WO2024080684A1 - Electroconductive contact pin - Google Patents

Electroconductive contact pin Download PDF

Info

Publication number
WO2024080684A1
WO2024080684A1 PCT/KR2023/015477 KR2023015477W WO2024080684A1 WO 2024080684 A1 WO2024080684 A1 WO 2024080684A1 KR 2023015477 W KR2023015477 W KR 2023015477W WO 2024080684 A1 WO2024080684 A1 WO 2024080684A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
conductive contact
contact pin
metal layer
tip portion
Prior art date
Application number
PCT/KR2023/015477
Other languages
French (fr)
Korean (ko)
Inventor
안범모
박승호
홍창희
Original Assignee
(주)포인트엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포인트엔지니어링 filed Critical (주)포인트엔지니어링
Publication of WO2024080684A1 publication Critical patent/WO2024080684A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • G01R1/06761Material aspects related to layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures

Definitions

  • the present invention relates to electrically conductive contact pins.
  • Semiconductor devices are inspected using electrical connection devices such as probe cards, probe blocks, probe units, etc., which have a plurality of electrically conductive contact pins that are each pressed to electrodes of the semiconductor device.
  • This type of electrical connection device is used to electrically connect the electrodes of a semiconductor element and a circuit board.
  • the electrically conductive contact pin is connected to the circuit board, and the tip portion of the electrically conductive contact pin is pressed against the electrode of the semiconductor element.
  • an overdrive acts on the electrically conductive contact pin, and the electrically conductive contact pin is elastically deformed.
  • These electrically conductive contact pins are assembled in an electrical connection device such as a probe card, mounted on a tester, and then the tip side (or the alignment mark around the tip) of the electrically conductive contact pin is photographed by a vision inspection device such as an optical camera. By image processing the output signal of the vision inspection device, the position of the tip of the electrically conductive contact pin with respect to the electrode of the semiconductor element is obtained, and alignment is performed to determine the coordinate position.
  • the irregularities according to the prior art are formed by the pattern shape of the photoresist layer, it is difficult to form the depth and width of the irregularities and valleys to 1 ⁇ m or less.
  • the pitch between electrically conductive contact pins must be further reduced and the size of the tip portion must also be formed smaller.
  • the tip part which has become smaller from a few ⁇ m to tens of ⁇ m, is difficult to distinguish from the unevenness of a few ⁇ m to tens of ⁇ m, making it increasingly difficult to confirm the location of the tip through vision inspection.
  • Patent Document 1 Registered Patent Gazette of Registered Patent No. 10-0958070
  • the present invention was developed to solve the problems of the prior art described above.
  • the present invention is formed in a size that is clearly distinguishable from the surrounding structures and forms a diffuse reflection surface during vision inspection, so that the position of the tip can be accurately recognized by a vision inspection device.
  • the purpose is to provide an electrically conductive contact pin that allows
  • an electrically conductive contact pin is an electrically conductive contact having a first side, a second side opposite the first side, and a side connecting the first side and the second side.
  • the pin includes a body part and a tip part, and a long groove is formed on a side of the body part in the direction of the first surface and the second surface, the depth of which is in the range of 20 nm to 1 ⁇ m, A nano trench having a width ranging from 20 nm to 1 ⁇ m is formed, and the tip portion is provided on the upper side of the body portion facing the inspection object among the side surfaces.
  • the nano trench is formed on the entire side surface of the body portion.
  • the nano trench is also formed on the side surface of the tip portion.
  • the body portion may include a first body region provided in a thickness direction from the first surface to the second surface; and a second body region formed continuously with the first region in the thickness direction, wherein the tip portion is formed on the second body region.
  • At least one of the first body region and the second body region is provided with a plurality of different metal layers stacked.
  • the second body region is provided with a single metal layer.
  • a nano-trench is provided on a side surface of the first body region, but a nano-trench is not provided on a side surface of the second body region.
  • the tip portion makes surface contact with the plurality of dissimilar metal layers of the body portion.
  • the electrically conductive contact pin according to the present invention is an electrically conductive contact pin having a first side, a second side opposite the first side, and a side connecting the first side and the second side, wherein the electrically conductive contact pin includes a circuit A body portion including a proximal end connected to a substrate, a beam portion extending from the proximal end and having a long hole extending in the width direction, and a tip portion formed at an end of the beam portion; and a tip portion that protrudes upward from a side of the tip portion and is formed to contact the inspection object, and has a cross-sectional area smaller than that of the body portion, wherein the first surface and the second surface are formed on a side of the beam portion in the direction of the tip portion.
  • a nano trench is formed as a long groove in the plane direction, with a depth ranging from 20 nm to 1 ⁇ m and a width ranging from 20 nm to 1 ⁇ m.
  • the nano trench is also formed on the inner wall of the long hole of the beam part.
  • the present invention provides an electrically conductive contact pin that is formed in a size that is clearly distinguishable from surrounding structures and forms a diffuse reflection surface during vision inspection, allowing the position of the tip portion to be accurately recognized by a vision inspection device.
  • FIG. 1 is a perspective view of an electrically conductive contact pin according to a first preferred embodiment of the present invention.
  • Figure 2 is an enlarged view of portion A of Figure 1.
  • Figure 3 is an enlarged view of part B of Figure 1.
  • FIGS. 4A to 6 are views showing a method of manufacturing an electrically conductive contact pin according to a first preferred embodiment of the present invention.
  • Figure 7 is a perspective view of an electrically conductive contact pin according to a second preferred embodiment of the present invention.
  • Figure 8 is an enlarged view of portion A of Figure 7.
  • Figure 9 is an enlarged view of part B of Figure 7.
  • FIGS. 10A to 10E are views showing a method of manufacturing an electrically conductive contact pin according to a second preferred embodiment of the present invention.
  • Figure 11 is a perspective view of an electrically conductive contact pin according to a third preferred embodiment of the present invention.
  • Figure 12 is an enlarged view of portion A of Figure 11.
  • Figure 13 is an enlarged view of part B of Figure 11.
  • 14A to 17B are views showing a method of manufacturing an electrically conductive contact pin according to a third preferred embodiment of the present invention.
  • the width direction of the electrically conductive contact pin 100 described below is the ⁇ x direction shown in the drawing
  • the thickness direction of the electrically conductive contact pin 100 is the ⁇ y direction shown in the drawing
  • the electrically conductive contact pin 100 The height direction is the ⁇ z direction indicated in the drawing.
  • FIG. 1 is a perspective view of an electrically conductive contact pin 100 according to a first preferred embodiment of the present invention
  • FIG. 2 is an enlarged view of portion A of FIG. 1
  • FIG. 3 is an enlarged view of portion B of FIG. 1
  • FIG. 4A to 6 are diagrams showing a method of manufacturing the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention.
  • the probe card includes electrically conductive contact pins (100). Testing the electrical properties of a semiconductor device is performed by approaching a semiconductor device as a test object to a probe card equipped with a plurality of electrically conductive contact pins 100 and contacting the electrically conductive contact pins 100 with corresponding electrodes on the semiconductor device. When the electrically conductive contact pin 100 and the electrode on the semiconductor element are brought into contact, after the two reach a state in which they begin to contact, a process of additionally accessing the semiconductor element to the probe card is performed. This processing is called overdrive. Overdrive is a process that elastically deforms the electrically conductive contact pins (100).
  • the electrically conductive contact pin 100 has a first surface (1), a second surface (2) opposite the first surface (1), and a side (3) connecting the first surface (1) and the second surface (2). ) is provided.
  • the first surface (1) and the second surface (2) refer to two opposing surfaces in the thickness direction ( ⁇ y direction), and the side surface (3) refers to the first surface (1) and the second surface (2). It is a surface formed by connecting and refers to all surfaces except the first surface (1) and the second surface (2).
  • the electrically conductive contact pin 100 may be a cantilever-type electrically conductive contact pin including a body portion 200 and a tip portion 300.
  • the body portion 200 includes a base end portion 210 connected to a circuit board, a beam portion 220 extending from the base end 210 and having a long hole 221 extending in the width direction ( ⁇ x direction), and a beam portion. It includes a tip portion 230 formed at the end of 220.
  • the displacement of the tip portion 230 changes and the beam portion 220 is deformed, but the proximal end portion 110 has sufficient rigidity and is not deformed.
  • the beam portion 220 is provided with a long hole 221 extending in the width direction ( ⁇ x direction) so that the distal end 230 can be displaced in the height direction ( ⁇ z direction).
  • the body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), nickel (Ni), manganese (Mn), tungsten (W), and phosphorus (Ph). , gold (Au), silver (Ag), copper (Cu) or their alloys, or palladium-cobalt (PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphorus (NiPh) alloy, nickel-manganese (NiMn) ), nickel-cobalt (NiCo) or nickel-tungsten (NiW) alloy.
  • the body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), and nickel (Ni).
  • a first metal layer 101 selected from nickel-cobalt (NiCo) or nickel-tungsten (NiW) alloy, and a second metal layer selected from gold (Au), silver (Ag), copper (Cu), or alloys thereof ( 102) may be formed by stacking a plurality of different metal layers.
  • the first metal layer 101 is a metal with relatively high rigidity or wear resistance compared to the second metal layer 102
  • the second metal layer 102 is a metal with relatively high electrical conductivity compared to the first metal layer 101.
  • the body portion 200 When the body portion 200 is provided with first metal layers 101 and second metal layers 102 alternately stacked, the first metal layer 101 with high wear resistance is located on the surface side and the second metal layer with high electrical conductivity is located on the surface side. (102) is located between the first metal layers.
  • the body portion 200 may be provided in a form in which the first metal layer 101, the second metal layer 102, and the first metal layer 101 are sequentially stacked, and the number of stacks is preferably three or more.
  • the body portion 200 may be provided by sequentially stacking a palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, or a palladium-cobalt (PdCo) alloy - copper (Cu) - Rhodium (Rd) may be sequentially stacked, or palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) - gold (Au) - palladium-cobalt (PdCo) The alloy may be sequentially stacked and provided.
  • PdCo palladium-cobalt
  • Cu palladium-cobalt
  • PdCo palladium-cobalt
  • Au gold
  • the tip portion 300 is provided at the tip portion 230.
  • the tip portion 300 may be made of a different material from the body portion 200.
  • the tip portion 300 may be made of a metal layer with higher wear resistance than the metal layer constituting the body portion 200. For example, if palladium-cobalt (PdCo) is selected from the first metal layer 101 for the body portion 200, rhodium (Rd) may be selected from the first metal layer 101 for the tip portion 300. Through this configuration, the wear resistance of the tip portion 300 can be increased than that of the body portion 200.
  • the tip portion 300 may be made of a metal layer with higher electrical conductivity than the metal layer constituting the body portion 200.
  • the electrical conductivity of the tip portion 300 can be made greater than that of the body portion 200.
  • the tip portion 300 protrudes upward from the side 3 of the distal end 230 and is formed to contact the inspection object.
  • the side 3 of the tip 230 may be the side directly facing the vision inspection device.
  • the tip portion 300 has a cross-sectional area that is smaller than that of the tip portion 230. Through this, the removal efficiency of the oxide layer by the tip portion 300 can be improved.
  • the body portion 200 may be provided by stacking a plurality of different metal layers, and the tip portion 300 may be provided as a single metal layer.
  • the tip portion 300 may be made of the same metal as the metal constituting the body portion 200 or may be a different metal.
  • the body portion 200 may be formed to include a first metal layer 101 and a second metal layer 102, and the tip portion 300 may include any one of the first metal layer 101 and the second metal layer 102. can be formed.
  • the body portion 200 is provided by sequentially stacking a palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, and the tip portion 300 is a material selected from the body portion 200.
  • PdCo palladium-cobalt
  • Cu copper
  • PdCo palladium-cobalt
  • the body portion 200 is provided by sequentially stacking a palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, and the tip portion 300 is a first metal layer selected from the body portion 200. It may be made of the same palladium-cobalt (PdCo) as (101).
  • the body portion 200 includes a plurality of nano trenches (NT) on its side surface (3).
  • the body portion 200 may be formed by a mold 10 made of an anodized film material, as in the manufacturing method described later.
  • the anodic oxide mold 10 includes numerous pores, and at least a portion of the anodic oxide mold 10 is etched to form an internal space, and a metal filler is formed into the inner space by electroplating, so that the body portion 200
  • the side surface 3 is provided with a nano trench (NT) that is formed while contacting the pores of the anodic oxide film mold 10.
  • the nano trench NT is formed as a long groove dug in the thickness direction ( ⁇ z direction) in the direction of the first surface 1 and the second surface 2 on the side surface 3 of the body portion 200.
  • the nano trench (NT) is formed by extending long along the thickness direction ( ⁇ z direction) of the body portion 200 from the side surface 3 of the body portion 200, and the thickness direction ( ⁇ z direction) is formed by the metal during electroplating. It refers to the direction in which the filling grows.
  • the nano trench (NT) is formed as a long groove along the thickness direction ( ⁇ z direction) of the body portion 200, and has several grooves aligned side by side along the side surface 3 of the body portion 200. (3) It is formed throughout.
  • the nano trench (NT) has a depth ranging from 20 nm to 1 ⁇ m, and its width also ranges from 20 nm to 1 ⁇ m.
  • the width and depth of the nano trench (NT) have values less than the range of the diameter of the pore of the anodic oxide mold (10).
  • some of the pores of the anodic oxide mold 10 are crushed by the etching solution, forming a depth greater than the diameter of the pores formed during anodization. At least some branched nano trenches (NTs) may be formed.
  • the structure that makes up the exterior of the electrically conductive contact pin 100 is formed in a size exceeding 1 ⁇ m.
  • the structure constituting the exterior refers to a structure intentionally manufactured using general MEMS (Micro Electro Mechanical Systems) technology. Since the nano trench (NT) is formed in a size of 1 ⁇ m or less, it has a size that is distinct from the structure that constitutes the exterior of the electrically conductive contact pin 100. Through this, even if light is irradiated to confirm the position of the tip portion 300 with a vision inspection device, there is no concern that the nano trench (NT) will be recognized as a structure.
  • a vision inspection device such as an optical camera photographs an alignment mark (not shown) provided separately around the tip portion or tip portion 300, which is a structure, and image processes the output signal of the vision inspection device to form an electrically conductive contact pin (100). ), the position of the tip portion 300 is obtained, and position alignment is performed to determine its coordinate position.
  • the nano trench (NT) forms a diffuse reflection surface when photographed with a vision inspection device, allowing the vision inspection device to accurately determine the position of the tip portion 300, which is a structure.
  • a bonding material having conductivity and heat meltability such as solder or conductive adhesive, is used to attach the base end 210 of the electrically conductive contact pin 100 or the circuit board. It is provided in the land of.
  • the electrically conductive contact pin 100 is maintained in an upright position on the land of the circuit board, and then a laser beam having a spot diameter that is not irradiated to the neighboring electrically conductive contact pin 100 is applied to the electrically conductive contact pin 100. ) is irradiated to the base end 210 and the bonding material.
  • the electrically conductive contact pin 100 and the bonding material absorb heat energy and the bonding material melts.
  • the nano trench (NT) provided on the side surface 3 of the body 200 improves the heat absorption rate of the body 200. Through this, since the body portion 200 is bonded to the molten bonding material while the temperature is raised, the cold soldering phenomenon can be reduced and bonding durability is improved.
  • the electrically conductive contact pin 100 provided with a nano trench (NT) on the side (3) has a greater resistance to the laser beam than the electrically conductive contact pin 100 that does not have a nano trench (NT) on the side (3). It is possible to lower the thermal energy even further.
  • the laser beam has higher thermal energy than the electrically conductive contact pin 100 with a nano trench (NT) on the side (3).
  • the heat energy absorbed by the bonding material bonding the neighboring electrically conductive contact pins 100 also increases, so that the neighboring bonding material softens or melts and the position of the tip portion of the electrically conductive contact pin 100 changes.
  • the coordinate position of the electrode of the semiconductor device corresponding to the coordinate position of the tip portion 300 does not match, so that the misaligned electrically conductive contact pin 100 cannot be used for testing the electrical characteristics of the semiconductor device unless it is re-bonded. do.
  • the electrically conductive contact pin 100 provided with a nano trench (NT) on the side 3 has a relatively high heat absorption rate, it is possible to irradiate a laser beam with lower thermal energy and Since it does not affect the bonding material, it does not cause a change in the coordinates of the tip portion 300 of the already bonded electrically conductive contact pin 100. Therefore, more effective bonding can be provided.
  • the method of manufacturing the electrically conductive contact pin 100 includes forming an opening 11 in an anodic oxide film mold 10 having a lower seed layer 30 at the bottom; Forming a body portion 200 by electroplating the opening portion 11; Extracting the body portion 200; and attaching the separately manufactured tip portion 300 to the distal end 230 of the body portion 200.
  • FIG. 4A is a plan view showing the anodic oxide film mold 10 provided with the opening 11, and FIG. 4B is a cross-sectional view taken along line A-A' of FIG. 4A.
  • the anodic oxide film mold 10 is made of an anodic oxide film material.
  • the anodic oxide film has a thermal expansion coefficient of 2 ⁇ 3ppm/°C. For this reason, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, even in a high-temperature environment for manufacturing metal molded products, a precise electrically conductive contact pin 100 can be manufactured without thermal deformation.
  • the anodic oxide mold 10 made of an anodic oxide material it is possible to demonstrate the effect of realizing precise shapes and fine shapes, which were limited in realizing them with molds made of photoresist.
  • the mold used in the manufacturing method of the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention is the anodic oxide film mold 10.
  • An anodic oxide film refers to a film formed when a base metal is anodized, and a pore refers to a hole formed during the process of anodizing a base metal to form an anodize film.
  • the base metal is aluminum (Al) or an aluminum alloy
  • an anodic oxide film of aluminum oxide (Al 2 0 3 ) is formed on the surface of the base metal.
  • the base metal is not limited to this and includes Ta, Nb, Ti, Zr, Hf, Zn, W, Sb, or alloys thereof.
  • the anodic oxide film formed as above is a barrier layer in which no pores are formed vertically. It is divided into a porous layer with pores formed inside. When the base metal is removed from a base metal on which an anodic oxide film having a barrier layer and a porous layer is formed on the surface, only an anodic oxide film made of aluminum oxide (Al 2 0 3 ) remains.
  • the opening 11 may be formed by wet etching the anodic oxide film mold 10.
  • a photo resist is provided on the upper surface of the anodic oxide film mold 10 and patterned. Then, the anodic oxide film in the patterned open area reacts with an etching solution and is removed, thereby forming an opening 11.
  • a lower seed layer 30 is provided on the lower surface of the anodic oxide mold 10.
  • the lower seed layer 30 may be provided on the lower surface of the anodic oxide film mold 10 before forming the opening 11 in the anodic oxide film mold 10.
  • a support substrate (not shown) is formed on the lower part of the anodic oxide mold 10 to improve the handling of the anodic oxide mold 10.
  • the lower seed layer 30 may be formed on the upper surface of the support substrate, and the anodic oxide mold 10 with the opening 11 may be coupled to the support substrate.
  • the lower seed layer 30 may be made of copper (Cu) and may be formed by a deposition method.
  • the opening 11 is formed only in the portion corresponding to the body portion 200, and the opening 11 is not formed in the portion corresponding to the tip portion 300 so that the anodized film remains as is.
  • FIG. 5A is a plan view showing the body portion 200 formed by performing an electroplating process on the opening 11
  • FIG. 5B is a cross-sectional view taken along line A-A' of FIG. 5A.
  • the body portion 200 is formed by plating a metal layer on the opening 11 using the lower seed layer 30.
  • the body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), nickel (Ni), manganese (Mn), tungsten (W), and phosphorus (Ph). , gold (Au), silver (Ag), copper (Cu) or their alloys, or palladium-cobalt (PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphorus (NiPh) alloy, nickel-manganese (NiMn) ), nickel-cobalt (NiCo), or nickel-tungsten (NiW) alloy.
  • the body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), and nickel (Ni).
  • the body portion 200 When the body portion 200 is provided with first metal layers 101 and second metal layers 102 alternately stacked, the first metal layer 101 with high wear resistance is located on the surface side and the second metal layer with high electrical conductivity is located on the surface side. (102) is located between the first metal layers.
  • the body portion 200 may be provided in a form in which the first metal layer 101, the second metal layer 102, and the first metal layer 101 are sequentially stacked, and the number of stacks is preferably three or more.
  • the body portion 200 may be provided by stacking palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, or palladium-cobalt (PdCo) alloy - copper (Cu) ) - Rhodium (Rd) may be laminated, or palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) - gold (Au) - palladium-cobalt (PdCo) alloy may be laminated. It can be provided.
  • PdCo palladium-cobalt
  • Cu palladium-cobalt
  • PdCo palladium-cobalt
  • Au gold
  • the body portion 200 is completed by removing the anodic oxide film mold 10 and the lower seed layer 30.
  • the body portion 200 can be made more dense by raising the temperature to a high temperature and applying pressure to press the metal layer on which the plating process has been completed.
  • photoresist material is used as a mold, photoresist exists around the metal layer after the plating process is completed, so a process of raising the temperature to a high temperature and applying pressure cannot be performed.
  • an anodic oxide film mold 10 made of an anodized film material is provided around the metal layer for which the plating process has been completed, the electrically conductive contact pin (100) minimizes deformation due to the low thermal expansion coefficient of the anodized film even if the temperature is raised to a high temperature. ) It is possible to densify it. Therefore, it is possible to obtain a more dense electrically conductive contact pin 100 compared to the technology using photoresist as a mold.
  • the tip portion 300 is attached to the distal end 230 of the body portion 200.
  • the separately formed tip portion 300 is attached to the side 3 of the tip portion 230 by brazing, soldering, welding, conductive epoxy, tacking, etc.
  • the tip portion 300 is attached to the body portion 200 composed of the first and second metal layers 101 and 102 by bonding to the second metal layer 102, which has relatively high electrical conductivity. Through this, the electric flow characteristics through the tip portion 300 are improved.
  • FIGS. 7 to 10E the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention will be described.
  • Figure 7 is a perspective view of the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention
  • Figure 8 is an enlarged view of part A of Figure 7
  • Figure 9 is an enlarged view of part B of Figure 7.
  • 10A to 10E are diagrams showing a method of manufacturing an electrically conductive contact pin 100 according to a second preferred embodiment of the present invention.
  • the electrically conductive contact pin 100 includes a body portion 200 and a tip portion 300.
  • the body portion 200 is divided into a first body region 250 and a second body region 260 in the thickness direction ( ⁇ z direction).
  • the body portion 200 is formed by sequentially stacking a first body region 250 and a second body region 260 in the thickness direction ( ⁇ z direction) and integrally continuous with each other.
  • the first body region 250 is formed by a portion of the anodized film mold 10 and the second body region 260 is formed by a portion of the mold 20 of a patternable material. is formed by There is a difference between the first body region 250 and the second body region 260 in whether or not a nano trench (NT) is provided. That is, there is a difference between the first body region 250 and the second body region 260 in whether the nano trench NT is provided on the side surface 3.
  • a nano trench NT is provided on the side surface 3 of the first body region 250, but the nano trench NT is not provided on the side surface 3 of the second body region 260.
  • the first body region 250 includes a plurality of nano trenches NT on its side surface 3.
  • the nano trench (NT) is formed as a long groove along the thickness direction ( ⁇ z direction) of the first body region 250, and has a plurality of vertical grooves in the thickness direction ( ⁇ z direction) arranged side by side along the side 3. It is formed on the entire side 3 of the first body region 250 in this direction.
  • the thickness direction ( ⁇ z direction) of the electrically conductive contact pin 100 refers to the direction in which the metal filler grows during electroplating.
  • the directionality of the electrically conductive contact pin 100 can be distinguished through the first body region 250 provided with the nano trench (NT) and the second body region 260 without the nano trench (NT).
  • the electrically conductive contact pin 100 can be manufactured with a total thickness dimension within the range of 30 ⁇ m or more and 60 ⁇ m or less. Due to this small size, the first and second surfaces of the electrically conductive contact pin 100 It is not easy to distinguish between (2). However, the first surface 1 of the electrically conductive contact pin 100 is formed through the first body region 250 with the nano trench (NT) and the second body region 260 without the nano trench (NT). The second side (2) can be distinguished.
  • the vision inspection device irradiates light to the side (3), the first body area 250 becomes a diffusely reflective surface, but the second body area 260 does not become a diffusely reflective surface, so it is classified into an electrically conductive contact pin ( 100) direction can be distinguished. Through this, it is possible to prevent the electrically conductive contact pin 100 from being bonded to the circuit board in the wrong direction.
  • the first body region 250 may be formed of a first metal layer 101 and a second metal layer 102.
  • the first metal layer 101 is provided in the thickness direction ( ⁇ z direction) of the electrically conductive contact pin 100, and the second metal layer 102 is provided between the first metal layers 101.
  • the first body region 250 is provided by alternately stacking the first metal layer 101, the second metal layer 102, and the first metal layer 101 in that order in the thickness direction ( ⁇ z direction),
  • the number of stacked layers may be three or more.
  • the second body region 260 may be formed of the third metal layer 103.
  • the third metal layer 103 may be formed of the same metal as the first metal layer 101 or the second metal layer 102 constituting the first body region 250, or may be formed of a different metal.
  • the tip portion 300 is formed in the second body region 260, the second body region 260 is made of a metal with high wear resistance, and is made of a metal selected from the first metal layer 101. can be formed.
  • the third metal layer 103 may be rhodium (Rd).
  • the third metal layer 103 includes a 3-1 metal layer (103-1) and a 3-2 metal layer (103-2).
  • the 3-1 metal layer (103-1) is a metal layer with higher rigidity or wear resistance than the 3-2 metal layer (103-2)
  • the 3-2 metal layer (103-2) is a metal layer with higher rigidity or wear resistance than the 3-2 metal layer (103-2).
  • ) is a metal layer with higher electrical conductivity than that of The 3-1 metal layer (103-1) with high wear resistance is located on the surface side, and the 3-2 metal layer (103-2) with high electrical conductivity is located between the 3-1 metal layers (103-1).
  • the second body region 260 will be provided in the form of sequential stacking of the 3-1 metal layer (103-1), the 3-2 metal layer (103-2), and the 3-1 metal layer (103-1). It is preferable that the number of stacks is three or more.
  • the second body region 260 may be provided by sequentially stacking rhodium (Rd) - copper (Cu) - rhodium (Rd), or rhodium (Rd) - gold (Au) - rhodium (Rd). ) can be provided by being sequentially stacked.
  • the tip portion 300 is formed on the second body region 260. Since the tip portion 300 is formed integrally together in the process of forming the second body region 260, the nano trench (NT) does not exist on the side 3 of the tip portion 300 and forms the second body region 260. It is formed of the same metal layer as the metal layer. Therefore, if the second body region 260 is composed of a single metal layer, the tip portion 300 is also composed of a single metal layer, and if the second body region 260 is composed of a plurality of heterogeneous metal layers stacked, the tip portion 300 is also composed of a plurality of heterogeneous metal layers. It is constructed by stacking metal layers.
  • the tip portion 300 including the 3-1 metal layer (103-1) and the 3-2 metal layer (103-2) has electrical conductivity and rigidity (or It can be advantageous in terms of wear resistance). Additionally, the tip portion 300 may be provided by stacking the 3-1 metal layer (103-1), the 3-2 metal layer (103-2), and the 3-1 metal layer (103-1) in that order. In this case, The metal layer with high electrical conductivity located inside is covered by a metal layer with high wear resistance, thereby improving the electrical conductivity and wear resistance of the tip portion 300 at the same time.
  • the second body region 260 matches the shape of the first body region 250. That is, the first body region 250 and the second body region 260 have the same cross-sectional shape in the x-z plane except for the tip portion 300.
  • 10A to 10E are diagrams for explaining a method of manufacturing the electrically conductive contact pin 100 according to a preferred embodiment of the present invention.
  • the manufacturing method of the electrically conductive contact pin 100 includes forming a lower seed layer 30 on the lower part of the anodic oxide film mold 10; Forming a patternable material (20) on the anodic oxide mold (10); Patterning the patternable material 20 to form a second opening 25 so that the upper part of the anodic oxide film mold 10 is exposed; Forming a first opening 15 by wet etching the anodic oxide film mold 10 to expose the lower seed layer 30 using the second opening 25; Forming a body metal layer 50 in the first opening 15 and the second opening 25 through a plating process; and extracting the body metal layer 50.
  • the step of forming the lower seed layer 30 on the lower part of the anodic oxide film mold 10 will be described.
  • a detailed description of the anodic oxide film mold 10 has been described in the first embodiment and is therefore omitted below.
  • a lower seed layer 30 is provided on the lower surface of the anodic oxide mold 10.
  • the lower seed layer 30 may be formed by depositing a metal material.
  • the lower seed layer 30 is used when forming the body metal layer 50, particularly the first body region 250, using a plating process.
  • the lower seed layer 30 may be formed on the entire lower surface of the anodized film mold 10.
  • An upper seed layer 40 is provided on the upper surface of the anodic oxide mold 10.
  • the upper seed layer 40 may be formed by depositing a metal material.
  • the upper seed layer 40 is used when forming the body metal layer 50, particularly the second body region 260, using a plating process.
  • the upper seed layer 40 may be formed on the upper part of the anodic oxide film mold 10.
  • the lower seed layer 30 and the upper seed layer 40 are removed after forming the body metal layer 50, the lower seed layer 30 and the upper seed layer 30 are combined with the body metal layer 50. It is preferable that it is a metal of a different material.
  • a patternable material 20 is formed on the anodic oxide mold 10 on which the upper seed layer 40 is formed.
  • the patternable material 20 is made of a material capable of exposure and development processes and includes photoresist.
  • the patternable material 20 formed on the top of the anodic oxide film mold 10 is patterned to form a second opening 25 so that the top of the anodic oxide film mold 10 is exposed. As a result, a second mold of the patternable material 20 is provided on the anodic oxide film mold 10.
  • wet etching is performed using a solution that reacts only to the anodic oxide mold 10 using the upper seed layer 40 provided on the anodic oxide mold 10 and the patterned patternable material 20 as a mask.
  • a first opening 15 is formed in the anodic oxide film mold 10.
  • the first mold of the anodic oxide film mold 10 in which the first opening 15 is formed is formed. That is, a second mold of the patternable material 20 is provided on the first mold of the anodic oxide film mold 10, and the first opening 15 and the second opening 25 communicate with each other to form one space.
  • the patterned patternable material 20 not only functions as a mold for plating but also functions as a mask for forming the first opening 15, so that in the area where the patternable material 20 functions as a mask, the thickness direction ( ⁇ The first opening 15 and the second opening 25 are formed vertically in the y direction). Therefore, the first opening 15 is formed in the mold of the anodic oxide film mold 10 and the second opening 25 is formed in the mold of the patternable material 20, and then the anodic oxide film having the first opening 15 is formed. A misalignment problem that occurs when the mold of the mold 10 and the mold of the patternable material 20 provided with the second opening 25 are combined with each other is prevented.
  • a body metal layer 50 is formed by forming a metal layer in the first opening 15 and the second opening 25 through a plating process.
  • a first plating process is performed within the first opening 15 using the lower seed layer 30.
  • the plating layer formed in the first opening 15 constitutes the first body region 250.
  • the first plating process may be a multi-layer plating process including a first metal layer 101 and a second metal layer 102. Accordingly, the first body region 250 may be composed of multiple metal layers including a first metal layer 101 and a second metal layer 102. Since the first body region 250 is a region manufactured using the first mold of the anodic oxide film mold 10, a nano trench (NT) is provided on its side.
  • a second plating process is performed on the second opening 25 using the already plated metal layer and the upper seed layer 40.
  • the plating layer formed in the second opening 25 constitutes the second body region 260. Since the second body region 260 is a region manufactured using a second mold of the patternable material 20, a nano trench NT is not provided on its side.
  • the second plating process may consist of a single metal layer.
  • the second plating process may be a single-layer plating process including the third metal layer 103.
  • the material of the third metal layer 103 may vary depending on the function performed by the second body region 260. For example, when the second body region 260 requires wear resistance, mechanical rigidity, etc., the third metal layer 103 may be formed of a metal selected from the first metal layer 101. In contrast, when high electrical conductivity is required, the third metal layer 103 may be formed of a metal selected from the second metal layer 102.
  • the third metal layer 103 may be formed of the same metal as the first metal layer 101 or the second metal layer 102 constituting the first body region 100b, or may be formed of a different metal.
  • the second body region 100b is made of a metal with high wear resistance, and is made of a metal selected from the first metal layer 101. can be formed.
  • the upper seed layer 40 is used to improve the quality of the plating layer formed on the top and to shorten the plating time. In the case where the upper seed layer 40 is not present, it is difficult to form a long protruding length of the tip portion 300, and a polishing process is unnecessarily required. Therefore, by introducing the upper seed layer 40, it is possible to precisely form the shape of the protruding tip 188, and unnecessary polishing process can be prevented.
  • a first body region 250 is formed by plating a metal layer on the first opening 15 of the anodic oxide mold 10, and a metal layer is plated on the second opening 25 of the patternable material 20 to form a second body. Area 260 is formed. The first body region 250 and the second body region 260 are continuously and integrally formed in the thickness direction of the electrically conductive contact pin 100.
  • the patternable material 20 is removed using a material that only reacts with the patternable material 20. Additionally, the lower seed layer 30 and the upper seed layer 40 are removed using a material that reacts only to the lower seed layer 30 and the upper seed layer 40. Additionally, the anodic oxide film mold 10 is removed using a material that reacts only with the anodized film mold 10. In this way, only the metal plated body metal layer 50 is extracted.
  • first body area 250 three metal layers 101, 102, and 101 are shown in the first body area 250, and one metal layer 103 is shown in the second body area 260, but the stacked metal layers The number is not limited to this, and various stacked structures are possible as described above. Both the first body region 250 and the second body region 260 may be provided by stacking a plurality of different metal layers.
  • the electrically conductive contact pin 100 When manufacturing the electrically conductive contact pin 100 using only photoresist, it is difficult to make the mold height sufficiently high using only a single layer of photoresist. As a result, the thickness of the electrically conductive contact pin 100 cannot be sufficiently thick. Considering electrical conductivity, resilience, and brittle fracture, the electrically conductive contact pin 100 needs to be manufactured to a predetermined thickness or more. In order to increase the thickness of the electrically conductive contact pin 100, a configuration of stacking photo resist in multiple stages may be considered. However, in this case, each layer of the photoresist sheet is slightly stepped, causing the problem that the side of the electrically conductive contact pin 100 is not formed vertically and a slightly stepped area remains. In addition, when photoresists are stacked in multiple stages, a problem arises in that it is difficult to precisely reproduce the shape of the electrically conductive contact pin 100 having a dimension range of several tens of ⁇ m or less.
  • the electrically conductive contact pin 100 when manufacturing the electrically conductive contact pin 100 using the anodic oxide film mold 10 as a mold, there is an advantage in that it is possible to manufacture the electrically conductive contact pin 100 with a vertical side.
  • the anodic oxide film mold 10 since the anodic oxide film mold 10 is manufactured through an anodic oxidation process, it takes a lot of time to make its height sufficiently thick.
  • the anodic oxide film mold 10 and the patternable material 20 are used as a composite electroplating mold, it is not only possible to manufacture an electrically conductive contact pin 100 with a vertical side and excellent shape precision. It has the advantage of being able to make up for the insufficient height of the anodic oxide film mold 10 with the patternable material 20. In addition, when only the anodic oxide film mold 10 is used, it may be difficult to manufacture the electrically conductive contact pin 100 having a three-dimensional shape (e.g., tip portion 300) in the height direction.
  • the mold of the anodic oxide film mold 10 By using a mold of a patternable material 20 in combination, it becomes easy to manufacture an electrically conductive contact pin 100 having a three-dimensional shape in the height direction.
  • a mold of the patternable material 20 is provided on top of the anodic oxide film mold 10. According to the configuration of positioning the mold of the patternable material 20 on the anodic oxide mold 10, during the planarization process (CMP) after the plating process is completed, the mold of the patternable material 20 is the mold of the anodic oxide mold 10. In that it protects, it can have the added effect of preventing cracks from occurring.
  • CMP planarization process
  • the anodic oxide mold 10 is used to manufacture the basic shape of the electrically conductive contact pin 100, and the mold of the patternable material 20 is used to manufacture a complex three-dimensional shape other than the basic shape or the height of the basic shape. It can be used to increase .
  • Figure 11 is a perspective view of an electrically conductive contact pin 100 according to a third preferred embodiment of the present invention
  • Figure 12 is an enlarged view of part A of Figure 11
  • Figure 13 is an enlarged view of part B of Figure 11.
  • 14A to 17B are diagrams showing a method of manufacturing an electrically conductive contact pin 100 according to a third preferred embodiment of the present invention.
  • the electrically conductive contact pin 100 includes a body portion 200 and a tip portion 300.
  • the body portion 200 of the third embodiment has the same configuration as that of the body portion 200 of the first embodiment.
  • the tip portion 300 according to the first embodiment is manufactured in the anodic oxide film mold 10 used to manufacture the body portion 200, rather than being manufactured separately and then attached to the body portion 200 ( 300), there is a difference.
  • the tip portion 300 includes a connection portion 310 and a contact portion 320 and has a stepped shape.
  • connection portion 310 is thicker in the thickness direction ( ⁇ y direction) than the contact portion 320.
  • the connection portion 310 has a thickness equal to that of the body portion 200, and the contact portion 320 has a thickness smaller than the thickness of the body portion 200.
  • the contact portion 320 of the tip portion 300 protrudes upward from the connection portion 310 and is formed to contact the inspection object.
  • the contact portion 320 has a cross-sectional area that is smaller than that of the connection portion 310. Through this, the removal efficiency of the oxide layer by the tip portion 300 can be improved.
  • the tip portion 300 may have a stacked number that is smaller than the number of metal layers constituting the body portion 200 . More specifically, the tip portion 300 is composed of at least one metal layer. However, the number of metal layers constituting the tip portion 300 is not limited to this and may be one or more layers, but may be smaller than the number of metal layers constituting the body portion 200. When the tip portion 300 is composed of a plurality of metal layers, the tip portion 300 includes a first metal layer 101 and a second metal layer 102, and the first metal layer 101 and the second metal layer 102 are alternately formed. It can be provided in a stacked manner.
  • the tip portion 300 may be made of a different material from the body portion 200.
  • the tip portion 300 may be made of a metal layer with higher wear resistance than the metal layer constituting the body portion 200.
  • the tip portion 300 may be made of rhodium (Rd) material. Through this configuration, the wear resistance of the tip portion 300 can be improved.
  • the body portion 200 may be formed by stacking a plurality of different metal layers, and the tip portion 300 may be formed of a single metal layer.
  • the tip portion 300 may be made of the same metal as the metal constituting the body portion 200 or may be a different metal.
  • the body portion 200 may be formed to include a first metal layer 101 and a second metal layer 102, and the tip portion 300 may include any one of the first metal layer 101 and the second metal layer 102. can be formed.
  • the body portion 200 is provided by stacking a palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, and the tip portion 300 is a selected first layer of the body portion 200.
  • PdCo palladium-cobalt
  • Cu copper
  • PdCo palladium-cobalt
  • the body portion 200 is provided by stacking a palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, and the tip portion 300 is a selected first metal layer 101 of the body portion 200.
  • PdCo palladium-cobalt
  • the method of manufacturing the electrically conductive contact pin 100 includes forming a body opening 17 in an anodic oxide film mold 10 having a lower seed layer 30 at the bottom; Forming the body portion 200 by electroplating the body opening 17; Forming a tip opening (18) in the anodic oxide mold (10); forming a tip portion 300 by electroplating the tip opening 18; and extracting the electrically conductive contact pin 100.
  • FIG. 14A is a plan view showing the anodic oxide film mold 10 provided with the body opening 17, and FIG. 14B is a cross-sectional view taken along line A-A' of FIG. 14A.
  • the body opening 17 may be formed by wet etching the anodized film mold 10.
  • a photo resist is provided on the upper surface of the anodic oxide film mold 10 and patterned, and then the anodic oxide film in the patterned open area reacts with the etching solution to form the body opening 17.
  • a lower seed layer 30 is provided on the lower surface of the anodic oxide mold 10.
  • the body opening 17 is formed only in the portion corresponding to the body portion 200, and the body opening 17 is not formed in the portion corresponding to the tip portion 300 and the anodized film remains as is.
  • FIG. 15A is a plan view showing the body portion 200 formed by performing an electroplating process on the body opening 17, and FIG. 15B is a cross-sectional view taken along line A-A' of FIG. 15A.
  • the body portion 200 is formed by plating a metal layer on the body opening 17 using the lower seed layer 30.
  • the body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), nickel (Ni), manganese (Mn), tungsten (W), and phosphorus (Ph). , gold (Au), silver (Ag), copper (Cu) or their alloys, or palladium-cobalt (PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphorus (NiPh) alloy, nickel-manganese (NiMn) ), nickel-cobalt (NiCo), or nickel-tungsten (NiW) alloy.
  • the body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), and nickel (Ni).
  • the body portion 200 When the body portion 200 is provided with first metal layers 101 and second metal layers 102 alternately stacked, the first metal layer 101 with high wear resistance is located on the surface side and the second metal layer with high electrical conductivity is located on the surface side. (102) is located between the first metal layers.
  • the body portion 200 may be provided in a form in which the first metal layer 101, the second metal layer 102, and the first metal layer 101 are sequentially stacked, and the number of stacks is preferably three or more.
  • the body portion 200 may be provided by stacking palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, or palladium-cobalt (PdCo) alloy - copper (Cu) ) - Rhodium (Rd) may be laminated, or palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) - gold (Au) - palladium-cobalt (PdCo) alloy may be laminated. It can be provided.
  • PdCo palladium-cobalt
  • Cu palladium-cobalt
  • PdCo palladium-cobalt
  • Au gold
  • FIG. 16A is a plan view showing the tip opening 18 formed
  • FIG. 16B is a cross-sectional view taken along line A-A' of FIG. 16A.
  • the tip opening 18 is formed adjacent to the already formed body portion 200 at a position that will become the tip portion 300.
  • the tip opening 18 may be formed by wet etching the anodized film mold 10.
  • a photo resist is provided on the upper surface of the anodic oxide film mold 10 and patterned, and then the anodic oxide film in the patterned open area reacts with the etching solution to form the tip opening 18.
  • FIG. 17A is a plan view showing the formation of the tip-corresponding metal layer 105 by performing an electroplating process on the tip opening 18, and
  • FIG. 17B is a cross-sectional view taken along line A-A' of FIG. 17A.
  • a patternable material e.g., photoresist
  • the exposed side of the previously plated body portion 200 is covered, but the side surface is exposed.
  • the tip-corresponding metal layer 105 is formed by electroplating using the lower CD layer 30 and the side surface of the previously plated body portion 200. As a result, the tip-corresponding metal layer 105 is formed in a stepped shape.
  • the electrically conductive contact pin 100 is completed by removing the anodic oxide mold 10, the patternable material 20, and the lower seed layer 30.
  • a nano trench (NT) is formed on the side of the tip portion 300.
  • the electrically conductive contact pin 100 is provided in an inspection device and is used to transmit an electrical signal by electrically and physically contacting an inspection object.
  • the inspection device may be an inspection device used in a semiconductor manufacturing process, and an example may be a probe card.
  • the electrically conductive contact pins 100 may be provided on a probe card to inspect a semiconductor chip.
  • the inspection devices in which the electrically conductive contact pin 100 according to the preferred embodiment of the present invention can be used are not limited to this, and any inspection device that applies electricity to check whether the inspection object is defective is included.
  • the inspection object of the inspection device may include a semiconductor device, a memory chip, a microprocessor chip, a logic chip, a light emitting device, or a combination thereof.
  • inspection objects include logic LSIs (such as ASICs, FPGAs, and ASSPs), microprocessors (such as CPUs and GPUs), memory (such as DRAM, hybrid memory cubes (HMCs), magnetic RAMs (MRAMs), and phase-processing memory (PCMs).
  • logic LSIs such as ASICs, FPGAs, and ASSPs
  • microprocessors such as CPUs and GPUs
  • memory such as DRAM, hybrid memory cubes (HMCs), magnetic RAMs (MRAMs), and phase-processing memory (PCMs).
  • DRAM dynamic random access memory
  • HMCs hybrid memory cubes
  • MRAMs magnetic RAMs
  • PCMs phase-processing memory
  • LED Change Memory
  • ReRAM Resistive RAM
  • FeRAM FeRAM
  • flash memory flash memory
  • semiconductor light emitting devices including LED, mini LED, micro LED, etc.
  • power devices analog IC (DC-AC converter and (such as insulated gate bipolar transistors (IGBTs)), MEMS (such as acceleration sensors, pressure sensors, oscillators, and gyroscope sensors), wireless devices (such as GPS, FM, NFC, RFEM, MMIC, and WLAN), discrete devices, Includes BSI, CIS, camera module, CMOS, passive devices, GAW filter, RF filter, RF IPD, APE and BB.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Leads Or Probes (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

The present invention provides an electroconductive contact pin that has a size that is clearly distinguishable from a surrounding structure and forms a diffused-reflection surface during vision inspection, allowing the location of a tip portion to be accurately recognized by a vision inspection device.

