WO2024080213A1 - Method for filling heat transport device with refrigerant and refrigerant filling control device for heat transport device - Google Patents

Method for filling heat transport device with refrigerant and refrigerant filling control device for heat transport device Download PDF

Info

Publication number
WO2024080213A1
WO2024080213A1 PCT/JP2023/036301 JP2023036301W WO2024080213A1 WO 2024080213 A1 WO2024080213 A1 WO 2024080213A1 JP 2023036301 W JP2023036301 W JP 2023036301W WO 2024080213 A1 WO2024080213 A1 WO 2024080213A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
filling
heat transport
transport device
flow path
Prior art date
Application number
PCT/JP2023/036301
Other languages
French (fr)
Japanese (ja)
Inventor
峻介 関本
幸雄 堀口
翔太朗 松田
嘉晃 西浦
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2024080213A1 publication Critical patent/WO2024080213A1/en

Links

Images

Definitions

  • the present invention relates to a method for filling a heat transport device with a refrigerant and a refrigerant filling control device for a heat transport device.
  • the above-mentioned Patent No. 6,660,095 describes a device that controls a closed loop in which heat is exchanged with an external heat source by compressing and expanding a working fluid, which is a heat medium, using a Rankine cycle as a thermodynamic cycle.
  • This closed loop includes a pump for circulating and compressing the working fluid, and a tank that holds the liquid working fluid to be fed into the pump.
  • a pressure source of pressurized gas is connected to the tank via a pressure regulating valve.
  • the device described in the above-mentioned Patent No. 6,660,095 controls the operation of the pressure regulating valve during the operation of the closed loop to allow gas to flow in from the pressure source separately from the working fluid, thereby pressurizing the inside of the tank.
  • a gas inert gas
  • a pressure source separately from the refrigerant into a closed loop flow path (refrigerant flow path) filled with a working fluid (refrigerant), thereby pressurizing the refrigerant.
  • a gas inert gas
  • thermodynamic cycle Since the evaporation and condensation temperatures of the refrigerant vary depending on the charge amount of the inert gas, it is desirable to easily grasp the charge amount of the inert gas that is charged separately from the refrigerant in a heat transport device using a thermodynamic cycle.
  • This invention was made to solve the problems described above, and one objective of the invention is to provide a method for filling a refrigerant into a heat transport device using a thermodynamic cycle, which makes it easy to grasp the amount of inert gas that is filled separately from the refrigerant, and a refrigerant filling control device for the heat transport device.
  • the method for filling a refrigerant into a heat transport device in a first aspect of the present invention includes a pre-filling step of filling the refrigerant flow path of the heat transport device with an inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes a predetermined pressure, and a main filling step of filling the refrigerant flow path of the heat transport device with refrigerant up to a predetermined amount required for operation of the heat transport device after the pre-filling step.
  • heat transport device is used here as a concept that includes a cooling device that cools an object and a heating device that heats an object.
  • the refrigerant charging control device for a heat transport device includes a control unit that performs control to obtain the pressure in the refrigerant flow path of the heat transport device detected by the pressure detection unit, and the control unit performs control to determine whether charging of the inert gas is complete based on the pressure in the refrigerant flow path of the heat transport device detected by the pressure detection unit when performing pre-charging, in which an inert gas is charged into the refrigerant flow path of the heat transport device so that the pressure in the refrigerant flow path of the heat transport device becomes a predetermined pressure, before performing main charging, in which refrigerant is charged into the refrigerant flow path of the heat transport device up to a predetermined amount required for operation of the heat transport device.
  • the refrigerant flow path of the heat transport device is filled with an inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes a predetermined pressure, and then the main filling is performed to fill the refrigerant flow path of the heat transport device with the refrigerant up to a predetermined amount required for the operation of the heat transport device.
  • the refrigerant flow path of the heat transport device is filled with an inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes a predetermined pressure.
  • the inert gas is filled before the main filling of the refrigerant into the refrigerant flow path, the pressure of the inert gas required for filling can be reduced compared to the case where the inert gas is filled after the refrigerant is filled. Therefore, since there is no need to provide a relatively high-pressure inert gas source, the inert gas can be easily filled into the refrigerant flow path.
  • FIG. 1 is a schematic diagram illustrating a cooling system that uses an inert gas along with carbon dioxide refrigerant.
  • 4 is a flowchart showing a process of a method for filling a refrigerant into a cooling device according to the first embodiment.
  • FIG. 13 is a schematic diagram showing the configuration of a refrigerant charging control device and a cooling device according to a second embodiment.
  • 10 is a flowchart showing a process of a method for filling a cooling device with a refrigerant according to a second embodiment.
  • FIG. 13 is a schematic diagram showing the configuration of a refrigerant charging control device and a cooling device according to a third embodiment.
  • 13 is a flowchart showing a process of a method for filling a cooling device with a refrigerant according to a fourth embodiment.
  • the cooling device 110 (see FIG. 1) is a cooling device that uses carbon dioxide as a refrigerant.
  • the cooling device 110 is a device that performs cooling using carbon dioxide in a gas-liquid two-phase state in which gas and liquid are mixed.
  • the cooling device 110 includes a condenser 1, a tank 2, a pump 3, an evaporator 4, and a device control unit 5.
  • the cooling device 110 pressurizes the refrigerant carbon dioxide with an inert gas to prevent cavitation from occurring in the pump 3. Cavitation is the generation of gas in the pump 3 arranged in the refrigerant flow path 10 of the cooling device 110 during operation of the cooling device 110.
  • the cooling device 110 is an example of a "heat transport device" in the claims.
  • a refrigerant flow path 10 is formed by a condenser 1, a tank 2, a pump 3, an evaporator 4, and piping connected to each of the condenser 1, the tank 2, the pump 3, and the evaporator 4.
  • Condenser 1 condenses the refrigerant (carbon dioxide). Condenser 1 is configured to cool and condense the refrigerant using a chiller. The refrigerant flowing out of condenser 1 is sent to tank 2.
  • Tank 2 is a container that stores the refrigerant. The refrigerant condensed by condenser 1 flows into tank 2.
  • Tank 2 stores the refrigerant that has become a liquid or a two-phase gas-liquid state. The refrigerant stored in tank 2 is sent to pump 3.
  • Tank 2 also stores an inert gas along with the refrigerant.
  • the pump 3 sends the refrigerant (carbon dioxide) stored in the tank 2 to the evaporator 4.
  • the operation of the pump 3 is controlled by the device control unit 5.
  • the evaporator 4 cools a cooling target (not shown) by evaporating the refrigerant discharged from the pump 3.
  • the refrigerant flowing out of the evaporator 4 is then returned to the condenser 1, where it is condensed.
  • the device control unit 5 is configured to control the entire cooling device 110.
  • the device control unit 5 includes a processor such as a CPU (Central Processing Unit), memory, etc.
  • the device control unit 5 is configured to control the entire cooling device 110 using control software (programs) recorded (stored) in an internal or external memory (storage device).
  • the cooling device 110 is equipped with temperature sensors 61 and 62 that detect the temperature of the refrigerant in the refrigerant flow path.
