난소암 세포주에 토포이소머라제 저해제를 처리한 경우 세포 표면의 ULBP-2의 발현이 증가된 것을 확인할 수 있었다(도 2a 내지 도 2c 및 도 3). 또한, 상기 암세포주에 토포이소머라제 처리 후 자연살해세포를 처리한 경우, 세포 생존율이 현저히 감소하는 것을 확인할 수 있었다(도 6a 내지 도 6b 및 도 10a 내지 도 14). 따라서, 본 발명에서 상기 토포이소머라제 저해제는 자연살해세포의 활성을 증진시키고, 자연살해세포의 암세포에 대한 민감성을 증진시키는 용도로 사용할 수 있다. 또한, 본 발명에서 상기 토포이소머라제 저해제는 암세포 및 자연살해세포의 결합을 증진시켜 항암 활성을 극대화하는 용도로 사용할 수 있다.
항체-토포이소머라제 저해제 접합체
또한, 상기 토포이소머라제 저해제는 항체 또는 이의 단편을 추가로 포함할 수 있다.
본 명세서에서 사용하는 용어, "항체"는 특정 항원과 면역학적으로 반응하는 면역글로불린(Ig) 분자로, 항원을 특이적으로 인식하는 수용체 역할의 단백질 분자를 의미하고, 전체 항체(whole antibody) 및 항체 단편(antibody fragment) 모두 포괄하는 개념이다.
구체적으로, 상기 항체 또는 이의 단편은 단일클론(monoclonal) 항체, 다중클론(polyclonal) 항체, 단일 도메인(single domain) 항체, 단쇄(single chain) 항체, 다중 특이적(multispecific) 항체, 인간 항체, 인간화(humanized) 항체, 키메릭(chimeric) 항체, 인트라바디(intrabody), Fv, scFv, 이황화 결합으로 연결한 Fv(di-scFv), Fab 단편, F(ab')2 단편 및 상기 중 임의의 에피토프(epitope) 결합 단편을 포함할 수 있으나, 이에 제한되지 않는다.
본 발명에서 상기 항체 또는 이의 단편은 HER2(human epidermal growth factor receptor 2), HER3(human epidermal growth factor receptor 3), Trop2, GCC(guanyl cyclase C), CA19-9(carbohydrate antigen 19-9), gpA33(glycoprotein A33), MUC1(mucin 1), CEA(carcinoembryonic antigen), IGF1R(insulin-like growth factor 1 receptor), DLL3(delta-like protein 3), DLL4(delta-like protein 4), EGFR(epidermal growth factor receptor), GPC3(glypican 3), c-MET, VEGFR1(vascular endothelial growth factor receptor 1), VEGFR2(vascular endothelial growth factor receptor 2), nectin 4, Liv 1, GPNMB(glycoprotein NMB), PSMA(prostate specific membrane antigen), CA9(carbonic anhydrase IX), ETBR(endothelin B receptor), STEAP1(six transmembrane epithelial antigen of the prostate 1), FRα(folate receptor alpha), SLITRK6(SLIT and NTRK-like protein 6), CA6(carbonic anhydrase VI), ENPP3(ectonucleotide pyrophosphatase/phosphodiesterase family member 3), mesothelin, TPBG(trophoblast glycoprotein), CD19, CD22, CD33, CD36, CD38, CD56, CD66e, CD70, CD74, CD79b, CD98, CD123, CD138, CD352, CD47, SIRPa(signal-regulatory protein alpha), PD-1, claudin 182, claudin 6, 5T4 BCMA, PD-L1, FAPα(fibroblast activation protein α), MCSP(melanoma-associated chondroitin sulfate proteoglycan) 및 EPCAM(epithelial cellular adhesion molecule)으로 이루어진 군에서 선택되는 어느 하나의 항원에 특이적으로 결합하는 것일 수 있다.
상기 항원은 종양 관련 항원(TAA, tumor associated antigen)으로서, 정상 세포와 비교하여 종양 세포에 특이적으로 과발현된 단백질을 의미한다. 상기 항원은 종양 세포에 특이적으로 과발현하는 한, 특별히 제한되지 않는다.
본 명세서에서 사용하는 용어, "Her2/neu(human epidermal growth factor receptor 2)"는 표피성장인자 수용체 계열의 구성원으로 ErbB2 또는 CD340(cluster of differentiation 340)로도 알려져 있는 티로신 카이네이즈 수용체(receptor tyrosine kinase)이다. Her2/neu는 PI3K/AKT를 활성화를 통해 세포 증식을 조절한다. 전이성 유방암 및 난소암 등에서 과발현 되어 있고 항암제 내성을 유발하는 것으로 알려져 있다.
본 발명에서 상기 Her2/neu는 인간, 원숭이 등의 영장류, 래트, 마우스 등의 설치류를 포함하는 포유류 유래의 것이라면 제한없이 포함될 수 있다. 바람직하게는 인간 Her2/neu일 수 있다. 또한, 상기 Her2/neu 단백질에 대한 아미노산 서열 및 폴리뉴클레오티드 서열은 미국국립보건원(NCBI)의 유전자은행(GenBank)과 같은 공지의 데이터베이스 등에서 얻을 수 있다. 또한, 상기 단백질과 동일한 활성을 갖거나 염색체 상의 상기 Her2/neu를 암호화하는 유전자 위치가 동일한 이상, 상기 단백질의 하나 또는 몇 개의 아미노산이 첨가, 결실, 치환되는 서열로 구성될 수 있다.
본 명세서에서 사용하는 용어, "Her3(human epidermal growth factor receptor 3)"는 인간 표피성장인자 수용체 계열의 구성원인 티로신 카이네이즈 수용체(receptor tyrosine kinase)로 ErbB3로도 알려져 있다. Her3는 동형(homo) 또는 이형(hetero) 이합체(dimerization)를 형성하여 세포 분화, 이동, 증식 및 생존에 관여하는 신호전달 경로의 활성을 조절한다. Her3 단량체(monomers)는 주로 비활성화된 형태로 존재하며, 리간드와 결합 시 이합체를 형성하여 인산화됨으로써 활성화된다. 이때, Her3은 자가 인산화(autophosphorylation) 활성이 부족하여 자가 인산화가 가능한 다른 Her 계열의 구성원인 Her1(EGFR), Her2(ErbB2) 또는 Her4(ErbB2)와 이형 이합체를 형성하여 작용하는 것으로 알려져 있다. 특히, Her2-Her3 이형 이합체는 가장 활성이 강한 이형 이합체로서 RAS/RAF/mitogen-activated protein kinase(MAPK) 및 PI3K/AKT 신호전달 경로를 강력하게 활성화시켜 세포 분화, 이동, 증식, 생존 등을 비롯하여 암세포에서 항암제 내성, 전이 등을 조절한다. Her3의 리간드로 헤레귤린(heregulin, NRG-1) 및 NRG-2가 알려져 있다.
본 발명에서 상기 Her3는 인간, 원숭이 등의 영장류, 래트, 마우스 등의 설치류를 포함하는 포유류 유래의 것이라면 제한없이 포함될 수 있다. 바람직하게는 인간 Her3일 수 있다. 또한, 상기 Her3 단백질에 대한 아미노산 서열 및 폴리뉴클레오티드 서열은 미국국립보건원(NCBI)의 유전자은행(GenBank)과 같은 공지의 데이터베이스 등에서 얻을 수 있다. 또한, 상기 단백질과 동일한 활성을 갖거나 염색체 상의 상기 Her3를 암호화하는 유전자 위치가 동일한 이상, 상기 단백질의 하나 또는 몇 개의 아미노산이 첨가, 결실, 치환되는 서열로 구성될 수 있다.