Description

전기 전도성 접촉핀electrically conductive contact pins
본 발명은 전기 전도성 접촉핀에 관한 것이다.The present invention relates to electrically conductive contact pins.
반도체 소자는 반도체 소자의 전극에 각각 가압되는 복수의 전기 전도성 접촉핀을 구비한 프로브 카드, 프로브 블록, 프로브 유닛 등과 같은 전기적 접속 장치를 사용하여 검사된다. 이러한 종류의 전기적 접속 장치는, 반도체 소자의 전극과 회로 기판을 전기적으로 접속하기 위해 이용된다.Semiconductor devices are inspected using electrical connection devices such as probe cards, probe blocks, probe units, etc., which have a plurality of electrically conductive contact pins that are each pressed to electrodes of the semiconductor device. This type of electrical connection device is used to electrically connect the electrodes of a semiconductor element and a circuit board.
전기 전도성 접촉핀은 회로 기판에 접속되고, 전기 전도성 접촉핀의 팁부가 반도체 소자의 전극에 가압된다. 선단이 반도체 소자의 전극에 가압되면, 오버드라이브(over drive)가 전기 전도성 접촉핀에 작용하고, 전기 전도성 접촉핀은 탄성 변형된다. The electrically conductive contact pin is connected to the circuit board, and the tip portion of the electrically conductive contact pin is pressed against the electrode of the semiconductor element. When the tip is pressed against the electrode of the semiconductor device, an overdrive acts on the electrically conductive contact pin, and the electrically conductive contact pin is elastically deformed.
이러한 전기 전도성 접촉핀은 프로브 카드와 같은 전기적 접속 장치에 조립되어, 테스터에 장착된 후, 광학 카메라와 같은 비전 검사장치에 의해 전기 전도성 접촉핀의 선단 측(또는 팁부 주변의 얼라인 마크)이 촬영되고, 비전 검사장치의 출력 신호를 화상 처리함으로써, 반도체 소자의 전극에 대한 전기 전도성 접촉핀의 선단 위치를 구하고, 그 좌표 위치를 결정하는 위치 맞춤이 이루어진다.These electrically conductive contact pins are assembled in an electrical connection device such as a probe card, mounted on a tester, and then the tip side (or the alignment mark around the tip) of the electrically conductive contact pin is photographed by a vision inspection device such as an optical camera. By image processing the output signal of the vision inspection device, the position of the tip of the electrically conductive contact pin with respect to the electrode of the semiconductor element is obtained, and alignment is performed to determine the coordinate position.
그러나 반도체 소자의 전극와 접촉하는 전기 전도성 접촉핀의 팁부 주위에 평탄면이 존재하여 비전 장치를 이용하여 인식할 때 빛이 반사되어 비전 장치를 통한 팁부의 위치를 정확하게 인식하기 어렵다. However, since there is a flat surface around the tip of the electrically conductive contact pin that contacts the electrode of the semiconductor device, light is reflected when recognized using a vision device, making it difficult to accurately recognize the position of the tip through the vision device.
이러한 평탄면에서의 빛 반사를 방지하기 위해 평탄면에 스크래치를 형성하거나 빛 반사를 방지하기 위한 코팅층을 형성하는 사례가 있다. 그러나 스크래치를 형성하는 과정에서 전기 전도성 접촉핀이 휘어지거나 추가 공정에 따른 제조 비용이 증가하는 문제가 있다. 또한 코팅층을 형성하는 기술 역시 추가 공정에 의해 제조 비용이 증가하는 문제가 있다. 이러한 문제를 해결하기 위해, 팁부가 위치하는 상면에 요철을 형성한 기술이 제안되었다(등록 특허 제10-0958070호). 팁부의 정렬을 확인하기 위한 비전 검사 시 전기 전도성 접촉핀의 상면에 수직하게 빛이 입사된다. 입사된 빛은 요철로 인해 상면에 수직하게 반사되지 않고 경사지도록 반사된다. 따라서 상면에 수직한 반사광을 방지하여 비전 검사 시 팁부의 위치를 정확하게 인식할 수 있다.In order to prevent light reflection from such a flat surface, there are cases where scratches are formed on the flat surface or a coating layer is formed to prevent light reflection. However, there is a problem that the electrically conductive contact pin is bent in the process of forming a scratch or the manufacturing cost increases due to additional processes. Additionally, the technology for forming the coating layer also has the problem of increasing manufacturing costs due to additional processes. To solve this problem, a technology for forming irregularities on the upper surface where the tip is located was proposed (Registered Patent No. 10-0958070). During a vision inspection to check the alignment of the tip, light is incident perpendicularly to the upper surface of the electrically conductive contact pin. The incident light is not reflected perpendicularly to the upper surface due to the irregularities, but is reflected obliquely. Therefore, by preventing reflected light perpendicular to the upper surface, the position of the tip can be accurately recognized during vision inspection.
그러나 종래 기술에 따른 요철은 포토레지스트층의 패턴 형상에 의해 형성되기 때문에 요철의 과산과 골의 깊이와 폭을 1㎛이하로 형성하는 것이 곤란하다. 최근에 반도체 소자의 고 집적화 추세로 인해 전기 전도성 접촉핀들간의 피치도 더욱 더 줄어들고 팁부의 크기도 더욱 작게 형성하여야 한다. 수㎛에서 수십㎛로 작아진 팁부는 수㎛에서 수십㎛의 요철과 구분하기 어려워 비전 검사를 통해 팁부의 위치를 확인 것이 더욱 더 어려워지고 있다.However, since the irregularities according to the prior art are formed by the pattern shape of the photoresist layer, it is difficult to form the depth and width of the irregularities and valleys to 1㎛ or less. Recently, due to the trend toward high integration of semiconductor devices, the pitch between electrically conductive contact pins must be further reduced and the size of the tip portion must also be formed smaller. The tip part, which has become smaller from a few ㎛ to tens of ㎛, is difficult to distinguish from the unevenness of a few ㎛ to tens of ㎛, making it increasingly difficult to confirm the location of the tip through vision inspection.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
(특허문헌 1) 등록 특허 제10-0958070호의 등록특허공보(Patent Document 1) Registered Patent Gazette of Registered Patent No. 10-0958070
본 발명은 상술한 종래기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 주변 구조물과 확실히 구분되는 크기로 형성되고 비전 검사 시 난반사면을 형성하여 비전 검사장치로 팁부의 위치를 정확하게 인식할 수 있도록 하는 전기 전도성 접촉핀을 제공하는 것을 그 목적으로 한다.The present invention was developed to solve the problems of the prior art described above. The present invention is formed in a size that is clearly distinguishable from the surrounding structures and forms a diffuse reflection surface during vision inspection, so that the position of the tip can be accurately recognized by a vision inspection device. The purpose is to provide an electrically conductive contact pin that allows
상술한 목적을 달성하기 위하여 본 발명에 따른 전기 전도성 접촉핀은, 제1면, 상기 제1면에 대향되는 제2면, 상기 제1면 및 제2면을 연결하는 측면을 구비하는 전기 전도성 접촉핀에 있어서, 바디부와 팁부를 포함하며, 상기 바디부의 측면에는 상기 제1면 및 상기 제2면 방향으로 길게 파인 홈으로 형성되되, 그 깊이는 20㎚ 이상 1㎛이하의 범위를 가지며, 그 폭은 20㎚ 이상 1㎛이하의 범위를 가지는 나노 트렌치가 형성되고, 상기 팁부는 상기 측면 중에서 검사 대상물을 향하는 상기 바디부의 상측에 구비된다.In order to achieve the above-described object, an electrically conductive contact pin according to the present invention is an electrically conductive contact having a first side, a second side opposite the first side, and a side connecting the first side and the second side. In the pin, it includes a body part and a tip part, and a long groove is formed on a side of the body part in the direction of the first surface and the second surface, the depth of which is in the range of 20 nm to 1 ㎛, A nano trench having a width ranging from 20 nm to 1 μm is formed, and the tip portion is provided on the upper side of the body portion facing the inspection object among the side surfaces.
또한, 상기 나노 트렌치는 상기 바디부의 측면 전체에 형성된다.Additionally, the nano trench is formed on the entire side surface of the body portion.
또한, 상기 나노 트렌치는 상기 팁부의 측면에도 형성된다.Additionally, the nano trench is also formed on the side surface of the tip portion.
또한, 상기 바디부는, 상기 제1면에서 상기 제2면 방향인 두께 방향으로 구비되는 제1 바디영역; 및 상기 두께 방향으로 상기 제1영역과 연속되어 형성되는 제2 바디영역을 포함하고, 상기 팁부는 상기 제2 바디영역 상에 형성된다.Additionally, the body portion may include a first body region provided in a thickness direction from the first surface to the second surface; and a second body region formed continuously with the first region in the thickness direction, wherein the tip portion is formed on the second body region.
또한, 상기 제1 바디영역과 상기 제2 바디영역 중 적어도 어느 하나는 복수개의 이종 금속층이 적층되어 구비된다.Additionally, at least one of the first body region and the second body region is provided with a plurality of different metal layers stacked.
또한, 상기 제2바디 영역은 단일 금속층으로 구비된다.Additionally, the second body region is provided with a single metal layer.
또한, 상기 제1 바디영역의 측면에는 나노 트렌치가 구비되되 상기 제2 바디영역의 측면에는 나노 트렌치가 구비되지 않는다.Additionally, a nano-trench is provided on a side surface of the first body region, but a nano-trench is not provided on a side surface of the second body region.
또한, 상기 팁부는 상기 바디부의 복수개의 이종 금속층과 면접촉한다.Additionally, the tip portion makes surface contact with the plurality of dissimilar metal layers of the body portion.
한편, 본 발명에 따른 전기 전도성 접촉핀은, 제1면, 상기 제1면에 대향되는 제2면, 상기 제1면 및 제2면을 연결하는 측면을 구비하는 전기 전도성 접촉핀에 있어서, 회로 기판에 연결되는 기단부와, 상기 기단부로부터 연장되고, 폭 방향으로 연장된 장홀을 구비하는 빔부와, 상기 빔부의 단부에 형성되는 선단부를 포함하는 바디부; 및 상기 선단부의 측면에서 상부로 돌출되어 검사대상물과 접촉하도록 형성되며, 상기 바디부의 단면적보다 작은 단면적을 갖는 팁부;를 포함하고, 상기 빔부에서 상기 팁부 방향의 측면에는 상기 제1면 및 상기 제2면 방향으로 길게 파인 홈으로 형성되되, 그 깊이는 20㎚ 이상 1㎛이하의 범위를 가지며, 그 폭은 20㎚ 이상 1㎛이하의 범위를 가지는 나노 트렌치가 형성된다.Meanwhile, the electrically conductive contact pin according to the present invention is an electrically conductive contact pin having a first side, a second side opposite the first side, and a side connecting the first side and the second side, wherein the electrically conductive contact pin includes a circuit A body portion including a proximal end connected to a substrate, a beam portion extending from the proximal end and having a long hole extending in the width direction, and a tip portion formed at an end of the beam portion; and a tip portion that protrudes upward from a side of the tip portion and is formed to contact the inspection object, and has a cross-sectional area smaller than that of the body portion, wherein the first surface and the second surface are formed on a side of the beam portion in the direction of the tip portion. A nano trench is formed as a long groove in the plane direction, with a depth ranging from 20 nm to 1 ㎛ and a width ranging from 20 nm to 1 ㎛.
또한, 상기 나노 트렌치는 상기 빔부의 장홀의 내벽에도 형성된다.Additionally, the nano trench is also formed on the inner wall of the long hole of the beam part.
본 발명은 주변 구조물과 확실히 구분되는 크기로 형성되고 비전 검사 시 난반사면을 형성하여 비전 검사장치로 팁부의 위치를 정확하게 인식할 수 있도록 하는 전기 전도성 접촉핀을 제공한다.The present invention provides an electrically conductive contact pin that is formed in a size that is clearly distinguishable from surrounding structures and forms a diffuse reflection surface during vision inspection, allowing the position of the tip portion to be accurately recognized by a vision inspection device.
도 1은 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀의 사시도.1 is a perspective view of an electrically conductive contact pin according to a first preferred embodiment of the present invention.
도 2는 도 1의 A부분의 확대도.Figure 2 is an enlarged view of portion A of Figure 1.
도 3은 도 1의 B부분의 확대도.Figure 3 is an enlarged view of part B of Figure 1.
도 4a 내지 도 6은 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀의 제조방법을 도시한 도면.4A to 6 are views showing a method of manufacturing an electrically conductive contact pin according to a first preferred embodiment of the present invention.
도 7은 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀의 사시도.Figure 7 is a perspective view of an electrically conductive contact pin according to a second preferred embodiment of the present invention.
도 8는 도 7의 A부분의 확대도.Figure 8 is an enlarged view of portion A of Figure 7.
도 9는 도 7의 B부분의 확대도.Figure 9 is an enlarged view of part B of Figure 7.
도 10a 내지 도 10e는 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀의 제조방법을 도시한 도면.10A to 10E are views showing a method of manufacturing an electrically conductive contact pin according to a second preferred embodiment of the present invention.
도 11은 본 발명의 바람직한 제3실시예에 따른 전기 전도성 접촉핀의 사시도.Figure 11 is a perspective view of an electrically conductive contact pin according to a third preferred embodiment of the present invention.
도 12는 도 11의 A부분의 확대도.Figure 12 is an enlarged view of portion A of Figure 11.
도 13은 도 11의 B부분의 확대도.Figure 13 is an enlarged view of part B of Figure 11.
도 14a 내지 도 17b는 본 발명의 바람직한 제3실시예에 따른 전기 전도성 접촉핀의 제조방법을 도시한 도면.14A to 17B are views showing a method of manufacturing an electrically conductive contact pin according to a third preferred embodiment of the present invention.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.The following merely illustrates the principles of the invention. Therefore, those skilled in the art will be able to invent various devices that embody the principles of the invention and are included in the concept and scope of the invention, although not clearly described or shown herein. In addition, all conditional terms and embodiments listed in this specification are, in principle, expressly intended only for the purpose of ensuring that the inventive concept is understood, and should be understood as not limiting to the embodiments and conditions specifically listed as such. .
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.The above-mentioned purpose, features and advantages will become clearer through the following detailed description in relation to the attached drawings, and accordingly, those skilled in the art in the technical field to which the invention pertains will be able to easily implement the technical idea of the invention. .
본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시 도인 단면도 및/또는 사시도들을 참고하여 설명될 것이다. 이러한 도면들에 도시된 막 및 영역들의 두께 등은 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 본 명세서에서 사용한 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "구비하다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Embodiments described herein will be explained with reference to cross-sectional views and/or perspective views, which are ideal illustrations of the present invention. The thicknesses of films and regions shown in these drawings are exaggerated for effective explanation of technical content. The form of the illustration may be modified depending on manufacturing technology and/or tolerance. Accordingly, embodiments of the present invention are not limited to the specific form shown, but also include changes in form produced according to the manufacturing process. Technical terms used in this specification are merely used to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise” or “comprise” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in this specification, but are intended to indicate the presence of one or more other It should be understood that this does not exclude in advance the possibility of the presence or addition of features, numbers, steps, operations, components, parts, or combinations thereof.
이하 도면을 참조하여 본 발명의 바람직한 실시예에 대해 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
이하에서 설명하는 전기 전도성 접촉핀(100)의 폭 방향은 도면에 표기된 ±x방향이고, 전기 전도성 접촉핀(100)의 두께 방향은 도면에 표기된 ±y방향이고, 전기 전도성 접촉핀(100)의 높이 방향은 도면에 표기된 ±z방향이다. The width direction of the electrically conductive contact pin 100 described below is the ±x direction shown in the drawing, the thickness direction of the electrically conductive contact pin 100 is the ±y direction shown in the drawing, and the electrically conductive contact pin 100 The height direction is the ±z direction indicated in the drawing.
제1실시예 Embodiment 1
도 1은 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)의 사시도이고, 도 2는 도 1의 A부분의 확대이며, 도 3은 도 1의 B부분의 확대도이고, 도 4a 내지 도 6은 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)의 제조방법을 도시한 도면이다.FIG. 1 is a perspective view of an electrically conductive contact pin 100 according to a first preferred embodiment of the present invention, FIG. 2 is an enlarged view of portion A of FIG. 1, FIG. 3 is an enlarged view of portion B of FIG. 1, and FIG. 4A to 6 are diagrams showing a method of manufacturing the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention.
프로브 카드는 전기 전도성 접촉핀(100)을 포함한다. 반도체 소자의 전기적 특성 시험은 다수의 전기 전도성 접촉핀(100)을 구비한 프로브 카드에 검사 대상물인 반도체 소자를 접근시켜 전기 전도성 접촉핀(100)을 반도체 소자 상의 대응하는 전극에 접촉시킴으로써 수행된다. 전기 전도성 접촉핀(100)과 반도체 소자 상의 전극을 접촉시킬 때, 양자가 접촉하기 시작하는 상태에 도달한 이후, 프로브 카드에 반도체 소자를 추가로 접근하는 처리가 이루어진다. 이러한 처리를 오버 드라이브라고 부른다. 오버 드라이브는 전기 전도성 접촉핀(100)을 탄성 변형시키는 처리이며 오버 드라이브를 함으로써, 전극의 높이나 전기 전도성 접촉핀(100)의 높이에 편차가 있어도, 모든 전기 전도성 접촉핀(100)을 전극과 확실하게 접촉시킬 수 있다. 또한 오버 드라이브 시에 전기 전도성 접촉핀(100)이 탄성 변형하고, 그 선단이 전극상에서 이동함으로써, 스크러브가 이루어진다. 이 스크러브에 의해 전극 표면의 산화막이 제거되고 접촉 저항을 감소시킬 수 있다.The probe card includes electrically conductive contact pins (100). Testing the electrical properties of a semiconductor device is performed by approaching a semiconductor device as a test object to a probe card equipped with a plurality of electrically conductive contact pins 100 and contacting the electrically conductive contact pins 100 with corresponding electrodes on the semiconductor device. When the electrically conductive contact pin 100 and the electrode on the semiconductor element are brought into contact, after the two reach a state in which they begin to contact, a process of additionally accessing the semiconductor element to the probe card is performed. This processing is called overdrive. Overdrive is a process that elastically deforms the electrically conductive contact pins (100). By overdriving, even if there is a deviation in the height of the electrode or the height of the electrically conductive contact pins (100), all electrically conductive contact pins (100) are securely connected to the electrodes. It can be contacted easily. Additionally, during overdrive, the electrically conductive contact pin 100 is elastically deformed and its tip moves on the electrode, thereby causing scrubbing. This scrub removes the oxide film on the electrode surface and reduces contact resistance.
전기 전도성 접촉핀(100)은 제1면(1), 제1면(1)에 대향되는 제2면(2), 제1면(1) 및 제2면(2)을 연결하는 측면(3)을 구비한다. 제1면(1)과 제2면(2)은 두께 방향(±y 방향)으로 대향하는 2개의 면을 의미하고, 측면(3)은 제1면(1)과 제2면(2)를 연결하면서 형성되는 면으로서 제1면(1)과 제2면(2)을 제외한 모든 면을 의미한다. The electrically conductive contact pin 100 has a first surface (1), a second surface (2) opposite the first surface (1), and a side (3) connecting the first surface (1) and the second surface (2). ) is provided. The first surface (1) and the second surface (2) refer to two opposing surfaces in the thickness direction (±y direction), and the side surface (3) refers to the first surface (1) and the second surface (2). It is a surface formed by connecting and refers to all surfaces except the first surface (1) and the second surface (2).
전기 전도성 접촉핀(100)은 바디부(200)와 팁부(300)를 포함하는 캔틸레버형 전기 전도성 접촉핀일 수 있다.The electrically conductive contact pin 100 may be a cantilever-type electrically conductive contact pin including a body portion 200 and a tip portion 300.
바디부(200)는, 회로 기판에 연결되는 기단부(210)와, 기단부(210)로부터 연장되고, 폭 방향(±x 방향)으로 연장된 장홀(221)을 구비하는 빔부(220)와, 빔부(220)의 단부에 형성되는 선단부(230)를 포함한다.The body portion 200 includes a base end portion 210 connected to a circuit board, a beam portion 220 extending from the base end 210 and having a long hole 221 extending in the width direction (±x direction), and a beam portion. It includes a tip portion 230 formed at the end of 220.
오버 드라이브 과정에서 선단부(230)는 그 변위가 변화되고, 빔부(220)는 변형되지만, 기단부(110)는 충분한 강성을 가지고 있어서 변형되지 않는다.During the overdrive process, the displacement of the tip portion 230 changes and the beam portion 220 is deformed, but the proximal end portion 110 has sufficient rigidity and is not deformed.