  • the cooling device 110 is also equipped with pressure sensors 63 and 64 that detect the pressure in the refrigerant flow path. Note that the pressure sensors 63 and 64 are an example of the "pressure detection unit" in the claims.
  • the temperature sensor 61 is disposed between the tank 2 and the pump 3, and detects the temperature of the refrigerant flowing out of the tank 2.
  • the temperature sensor 62 is disposed between the evaporator 4 and the condenser 1, and detects the temperature of the refrigerant flowing out of the evaporator 4.
  • the pressure sensor 63 is disposed between the tank 2 and the pump 3, and detects the pressure of the refrigerant flowing between the tank 2 and the pump 3.
  • the pressure sensor 64 is disposed between the evaporator 4 and the condenser 1, and detects the pressure of the refrigerant flowing between the evaporator 4 and the condenser 1.
  • the device control unit 5 is also connected to communicate with the pump 3.
  • the device control unit 5 is also connected to communicate with each of the temperature sensors 61 and 62.
  • the device control unit 5 is also connected to communicate with each of the pressure sensors 63 and 64.
  • the device control unit 5 is configured to acquire the detection signals of the temperature sensor 61, the temperature sensor 62, the pressure sensor 63, and the pressure sensor 64, and control the cooling device 110.
  • cylinder 121, cylinder 122, and vacuum pump 123 are each connected to refrigerant flow path 10 of cooling device 110 via manifold 7.
  • the cylinder 121 is filled with carbon dioxide (refrigerant).
  • a flow rate control valve 81 is provided between the cylinder 121 and the manifold 7. The flow rate control valve 81 adjusts the opening degree to adjust the flow rate of carbon dioxide flowing out of the cylinder 121.
  • the cylinder 122 is filled with an inert gas.
  • the cylinder 122 is filled with, for example, nitrogen.
  • a flow control valve 82 is provided between the cylinder 122 and the manifold 7. The flow control valve 82 adjusts the flow rate of the inert gas (nitrogen) flowing out of the cylinder 122 by adjusting its opening.
  • the vacuum pump 123 is a pump for drawing a vacuum inside the refrigerant flow path of the cooling device 110.
  • vacuum does not mean an absolute vacuum, but rather means a state in which a specific space is filled with gas at a pressure lower than atmospheric pressure.
  • the manifold 7 is connected to the refrigerant flow path 10 of the cooling device 110. Specifically, the flow path inside the manifold 7 is connected to the piping upstream of the tank 2 (the piping between the tank 2 and the condenser 1). In addition, the manifold 7 is connected to piping that connects to each of the cylinders 121 and 122 and the vacuum pump 123. The manifold 7 can switch the piping to which the refrigerant flow path 10 is connected by adjusting the opening of the valves 7a and 7b to close and open the flow paths formed inside.
  • step 901 the worker draws a vacuum inside the refrigerant flow path 10.
  • the worker operates the manifold 7 (valves 7a and 7b) and the vacuum pump 123 to draw a vacuum inside the piping between the refrigerant flow path 10 and the cylinders 121 and 122.
  • the worker performs the work of step 902.
  • step 902 the worker performs pre-filling.
  • the worker pre-fills the refrigerant flow path 10 of the cooling device 110 with an inert gas, and then fills the refrigerant flow path 10 of the cooling device 110 with carbon dioxide at a filling rate that suppresses the generation of dry ice (solid) so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide. That is, before the refrigerant flow path 10 is filled with carbon dioxide, the inert gas is filled into the refrigerant flow path 10. As described above, the inert gas is filled into the refrigerant flow path 10 to prevent cavitation from occurring in the pump 3.
  • the filling amount (set amount) of the inert gas required to prevent cavitation differs depending on the performance of the pump 3. That is, the pressure in the refrigerant flow path 10 after the inert gas required to prevent cavitation is filled into the refrigerant flow path 10 differs depending on the performance of the pump 3.
  • the inert gas is filled by a preset filling amount (set amount) so that the pressure in the refrigerant flow path 10 of the cooling device 110 becomes a predetermined pressure at which cavitation does not occur.
  • the pressure in the refrigerant flow path 10 after filling with the inert gas is less than the triple point pressure of carbon dioxide.
  • step 902 before filling the refrigerant flow path 10 with carbon dioxide, an inert gas is pre-filled into the refrigerant flow path 10 that has been evacuated.
  • an inert gas is pre-filled into the refrigerant flow path 10 that has been evacuated.
  • dry ice is not generated. Therefore, by pre-filling the inert gas, the pressure in the refrigerant flow path 10 can be easily increased to approach the triple point pressure of carbon dioxide, compared to the case where the refrigerant flow path 10 that has been evacuated is gradually filled with carbon dioxide and the pressure in the refrigerant flow path 10 is gradually increased.
  • the pressure in the refrigerant flow path 10 can be easily increased to or above the triple point pressure of carbon dioxide, without generating dry ice, compared to the case where the refrigerant flow path 10 that has been evacuated is filled with carbon dioxide and then filled with an inert gas.
  • step 902 the operator fills the refrigerant flow path 10 of the cooling device 110 with carbon dioxide at a filling rate that suppresses the generation of dry ice, so that the pressure inside the refrigerant flow path 10 of the cooling device 110 is equal to or greater than the triple point pressure of carbon dioxide (0.52 MPa-a). That is, the operator fills the refrigerant flow path 10 of the cooling device 110, which is in a state where the internal pressure is less than the triple point pressure of carbon dioxide (0.52 MPa-a) and is filled with inert gas, with carbon dioxide, so that the internal pressure is equal to or greater than the triple point pressure of carbon dioxide (0.52 MPa-a).
  • step 902 is an example of a "pre-filling step" in the claims.
  • step 902 pre-filling
  • step 904 main filling
  • the ratio of the carbon dioxide filling rate in pre-filling to the carbon dioxide filling rate in main filling depends on the internal volume of the cooling device 110 (refrigerant flow path 10). The operator adjusts the opening of valve 7a and flow control valve 81 of manifold 7 to gradually fill carbon dioxide into refrigerant flow path 10 so that dry ice does not form in the refrigerant flow path 10.
  • step 903 the worker checks whether the temperature in the refrigerant flow path 10 of the cooling device 110 is within a predetermined temperature range.
  • the worker checks the temperature in the refrigerant flow path 10 detected by the temperature sensors 61 and 62.
  • the worker then checks that no dry ice has been generated in the refrigerant flow path 10 based on the temperature in the refrigerant flow path 10 detected by the temperature sensors 61 and 62.
  • the worker may check the temperature in the refrigerant flow path 10 using a display unit and a gauge (meter) (not shown) provided in the cooling device 110, or may check the temperature in the refrigerant flow path 10 using a filling device as in the second embodiment described below.
  • the operator waits until the temperature in the refrigerant flow path 10 of the cooling device 110 is within the predetermined temperature range. Then, if the temperature in the refrigerant flow path 10 of the cooling device 110 is within the predetermined temperature range, the operator starts the main charging of carbon dioxide (step 904).
  • step 904 is started when the temperature in the refrigerant flow path 10 of the cooling device 110 falls within a predetermined temperature range. Note that step 904 is an example of the "main filling step" in the claims.