본 명세서에서 사용하는 용어, "Trop2(tumor-associated calcium signal transducer 2)"는 GA733-1(gastrointestinal antigen 733-1), EGP-1(epithelial glycoprotein-1) 및 M1S1(membrane component surface marker 1)으로도 알려져 있으며, TACSTD2 유전자에 암호화되어 있는 단백질이다. 상기 TACSTD2는 인트론이 존재하지 않는 유전자로, 단일 클론 항체인 GA733에 의해 정의된 암-관련 항원을 암호화한다. 상기 항원은 2가지 이상의 I형 막 단백질을 포함하는 군으로 세포 내 칼슘 신호를 전달하고 세포 표면 수용체로 작용한다. Trop2는 다양한 세포 내 세포신호 전달 과정에 관여하며, 여러 암종에서 과발현되는 것으로 알려져 있다. 특히, 췌장암, 간문부 담관암(hilar cholangiocarcinoma), 자궁경부암, 위암 등에서 Trop2의 과발현은 나쁜 예후와 상관 관계를 나타내는 것으로 보고되어 있다.
본 발명에서 상기 Trop2는 인간, 원숭이 등의 영장류, 래트, 마우스 등의 설치류를 포함하는 포유류 유래의 것이라면 제한없이 포함될 수 있다. 바람직하게는 인간 Trop2일 수 있다. 또한, 상기 Trop2 단백질에 대한 아미노산 서열 및 폴리뉴클레오티드 서열은 미국국립보건원(NCBI)의 유전자은행(GenBank)과 같은 공지의 데이터베이스 등에서 얻을 수 있다. 또한, 상기 단백질과 동일한 활성을 갖거나 염색체 상의 상기 Trop2를 암호화하는 유전자 위치가 동일한 이상, 상기 단백질의 하나 또는 몇 개의 아미노산이 첨가, 결실, 치환되는 서열로 구성될 수 있다.
본 발명에서 상기 항체 또는 이의 단편; 및 토포이소머라제 저해제는 항체-약물 접합체 형태로 사용할 수 있다. 상기 "항체-약물 접합체(antibody-drug conjugate, ADC)"는 항체와 약물이 화학적으로 결합되어 높은 항암 효과를 보이는 치료제이다.
본 발명에서 상기 항체 또는 이의 단편; 및 토포이소머라제 저해제는 링커를 통해 결합된 것일 수 있다. 구체적으로, 항체의 경쇄 또는 중쇄에 존재하는 티올기가 링커에 존재하는 반응기와 결합함으로써 약물이 항체에 결합될 수 있다. 이때, 상기 링커의 반응기의 일 예로는 말레이미드기일 수 있다. 또한, 티올기는 시스테인에 포함되어 있으므로, 항체의 시스테인이 있는 곳에 링커가 결합될 수 있다.
본 발명의 일 구체예에 있어서 상기 항체 또는 이의 단편; 및 토포이소머라제를 포함하는 항체-약물 접합체는 하기 구조식 I의 구조를 갖는 것일 수 있다:
<구조식 I>
Ab-[L-D]n
이때, 상기 구조식 I에 있어서,
Ab는 HER2(human epidermal growth factor receptor 2), HER3(human epidermal growth factor receptor 3), Trop2, GCC(guanyl cyclase C), CA19-9(carbohydrate antigen 19-9), gpA33(glycoprotein A33), MUC1(mucin 1), CEA(carcinoembryonic antigen), IGF1R(insulin-like growth factor 1 receptor), DLL3(delta-like protein 3), DLL4(delta-like protein 4), EGFR(epidermal growth factor receptor), GPC3(glypican 3), c-MET, VEGFR1(vascular endothelial growth factor receptor 1), VEGFR2(vascular endothelial growth factor receptor 2), nectin 4, Liv 1, GPNMB(glycoprotein NMB), PSMA(prostate specific membrane antigen), CA9(carbonic anhydrase IX), ETBR(endothelin B receptor), STEAP1(six transmembrane epithelial antigen of the prostate 1), FRα(folate receptor alpha), SLITRK6(SLIT and NTRK-like protein 6), CA6(carbonic anhydrase VI), ENPP3(ectonucleotide pyrophosphatase/phosphodiesterase family member 3), mesothelin, TPBG(trophoblast glycoprotein), CD19, CD22, CD33, CD36, CD38, CD56, CD66e, CD70, CD74, CD79b, CD98, CD123, CD138, CD352, CD47, SIRPa(signal-regulatory protein alpha), PD-1, claudin 182, claudin 6, 5T4 BCMA, PD-L1, FAPα(fibroblast activation protein α), MCSP(melanoma-associated chondroitin sulfate proteoglycan) 또는 EPCAM(epithelial cellular adhesion molecule)에 특이적으로 결합하는 항체 또는 이의 단편이고,
L은 링커 또는 직접 결합이며,
D는 토포이소머라제 저해제이고,
n은 1 내지 10의 정수이다.
이때, HER2(human epidermal growth factor receptor 2), HER3(human epidermal growth factor receptor 3), Trop2, GCC(guanyl cyclase C), CA19-9(carbohydrate antigen 19-9), gpA33(glycoprotein A33), MUC1(mucin 1), CEA(carcinoembryonic antigen), IGF1R(insulin-like growth factor 1 receptor), DLL3(delta-like protein 3), DLL4(delta-like protein 4), EGFR(epidermal growth factor receptor), GPC3(glypican 3), c-MET, VEGFR1(vascular endothelial growth factor receptor 1), VEGFR2(vascular endothelial growth factor receptor 2), nectin 4, Liv 1, GPNMB(glycoprotein NMB), PSMA(prostate specific membrane antigen), CA9(carbonic anhydrase IX), ETBR(endothelin B receptor), STEAP1(six transmembrane epithelial antigen of the prostate 1), FRα(folate receptor alpha), SLITRK6(SLIT and NTRK-like protein 6), CA6(carbonic anhydrase VI), ENPP3(ectonucleotide pyrophosphatase/phosphodiesterase family member 3), mesothelin, TPBG(trophoblast glycoprotein), CD19, CD22, CD33, CD36, CD38, CD56, CD66e, CD70, CD74, CD79b, CD98, CD123, CD138, CD352, CD47, SIRPa(signal-regulatory protein alpha), PD-1, claudin 182, claudin 6, 5T4 BCMA, PD-L1, FAPα(fibroblast activation protein α), MCSP(melanoma-associated chondroitin sulfate proteoglycan) 또는 EPCAM(epithelial cellular adhesion molecule)에 결합하는 항체 또는 이의 단편은 상술한 바와 동일하다.
본 명세서에서 사용하는 용어, "링커(liner)"는 항체 또는 이의 단편을 화학 결합을 통해 약물(drug 또는 payload)과 연결하는 항체-약물 접합체의 구성요소를 의미한다. 상기 링커는 항체 및 약물을 공유적으로 결합시킬 수 있다.
이때, 상기 링커는 절단형 링커(cleavable linker) 또는 비절단형 링커(non-cleavable linker)일 수 있다.
본 명세서에서 사용하는 용어, "비절단형 링커"는 항체-약물 접합체가 타겟 세포에 내제화된 후, 세포질 또는 리소좀 가수분해효소에 의해 이화작용을 거치면서 약물이 방출되는 링커를 의미한다.
일 구체예에 있어서, maleimide 링커일 수 있다. 상기 maleimide 링커는 예를 들어, maleimidocaproyl(MC) 링커 또는 succimidyl 4-(N-aleimidomethyl)cyclohexane-1-carboxylate(SMCC) 링커일 수 있다.
본 명세서에서 사용하는 용어, "절단형 링커"는 상기 항체-약물 결합체는 링커의 절단에 의하여 약물이 방출되는 링커를 의미한다. 상기 절단형 링커는 절단이 일어나는 원리에 따라 분류될 수 있다.
상기 링커는 화학 절단형(chemical cleavable) 또는 효소 절단형(enzymatic cleavable)일 수 있다. 일 구체예에 있어서, 상기 화학 절단형 링커는 acid-labile 링커 또는 reducible 링커일 수 있다.
본 명세서에서 사용하는 용어, "acid-labile 링커"는 혈액과 같은 중성 pH에서는 안정하지만, 암세포 미세환경, 리소좀 또는 엔도좀과 같은 산성 환경(pH 5 내지 6)에서는 산 가수분해에 의해 절단이 일어나는 링커를 의미한다. 상기 acid-labile 링커는 히드라존(hydrazone) 링커 또는 에스터(ester) 링커를 포함한다.
본 명세서에서 사용하는 용어, "reducible 링커"는 환원성 물질에 의해 환원되어 절단이 일어나는 링커를 의미한다. 일 구체예에서, 상기 reducible 링커는 다이설파이드(disulfide) 링커일 수 있다.