빔부(220)는 폭 방향(±x 방향)으로 연장된 장홀(221)을 구비하여, 선단부(230)가 높이 방향(±z 방향)으로 변위될 수 있도록 한다. The beam portion 220 is provided with a long hole 221 extending in the width direction (±x direction) so that the distal end 230 can be displaced in the height direction (±z direction).
바디부(200)는 로듐(Rd), 백금(Pt), 이리듐(Ir), 팔라듐(Pd), 코발트(Co), 니켈(Ni), 망간(Mn), 텅스텐(W), 인(Ph), 금(Au), 은(Ag), 구리(Cu)나 이들의 합금, 또는 팔라듐-코발트(PdCo) 합금, 팔라듐-니켈(PdNi) 합금 또는 니켈-인(NiPh) 합금, 니켈-망간(NiMn), 니켈-코발트(NiCo) 또는 니켈-텅스텐(NiW) 합금 중에서 선택된 금속으로 형성된다.The body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), nickel (Ni), manganese (Mn), tungsten (W), and phosphorus (Ph). , gold (Au), silver (Ag), copper (Cu) or their alloys, or palladium-cobalt (PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphorus (NiPh) alloy, nickel-manganese (NiMn) ), nickel-cobalt (NiCo) or nickel-tungsten (NiW) alloy.
한편, 바디부(200)의 전기 전도성을 향상시키기 위해, 바디부(200)는 로듐(Rd), 백금 (Pt), 이리듐(Ir), 팔라듐(Pd), 코발트(Co), 니켈(Ni), 망간(Mn), 텅스텐(W), 인(Ph) 이나 이들의 합금, 또는 팔라듐-코발트(PdCo) 합금, 팔라듐-니켈(PdNi) 합금 또는 니켈-인(NiPh) 합금, 니켈-망간(NiMn), 니켈-코발트(NiCo) 또는 니켈-텅스텐(NiW) 합금 중에서 선택된 제1금속층(101)과, 금(Au), 은(Ag), 구리(Cu) 또는 이들의 합금 중에서 선택된 제2금속층(102)을 포함하여 복수개의 이종의 금속층이 적층되어 형성될 수 있다. 제1금속층(101)은 제2금속층(102)에 비해 상대적으로 강성 또는 내마모성이 높은 금속이고, 제2금속층(102)는 제1금속층(101)에 비해 상대적으로 전기 전도도가 높은 금속이다. Meanwhile, in order to improve the electrical conductivity of the body portion 200, the body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), and nickel (Ni). , manganese (Mn), tungsten (W), phosphorus (Ph) or their alloys, or palladium-cobalt (PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphorus (NiPh) alloy, nickel-manganese (NiMn) ), a first metal layer 101 selected from nickel-cobalt (NiCo) or nickel-tungsten (NiW) alloy, and a second metal layer selected from gold (Au), silver (Ag), copper (Cu), or alloys thereof ( 102) may be formed by stacking a plurality of different metal layers. The first metal layer 101 is a metal with relatively high rigidity or wear resistance compared to the second metal layer 102, and the second metal layer 102 is a metal with relatively high electrical conductivity compared to the first metal layer 101.
바디부(200)가 제1금속층(101)과 제2금속층(102)이 교번적으로 적층되어 구비될 경우, 내마모성이 높은 제1금속층(101)이 표면측에 위치하고 전기 전도도가 높은 제2금속층(102)은 제1금속층 사이에 위치한다. 바디부(200)는 제1금속층(101), 제2금속층(102) 및 제1금속층(101) 순으로 순차적으로 적층된 형태로 구비될 수 있으며, 적층의 개수는 3개층 이상인 것이 바람직하다. 예를 들어 바디부(200)는, 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 팔라듐-코발트(PdCo) 합금이 순차적으로 적층되어 구비될 수 있고, 또는 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 로듐(Rd)이 순차적으로 적층되어 구비될 수 있고, 또는 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 팔라듐-코발트(PdCo) - 금(Au) - 팔라듐-코발트(PdCo) 합금이 순차적으로 적층되어 구비될 수 있다. When the body portion 200 is provided with first metal layers 101 and second metal layers 102 alternately stacked, the first metal layer 101 with high wear resistance is located on the surface side and the second metal layer with high electrical conductivity is located on the surface side. (102) is located between the first metal layers. The body portion 200 may be provided in a form in which the first metal layer 101, the second metal layer 102, and the first metal layer 101 are sequentially stacked, and the number of stacks is preferably three or more. For example, the body portion 200 may be provided by sequentially stacking a palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, or a palladium-cobalt (PdCo) alloy - copper (Cu) - Rhodium (Rd) may be sequentially stacked, or palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) - gold (Au) - palladium-cobalt (PdCo) The alloy may be sequentially stacked and provided.
선단부(230)에는 팁부(300)가 구비된다.The tip portion 300 is provided at the tip portion 230.
팁부(300)는 바디부(200)와는 다른 재질로 구성될 수 있다. 팁부(300)는 바디부(200)를 구성하는 금속층보다 내마모성이 높은 금속층으로 구성될 수 있다. 예를 들어 바디부(200)가 제1금속층(101)중에서 팔라듐-코발트(PdCo)가 선택된 경우, 팁부(300)는 제1금속층(101) 중에서 로듐(Rd)이 선택될 수 있다. 이러한 구성을 통해 팁부(300)의 내마모성을 바디부(200)보다 크게 할 수 있다. 또는, 팁부(300)는 바디부(200)를 구성하는 금속층보다 전기 전도도가 높은 금속층으로 구성될 수 있다. 예를 들어, 바디부(200)가 제2금속층(102) 중에서 구리(Cu)가 선택된 경우, 팁부(300)는 제2금속층(102) 중에서 금(Au)이 선택될 수 있다. 이러한 구성을 통해 팁부(300)의 전기 전도성이 바디부(200)보다 크게 할 수 있다.The tip portion 300 may be made of a different material from the body portion 200. The tip portion 300 may be made of a metal layer with higher wear resistance than the metal layer constituting the body portion 200. For example, if palladium-cobalt (PdCo) is selected from the first metal layer 101 for the body portion 200, rhodium (Rd) may be selected from the first metal layer 101 for the tip portion 300. Through this configuration, the wear resistance of the tip portion 300 can be increased than that of the body portion 200. Alternatively, the tip portion 300 may be made of a metal layer with higher electrical conductivity than the metal layer constituting the body portion 200. For example, if copper (Cu) is selected from the second metal layer 102 for the body portion 200, gold (Au) may be selected from the second metal layer 102 for the tip portion 300. Through this configuration, the electrical conductivity of the tip portion 300 can be made greater than that of the body portion 200.
팁부(300)는 선단부(230)의 측면(3)에서 상부로 돌출되어 검사 대상물과 접촉하도록 형성된다. 여기서 선단부(230)의 측면(3)은 비전 검사장치와 정면으로 마주보는 면일 수 있다. 팁부(300)는 선단부(230)의 단면적보다 작은 단면적을 갖는다. 이를 통해 팁부(300)에 의한 산화막층의 제거 효율이 향상되도록 할 수 있다.The tip portion 300 protrudes upward from the side 3 of the distal end 230 and is formed to contact the inspection object. Here, the side 3 of the tip 230 may be the side directly facing the vision inspection device. The tip portion 300 has a cross-sectional area that is smaller than that of the tip portion 230. Through this, the removal efficiency of the oxide layer by the tip portion 300 can be improved.
바디부(200)는 복수개의 이종 금속층이 적층되어 구비되고 팁부(300)는 단일 금속층으로 구비될 수 있다. 팁부(300)는 바디부(200)를 구성하는 금속과 동일 금속이거나 이종 금속일 수 있다. 바디부(200)는 제1금속층(101)과 제2금속층(102)을 포함하여 형성될 수 있고, 팁부(300)는 제1금속층(101)과 제2금속층(102) 중 어느 하나의 금속층으로 형성될 수 있다. 예를 들어, 바디부(200)는 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 팔라듐-코발트(PdCo) 합금이 순차적으로 적층되어 구비되고, 팁부(300)는 바디부(200)에서 선택된 제1금속층(101)과는 다른 금속인 로듐(Rd)으로 구비될 수 있다. 또는 바디부(200)는 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 팔라듐-코발트(PdCo) 합금이 순차적으로 적층되어 구비되고, 팁부(300)는 바디부(200)에서 선택된 제1금속층(101)과 동일한 팔라듐-코발트(PdCo)로 구비될 수 있다. The body portion 200 may be provided by stacking a plurality of different metal layers, and the tip portion 300 may be provided as a single metal layer. The tip portion 300 may be made of the same metal as the metal constituting the body portion 200 or may be a different metal. The body portion 200 may be formed to include a first metal layer 101 and a second metal layer 102, and the tip portion 300 may include any one of the first metal layer 101 and the second metal layer 102. can be formed. For example, the body portion 200 is provided by sequentially stacking a palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, and the tip portion 300 is a material selected from the body portion 200. It may be made of rhodium (Rd), a metal different from the first metal layer 101. Alternatively, the body portion 200 is provided by sequentially stacking a palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, and the tip portion 300 is a first metal layer selected from the body portion 200. It may be made of the same palladium-cobalt (PdCo) as (101).
바디부(200)는, 그 측면(3)에 복수 개의 나노 트렌치(NT)를 포함한다. 바디부(200)는, 후술하는 제조 방법과 같이, 양극산화막 재질의 몰드(10)에 의해 형성될 수 있다. 양극산화막 몰드(10)는 수많은 포어들을 포함하고 이러한 양극산화막 몰드(10)의 적어도 일부를 에칭하여 내부 공간을 형성하고, 내부 공간 내부로 전기 도금으로 금속 충진물을 형성하므로, 바디부(200)의 측면(3)에는 양극산화막 몰드(10)의 포어와 접촉하면서 형성되는 나노 트렌치(NT)가 구비되는 것이다. 나노 트렌치(NT)는 바디부(200)의 측면(3)에서 제1면(1) 및 제2면(2) 방향인, 두께 방향(±z 방향)으로 길게 파인 홈으로 형성된다. The body portion 200 includes a plurality of nano trenches (NT) on its side surface (3). The body portion 200 may be formed by a mold 10 made of an anodized film material, as in the manufacturing method described later. The anodic oxide mold 10 includes numerous pores, and at least a portion of the anodic oxide mold 10 is etched to form an internal space, and a metal filler is formed into the inner space by electroplating, so that the body portion 200 The side surface 3 is provided with a nano trench (NT) that is formed while contacting the pores of the anodic oxide film mold 10. The nano trench NT is formed as a long groove dug in the thickness direction (±z direction) in the direction of the first surface 1 and the second surface 2 on the side surface 3 of the body portion 200.
나노 트렌치(NT)는 바디부(200)의 측면(3)에서 바디부(200)의 두께 방향(±z 방향)을 따라 길게 연장되어 형성되며, 두께 방향(±z 방향)은 전기 도금 시 금속 충진물이 성장하는 방향을 의미한다. 나노 트렌치(NT)는 바디부(200)의 두께 방향(±z 방향)을 따라 길게 파인 홈으로 형성되고 북수 개가 나란하게 바디부(200)의 측면(3)을 따라 바디부(200)의 측면(3) 전체에 걸쳐 형성된다.The nano trench (NT) is formed by extending long along the thickness direction (±z direction) of the body portion 200 from the side surface 3 of the body portion 200, and the thickness direction (±z direction) is formed by the metal during electroplating. It refers to the direction in which the filling grows. The nano trench (NT) is formed as a long groove along the thickness direction (±z direction) of the body portion 200, and has several grooves aligned side by side along the side surface 3 of the body portion 200. (3) It is formed throughout.
나노 트렌치(NT)는 그 깊이가 20㎚ 이상 1㎛이하의 범위를 가지며, 그 폭 역시 20㎚ 이상 1㎛이하의 범위를 가진다. 여기서 나노 트렌치(NT)는 양극산화막 몰드의 제조시 형성된 포어에 기인한 것이기 때문에 나노 트렌치(NT)의 폭과 깊이는 양극산화막 몰드(10)의 포어의 직경의 범위 이하의 값을 가진다. 한편, 양극산화막 몰드(10)에 내부 공간을 형성하는 과정에서 에칭 용액에 의해 양극산화막 몰드(10)의 포어의 일부가 서로 뭉개지면서 양극산화시 형성된 포어의 직경의 범위보다 보다 큰 범위의 깊이를 가지는 나노 트렌치(NT)가 적어도 일부 형성될 수 있다. The nano trench (NT) has a depth ranging from 20 nm to 1 μm, and its width also ranges from 20 nm to 1 μm. Here, since the nano trench (NT) is caused by a pore formed during the manufacture of the anodic oxide mold, the width and depth of the nano trench (NT) have values less than the range of the diameter of the pore of the anodic oxide mold (10). Meanwhile, in the process of forming an internal space in the anodic oxide mold 10, some of the pores of the anodic oxide mold 10 are crushed by the etching solution, forming a depth greater than the diameter of the pores formed during anodization. At least some branched nano trenches (NTs) may be formed.
전기 전도성 접촉핀(100)의 외관을 구성하는 구조물은 1㎛를 초과하는 크기로 형성된다. 여기서 외관을 구성하는 구조물은, 일반적인 MEMS(Micro Electro Mechanical Systems) 기술을 이용하여 의도하여 제작된 구조물을 의미한다. 나노 트렌치(NT)는 1㎛이하의 크기로 형성되기 때문에, 전기 전도성 접촉핀(100)의 외관을 구성하는 구조물과는 구분되는 크기를 가진다. 이를 통해 비전 검사장치로 팁부(300)의 위치를 확인하기 위해 광을 조사하더라도, 나노 트렌치(NT)가 구조물로 인식될 우려는 없다. The structure that makes up the exterior of the electrically conductive contact pin 100 is formed in a size exceeding 1㎛. Here, the structure constituting the exterior refers to a structure intentionally manufactured using general MEMS (Micro Electro Mechanical Systems) technology. Since the nano trench (NT) is formed in a size of 1㎛ or less, it has a size that is distinct from the structure that constitutes the exterior of the electrically conductive contact pin 100. Through this, even if light is irradiated to confirm the position of the tip portion 300 with a vision inspection device, there is no concern that the nano trench (NT) will be recognized as a structure.
한편 광학 카메라와 같은 비전 검사장치는 구조물인 팁부 또는 팁부(300) 주변에 별도로 구비된 얼라인 마크(미도시)를 촬영하고, 비전 검사장치의 출력 신호를 화상 처리함으로써, 전기 전도성 접촉핀(100)의 팁부(300) 위치를 구하고, 그 좌표 위치를 결정하는 위치 맞춤이 이루어진다. 이때, 나노 트렌치(NT)는 비전 검사장치로 촬영할 때 난반사면을 형성하여 비전 검사장치로 구조물인 팁부(300)의 위치를 정확하게 구할 수 있게 한다. Meanwhile, a vision inspection device such as an optical camera photographs an alignment mark (not shown) provided separately around the tip portion or tip portion 300, which is a structure, and image processes the output signal of the vision inspection device to form an electrically conductive contact pin (100). ), the position of the tip portion 300 is obtained, and position alignment is performed to determine its coordinate position. At this time, the nano trench (NT) forms a diffuse reflection surface when photographed with a vision inspection device, allowing the vision inspection device to accurately determine the position of the tip portion 300, which is a structure.
한편 전기 전도성 접촉핀(100)을 회로 기판의 랜드에 접합하는 과정을 살펴보면, 납땜이나 도전성 접착제와 같이 도전성 및 열 용융성을 갖는 접합재가 전기 전도성 접촉핀(100)의 기단부(210) 또는 회로 기판의 랜드에 구비된다. 전기 전도성 접촉핀(100)을 회로 기판의 랜드에 직립 상태로 유지시킨 다음, 이웃하는 전기 전도성 접촉핀(100)에는 조사되지 않는 스팟(spot) 직경을 갖는 레이저 빔을 해당 전기 전도성 접촉핀(100)의 기단부(210) 및 접합재에 조사한다. 레이저 빔의 조사에 의해 전기 전도성 접촉핀(100)과 접합재는 열 에너지를 흡수하고 접합재는 용융된다. 여기서 바디부(200)의 측면(3)에 구비된 나노 트렌치(NT)는 바디부(200)의 열 흡수율을 향상시킨다. 이를 통해 바디부(200)의 온도가 승온된 상태에서 용융된 접합재와 접합되기 때문에 냉납 현상을 줄일 수 있어 접합 내구성을 향상시킨다. Meanwhile, looking at the process of joining the electrically conductive contact pin 100 to the land of the circuit board, a bonding material having conductivity and heat meltability, such as solder or conductive adhesive, is used to attach the base end 210 of the electrically conductive contact pin 100 or the circuit board. It is provided in the land of. The electrically conductive contact pin 100 is maintained in an upright position on the land of the circuit board, and then a laser beam having a spot diameter that is not irradiated to the neighboring electrically conductive contact pin 100 is applied to the electrically conductive contact pin 100. ) is irradiated to the base end 210 and the bonding material. By irradiation of the laser beam, the electrically conductive contact pin 100 and the bonding material absorb heat energy and the bonding material melts. Here, the nano trench (NT) provided on the side surface 3 of the body 200 improves the heat absorption rate of the body 200. Through this, since the body portion 200 is bonded to the molten bonding material while the temperature is raised, the cold soldering phenomenon can be reduced and bonding durability is improved.
또한, 측면(3)에 나노 트렌치(NT)를 구비한 전기 전도성 접촉핀(100)은, 측면(3)에 나노 트렌치(NT)가 구비되지 않은 전기 전도성 접촉핀(100)에 비해 레이저 빔의 열 에너지를 더 낮게 하는 것이 가능하다. 나노 트렌치(NT)가 구비되지 않은 전기 전도성 접촉핀(100)의 경우에는, 측면(3)에 나노 트렌치(NT)를 구비한 전기 전도성 접촉핀(100)에 비해 보다 높은 열 에너지를 갖는 레이저 빔을 조사해야 하고, 이로 인해 이웃하는 전기 전도성 접촉핀(100)을 접합하고 있는 접합재가 흡수하는 열 에너지 역시 많아지기 때문에 이웃하는 접합재가 연화 또는 용융되어 전기 전도성 접촉핀(100)의 팁부의 위치가 변위되는 문제가 발생하게 된다. 그 결과 팁부(300)의 좌표 위치에 대응하는 반도체 소자의 전극의 좌표 위치가 일치하지 않게 됨으로써 위치가 어긋난 전기 전도성 접촉핀(100)을 다시 접합하지 않는 한 반도체 소자의 전기적 특성 검사에 이용할 수 없게 된다. 반면에 측면(3)에 나노 트렌치(NT)가 구비된 전기 전도성 접촉핀(100)은 열 흡수율이 상대적으로 높기 때문에, 보다 낮은 열 에너지를 갖는 레이저 빔의 조사가 가능하고, 기 접합된 이웃한 접합재에 영향을 주지 않아 기 접합된 전기 전도성 접촉핀(100)의 팁부(300)의 좌표 변화를 유발하지 않게 된다. 따라서 보다 효과적인 본딩을 제공할 수 있게 된다. In addition, the electrically conductive contact pin 100 provided with a nano trench (NT) on the side (3) has a greater resistance to the laser beam than the electrically conductive contact pin 100 that does not have a nano trench (NT) on the side (3). It is possible to lower the thermal energy even further. In the case of the electrically conductive contact pin 100 without a nano trench (NT), the laser beam has higher thermal energy than the electrically conductive contact pin 100 with a nano trench (NT) on the side (3). must be irradiated, and as a result, the heat energy absorbed by the bonding material bonding the neighboring electrically conductive contact pins 100 also increases, so that the neighboring bonding material softens or melts and the position of the tip portion of the electrically conductive contact pin 100 changes. Displacement problems arise. As a result, the coordinate position of the electrode of the semiconductor device corresponding to the coordinate position of the tip portion 300 does not match, so that the misaligned electrically conductive contact pin 100 cannot be used for testing the electrical characteristics of the semiconductor device unless it is re-bonded. do. On the other hand, since the electrically conductive contact pin 100 provided with a nano trench (NT) on the side 3 has a relatively high heat absorption rate, it is possible to irradiate a laser beam with lower thermal energy and Since it does not affect the bonding material, it does not cause a change in the coordinates of the tip portion 300 of the already bonded electrically conductive contact pin 100. Therefore, more effective bonding can be provided.
이하에서는 도 4a 내지 도 6을 참조하여, 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)의 제조방법에 대해 설명한다. Hereinafter, a method of manufacturing the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention will be described with reference to FIGS. 4A to 6.
전기 전도성 접촉핀(100)의 제조방법은, 하부에 하부 시드층(30)을 구비한 양극산화막 몰드(10)에 개구부(11)를 형성하는 단계; 개구부(11)에 전기 도금하여 바디부(200)를 형성하는 단계; 바디부(200)를 추출하는 단계; 및 별도로 제작된 팁부(300)를 바디부(200)의 선단부(230)에 부착하는 단계를 포함한다. The method of manufacturing the electrically conductive contact pin 100 includes forming an opening 11 in an anodic oxide film mold 10 having a lower seed layer 30 at the bottom; Forming a body portion 200 by electroplating the opening portion 11; Extracting the body portion 200; and attaching the separately manufactured tip portion 300 to the distal end 230 of the body portion 200.
먼저, 도 4a 및 도 4b를 참조하면, 개구부(11)가 마련된 양극산화막 몰드(10)를 준비한다. 도 4a는 개구부(11)가 마련된 양극산화막 몰드(10)를 도시한 평면도이고, 도 4b는 도 4a의 A-A'단면도이다.First, referring to FIGS. 4A and 4B, an anodic oxide film mold 10 provided with an opening 11 is prepared. FIG. 4A is a plan view showing the anodic oxide film mold 10 provided with the opening 11, and FIG. 4B is a cross-sectional view taken along line A-A' of FIG. 4A.
본 발명의 바람직한 실시예에서는 양극산화막 몰드(10)는 양극산화막 재질로 구성된다. 양극산화막은 2~3ppm/℃의 열팽창 계수를 갖는다. 이로 인해 고온의 환경에 노출될 경우, 온도에 의한 열변형이 적다. 따라서 금속 성형물의 제작 환경에 비록 고온 환경이라 하더라도 열 변형없이 정밀한 전기 전도성 접촉핀(100)을 제작할 수 있다. 또한, 양극산화막 재질의 양극산화막 몰드(10)를 이용하면, 포토레지스트 재질의 몰드로는 구현하는데 한계가 있었던 형상의 정밀도, 미세 형상의 구현의 효과를 발휘할 수 있게 된다. 이상과 같은 이유로 본 발명의 바람직한 제1실시예에 따른 전기 전도성 접촉핀(100)의 제조방법에 사용되는 몰드는 양극산화막 몰드(10)이다.In a preferred embodiment of the present invention, the anodic oxide film mold 10 is made of an anodic oxide film material. The anodic oxide film has a thermal expansion coefficient of 2~3ppm/℃. For this reason, when exposed to a high temperature environment, thermal deformation due to temperature is small. Therefore, even in a high-temperature environment for manufacturing metal molded products, a precise electrically conductive contact pin 100 can be manufactured without thermal deformation. In addition, by using the anodic oxide mold 10 made of an anodic oxide material, it is possible to demonstrate the effect of realizing precise shapes and fine shapes, which were limited in realizing them with molds made of photoresist. For the above reasons, the mold used in the manufacturing method of the electrically conductive contact pin 100 according to the first preferred embodiment of the present invention is the anodic oxide film mold 10.