  • step 904 the worker performs the actual filling of carbon dioxide. Specifically, the worker fills the refrigerant flow path 10 of the cooling device 110 with carbon dioxide up to a predetermined amount required for operation of the cooling device 110, while the pressure inside the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide. Specifically, the worker adjusts the opening of the valve 7a and the flow control valve 81 of the manifold 7 to fill the refrigerant flow path 10 with the predetermined amount of carbon dioxide required for operation of the cooling device 110.
  • the inert gas is filled into the refrigerant flow path 10 of the cooling device 110 (heat transport device) so that the pressure in the refrigerant flow path 10 of the cooling device 110 becomes a predetermined pressure, and then the refrigerant is filled into the refrigerant flow path 10 of the cooling device 110 to a predetermined amount required for the operation of the cooling device 110.
  • This makes it possible to suppress the difficulty in grasping the amount of inert gas filled due to the inert gas dissolving in the refrigerant, unlike the case where the inert gas is filled after the refrigerant is filled.
  • the amount of inert gas filled separately from the refrigerant can be easily grasped.
  • the inert gas is filled before the refrigerant is filled into the refrigerant flow path 10, so the pressure of the inert gas required for filling can be reduced compared to the case where the inert gas is filled after the refrigerant is filled. Therefore, since there is no need to provide a relatively high-pressure inert gas source, the inert gas can be easily filled into the refrigerant flow path 10.
  • the amount of inert gas filled can be determined, making it easier to determine the amount of inert gas filled compared to measuring the amount filled based on the weight of the inert gas.
  • the amount of inert gas required is small, it may be difficult to measure the amount filled based on weight, so by filling the refrigerant flow path 10 with inert gas up to a predetermined pressure, the amount of inert gas filled can be determined more effectively.
  • the pre-filling step fills the cooling device 110 (heat transport device) with inert gas to a predetermined pressure that does not cause cavitation, which generates gas in the pump 3 arranged in the refrigerant flow path 10 of the cooling device 110 when the cooling device 110 (heat transport device) is in operation.
  • the amount of inert gas filled can be easily determined by filling the inert gas in the pre-filling step (step 902) prior to step 904 in which the refrigerant (carbon dioxide) is actually filled, and therefore, by filling the inert gas in the pre-filling step to a predetermined pressure that does not cause cavitation, the amount of inert gas filled to prevent cavitation can be effectively and easily determined.
  • the pre-filling step fills the refrigerant flow path 10 of the cooling device 110 with inert gas so that the pressure inside the refrigerant flow path 10 of the cooling device 110 becomes a predetermined pressure so that the pressure of the refrigerant (carbon dioxide) flowing into the pump 3 arranged in the refrigerant flow path 10 of the cooling device 110 (heat transport device) becomes equal to or higher than the saturated vapor pressure of the refrigerant when the cooling device 110 (heat transport device) is in operation.
  • step 902 since the inert gas is filled in the pre-filling step (step 902), it is possible to more effectively and easily grasp that the inert gas has been filled by the amount of filling (set amount) set so that the pressure of the refrigerant flowing into the pump 3 becomes equal to or higher than the saturated vapor pressure of the refrigerant when the cooling device 110 is in operation.
  • the pre-filling step (step 902) fills in nitrogen as an inert gas so that the pressure in the refrigerant flow path 10 of the cooling device 110 (heat transport device) becomes a predetermined pressure.
  • the pre-filling step (step 902) fills in nitrogen as an inert gas so that the pressure in the refrigerant flow path 10 of the cooling device 110 (heat transport device) becomes a predetermined pressure.
  • the refrigerant flow path 10 of the cooling device 110 (heat transport device) is pre-filled with an inert gas, and then carbon dioxide (refrigerant) is pre-filled into the evacuated refrigerant flow path 10 of the cooling device 110 at a filling rate that suppresses the generation of dry ice (solid) so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide.
  • the method of filling the cooling device 110 (heat transport device) with refrigerant according to the first embodiment described above can be carried out as follows to obtain the following additional effects.
  • the main filling step (step 904) is started based on the temperature in the refrigerant flow path 10 of the cooling device 110 (heat transport device) reaching a temperature within a predetermined temperature range. This allows the main filling of carbon dioxide to be started after it has been confirmed that no temperature drop due to the generation of dry ice has occurred in the refrigerant flow path 10. As a result, it is possible to more effectively prevent the refrigerant flow path 10 from becoming clogged due to the generation of dry ice during the main filling of carbon dioxide.
  • the carbon dioxide filling rate in the pre-filling step (step 902) is lower than the carbon dioxide filling rate in the main filling step (step 904).
  • the carbon dioxide filling rate in the main filling step is higher than the carbon dioxide filling rate in the pre-filling step, the time required for the main filling of carbon dioxide can be shortened. As a result, the time required to fill carbon dioxide to a predetermined amount required for the operation of the cooling device 110 (heat transport device) can be shortened.
  • the refrigerant charging control device 100 includes a control unit 101 and a display unit 102.
  • the refrigerant charging control device 100 is an example of a "refrigerant charging control device for a heat transport device" as claimed.
  • the display unit 102 is an example of a "notification unit” as claimed.
  • the control unit 101 is configured to control the entire refrigerant charging control device 100.
  • the control unit 101 includes a processor such as a CPU, a memory, etc.
  • the control unit 101 is configured to control the charging of the carbon dioxide refrigerant into the cooling device 110 by control software (programs) recorded (stored) in an internal or external memory (storage device).
  • the control unit 101 controls the acquisition of the temperature of the refrigerant flowing through the refrigerant flow path 10 of the cooling device 110, which is detected by the temperature sensors 61 and 62.
  • the control unit 101 controls the acquisition of the pressure of the refrigerant flowing through the refrigerant flow path 10 of the cooling device 110, which is detected by the pressure sensors 63 and 64.
  • the control unit 101 controls the acquisition of the pressure within the refrigerant flow path 10 of the cooling device 110, which is detected by the pressure sensors 63 and 64.
  • the display unit 102 displays (informs) the pressure of the refrigerant flowing through the refrigerant flow path 10 of the cooling device 110, which is acquired by the control unit 101.
  • the display unit 102 also displays (informs) the temperature of the refrigerant flowing through the refrigerant flow path 10 of the cooling device 110, which is acquired by the control unit 101.
  • the display unit 102 displays (informs) information for filling the refrigerant (carbon dioxide) into the refrigerant flow path 10 of the cooling device 110.
  • the display unit 102 includes a liquid crystal display or an organic EL display.
  • the display unit 102 may also include a gauge (meter).
  • the control unit 101 performs control to determine whether or not pre-filling is completed, in which an inert gas and a refrigerant (carbon dioxide) are filled into the evacuated refrigerant flow path 10 of the cooling device 110 so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or greater than the triple point pressure of carbon dioxide.
  • the control unit 101 when performing pre-filling, performs control to determine whether or not pre-filling is completed based on the pressure of the refrigerant flowing through the refrigerant flow path 10 of the cooling device 110 (pressure in the refrigerant flow path 10) detected by the pressure sensors 63 and 64.
