WO2024080722A1 - Microfluidic flow velocity precise-control device using synchronously operating dual valves and microfluidic flow velocity precise-control method using same - Google Patents

Microfluidic flow velocity precise-control device using synchronously operating dual valves and microfluidic flow velocity precise-control method using same Download PDF

Info

Publication number
WO2024080722A1
WO2024080722A1 PCT/KR2023/015589 KR2023015589W WO2024080722A1 WO 2024080722 A1 WO2024080722 A1 WO 2024080722A1 KR 2023015589 W KR2023015589 W KR 2023015589W WO 2024080722 A1 WO2024080722 A1 WO 2024080722A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
valve
microfluidic
pressure
synchronization valve
Prior art date
Application number
PCT/KR2023/015589
Other languages
French (fr)
Korean (ko)
Inventor
박상열
양인철
유희봉
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2024080722A1 publication Critical patent/WO2024080722A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers

Definitions

  • the present invention relates to a microfluidic flow rate precision control device using a synchronized double valve and a method for precisely controlling the microfluidic flow rate using the same. More specifically, the present invention relates to a microfluidic flow rate using a synchronized double valve to synchronize the microfluidic flow rate. It relates to a precision control device and a method of precisely controlling the microfluidic flow rate using the same.
  • Microfluidic devices are used in many fields, including various biochemical analyzes and biological sample analysis for disease diagnosis.
  • Microfluidic devices include micro-devices such as capillary channels, microfluidic chips, and lab-on-a-chips, and include microfluidic channels and microfluidic channels. Provide a structure.
  • microfluidic devices as described above can be used to analyze specific components in chemical or biochemical samples, and can be used for culturing tissue cells in a micro-chamber and drug testing using them. Additionally, a chemical reaction can occur by mixing two or more sample solutions within a microfluidic device, and it can also be used to manufacture functional materials. In this way, microfluidic devices can be applied to various fields and are being used for various purposes in various fields.
  • the amount of sample solution injected into the microfluidic tube of the microfluidic device is very small, and therefore it is important to control the movement of the extremely small amount of sample solution to be injected into the microfluidic tube.
  • the amount of sample solution injected into the microfluidic tube of the microfluidic device is extremely small, and therefore it is important to control the movement of the extremely small amount of sample solution to be injected into the microfluidic tube, but there are realistically difficult problems as follows.
  • the transport of the fluid is easily controlled by adding pressure or vacuum.
  • the friction force acting on the wall of the fluid tube is relatively large, and when a large pressure or vacuum is applied to overcome this, the flow speed becomes very fast, making it difficult to transport a small amount of fluid.
  • the present invention was created to solve the problems of the prior art as described above, and the purpose of the present invention is to precisely control the flow rate of the microfluidic fluid using a synchronized double valve. It relates to a precision control device and a method of precisely controlling the microfluidic flow rate using the same.
  • the microfluidic control device 1000 using a synchronized double valve includes a microfluidic tube 100 in the form of a capillary tube; A pressure transmission passage 200 connected to one side of the microfluidic pipe 100; A first synchronization unit connected to one side of the pressure transmission passage 200; a second synchronization unit connected to the other side of the pressure transmission passage 200; and a synchronization valve controller 600 connected in series with the first control unit and the second control unit; may include.
  • the microfluidic control method using a double valve includes a synchronization valve controller 600 connected to one side of the pressure transmission passage 200 connected to one side of the microfluidic pipe 100 and connected to the first conductor 610.
  • Step (S200) may include.
  • the microfluidic flow rate precision control device using the synchronized double valve of the present invention is capable of synchronized operation in which the first synchronization valve and the first synchronization valve are operated at a certain time difference ( ⁇ t), thereby allowing the microfluidic flow in the microfluidic pipe. This can be precisely controlled.
  • microfluidic flow rate precision control device using the synchronized operation double valve of the present invention can arbitrarily adjust the strength and operating time of the effective vacuum delivered to the microfluidic tube connected to the pressure transmission channel, so that the Microfluidic flow can be precisely controlled and various flow rates of microfluidic can be obtained.
  • Figure 1 is a schematic diagram of a microfluidic control device using a synchronized double valve of the present invention.
  • Figure 2 is a step diagram of the microfluidic control method using the synchronized operation double valve of the present invention.
  • Figure 3 is a schematic diagram according to Example 1 of a microfluidic control device using a synchronized operation double valve of the present invention.
  • Figure 4 is a schematic diagram according to Example 2 of a microfluidic control device using a synchronized double valve of the present invention.
  • Figure 5 is a graph of synchronization operation according to the time difference between the first synchronization valve and the second synchronization valve according to Examples 1 and 2 of the microfluidic control device using the synchronization operation double valve of the present invention.
  • Figure 6 shows the experimental results of operating the microfluidic control device using the synchronized double valve of the present invention.
  • Figure 7 is an actual photo of the microfluidic control device using the synchronized double valve of the present invention.
  • the microfluidic control device 1000 using a synchronized double valve includes a microfluidic tube 100 in the form of a capillary tube; A pressure transmission passage 200 connected to one side of the microfluidic pipe 100; A first synchronization unit connected to one side of the pressure transmission passage 200; a second synchronization unit connected to the other side of the pressure transmission passage 200; and a synchronization valve controller 600 connected in series with the first control unit and the second control unit; may include.
  • the first control unit includes a first synchronization valve 310 connected to one side of the pressure transmission passage 200, and a first pressure source connected to the first synchronization valve 310 and a first conduit to apply pressure. (510), it may include the synchronization valve controller 600 that is connected to the first synchronization valve 310 and the first conductor 610 and controls the applied time.
  • the second control unit is connected to the second synchronization valve 320 connected to the other side of the pressure transmission passage 200, and the second synchronization valve 320 and the second conduit 420 to which pressure is applied. It may include a second pressure source 520, the second synchronization valve 320, and the synchronization valve controller 600 that is connected to the second conductor 620 and controls the applied time.
  • the synchronization valve controller may cause the first synchronization valve 310 and the second synchronization valve 320 to operate at preset time intervals.
  • the synchronization valve controller may allow the first synchronization valve 310 and the second synchronization valve 320 to operate with a constant time difference ( ⁇ t) in the range of 0 to ⁇ 100 ms.
  • microfluidic tube 100 may contain fluid in the range of 0.1 to 500 ⁇ L.
  • first synchronization valve 310 may allow negative or positive pressure to be applied to the pressure transmission passage 200 by operating the first pressure source 510.
  • the second synchronization valve 320 can adjust the pressure applied to the pressure transmission passage 200 by the operation of the second pressure source 520.
  • the microfluidic control method using a double valve includes a synchronization valve controller 600 connected to one side of the pressure transmission passage 200 connected to one side of the microfluidic pipe 100 and connected to the first conductor 610.
  • Step (S200) may include.
  • the first synchronization step (S100) is a first pressure application step in which pressure is applied to the first synchronization valve 310 by the first pressure source 510 connected to the first synchronization valve 310 and the first conduit.
  • S110 after the first pressure application step (S110), the time applied to the first synchronization valve 310 by the synchronization valve controller 600 connected to the first synchronization valve 310 and the first conductor 610 is It may include a controlled first control step (S120).
  • the second synchronization step (S200) is a second synchronization valve in which pressure is applied to the second synchronization valve 320 by the second pressure source 520 connected to the second synchronization valve 320 and the second conduit 420.
  • Pressure application step (S210) after the second pressure application step (S210), the pressure is applied to the second synchronization valve 320 by the synchronization valve controller 600 connected to the second synchronization valve 320 and the second conductor 620. It may include a second control step (S220) in which the time is controlled.
  • the first synchronization valve 310 and the second synchronization valve 320 are adjusted by the synchronization valve controller 600 with a constant time difference ( ⁇ t) can be operated.
  • the first synchronization valve 310 and the second synchronization valve 320 are operated by the synchronization valve controller 600 from 0 to ⁇ It can be operated with a constant time difference ( ⁇ t) in the range of 100 ms.
  • the present invention controls the synchronization valves to be synchronized with a synchronization valve controller for microfluidic control, thereby solving the above problems by precisely controlling the flow of microfluids in the microtubes.
  • FIG. 1 shows a schematic diagram of a microfluidic control device using a synchronized double valve.
  • the microfluidic control device 1000 using a synchronized double valve of the present invention includes a microfluidic tube 100 in the form of a capillary tube.
  • a pressure transfer passage 200 connected to one side of the microfluidic pipe 100, a first control unit connected to one side of the pressure transfer passage 200, and a second control unit connected to the other side of the pressure transfer passage 200.
  • It includes a synchronization valve controller 600 connected in series with the first control unit and the second control unit.
  • the microfluidic control device 1000 using the synchronized double valve can be used to precisely control the flow of microfluid in the microfluidic tube 100, so one side of the microfluidic tube 100 is pressure It may be connected to the delivery passage 200, and the other side may be immersed in the sample solution 10 in the sample solution 10 tank. Therefore, a small amount of the sample solution 10 can be sucked in or discharged precisely by operating the microfluidic control device 1000 using the synchronized double valve using the microfluidic tube 100.
  • the diameter of the microfluidic tube may be 0.01 to 1 mm. If the diameter of the microfluidic tube is smaller than 0.01 mm, the applied pressure must be increased, but if the pressure increases, precise microfluidic control is impossible.
  • the diameter of the microfluidic tube was designed to be in the range of 0.01 to 1 mm to enable smooth control of the flow rate of microfluidic.
  • the first control unit is connected to one side of the pressure transmission passage 200 to control the flow of fluid, and is connected to the first synchronization valve 310 and the first conduit to control the flow of fluid. It includes a first pressure source 510 to be applied, and a synchronization valve controller 600 that is connected to the first synchronization valve 310 and a first conductor 610 to control the applied pressure.
  • the second control unit is connected to the other side of the pressure transfer passage 200 and includes a second synchronization valve 320 that controls the flow of fluid, the second synchronization valve 320, and the second conduit 420. It includes a second pressure source 520 that is connected to apply pressure, and the synchronization valve controller 600 that is connected to the second synchronization valve 320 and a second conductor 620 to control the applied pressure.
  • the synchronization valve controller can control the operation of the first synchronization valve 310 and the second synchronization valve 320.
  • the first pressure source 510 and the second pressure source 520 may have different pressure strengths.
  • the first pressure source 510 and the second input source may be connected to the first synchronization valve 310 and the second synchronization valve 320 through the first conduit and the second conduit 420. Pressure may be applied by the pressure source 510 and the second pressure source 520.
  • the first synchronization valve 310 and the second synchronization valve 320 may be operated with a constant time difference ( ⁇ t) by control of the synchronization valve controller.
  • the effective pressure intensity applied within the pressure transmission passage 200 is precisely adjusted, so that the flow of a small amount of fluid contained in the microfluidic tube 100 can be precisely controlled.