양극산화막은 모재 금속을 양극산화하였울때 형성된 막을 의미하고, 포어는 모재 금속을 양극산화하여 양극산화막을 형성하는 과정에서 형성되는 구멍을 의미한다. 예컨대, 모재 금속이 알루미늄(Al) 또는 알루미늄 합금인 경우, 모재 금속을 양극산화하면 모재 금속의 표면에 알루미늄 산화물(Al203) 재질의 양극산화막이 형성된다. 다만 모재 금속은 이에 한정되는 것은 아니며, Ta, Nb, Ti, Zr, Hf, Zn, W, Sb 또는 이들의 합금을 포함한다, 위와 같이 형성된 양극산화막은 수직적으로 내부에 포어가 형성되지 않은 배리어층과, 내부에 포어가 형성된 다공층으로 구분된다. 배리어층과 다공층을 갖는 양극산화막이 표면에 형성된 모재 금속에서, 모재 금속을 제거하게 되면, 알루미늄 산화물(Al203) 재질의 양극산화막만이 남게 된다. An anodic oxide film refers to a film formed when a base metal is anodized, and a pore refers to a hole formed during the process of anodizing a base metal to form an anodize film. For example, when the base metal is aluminum (Al) or an aluminum alloy, when the base metal is anodized, an anodic oxide film of aluminum oxide (Al 2 0 3 ) is formed on the surface of the base metal. However, the base metal is not limited to this and includes Ta, Nb, Ti, Zr, Hf, Zn, W, Sb, or alloys thereof. The anodic oxide film formed as above is a barrier layer in which no pores are formed vertically. It is divided into a porous layer with pores formed inside. When the base metal is removed from a base metal on which an anodic oxide film having a barrier layer and a porous layer is formed on the surface, only an anodic oxide film made of aluminum oxide (Al 2 0 3 ) remains.
개구부(11)는 양극산화막 몰드(10)를 습식 에칭하여 형성될 수 있다. 이를 위해 양극산화막 몰드(10)의 상면에 포토 레지스트를 구비하고 이를 패터닝한 다음, 패터닝되어 오픈된 영역의 양극산화막이 에칭 용액과 반응하여 제거됨에 따라 개구부(11)가 형성될 수 있다.The opening 11 may be formed by wet etching the anodic oxide film mold 10. For this purpose, a photo resist is provided on the upper surface of the anodic oxide film mold 10 and patterned. Then, the anodic oxide film in the patterned open area reacts with an etching solution and is removed, thereby forming an opening 11.
양극산화막 몰드(10)의 하면에는 하부 시드층(30)이 구비된다. 하부 시드층(30)은 양극산화막 몰드(10)에 개구부(11)를 형성하기 이전에 양극산화막 몰드(10)의 하면에 구비될 수 있다. 한편 양극산화막 몰드(10)의 하부에는 지지기판(미도시)이 형성되어 양극산화막 몰드(10)의 취급성을 향상시킬 수 있다. 또한 이 경우 지지기판의 상면에 하부 시드층(30)을 형성하고 개구부(11)가 형성된 양극산화막 몰드(10)를 지지기판에 결합하여 사용할 수도 있다. 하부 시드층(30)은 구리(Cu)재질로 형성될 수 있고, 증착 방법에 의해 형성될 수 있다.A lower seed layer 30 is provided on the lower surface of the anodic oxide mold 10. The lower seed layer 30 may be provided on the lower surface of the anodic oxide film mold 10 before forming the opening 11 in the anodic oxide film mold 10. Meanwhile, a support substrate (not shown) is formed on the lower part of the anodic oxide mold 10 to improve the handling of the anodic oxide mold 10. Also, in this case, the lower seed layer 30 may be formed on the upper surface of the support substrate, and the anodic oxide mold 10 with the opening 11 may be coupled to the support substrate. The lower seed layer 30 may be made of copper (Cu) and may be formed by a deposition method.
개구부(11)는 바디부(200)에 대응되는 부분에만 형성되고, 팁부(300)에 대응되는 부분에는 개구부(11)가 형성되지 않고 양극산화막이 그대로 있도록 한다.The opening 11 is formed only in the portion corresponding to the body portion 200, and the opening 11 is not formed in the portion corresponding to the tip portion 300 so that the anodized film remains as is.
그 다음 개구부(11)에 전기 도금하여 바디부(200)를 형성하는 단계를 수행한다. 도 5a는 개구부(11)에 전기 도금 공정을 수행하여 바디부(200)를 형성한 것을 도시한 평면도이고, 도 5b는 도 5a의 A-A'단면도이다.Next, a step is performed to form the body portion 200 by electroplating the opening portion 11. FIG. 5A is a plan view showing the body portion 200 formed by performing an electroplating process on the opening 11, and FIG. 5B is a cross-sectional view taken along line A-A' of FIG. 5A.
하부 시드층(30)을 이용하여 개구부(11)에 금속층으로 도금하여 바디부(200)를 형성한다.The body portion 200 is formed by plating a metal layer on the opening 11 using the lower seed layer 30.
바디부(200)는 로듐(Rd), 백금(Pt), 이리듐(Ir), 팔라듐(Pd), 코발트(Co), 니켈(Ni), 망간(Mn), 텅스텐(W), 인(Ph), 금(Au), 은(Ag), 구리(Cu)나 이들의 합금, 또는 팔라듐-코발트(PdCo) 합금, 팔라듐-니켈(PdNi) 합금 또는 니켈-인(NiPh) 합금, 니켈-망간(NiMn), 니켈-코발트(NiCo) 또는 니켈-텅스텐(NiW) 합금 중에서 선택된 금속으로 형성된다.The body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), nickel (Ni), manganese (Mn), tungsten (W), and phosphorus (Ph). , gold (Au), silver (Ag), copper (Cu) or their alloys, or palladium-cobalt (PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphorus (NiPh) alloy, nickel-manganese (NiMn) ), nickel-cobalt (NiCo), or nickel-tungsten (NiW) alloy.
한편, 바디부(200)의 전기 전도성을 향상시키기 위해, 바디부(200)는 로듐(Rd), 백금 (Pt), 이리듐(Ir), 팔라듐(Pd), 코발트(Co), 니켈(Ni), 망간(Mn), 텅스텐(W), 인(Ph) 이나 이들의 합금, 또는 팔라듐-코발트(PdCo) 합금, 팔라듐-니켈(PdNi) 합금 또는 니켈-인(NiPh) 합금, 니켈-망간(NiMn), 니켈-코발트(NiCo) 또는 니켈-텅스텐(NiW) 합금 중에서 선택된 제1금속층(101)과, 금(Au), 은(Ag), 구리(Cu) 또는 이들의 합금 중에서 선택된 제2금속층(102)을 포함하여 복수개의 이종의 금속층이 적층되어 형성될 수 있다.Meanwhile, in order to improve the electrical conductivity of the body portion 200, the body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), and nickel (Ni). , manganese (Mn), tungsten (W), phosphorus (Ph) or their alloys, or palladium-cobalt (PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphorus (NiPh) alloy, nickel-manganese (NiMn) ), a first metal layer 101 selected from nickel-cobalt (NiCo) or nickel-tungsten (NiW) alloy, and a second metal layer selected from gold (Au), silver (Ag), copper (Cu), or alloys thereof ( 102) may be formed by stacking a plurality of different metal layers.
바디부(200)가 제1금속층(101)과 제2금속층(102)이 교번적으로 적층되어 구비될 경우, 내마모성이 높은 제1금속층(101)이 표면측에 위치하고 전기 전도도가 높은 제2금속층(102)은 제1금속층 사이에 위치한다. 바디부(200)는 제1금속층(101), 제2금속층(102) 및 제1금속층(101) 순으로 순차적으로 적층된 형태로 구비될 수 있으며, 적층의 개수는 3개층 이상인 것이 바람직하다. 예를 들어 바디부(200)는, 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 팔라듐-코발트(PdCo) 합금이 적층되어 구비될 수 있고, 또는 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 로듐(Rd)이 적층되어 구비될 수 있고, 또는 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 팔라듐-코발트(PdCo) - 금(Au) - 팔라듐-코발트(PdCo) 합금이 적층되어 구비될 수 있다. When the body portion 200 is provided with first metal layers 101 and second metal layers 102 alternately stacked, the first metal layer 101 with high wear resistance is located on the surface side and the second metal layer with high electrical conductivity is located on the surface side. (102) is located between the first metal layers. The body portion 200 may be provided in a form in which the first metal layer 101, the second metal layer 102, and the first metal layer 101 are sequentially stacked, and the number of stacks is preferably three or more. For example, the body portion 200 may be provided by stacking palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, or palladium-cobalt (PdCo) alloy - copper (Cu) ) - Rhodium (Rd) may be laminated, or palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) - gold (Au) - palladium-cobalt (PdCo) alloy may be laminated. It can be provided.
그 다음, 양극산화막 몰드(10)와 하부 시드층(30)을 제거함으로써 바디부(200)를 완성하게 된다.Next, the body portion 200 is completed by removing the anodic oxide film mold 10 and the lower seed layer 30.
한편, 도금 공정이 완료된 이후에, 고온으로 승온한 후 압력을 가해 도금 공정이 완료된 금속층을 눌러줌으로써 바디부(200)가 보다 고밀화되도록 할 수 있다. 포토레지스트 재질을 몰드로 이용할 경우, 도금 공정이 완료된 이후의 금속층 주변에는 포토레지스트가 존재하므로 고온으로 승온하여 압력을 가하는 공정을 수행할 수 없다. 이와는 다르게, 도금 공정이 완료된 금속층의 주변으로는 양극산화막 재질의 양극산화막 몰드(10)가 구비되어 있기 때문에 고온으로 승온하더라도 양극산화막의 낮은 열 팽창계수로 인해 변형을 최소화하면서 전기 전도성 접촉핀(100)을 고밀화시키는 것이 가능하다. 따라서 포토레지스트를 몰드로 이용하는 기술에 비해 보다 고밀화된 전기 전도성 접촉핀(100)을 얻는 것이 가능하게 된다.Meanwhile, after the plating process is completed, the body portion 200 can be made more dense by raising the temperature to a high temperature and applying pressure to press the metal layer on which the plating process has been completed. When photoresist material is used as a mold, photoresist exists around the metal layer after the plating process is completed, so a process of raising the temperature to a high temperature and applying pressure cannot be performed. Unlike this, since an anodic oxide film mold 10 made of an anodized film material is provided around the metal layer for which the plating process has been completed, the electrically conductive contact pin (100) minimizes deformation due to the low thermal expansion coefficient of the anodized film even if the temperature is raised to a high temperature. ) It is possible to densify it. Therefore, it is possible to obtain a more dense electrically conductive contact pin 100 compared to the technology using photoresist as a mold.
다음으로, 도 6에 도시된 바와 같이, 팁부(300)를 바디부(200)의 선단부(230)에 부착한다. 별도로 형성된 팁부(300)는 브레이징, 납땜, 용접, 전도성 에폭시, 태킹(tacking) 등에 의해 선단부(230)의 측면(3)에 부착된다. 팁부(300)는 제1,2금속층(101,102)으로 구성되는 바디부(200)에서 전기 전도도가 상대적으로 높은 제2금속층(102)에 접합하여 부착된다. 이를 통해 팁부(300)를 통한 전기 흐름 특성이 향상되도록 한다. Next, as shown in FIG. 6, the tip portion 300 is attached to the distal end 230 of the body portion 200. The separately formed tip portion 300 is attached to the side 3 of the tip portion 230 by brazing, soldering, welding, conductive epoxy, tacking, etc. The tip portion 300 is attached to the body portion 200 composed of the first and second metal layers 101 and 102 by bonding to the second metal layer 102, which has relatively high electrical conductivity. Through this, the electric flow characteristics through the tip portion 300 are improved.
제2실시예Second embodiment
다음으로, 본 발명에 따른 제2실시예에 대해 살펴본다. 단, 이하 설명되는 실시예들은 상기 제1실시예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 제1실시예와 동일하거나 유사한 구성요소들에 대한 설명은 되도록이면 생략한다.Next, we will look at the second embodiment according to the present invention. However, the embodiments described below will be described focusing on characteristic components compared to the first embodiment, and descriptions of components that are the same or similar to the first embodiment will be omitted if possible.
이하, 도 7 내지 도 10e를 참조하여, 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)에 대해 설명한다. 도 7은 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)의 사시도이고, 도 8는 도 7의 A부분의 확대도이며, 도 9는 도 7의 B부분의 확대도이고, 도 10a 내지 도 10e는 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)의 제조방법을 도시한 도면이다.Hereinafter, with reference to FIGS. 7 to 10E, the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention will be described. Figure 7 is a perspective view of the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention, Figure 8 is an enlarged view of part A of Figure 7, and Figure 9 is an enlarged view of part B of Figure 7. 10A to 10E are diagrams showing a method of manufacturing an electrically conductive contact pin 100 according to a second preferred embodiment of the present invention.
전기 전도성 접촉핀(100)은 바디부(200)와 팁부(300)를 포함한다. The electrically conductive contact pin 100 includes a body portion 200 and a tip portion 300.
바디부(200)는 두께 방향(±z방향)으로 제1바디 영역(250)과 제2바디 영역(260)으로 구분된다. 바디부(200)는 두께 방향(±z방향)으로 제1바디 영역(250)과 제2바디 영역(260)이 순차적으로 적층되되 일체적으로 연속되어 형성된다. The body portion 200 is divided into a first body region 250 and a second body region 260 in the thickness direction (±z direction). The body portion 200 is formed by sequentially stacking a first body region 250 and a second body region 260 in the thickness direction (±z direction) and integrally continuous with each other.
후술하는 전기 전도성 접촉핀(100)의 제조방법에서, 제1바디 영역(250)은 양극산화막 몰드(10) 부분에 의해 형성되고 제2바디 영역(260)은 패터닝 가능 물질의 몰드(20) 부분에 의해 형성된다. 제1바디 영역(250)과 제2바디 영역(260)은 나노 트렌치(NT)의 구비 여부에 차이가 발생하게 된다. 즉, 제1바디 영역(250)과 제2바디 영역(260)은 그 측면(3)에 나노 트렌치(NT)가 구비된 영역인지에 차이가 있다. 제1바디 영역(250)의 측면(3)에는 나노 트렌치(NT)가 구비되지만, 제2바디 영역(260)의 측면(3)에는 나노 트렌치(NT)가 구비되지 않는다. In the method of manufacturing the electrically conductive contact pin 100 described later, the first body region 250 is formed by a portion of the anodized film mold 10 and the second body region 260 is formed by a portion of the mold 20 of a patternable material. is formed by There is a difference between the first body region 250 and the second body region 260 in whether or not a nano trench (NT) is provided. That is, there is a difference between the first body region 250 and the second body region 260 in whether the nano trench NT is provided on the side surface 3. A nano trench NT is provided on the side surface 3 of the first body region 250, but the nano trench NT is not provided on the side surface 3 of the second body region 260.
제1바디 영역(250)은, 그 측면(3)에 복수 개의 나노 트렌치(NT)를 포함한다. 나노 트렌치(NT)는 제1바디 영역(250)의 두께 방향(±z방향)을 따라 길게 파인 홈으로 형성되고 복수개가 나란하게 그 측면(3)을 따라 두께 방향(±z방향)의 수직한 방향으로 제1바디 영역(250)의 측면(3) 전체에 형성된다. 여기서 전기 전도성 접촉핀(100)의 두께 방향(±z 방향)은 전기 도금 시 금속 충진물이 성장하는 방향을 의미한다. The first body region 250 includes a plurality of nano trenches NT on its side surface 3. The nano trench (NT) is formed as a long groove along the thickness direction (±z direction) of the first body region 250, and has a plurality of vertical grooves in the thickness direction (±z direction) arranged side by side along the side 3. It is formed on the entire side 3 of the first body region 250 in this direction. Here, the thickness direction (±z direction) of the electrically conductive contact pin 100 refers to the direction in which the metal filler grows during electroplating.
나노 트렌치(NT)가 구비된 제1바디 영역(250)과, 나노 트렌치(NT)가 구비되지 않은 제2바디 영역(260)을 통해 전기 전도성 접촉핀(100)의 방향성을 구분할 수 있다. 전기 전도성 접촉핀(100)은 전체 두께 치수가 30㎛ 이상 60㎛이하의 범위내에서 제작될 수 있는데, 이러한 작은 사이즈로 인해 전기 전도성 접촉핀(100)의 제1면(1)과 제2면(2)을 구분해내기가 쉽지 않다. 하지만 나노 트렌치(NT)가 구비되는 제1바디 영역(250)과 나노 트렌치(NT)가 구비되지 않는 제2바디 영역(260)을 통해 전기 전도성 접촉핀(100)의 제1면(1)과 제2면(2)을 구분할 수 있게 된다. 예를 들어 비전 검사 장치가 측면(3)에 광을 조사하면 제1 바디영역(250)은 난반사면이 되지만 제2바디 영역(260)은 난반사면이 되지 않기 때문에 이를 구분하여 전기 전도성 접촉핀(100)의 방향성을 구분할 수 있게 된다. 이를 통해 전기 전도성 접촉핀(100)이 회로 기판에 잘못된 방향으로 접합되는 것을 방지할 수 있게 된다. The directionality of the electrically conductive contact pin 100 can be distinguished through the first body region 250 provided with the nano trench (NT) and the second body region 260 without the nano trench (NT). The electrically conductive contact pin 100 can be manufactured with a total thickness dimension within the range of 30㎛ or more and 60㎛ or less. Due to this small size, the first and second surfaces of the electrically conductive contact pin 100 It is not easy to distinguish between (2). However, the first surface 1 of the electrically conductive contact pin 100 is formed through the first body region 250 with the nano trench (NT) and the second body region 260 without the nano trench (NT). The second side (2) can be distinguished. For example, when the vision inspection device irradiates light to the side (3), the first body area 250 becomes a diffusely reflective surface, but the second body area 260 does not become a diffusely reflective surface, so it is classified into an electrically conductive contact pin ( 100) direction can be distinguished. Through this, it is possible to prevent the electrically conductive contact pin 100 from being bonded to the circuit board in the wrong direction.
제1바디 영역(250)은 제1금속층(101)과 제2금속층(102)으로 형성될 수 있다. 제1금속층(101)은 전기 전도성 접촉핀(100)의 두께 방향(±z 방향)으로 구비되고 제2금속층(102)은 제1금속층(101) 사이에 구비된다. 예를 들어, 제1 바디영역(250)은 그 두께 방향(±z 방향)으로 제1금속층(101), 제2금속층(102), 제1금속층(101) 순으로 교대로 적층되어 구비되며, 적층되는 층수는 3층 이상으로 구성될 수 있다. The first body region 250 may be formed of a first metal layer 101 and a second metal layer 102. The first metal layer 101 is provided in the thickness direction (±z direction) of the electrically conductive contact pin 100, and the second metal layer 102 is provided between the first metal layers 101. For example, the first body region 250 is provided by alternately stacking the first metal layer 101, the second metal layer 102, and the first metal layer 101 in that order in the thickness direction (±z direction), The number of stacked layers may be three or more.
제2바디 영역(260)은 제3금속층(103)으로 형성될 수 있다. 제3금속층(103)은 제1바디 영역(250)을 구성하는 제1금속층(101) 또는 제2금속층(102)과 동일 금속으로 형성되거나 다른 금속으로 형성될 수 있다. 본 발명의 바람직한 제2실시예에서는 제2바디 영역(260)에 팁부(300)가 형성되기 때문에 제2 바디 영역(260)은 내마모성이 높은 금속으로 형성되며, 제1금속층(101) 중에서 선택된 금속으로 형성될 수 있다. 예를 들어, 제3금속층(103)은 로듐(Rd)일 수 있다. The second body region 260 may be formed of the third metal layer 103. The third metal layer 103 may be formed of the same metal as the first metal layer 101 or the second metal layer 102 constituting the first body region 250, or may be formed of a different metal. In the second preferred embodiment of the present invention, since the tip portion 300 is formed in the second body region 260, the second body region 260 is made of a metal with high wear resistance, and is made of a metal selected from the first metal layer 101. can be formed. For example, the third metal layer 103 may be rhodium (Rd).
한편 제2바디 영역(260)은 복수개의 이종 금속층이 적층되어 구비될 수 있다. 이 경우 제3금속층(103)은 제3-1금속층(103-1)과 제3-2금속층(103-2)을 포함한다. 제3-1금속층(103-1)은 제3-2금속층(103-2)에 비해 강성 또는 내마모성이 높은 금속층이고 제3-2금속층(103-2)는 제3-1금속층(103-1)에 비해 전기 전도도가 높은 금속층이다. 내마모성이 높은 제3-1금속층(103-1)이 표면측에 위치하고 전기 전도도가 높은 제3-2금속층(103-2)은 제3-1금속층(103-1) 사이에 위치한다. 제2바디 영역(260)은 제3-1금속층(103-1), 제3-2금속층(103-2) 및 제3-1금속층(103-1) 순으로 순차적으로 적층된 형태로 구비될 수 있으며, 적층의 개수는 3개층 이상인 것이 바람직하다. 예를 들어 제2바디 영역(260)은, 로듐(Rd) - 구리(Cu) - 로듐(Rd)이 순차적으로 적층되어 구비될 수 있고, 또는 로듐(Rd) - 금(Au) - 로듐(Rd)이 순차적으로 적층되어 구비될 수 있다. Meanwhile, the second body region 260 may be provided by stacking a plurality of different metal layers. In this case, the third metal layer 103 includes a 3-1 metal layer (103-1) and a 3-2 metal layer (103-2). The 3-1 metal layer (103-1) is a metal layer with higher rigidity or wear resistance than the 3-2 metal layer (103-2), and the 3-2 metal layer (103-2) is a metal layer with higher rigidity or wear resistance than the 3-2 metal layer (103-2). ) is a metal layer with higher electrical conductivity than that of The 3-1 metal layer (103-1) with high wear resistance is located on the surface side, and the 3-2 metal layer (103-2) with high electrical conductivity is located between the 3-1 metal layers (103-1). The second body region 260 will be provided in the form of sequential stacking of the 3-1 metal layer (103-1), the 3-2 metal layer (103-2), and the 3-1 metal layer (103-1). It is preferable that the number of stacks is three or more. For example, the second body region 260 may be provided by sequentially stacking rhodium (Rd) - copper (Cu) - rhodium (Rd), or rhodium (Rd) - gold (Au) - rhodium (Rd). ) can be provided by being sequentially stacked.
팁부(300)는 제2 바디영역(260) 상에 형성된다. 팁부(300)는 제2 바디영역(260)을 형성하는 과정에서 함께 일체로 형성되므로 팁부(300)의 측면(3)에는 나노 트렌치(NT)가 존재하지 않으며 제2바디 영역(260)을 구성하는 금속층과 동일 금속층으로 형성된다. 따라서 제2바디 영역(260)이 단일 금속층으로 구성되면 팁부(300) 역시 단일 금속층으로 구성되고, 제2바디 영역(260)이 복수의 이종 금속층이 적층되어 구성되면 팁부(300) 역시 복수의 이종 금속층이 적층되어 구성된다. The tip portion 300 is formed on the second body region 260. Since the tip portion 300 is formed integrally together in the process of forming the second body region 260, the nano trench (NT) does not exist on the side 3 of the tip portion 300 and forms the second body region 260. It is formed of the same metal layer as the metal layer. Therefore, if the second body region 260 is composed of a single metal layer, the tip portion 300 is also composed of a single metal layer, and if the second body region 260 is composed of a plurality of heterogeneous metal layers stacked, the tip portion 300 is also composed of a plurality of heterogeneous metal layers. It is constructed by stacking metal layers.