  • control unit 101 when pre-filling is performed to fill the inert gas to a predetermined pressure before the main filling, the control unit 101 performs control to determine whether or not the filling of the inert gas is completed based on the pressure in the refrigerant flow path 10 of the cooling device 110 detected by the pressure sensors 63 and 64. For example, the control unit 101 pre-stores a value of a predetermined pressure in pre-filling of the inert gas corresponding to a filling amount at which cavitation does not occur.
  • the control unit 101 determines whether or not the filling of the inert gas is completed based on whether or not the pressure in the refrigerant flow path 10 detected by the pressure sensors 63 and 64 has risen to a predetermined pressure. Thereafter, the control unit 101 similarly determines whether or not the filling of the refrigerant in pre-filling is completed based on whether or not the pressure in the refrigerant flow path 10 (the pressure of the refrigerant flowing through the refrigerant flow path 10) detected by the pressure sensors 63 and 64 has risen to a value equal to or higher than the triple point pressure of the refrigerant that is previously set.
  • the control unit 101 also determines whether the temperature in the refrigerant flow path 10 of the cooling device 110 is within a predetermined temperature range after pre-filling. Specifically, the control unit 101 determines whether the temperature in the refrigerant flow path 10 detected by the temperature sensors 61 and 62 is within a predetermined temperature range. For example, the control unit 101 determines whether the difference in the temperatures in the refrigerant flow path 10 detected by each of the temperature sensors 61 and 62 is within less than a few degrees Celsius. The control unit 101 may also determine whether all of the temperatures in the refrigerant flow path 10 detected by each of the temperature sensors 61 and 62 are within the predetermined temperature range.
  • control unit 101 determines that pre-filling is complete, it controls the actual filling of the refrigerant flow path 10 of the cooling device 110 with carbon dioxide up to a predetermined amount required for the operation of the cooling device 110, while the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide.
  • the control unit 101 when the control unit 101 determines that the filling of the inert gas is completed in the pre-filling, the control unit 101 causes the display unit 102 to display (report) information indicating that the filling of the inert gas is completed. For example, the control unit 101 controls the display unit 102 to display a sentence (characters) such as "The filling of the inert gas is completed.” The control unit 101 also causes the display unit 102 to display (report) the pressure in the refrigerant flow path 10 of the cooling device 110 acquired from the pressure sensors 63 and 64 as information indicating that the filling of the inert gas is completed.
  • the control unit 101 also causes the display unit 102 to display (report) a sentence (characters) encouraging the filling of carbon dioxide (refrigerant) in the pre-filling, together with the information indicating that the filling of the inert gas is completed.
  • the control unit 101 controls the display unit 102 to display (notify) a message urging the operator to start main filling, as control related to performing main filling.
  • the control unit 101 controls the display unit 102 to display a sentence (characters) such as "Please start main filling.” This causes the refrigerant filling control device 100 (display unit 102) to urge the operator to start main filling.
  • the operator operates the manifold 7 (valve 7a) and the flow rate control valve 81 based on the display of the display unit 102 to fill the refrigerant flow path 10 with carbon dioxide (refrigerant).
  • step 931 in pre-filling, inert gas is filled.
  • step 932 it is determined whether the inert gas has been filled to a predetermined pressure at which cavitation does not occur, based on the pressure in the refrigerant flow path 10 detected by the pressure sensors 63 and 64. If it is determined that the inert gas has been filled to the predetermined pressure, information indicating that filling with inert gas is complete is displayed on the display unit 102, and the process proceeds to step 933. If it is not determined that the inert gas has been filled to the predetermined pressure, the process waits until the predetermined pressure is reached.
  • step 933 the refrigerant (carbon dioxide) is charged in the pre-fill.
  • step 934 it is determined whether the refrigerant has been charged to a pressure equal to or greater than the triple point pressure, based on the pressure in the refrigerant flow path 10 detected by the pressure sensors 63 and 64. For example, it is determined whether the refrigerant has been charged to 0.7 MPa-a or more, which is equal to or greater than the triple point pressure. If it is determined that the refrigerant (carbon dioxide) in the pre-fill has been charged to the triple point pressure or more, the process proceeds to step 903. If it is not determined that the refrigerant (carbon dioxide) has been charged to the triple point pressure or more, the process is put on hold.
  • step 903 after the display unit 102 displays (notifies), the operator checks the temperature inside the refrigerant flow path 10. The rest of the process flow is the same as the process flow in the first embodiment.
  • the control unit 101 fills the refrigerant flow path 10 of the cooling device 110 (heat transport device) with inert gas before the main filling so that the pressure in the refrigerant flow path 10 of the cooling device 110 (heat transport device) becomes a predetermined pressure.
  • the control unit 101 fills the refrigerant flow path 10 of the cooling device 110 (heat transport device) with inert gas before the main filling so that the pressure in the refrigerant flow path 10 of the cooling device 110 (heat transport device) becomes a predetermined pressure.
  • the control unit 101 fills the refrigerant flow path 10 of the cooling device 110 (heat transport device) with inert gas before the main filling so that the pressure in the refrigerant flow path 10 of the cooling device 110 (heat transport device) becomes a predetermined pressure.
  • control unit 101 when pre-filling is performed before actual filling, the control unit 101 performs control to determine whether or not filling with inert gas is complete based on the pressure in the refrigerant flow path 10 of the cooling device 110 (heat transport device) detected by the pressure sensors 63 and 64. This allows the inert gas to be filled more accurately than when a person determines whether or not filling with inert gas is complete by visually checking a gauge (meter) or the like.
  • control unit 101 can control the main filling of the refrigerant flow path 10 of the cooling device 110 with carbon dioxide up to a predetermined amount required for the operation of the cooling device 110 (heat transport device) after the pressure in the refrigerant flow path 10 is made equal to or higher than the triple point pressure of carbon dioxide by pre-filling.
  • carbon dioxide can be filled into the refrigerant flow path 10 at a pressure state where dry ice is not generated, and the occurrence of blockage of the refrigerant flow path 10 due to the generation of dry ice can be suppressed without heating or cooling the carbon dioxide.
  • the refrigerant charging control device 100 according to the second embodiment described above can achieve the following additional effects by being configured as follows:
  • the refrigerant charging control device 100 includes a display unit 102 (notification unit) that notifies information for charging the refrigerant flow path 10 of the cooling device 110 (heat transport device) with carbon dioxide (refrigerant).
  • the control unit 101 determines that charging of the inert gas is complete, the control unit 101 notifies information indicating that charging of the inert gas is complete via the display unit 102.
  • control unit 101 controls the display unit 102 (notification unit) to notify the acquired pressure in the refrigerant flow path 10 of the cooling device 110 (heat transport device) as information indicating that the filling of the inert gas has been completed.
  • the worker can easily recognize the specific value indicating the magnitude of the pressure in the refrigerant flow path 10 by recognizing the information indicating that the filling of the inert gas has been completed, which is notified by the display unit 102. Therefore, the worker can easily confirm that the inert gas has been filled up to a predetermined pressure.
  • the control unit 101 judges whether the temperature in the refrigerant flow path 10 of the cooling device 110 (heat transport device) is within a predetermined temperature range after pre-filling.