본 명세서에서 사용하는 용어, "효소 절단형 링커"는 세포 내의 환원성 물질에 의해 절단되는 링커를 의미한다. 상기 상기 효소 절단형 링커는 펩타이드-기반 링커(peptide based linker) 또는 특정 효소-기반 링커(specific enzyme-based linker)일 수 있다.
본 명세서에서 사용하는 용어, "펩타이드-기반 링커"는 세포 내에 상대적으로 많이 존재하는 효소에 의해 절단되는 링커로서, 특정한 펩타이드 결합 절단 부위를 포함하는 링커이다. 상기 펩타이드 기반-링커는 발린-시트룰린(valine-citruline), 발린-알라닌(valine-alanine) 및 페닐알라닌-글리신(phenylalanine-glycine)으로 이루어진 군으로부터 선택되는 하나 이상의 결합부위를 포함하는 링커일 수 있다. 일 구체예에 있어서, 발린-시트룰린 링커, 발린-알라닌 링커, 페닐알라닌-글리신으로 이루어진 군으로부터 선택되는 하나 이상의 것일 수 있다.
본 명세서에서 용어, "특정 효소-기반 링커"는 특정 효소에 의해 절단되도록 설계된 링커를 의미한다. 상기 특정-효소 기반 링커는 β-갈락토사이드(β-galactoside), β-글루쿠로나이드(β-glucuronide) 및 포스포다이에스터(phosphodiester)로 이루어진 군으로부터 선택되는 하나 이상의 효소에 의해 절단되는 것일 수 있다. 일 구체예에 있어서, 상기 특정-효소 기반 링커는 β-갈락토사이드 링커, β-글루쿠로나이드 링커 및 포스포다이에스터 링커로 이루어진 군으로부터 선택된 하나 이상의 것일 수 있다.
본 발명의 일 구체예에서, 상기 링커는 펩타이드-기반 링커로서 페닐알라닌-글리신을 포함하는 링커일 수 있다. 예를 들어, 하기 화학식 1의 MC-GGFG-글리콜산 링커이거나 일부 구조가 치환된 것일 수 있다. 본 발명의 일 구체예로, 상기 항체-약물 접합체는 [항-Her2/neu 항체]-[데룩스테칸(엑사테칸 유도체)] 접합체일 수 있다. 보다 구체적으로, 상기 항체-약물 접합체는 엔허투®(Enhertu, 트라스트주맙-데룩스테칸)일 수 있다.
본 발명의 일 구체예로 상기 항체-약물 접합체는 [항-Her3 항체]-[데룩스테칸(엑사테칸 유도체)] 접합체일 수 있다. 보다 구체적으로, 상기 항체-약물 접합체는 U3-1402(파트리투맙-데룩스테칸)일 수 있다.
본 발명의 일 구체예로 상기 항체-약물 접합체는 [항-Trop2 항체]-[데룩스테칸(엑사테칸 유도체)] 접합체일 수 있다. 보다 구체적으로, 상기 항체-약물 접합체는 DS-1602(다토포타맙-데룩스테칸)일 수 있다.
<화학식 1>
Figure PCTKR2023015593-appb-img-000001
본 발명의 일 구체예에서, 상기 링커는 acid-labile 링커로서 하기 화학식 2의 CL2A일 수 있다. 상기 "CL2A"는 절단 가능한 폴리에틸렌글리콜(PEG8, hylene glycol 8) 및 트리아졸 함유 PABC(p-aminocarbamate)-펩티드-mc 링커이다. CL2A는 pH 민감성을 통해 절단되며, 이황화 결합을 통해 시스테인 잔기에서 항체에 결합한다. 본 발명에서 상기 링커는 일부 구조에 폴리에틸렌글리콜이 포함된 것일 수 있다. 본 발명의 일 구체예에서, 상기 항체-약물 접합체는 [항-Trop2 항체]-[SN-38] 접합체일 수 있다. 보다 구체적으로, 상기 항체-약물 접합체는 트로델비®(Trodelvy, 사시투주맙-고비테칸)일 수 있다.
<화학식 2>
Figure PCTKR2023015593-appb-img-000002
약학 조성물의 용도
본 발명의 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 약학 조성물은 암의 예방 또는 치료용으로 사용할 수 있다. 이때, 상기 자연살해세포 및 토포이소머라제 저해제는 상술한 바와 동일하다.
본 명세서에서 사용하는 용어, "암(cancer)"은 세포가 정상적인 성장 한계를 무시하고 분열 및 증식하는 공격적인(aggressive) 특성, 주위 조직에 침투하는 침투적인(invasive) 특성 및 체내의 다른 부위로 퍼지는 전이적인(metastatic) 특성을 갖는 세포에 의한 질병을 총칭하는 의미하며, 악성 종양(tumor)과 동일한 의미로 사용된다.
상기 암은 위암, 간암, 폐암, 비소세포 폐암, 대장암, 방광암, 골암, 혈액암, 유방암, 흑색종양, 갑상선암, 부갑성선암, 골수암, 직장암, 인후암, 후두암, 식도암, 췌장암, 설암, 피부암, 죄종양, 자궁암, 두부 또는 경부암, 담낭암, 구강암, 항문 부근암, 결장암 및 중추신경계 종양으로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 제한되지 않는다.
또한, 본 발명에서 상기 암은 Her2/neu 또는 Trop2의 발현이 증가된 암일 수 있다.
상기 "치료"는 암 세포 또는 조직의 성장을 억제하거나 예방한다는 것을 의미하고, 이는 치료하거나 처리하지 않았을 때와 비교시에 암의 성장 및 암 전이를 감소시키고, 항암제에 대한 내성을 줄여 치료 효과가 더 발휘되도록 하는 것도 포함하는 개념이다. 상기 암 전이(metastasis)는 종양(암) 세포가 신체의 멀리 떨어진 부분으로 확산되는 과정을 의미하고, "항암제에 대한 내성" 또는 "항암제 내성"이란 항암제를 이용하여 암 환자를 치료할 때, 치료 초기부터 치료 효과가 없거나 초기에는 암 치료 효과가 있으나 계속적인 치료 과정에서 암 치료 효과가 상실되는 것을 의미한다. "예방"은 상기 약학 조성물의 투여에 의해 암의 발생을 억제하거나 그의 발병을 지연시키는 모든 행위를 말한다.
본 발명에서 상기 약학 조성물의 유효성분인 자연살해세포 및 토포이소머라제 저해제는 항암 활성을 나타낼 수 있는 한, 용도, 제형, 배합 목적 등에 따라 임의의 양(유효량)으로 포함될 수 있다. 여기서, "유효량"이란 효과를 유도할 수 있는 유효성분의 양을 말한다. 이러한 유효량은 당업자의 통상의 능력 범위 내에서 실험적으로 결정될 수 있다. 본 발명의 약학 조성물은 유효성분으로서 상기 항체 또는 이의 단편을 조성물의 총 중량을 기준으로 약 0.1 중량% 내지 약 90 중량%, 구체적으로 약 0.5 중량% 내지 약 75 중량%, 보다 구체적으로 약 1 중량% 내지 약 50 중량%로 함유할 수 있다.
생체이용률과 같은 약동학적 파라미터(pharmacokinetic parameters) 및 클리어런스율(clearance rate)과 같은 기본적인 파라미터(underlying parameters)도 효능에 영향을 줄 수 있다. 따라서, "향상된 효능"(예를 들어, 효능의 개선)은 향상된 약동학적 파라미터 및 향상된 효능에 기인할 수 있으며, 시험 동물 또는 인간 대상체에서 클리어런스율 및 암 질환 치료 또는 개선과 같은 파라미터를 비교하여 측정될 수 있다.
본 발명의 약학 조성물은, 통상적인 방법에 따라 제제로 배합되는 통상적이고 무독성인 약학적으로 허용가능한 담체를 포함할 수 있다.
상기 약학적으로 허용 가능한 담체는 환자에게 전달하기에 적절한 비-독성 물질이면 어떠한 담체라도 가능하다. 증류수, 알코올, 지방, 왁스 및 비활성 고체가 담체로 포함될 수 있다. 약물학적으로 허용되는 애쥬번트(완충제, 분산제) 또한 약물학적 조성물에 포함될 수 있다.