  • the microfluidic tube 100 may contain fluid in the range of 0.1 to 500 ⁇ L.
  • the first pressure source 510 and the second pressure source 520 have a mutual pressure difference and positive or negative pressure is applied to the pressure transmission passage 200 by the synchronization valve controller. It can be added, and as a result, it is possible to control the flow rate of microfluid by adjusting the suction force in the microfluidic pipe 100 connected to the pressure transmission passage 200.
  • FIG. 2 shows a step diagram of the microfluidic flow rate precision control method using the synchronized operation double valve of the present invention.
  • S1000 microfluidic flow rate precision control method
  • FIG 3 it is connected to one side of the pressure transmission passage 200 connected to one side of the microfluidic pipe 100, and the first conductor (
  • the first synchronization step (S100) controls the first synchronization valve 310 by the synchronization valve controller 600 connected to 610), and is connected to the other side of the pressure transfer passage 200 connected to one side of the microfluidic pipe 100.
  • It may include a second synchronization step (S200) in which the second synchronization valve 320 is controlled by the synchronization valve controller 600 connected to the second conductor 620.
  • the first synchronization step (S100) is a first pressure applied to the first synchronization valve 310 by the first pressure source 510 connected to the first synchronization valve 310 and the first conduit.
  • This control may further include a first control step (S120).
  • the second synchronization valve 320 is operated by the synchronization valve controller 600 connected to the second synchronization valve 320 and the second conductor 620.
  • the second control step (S220) may further include a second control step (S220) in which the time applied to is controlled.
  • first synchronization step pressure may be applied to the first synchronization valve 310 by the first pressure source 510, and the pressure applied by the first pressure source 510 may be transferred to the synchronization valve controller ( The time applied can be controlled by 600).
  • second synchronization step pressure may be applied to the second synchronization valve 310 by the second pressure source 520, and the pressure applied by the second pressure source 520 may be applied to the synchronization controller. The time applied can be controlled by .
  • the first synchronization valve 310 and the second synchronization valve 320 can be operated with a constant time difference ( ⁇ t) by the synchronization valve controller 600, and more specifically, the synchronization valve controller 600 ), the first synchronization valve 310 and the second synchronization valve 320 can be operated with a constant time difference ( ⁇ t) in the range of 0 to ⁇ 100 ms, so that the degree of vacuum is adjusted by a small difference, so that the microfluidic tube (100) )
  • the microfluidic flow can be precisely controlled and various flow rates of microfluidic can be obtained.
  • Figure 3 shows a schematic diagram according to Example 1 of a microfluidic control device using a synchronized operation double valve of the present invention
  • Figure 4 shows a schematic diagram according to Example 2 of a microfluidic control device using a synchronized operation double valve of the present invention. It represents.
  • Example 1 and Example 2 of the method for precisely controlling the microfluidic flow rate using a microfluidic flow rate precise control device using a synchronized double valve will be described in detail.
  • the first pressure source 510 used was an NF30-KFDC diaphragm pressure/vacuum pump from KNF, and in the embodiment of the present invention, a self-made plastic buffer container with a capacity of 100 mL was connected and used.
  • the vacuum degree of the second pressure source 520 (pressure/vacuum pump) was maintained at -55 to -65 kPa.
  • NXP Semiconductor's MPX5100DP a pressure/vacuum sensor, was used to measure the vacuum level.
  • the first synchronization valve 310 and the second synchronization valve 320 used CKD's UMB1-T1 solenoid valve, respectively.
  • the pressure transfer passage used a T-shaped connector to be connected to the first synchronization valve and the second synchronization valve 320.
  • one side of the first synchronization valve 310 was connected to the first pressure source 510, and the other side was connected to the pressure transmission passage 200.
  • one side of the second synchronization valve 320 is connected to the pressure transmission passage 200, and the other side is a silicone tube with an outer diameter of 3 mm and an inner diameter of 1.0 mm to form an atmospheric pressure inlet pipe 530. and was connected using a transparent FEP tube with an outer diameter of 1.6 mm and an inner diameter of 0.5 mm.
  • Example 2 In addition, here, as shown in FIG. 4, in Example 2, one side of the first synchronization valve 310 is connected to the pressure transmission passage 200, and the other side is connected to the pressure transmission passage 200. did.
  • one side of the second synchronization valve 320 is connected to the second pressure source 520, and the other side is made of silicone with an outer diameter of 3 mm and an inner diameter of 1.0 mm to form an atmospheric pressure inlet pipe 530.
  • the tube was connected using a transparent FEP tube with an outer diameter of 1.6 mm and an inner diameter of 0.5 mm.
  • microfluidic tube 100 used PEEK tubing with an inner diameter of 0.175 mm, an outer diameter of 1.6 mm, and a length of 60 mm.
  • a synchronization valve controller 600 was used to operate the first synchronization valve 310 and the second synchronization valve 320 at a constant time difference ( ⁇ t), and the synchronization valve controller 600 operates at a constant time difference ( ⁇ t).
  • ⁇ t constant time difference
  • it was programmed with PC to control the operation of the first synchronization valve 310 and the second synchronization valve 320 through the synchronization valve controller 600 and obtain a signal.
  • the first synchronization valve 310 and the second synchronization valve 320 were configured to be synchronized by turning on/off the 24V operating power.
  • the ON operation time difference between the first synchronization valve 310 and the second synchronization valve 320 was changed between -10 ms and +10 ms.
  • the time difference ⁇ t is expressed as a positive value.
  • the first synchronization valve 310 may be connected to a vacuum source and the second synchronization valve 320 may be connected to the atmosphere.
  • atmospheric pressure may be applied to the second synchronization valve 320.
  • the vacuum applied to the first synchronization valve may be released into the atmosphere, and the second synchronization valve may be opened into the atmosphere to apply atmospheric pressure.
  • the time difference ⁇ t is expressed as a negative value.
  • the first synchronization valve 310 may be connected to the atmosphere and the second synchronization valve 320 may be connected to a vacuum source.
  • vacuum may be applied to the second synchronization valve 320.
  • the atmospheric pressure applied to the first synchronization valve 310 is released and a vacuum may be applied to the first synchronization valve.
  • the other side of the microfluidic tube 100 was immersed in the sample solution 10, where the sample solution 10 was black ink. solution was used.
  • Example 1 the results of measuring the moving speed of the sample solution 10 (black ink solution) in the microfluidic tube 100 are divided into Example 1 and Example 2 and are shown in ⁇ Table 1> below.
  • 5 shows a synchronization operation graph according to the time difference between the first synchronization valve and the second synchronization valve according to Examples 1 and 2 of the microfluidic control device using the synchronization operation double valve of the present invention.
  • the first synchronization valve 310 is connected to a vacuum source to apply vacuum, and the second synchronization valve is connected to the atmosphere to apply atmospheric pressure.
  • a synchronization operation is possible in which the second synchronization valve 320 connected to the atmosphere is operated at a certain time difference ( ⁇ t) after the first synchronization valve 310 connected to the vacuum source is operated.
  • ⁇ t time difference
  • the second synchronization valve 320 connected to the atmosphere is operated with a certain time difference ( ⁇ t).
  • the suction flow rate per second of the microfluidic tube can be increased.
  • the first synchronization valve 310 may be connected to a vacuum source and the second synchronization valve 320 may be connected to the atmosphere. After the vacuum source is applied to the first synchronization valve 310, the second synchronization valve 320 may be connected to the atmosphere. Atmospheric pressure may be applied to the synchronization valve 320. Therefore, by applying a very weak vacuum, a very small amount of fluid can be sucked in, making very fine control possible.
  • the first synchronization valve 310 is connected to the atmosphere to apply atmospheric pressure, and the second valve is connected to a vacuum source to apply vacuum.
  • a synchronization operation is possible in which the second synchronization valve 320 connected to the vacuum source is operated at a certain time difference ( ⁇ t) after the first synchronization valve 310 connected to the atmosphere is operated.
  • ⁇ t time difference
  • Example 2 in ⁇ Table 1> below after the first synchronization valve 310 connected to the atmosphere is operated, the second synchronization valve 320 connected to the vacuum source is operated with a certain time difference ( ⁇ t).
  • the suction flow rate per second of the microfluidic tube can be reduced, so that a very small amount of microfluidic flow can be controlled as the suction flow rate per second is reduced.
  • the suction flow rate of the sample solution sucked into the microfluidic tube increases.
  • the first synchronization valve 310 is connected to the atmosphere
  • the second synchronization valve 320 is connected to a vacuum source so that vacuum can be applied. Therefore, after the vacuum source is applied to the first synchronization valve 310, a vacuum of stronger intensity can be applied than when atmospheric pressure is applied to the second synchronization valve 320, thereby allowing a relatively small amount of fluid to be released. It can be suctioned, making it possible to control the flow rate of microfluidic.
  • the suction flow rate of the fluid sucked into the microfluidic tube 100 is 0.15 ⁇ L/s. It was confirmed that it can be varied up to 1.54 ⁇ L/s. Therefore, as the first synchronization valve and the second synchronization valve are connected to the atmosphere or a vacuum source, the strength and operating time of the effective vacuum delivered to the microfluidic pipe 100 connected to the pressure transfer passage 200 are arbitrary. It can be adjusted accordingly. Accordingly, the microfluidic flow within the microfluidic tube 100 can be precisely controlled.
  • suction flow rate of several ⁇ L of microfluid within the microfluidic tube 100 can be precisely controlled by applying vacuum and atmospheric pressure using the microfluidic control device 1000 using the synchronized double valve of the present invention. did.
  • Figure 6 shows the experimental results of operating the microfluidic control device using the synchronized double valve of the present invention
  • Figure 7 is an actual photo of the microfluidic control device using the synchronized double valve of the present invention.
  • This shows an actual photo of a microfluidic control device using a valve.
  • the first synchronization valve 310 and the second synchronization valve 320 maintain a constant time difference ( ⁇ t) using the microfluidic flow rate precision control device and method using the synchronization operation double valve of the present invention. ) is possible, so the microfluidic flow in the microfluidic tube 100 can be precisely controlled.
  • the strength and operating time of the effective vacuum delivered to the microfluidic tube 100 connected to the pressure transfer passage 200 can be configured to be arbitrarily adjusted, so the microfluidic flow in the microfluidic tube 100 can be precisely controlled.
  • the flow rate of the microfluid can be adjusted in various ways depending on the purpose.
  • microfluidic samples within the microchannel it is possible to easily and simply control the flow rate of microfluids in fields that require various microfluids, such as microanalysis and microreactions. Because no separate special-purpose devices or parts are required for this, precise control of the flow rate of microfluidics can be implemented simply and economically.
  • microfluidic flow rate precision control device using a synchronized double valve of the present invention and the microfluidic flow rate precision control method using the same can easily and simply control the flow rate of microfluids in fields that require various microfluids, and Precise control of flow rate can be implemented simply and economically.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Micromachines (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The present invention relates to a microfluidic flow velocity precise-control device using synchronously operating dual valves and a microfluidic flow velocity precise-control method using same, wherein the microfluidic flow velocity precise-control device using synchronously operating dual valves and the microfluidic flow velocity precise-control method using same are configured to perform synchronized operations in order to precisely control the flow velocity of a microfluid. Therefore, the present invention can precisely control the flow velocity of a microfluid.