  • the control unit 101 controls the display unit 102 (notification unit) to display (notify) the operator to perform the main filling. This allows the operator to visually check (confirm) the display by the display unit 102 and easily confirm that no temperature drop due to the generation of dry ice has occurred in the refrigerant flow path 10.
  • the operator can start the main filling of carbon dioxide after confirming from the display by the display unit 102 that no temperature drop due to the generation of dry ice has occurred in the refrigerant flow path 10. As a result, it is possible to more effectively prevent the refrigerant flow path 10 from being blocked due to the generation of dry ice during the main filling of carbon dioxide.
  • a refrigerant charging control device 200 (see FIG. 5) automatically performs pre-charging of the cooling device 110 with an inert gas and carbon dioxide, and main charging of the cooling device 110 with carbon dioxide.
  • the refrigerant charging control device 200 is an example of a "refrigerant charging control device for a heat transport device" in the claims.
  • the control unit 101 of the refrigerant charging control device 200 is configured to control each of the manifold 7 (valves 7a and 7b), the flow rate control valve 81, the flow rate control valve 82, and the vacuum pump 123. As a result, the work that was performed by an operator in the first and second embodiments is performed automatically under the control of the control unit 101 of the refrigerant charging control device 200.
  • the control unit 101 draws a vacuum in the refrigerant flow path 10 by controlling the operation of the vacuum pump 123 and the manifold 7.
  • the control unit 101 controls the operation of the manifold 7 and the flow rate control valve 82 to start filling with inert gas and start pre-filling. If the control unit 101 determines that filling with inert gas is complete during pre-filling, it controls the operation of the manifold 7 and the flow rate control valve 82 to stop filling with inert gas.
  • the control unit 101 then controls the operation of the manifold 7 and the flow rate control valve 81 to fill with refrigerant by pre-filling, thereby completing pre-filling.
  • the control unit 101 controls the filling of carbon dioxide as control related to the main filling. Specifically, when the temperature in the refrigerant flow path 10 of the cooling device 110 falls within a predetermined temperature range after pre-filling, the control unit 101 controls the manifold 7 (valve 7a) and the flow rate adjustment valve 81 to allow the carbon dioxide filled in the cylinder 121 to flow into the refrigerant flow path 10.
  • the rest of the configuration of the third embodiment is the same as that of the second embodiment.
  • the process flow of the method of charging the cooling device 110 with refrigerant according to the third embodiment is the same as that of the first embodiment, except that the refrigerant charging control device 200 automatically performs each step instead of the operator.
  • control unit 101 performs control to stop the filling of the inert gas when it is determined that the filling of the inert gas has been completed.
  • the third embodiment as in the second embodiment, it is possible to suppress the occurrence of blockage of the refrigerant flow path 10 due to the generation of dry ice while suppressing the complexity of the device configuration for filling the refrigerant flow path 10 of the cooling device 110 (heat transport device) with carbon dioxide refrigerant.
  • the refrigerant charging control device 200 according to the third embodiment described above can achieve the following additional effects by configuring it as follows:
  • the control unit 101 judges whether the temperature in the refrigerant flow path 10 of the cooling device 110 (heat transport device) is within a predetermined temperature range after pre-charging.
  • the control unit 101 controls the charging of carbon dioxide as a control for performing the main charging. This allows the control unit 101 to control the charging of carbon dioxide (main charging) after confirming that no temperature drop due to the generation of dry ice has occurred in the refrigerant flow path 10. As a result, the blocking of the refrigerant flow path 10 due to the generation of dry ice during the main charging of carbon dioxide can be more effectively suppressed.
  • control unit 101 automatically controls the charging of carbon dioxide (main charging)
  • the control unit 101 can start the control of the charging of carbon dioxide (main charging) more quickly than when an operator starts the main charging of carbon dioxide after confirming that no temperature drop due to the generation of dry ice has occurred in the refrigerant flow path 10.
  • the fourth embodiment is a method for charging the cooling device 110 with carbon dioxide refrigerant in the case where the pressure in the refrigerant flow path 10 can be increased to or above the triple point pressure of carbon dioxide when the amount of inert gas required to prevent cavitation in the pump 3 is charged.
  • pre-charging is performed using only inert gas, unlike the first embodiment in which inert gas and carbon dioxide are charged during pre-charging.
  • step 911 the worker draws a vacuum inside the refrigerant flow path 10. After the refrigerant flow path 10 has been drawn a vacuum, the worker performs the work of step 912. Note that step 911 is the same process as step 901 in the first embodiment.
  • step 912 the worker pre-fills with inert gas.
  • the worker fills the evacuated refrigerant flow path 10 of the cooling device 110 with inert gas so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide (0.52 MPa-a).
  • the worker fills the refrigerant flow path 10 of the cooling device 110 with inert gas so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than 0.7 MPa-a. That is, in the fourth embodiment, the predetermined pressure of the inert gas that does not cause cavitation, which is filled in pre-filling, is higher than the triple point pressure of the refrigerant.
  • step 912 is an example of a "pre-filling step" in the claims.
  • step 913 the worker performs the main filling of carbon dioxide. Specifically, the worker fills the refrigerant flow path 10 of the cooling device 110 with carbon dioxide up to a predetermined amount required for the operation of the cooling device 110, with the pressure in the refrigerant flow path 10 of the cooling device 110 being equal to or higher than the triple point pressure of carbon dioxide.
  • the pressure in the refrigerant flow path 10 of the cooling device 110 being equal to or higher than the triple point pressure of carbon dioxide.
  • an inert gas nitrogen
  • the temperature in the refrigerant flow path 10 may be checked after the pre-filling (step 912) as in the first embodiment.
  • step 913 is an example of a "main filling step" in the claims.
  • a pre-filling is performed by filling the evacuated refrigerant flow path 10 of the cooling device 110 (heat transport device) with an inert gas so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide.
  • This allows the main filling to be performed by filling the refrigerant flow path 10 of the cooling device 110 with carbon dioxide up to a predetermined amount required for the operation of the cooling device 110 with carbon dioxide while keeping the pressure in the refrigerant flow path 10 equal to or higher than the triple point pressure of carbon dioxide.
  • carbon dioxide can be filled into the refrigerant flow path 10 at a pressure state where dry ice is not generated, so that the occurrence of blockage of the refrigerant flow path 10 due to the generation of dry ice can be suppressed without heating or cooling the carbon dioxide.
  • This allows the occurrence of blockage of the refrigerant flow path 10 due to the generation of dry ice to be suppressed while suppressing the complexity of the device configuration for filling the refrigerant flow path 10 of the cooling device 110 with carbon dioxide refrigerant.
  • the control unit 101 of the refrigerant charging control device 100 performs control to acquire the pressure of the refrigerant flowing through the refrigerant flow path 10 detected by the pressure sensors 63 and 64 (pressure detection unit) provided in the cooling device 110 (heat transport device), but the present invention is not limited to this.
  • the refrigerant charging control device may be provided with a pressure detection unit, and the control unit of the refrigerant charging control device may perform control to acquire the pressure of the refrigerant flowing through the refrigerant flow path detected by the pressure detection unit of the refrigerant charging control device.