본 명세서에서 사용된 용어, "약학적으로 허용가능한 담체"란 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 한 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 감미제, 용해 보조제, 습윤제, 유화제, 등장화제, 흡수제, 항산화제, 보존제, 활택제, 충전제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다.
본 발명의 조성물은 비경구 투여(예컨대, 근육내, 정맥내 또는 피하 주사)를 위한 다양한 제형으로 제조될 수 있다. 본 발명의 약학 조성물이 비경구용 제형으로 제조될 경우, 적합한 담체와 함께 당업계에 공지된 방법에 따라 주사제, 경피 투여제, 비강 흡입제 및 좌제의 형태로 제제화될 수 있다. 주사용 제제에는 멸균된 수용액제, 비수성용제, 현탁제, 유제, 동결건조 제제 및 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔, 마크로골, 트윈61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다. 한편, 주사제에는 용해제, 등장화제, 현탁화제, 유화제, 안정화제, 방부제 등과 같은 종래의 첨가제가 포함될 수 있다.
약제학적 조성물의 제제화와 관련하여서는 당업계에 공지되어 있으며, 구체적으로 문헌[Remington's Pharmaceutical Sciences(19th ed., 1995)] 등을 참조할 수 있다. 상기 문헌은 본 명세서의 일부로서 간주된다.
본 발명의 항체 또는 조성물은 치료학적으로 유효한 양 또는 약학적으로 유효한 양으로 개체에게 투여될 수 있다.
본 명세서에서 사용된 용어, "투여"란, 적절한 방법으로 개체에게 소정의 물질을 도입하는 것을 의미하며, 상기 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 국소 투여, 비내 투여, 직장내 투여될 수 있으나, 이에 제한되지 않는다.
상기 "치료학적으로 유효한 양" 또는 "약학적으로 유효한 양"이란 대상 질환을 예방 또는 치료하는데 유효한 조성물의 양으로서, 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분하며 부작용을 일으키지 않을 정도의 양을 의미한다. 상기 유효량의 수준은 환자의 건강 상태, 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 구체적으로, 상기 치료학적으로 유효한 양은 암을 치료하는데 효과적인 약물의 양을 의미한다.
구체적으로, 본 발명의 조성물의 투여량은 환자의 나이, 성별, 체중에 따라 달라질 수 있다. 구체적으로 상기 자연살해세포는 체중 kg 당 약 1×101 내지 약 1×102 세포, 약 1×101 내지 약 1×103 세포, 약 1×101 내지 약 1×104 세포, 약 1×101 내지 약 1×105 세포, 약 1×101 내지 약 1×106 세포, 약 1×101 내지 약 1×107 세포, 약 1×101 내지 약 1×108 세포 또는 약 1×101 내지 약 1×109 세포를 매일 또는 격일 투여하거나 1일 1회 내지 3회로 나누어 투여할 수 있다. 구체적으로 상기 토포이소머라제 저해제는 체중 kg 당 약 0.1 mg 내지 약 100 mg 또는 약 0.5 mg 내지 약 20 mg을 매일 또는 격일 투여하거나 1일 1회 내지 3회로 나누어 투여할 수 있다. 본 발명에서 상기 토포이소머라제 저해제가 항체와 접합된 항체-약물 접합체 형태로 투여되는 경우, 상기 항체-약물 접합체는 체중 kg 당 약 0.1 mg 내지 약 100 mg 또는 약 0.5 mg 내지 약 20 mg을 매일 또는 격일 투여하거나 1일 1회 내지 3회로 나누어 투여할 수 있다. 그러나, 투여 경로, 질병의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로, 본 발명의 범위는 이에 한정되지 않는다.
본 발명에서 상기 자연살해세포 및 토포이소머라제 저해제는 동시 또는 순차적으로 투여될 수 있다. 자연살해세포, 토포이소머라제 저해제 및 투여는 상술한 바와 동일하다.
구체적으로, 상기 자연살해세포 및 토포이소머라제 저해제가 동시에 투여되는 경우, 자연살해세포에 토포이소머라제를 혼합하여 혼합물로 투여할 수 있다. 또는 자연살해세포에 토포이소머라제 저해제를 부착하여 투여할 수 있다. 이때, 상기 토포이소머라제 저해제는 나노입자의 형태로 자연살해세포에 접합시킬 수 있다.
상기 자연살해세포 및 토포이소머라제 저해제가 순차적으로 투여되는 경우, 자연살해세포 투여 후 토포이소머라제 저해제를 투여할 수 있다. 또한, 토포이소머라제 저해제 투여 후 자연살해세포를 투여할 수 있다. 이때, 자연살해세포 및 토포이소머라제 저해제는 연속적으로 투여하거나, 일정한 시간 간격을 두고 투여할 수도 있다.
상기 "개체"는 암이 발병하였거나 발병할 수 있는 포유동물일 수 있으나, 이에 제한되지 않는다. 바람직하게는 인간일 수 있다.
본 발명의 약학 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 이때, 상기 다른 치료제는 항암 활성의 상승, 보강을 위하여 이미 안전성이 검증되고 항암 활성을 갖는 것으로 공지된 임의의 화합물이나 천연 추출물을 추가로 포함할 수 있다. 상기한 요소들을 모두 고려하여 최소한의 부작용으로 또는 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
본 발명의 다른 측면은, 암의 예방 또는 치료용 약제를 제조하기 위한 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 약학 조성물의 용도를 제공한다. 자연살해세포, 토포이소머라제 저해제, 약학 조성물, 암, 예방 및 치료는 상술한 바와 동일하다.
본 발명의 다른 측면은, 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 약학 조성물을 개체에 투여하는 단계를 포함하는 암 예방 또는 치료 방법을 제공한다. 자연살해세포, 토포이소머라제 저해제, 약학 조성물, 암, 예방, 치료, 투여는 상술한 바와 동일하다.
상기 개체는 포유동물일 수 있으며, 바람직하게는 인간일 수 있다. 또한, 상기 개체는 암을 앓는 환자이거나 암을 앓을 가능성이 큰 개체일 수 있다.
상기 약학 조성물의 투여경로, 투여량 및 투여횟수는 환자의 상태 및 부작용의 유무에 따라 다양한 방법 및 양으로 대상에게 투여될 수 있고, 최적의 투여방법, 투여량 및 투여횟수는 통상의 기술자가 적절한 범위로 선택할 수 있다.
본 발명에서 상기 자연살해세포 및 토포이소머라제 저해제는 동시 또는 순차적으로 투여될 수 있다. 자연살해세포, 토포이소머라제 저해제 및 투여는 상술한 바와 동일하다.
구체적으로, 상기 자연살해세포 및 토포이소머라제 저해제가 동시에 투여되는 경우, 자연살해세포에 토포이소머라제를 혼합하여 혼합물로 투여할 수 있다. 또는 자연살해세포에 토포이소머라제 저해제를 부착하여 투여할 수 있다. 이때, 상기 토포이소머라제 저해제는 나노입자의 형태로 자연살해세포에 접합시킬 수 있다.
상기 자연살해세포 및 토포이소머라제 저해제가 순차적으로 투여되는 경우, 자연살해세포 투여 후 토포이소머라제 저해제를 투여할 수 있다. 또한, 토포이소머라제 저해제 투여 후 자연살해세포를 투여할 수 있다. 이때, 자연살해세포 및 토포이소머라제 저해제는 연속적으로 투여하거나, 일정한 시간 간격을 두고 투여할 수도 있다.
또한, 상기 약학 조성물은 암 치료 효과를 갖는 것으로 공지된 임의의 화합물이나 천연 추출물과 병용하여 투여되거나, 다른 약물과의 조합 제제 형태로 제형화될 수 있다.
키트
본 발명의 또 다른 측면은 자연살해세포 및 토포이소머라제 저해제를 포함하는 암 예방 또는 치료용 키트를 제공한다. 자연살해세포, 토포이소머라제 저해제, 암, 예방 및 치료는 상술한 바와 동일하다.