팁부(300)가 단일의 금속층으로 형성되는 것과 비교하여, 제3-1금속층(103-1)과 제3-2금속층(103-2)을 포함하는 팁부(300)는 전기 전도도와 강성(또는 내마모성) 측면에서 유리할 수 있다. 또한 팁부(300)는 제3-1금속층(103-1), 제3-2금속층(103-2) 및 제3-1금속층(103-1) 순으로 적층되어 구비될 수 있는데, 이 경우에는 내부에 위치하는 전기 전도도가 높은 금속층이 내마모성이 높은 금속층에 의해 커버되어 팁부(300)의 전기 전도도와 내마모성을 동시에 향상시킬 수 있게 된다. Compared to the tip portion 300 being formed of a single metal layer, the tip portion 300 including the 3-1 metal layer (103-1) and the 3-2 metal layer (103-2) has electrical conductivity and rigidity (or It can be advantageous in terms of wear resistance). Additionally, the tip portion 300 may be provided by stacking the 3-1 metal layer (103-1), the 3-2 metal layer (103-2), and the 3-1 metal layer (103-1) in that order. In this case, The metal layer with high electrical conductivity located inside is covered by a metal layer with high wear resistance, thereby improving the electrical conductivity and wear resistance of the tip portion 300 at the same time.
팁부(300)를 제외한 제2바디 영역(260)은 제1바디 영역(250)의 형상과 일치한다. 즉, 제1바디 영역(250)과 제2바디 영역(260)은 팁부(300)을 제외하고는 x-z평면에서의 단면 형상이 동일하다. The second body region 260, excluding the tip portion 300, matches the shape of the first body region 250. That is, the first body region 250 and the second body region 260 have the same cross-sectional shape in the x-z plane except for the tip portion 300.
이하에서는 본 발명의 바람직한 제2실시예에 따른 전기 전도성 접촉핀(100)의 제조방법에 대해 설명한다.Hereinafter, a method of manufacturing the electrically conductive contact pin 100 according to the second preferred embodiment of the present invention will be described.
도 10a 내지 도 10e는 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)의 제조방법을 설명하기 위한 도면이다. 10A to 10E are diagrams for explaining a method of manufacturing the electrically conductive contact pin 100 according to a preferred embodiment of the present invention.
전기 전도성 접촉핀(100)의 제조방법은, 양극산화막 몰드(10)의 하부에 하부 시드층(30)을 형성하는 단계; 양극산화막 몰드(10)의 상부에 패터닝 가능 물질(20)을 형성하는 단계; 패터닝 가능 물질(20)을 패터닝하여 양극산화막 몰드(10)의 상부가 노출되도록 제2개구부(25)를 형성하는 단계; 제2개구부(25)를 이용하여 하부 시드층(30)이 노출되도록 양극산화막 몰드(10)를 습식 에칭하여 제1개구부(15)를 형성하는 단계; 제1개구부(15)와 제2개구부(25)에 도금 공정으로 바디 금속층(50)을 형성하는 단계; 및 바디 금속층(50)을 추출하는 단계를 포함한다. The manufacturing method of the electrically conductive contact pin 100 includes forming a lower seed layer 30 on the lower part of the anodic oxide film mold 10; Forming a patternable material (20) on the anodic oxide mold (10); Patterning the patternable material 20 to form a second opening 25 so that the upper part of the anodic oxide film mold 10 is exposed; Forming a first opening 15 by wet etching the anodic oxide film mold 10 to expose the lower seed layer 30 using the second opening 25; Forming a body metal layer 50 in the first opening 15 and the second opening 25 through a plating process; and extracting the body metal layer 50.
도 10a를 참조하여, 양극산화막 몰드(10)의 하부에 하부 시드층(30)을 형성하는 단계를 설명한다. 양극산화막 몰드(10)의 구체적 설명은 제1실시예에서 설명한 바 있으므로 이하에서는 생략한다. Referring to FIG. 10A, the step of forming the lower seed layer 30 on the lower part of the anodic oxide film mold 10 will be described. A detailed description of the anodic oxide film mold 10 has been described in the first embodiment and is therefore omitted below.
양극산화막 몰드(10)의 하면에는 하부 시드층(30)이 구비된다. 하부 시드층(30)은 금속 물질을 증착 방법에 의해 형성될 수 있다. 하부 시드층(30)은 도금 공정을 이용하여 바디 금속층(50), 특히 제1바디 영역(250)을 형성할 때 이용된다. 하부 시드층(30)은 양극산화막 몰드(10)의 하면 전체에 형성될 수 있다. A lower seed layer 30 is provided on the lower surface of the anodic oxide mold 10. The lower seed layer 30 may be formed by depositing a metal material. The lower seed layer 30 is used when forming the body metal layer 50, particularly the first body region 250, using a plating process. The lower seed layer 30 may be formed on the entire lower surface of the anodized film mold 10.
양극산화막 몰드(10)의 상면에는 상부 시드층(40)이 구비된다. 상부 시드층(40)은 금속 물질을 증착 방법에 의해 형성될 수 있다. 상부 시드층(40)은 도금 공정을 이용하여 바디 금속층(50), 특히 제2바디 영역(260)을 형성할 때 이용된다. 상부 시드층(40)은 양극산화막 몰드(10)의 상부 일부에 형성될 수 있다.An upper seed layer 40 is provided on the upper surface of the anodic oxide mold 10. The upper seed layer 40 may be formed by depositing a metal material. The upper seed layer 40 is used when forming the body metal layer 50, particularly the second body region 260, using a plating process. The upper seed layer 40 may be formed on the upper part of the anodic oxide film mold 10.
하부 시드층(30)과 상부 시드층(40)은 바디 금속층(50)을 형성한 이후에 제거되는 구성이기 때문에, 하부 시드층(30)과 상부 시드층(30)은 바디 금속층(50)과는 다른 재질의 금속인 것이 바람직하다. Since the lower seed layer 30 and the upper seed layer 40 are removed after forming the body metal layer 50, the lower seed layer 30 and the upper seed layer 30 are combined with the body metal layer 50. It is preferable that it is a metal of a different material.
다음으로 도 10b를 참조하여, 양극산화막 몰드(10)의 상부에 패터닝 가능 물질(20)을 형성하는 단계 및 패터닝 가능 물질(20)을 패터닝하여 양극산화막 몰드(10)의 상부가 노출되도록 제2개구부(25)를 형성하는 단계를 설명한다. Next, referring to FIG. 10b, forming a patternable material 20 on the top of the anodic oxide film mold 10 and patterning the patternable material 20 to expose the upper part of the anodic oxide film mold 10. The steps for forming the opening 25 will be described.
상부 시드층(40)이 형성된 양극산화막 몰드(10)의 상부에 패터닝 가능 물질(20)을 형성한다. 패터닝 가능 물질(20)은 노광 및 현상 공정이 가능한 재질로 구성되며, 포토 레지스트를 포함한다. A patternable material 20 is formed on the anodic oxide mold 10 on which the upper seed layer 40 is formed. The patternable material 20 is made of a material capable of exposure and development processes and includes photoresist.
양극산화막 몰드(10)의 상부에 형성된 패터닝 가능 물질(20)을 패터닝하여 양극산화막 몰드(10)의 상부가 노출되도록 제2개구부(25)를 형성한다. 이로서 패터닝 가능 물질(20)의 제2몰드가 양극산화막 몰드(10) 위에 구비된다. The patternable material 20 formed on the top of the anodic oxide film mold 10 is patterned to form a second opening 25 so that the top of the anodic oxide film mold 10 is exposed. As a result, a second mold of the patternable material 20 is provided on the anodic oxide film mold 10.
다음으로, 도 10c를 참조하여, 제2개구부(25)를 이용하여 하부 시드층(30)이 노출되도록 양극산화막 몰드(10)을 습식 에칭하여 제1개구부(15)를 형성하는 단계를 설명한다.Next, referring to FIG. 10C, the step of forming the first opening 15 by wet etching the anodic oxide film mold 10 to expose the lower seed layer 30 using the second opening 25 will be described. .
양극산화막 몰드(10)의 상부에 구비된 상부 시드층(40)과 패터닝된 패터닝 가능 물질(20)을 마스크로서 이용하여 양극산화막 몰드(10)에만 반응하는 용액을 이용하여 습식 에칭을 진행한다. 양극산화막 몰드(10)이 선택적으로 제거됨에 따라 양극산화막 몰드(10)에는 제1개구부(15)가 형성된다. 이를 통해 제1개구부(15)가 형성된 양극산화막 몰드(10)의 제1몰드가 형성된다. 즉, 양극산화막 몰드(10)의 제1몰드 위에 패터닝 가능 물질(20)의 제2몰드가 구비되며 제1개구부(15)와 제2개구부(25)는 서로 연통되어 하나의 공간을 형성한다. Wet etching is performed using a solution that reacts only to the anodic oxide mold 10 using the upper seed layer 40 provided on the anodic oxide mold 10 and the patterned patternable material 20 as a mask. As the anodic oxide film mold 10 is selectively removed, a first opening 15 is formed in the anodic oxide film mold 10. Through this, the first mold of the anodic oxide film mold 10 in which the first opening 15 is formed is formed. That is, a second mold of the patternable material 20 is provided on the first mold of the anodic oxide film mold 10, and the first opening 15 and the second opening 25 communicate with each other to form one space.
패터닝된 패터닝 가능 물질(20)은 도금을 위한 몰드로서 기능할 뿐만 아니라 제1개구부(15)를 형성하기 위한 마스크로서도 기능함으로써, 패터닝 가능 물질(20)이 마스크로서 기능하는 영역에서는 두께 방향(± y방향)으로 제1개구부(15) 및 제2개구부(25)가 수직하게 형성된다. 따라서 양극산화막 몰드(10)의 몰드에 제1개구부(15)를 형성하고 패터닝 가능 물질(20)의 몰드에 제2개구부(25)를 형성한 다음, 제1개구부(15)가 구비된 양극산화막 몰드(10)의 몰드와 제2개구부(25)가 구비된 패터닝 가능 물질(20)의 몰드를 서로 결합하였을 때 발생하는 미스 얼라인 문제가 방지된다. The patterned patternable material 20 not only functions as a mold for plating but also functions as a mask for forming the first opening 15, so that in the area where the patternable material 20 functions as a mask, the thickness direction (± The first opening 15 and the second opening 25 are formed vertically in the y direction). Therefore, the first opening 15 is formed in the mold of the anodic oxide film mold 10 and the second opening 25 is formed in the mold of the patternable material 20, and then the anodic oxide film having the first opening 15 is formed. A misalignment problem that occurs when the mold of the mold 10 and the mold of the patternable material 20 provided with the second opening 25 are combined with each other is prevented.
다음으로, 도 10d를 참조하여, 제1개구부(15)와 제2개구부(25)에 도금 공정으로 바디 금속층(50)을 형성하는 단계를 설명한다. Next, with reference to FIG. 10D, the step of forming the body metal layer 50 in the first opening 15 and the second opening 25 through a plating process will be described.
제1개구부(15)와 제2개구부(25)에 도금 공정으로 금속층을 형성하여 바디 금속층(50)을 형성한다. A body metal layer 50 is formed by forming a metal layer in the first opening 15 and the second opening 25 through a plating process.
하부 시드층(30)을 이용하여 제1개구부(15) 내에 제1 도금 공정을 수행한다. 제1개구부(15) 내에 형성되는 도금층은 제1바디 영역(250)을 구성한다. 제1 도금 공정은 제1금속층(101)과 제2금속층(102)를 포함하는 다층 도금 공정일 수 있다. 따라서 제1바디 영역(250)은 제1금속층(101)과 제2금속층(102)을 포함하는 다층의 금속층으로 구성될 수 있다. 제1바디 영역(250)은 양극산화막 몰드(10)의 제1몰드를 이용하여 제작되는 영역이기 때문에 그 측면에 나노 트렌치(NT)가 구비된다. A first plating process is performed within the first opening 15 using the lower seed layer 30. The plating layer formed in the first opening 15 constitutes the first body region 250. The first plating process may be a multi-layer plating process including a first metal layer 101 and a second metal layer 102. Accordingly, the first body region 250 may be composed of multiple metal layers including a first metal layer 101 and a second metal layer 102. Since the first body region 250 is a region manufactured using the first mold of the anodic oxide film mold 10, a nano trench (NT) is provided on its side.
이후에 이미 도금된 금속층과 상부 시드층(40)을 이용하여 제2개구부(25)에 제2도금 공정을 수행한다. 제2개구부(25)내에 형성되는 도금층은 제2바디 영역(260)을 구성한다. 제2바디 영역(260)은 패터닝 가능 물질(20)의 제2몰드를 이용하여 제작되는 영역이기 때문에 그 측면에 나노 트렌치(NT)가 구비되지 않는다. Afterwards, a second plating process is performed on the second opening 25 using the already plated metal layer and the upper seed layer 40. The plating layer formed in the second opening 25 constitutes the second body region 260. Since the second body region 260 is a region manufactured using a second mold of the patternable material 20, a nano trench NT is not provided on its side.
제2 도금 공정은 단일의 금속층으로 구성될 수 있다. 제2도금 공정은 제3금속층(103)을 포함하는 단층 도금 공정일 수 있다. 제2바디 영역(260)이 수행하는 기능에 따라 제3금속층(103)의 재질은 달라질 수 있다. 예컨대, 제2바디 영역(260)이 내마모성, 기계적 강성 등이 요구되는 경우에, 제3금속층(103)은 제1금속층(101) 중에서 선택된 금속으로 형성될 수 있다. 이와는 달리 높은 전기 전도도가 요구되는 경우에, 제3금속층(103)은 제2금속층(102) 중에서 선택된 금속으로 형성될 수 있다. 제3금속층(103)은 제1바디 영역(100b)을 구성하는 제1금속층(101) 또는 제2금속층(102)과 동일 금속으로 형성될 수 있거나 다른 금속으로 형성될 수 있다. 본 발명의 바람직한 제2실시예에서는 제2바디 영역(260)에 팁부(300)가 형성되기 때문에 제2 바디 영역(100b)은 내마모성이 높은 금속으로 형성되며, 제1금속층(101) 중에서 선택된 금속으로 형성될 수 있다. The second plating process may consist of a single metal layer. The second plating process may be a single-layer plating process including the third metal layer 103. The material of the third metal layer 103 may vary depending on the function performed by the second body region 260. For example, when the second body region 260 requires wear resistance, mechanical rigidity, etc., the third metal layer 103 may be formed of a metal selected from the first metal layer 101. In contrast, when high electrical conductivity is required, the third metal layer 103 may be formed of a metal selected from the second metal layer 102. The third metal layer 103 may be formed of the same metal as the first metal layer 101 or the second metal layer 102 constituting the first body region 100b, or may be formed of a different metal. In the second preferred embodiment of the present invention, since the tip portion 300 is formed in the second body region 260, the second body region 100b is made of a metal with high wear resistance, and is made of a metal selected from the first metal layer 101. can be formed.
상부 시드층(40)은 그 상부로 형성되는 도금층의 품질을 향상시키고 도금 시간을 단축시키기 위하여 사용된다. 상부 시드층(40)이 없는 경우에는, 팁부(300)의 돌출 길이를 길게 형성하는 것이 어렵고 연마공정이 불필요하게 소요되는 문제가 발생한다. 따라서 상부 시드층(40)을 도입하여 돌출팁(188)의 형상을 정밀하게 형성하는 것이 가능하게 되고 연마공정이 불필요하게 소요되는 것을 방지할 수 있다. The upper seed layer 40 is used to improve the quality of the plating layer formed on the top and to shorten the plating time. In the case where the upper seed layer 40 is not present, it is difficult to form a long protruding length of the tip portion 300, and a polishing process is unnecessarily required. Therefore, by introducing the upper seed layer 40, it is possible to precisely form the shape of the protruding tip 188, and unnecessary polishing process can be prevented.
양극산화막 몰드(10)의 제1개구부(15)에 금속층을 도금하여 제1바디 영역(250)을 형성하고, 패터닝 가능 물질(20)의 제2개구부(25)에 금속층을 도금하여 제2바디 영역(260)을 형성한다. 제1바디 영역(250)과 제2바디 영역(260)은 전기 전도성 접촉핀(100)의 두께 방향으로 연속적으로 일체 형성된다. A first body region 250 is formed by plating a metal layer on the first opening 15 of the anodic oxide mold 10, and a metal layer is plated on the second opening 25 of the patternable material 20 to form a second body. Area 260 is formed. The first body region 250 and the second body region 260 are continuously and integrally formed in the thickness direction of the electrically conductive contact pin 100.
다음으로, 도 10e를 참조하여, 하부 시드층(30), 패터닝 가능 물질(20) 및 양극산화막 몰드(10)을 제거하고 바디 금속층(50)을 추출하는 단계를 설명한다. Next, with reference to FIG. 10E, the steps of removing the lower seed layer 30, the patternable material 20, and the anodizing film mold 10 and extracting the body metal layer 50 will be described.
패터닝 가능 물질(20)에만 반응하는 물질을 이용하여 패터닝 가능 물질(20)을 제거한다. 또한 하부 시드층(30)과 상부 시드층(40)에만 반응하는 물질을 이용하여 하부 시드층(30)과 상부 시드층(40)을 제거한다. 또한, 양극산화막 몰드(10)에만 반응하는 물질을 이용하여 양극산화막 몰드(10)을 제거한다. 이로서 금속 도금된 바디 금속층(50)만을 추출하게 된다. The patternable material 20 is removed using a material that only reacts with the patternable material 20. Additionally, the lower seed layer 30 and the upper seed layer 40 are removed using a material that reacts only to the lower seed layer 30 and the upper seed layer 40. Additionally, the anodic oxide film mold 10 is removed using a material that reacts only with the anodized film mold 10. In this way, only the metal plated body metal layer 50 is extracted.
한편, 도 10e에는 제1바디 영역(250)에는 3개의 금속층(101, 102, 101)이 도시되어 있고, 제2바디 영역(260)에는 1개의 금속층(103)이 도시되어 있으나 적층된 금속층의 개수는 이에 한정되지 않고 앞서 설명한 바와 같이 다양한 적층 구조가 가능하다. 제1바디 영역(250)과 제2바디 영역(260)은 모두 복수의 이종의 금속층이 적층되어 구비될 수 있다. Meanwhile, in Figure 10e, three metal layers 101, 102, and 101 are shown in the first body area 250, and one metal layer 103 is shown in the second body area 260, but the stacked metal layers The number is not limited to this, and various stacked structures are possible as described above. Both the first body region 250 and the second body region 260 may be provided by stacking a plurality of different metal layers.
포토 레지스트만을 이용하여 전기 전도성 접촉핀(100)을 제작할 경우에는, 단일층의 포토 레지스트만으로 몰드의 높이를 충분히 높게 하는 것이 어렵다. 그로 인해 전기 전도성 접촉핀(100)의 두께 역시 충분히 두껍게 할 수 없게 된다. 전기 전도성, 복원력 및 취성 파괴 등을 고려하여 전기 전도성 접촉핀(100)은 소정의 두께 이상으로 제작될 필요가 있다. 전기 전도성 접촉핀(100)의 두께를 두껍게 하기 위해 포토 레지스트를 다단으로 적층하는 구성을 고려해 볼 수 있다. 하지만 이 경우에는 포토 레지시트의 각 층별로 미세하게 단차지게 되어 전기 전도성 접촉핀(100)의 측면이 수직하게 형성되지 않고 단차진 영역이 미세하게 남는 문제점이 발생하게 된다. 또한, 포토 레지스트를 다단으로 적층할 경우에는, 수십 ㎛ 이하의 치수 범위를 가지는 전기 전도성 접촉핀(100)의 형상을 정밀하게 재현하는 것이 어렵다는 문제점이 발생하게 된다. When manufacturing the electrically conductive contact pin 100 using only photoresist, it is difficult to make the mold height sufficiently high using only a single layer of photoresist. As a result, the thickness of the electrically conductive contact pin 100 cannot be sufficiently thick. Considering electrical conductivity, resilience, and brittle fracture, the electrically conductive contact pin 100 needs to be manufactured to a predetermined thickness or more. In order to increase the thickness of the electrically conductive contact pin 100, a configuration of stacking photo resist in multiple stages may be considered. However, in this case, each layer of the photoresist sheet is slightly stepped, causing the problem that the side of the electrically conductive contact pin 100 is not formed vertically and a slightly stepped area remains. In addition, when photoresists are stacked in multiple stages, a problem arises in that it is difficult to precisely reproduce the shape of the electrically conductive contact pin 100 having a dimension range of several tens of μm or less.
한편, 양극산화막 몰드(10)을 몰드로 이용하여 전기 전도성 접촉핀(100)을 제작할 경우에는, 수직한 측면을 가지는 전기 전도성 접촉핀(100)을 제작하는 것이 가능하다는 점에서 유리한 측면이 있다. 다만 양극산화막 몰드(10)은 양극산화 과정을 통해 제작되기 때문에 그 높이를 충분히 두껍게 하기 위해서는 많은 시간이 소요된다. Meanwhile, when manufacturing the electrically conductive contact pin 100 using the anodic oxide film mold 10 as a mold, there is an advantage in that it is possible to manufacture the electrically conductive contact pin 100 with a vertical side. However, since the anodic oxide film mold 10 is manufactured through an anodic oxidation process, it takes a lot of time to make its height sufficiently thick.
따라서 양극산화막 몰드(10)과 패터닝 가능한 물질(20)을 복합적으로 전기 도금용 몰드로 이용하게 되면, 수직한 측면을 가지면서 형상 정밀도가 우수한 전기 전도성 접촉핀(100)을 제작하는 것이 가능할 뿐만 아니라 양극산화막 몰드(10)의 부족한 높이를 패터닝 가능한 물질(20)로 보충할 수 있는 장점을 가지게 된다. 또한 양극산화막 몰드(10)만을 이용할 경우에는 높이 방향으로 3차원 형상(예컨대, 팁부(300))을 갖는 전기 전도성 접촉핀(100)을 제작하는 것이 어려울 수 있는데, 양극산화막 몰드(10)의 몰드와 패터닝 가능한 물질(20)의 몰드를 복합적으로 이용함으로써 높이 방향으로 3차원 형상을 가진 전기 전도성 접촉핀(100)을 제작하는 것이 용이하게 된다. Therefore, if the anodic oxide film mold 10 and the patternable material 20 are used as a composite electroplating mold, it is not only possible to manufacture an electrically conductive contact pin 100 with a vertical side and excellent shape precision. It has the advantage of being able to make up for the insufficient height of the anodic oxide film mold 10 with the patternable material 20. In addition, when only the anodic oxide film mold 10 is used, it may be difficult to manufacture the electrically conductive contact pin 100 having a three-dimensional shape (e.g., tip portion 300) in the height direction. The mold of the anodic oxide film mold 10 By using a mold of a patternable material 20 in combination, it becomes easy to manufacture an electrically conductive contact pin 100 having a three-dimensional shape in the height direction.
패터닝 가능한 물질(20)의 몰드는 양극산화막 몰드(10)의 상부에 구비된다. 양극산화막 몰드(10) 위에 패터닝 가능한 물질(20)의 몰드를 위치시키는 구성에 따르면, 도금 공정이 완료된 후 평탄화 공정(CMP)시 패터닝 가능한 물질(20)의 몰드가 양극산화막 몰드(10)의 몰드를 보호한다는 점에서 크랙 발생을 방지하는 효과를 더 가질 수 있다. A mold of the patternable material 20 is provided on top of the anodic oxide film mold 10. According to the configuration of positioning the mold of the patternable material 20 on the anodic oxide mold 10, during the planarization process (CMP) after the plating process is completed, the mold of the patternable material 20 is the mold of the anodic oxide mold 10. In that it protects, it can have the added effect of preventing cracks from occurring.