  • the control unit of the refrigerant charging control device may then perform control related to charging the carbon dioxide refrigerant based on the detection result of the pressure detection unit provided in the refrigerant charging control device.
  • the control unit 101 of the refrigerant charging control device 100 performs control to obtain the temperature of the refrigerant flowing through the refrigerant flow path 10 detected by the temperature sensors 61 and 62 provided in the cooling device 110 (heat transport device), but the present invention is not limited to this.
  • the refrigerant charging control device may be provided with a temperature sensor, and the control unit of the refrigerant charging control device may perform control to obtain the temperature of the refrigerant flowing through the refrigerant flow path detected by the temperature sensor of the refrigerant charging control device. The control unit of the refrigerant charging control device may then perform control related to the charging of the carbon dioxide refrigerant based on the detection result of the temperature sensor provided in the refrigerant charging control device.
  • the display unit 102 performs control to display (alert) a message urging the operator to perform main refilling
  • the alert unit may use sound to alert the operator to perform main refilling.
  • the display unit may be a backlit indicator or a display using micro LEDs, rather than a liquid crystal display, organic EL display, or gauge (meter).
  • the alert unit may be configured to perform both auditory alerts using sound and visual alerts using a display unit, etc.
  • the carbon dioxide refrigerant is charged by an operator without using the refrigerant charging control device 100 or 200, but the present invention is not limited to this.
  • the refrigerant charging control device 100 may control the display unit 102 (notification unit) to display (notify) the operator to perform the main charging, as in the second embodiment.
  • the control unit of the refrigerant charging control device controls the notification by the notification unit based on the fact that the pressure in the refrigerant flow path of the cooling device (heat transport device) has become equal to or higher than the triple point pressure of carbon dioxide.
  • the refrigerant charging control device 200 may automatically perform some or all of the steps in the carbon dioxide refrigerant charging method, which involves pre-charging the evacuated refrigerant flow path of the heat transport device with an inert gas so that the pressure in the refrigerant flow path of the heat transport device is equal to or greater than the triple point pressure of carbon dioxide.
  • the control unit 101 of the refrigerant charging control device 200 controls the charging of carbon dioxide as control related to the main charging when the temperature in the refrigerant flow path 10 of the cooling device 110 (heat transport device) falls within a predetermined temperature range, but the present invention is not limited to this.
  • the refrigerant charging control device may be equipped with an operation unit such as a touch panel, keyboard, or mouse, and the control unit of the refrigerant charging control device may control the charging of carbon dioxide (main charging) based on input operations by an operator to the operation unit.
  • the cooling flow path may be evacuated or pre-charged by the control of the control unit of the refrigerant charging control device based on input operations by an operator to the operation unit.
  • the refrigerant charging control device 100 and the refrigerant charging control device 200 are provided separately from the device control unit 5, but the present invention is not limited to this. In the present invention, the control performed by the refrigerant charging control device 100 and the refrigerant charging control device 200 may be performed by the device control unit 5.
  • the flow path inside the manifold 7 is connected to the piping upstream of the tank 2 (the piping between the tank 2 and the condenser 1), but the present invention is not limited to this.
  • the flow path inside the manifold 7 may be connected to a piping of the refrigerant flow path 10 other than the piping upstream of the tank 2 (the piping between the tank 2 and the condenser 1).
  • the carbon dioxide refrigerant filling method of the present invention has been explained using a flow-driven flowchart in which processing is performed in sequence according to a processing flow, but the present invention is not limited to this.
  • the work (processing operations) in the carbon dioxide refrigerant filling method may be performed by event-driven processing in which processing is performed on an event-by-event basis.
  • the work (processing operations) in the carbon dioxide refrigerant filling method may be performed completely event-driven, or may be performed by combining event-driven and flow-driven operations.
  • the refrigerant flow path 10 is filled with nitrogen as an inert gas, and then carbon dioxide is filled as a refrigerant, but the present invention is not limited to this.
  • the refrigerant is not limited to carbon dioxide, and fluorocarbon may be used as the refrigerant, or natural refrigerants such as ammonia and water may be used as the refrigerant.
  • the inert gas is not limited to nitrogen, and the inert gas may be a rare gas, a fluorocarbon, or carbon dioxide.
  • the air may be used as the inert gas. Also, before performing pre-filling, vacuuming may not be performed.
  • the refrigerant flow path at atmospheric pressure may be filled with inert gas up to a predetermined pressure.
  • pre-filling may be completed and main filling may be performed regardless of whether the pressure is equal to or higher than the triple point pressure. That is, even if the predetermined pressure at which the inert gas is filled in pre-filling is lower than the triple point pressure of the refrigerant, main filling of the refrigerant may be started when filling of the inert gas is completed. That is, steps 933 and 934 in FIG. 4 may be omitted. In this case, the temperature inside the refrigerant flow path may not be measured. In other words, step 903 in FIG. 4 may be omitted.
  • the inert gas is filled into the refrigerant flow path 10 in pre-filling so that the pressure of the refrigerant flowing into the pump 3 during operation of the cooling device 110 (heat transport device) is equal to or greater than the saturated vapor pressure of the refrigerant, and so that cavitation does not occur.
  • a predetermined pressure may be set as the amount of inert gas filled in pre-filling so that the pressure of the refrigerant flowing into the pump 3 during operation of the heat transport device is equal to or greater than the saturated vapor pressure of the combined refrigerant and inert gas.
  • the refrigerant flow path 10 of the cooling device 110 was filled with an inert gas and carbon dioxide (refrigerant), but the present invention is not limited to this.
  • the refrigerant flow path in a heating device serving as a heat transport device, may be filled with an inert gas and a refrigerant.
  • an example was shown that includes a pre-filling step (step 902) that includes filling with an inert gas, and a main filling step (step 904) that fills with a refrigerant (carbon dioxide), but the present invention is not limited to this.
  • the present invention may further include a step of filling the refrigerant flow path of the heat transport device with refrigeration oil.
  • the step of filling with refrigeration oil may be performed before the pre-filling step, after the pre-filling step, or after filling with an inert gas during the pre-filling step.
  • the step of filling with refrigeration oil may also be performed after the main filling step.
  • the cooling device 110 heat transport device
  • the present invention is not limited to this.
  • the heat transport device may be configured to include an accumulator instead of a tank.
  • (Item 3) The method for filling a refrigerant into a heat transport device according to claim 1, wherein the pre-filling step includes filling the inert gas so that a pressure in the refrigerant flow path of the heat transport device becomes the predetermined pressure so that a pressure of the refrigerant flowing into the pump disposed in the refrigerant flow path of the heat transport device during operation of the heat transport device becomes equal to or higher than a saturated vapor pressure of the refrigerant.
  • (Item 4) 4. The method for filling a refrigerant into a heat transport device according to any one of claims 1 to 3, wherein the pre-filling step fills the refrigerant flow path of the heat transport device with nitrogen as the inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes the predetermined pressure.
  • the method for filling a refrigerant into a heat transport device comprises pre-filling the refrigerant flow path of the heat transport device with the inert gas so that the inside of the refrigerant flow path of the heat transport device is at the predetermined pressure, and then filling the refrigerant into the refrigerant flow path of the heat transport device at a filling rate that suppresses generation of solids, so that the pressure in the refrigerant flow path of the heat transport device is equal to or higher than the triple point pressure of the refrigerant.