본 발명의 키트는 그 종류가 특별히 제한되지 않으며, 당해 기술 분야에서 통상적으로 사용되는 형태의 키트를 사용할 수 있다.
본 발명의 키트는 자연살해세포 및 토포이소머라제 저해제가 각각 개별 용기에 담긴 형태, 또는 하나 이상의 구획으로 나누어진 한 개의 용기 내에 담기 형태로 포장되어 있을 수 있다. 또한 상기 자연살해세포 및 토포이소머라제 저해제가 각각 1회 투여 용량의 단위 용량 형태로 포장되어 있을 수 있으나, 이에 제한되지 않는다.
상기 키트 내의 자연살해세포 및 토포이소머라제 저해제는 투여 대상 개체의 건강 상태 등에 따라 적절한 시기에 개별적으로 병용 투여될 수 있다. 구체적으로, 상기 자연살해세포 및 토포이소머라제 저해제는 동시 또는 순차적으로 투여될 수 있다. 상기 자연살해세포 및 토포이소머라제 저해제가 동시에 투여되는 경우, 자연살해세포에 토포이소머라제를 사용하기 직전 혼합하여 혼합물로 투여할 수 있다. 상기 자연살해세포 및 토포이소머라제 저해제가 순차적으로 투여되는 경우, 자연살해세포 투여 후 토포이소머라제 저해제를 투여하거나, 이의 역순으로 투여할 수 있다. 이때, 자연살해세포 및 토포이소머라제 저해제는 연속적으로 투여하거나, 일정한 시간 간격을 두고 투여할 수도 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. 암세포에서 토포이소머라제 I 저해제 처리에 의한 스트레스 리간드 발현 증가 확인
토포이소머라제 I 저해제가 NKG2D를 통해 자연살해세포를 활성화시켜 항암 효과를 나타낼 수 있는지 확인하기 위하여, 먼저 다양한 암 세포주에서 SN-38 또는 엑사테칸 메실레이트(exatecan mesylate)를 처리한 뒤 NKG2D 리간드인 ULBP-2의 발현을 FACS 분석을 통해 확인하였다(도 1).
구체적으로, 폐암 세포주(A549), 유방암 세포주(SKBR3), 난소암 세포주(NIH:OVCAR3, SKOV3)를 각각 5×105 세포/웰의 농도로 6웰 플레이트에 접종하였다. 24시간 후, 토포이소머라제 I 저해제인 엑사테칸 메실레이트(Medchemexpress, Cat. HY-13631A) 또는 SN-38(Medchemexpress, Cat. HY-13704)을 각각 0.01 내지 10 μM의 농도로 처리하고 24시간 추가 배양하였다. 이때, 음성 대조군으로 DMSO를 사용하였고, 대조군으로 시스플라틴(cisplatin)을 사용하였다. 24시간 배양 후, 세포를 모두 회수하여 PBS로 세척한 뒤, 항-ULBP-2-PE 항체(R&D systems, Cat.FAB1298P)를 처리하고 4℃에서 30분간 반응시켰다. 반응 종료 후, FACS washing buffer로 세포를 3번 세척한 뒤, 유세포 분석기를 통해 FACS 분석을 수행하였다.
그 결과, 도 2a 내지 도 2c 및 도 3(좌측)에 나타낸 바와 같이, 네 종류의 암 세포주에서 모두 무처리군(no treatment) 및 음성 대조군과 비교하여 토포이소머라제 I 저해제 처리군에 ULBP-2의 발현이 증가한 것을 확인할 수 있었다. 이때, 폐암 세포주(A549), 유방암 세포주(SKBR3), 난소암 세포주(NIH:OVCAR3)의 경우 ULBP-2의 발현량과 토포이소머라제 I 저해제 농도와의 상관관계를 나타나지 않았으나, 난소암 세포주(SKOV3)의 경우 토포이소머라제 I 저해제 농도 의존적으로 ULBP-2의 발현이 증가되었다.
상기 결과를 바탕으로 난소암 세포주(SKOV3)에 엑사테칸 메실레이트를 1 또는 10 μM의 농도로 각각 3, 6, 12 또는 24시간 처리한 뒤, 세포를 수거하여 세포 내 ULBP-2의 유전자 발현을 real time PCR을 통해 확인하였다.
그 결과, 도 3(우측)에 나타낸 바와 같이, 엑사테칸 메실레이트의 처리에 의하여 세포 내 ULBP-2의 유전자 발현이 증가하였으며, 상기 발현량은 엑사테칸의 처리 농도에 의존적이지 않았으나, 처리 시간에 의존적으로 증가하였다.
실시예 2. 폐암 세포주에서 토포이소머라제 I 저해제 및 자연살해세포 병용의 항암 활성 평가
실시예 2.1. 폐암 세포주에서 토포이소머라제 I 저해제 단독 처리의 항암 활성 평가
폐암 세포주에서 토포이소머라제 I 저해제 및 자연살해세포 병용 처리 조건을 확립하기 위하여, 먼저 토포이소머라제 I 저해제를 농도별 및 시간별로 처리하여 세포 존율이 50%가 되는 조건을 확인하였다.
구체적으로, 폐암 세포주인 A549 세포를 2×104 세포/웰의 농도가 되도록 96웰 플레이트에 접종하고 24시간 배양하였다. 그리고, SN-38 또는 엑사테칸 메실레이트를 각각 1 μM 또는 10 μM이 되도록 처리한 뒤, 24시간 또는 48시간 추가 배양하여 세포 생존율을 MTS assay를 통해 확인하였다. 이때, 대조군(vehicle)으로 DMSO를 사용하였다(도 4).
그 결과, 도 5에 나타낸 바와 같이, 토포이소머라제 I 저해제를 24시간 처리한 경우 대조군과 비교하여 모두 72% 이상의 세포 생존율을 나타냈다. 하지만, 토포이소머라제 I 저해제를 48시간 처리한 경우 1 μM SN-38 처리군을 제외하고 모두 50% 이하의 세포 생존율을 나타내었다. 따라서, 자연살해세포 및 토포이소머라제 I 저해제 병용 처리 실험에는 1 μM 또는 10 μM의 토포이소머라제 I 저해제를 24시간 처리하여 수행하였다.
실시예 2.2. 폐암 세포주에서 토포이소머라제 I 저해제 및 자연살해세포 병용 처리의 항암 활성 평가
폐암 세포주에서 토포이소머라제 I 저해제 및 자연살해세포 병용 처리에 의한 항암 활성을 확인하였다.
구체적으로, 폐암 세포주를 상기 실시예 2.1과 동일한 방법으로 수행하였다. 이때, 대조군으로 시스플라틴(cisplatin)을 사용하였다. 토포이소머라제 I 저해제 처리 24시간 후, 각각의 웰에 말초혈액 자연살해세포(PBNK) 또는 유도만능줄기세포 유래 자연살해세포(EiNK)를 각각 3×104 세포/웰의 농도로 접종하였다. 그 뒤, 24시간 추가 배양하고 MTS assay를 통해 세포 생존율을 확인하였다.
그 결과, 도 6a 및 도 6b에 나타낸 바와 같이, 토포이소머라제 I 저해제 단독 처리군(Non-treated) 및 자연살해세포 단독 처리군(EiNK+No Treated, EiNK+DMSO, PBNK+No treated, PBNK+DMSO)에서는 뛰어난 항암 효과가 나타나지 않았다. 반면, 토포이소머라제 I 저해제 및 자연살해세포 병용 처리군의 경우 토포이소머라제 I 저해제 단독 처리군 및 자연살해세포 단독 처리군에 비하여 높은 항암 활성을 나타내었다. 또한, 상기 항암 활성은 농도 의존적으로 나타났다. 이때, 시스플라틴의 경우 10 μM의 농도 처리 조건에서만 자연살해세포(PBNK 또는 EiNK)와 병용 처리 시 상승된 항암 활성이 관찰되었다.