Description

동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어 장치 및 이를 이용한 미세유체 유속 정밀제어 방법Microfluidic flow rate precision control device using synchronized operation double valve and microfluidic flow rate precision control method using the same
본 발명은 동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어 장치 및 이를 이용한 미세유체 유속 정밀제어 방법에 관한 것으로, 보다 상세하게는 미세유체의 유속을 동기화 작동하도록 하는 동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어 장치 및 이를 이용한 미세유체 유속 정밀제어 방법에 관한 것이다.The present invention relates to a microfluidic flow rate precision control device using a synchronized double valve and a method for precisely controlling the microfluidic flow rate using the same. More specifically, the present invention relates to a microfluidic flow rate using a synchronized double valve to synchronize the microfluidic flow rate. It relates to a precision control device and a method of precisely controlling the microfluidic flow rate using the same.
미세유체 장치는 다양한 생화학분석 및 질병진단을 위한 생체시료 분석 등 여러분야에서 사용되고 있다. 미세유체 장치는 모세관 유로, 마이크로플루이딕 칩(microfluidic chips), 랩온어칩(lab-on-a-chips) 등의 마이크로 디바이스(micro-devices) 등을 포함하며 미세유체관(microfluidic channel)과 미세구조물을 구비한다.Microfluidic devices are used in many fields, including various biochemical analyzes and biological sample analysis for disease diagnosis. Microfluidic devices include micro-devices such as capillary channels, microfluidic chips, and lab-on-a-chips, and include microfluidic channels and microfluidic channels. Provide a structure.
상기한 바와 같은 다양한 종류의 미세유체 장치는 화학시료 또는 생화학시료 중의 특정 성분 분석에 활용이 가능하며, 마이크로챔버(micro- chamber) 내에 조직세포 배양 및 이를 이용한 약물시험 등에 활용할 수 있다. 또한 미세유체 장치 내에서 두 가지 이상의 시료용액을 혼합하여 화학반응을 진행시킬 수 있으며 기능성 재료 제조 등에도 사용이 가능하다. 이와 같이 미세유체 장치를 적용하여 다양한 분야에 적용이 가능하여 다양한 분야에서 다양한 용도로 활용이 이루어지고 있다.Various types of microfluidic devices as described above can be used to analyze specific components in chemical or biochemical samples, and can be used for culturing tissue cells in a micro-chamber and drug testing using them. Additionally, a chemical reaction can occur by mixing two or more sample solutions within a microfluidic device, and it can also be used to manufacture functional materials. In this way, microfluidic devices can be applied to various fields and are being used for various purposes in various fields.
미세유체 장치의 미세유체관 내에 주입되는 시료용액 양은 미량이며 따라서 미세유체관 내에 주입하고자 하는 극미량 시료용액의 이동을 제어하는 것이 중요하다.The amount of sample solution injected into the microfluidic tube of the microfluidic device is very small, and therefore it is important to control the movement of the extremely small amount of sample solution to be injected into the microfluidic tube.
그러나 미세유체 장치의 미세유체관 내에 주입되는 시료용액의 양이 극미량이며 따라서 미세유체관 내에 주입하고자 하는 극미량 시료용액의 이동을 제어하는 것이 중요한데 다음과 같이 현실적으로 어려운 문제가 있다. 직경이 굵은 도관을 흐르는 유체의 경우에 압력 또는 진공을 부가함으로써 유체의 이송이 쉽게 제어된다. 그러나 미세유체관 내 유체의 경우, 유체관의 벽에서 작용하는 마찰력이 상대적으로 매우 크게 작용하는데 이를 이기기 위한 큰 압력 또는 진공을 가할 경우, 유속이 매우 빨라져 미량의 유체를 이송시키는 것이 어렵다.However, the amount of sample solution injected into the microfluidic tube of the microfluidic device is extremely small, and therefore it is important to control the movement of the extremely small amount of sample solution to be injected into the microfluidic tube, but there are realistically difficult problems as follows. In the case of fluid flowing through a large diameter conduit, the transport of the fluid is easily controlled by adding pressure or vacuum. However, in the case of fluid within a microfluidic tube, the friction force acting on the wall of the fluid tube is relatively large, and when a large pressure or vacuum is applied to overcome this, the flow speed becomes very fast, making it difficult to transport a small amount of fluid.
종래 한국등록특허 제10-2341588호(2021.12.16.)에는 제 1 평판과 제 2 평판 사이에 유체다리를 형성한 후, 유동채널을 통해 상기 유체를 흡입함으로써, 상기 제 1 평판 및 제 2 평판 각각에 존재하는 유체의 접촉 부분의 접촉각이 작아지므로, 유체다리가 분리되어 유체의 양을 정밀하게 조절할 수 있는 미세 유체 조절 장치 및 이를 이용한 미세 유체 조절 방법에 대해서 개시되어 있었다.In the conventional Korean Patent No. 10-2341588 (December 16, 2021), a fluid bridge is formed between the first and second plates, and then the fluid is sucked through a flow channel, thereby forming a fluid bridge between the first and second plates. Since the contact angle of each fluid contact portion becomes small, a microfluidic control device and a microfluidic control method using the same that can precisely control the amount of fluid by separating the fluid legs have been disclosed.
그러나 종래 미세 유체 조절 장치는 원하고자하는 유체의 양을 미세하게 제어하기 어렵다는 문제가 있었다.However, conventional microfluidic control devices have the problem that it is difficult to finely control the desired amount of fluid.
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 미세유체의 유속을 정밀하게 제어하기 위해 동기화 할 수 있도록 하는 동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어 장치 및 이를 이용한 미세유체 유속 정밀제어 방법에 관한 것이다.Therefore, the present invention was created to solve the problems of the prior art as described above, and the purpose of the present invention is to precisely control the flow rate of the microfluidic fluid using a synchronized double valve. It relates to a precision control device and a method of precisely controlling the microfluidic flow rate using the same.
본 발명에 따른 동기화 이중밸브를 사용한 미세유체 제어 장치(1000)는 모세관 형태의 미세유체관(100); 상기 미세유체관(100) 일측에 연결되는 압력전달유로(200); 상기 압력전달유로(200)의 일측에 연결되는 제1동기화부; 상기 압력전달유로(200)의 타측에 연결되는 제2동기화부; 및 상기 제1제어부 및 상기 제2제어부와 직렬연결되는 동기화밸브컨트롤러(600); 를 포함할 수 있다.The microfluidic control device 1000 using a synchronized double valve according to the present invention includes a microfluidic tube 100 in the form of a capillary tube; A pressure transmission passage 200 connected to one side of the microfluidic pipe 100; A first synchronization unit connected to one side of the pressure transmission passage 200; a second synchronization unit connected to the other side of the pressure transmission passage 200; and a synchronization valve controller 600 connected in series with the first control unit and the second control unit; may include.
다음으로, 본 발명에 따른 이중밸브를 사용한 미세유체 제어방법은 미세유체관(100) 일측에 연결된 압력전달유로(200)의 일측에 연결되고, 제1도선(610)과 연결된 동기화밸브컨트롤러(600)에 의해 제1동기화밸브(310)를 제어하는 제1동기화단계(S100); 미세유체관(100) 일측에 연결된 압력전달유로(200)의 타측에 연결되고, 제2도선(620)과 연결된 동기화밸브컨트롤러(600)에 의해 제2동기화밸브(320)를 제어하는 제2동기화단계(S200); 를 포함할 수 있다.Next, the microfluidic control method using a double valve according to the present invention includes a synchronization valve controller 600 connected to one side of the pressure transmission passage 200 connected to one side of the microfluidic pipe 100 and connected to the first conductor 610. ) A first synchronization step (S100) of controlling the first synchronization valve 310 by ; Second synchronization that controls the second synchronization valve 320 by the synchronization valve controller 600 connected to the other side of the pressure transfer passage 200 connected to one side of the microfluidic pipe 100 and connected to the second conductor 620. Step (S200); may include.
따라서, 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어 장치는 제1동기화밸브 및 제1동기화밸브가 일정한 시간차(δt)를 두고 작동되는 동기화 작동이 가능하여, 미세유체관 내 미세유체 흐름이 정교하게 제어될 수 있다. Therefore, the microfluidic flow rate precision control device using the synchronized double valve of the present invention is capable of synchronized operation in which the first synchronization valve and the first synchronization valve are operated at a certain time difference (δt), thereby allowing the microfluidic flow in the microfluidic pipe. This can be precisely controlled.
또한, 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어 장치는 상기 압력전달유로에 연결된 상기 미세유체관에 전달되는 실효 진공의 세기 및 작용시간이 임의대로 조절되도록 할 수 있으므로 미세유체관 내 미세유체 흐름이 정교하게 제어될 수 있으며 미세유체의 다양한 유속을 획득할 수 있다.In addition, the microfluidic flow rate precision control device using the synchronized operation double valve of the present invention can arbitrarily adjust the strength and operating time of the effective vacuum delivered to the microfluidic tube connected to the pressure transmission channel, so that the Microfluidic flow can be precisely controlled and various flow rates of microfluidic can be obtained.
도 1은 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치 모식도Figure 1 is a schematic diagram of a microfluidic control device using a synchronized double valve of the present invention.
도 2는 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 방법 단계도Figure 2 is a step diagram of the microfluidic control method using the synchronized operation double valve of the present invention.
도 3은 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치의 실시예 1에 따른 모식도Figure 3 is a schematic diagram according to Example 1 of a microfluidic control device using a synchronized operation double valve of the present invention.
도 4는 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치의 실시예 2에 따른 모식도Figure 4 is a schematic diagram according to Example 2 of a microfluidic control device using a synchronized double valve of the present invention.
도 5는 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치의 실시예 1 및 실시예 2에 따른 제1동기화밸브와 제2동기화밸브의 시간차에 따른 동기화 작동 그래프Figure 5 is a graph of synchronization operation according to the time difference between the first synchronization valve and the second synchronization valve according to Examples 1 and 2 of the microfluidic control device using the synchronization operation double valve of the present invention.
도 6은 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치를 작동시킨 실험 결과Figure 6 shows the experimental results of operating the microfluidic control device using the synchronized double valve of the present invention.
도 7은 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치의 실제 사진Figure 7 is an actual photo of the microfluidic control device using the synchronized double valve of the present invention.
본 발명에 따른 동기화 이중밸브를 사용한 미세유체 제어 장치(1000)는 모세관 형태의 미세유체관(100); 상기 미세유체관(100) 일측에 연결되는 압력전달유로(200); 상기 압력전달유로(200)의 일측에 연결되는 제1동기화부; 상기 압력전달유로(200)의 타측에 연결되는 제2동기화부; 및 상기 제1제어부 및 상기 제2제어부와 직렬연결되는 동기화밸브컨트롤러(600); 를 포함할 수 있다.The microfluidic control device 1000 using a synchronized double valve according to the present invention includes a microfluidic tube 100 in the form of a capillary tube; A pressure transmission passage 200 connected to one side of the microfluidic pipe 100; A first synchronization unit connected to one side of the pressure transmission passage 200; a second synchronization unit connected to the other side of the pressure transmission passage 200; and a synchronization valve controller 600 connected in series with the first control unit and the second control unit; may include.
또한, 상기 제1제어부는 상기 압력전달유로(200)의 일측에 연결되는 제1동기화밸브(310), 상기 제1동기화밸브(310)와 제1도관으로 연결되어 압력이 인가되는 제1압력원(510), 상기 제1동기화밸브(310)와 제1도선(610)으로 연결되어 인가되는 시간을 제어하는 상기 동기화밸브컨트롤러(600)를 포함할 수 있다.In addition, the first control unit includes a first synchronization valve 310 connected to one side of the pressure transmission passage 200, and a first pressure source connected to the first synchronization valve 310 and a first conduit to apply pressure. (510), it may include the synchronization valve controller 600 that is connected to the first synchronization valve 310 and the first conductor 610 and controls the applied time.
또한, 상기 제2제어부는 상기 압력전달유로(200)의 타측에 연결되는 제2동기화밸브(320), 상기 제2동기화밸브(320)와 제2도관(420)으로 연결되어 압력이 인가되는 제2압력원(520), 상기 제2동기화밸브(320)와 제2도선(620)으로 연결되어 인가되는 시간을 제어하는 상기 동기화밸브컨트롤러(600)를 포함할 수 있다.In addition, the second control unit is connected to the second synchronization valve 320 connected to the other side of the pressure transmission passage 200, and the second synchronization valve 320 and the second conduit 420 to which pressure is applied. It may include a second pressure source 520, the second synchronization valve 320, and the synchronization valve controller 600 that is connected to the second conductor 620 and controls the applied time.