  • the control unit is a refrigerant filling control device for a heat transport device, which performs control to determine whether filling of the inert gas is completed based on the pressure in the refrigerant flow path of the heat transport device detected by the pressure detection unit when pre-filling is performed by filling the refrigerant flow path of the heat transport device with an inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes a predetermined pressure before performing main filling in which refrigerant is filled into the refrigerant flow path of the heat transport device up to a predetermined amount required for operation of the heat transport device.
  • (Item 7) The refrigerant charging control device for a heat transport device according to claim 6, wherein the control unit performs control to stop charging of the inert gas when it is determined that charging of the inert gas has been completed.
  • (Item 8) a notification unit that notifies information for filling the refrigerant into the refrigerant flow path of the heat transport device, 8.
  • Item 9 A refrigerant filling control device for a heat transport device as described in item 8, wherein the control unit controls the notification unit to notify the acquired pressure in the refrigerant flow path of the heat transport device as information indicating that filling of the inert gas is completed.
  • Coolant flow path 63 64 Pressure sensor (pressure detection unit) 100, 200 Refrigerant charging control device 101 Control unit 102 Display unit (notification unit) 110 Cooling device (heat transport device)

Abstract

This method for filling a heat transport device (110) with a refrigerant comprises: a pre-filling step (step 902) for filling a refrigerant flow path (10) of a heat transport device (110) with an inactive gas such that the pressure inside the refrigerant flow path (10) of the heat transport device (110) reaches a prescribed pressure; and a main filling step (step 904) for filling the refrigerant flow path (10) of the heat transport device (110) with a refrigerant to a prescribed quantity necessary for operating the heat transport device (110), after the pre-filling step (step 902).

Description

熱輸送装置への冷媒の充填方法および熱輸送装置用の冷媒充填制御装置Method for filling refrigerant into heat transport device and refrigerant filling control device for heat transport device
 本発明は、熱輸送装置への冷媒の充填方法および熱輸送装置用の冷媒充填制御装置に関する。 The present invention relates to a method for filling a heat transport device with a refrigerant and a refrigerant filling control device for a heat transport device.
 従来、熱力学サイクルに従って作動する閉ループを制御する装置が知られている。このような装置は、たとえば、特許第6660095号公報に開示されている。  Conventionally, devices that control a closed loop that operates according to a thermodynamic cycle are known. Such a device is disclosed, for example, in Japanese Patent No. 6660095.
 上記特許第6660095号公報には、熱力学サイクルとしてのランキンサイクルにより、熱媒体である作動流体の圧縮および膨張によって外部の熱源と熱交換を行う閉ループを制御する装置が記載されている。この閉ループには、作動流体を循環および圧縮するためのポンプと、ポンプに流入させる液体状態の作動流体を保持するタンクとが配置されている。タンクには、加圧された気体である圧力源が、圧力調整弁を介して連結されている。上記特許第6660095号公報に記載の装置は、ポンプにおいて気体が生じるキャビテーションの発生を防止するために、閉ループの動作中に、圧力調整弁の動作を制御することによって、作動流体とは別個に圧力源から気体を流入させてタンク内を加圧する。  The above-mentioned Patent No. 6,660,095 describes a device that controls a closed loop in which heat is exchanged with an external heat source by compressing and expanding a working fluid, which is a heat medium, using a Rankine cycle as a thermodynamic cycle. This closed loop includes a pump for circulating and compressing the working fluid, and a tank that holds the liquid working fluid to be fed into the pump. A pressure source of pressurized gas is connected to the tank via a pressure regulating valve. In order to prevent the occurrence of cavitation, which generates gas in the pump, the device described in the above-mentioned Patent No. 6,660,095 controls the operation of the pressure regulating valve during the operation of the closed loop to allow gas to flow in from the pressure source separately from the working fluid, thereby pressurizing the inside of the tank.
特許第6660095号公報Japanese Patent No. 6660095
 しかしながら、上記特許第6660095号公報に記載の装置では、作動流体(冷媒)が充填されている閉ループの流路(冷媒流路)に対して、冷媒とは別個に圧力源から気体(不活性ガス)を流入させることによって冷媒を加圧する。その場合には、不活性ガスが液相状態の冷媒に溶け込むことに加えて、不活性ガスが冷媒に溶け込む量が冷媒の温度および圧力によって変化することに起因して、冷媒流路に対する不活性ガスの流入量(充填量)を把握することが困難となる。不活性ガスの充填量に応じて冷媒の蒸発および凝縮する温度が変化するため、熱力学サイクルを用いた熱輸送装置において、冷媒とは別個に充填される不活性ガスの充填量を容易に把握することが望まれている。 However, in the device described in the above-mentioned Patent Publication No. 6,660,095, a gas (inert gas) is introduced from a pressure source separately from the refrigerant into a closed loop flow path (refrigerant flow path) filled with a working fluid (refrigerant), thereby pressurizing the refrigerant. In this case, it is difficult to grasp the inlet amount (charge amount) of the inert gas into the refrigerant flow path, because the inert gas dissolves in the refrigerant in a liquid phase, and the amount of inert gas that dissolves in the refrigerant varies depending on the temperature and pressure of the refrigerant. Since the evaporation and condensation temperatures of the refrigerant vary depending on the charge amount of the inert gas, it is desirable to easily grasp the charge amount of the inert gas that is charged separately from the refrigerant in a heat transport device using a thermodynamic cycle.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、熱力学サイクルを用いた熱輸送装置において、冷媒とは別個に充填される不活性ガスの充填量を容易に把握することが可能な熱輸送装置への冷媒の充填方法および熱輸送装置用の冷媒充填制御装置を提供することである。 This invention was made to solve the problems described above, and one objective of the invention is to provide a method for filling a refrigerant into a heat transport device using a thermodynamic cycle, which makes it easy to grasp the amount of inert gas that is filled separately from the refrigerant, and a refrigerant filling control device for the heat transport device.
 この発明の第1の局面における熱輸送装置への冷媒の充填方法は、不活性ガスを、熱輸送装置の冷媒流路内の圧力が所定の圧力になるように、熱輸送装置の冷媒流路に充填する事前充填ステップと、事前充填ステップ後に、熱輸送装置の運転に必要な所定量まで、熱輸送装置の冷媒流路に冷媒を充填する本充填ステップと、を備える。なお、ここで言う「熱輸送装置」とは、対象を冷却する冷却装置と対象を加熱する加熱装置とを含む概念として記載している。 The method for filling a refrigerant into a heat transport device in a first aspect of the present invention includes a pre-filling step of filling the refrigerant flow path of the heat transport device with an inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes a predetermined pressure, and a main filling step of filling the refrigerant flow path of the heat transport device with refrigerant up to a predetermined amount required for operation of the heat transport device after the pre-filling step. Note that the term "heat transport device" is used here as a concept that includes a cooling device that cools an object and a heating device that heats an object.