실시예 3. 난소암 세포주에서 토포이소머라제 I 저해제 및 자연살해세포 병용의 항암 활성 평가
실시예 3.1. 난소암 세포주에서 토포이소머라제 I 저해제 단독 처리의 항암 활성 평가
난소암 세포주에서 토포이소머라제 I 저해제 및 자연살해세포 병용 처리 조건을 확립하기 위하여, 먼저 토포이소머라제 I 저해제를 농도별 및 시간별로 처리하여 세포 생존율이 50%가 되는 조건을 확인하였다. 난소암 세포주로 SKOV3 세포를 사용하였다. 상기 실시예 2.1.과 동일한 방법으로 수행하였으며, 토포이소머라제 I 저해제를 각각 24시간, 48시간 또는 72시간 처리한 뒤 세포 생존율을 확인하였다(도 7). 또한, 대조군으로 시스플라틴을 사용하였다.
그 결과, 도 8에 나타낸 바와 같이, 대조군(vehicle)과 비교하여 토포이소머라제 I 저해제를 72시간 처리 시 최대의 항암 활성을 나타내었음에도 불구하고, 최소 50% 이상의 세포 생존율을 나타내었다. 따라서, 난소암 세포주에서 자연살해세포 및 토포이소머라제 I 저해제 병용 처리 실험에는 상기 조건과 동일한 조건으로 처리하여 수행하였다.
실시예 3.2. 난소암 세포주에서 토포이소머라제 I 저해제 및 자연살해세포 병용 처리의 항암 활성 평가
난소암 세포주에서 토포이소머라제 I 저해제 및 자연살해세포 병용 처리에 의한 항암 활성을 확인하였다. 난소암 세포주는 SKOV3 세포를 사용하였고 실시예 2.2.와 동일한 방법으로 세포 생존율을 확인하였다(도 9). 이때, 각각의 웰에 PBNK 또는 EiNK를 처리 후 24시간 또는 48시간 추가 배양하였으며, 현미경 관찰도 병행하였다(도 10a 내지 도 12b).
그 결과, 도 10a 내지 도 13b에 나타낸 바와 같이, 토포이소머라제 I 저해제 단독 처리군 및 자연살해세포 단독 처리군에서는 뛰어난 항암 효과가 나타나지 않았다. 반면, 토포이소머라제 I 저해제 및 자연살해세포 병용 처리군의 경우 토포이소머라제 I 저해제 단독 처리군 및 자연살해세포 단독 처리군에 비하여 높은 항암 활성을 나타내었다. 이때, 시스플라틴의 경우 10 μM의 농도 처리 조건에서만 자연살해세포(PBNK 또는 EiNK)와 병용 처리 시 상승된 항암 활성이 관찰되었다.
실시예 4. 유방암 세포주에서 토포이소머라제 I 저해제 및 자연살해세포 병용의 항암 활성 평가
유방암 세포주에서 토포이소머라제 I 저해제 및 자연살해세포 병용 처리에 의한 항암 활성을 확인하였다. 유방암 세포주는 SKBR3 세포를 사용하였다.
구체적으로, SKRB3 세포를 2×104 세포/웰의 농도로 96웰 플레이트에 접종한 뒤 24시간 배양하였다. 그리고 1 μM의 SN-38 또는 엑사테칸 메실레이트를 각 웰에 처리하고 24시간 추가 배양하였다. 24시간 후, EiNK를 각 웰에 4×104 세포/웰의 농도로 처리한 뒤 24시간 추가 배양하고 MTS assay를 이용하여 세포 생존율을 확인하였다.
그 결과, 도 14에 나타낸 바와 같이, 토포이소머라제 I 저해제 단독 처리군에서 뛰어난 항암 효과를 확인할 수 있었다. 또한, 토포이소머라제 I 저해제 단독 처리군 또는 EiNK 단독 처리군과 비교하여 토포이소머라제 I 저해제 및 EiNK 병용 처리군에서 보다 향상된 항암 활성을 확인할 수 있었다.
실시예 5. 양성 난소암 세포주에서 항체-토포이소머라제 I 저해제 접합체의 항암 활성 평가
실시예 5.1. 난소암 세포주에서 항체-토포이소머라제 I 저해제 접합체 처리에 의한 스트레스 리간드 발현 증가 확인
항체-토포이소머라제 I 저해제의 접합체가 NKG2D를 통해 자연살해세포를 활성화시켜 항암 효과를 나타낼 수 있는지 확인하기 위하여, Her2 양성(positive) 난소암 세포주에서 항-Her2 항체-토포이소머라제 I 저해제 접합체인 트라스투주맙-데룩스테칸(Enhertu)(Medchemexpress, Cat. HY-138298A)을 처리한 뒤 NKG2D 리간드인 MICA, MICB, ULBP-1, ULBP-2 및 ULBP-3의 발현을 FACS 분석을 통해 확인하였다(도 15).
실험은 실시예 1과 동일한 방법으로 수행하였다. 이때, Her2 양성 난소암 세포주로 NIH:OVCAR3 세포 및 SKOV3 세포를 사용하였다. 트라스투주맙-데룩스테칸은 각각 1 ㎍/㎖ 또는 10 ㎍/㎖의 농도로 처리하였고, 약물 처리에 대한 양성 대조군으로 사용한 시스플라틴은 1 μM의 농도로 처리하였다. 또한, 음성 대조군으로는 DMSO를 사용하였다. FACS 분석에 사용된 항체는 모두 R&D systems사의 PE(phycoerthrin)가 접합된 항체로, 항-MICA 항체(Cat. FAB1300P), 항-MICB 항체(Cat. FAB1599), 항-ULBP-1 항체(Cat. FAB1380P), 항-ULBP-2/5/6 항체(Cat. FAB1298P) 및 항-ULBP-3 항체(Cat. FAB1517P)를 사용하였다. 항체 반응에 대한 음성 대조군으로 항-마우스 IgG2a 항체(Cat. IC003P) 및 항-마우스 IgG2b 항체(Cat. IC0041P)를 사용하였다.
그 결과, 도 16a 내지 도 17e에 나타낸 바와 같이, 음성 대조군(DMSO)와 비교하여 트라스투주맙-데룩스테칸 처리에 의해 NIH:OVCAR3 세포주 및 SKOV3 세포주에서 모두 ULBP-2의 발현량이 유의적으로 증가하는 것을 확인할 수 있었다. 반면, MICA, MICB, ULBP-1 및 ULBP-3의 발현량은 변화가 관찰되지 않았다.
실시예 5.2. 난소암 세포주에서 항체-토포이소머라제 I 저해제 접합체 및 자연살해세포 병용 처리의 항암 활성 평가
난소암 세포주에서 항체-토포이소머라제 I 저해제 및 자연살해세포 병용 처리에 의한 항암 활성을 확인하였다.
구체적으로, Her2-양성 난소암 세포주인 SKOV3 세포를 2×104 세포/웰의 농도가 되도록 96웰 플레이트에 접종하고 24시간 배양하였다. 그리고, 트라스투주맙-데룩스테칸을 각각 10 ng/㎖, 100 ng/㎖, 1 ㎍/㎖ 또는 10 ㎍/㎖의 농도가 되도록 처리한 뒤, 24시간 추가 배양하였다. 또한, 엑사테칸 메실레이트(exatecan mesylate)를 10 nM, 100 nM, 1 μM 및 10 μM의 농도가 되도록 처리한 뒤, 24시간 추가 배양하였다.
약물을 처리하고 24시간 후, 각각의 웰에 유도만능줄기세포 유래 자연살해세포(EiNK)를 각각 6×104 세포/웰의 농도로 접종하였다. 그 뒤, 24시간 추가 배양하고 MTS assay를 통해 세포 생존율을 확인하였다.
그 결과, 도 19에 나타낸 바와 같이, 트라스투주맙-데룩스테칸 또는 EiNK 단독 처리군과 비교하여 트라스투주맙-데룩스테칸 및 EiNK 병용 처리군에서 뛰어난 항암 효과가 나타났다.