또한, 상기 동기화 밸브 컨트롤러는, 상기 제1동기화밸브(310)와 상기 제2동기화밸브(320)를 기설정된 시간 간격으로 작동되도록 할 수 있다.Additionally, the synchronization valve controller may cause the first synchronization valve 310 and the second synchronization valve 320 to operate at preset time intervals.
또한, 상기 동기화 밸브 컨트롤러는, 상기 동기화 밸브컨트롤러가 상기 제1동기화밸브(310)와 상기 제2동기화밸브(320)가 0 내지 ±100 ms 범위에서 일정한 시간차(δt)로 작동되도록 할 수 있다.Additionally, the synchronization valve controller may allow the first synchronization valve 310 and the second synchronization valve 320 to operate with a constant time difference (δt) in the range of 0 to ±100 ms.
또한, 상기 미세유체관(100)은 0.1 내지 500 μL 범위의 유체를 포함할 수 있다.Additionally, the microfluidic tube 100 may contain fluid in the range of 0.1 to 500 μL.
또한, 상기 제1동기화밸브(310)는 상기 제1압력원(510)의 작동에 의해 상기 압력전달유로(200)에 음의 압력 또는 양의 압력이 인가되도록 할 수 있다.Additionally, the first synchronization valve 310 may allow negative or positive pressure to be applied to the pressure transmission passage 200 by operating the first pressure source 510.
또한, 상기 제2동기화밸브(320)는 상기 제2압력원(520)의 작동에 의해 상기 압력전달유로(200) 내에 인가되는 압력이 조절되도록 할 수 있다.Additionally, the second synchronization valve 320 can adjust the pressure applied to the pressure transmission passage 200 by the operation of the second pressure source 520.
다음으로, 본 발명에 따른 이중밸브를 사용한 미세유체 제어방법은 미세유체관(100) 일측에 연결된 압력전달유로(200)의 일측에 연결되고, 제1도선(610)과 연결된 동기화밸브컨트롤러(600)에 의해 제1동기화밸브(310)를 제어하는 제1동기화단계(S100); 미세유체관(100) 일측에 연결된 압력전달유로(200)의 타측에 연결되고, 제2도선(620)과 연결된 동기화밸브컨트롤러(600)에 의해 제2동기화밸브(320)를 제어하는 제2동기화단계(S200); 를 포함할 수 있다.Next, the microfluidic control method using a double valve according to the present invention includes a synchronization valve controller 600 connected to one side of the pressure transmission passage 200 connected to one side of the microfluidic pipe 100 and connected to the first conductor 610. ) A first synchronization step (S100) of controlling the first synchronization valve 310 by ; Second synchronization that controls the second synchronization valve 320 by the synchronization valve controller 600 connected to the other side of the pressure transfer passage 200 connected to one side of the microfluidic pipe 100 and connected to the second conductor 620. Step (S200); may include.
또한, 상기 제1동기화단계(S100)는 제1동기화밸브(310)와 제1도관으로 연결된 제1압력원(510)에 의해 제1동기화밸브(310)에 압력이 인가되는 제1압력인가단계(S110), 상기 제1압력인가단계(S110) 이후 제1동기화밸브(310)와 제1도선(610)으로 연결된 동기화밸브컨트롤러(600)에 의해 제1동기화밸브(310)에 인가되는 시간이 제어되는 제1제어단계(S120)를 포함할 수 있다.In addition, the first synchronization step (S100) is a first pressure application step in which pressure is applied to the first synchronization valve 310 by the first pressure source 510 connected to the first synchronization valve 310 and the first conduit. (S110), after the first pressure application step (S110), the time applied to the first synchronization valve 310 by the synchronization valve controller 600 connected to the first synchronization valve 310 and the first conductor 610 is It may include a controlled first control step (S120).
또한, 상기 제2동기화단계(S200)는 제2동기화밸브(320)와 제2도관(420)으로 연결된 제2압력원(520)에 의해 제2동기화밸브(320)에 압력이 인가되는 제2압력인가단계(S210), 상기 제2압력인가단계(S210) 이후 제2동기화밸브(320)와 제2도선(620)으로 연결된 동기화밸브컨트롤러(600)에 의해 제2동기화밸브(320)에 인가되는 시간이 제어되는 제2제어단계(S220)를 포함할 수 있다.In addition, the second synchronization step (S200) is a second synchronization valve in which pressure is applied to the second synchronization valve 320 by the second pressure source 520 connected to the second synchronization valve 320 and the second conduit 420. Pressure application step (S210), after the second pressure application step (S210), the pressure is applied to the second synchronization valve 320 by the synchronization valve controller 600 connected to the second synchronization valve 320 and the second conductor 620. It may include a second control step (S220) in which the time is controlled.
또한, 상기 제1동기화단계(S100) 및 상기 제2동기화단계(S200)는 상기 동기화밸브컨트롤러(600)에 의해 상기 제1동기화밸브(310) 및 상기 제2동기화밸브(320)가 일정한 시간차(δt)로 작동되도록 할 수 있다.In addition, in the first synchronization step (S100) and the second synchronization step (S200), the first synchronization valve 310 and the second synchronization valve 320 are adjusted by the synchronization valve controller 600 with a constant time difference ( δt) can be operated.
또한, 상기 제1동기화단계(S100) 및 상기 제2동기화단계(S200)는 상기 동기화밸브컨트롤러(600)에 의해 상기 제1동기화밸브(310) 및 상기 제2동기화밸브(320)가 0 ~ ±100 ms 범위의 일정한 시간차(δt)로 작동되도록 할 수 있다.In addition, in the first synchronization step (S100) and the second synchronization step (S200), the first synchronization valve 310 and the second synchronization valve 320 are operated by the synchronization valve controller 600 from 0 to ± It can be operated with a constant time difference (δt) in the range of 100 ms.
미세유체 장치 내 미세유체는 상대적으로 큰 영향을 미치는 유관벽과 유체 사이의 마찰력 때문에 양압이나 음압(진공)을 인가하여 유속을 제어기 어렵다는 문제가 있다. 특히 마찰력을 극복하기 위해 충분히 큰 압력 또는 진공을 가하면 유속이 매우 빨라져 미량시료의 취급을 위해 유속을 저속으로 정밀하게 제어하는 것이 불가능하다. 이러한 현상은 미량시료 및 시약을 다루는 생화학 미량분석 기술의 발전을 더디게 할 수 있다. 따라서 본 발명은 미세유체 제어를 위해 동기화밸브컨트롤러로 동기화밸브가 동기화되도록 제어하여 미세유관 내 미세유체의 흐름을 정교하게 제어하여 상기와 같은 문제들을 해소할 수 있도록 한다.There is a problem in that it is difficult to control the flow rate by applying positive or negative pressure (vacuum) due to the friction between the fluid and the pipe wall, which has a relatively large effect on the microfluid in a microfluidic device. In particular, if a sufficiently large pressure or vacuum is applied to overcome the friction force, the flow rate becomes very fast, making it impossible to precisely control the flow rate at low speeds for handling trace samples. This phenomenon can slow down the development of biochemical microanalysis technology that handles trace samples and reagents. Therefore, the present invention controls the synchronization valves to be synchronized with a synchronization valve controller for microfluidic control, thereby solving the above problems by precisely controlling the flow of microfluids in the microtubes.
이하 첨부된 도면들을 포함한 구체예 또는 실시예를 통해 본 발명을 더욱 상세히 설명한다. 다만 하기 구체예 또는 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.Hereinafter, the present invention will be described in more detail through specific examples or examples including the attached drawings. However, the following specific examples or examples are only a reference for explaining the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms.
또한, 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 발명에서 설명을 위해 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.Additionally, unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. The terminology used for description herein is merely to effectively describe particular embodiments and is not intended to limit the invention.
또한, 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.Additionally, as used in the specification and appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly dictates otherwise.
또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Additionally, when a part "includes" a certain component, this means that it may further include other components rather than excluding other components unless specifically stated to the contrary.
도 1은 동기화 이중밸브를 사용한 미세유체 제어 장치 모식도를 나타 낸 것으로, 도 1을 참조하면, 본 발명의 동기화 이중밸브를 사용한 미세유체 제어 장치(1000)는 모세관 형태의 미세유체관(100)과 상기 미세유체 관(100) 일측에 연결되는 압력전달유로(200)와 상기 압력전달유로 (200)의 일측에 연결되는 제1제어부 및 상기 압력전달유로(200)의 타측에 연결되는 제2제어부와 상기 제1제어부 및 상기 제2제어부와 직렬연결되는 동기화밸브 컨트롤러(600)를 포함하여 이루어진다.Figure 1 shows a schematic diagram of a microfluidic control device using a synchronized double valve. Referring to Figure 1, the microfluidic control device 1000 using a synchronized double valve of the present invention includes a microfluidic tube 100 in the form of a capillary tube. A pressure transfer passage 200 connected to one side of the microfluidic pipe 100, a first control unit connected to one side of the pressure transfer passage 200, and a second control unit connected to the other side of the pressure transfer passage 200. It includes a synchronization valve controller 600 connected in series with the first control unit and the second control unit.
여기에서, 상기 동기화 이중밸브를 사용한 미세유체 제어 장치(1000)는 상기 미세유체관(100) 내 미세유체의 흐름을 정교하게 제어하기 위해 사용될 수 있으므로, 상기 미세유체관(100)의 일측은 압력전달유로(200)에 연결될 수 있으며, 타측은 시료용액(10)조 내 시료용액(10)에 잠겨있을 수 있다. 따라서, 상기 미세유체관(100)을 사용하여 상기 동기화 이중밸브를 사용한 미세유체 제어 장치(1000)의 작동에 의해 상기 시료용액(10)의 미량 흡입 또는 배출이 정교하게 이루어질 수 있다. 여기에서, 상기 미세유체관의 직경은 0.01~1mm로 구비될 수 있다. 상기 미세유체관의 직경이 0.01mm보다 작을 경우 인가되는 압력이 증가되어야 하는데 압력이 증가하게 되면 정밀한 미세유체의 제어가 불가능 하다. 또한, 상기 미세유체관의 직경이 1mm보다 클 경우 인가되는 압력 대비 미세유체의 유속이 빨라질 수 있어 미세유체의 유속을 제어하기 어렵다. 따라서, 본 발명에서는 미세유체관의 직경 범위를 0.01~1mm로 설계하여 원활한 미세유체의 유속 제어가 가능하도록 구성하였다.Here, the microfluidic control device 1000 using the synchronized double valve can be used to precisely control the flow of microfluid in the microfluidic tube 100, so one side of the microfluidic tube 100 is pressure It may be connected to the delivery passage 200, and the other side may be immersed in the sample solution 10 in the sample solution 10 tank. Therefore, a small amount of the sample solution 10 can be sucked in or discharged precisely by operating the microfluidic control device 1000 using the synchronized double valve using the microfluidic tube 100. Here, the diameter of the microfluidic tube may be 0.01 to 1 mm. If the diameter of the microfluidic tube is smaller than 0.01 mm, the applied pressure must be increased, but if the pressure increases, precise microfluidic control is impossible. Additionally, if the diameter of the microfluidic tube is larger than 1 mm, the flow rate of the microfluid may increase compared to the applied pressure, making it difficult to control the flow rate of the microfluid. Therefore, in the present invention, the diameter of the microfluidic pipe was designed to be in the range of 0.01 to 1 mm to enable smooth control of the flow rate of microfluidic.
또한, 상기 제1제어부는 상기 압력전달유로(200)의 일측에 연결되어 유체의 흐름을 제어하는 제1동기화밸브(310), 상기 제1동기화밸브(310)와 제1도관으로 연결되어 압력이 인가되는 제1압력원(510), 상기 제1동기화밸브(310)와 제1도선(610)으로 연결되어 인가되는 압력을 제어하는 상기 동기화밸브컨트롤러(600)를 포함하여 이루어진다.In addition, the first control unit is connected to one side of the pressure transmission passage 200 to control the flow of fluid, and is connected to the first synchronization valve 310 and the first conduit to control the flow of fluid. It includes a first pressure source 510 to be applied, and a synchronization valve controller 600 that is connected to the first synchronization valve 310 and a first conductor 610 to control the applied pressure.
또한. 여기에서, 상기 제2제어부는 상기 압력전달유로(200)의 타측에 연결되어 유체의 흐름을 제어하는 제2동기화밸브(320), 상기 제2동기화밸브(320)와 제2도관(420)으로 연결되어 압력이 인가되는 제2압력원(520), 상기 제2동기화밸브(320)와 제2도선(620)으로 연결되어 인가되는 압력을 제어하는 상기 동기화밸브컨트롤러(600)를 포함하여 이루어진다.also. Here, the second control unit is connected to the other side of the pressure transfer passage 200 and includes a second synchronization valve 320 that controls the flow of fluid, the second synchronization valve 320, and the second conduit 420. It includes a second pressure source 520 that is connected to apply pressure, and the synchronization valve controller 600 that is connected to the second synchronization valve 320 and a second conductor 620 to control the applied pressure.