양극산화막 몰드(10)는 전기 전도성 접촉핀(100)의 기본적인 형상을 제작하는데 이용되고, 패터닝 가능한 물질(20)의 몰드는 기본적인 형상 이외의 복합적인 3차원 형상을 제작하는데 이용되거나 기본적인 형상의 높이를 높이는데 이용될 수 있다.The anodic oxide mold 10 is used to manufacture the basic shape of the electrically conductive contact pin 100, and the mold of the patternable material 20 is used to manufacture a complex three-dimensional shape other than the basic shape or the height of the basic shape. It can be used to increase .
제3실시예Third embodiment
다음으로, 본 발명에 따른 제3실시예에 대해 살펴본다. 단, 이하 설명되는 실시예들은 상기 제1실시예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 제1실시예와 동일하거나 유사한 구성요소들에 대한 설명은 되도록이면 생략한다.Next, we will look at the third embodiment according to the present invention. However, the embodiments described below will be described focusing on characteristic components compared to the first embodiment, and descriptions of components that are the same or similar to the first embodiment will be omitted if possible.
이하, 도 11 내지 도 17b를 참조하여, 본 발명의 바람직한 제3실시예에 따른 전기 전도성 접촉핀(100)에 대해 설명한다. 도 11은 본 발명의 바람직한 제3실시예에 따른 전기 전도성 접촉핀(100)의 사시도이고, 도 12는 도 11의 A부분의 확대도이며, 도 13은 도 11의 B부분의 확대도이고, 도 14a 내지 도 17b는 본 발명의 바람직한 제3실시예에 따른 전기 전도성 접촉핀(100)의 제조방법을 도시한 도면이다.Hereinafter, with reference to FIGS. 11 to 17B, the electrically conductive contact pin 100 according to a third preferred embodiment of the present invention will be described. Figure 11 is a perspective view of an electrically conductive contact pin 100 according to a third preferred embodiment of the present invention, Figure 12 is an enlarged view of part A of Figure 11, and Figure 13 is an enlarged view of part B of Figure 11. 14A to 17B are diagrams showing a method of manufacturing an electrically conductive contact pin 100 according to a third preferred embodiment of the present invention.
전기 전도성 접촉핀(100)은 바디부(200)와 팁부(300)를 포함한다. The electrically conductive contact pin 100 includes a body portion 200 and a tip portion 300.
제3실시예의 바디부(200)는 제1실시예의 바디부(200)의 구성과 동일하다. 다만, 팁부(300)는 별도로 제작한 후 바디부(200)에 부착하지 않고, 바디부(200)를 제작하는데 사용되는 양극산화막 몰드(10)에서 제작된다는 점에서 제1실시예에 따른 팁부(300)와는 차이가 있다. The body portion 200 of the third embodiment has the same configuration as that of the body portion 200 of the first embodiment. However, the tip portion 300 according to the first embodiment is manufactured in the anodic oxide film mold 10 used to manufacture the body portion 200, rather than being manufactured separately and then attached to the body portion 200 ( 300), there is a difference.
팁부(300)는 연결부(310)와 접촉부(320)를 포함하여 단차진 형상을 가진다. The tip portion 300 includes a connection portion 310 and a contact portion 320 and has a stepped shape.
연결부(310)는 접촉부(320)보다 두께 방향(±y방향)으로 두께가 더 두껍다. 연결부(310)는 바디부(200)의 두께와 동일한 두께를 가지며, 접촉부(320)는 바디부(200)의 두께보다 작은 두께를 가진다. The connection portion 310 is thicker in the thickness direction (±y direction) than the contact portion 320. The connection portion 310 has a thickness equal to that of the body portion 200, and the contact portion 320 has a thickness smaller than the thickness of the body portion 200.
팁부(300)의 접촉부(320)는 연결부(310)에서 상부로 돌출되어 검사 대상물과 접촉하도록 형성된다. 접촉부(320)는 연결부(310)의 단면적보다 작은 단면적을 갖는다. 이를 통해 팁부(300)에 의한 산화막층의 제거 효율이 향상되도록 할 수 있다.The contact portion 320 of the tip portion 300 protrudes upward from the connection portion 310 and is formed to contact the inspection object. The contact portion 320 has a cross-sectional area that is smaller than that of the connection portion 310. Through this, the removal efficiency of the oxide layer by the tip portion 300 can be improved.
팁부(300)는 바디부(200)를 구성하는 금속층의 적층 개수보다 작은 적층 개수를 가질 수 있다. 보다 구체적으로, 팁부(300)는 적어도 1개 이상의 금속층으로 구성된다. 다만 팁부(300)를 구성하는 금속층의 적층 개수는 이에 한정되는 것은 아니고 1개층 이상이되 바디부(200)를 구성하는 금속층의 적층 개수보다 작은 개수로 구성될 수 있다. 팁부(300)가 복수개의 금속층으로 구성되는 경우, 팁부(300)는 제1금속층(101)과 제2금속층(102)을 포함하여 제1금속층(101)과 제2금속층(102)이 교대로 적층되어 구비될 수 있다. The tip portion 300 may have a stacked number that is smaller than the number of metal layers constituting the body portion 200 . More specifically, the tip portion 300 is composed of at least one metal layer. However, the number of metal layers constituting the tip portion 300 is not limited to this and may be one or more layers, but may be smaller than the number of metal layers constituting the body portion 200. When the tip portion 300 is composed of a plurality of metal layers, the tip portion 300 includes a first metal layer 101 and a second metal layer 102, and the first metal layer 101 and the second metal layer 102 are alternately formed. It can be provided in a stacked manner.
팁부(300)는 바디부(200)와는 다른 재질로 구성될 수 있다. 팁부(300)는 바디부(200)를 구성하는 금속층보다 내마모성이 높은 금속층으로 구성될 수 있다. 예를 들어 바디부(200)의 제1금속층(101)이 팔라듐-코발트(PdCo) 재질로 형성된 경우, 팁부(300)는 로듐(Rd) 재질로 구성될 수 있다. 이러한 구성을 통해 팁부(300)의 내마모성을 향상시킬 수 있다. The tip portion 300 may be made of a different material from the body portion 200. The tip portion 300 may be made of a metal layer with higher wear resistance than the metal layer constituting the body portion 200. For example, if the first metal layer 101 of the body portion 200 is made of palladium-cobalt (PdCo) material, the tip portion 300 may be made of rhodium (Rd) material. Through this configuration, the wear resistance of the tip portion 300 can be improved.
바디부(200)는 복수개의 이종 금속층이 적층되어 구성되고 팁부(300)는 단일 금속층으로 구비될 수 있다. 팁부(300)는 바디부(200)를 구성하는 금속과 동일 금속이거나 이종 금속일 수 있다. 바디부(200)는 제1금속층(101)과 제2금속층(102)을 포함하여 형성될 수 있고, 팁부(300)는 제1금속층(101)과 제2금속층(102) 중 어느 하나의 금속층으로 형성될 수 있다. 예를 들어, 바디부(200)는 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 팔라듐-코발트(PdCo) 합금이 적층되어 구비되고, 팁부(300)는 바디부(200)의 선택된 제1금속층(101)과는 다른 금속인 로듐(Rd)으로 구비될 수 있다. 또는 바디부(200)는 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 팔라듐-코발트(PdCo) 합금이 적층되어 구비되고, 팁부(300)는 바디부(200)의 선택된 제1금속층(101)과 동일한 팔라듐-코발트(PdCo)로 구비될 수 있다. The body portion 200 may be formed by stacking a plurality of different metal layers, and the tip portion 300 may be formed of a single metal layer. The tip portion 300 may be made of the same metal as the metal constituting the body portion 200 or may be a different metal. The body portion 200 may be formed to include a first metal layer 101 and a second metal layer 102, and the tip portion 300 may include any one of the first metal layer 101 and the second metal layer 102. can be formed. For example, the body portion 200 is provided by stacking a palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, and the tip portion 300 is a selected first layer of the body portion 200. It may be made of rhodium (Rd), a metal different from the metal layer 101. Alternatively, the body portion 200 is provided by stacking a palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, and the tip portion 300 is a selected first metal layer 101 of the body portion 200. ) can be made of the same palladium-cobalt (PdCo).
이하에서는 도 14a 내지 도 17b를 참조하여, 본 발명의 바람직한 제3실시예에 따른 전기 전도성 접촉핀(100)의 제조방법에 대해 설명한다. Hereinafter, a method of manufacturing the electrically conductive contact pin 100 according to a third preferred embodiment of the present invention will be described with reference to FIGS. 14A to 17B.
전기 전도성 접촉핀(100)의 제조방법은, 하부에 하부 시드층(30)을 구비한 양극산화막 몰드(10)에 바디 개구부(17)를 형성하는 단계; 바디 개구부(17)에 전기 도금하여 바디부(200)를 형성하는 단계; 양극산화막 몰드(10)에 팁 개구부(18)를 형성하는 단계; 팁 개구부(18)에 전기 도금하여 팁부(300)를 형성하는 단계; 및 전기 전도성 접촉핀(100)을 추출하는 단계;를 포함한다.The method of manufacturing the electrically conductive contact pin 100 includes forming a body opening 17 in an anodic oxide film mold 10 having a lower seed layer 30 at the bottom; Forming the body portion 200 by electroplating the body opening 17; Forming a tip opening (18) in the anodic oxide mold (10); forming a tip portion 300 by electroplating the tip opening 18; and extracting the electrically conductive contact pin 100.
먼저, 도 14a 및 도 14b를 참조하면, 바디 개구부(17)가 마련된 양극산화막 몰드(10)를 준비한다. 도 14a는 바디 개구부(17)가 마련된 양극산화막 몰드(10)를 도시한 평면도이고, 도 14b는 도 14a의 A-A'단면도이다.First, referring to FIGS. 14A and 14B, an anodized film mold 10 provided with a body opening 17 is prepared. FIG. 14A is a plan view showing the anodic oxide film mold 10 provided with the body opening 17, and FIG. 14B is a cross-sectional view taken along line A-A' of FIG. 14A.
바디 개구부(17)는 양극산화막 몰드(10)를 습식 에칭하여 형성될 수 있다. 이를 위해 양극산화막 몰드(10)의 상면에 포토 레지스트를 구비하고 이를 패터닝한 다음, 패터닝되어 오픈된 영역의 양극산화막이 에칭 용액과 반응하여 바디 개구부(17)가 형성될 수 있다.The body opening 17 may be formed by wet etching the anodized film mold 10. For this purpose, a photo resist is provided on the upper surface of the anodic oxide film mold 10 and patterned, and then the anodic oxide film in the patterned open area reacts with the etching solution to form the body opening 17.
양극산화막 몰드(10)의 하면에는 하부 시드층(30)이 구비된다. 바디 개구부(17)는 바디부(200)에 대응되는 부분에만 형성되고, 팁부(300)에 대응되는 부분에는 바디 개구부(17)가 형성되지 않고 양극산화막이 그대로 있도록 한다.A lower seed layer 30 is provided on the lower surface of the anodic oxide mold 10. The body opening 17 is formed only in the portion corresponding to the body portion 200, and the body opening 17 is not formed in the portion corresponding to the tip portion 300 and the anodized film remains as is.
그 다음 바디 개구부(17)에 전기 도금하여 바디부(200)를 형성하는 단계를 수행한다. 도 15a는 바디 개구부(17)에 전기 도금 공정을 수행하여 바디부(200)를 형성한 것을 도시한 평면도이고, 도 15b는 도 15a의 A-A'단면도이다.Next, a step is performed to form the body portion 200 by electroplating the body opening 17. FIG. 15A is a plan view showing the body portion 200 formed by performing an electroplating process on the body opening 17, and FIG. 15B is a cross-sectional view taken along line A-A' of FIG. 15A.
하부 시드층(30)을 이용하여 바디 개구부(17)에 금속층으로 도금하여 바디부(200)를 형성한다.The body portion 200 is formed by plating a metal layer on the body opening 17 using the lower seed layer 30.
바디부(200)는 로듐(Rd), 백금(Pt), 이리듐(Ir), 팔라듐(Pd), 코발트(Co), 니켈(Ni), 망간(Mn), 텅스텐(W), 인(Ph), 금(Au), 은(Ag), 구리(Cu)나 이들의 합금, 또는 팔라듐-코발트(PdCo) 합금, 팔라듐-니켈(PdNi) 합금 또는 니켈-인(NiPh) 합금, 니켈-망간(NiMn), 니켈-코발트(NiCo) 또는 니켈-텅스텐(NiW) 합금 중에서 선택된 금속으로 형성된다.The body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), nickel (Ni), manganese (Mn), tungsten (W), and phosphorus (Ph). , gold (Au), silver (Ag), copper (Cu) or their alloys, or palladium-cobalt (PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphorus (NiPh) alloy, nickel-manganese (NiMn) ), nickel-cobalt (NiCo), or nickel-tungsten (NiW) alloy.
한편, 바디부(200)의 전기 전도성을 향상시키기 위해, 바디부(200)는 로듐(Rd), 백금 (Pt), 이리듐(Ir), 팔라듐(Pd), 코발트(Co), 니켈(Ni), 망간(Mn), 텅스텐(W), 인(Ph) 이나 이들의 합금, 또는 팔라듐-코발트(PdCo) 합금, 팔라듐-니켈(PdNi) 합금 또는 니켈-인(NiPh) 합금, 니켈-망간(NiMn), 니켈-코발트(NiCo) 또는 니켈-텅스텐(NiW) 합금 중에서 선택된 제1금속층(101)과, 금(Au), 은(Ag), 구리(Cu) 또는 이들의 합금 중에서 선택된 제2금속층(102)을 포함하여 복수개의 이종의 금속층이 적층되어 형성될 수 있다.Meanwhile, in order to improve the electrical conductivity of the body portion 200, the body portion 200 is made of rhodium (Rd), platinum (Pt), iridium (Ir), palladium (Pd), cobalt (Co), and nickel (Ni). , manganese (Mn), tungsten (W), phosphorus (Ph) or their alloys, or palladium-cobalt (PdCo) alloy, palladium-nickel (PdNi) alloy or nickel-phosphorus (NiPh) alloy, nickel-manganese (NiMn) ), a first metal layer 101 selected from nickel-cobalt (NiCo) or nickel-tungsten (NiW) alloy, and a second metal layer selected from gold (Au), silver (Ag), copper (Cu), or alloys thereof ( 102) may be formed by stacking a plurality of different metal layers.
바디부(200)가 제1금속층(101)과 제2금속층(102)이 교번적으로 적층되어 구비될 경우, 내마모성이 높은 제1금속층(101)이 표면측에 위치하고 전기 전도도가 높은 제2금속층(102)은 제1금속층 사이에 위치한다. 바디부(200)는 제1금속층(101), 제2금속층(102) 및 제1금속층(101) 순으로 순차적으로 적층된 형태로 구비될 수 있으며, 적층의 개수는 3개층 이상인 것이 바람직하다. 예를 들어 바디부(200)는, 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 팔라듐-코발트(PdCo) 합금이 적층되어 구비될 수 있고, 또는 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 로듐(Rd)이 적층되어 구비될 수 있고, 또는 팔라듐-코발트(PdCo) 합금 - 구리(Cu) - 팔라듐-코발트(PdCo) - 금(Au) - 팔라듐-코발트(PdCo) 합금이 적층되어 구비될 수 있다. When the body portion 200 is provided with first metal layers 101 and second metal layers 102 alternately stacked, the first metal layer 101 with high wear resistance is located on the surface side and the second metal layer with high electrical conductivity is located on the surface side. (102) is located between the first metal layers. The body portion 200 may be provided in a form in which the first metal layer 101, the second metal layer 102, and the first metal layer 101 are sequentially stacked, and the number of stacks is preferably three or more. For example, the body portion 200 may be provided by stacking palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) alloy, or palladium-cobalt (PdCo) alloy - copper (Cu) ) - Rhodium (Rd) may be laminated, or palladium-cobalt (PdCo) alloy - copper (Cu) - palladium-cobalt (PdCo) - gold (Au) - palladium-cobalt (PdCo) alloy may be laminated. It can be provided.
그 다음 팁 개구부(18)를 형성한다. 도 16a는 팁 개구부(18)를 형성한 것을 도시한 평면도이고, 도 16b는 도 16a의 A-A'단면도이다. A tip opening 18 is then formed. FIG. 16A is a plan view showing the tip opening 18 formed, and FIG. 16B is a cross-sectional view taken along line A-A' of FIG. 16A.
팁 개구부(18)는 이미 형성된 바디부(200)에 인접하여 팁부(300)가 될 위치에 형성된다. 팁 개구부(18)는 양극산화막 몰드(10)를 습식 에칭하여 형성될 수 있다. 이를 위해 양극산화막 몰드(10)의 상면에 포토 레지스트를 구비하고 이를 패터닝한 다음, 패터닝되어 오픈된 영역의 양극산화막이 에칭 용액과 반응하여 팁 개구부(18)가 형성될 수 있다.The tip opening 18 is formed adjacent to the already formed body portion 200 at a position that will become the tip portion 300. The tip opening 18 may be formed by wet etching the anodized film mold 10. For this purpose, a photo resist is provided on the upper surface of the anodic oxide film mold 10 and patterned, and then the anodic oxide film in the patterned open area reacts with the etching solution to form the tip opening 18.
그 다음 팁 개구부(18)에 전기 도금하여 팁 대응 금속층(105)을 형성하는 단계를 수행한다. 도 17a는 팁 개구부(18)에 전기 도금 공정을 수행하여 팁 대응 금속층(105)을 형성한 것을 도시한 평면도이고, 도 17b는 도 17a의 A-A'단면도이다.Next, a step is performed to form a tip-corresponding metal layer 105 by electroplating the tip opening 18. FIG. 17A is a plan view showing the formation of the tip-corresponding metal layer 105 by performing an electroplating process on the tip opening 18, and FIG. 17B is a cross-sectional view taken along line A-A' of FIG. 17A.
기 도금된 바디부(200)의 노출된 측면을 전기 도금을 위한 시드층으로 활용하기 위해, 양극산화막 몰드(10)의 상면에 패터닝 가능 물질(예, 포토 레지스트)을 도포 후 노광 및 현상하여, 기 도금된 바디부(200)의 상면을 덮되, 그 측면이 노출되도록 한다. In order to use the exposed side of the previously plated body portion 200 as a seed layer for electroplating, a patternable material (e.g., photoresist) is applied to the upper surface of the anodic oxide film mold 10, then exposed and developed, The upper surface of the previously plated body portion 200 is covered, but the side surface is exposed.
팁 대응 금속층(105)는 하부 시디층(30)과 기 도금된 바디부(200)의 측면를 이용하여 전기 도금하여 형성된다. 이로 인해 팁 대응 금속층(105)는 단차진 형상으로 형성된다. The tip-corresponding metal layer 105 is formed by electroplating using the lower CD layer 30 and the side surface of the previously plated body portion 200. As a result, the tip-corresponding metal layer 105 is formed in a stepped shape.
그 다음, 양극산화막 몰드(10), 패터닝 가능 물질(20) 및 하부 시드층(30)을 제거함으로써 전기 전도성 접촉핀(100)을 완성하게 된다. Next, the electrically conductive contact pin 100 is completed by removing the anodic oxide mold 10, the patternable material 20, and the lower seed layer 30.
이처럼 팁부(300)는 양극산화막 몰드(20)에 의해 제작되기 때문에 팁부(300)의 측면에는 나노 트렌치(NT)가 형성된다. In this way, since the tip portion 300 is manufactured using the anodic oxide film mold 20, a nano trench (NT) is formed on the side of the tip portion 300.
이상에서 설명한 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)은, 검사장치에 구비되어 검사 대상물과 전기적, 물리적으로 접촉하여 전기적 신호를 전달하는데 사용된다. 검사장치는 반도체 제조공정에 사용되는 검사장치일 수 있으며, 그 일례로 프로브 카드일 수 있다. 전기 전도성 접촉핀(100)들은 프로브 카드에 구비되어 반도체 칩을 검사하는 전기 전도성 접촉핀일 수 있다. 본 발명의 바람직한 실시예에 따른 전기 전도성 접촉핀(100)이 사용될 수 있는 검사장치들은 이에 한정되는 것은 아니며, 전기를 인가하여 검사 대상물의 불량 여부를 확인하기 위한 검사장치라면 모두 포함된다. 검사 장치의 검사 대상물은, 반도체 소자, 메모리 칩, 마이크로 프로세서 칩, 로직 칩, 발광소자, 혹은 이들의 조합을 포함할 수 있다. 예를 들어, 검사 대상물은 로직 LSI(ASIC, FPGA 및 ASSP과 같은), 마이크로프로세서(CPU 및 GPU와 같은), 메모리(DRAM, HMC(Hybrid Memory Cube), MRAM(Magnetic RAM), PCM(Phase-Change Memory), ReRAM(Resistive RAM), FeRAM(강유전성 RAM) 및 플래쉬 메모리(NAND flash)), 반도체 발광소자(LED, 미니 LED, 마이크로 LED 등 포함), 전력 장치, 아날로그IC(DC-AC 컨버터 및 절연 게이트 2극 트랜지스터(IGBT)와 같은), MEMS(가속 센서, 압력 센서, 진동기 및 지로 센서와 같은), 무배선 장치(GPS, FM, NFC, RFEM, MMIC 및 WLAN과 같은), 별개 장치, BSI, CIS, 카메라 모듈, CMOS, 수동 장치, GAW 필터, RF 필터, RF IPD, APE 및 BB를 포함한다.The electrically conductive contact pin 100 according to a preferred embodiment of the present invention described above is provided in an inspection device and is used to transmit an electrical signal by electrically and physically contacting an inspection object. The inspection device may be an inspection device used in a semiconductor manufacturing process, and an example may be a probe card. The electrically conductive contact pins 100 may be provided on a probe card to inspect a semiconductor chip. The inspection devices in which the electrically conductive contact pin 100 according to the preferred embodiment of the present invention can be used are not limited to this, and any inspection device that applies electricity to check whether the inspection object is defective is included. The inspection object of the inspection device may include a semiconductor device, a memory chip, a microprocessor chip, a logic chip, a light emitting device, or a combination thereof. For example, inspection objects include logic LSIs (such as ASICs, FPGAs, and ASSPs), microprocessors (such as CPUs and GPUs), memory (such as DRAM, hybrid memory cubes (HMCs), magnetic RAMs (MRAMs), and phase-processing memory (PCMs). Change Memory), ReRAM (Resistive RAM), FeRAM (ferroelectric RAM) and flash memory (NAND flash)), semiconductor light emitting devices (including LED, mini LED, micro LED, etc.), power devices, analog IC (DC-AC converter and (such as insulated gate bipolar transistors (IGBTs)), MEMS (such as acceleration sensors, pressure sensors, oscillators, and gyroscope sensors), wireless devices (such as GPS, FM, NFC, RFEM, MMIC, and WLAN), discrete devices, Includes BSI, CIS, camera module, CMOS, passive devices, GAW filter, RF filter, RF IPD, APE and BB.
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.As described above, although the present invention has been described with reference to preferred embodiments, those skilled in the art may modify the present invention in various ways without departing from the spirit and scope of the present invention as set forth in the following patent claims. Alternatively, it can be carried out in modification.
[부호의 설명][Explanation of symbols]
100: 전기 전도성 접촉핀 100: electrically conductive contact pin
200: 바디부200: body part
210: 기단부 210: Proximal end
220: 빔부220: Beam unit
300: 팁부300: Tip part
NT: 나노 트렌치NT: nano trench