실시예 6. 폐암 동물 모델에서 토포이소머라제 II 저해제 및 자연살해세포 병용 처리의 항암 활성 평가
폐암 동물 모델은 NPG 마우스(암컷, 6주령, 제조사 Vitalstar)를 사용하였다. 구체적으로, A549 세포주를 매트리겔 매트릭스(Matrigel matrix)와 1:1로 혼합한 후, 버블이 생기지 않게 혼합하였다. 이후, NPG 면역결핍(immune-deficiency) 마우스의 우측 옆구리 피하에 1×106 개의 세포수로 A549 세포를 주입하였다. 종양 부피가 약 70 mm3에 도달하면 유사한 종양 크기를 가지는 그룹으로 분류하고, 하기 표 1에 나타낸 바와 같은 3개의 시험군, 토포이소머라제 II 저해제인 독소루비신(Doxorubicin, Dox) 단독 처리군, NK 세포(PBNK) 단독 처리군, 독소루비신 및 NK 세포 병용 처리군을 대상으로 항암 활성을 평가하였다. 이때, 무처리군을 대조군(Control)으로 사용하였다.
그룹 시험군 처리 농도 처리 일자 투여경로
1 독소루비신(Dox) 3 mg/kg - 독소루비신: 3일, 4일 및 5일째
- NK 세포: 6일째
정맥투여
2 NK 세포(NK cell, PBNK) 1×107
3 독소루비신 및 NK 세포
(Dox + NK cell)
3 mg/kg + 1×107
그 결과, 도 20에 나타낸 바와 같이, 독소루비신 단독 또는 NK 세포 단독 처리군과 비교하여 독소루비신 및 NK 세포 병용 처리군에서 뛰어난 항암 효과가 나타났다.

Claims (14)

  1. 자연살해세포 및 토포이소머라제(topoisomerase) 저해제를 유효성분으로 포함하는 암 예방 또는 치료용 약학 조성물.
  2. 제1항에 있어서,
    상기 토포이소머라제 저해제는 이리노테칸(irinotecan), SN-38, GI-147211C, 토포테칸(topotecan), 9-아미노캠토테신(9-aminocamptothecin), 7-하이드록시메틸 캄프토테신(7-hydroxymethylcamptothecin), 7-아미노메틸 캄프토테신(7-aminometyl camptothecin), 10-하이드록시캄프토테신(10-hydroxycamptothecin), 캄프토테신(camptothecin), 루비테칸(rubitecan), 지마테칸(gimatecan), 카레니테신(karenitecin; BNP1350), 루르토테칸(lurtotecan), 엑사테칸(exatecan), 디플로모테칸(diflomotecan), 벨로테칸(belotecan), S39625, 에토포시드(etoposide), 에토포시드 포스페이트(etoposide phosphate), 테니포시드(teniposide), 독소루비신(doxorubicin), 다우노루비신(daunorubicin), 에피루비신(epirubicin), 이다루비신(idarubicin), 미톡산트론(mitoxantrone), 크리스나톨(crisnatol), 노반트론(novantrone) 및 레티노산(retinoic acid;retinols)으로 이루어진 군으로부터 선택되는 어느 하나인 것인, 암 예방 또는 치료용 약학 조성물.
  3. 제2항에 있어서,
    상기 토포이소머라제 저해제는 암세포에서 ULBP-1, ULBP-2, ULBP-3, ULBP-4, ULBP-5, ULBP-6, MICA 및 MICB로 이루어진 군에서 선택되는 어느 하나의 NKG2D 리간드의 발현을 증가시키는 것인, 암 예방 또는 치료용 약학 조성물.
  4. 제1항에 있어서,
    상기 토포이소머라제 저해제는 항체 또는 이의 단편을 추가로 포함하는 것인, 암 예방 또는 치료용 약학 조성물.
  5. 제4항에 있어서,
    상기 항체 또는 이의 단편은 HER2(human epidermal growth factor receptor 2), HER3(human epidermal growth factor receptor 3), Trop2, GCC(guanyl cyclase C), CA19-9(carbohydrate antigen 19-9), gpA33(glycoprotein A33), MUC1(mucin 1), CEA(carcinoembryonic antigen), IGF1R(insulin-like growth factor 1 receptor), DLL3(delta-like protein 3), DLL4(delta-like protein 4), EGFR(epidermal growth factor receptor), GPC3(glypican 3), c-MET, VEGFR1(vascular endothelial growth factor receptor 1), VEGFR2(vascular endothelial growth factor receptor 2), nectin 4, Liv 1, GPNMB(glycoprotein NMB), PSMA(prostate specific membrane antigen), CA9(carbonic anhydrase IX), ETBR(endothelin B receptor), STEAP1(six transmembrane epithelial antigen of the prostate 1), FRα(folate receptor alpha), SLITRK6(SLIT and NTRK-like protein 6), CA6(carbonic anhydrase VI), ENPP3(ectonucleotide pyrophosphatase/phosphodiesterase family member 3), mesothelin, TPBG(trophoblast glycoprotein), CD19, CD22, CD33, CD36, CD38, CD56, CD66e, CD70, CD74, CD79b, CD98, CD123, CD138, CD352, CD47, SIRPa(signal-regulatory protein alpha), PD-1, claudin 182, claudin 6, 5T4 BCMA, PD-L1, FAPα(fibroblast activation protein α), MCSP(melanoma-associated chondroitin sulfate proteoglycan) 및 EPCAM(epithelial cellular adhesion molecule)으로 이루어진 군에서 선택되는 어느 하나의 항원에 특이적으로 결합하는 것인, 암 예방 또는 치료용 약학 조성물.
  6. 제4항에 있어서,
    상기 항체 또는 이의 단편은 토포이소머라제 저해제에 링커를 통해 결합된 것인, 암 예방 또는 치료용 약학 조성물.
  7. 제6항에 있어서,
    상기 항체 또는 이의 단편; 및 토포이소머라제 저해제는 하기 구조식 I의 구조를 갖는 것인, 암 예방 또는 치료용 약학 조성물:
    <구조식 I>
    Ab-[L-D]n
    이때, 상기 구조식 I에 있어서,
    Ab는 HER2(human epidermal growth factor receptor 2), HER3(human epidermal growth factor receptor 3), Trop2, GCC(guanyl cyclase C), CA19-9(carbohydrate antigen 19-9), gpA33(glycoprotein A33), MUC1(mucin 1), CEA(carcinoembryonic antigen), IGF1R(insulin-like growth factor 1 receptor), DLL3(delta-like protein 3), DLL4(delta-like protein 4), EGFR(epidermal growth factor receptor), GPC3(glypican 3), c-MET, VEGFR1(vascular endothelial growth factor receptor 1), VEGFR2(vascular endothelial growth factor receptor 2), nectin 4, Liv 1, GPNMB(glycoprotein NMB), PSMA(prostate specific membrane antigen), CA9(carbonic anhydrase IX), ETBR(endothelin B receptor), STEAP1(six transmembrane epithelial antigen of the prostate 1), FRα(folate receptor alpha), SLITRK6(SLIT and NTRK-like protein 6), CA6(carbonic anhydrase VI), ENPP3(ectonucleotide pyrophosphatase/phosphodiesterase family member 3), mesothelin, TPBG(trophoblast glycoprotein), CD19, CD22, CD33, CD36, CD38, CD56, CD66e, CD70, CD74, CD79b, CD98, CD123, CD138, CD352, CD47, SIRPa(signal-regulatory protein alpha), PD-1, claudin 182, claudin 6, 5T4 BCMA, PD-L1, FAPα(fibroblast activation protein α), MCSP(melanoma-associated chondroitin sulfate proteoglycan) 또는 EPCAM(epithelial cellular adhesion molecule)에 특이적으로 결합하는 항체 또는 이의 단편이고,
    L은 링커 또는 직접 결합이며,
    D는 토포이소머라제 저해제이고,
    n은 1 내지 10의 정수이다.
  8. 제1항에 있어서,
    상기 암은 위암, 간암, 폐암, 대장암, 유방암, 전립선암, 난소암, 췌장암, 자궁경부암, 갑상선암, 후두암, 급성 골수성 백혈병, 뇌종양, 신경모세포종, 망막모세포종, 두경부암, 침샘암 및 림프종으로 이루어진 군으로부터 선택되는 어느 하나인 것인, 암 예방 또는 치료용 약학 조성물.
  9. 제1항에 있어서,
    상기 자연살해세포 및 토포이소머라제 저해제는 동시 또는 순차적으로 투여되는 것인, 암 예방 또는 치료용 약학 조성물.