상기 동기화 밸브컨트롤러는 상기 제1동기화밸브(310)와 상기 제2동기화밸브(320)의 작동을 제어할 수 있다. 여기에서, 상기 제1압력원(510)과 상기 제2압력원(520)은 서로 다른 압력 세기를 가질 수 있다. 상기 제1압력원(510)과 상기 제2입력원은 제1도관과 제2도관(420)을 통해 제1동기화밸브(310)와 상기 제2동기화밸브(320)에 연결될 수 있으며 상기 제1압력원(510)과 제2압력원(520)에 의해 압력이 가해질 수 있다. 또한, 상기 동기화 밸브컨트롤러의 제어에 의해 상기 제1동기화밸브(310)와 상기 제2동기화밸브(320)가 일정한 시간차(δt)로 작동될 수 있다. 따라서, 상기 압력전달유로(200) 내에 인가되는 실효 압력 세기가 정밀하게 조절됨으로써 상기 미세유체관(100) 내 포함되어 있는 미량의 유체 흐름이 정교하게 제어될 수 있다. 여기에서, 상기 미세유체관(100)은 0.1 내지 500 μL 범위의 유체를 포함할 수 있다. 더욱 상세하게는, 상기 제1압력원(510)과 제2압력원(520)은 상기 동기화 밸브컨트롤러에 의해 상호 압력차를 가지면서 양의 압력 또는 음의 압력이 상기 압력전달유로(200)에 부가될 수 있으며, 이로 인해 상기 압력전달유로(200)와 연결된 상기 미세유체관(100)에 흡입력을 조절하여 미세유체의 유량 제어가 가능하다. The synchronization valve controller can control the operation of the first synchronization valve 310 and the second synchronization valve 320. Here, the first pressure source 510 and the second pressure source 520 may have different pressure strengths. The first pressure source 510 and the second input source may be connected to the first synchronization valve 310 and the second synchronization valve 320 through the first conduit and the second conduit 420. Pressure may be applied by the pressure source 510 and the second pressure source 520. Additionally, the first synchronization valve 310 and the second synchronization valve 320 may be operated with a constant time difference (δt) by control of the synchronization valve controller. Accordingly, the effective pressure intensity applied within the pressure transmission passage 200 is precisely adjusted, so that the flow of a small amount of fluid contained in the microfluidic tube 100 can be precisely controlled. Here, the microfluidic tube 100 may contain fluid in the range of 0.1 to 500 μL. More specifically, the first pressure source 510 and the second pressure source 520 have a mutual pressure difference and positive or negative pressure is applied to the pressure transmission passage 200 by the synchronization valve controller. It can be added, and as a result, it is possible to control the flow rate of microfluid by adjusting the suction force in the microfluidic pipe 100 connected to the pressure transmission passage 200.
도 2는 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어 방법 단계도를 나타낸 것이다. 도 3의 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어 방법(S1000)을 참조하면, 미세유체관(100) 일측에 연결된 압력전달유로(200)의 일측에 연결되고, 제1도선(610)과 연결된 동기화밸브컨트롤러(600)에 의해 제1동기화밸브(310)를 제어하는 제1동기화단계(S100), 미세유체관(100) 일측에 연결된 압력전달유로(200)의 타측에 연결되고, 제2도선(620)과 연결된 동기화밸브컨트롤러(600)에 의해 제2동기화밸브(320)를 제어하는 제2동기화단계(S200)를 포함할 수 있다.Figure 2 shows a step diagram of the microfluidic flow rate precision control method using the synchronized operation double valve of the present invention. Referring to the microfluidic flow rate precision control method (S1000) using the synchronized operation double valve of the present invention in Figure 3, it is connected to one side of the pressure transmission passage 200 connected to one side of the microfluidic pipe 100, and the first conductor ( The first synchronization step (S100) controls the first synchronization valve 310 by the synchronization valve controller 600 connected to 610), and is connected to the other side of the pressure transfer passage 200 connected to one side of the microfluidic pipe 100. , It may include a second synchronization step (S200) in which the second synchronization valve 320 is controlled by the synchronization valve controller 600 connected to the second conductor 620.
여기에서, 상기 제1동기화단계(S100)는 제1동기화밸브(310)와 제1도관으로 연결된 제1압력원(510)에 의해 제1동기화밸브(310)에 압력이 인가되는 제1압력인가단계(S110), 상기 제1압력인가단계(S110) 이후 제1동기화밸브(310)와 제1도선(610)으로 연결된 동기화밸브컨트롤러(600)에 의해 제1동기화밸브(310)에 인가되는 시간이 제어되는 제1제어단계(S120)를 더 포함할 수 있다.Here, the first synchronization step (S100) is a first pressure applied to the first synchronization valve 310 by the first pressure source 510 connected to the first synchronization valve 310 and the first conduit. Step (S110), the time applied to the first synchronization valve 310 by the synchronization valve controller 600 connected to the first synchronization valve 310 and the first conductor 610 after the first pressure application step (S110). This control may further include a first control step (S120).
또한, 여기에서, 상기 제2동기화단계(S200)는 제2동기화밸브(320)와 제2도관(420)으로 연결된 제2압력원(520)에 의해 제2동기화밸브(320)에 압력이 인가되는 제2압력인가단계(S210), 상기 제2압력인가단계(S210) 이후 제2동기화밸브(320)와 제2도선(620)으로 연결된 동기화밸브컨트롤러(600)에 의해 제2동기화밸브(320)에 인가되는 시간이 제어되는 제2제어단계(S220)를 더 포함할 수 있다. In addition, here, in the second synchronization step (S200), pressure is applied to the second synchronization valve 320 by the second pressure source 520 connected to the second synchronization valve 320 and the second conduit 420. In the second pressure application step (S210), after the second pressure application step (S210), the second synchronization valve 320 is operated by the synchronization valve controller 600 connected to the second synchronization valve 320 and the second conductor 620. ) may further include a second control step (S220) in which the time applied to is controlled.
다음으로, 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어 방법을 다음과 같이 설명한다. 상기 제1동기화단계(S100)는 제1동기화밸브(310)에 제1압력원(510)에 의해 압력이 인가될 수 있으며, 제1압력원(510)에 의해 인가된 압력이 동기화밸브컨트롤러(600)에 의해 인가되는 시간이 제어될 수 있다. 또한, 상기 제2동기화단계(S200)는 제2동기화밸브(310)에 제2압력원(520)에 의해 압력이 인가될 수 있으며, 제2압력원(520)에 의해 인가된 압력이 동기화컨트롤러에 의해 인가되는 시간이 제어될 수 있다.Next, the method for precisely controlling the microfluidic flow rate using the synchronized double valve of the present invention will be described as follows. In the first synchronization step (S100), pressure may be applied to the first synchronization valve 310 by the first pressure source 510, and the pressure applied by the first pressure source 510 may be transferred to the synchronization valve controller ( The time applied can be controlled by 600). In addition, in the second synchronization step (S200), pressure may be applied to the second synchronization valve 310 by the second pressure source 520, and the pressure applied by the second pressure source 520 may be applied to the synchronization controller. The time applied can be controlled by .
따라서, 상기 동기화밸브컨트롤러(600)에 의해 상기 제1동기화밸브(310) 및 상기 제2동기화밸브(320)가 일정한 시간차(δt)로 작동될 수 있으며, 더욱 상세하게는 상기 동기화밸브컨트롤러(600)에 의해 상기 제1동기화밸브(310) 및 상기 제2동기화밸브(320)가 0 ~ ±100 ms 범위의 일정한 시간차(δt)로 작동될 수 있어 미세한 차이로 진공도가 조절됨으로써 미세유체관(100) 내 미세유체 흐름이 정교하게 제어될 수 있으며 미세유체의 다양한 유속을 획득할 수 있다.Therefore, the first synchronization valve 310 and the second synchronization valve 320 can be operated with a constant time difference (δt) by the synchronization valve controller 600, and more specifically, the synchronization valve controller 600 ), the first synchronization valve 310 and the second synchronization valve 320 can be operated with a constant time difference (δt) in the range of 0 to ±100 ms, so that the degree of vacuum is adjusted by a small difference, so that the microfluidic tube (100) ) The microfluidic flow can be precisely controlled and various flow rates of microfluidic can be obtained.
도 3은 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치의 실시예 1에 따른 모식도를 나타낸 것이며, 도 4는 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치의 실시예 2에 따른 모식도를 나타낸 것이다.Figure 3 shows a schematic diagram according to Example 1 of a microfluidic control device using a synchronized operation double valve of the present invention, and Figure 4 shows a schematic diagram according to Example 2 of a microfluidic control device using a synchronized operation double valve of the present invention. It represents.
상기 도 3 및 도 4를 참조하여 동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어장치를 사용한 미세유체 유속 정밀제어 방법에 대한 실시예1 및 실시예 2에 대하여 구체적으로 설명한다.With reference to FIGS. 3 and 4, Example 1 and Example 2 of the method for precisely controlling the microfluidic flow rate using a microfluidic flow rate precise control device using a synchronized double valve will be described in detail.
상기 제1압력원(510)은 KNF사의 NF30-KFDC 다이아프램 압력/진공 펌프를 사용하였으며, 본 발명의 실시예에서는 자체 제작한 용량이 100 mL의 플라스틱 완충용기를 연결하여 사용하였다. 상기 제2압력원(520)(압력/진공 펌프)의 진공도는 -55 ~ -65 kPa로 유지하였다. 이 때, 진공도 측정은 압력/진공센서인 NXP Semiconductor사의 MPX5100DP를 사용하였다.The first pressure source 510 used was an NF30-KFDC diaphragm pressure/vacuum pump from KNF, and in the embodiment of the present invention, a self-made plastic buffer container with a capacity of 100 mL was connected and used. The vacuum degree of the second pressure source 520 (pressure/vacuum pump) was maintained at -55 to -65 kPa. At this time, NXP Semiconductor's MPX5100DP, a pressure/vacuum sensor, was used to measure the vacuum level.
상기 제1동기화밸브(310)와 상기 제2동기화밸브(320)는 CKD사의 UMB1-T1 솔레노이드 밸브를 각각 사용하였다. 상기 압력전달유로는 상기 제1동기화밸브와 상기 제2동기화밸브(320)에 연결될 수 있도록 T자 형상의 연결구를 사용하였다. The first synchronization valve 310 and the second synchronization valve 320 used CKD's UMB1-T1 solenoid valve, respectively. The pressure transfer passage used a T-shaped connector to be connected to the first synchronization valve and the second synchronization valve 320.
여기에서, 도 3에 나타낸 바와 같이, 실시예 1로써 상기 제1동기화밸브(310)의 일측은 상기 제1압력원(510)에 연결하고, 다른 일측은 상기 압력전달유로(200)에 연결하였다. 또한, 상기 제2동기화밸브(320)의 일측은 상기 압력전달유로(200)에 연결하고, 다른 일측은 대기압유입관(530)을 구성하기 위해 외경이 3 mm이고, 내경이 1.0 mm인 실리콘 튜브와 외경이 1.6 mm이고, 내경이 0.5 mm인 투명 FEP 튜브를 사용하여 연결하였다.Here, as shown in FIG. 3, as in Example 1, one side of the first synchronization valve 310 was connected to the first pressure source 510, and the other side was connected to the pressure transmission passage 200. . In addition, one side of the second synchronization valve 320 is connected to the pressure transmission passage 200, and the other side is a silicone tube with an outer diameter of 3 mm and an inner diameter of 1.0 mm to form an atmospheric pressure inlet pipe 530. and was connected using a transparent FEP tube with an outer diameter of 1.6 mm and an inner diameter of 0.5 mm.
또한, 여기에서, 도 4에 나타낸 바와 같이, 실시예 2로써 상기 제1동기화밸브(310)의 일측은 상기 압력전달유로(200)에 연결하고, 다른 일측은 상기 압력전달유로(200)에 연결하였다. 또한, 상기 제2동기화밸브(320)의 일측은 상기 제2압력원(520)에 연결하고, 다른 일측은 대기압유입관(530)을 구성하기 위해 외경이 3 mm이고, 내경이 1.0 mm인 실리콘 튜브와 외경이 1.6 mm이고, 내경이 0.5 mm인 투명 FEP 튜브를 사용하여 연결하였다.In addition, here, as shown in FIG. 4, in Example 2, one side of the first synchronization valve 310 is connected to the pressure transmission passage 200, and the other side is connected to the pressure transmission passage 200. did. In addition, one side of the second synchronization valve 320 is connected to the second pressure source 520, and the other side is made of silicone with an outer diameter of 3 mm and an inner diameter of 1.0 mm to form an atmospheric pressure inlet pipe 530. The tube was connected using a transparent FEP tube with an outer diameter of 1.6 mm and an inner diameter of 0.5 mm.
또한, 상기 미체유체관(100)은 내경 0.175 mm, 외경 1.6 mm, 길이 60 mm인 PEEK 튜빙을 사용하였다.In addition, the microfluidic tube 100 used PEEK tubing with an inner diameter of 0.175 mm, an outer diameter of 1.6 mm, and a length of 60 mm.
또한, 상기 제1동기화밸브(310)와 상기 제2동기화밸브(320)를 일정한 시간차(δt)를 두고 작동시키기 위해 동기화밸브컨트롤러(600)를 사용하였으며, 상기 동기화밸브컨트롤러(600)가 일정한 시간차를 두고 작동하도록 하기 위해 아두이노(Arduino)로 프로그래밍하여 상기 동기화밸브컨트롤러(600)를 통해 상기 제1동기화밸브(310)와 상기 제2동기화밸브(320)의 작동을 제어하고 신호를 획득하였다. 이 과정에서 상기 제1동기화밸브(310)와 상기 제2동기화밸브(320)는 24V의 동작 전원을 ON/OFF함으로써 상기 두 밸브가 동기화될 수 있도록 구성하였다.In addition, a synchronization valve controller 600 was used to operate the first synchronization valve 310 and the second synchronization valve 320 at a constant time difference (δt), and the synchronization valve controller 600 operates at a constant time difference (δt). In order to operate it, it was programmed with Arduino to control the operation of the first synchronization valve 310 and the second synchronization valve 320 through the synchronization valve controller 600 and obtain a signal. In this process, the first synchronization valve 310 and the second synchronization valve 320 were configured to be synchronized by turning on/off the 24V operating power.