Claims (10)

  1. 제1면, 상기 제1면에 대향되는 제2면, 상기 제1면 및 제2면을 연결하는 측면을 구비하는 전기 전도성 접촉핀에 있어서,An electrically conductive contact pin having a first side, a second side opposite the first side, and a side connecting the first side and the second side,
    바디부와 팁부를 포함하며,Includes a body part and a tip part,
    상기 바디부의 측면에는 상기 제1면 및 상기 제2면 방향으로 길게 파인 홈으로 형성되되, 그 깊이는 20㎚ 이상 1㎛이하의 범위를 가지며, 그 폭은 20㎚ 이상 1㎛이하의 범위를 가지는 나노 트렌치가 형성되고, A long groove is formed on the side of the body portion in the direction of the first and second surfaces, the depth of which is in the range of 20 nm to 1 ㎛, and the width of which is in the range of 20 nm to 1 ㎛. A nano trench is formed,
    상기 팁부는 상기 측면 중에서 검사 대상물을 향하는 상기 바디부의 상측에 구비되는, 전기 전도성 접촉핀.The tip portion is provided on an upper side of the body portion facing the inspection object among the sides.
  2. 제1항에 있어서,According to paragraph 1,
    상기 나노 트렌치는 상기 바디부의 측면 전체에 형성되는, 전기 전도성 접촉핀.The nano trench is formed on the entire side of the body portion.
  3. 제1항에 있어서,According to paragraph 1,
    상기 나노 트렌치는 상기 팁부의 측면에도 형성되는, 전기 전도성 접촉핀.An electrically conductive contact pin, wherein the nano-trench is also formed on a side of the tip portion.
  4. 제1항에 있어서,According to paragraph 1,
    상기 바디부는, 상기 제1면에서 상기 제2면 방향인 두께 방향으로 구비되는 제1 바디영역; 및 상기 두께 방향으로 상기 제1영역과 연속되어 형성되는 제2 바디영역을 포함하고,The body portion includes a first body region provided in a thickness direction from the first surface to the second surface; and a second body region formed continuously with the first region in the thickness direction,
    상기 팁부는 상기 제2 바디영역 상에 형성되는, 전기 전도성 접촉핀.An electrically conductive contact pin, wherein the tip portion is formed on the second body region.
  5. 제4항에 있어서,According to paragraph 4,
    상기 제1 바디영역과 상기 제2 바디영역 중 적어도 어느 하나는 복수개의 이종 금속층이 적층되어 구비되는, 전기 전도성 접촉핀.An electrically conductive contact pin, wherein at least one of the first body region and the second body region is provided by stacking a plurality of dissimilar metal layers.
  6. 제4항에 있어서,According to paragraph 4,
    상기 제2바디 영역은 단일 금속층으로 구비되는, 전기 전도성 접촉핀.An electrically conductive contact pin, wherein the second body region is comprised of a single metal layer.
  7. 제4항에 있어서,According to paragraph 4,
    상기 제1 바디영역의 측면에는 나노 트렌치가 구비되되 상기 제2 바디영역의 측면에는 나노 트렌치가 구비되지 않는, 전기 전도성 접촉핀.An electrically conductive contact pin, wherein a nano-trench is provided on a side surface of the first body region, but a nano-trench is not provided on a side surface of the second body region.
  8. 제1항에 있어서,According to paragraph 1,
    상기 팁부는 상기 바디부의 복수개의 이종 금속층과 면접촉하는, 전기 전도성 접촉핀. An electrically conductive contact pin, wherein the tip portion makes surface contact with a plurality of dissimilar metal layers of the body portion.
  9. 제1면, 상기 제1면에 대향되는 제2면, 상기 제1면 및 제2면을 연결하는 측면을 구비하는 전기 전도성 접촉핀에 있어서, An electrically conductive contact pin having a first side, a second side opposite the first side, and a side connecting the first side and the second side,
    회로 기판에 연결되는 기단부와, 상기 기단부로부터 연장되고, 폭 방향으로 연장된 장홀을 구비하는 빔부와, 상기 빔부의 단부에 형성되는 선단부를 포함하는 바디부; 및A body portion including a proximal end connected to a circuit board, a beam portion extending from the proximal end and having a long hole extending in the width direction, and a tip portion formed at an end of the beam portion; and
    상기 선단부의 측면에서 상부로 돌출되어 검사대상물과 접촉하도록 형성되며, 상기 바디부의 단면적보다 작은 단면적을 갖는 팁부;를 포함하고,A tip portion is formed to protrude upward from the side of the tip portion and is formed to contact the inspection object, and has a cross-sectional area smaller than that of the body portion,
    상기 빔부에서 상기 팁부 방향의 측면에는 상기 제1면 및 상기 제2면 방향으로 길게 파인 홈으로 형성되되, 그 깊이는 20㎚ 이상 1㎛이하의 범위를 가지며, 그 폭은 20㎚ 이상 1㎛이하의 범위를 가지는 나노 트렌치가 형성되는, 전기 전도성 접촉핀. On the side of the beam part in the direction of the tip, a long groove is formed in the direction of the first and second surfaces, the depth of which is in the range of 20 nm to 1 ㎛, and the width of which is 20 nm to 1 ㎛. An electrically conductive contact pin in which a nano-trench having a range of is formed.
  10. 제9항에 있어서,According to clause 9,
    상기 나노 트렌치는 상기 빔부의 장홀의 내벽에도 형성되는, 전기 전도성 접촉핀. The nano trench is formed on the inner wall of the long hole of the beam part.
PCT/KR2023/015477 2022-10-11 2023-10-10 Electroconductive contact pin WO2024080684A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0129467 2022-10-11
KR1020220129467A KR20240049950A (en) 2022-10-11 2022-10-11 The Electro-conductive Contact Pin