  10. 자연살해세포 및 토포이소머라제 저해제를 포함하는 암 예방 또는 치료용 키트.
  11. 제10항에 있어서,
    상기 토포이소머라제 저해제는 이리노테칸(irinotecan), SN-38, GI-147211C, 토포테칸(topotecan), 9-아미노캠토테신(9-aminocamptothecin), 7-하이드록시메틸 캄프토테신(7-hydroxymethylcamptothecin), 7-아미노메틸 캄프토테신(7-aminometyl camptothecin), 10-하이드록시캄프토테신(10-hydroxycamptothecin), 캄프토테신(camptothecin), 루비테칸(rubitecan), 지마테칸(gimatecan), 카레니테신(karenitecin; BNP1350), 루르토테칸(lurtotecan), 엑사테칸(exatecan), 디플로모테칸(diflomotecan), 벨로테칸(belotecan), S39625, 에토포시드(etoposide), 에토포시드 포스페이트(etoposide phosphate), 테니포시드(teniposide), 독소루비신(doxorubicin), 다우노루비신(daunorubicin), 에피루비신(epirubicin), 이다루비신(idarubicin), 미톡산트론(mitoxantrone), 크리스나톨(crisnatol), 노반트론(novantrone) 및 레티노산(retinoic acid;retinols)으로 이루어진 군으로부터 선택되는 어느 하나인 것인, 암 예방 또는 치료용 키트.
  12. 제10항에 있어서,
    상기 자연살해세포 및 토포이소머라제 저해제는 동시 또는 순차적으로 투여되는 것인, 암 예방 또는 치료용 키트.
  13. 제1항의 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 약학 조성물을 개체에 투여하는 단계를 포함하는 암 예방 또는 치료 방법.
  14. 제13항에 있어서,
    상기 자연살해세포 및 토포이소머라제 저해제는 동시 또는 순차적으로 투여되는 것인, 암 예방 치료 방법.
PCT/KR2023/015593 2022-10-13 2023-10-11 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 암 예방 및 치료용 약학 조성물 WO2024080726A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0131253 2022-10-13
KR20220131253 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024080726A1 true WO2024080726A1 (ko) 2024-04-18

Family

ID=90669873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015593 WO2024080726A1 (ko) 2022-10-13 2023-10-11 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 암 예방 및 치료용 약학 조성물

Country Status (2)

Country Link
KR (1) KR20240051843A (ko)
WO (1) WO2024080726A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020056045A1 (en) * 2018-09-13 2020-03-19 Nkarta, Inc. Natural killer cell compositions and immunotherapy methods for treating tumors
WO2021209007A1 (en) * 2020-04-15 2021-10-21 Shenzhen Enduring Biotech, Ltd. Antibody-drug conjugate
KR20220050685A (ko) * 2020-10-16 2022-04-25 의료법인 성광의료재단 Nk 세포를 포함하는 항암 보조용 조성물 및 항암제 감수성 증진방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020056045A1 (en) * 2018-09-13 2020-03-19 Nkarta, Inc. Natural killer cell compositions and immunotherapy methods for treating tumors
WO2021209007A1 (en) * 2020-04-15 2021-10-21 Shenzhen Enduring Biotech, Ltd. Antibody-drug conjugate
KR20220050685A (ko) * 2020-10-16 2022-04-25 의료법인 성광의료재단 Nk 세포를 포함하는 항암 보조용 조성물 및 항암제 감수성 증진방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERIK WENNERBERG; DHIFAF SARHAN; MATTIAS CARLSTEN; VITALIY O. KAMINSKYY; PADRAIG D'ARCY; BORIS ZHIVOTOVSKY; RICHARD CHILDS; ANDREAS: "Doxorubicin sensitizes human tumor cells to NK cell‐ and T‐cell‐mediated killing by augmented TRAIL receptor signaling", INTERNATIONAL JOURNAL OF CANCER, JOHN WILEY & SONS, INC., US, vol. 133, no. 7, 11 April 2013 (2013-04-11), US , pages 1643 - 1652, XP071287215, ISSN: 0020-7136, DOI: 10.1002/ijc.28163 *
GRANOT T; MERUELO D: "The role of natural killer cells in combinatorial anti-cancer therapy using Sindbis viral vectors and irinotecan", CANCER GENE THERAPY, NATURE PUBLISHING GROUP US, NEW YORK, vol. 19, no. 8, 8 June 2012 (2012-06-08), New York, pages 588 - 591, XP037761571, ISSN: 0929-1903, DOI: 10.1038/cgt.2012.33 *
KELLSYE P. FABIAN: "The emerging role of off-the-shelf engineered natural killer cells in targeted cancer immunotherapy", MOLECULAR THERAPY - ONCOLYTICS, vol. 23, 1 December 2021 (2021-12-01), pages 266 - 276, XP093159393, ISSN: 2372-7705, DOI: 10.1016/j.omto.2021.10.001 *

Also Published As

Publication number Publication date
KR20240051843A (ko) 2024-04-22

Similar Documents

Publication Publication Date Title
WO2020197319A1 (ko) 면역세포의 제조방법 및 그의 용도
Jewett et al. Natural killer cells preferentially target cancer stem cells; role of monocytes in protection against NK cell mediated lysis of cancer stem cells
WO2021054789A1 (ko) 신규 키메라 항원 수용체 암호화 유전자가 형질도입된 유전자 변형 nk 세포주 및 그의 용도
WO2018044105A1 (ko) 항체 중쇄불변부위 이종이중체 (heterodimeric Fc)에 융합된 IL-21 (heterodimeric Fc-fused IL-21) 및 이를 포함하는 약제학적 조성물
WO2019182422A1 (ko) 신규 유전자 변형 자연살해 세포주 및 그의 용도
CN112703206B (zh) 靶向肿瘤的重组双功能融合蛋白及其应用
JP2020524675A (ja) Cd38抗体薬物コンジュゲート
WO2018199593A1 (ko) Her3 및 cd3에 결합하는 이중특이적 항체
WO2019198995A1 (ko) 엑소좀 기반의 면역세포의 교차분화 방법
WO2011052883A2 (ko) Socs2 유전자의 발현을 조절하여 자연 살해 세포를 활성화시키는 방법
WO2017146538A1 (ko) 조절 t 세포 매개성 질환의 예방 또는 치료용 약학적 조성물
WO2022025638A1 (ko) 면역시냅스를 안정화시키는 키메라 항원 수용체(car) t 세포
WO2024080726A1 (ko) 자연살해세포 및 토포이소머라제 저해제를 유효성분으로 포함하는 암 예방 및 치료용 약학 조성물
WO2021153979A1 (ko) 항-taa 항체, 항-pd-l1 항체 및 il-2를 포함하는 융합단백질 및 이의 용도
WO2018186706A1 (ko) Nk 세포 활성화 융합 단백질, nk 세포 및 이들을 포함하는 약제학적 조성물
Nishimura et al. Human c‐erbB‐2 proto‐oncogene product as a target for bispecific‐antibody‐directed adoptive tumor immunotherapy
WO2017003153A1 (ko) 제대혈 단핵세포 또는 이로부터 유래된 세포로부터 자연살해세포를 제조하는 방법
Yoon et al. Transfer of Her-2/neu specificity into cytokine-induced killer (CIK) cells with RNA encoding chimeric immune receptor (CIR)
WO2016117960A1 (ko) 면역질환 치료 효능을 갖는 grim19이 과발현된 중간엽줄기세포 및 이의 용도
WO2016027990A1 (ko) Dusp5를 유효성분으로 모두 포함하는 골대사성 질환의 예방 또는 치료용 약학적 조성물
WO2022231032A1 (ko) 항-cntn4 특이적 항체 및 그의 용도
Wang et al. Update on cancer related issues of mesenchymal stem cell-based therapies
WO2021107635A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 nk 세포를 포함하는 항암 치료용 조성물
WO2021033973A1 (ko) Mitf 억제제를 유효성분으로 함유하는 골수-유래 억제세포 저해용 조성물
WO2019151836A1 (en) Oncolytic vaccinia virus expressing an immune checkpoint protein antagonist to treat cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877652

Country of ref document: EP

Kind code of ref document: A1