본 실시예에서는 상기 제1동기화밸브(310)와 상기 제2동기화밸브(320)의 ON 동작 시간 차를 -10ms 에서 +10 ms 사이에서 변화시켰다. 여기에서, 상기 제1동기화밸브(310)의 ON 시간이 상기 제2동기화밸브(320)의 ON 시간보다 앞서는 경우에 시간차(δt)를 양의 값으로 표시했다. 이때, 상기 제1동기화밸브(310)는 진공원으로 연결되고 상기 제2동기화밸브(320)는 대기중으로 연결될 수 있다. 여기에서, 제1동기화밸브(310)에 진공이 가해진 후, 상기 제2동기화밸브(320)에 대기압이 가해질 수 있다. 이때, 제1동기화밸브에 가해진 진공은 대기중으로 방출될 수 있으며, 상기 제2동기화밸브가 대기중으로 오픈되어 대기압이 인가될 수 있다.In this embodiment, the ON operation time difference between the first synchronization valve 310 and the second synchronization valve 320 was changed between -10 ms and +10 ms. Here, when the ON time of the first synchronization valve 310 is ahead of the ON time of the second synchronization valve 320, the time difference δt is expressed as a positive value. At this time, the first synchronization valve 310 may be connected to a vacuum source and the second synchronization valve 320 may be connected to the atmosphere. Here, after vacuum is applied to the first synchronization valve 310, atmospheric pressure may be applied to the second synchronization valve 320. At this time, the vacuum applied to the first synchronization valve may be released into the atmosphere, and the second synchronization valve may be opened into the atmosphere to apply atmospheric pressure.
또한, 상기 제1동기화밸브(310)의 ON 시간이 상기 제2동기화밸브(320)의 ON 시간보다 뒤쳐지는 경우에 시간차(δt)를 음의 값으로 표시하였다. 이때, 상기 제1동기화밸브(310)는 대기중으로 연결되고 상기 제2동기화밸브(320)는 진공원으로 연결될 수 있다. 여기에서, 제1동기화밸브(310)에 대기압이 인가된 후, 상기 제2동기화밸브(320)에 진공이 인가될 수 있다. 이때, 제1동기화밸브(310)에 인가된 대기압이 방출되며 제1동기화밸브에 진공이 인가될 수 있다.Additionally, when the ON time of the first synchronization valve 310 lags behind the ON time of the second synchronization valve 320, the time difference δt is expressed as a negative value. At this time, the first synchronization valve 310 may be connected to the atmosphere and the second synchronization valve 320 may be connected to a vacuum source. Here, after atmospheric pressure is applied to the first synchronization valve 310, vacuum may be applied to the second synchronization valve 320. At this time, the atmospheric pressure applied to the first synchronization valve 310 is released and a vacuum may be applied to the first synchronization valve.
또한, 상기 미세유체관(100) 내 미세유체의 이동속도를 측정하기 위해서 상기 미세유체관(100)의 타측이 시료용액(10)에 잠기도록 하였으며, 여기에서, 시료용액(10)은 흑색잉크용액을 사용하였다.In addition, in order to measure the moving speed of the microfluid within the microfluidic tube 100, the other side of the microfluidic tube 100 was immersed in the sample solution 10, where the sample solution 10 was black ink. solution was used.
상기와 같은 실시예에서 상기 미세유체관(100) 내 상기 시료용액(10)(흑색잉크 용액)의 이동속도를 측정한 결과를 실시예 1과 실시예 2로 구분하여 하기의 <표 1>에 나타내었으며, 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치의 실시예 1 및 실시예 2에 따른 제1동기화밸브와 제2동기화밸브의 시간차에 따른 동기화 작동 그래프를 도 5에 나타내었다. In the above example, the results of measuring the moving speed of the sample solution 10 (black ink solution) in the microfluidic tube 100 are divided into Example 1 and Example 2 and are shown in <Table 1> below. 5 shows a synchronization operation graph according to the time difference between the first synchronization valve and the second synchronization valve according to Examples 1 and 2 of the microfluidic control device using the synchronization operation double valve of the present invention.
<실시예 1><Example 1>
도 3을 참조하면, 상기 제1동기화밸브(310)는 진공원으로 연결되어 진공이 인가되고 상기 제2동기화밸브는 대기로 연결되어 대기압이 인가될 수 있다. 도 5(a)를 참조하면, 진공원으로 연결된 상기 제1동기화밸브(310)가 작동된 후 대기로 연결된 제2동기화밸브(320)가 일정한 시간차(δt)를 두고 작동되는 동기화 작동이 가능하다. 하기 <표 1>의 실시예 1을 참조하면, 진공원으로 연결된 상기 제1동기화밸브(310)가 작동된 후 대기로 연결된 제2동기화밸브(320)가 일정한 시간차(δt)를 두고 작동됨에 따라 미세유체관의 초당 흡입유속은 증가할 수 있다. 상세하게 설명하자면, 시간차가 10 ~ -10ms로 변화됨에 따라, 미세유체관(100) 내 흡입되는 시료용액의 흡입유속이 작아짐을 알 수 있다. 여기에서, 상기 제1동기화밸브(310)는 진공원으로 연결되고 상기 제2동기화밸브(320)는 대기중으로 연결될 수 있으며, 제1동기화밸브(310)에 진공원이 인가된 후, 상기 제2동기화밸브(320)에 대기압이 인가될 수 있다. 따라서, 매우 약한 진공이 인가됨으로써 극미량의 유체를 흡입할 수 있어 매우 미세한 제어가 가능하다.Referring to FIG. 3, the first synchronization valve 310 is connected to a vacuum source to apply vacuum, and the second synchronization valve is connected to the atmosphere to apply atmospheric pressure. Referring to FIG. 5(a), a synchronization operation is possible in which the second synchronization valve 320 connected to the atmosphere is operated at a certain time difference (δt) after the first synchronization valve 310 connected to the vacuum source is operated. . Referring to Example 1 in <Table 1> below, after the first synchronization valve 310 connected to the vacuum source is operated, the second synchronization valve 320 connected to the atmosphere is operated with a certain time difference (δt). The suction flow rate per second of the microfluidic tube can be increased. To explain in detail, it can be seen that as the time difference changes from 10 to -10 ms, the suction flow rate of the sample solution sucked into the microfluidic tube 100 decreases. Here, the first synchronization valve 310 may be connected to a vacuum source and the second synchronization valve 320 may be connected to the atmosphere. After the vacuum source is applied to the first synchronization valve 310, the second synchronization valve 320 may be connected to the atmosphere. Atmospheric pressure may be applied to the synchronization valve 320. Therefore, by applying a very weak vacuum, a very small amount of fluid can be sucked in, making very fine control possible.
<실시예 2><Example 2>
도 4를 참조하면, 상기 제1동기화밸브(310)는 대기로 연결되어 대기압이 인가되고 상기 제2밸브는 진공원으로 연결되어 진공이 인가될 수 있다. 도 5(b)를 참조하면, 대기로 연결된 상기 제1동기화밸브(310)가 작동된 후 진공원으로 연결된 제2동기화밸브(320)가 일정한 시간차(δt)를 두고 작동되는 동기화 작동이 가능하다. 하기 <표 1>의 실시예 2를 참조하면, 대기로 연결된 상기 제1동기화밸브(310)가 작동된 후 진공원로 연결된 제2동기화밸브(320)가 일정한 시간차(δt)를 두고 작동됨에 따라 미세유체관의 초당 흡입유속은 감소할 수 있어 초당 흡입유속이 감소됨에 따라 극소량의 미세유체 흐름을 제어할 수 있다. 상세하게 설명하자면, 시간차가 0 ~ 10ms로 변화됨에 따라, 미세유체관 내 흡입되는 시료용액의 흡입유속은 증가됨을 알 수 있다. 여기에서, 상기 제1동기화밸브(310)는 대기중으로 연결되고, 상기 제2동기화밸브(320)는 진공원으로 연결되어 진공이 가해질 수 있다. 따라서, 제1동기화밸브(310)에 진공원이 인가된 후, 상기 제2동기화밸브(320)에 대기압이 인가될 때보다 더 강한 세기의 진공이 인가될 수 있으므로 상대적으로 더 많은 미량의 유체를 흡입할 수 있어 미세유체의 유량 제어가 가능하다.Referring to FIG. 4, the first synchronization valve 310 is connected to the atmosphere to apply atmospheric pressure, and the second valve is connected to a vacuum source to apply vacuum. Referring to FIG. 5(b), a synchronization operation is possible in which the second synchronization valve 320 connected to the vacuum source is operated at a certain time difference (δt) after the first synchronization valve 310 connected to the atmosphere is operated. . Referring to Example 2 in <Table 1> below, after the first synchronization valve 310 connected to the atmosphere is operated, the second synchronization valve 320 connected to the vacuum source is operated with a certain time difference (δt). The suction flow rate per second of the microfluidic tube can be reduced, so that a very small amount of microfluidic flow can be controlled as the suction flow rate per second is reduced. To explain in detail, it can be seen that as the time difference changes from 0 to 10 ms, the suction flow rate of the sample solution sucked into the microfluidic tube increases. Here, the first synchronization valve 310 is connected to the atmosphere, and the second synchronization valve 320 is connected to a vacuum source so that vacuum can be applied. Therefore, after the vacuum source is applied to the first synchronization valve 310, a vacuum of stronger intensity can be applied than when atmospheric pressure is applied to the second synchronization valve 320, thereby allowing a relatively small amount of fluid to be released. It can be suctioned, making it possible to control the flow rate of microfluidic.
하기 <표 1>의 실시예 1과 실시예 2에 나타낸 것과 같이, 시간차(δt)를 -10ms 내지 10ms 까지 변화시킬 경우, 미세유체관(100)으로 흡입되는 유체의 흡입유속이 0.15 μL/s에서 1.54 μL/s까지 가변될 수 있음을 확인하였다. 따라서, 상기 제1동기화밸브와 상기 제2동기화밸브가 대기 또는 진공원으로 연결됨에 따라 상기 압력전달유로(200)에 연결된 상기 미세유체관(100)에 전달되는 실효 진공의 세기 및 작용시간이 임의대로 조절되도록 할 수 있다. 이에 따라 상기 미세유체관(100) 내 미세유체 흐름이 정교하게 제어될 수 있는 것이다.As shown in Examples 1 and 2 of Table 1 below, when the time difference (δt) is changed from -10 ms to 10 ms, the suction flow rate of the fluid sucked into the microfluidic tube 100 is 0.15 μL/s. It was confirmed that it can be varied up to 1.54 μL/s. Therefore, as the first synchronization valve and the second synchronization valve are connected to the atmosphere or a vacuum source, the strength and operating time of the effective vacuum delivered to the microfluidic pipe 100 connected to the pressure transfer passage 200 are arbitrary. It can be adjusted accordingly. Accordingly, the microfluidic flow within the microfluidic tube 100 can be precisely controlled.
<표 1><Table 1>
Figure PCTKR2023015589-appb-img-000001
Figure PCTKR2023015589-appb-img-000001
본 발명의 동기화 이중밸브를 사용한 미세유체 제어 장치(1000)를 사용하여 상기 미세유체관(100) 내 수 μL의 미세유체를 진공과 대기압의 인가에 따라 흡입유속이 정밀하게 제어될 수 있음을 확인하였다.It was confirmed that the suction flow rate of several μL of microfluid within the microfluidic tube 100 can be precisely controlled by applying vacuum and atmospheric pressure using the microfluidic control device 1000 using the synchronized double valve of the present invention. did.
도 6는 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치를 작동시킨 실험 결과를 나타낸 것이고, 도 7는 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치의 실제 사진 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 제어 장치의 실제 사진을 나타낸 것이다. 도 6 및 도 7에 나타낸 것과 같이, 본 발명의 동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어 장치 및 방법을 이용하여 제1동기화밸브(310) 및 제2동기화밸브(320)가 일정한 시간차(δt)를 두고 작동되는 동기화 작동이 가능하여, 미세유체관(100) 내 미세유체 흐름이 정교하게 제어될 수 있다.Figure 6 shows the experimental results of operating the microfluidic control device using the synchronized double valve of the present invention, and Figure 7 is an actual photo of the microfluidic control device using the synchronized double valve of the present invention. This shows an actual photo of a microfluidic control device using a valve. As shown in FIGS. 6 and 7, the first synchronization valve 310 and the second synchronization valve 320 maintain a constant time difference (δt) using the microfluidic flow rate precision control device and method using the synchronization operation double valve of the present invention. ) is possible, so the microfluidic flow in the microfluidic tube 100 can be precisely controlled.
또한, 상기 압력전달유로(200)에 연결된 상기 미세유체관(100)에 전달되는 실효 진공의 세기 및 작용시간을 임의로 조절되도록 구성할 수 있으므로 미세유체관(100) 내 미세유체 흐름이 정교하게 제어될 수 있으며 용도에 따라 미세유체의 유속을 다양하게 조절할 수 있다.In addition, the strength and operating time of the effective vacuum delivered to the microfluidic tube 100 connected to the pressure transfer passage 200 can be configured to be arbitrarily adjusted, so the microfluidic flow in the microfluidic tube 100 can be precisely controlled. The flow rate of the microfluid can be adjusted in various ways depending on the purpose.
따라서, 미세유로 내에서 극미량 시료의 이송을 정교하게 제어하여 미량분석, 미량반응 등 다양한 미세유체를 필요로 하는 분야에서 쉽고 간단하게 미세유체의 유속을 제어할 수 있으며, 미세유체의 유속에 대한 제어를 위해 별도의 특수목적 장치나 부품이 요구되지 않기 때문에 미세유체의 유속에 대한 정밀제어를 간편하고 경제적으로 구현할 수 있는 효과가 있다.Therefore, by precisely controlling the transport of microfluidic samples within the microchannel, it is possible to easily and simply control the flow rate of microfluids in fields that require various microfluids, such as microanalysis and microreactions. Because no separate special-purpose devices or parts are required for this, precise control of the flow rate of microfluidics can be implemented simply and economically.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.The present invention is not limited to the above-described embodiments, and the scope of application is diverse. Of course, various modifications and implementations are possible without departing from the gist of the present invention as claimed in the claims.
본 발명의 동기화 동작 이중밸브를 사용한 미세유체 유속 정밀제어 장치 및 이를 이용한 미세유체 유속 정밀제어 방법은 다양한 미세유체를 필요로 하는 분야에서 쉽고 간단하게 미세유체의 유속을 제어할 수 있으며, 미세유체의 유속에 대한 정밀제어를 간편하고 경제적으로 구현할 수 있다.The microfluidic flow rate precision control device using a synchronized double valve of the present invention and the microfluidic flow rate precision control method using the same can easily and simply control the flow rate of microfluids in fields that require various microfluids, and Precise control of flow rate can be implemented simply and economically.