Publications (1)

Publication Number Publication Date
WO2024080684A1 true WO2024080684A1 (en) 2024-04-18

Family

ID=90669851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015477 WO2024080684A1 (en) 2022-10-11 2023-10-10 Electroconductive contact pin

Country Status (2)

Country Link
KR (1) KR20240049950A (en)
WO (1) WO2024080684A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060021420A (en) * 2003-03-17 2006-03-08 주식회사 파이컴 Probe and manufacturing method thereof
KR20100000882A (en) * 2008-06-26 2010-01-06 주식회사 코리아 인스트루먼트 Probe and method of manufacturing a probe
WO2011071082A1 (en) * 2009-12-11 2011-06-16 日本発條株式会社 Contact probe
KR20150132657A (en) * 2014-05-15 2015-11-26 주식회사 코리아 인스트루먼트 Probe pin capable of being used for fine pitch, probe card, and the fabrication method thereof
KR102409029B1 (en) * 2022-04-12 2022-06-14 이시훈 Probe pin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060021420A (en) * 2003-03-17 2006-03-08 주식회사 파이컴 Probe and manufacturing method thereof
KR20100000882A (en) * 2008-06-26 2010-01-06 주식회사 코리아 인스트루먼트 Probe and method of manufacturing a probe
WO2011071082A1 (en) * 2009-12-11 2011-06-16 日本発條株式会社 Contact probe
KR20150132657A (en) * 2014-05-15 2015-11-26 주식회사 코리아 인스트루먼트 Probe pin capable of being used for fine pitch, probe card, and the fabrication method thereof
KR102409029B1 (en) * 2022-04-12 2022-06-14 이시훈 Probe pin

Also Published As

Publication number Publication date
KR20240049950A (en) 2024-04-18

Similar Documents

Publication Publication Date Title
TW202037917A (en) Guide plate for probe card and probe card having the same
US5192716A (en) Method of making a extended integration semiconductor structure
US5055907A (en) Extended integration semiconductor structure with wiring layers
US7180315B2 (en) Substrate with patterned conductive layer
JPH04355086A (en) Manufacture of electric connecting element
JP2003197988A5 (en)
US20010009376A1 (en) Probe arrangement assembly, method of manufacturing probe arrangement assembly, probe mounting method using probe arrangement assembly, and probe mounting apparatus
WO2023167479A1 (en) Electrically conductive contact pin, alignment plate, and inspection apparatus comprising same
WO2024080684A1 (en) Electroconductive contact pin
JP5551396B2 (en) Inspection probe and method of manufacturing inspection probe
WO2023191410A1 (en) Electro-conductive contact pin and inspection device including same
KR102551965B1 (en) Probe Sheet With Contact Tip On Stacked Multi-Layer And Method Of Manufacturing The Same
WO2022169196A1 (en) Electrically conductive contact pin
WO2024219730A1 (en) Electro-conductive contact pin
KR20120092915A (en) Manufacturing method for ceramic substrate for probe card
WO2023277452A1 (en) Electrically conductive contact pin and method for manufacturing same
WO2023172046A1 (en) Metal molded article, manufacturing method therefor, and inspection device having same
WO2024186040A1 (en) Metal molded product and method for producing same, and electro-conductive contact pin and method for producing same
WO2023033442A1 (en) Method for manufacturing molded metal product
JPH11154694A (en) Method of alignment for batch wafer measuring test and method for manufacturing probe card
TW202139313A (en) Probe head and probe card comprising the same
WO2023059014A1 (en) Electrically conductive contact pin
WO2024112050A1 (en) Electro-conductive contact pin and test device including same
WO2024029790A1 (en) Electrically conductive contact pin and method for manufacturing same
WO2023090746A1 (en) Electrically conductive contact pin and inspection device having same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877612

Country of ref document: EP

Kind code of ref document: A1