Claims (13)

  1. 모세관 형태의 미세유체관;Capillary-shaped microfluidic tube;
    상기 미세유체관 일측에 연결되는 압력전달유로;A pressure transmission passage connected to one side of the microfluidic tube;
    상기 압력전달유로의 일측에 연결되는 제1동기화부;A first synchronization unit connected to one side of the pressure transmission passage;
    상기 압력전달유로의 타측에 연결되는 제2동기화부; 및a second synchronization unit connected to the other side of the pressure transmission passage; and
    상기 제1제어부 및 상기 제2제어부와 직렬연결되는 동기화밸브컨트롤러;A synchronization valve controller connected in series with the first control unit and the second control unit;
    를 포함하는 동기화 이중밸브를 사용한 미세유체 제어 장치.Microfluidic control device using a synchronized double valve including.
  2. 제1항에 있어서, 상기 제1제어부는,The method of claim 1, wherein the first control unit,
    상기 압력전달유로의 일측에 연결되는 제1동기화밸브,A first synchronization valve connected to one side of the pressure transmission passage,
    상기 제1동기화밸브와 제1도관으로 연결되어 압력이 인가되는 제1압력원,A first pressure source connected to the first synchronization valve and the first conduit to apply pressure,
    상기 제1동기화밸브와 제1도선으로 연결되어 인가되는 시간을 제어하는 상기 동기화밸브컨트롤러를 포함하는 동기화 이중밸브를 사용한 미세유체 제어 장치.A microfluidic control device using a synchronization double valve including the first synchronization valve and the synchronization valve controller that is connected to the first conductor and controls the applied time.
  3. 제1항에 있어서, 상기 제2제어부는,The method of claim 1, wherein the second control unit,
    상기 압력전달유로의 타측에 연결되는 제2동기화밸브,A second synchronization valve connected to the other side of the pressure transfer passage,
    상기 제2동기화밸브와 제2도관으로 연결되어 압력이 인가되는 제2압력원,A second pressure source connected to the second synchronization valve and a second conduit to apply pressure,
    상기 제2동기화밸브와 제2도선으로 연결되어 인가되는 시간을 제어하는 상기 동기화밸브컨트롤러를 포함하는 동기화 이중밸브를 사용한 미세유체 제어 장치.A microfluidic control device using a synchronization double valve including the synchronization valve controller that is connected to the second synchronization valve and a second conductor wire to control the applied time.
  4. 제1항에 있어서, 상기 동기화 밸브 컨트롤러는,The method of claim 1, wherein the synchronization valve controller,
    상기 제1동기화밸브와 상기 제2동기화밸브를 기설정된 시간 간격으로 작동되도록 하는 동기화 이중밸브를 사용한 미세유체 제어 장치.A microfluidic control device using a synchronized double valve that operates the first synchronization valve and the second synchronization valve at preset time intervals.
  5. 제 2항에 있어서, 상기 동기화 밸브 컨트롤러는,The method of claim 2, wherein the synchronization valve controller,
    상기 동기화 밸브컨트롤러가 상기 제1동기화밸브와 상기 제2동기화밸브가 0 내지 ±100 ms 범위에서 일정한 시간차(δt)로 작동되도록 하는 동기화 이중밸브를 사용한 미세유체 제어 장치.A microfluidic control device using a synchronization double valve in which the synchronization valve controller operates the first synchronization valve and the second synchronization valve with a constant time difference (δt) in the range of 0 to ±100 ms.
  6. 제 1항에 있어서, 상기 미세유체관은,The method of claim 1, wherein the microfluidic tube is:
    0.1 내지 500 μL 범위의 유체를 포함하는 동기화 이중밸브를 사용한 미세유체 제어 장치.Microfluidic control device using synchronized dual valves containing fluids ranging from 0.1 to 500 μL.
  7. 제 1항에 있어서, 상기 제1동기화밸브는,The method of claim 1, wherein the first synchronization valve is:
    상기 제1압력원의 작동에 의해 상기 압력전달유로에 음의 압력 또는 양의 압력이 인가되도록 하는 동기화 이중밸브를 사용한 미세유체 제어 장치.A microfluidic control device using a synchronized double valve that allows negative or positive pressure to be applied to the pressure transmission passage by operation of the first pressure source.
  8. 제 1항에 있어서, 상기 제2동기화밸브는,The method of claim 1, wherein the second synchronization valve is:
    상기 제2압력원의 작동에 의해 상기 압력전달유로 내에 인가되는 압력이 조절되도록 하는 이중밸브를 사용한 미세유체 제어 장치.A microfluidic control device using a double valve that adjusts the pressure applied in the pressure transmission passage by operating the second pressure source.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 이중밸브를 사용한 미세유체 제어방법은,The microfluidic control method using a double valve according to any one of claims 1 to 8,
    미세유체관 일측에 연결된 압력전달유로의 일측에 연결되고, 제1도선과 연결된 동기화밸브컨트롤러에 의해 제1동기화밸브를 제어하는 제1동기화단계;A first synchronization step of controlling the first synchronization valve by a synchronization valve controller connected to one side of the pressure transmission passage connected to one side of the microfluidic pipe and connected to the first conductor;
    미세유체관 일측에 연결된 압력전달유로의 타측에 연결되고, 제2도선과 연결된 동기화밸브컨트롤러에 의해 제2동기화밸브를 제어하는 제2동기화단계;A second synchronization step of controlling the second synchronization valve by a synchronization valve controller connected to the other side of the pressure transmission passage connected to one side of the microfluidic pipe and connected to the second conductor;
    를 포함하는 이중밸브를 사용한 미세유체 제어 방법.Microfluidic control method using a double valve including.
  10. 제9항에 있어서, 상기 제1동기화단계는,The method of claim 9, wherein the first synchronization step is,
    제1동기화밸브와 제1도관으로 연결된 제1압력원에 의해 제1동기화밸브에 압력이 인가되는 제1압력인가단계,A first pressure application step in which pressure is applied to the first synchronization valve by a first pressure source connected to the first synchronization valve and the first conduit,
    상기 제1압력인가단계 이후 제1동기화밸브와 제1도선으로 연결된 동기화밸브컨트롤러에 의해 제1동기화밸브에 인가되는 시간이 제어되는 제1제어단계를 포함하는 이중밸브를 사용한 미세유체 제어 방법.A microfluidic control method using a double valve including a first control step in which the time applied to the first synchronization valve is controlled by a synchronization valve controller connected to the first synchronization valve and a first conductor after the first pressure application step.
  11. 제9항에 있어서, 상기 제2동기화단계는,The method of claim 9, wherein the second synchronization step is:
    제2동기화밸브와 제2도관으로 연결된 제2압력원에 의해 제2동기화밸브에 압력이 인가되는 제2압력인가단계,A second pressure application step in which pressure is applied to the second synchronization valve by a second pressure source connected to the second synchronization valve and the second conduit,
    상기 제2압력인가단계 이후 제2동기화밸브와 제2도선으로 연결된 동기화밸브컨트롤러에 의해 제2동기화밸브에 인가되는 시간이 제어되는 제2제어단계를 포함하는 이중밸브를 사용한 미세유체 제어 방법.A microfluidic control method using a double valve including a second control step in which the time applied to the second synchronization valve is controlled by a synchronization valve controller connected to the second synchronization valve and a second conductor after the second pressure application step.
  12. 제 9항에 있어서, 상기 제1동기화단계 및 상기 제2동기화단계는,The method of claim 9, wherein the first synchronization step and the second synchronization step are:
    상기 동기화밸브컨트롤러에 의해 상기 제1동기화밸브 및 상기 제2동기화밸브가 일정한 시간차(δt)로 작동되도록 하는 이중밸브를 사용한 미세유체 제어 방법.A microfluidic control method using a double valve in which the first synchronization valve and the second synchronization valve are operated with a constant time difference (δt) by the synchronization valve controller.
  13. 제 12항에 있어서, 상기 제1동기화단계 및 상기 제2동기화단계는,The method of claim 12, wherein the first synchronization step and the second synchronization step are:
    상기 동기화밸브컨트롤러에 의해 상기 제1동기화밸브 및 상기 제2동기화밸브가 0 ~ ±100 ms 범위의 일정한 시간차(δt)로 작동되도록 하는 동기화 이중밸브를 사용한 미세유체 제어 방법.A microfluidic control method using a synchronization double valve in which the first synchronization valve and the second synchronization valve are operated by the synchronization valve controller with a constant time difference (δt) in the range of 0 to ±100 ms.
PCT/KR2023/015589 2022-10-11 2023-10-11 Microfluidic flow velocity precise-control device using synchronously operating dual valves and microfluidic flow velocity precise-control method using same WO2024080722A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0129739 2022-10-11
KR1020220129739A KR102524384B1 (en) 2022-10-11 2022-10-11 A Apparatus for Precise Control of Microfluidic Flow using Dual Valves in Synchronous Actions and a Method for Precise Control of Microfluidic Flow using It

Publications (1)

Publication Number Publication Date
WO2024080722A1 true WO2024080722A1 (en) 2024-04-18

Family

ID=86141796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015589 WO2024080722A1 (en) 2022-10-11 2023-10-11 Microfluidic flow velocity precise-control device using synchronously operating dual valves and microfluidic flow velocity precise-control method using same

Country Status (2)

Country Link
KR (1) KR102524384B1 (en)
WO (1) WO2024080722A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102524384B1 (en) * 2022-10-11 2023-04-24 한국표준과학연구원 A Apparatus for Precise Control of Microfluidic Flow using Dual Valves in Synchronous Actions and a Method for Precise Control of Microfluidic Flow using It

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150238965A1 (en) * 2008-03-21 2015-08-27 Lawrence Livermore National Security, Llc. Monodisperse microdroplet generation and stopping without coalescence
JP2016047528A (en) * 2010-01-24 2016-04-07 インスチチュート・ケミィ・フィジズネジ・ポルスキージ・アカデミィ・ナウク System and method for automated generation and handling of liquid mixtures
US20180136247A1 (en) * 2015-05-26 2018-05-17 Imperial Innovations Limited Microfluidic flow controller, fluid analysis apparatus, analysis module and methods
JP2018520342A (en) * 2015-05-11 2018-07-26 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒルThe University Of North Carolina At Chapel Hill Pressure-driven fluid injection for chemical separation by electrophoresis
KR20180131660A (en) * 2017-05-30 2018-12-11 충남대학교산학협력단 Microfluidic Chip with an Ideal-mixing Micro-tank
KR102524384B1 (en) * 2022-10-11 2023-04-24 한국표준과학연구원 A Apparatus for Precise Control of Microfluidic Flow using Dual Valves in Synchronous Actions and a Method for Precise Control of Microfluidic Flow using It

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102341588B1 (en) 2019-10-25 2021-12-21 국방기술품질원 Device for controlling microfluidic and method for controlling microfluidic using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150238965A1 (en) * 2008-03-21 2015-08-27 Lawrence Livermore National Security, Llc. Monodisperse microdroplet generation and stopping without coalescence
JP2016047528A (en) * 2010-01-24 2016-04-07 インスチチュート・ケミィ・フィジズネジ・ポルスキージ・アカデミィ・ナウク System and method for automated generation and handling of liquid mixtures
JP2018520342A (en) * 2015-05-11 2018-07-26 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒルThe University Of North Carolina At Chapel Hill Pressure-driven fluid injection for chemical separation by electrophoresis
US20180136247A1 (en) * 2015-05-26 2018-05-17 Imperial Innovations Limited Microfluidic flow controller, fluid analysis apparatus, analysis module and methods
KR20180131660A (en) * 2017-05-30 2018-12-11 충남대학교산학협력단 Microfluidic Chip with an Ideal-mixing Micro-tank
KR102524384B1 (en) * 2022-10-11 2023-04-24 한국표준과학연구원 A Apparatus for Precise Control of Microfluidic Flow using Dual Valves in Synchronous Actions and a Method for Precise Control of Microfluidic Flow using It

Also Published As

Publication number Publication date
KR102524384B1 (en) 2023-04-24

Similar Documents

Publication Publication Date Title
WO2024080722A1 (en) Microfluidic flow velocity precise-control device using synchronously operating dual valves and microfluidic flow velocity precise-control method using same
US6156208A (en) Ferrographic method
US10563246B2 (en) Microfluidic device for production and collection of droplets of a fluid
JP4494877B2 (en) Method for reducing dilution of working fluid in liquid systems
JP6647218B2 (en) Fluid transfer from digital microfluidic devices
WO2019132406A1 (en) Method for extracting nucleic acid using cartridge
JP2023052399A (en) Microdroplet treatment device and method of use thereof
KR20030009857A (en) Method for handling fluid in substrate and device for it
WO2019132404A1 (en) Piston of nucleic acid extracting cartridge
US10246675B2 (en) Biochemical cartridge, and biochemical cartridge and cartridge holder set
US20190314777A1 (en) Methods for mixing fluids in microfluidic devices, and devices and systems therefor
WO2021208872A1 (en) Electrohydrodynamics-based microfluidic chip, micro sample application device and method
CN101520034A (en) Integrated normal-closed PDMS micro-valve, preparation process thereof and micro-pump containing micro-valve
WO2019185927A1 (en) Microfluidic chip
WO2013183013A1 (en) Autonomous and programmable sequential flow of solutions in capillary microfluidics
KR20190087842A (en) Lab-on-a-chip System using Microfluid Control based on the Finger Actuation and Uses Thereof
CN114657049A (en) Card box for nucleic acid amplification
CN215947247U (en) Loop-mediated isothermal amplification chip
US11504681B2 (en) Microfluidic mixing device and method
Yun et al. A microfluidic chip for measurement of biomolecules using a microbead-based quantum dot fluorescence assay
CN113266702A (en) Apparatus and method for controlling fluid
CN112266841B (en) Biological sample processing chip device and processing method
CN215806749U (en) Device, apparatus and kit for controlling fluid
CN114292734A (en) Full-process integrated droplet digital PCR chip, preparation method and application
WO2018079884A1 (en) Pipette tip and pipette system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877649

Country of ref document: EP

Kind code of ref document: A1