 この発明の第2の局面における熱輸送装置用の冷媒充填制御装置は、圧力検出部によって検出される熱輸送装置の冷媒流路内の圧力を取得する制御を行う制御部を備え、制御部は、熱輸送装置の運転に必要な所定量まで、熱輸送装置の冷媒流路に冷媒を充填する本充填を行う前に、不活性ガスを、熱輸送装置の冷媒流路内の圧力が所定の圧力になるように、熱輸送装置の冷媒流路に充填する、事前充填を行う場合に、圧力検出部によって検出される熱輸送装置の冷媒流路内の圧力に基づいて、不活性ガスの充填が完了しているか否かを判定する制御を行う。 In a second aspect of the present invention, the refrigerant charging control device for a heat transport device includes a control unit that performs control to obtain the pressure in the refrigerant flow path of the heat transport device detected by the pressure detection unit, and the control unit performs control to determine whether charging of the inert gas is complete based on the pressure in the refrigerant flow path of the heat transport device detected by the pressure detection unit when performing pre-charging, in which an inert gas is charged into the refrigerant flow path of the heat transport device so that the pressure in the refrigerant flow path of the heat transport device becomes a predetermined pressure, before performing main charging, in which refrigerant is charged into the refrigerant flow path of the heat transport device up to a predetermined amount required for operation of the heat transport device.
 本発明の第1の局面における熱輸送装置への冷媒の充填方法では、不活性ガスを、熱輸送装置の冷媒流路内の圧力が所定の圧力になるように、熱輸送装置の冷媒流路に充填した後に、熱輸送装置の運転に必要な所定量まで、熱輸送装置の冷媒流路に冷媒を充填する本充填を行う。また、本発明の第2の局面における熱輸送装置用の冷媒充填制御装置では、本充填を行う前に、不活性ガスを、熱輸送装置の冷媒流路内の圧力が所定の圧力になるように熱輸送装置の冷媒流路に充填する。これにより、冷媒を充填した後に不活性ガスを充填する場合と異なり、冷媒に不活性ガスが溶け込むことに起因して不活性ガスの充填量を把握することが困難になることを抑制できる。その結果、熱力学サイクルを用いた熱輸送装置において、冷媒とは別個に充填される不活性ガスの充填量を容易に把握することができる。また、本発明では、冷媒を冷媒流路内に本充填する前に不活性ガスを充填するため、冷媒を充填した後に不活性ガスを充填する場合に比べて、充填させる際に要する不活性ガスの圧力を小さくすることができる。そのため、比較的高圧な不活性ガス源を設ける必要がないため、冷媒流路内に不活性ガスを容易に充填することができる。 In the method for filling a refrigerant into a heat transport device in the first aspect of the present invention, the refrigerant flow path of the heat transport device is filled with an inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes a predetermined pressure, and then the main filling is performed to fill the refrigerant flow path of the heat transport device with the refrigerant up to a predetermined amount required for the operation of the heat transport device. In addition, in the refrigerant filling control device for a heat transport device in the second aspect of the present invention, before the main filling, the refrigerant flow path of the heat transport device is filled with an inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes a predetermined pressure. This makes it possible to suppress the difficulty in grasping the amount of inert gas filled due to the inert gas dissolving in the refrigerant, unlike the case where the inert gas is filled after the refrigerant is filled. As a result, in a heat transport device using a thermodynamic cycle, the amount of inert gas filled separately from the refrigerant can be easily grasped. In addition, in the present invention, since the inert gas is filled before the main filling of the refrigerant into the refrigerant flow path, the pressure of the inert gas required for filling can be reduced compared to the case where the inert gas is filled after the refrigerant is filled. Therefore, since there is no need to provide a relatively high-pressure inert gas source, the inert gas can be easily filled into the refrigerant flow path.
二酸化炭素冷媒とともに、不活性ガスを用いる冷却装置を示した模式図である。FIG. 1 is a schematic diagram illustrating a cooling system that uses an inert gas along with carbon dioxide refrigerant. 第1実施形態の冷却装置への冷媒の充填方法による処理を示したフローチャートである。4 is a flowchart showing a process of a method for filling a refrigerant into a cooling device according to the first embodiment. 第2実施形態による冷媒充填制御装置および冷却装置の構成を示した模式図である。FIG. 13 is a schematic diagram showing the configuration of a refrigerant charging control device and a cooling device according to a second embodiment. 第2実施形態の冷却装置への冷媒の充填方法による処理を示したフローチャートである。10 is a flowchart showing a process of a method for filling a cooling device with a refrigerant according to a second embodiment. 第3実施形態による冷媒充填制御装置および冷却装置の構成を示した模式図である。FIG. 13 is a schematic diagram showing the configuration of a refrigerant charging control device and a cooling device according to a third embodiment. 第4実施形態の冷却装置への冷媒の充填方法による処理を示したフローチャートである。13 is a flowchart showing a process of a method for filling a cooling device with a refrigerant according to a fourth embodiment.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 Below, an embodiment of the present invention will be described with reference to the drawings.
 [第1実施形態]
 まず、第1実施形態として、作業者が作業することによって行われる冷却装置110(熱輸送装置)への冷媒(二酸化炭素冷媒)の充填方法を、図1および図2を参照して、説明する。
[First embodiment]
First, as a first embodiment, a method for filling a cooling device 110 (heat transport device) with a refrigerant (carbon dioxide refrigerant) performed by an operator will be described with reference to FIGS. 1 and 2. FIG.
 (冷却装置の構成)
 冷却装置110(図1参照)は、二酸化炭素を冷媒とする冷却装置である。冷却装置110は、気体と液体が混ざった気液二相状態の二酸化炭素を用いて、冷却を行う装置である。冷却装置110は、凝縮器1と、タンク2と、ポンプ3と、蒸発器4と、装置制御部5とを備える。冷却装置110は、不活性ガスによって、冷媒である二酸化炭素を加圧することによって、ポンプ3においてキャビテーションが発生することを防止している。キャビテーションとは、冷却装置110の動作時に冷却装置110の冷媒流路10に配置されたポンプ3において気体が生じることである。ポンプ3に流入された液相状態の冷媒の圧力がポンプ3内において飽和蒸気圧よりも小さくなる場合に、気体が生じることによってキャビテーションが発生する。不活性ガスは、冷却装置110の動作時において、冷却装置110の冷媒流路10に配置されたポンプ3に流入する冷媒の圧力が冷媒の飽和蒸気圧以上となるように、予め設定された設定量分、充填される。なお、冷却装置110は、請求の範囲における「熱輸送装置」の一例である。
(Configuration of the cooling device)
The cooling device 110 (see FIG. 1) is a cooling device that uses carbon dioxide as a refrigerant. The cooling device 110 is a device that performs cooling using carbon dioxide in a gas-liquid two-phase state in which gas and liquid are mixed. The cooling device 110 includes a condenser 1, a tank 2, a pump 3, an evaporator 4, and a device control unit 5. The cooling device 110 pressurizes the refrigerant carbon dioxide with an inert gas to prevent cavitation from occurring in the pump 3. Cavitation is the generation of gas in the pump 3 arranged in the refrigerant flow path 10 of the cooling device 110 during operation of the cooling device 110. When the pressure of the liquid-phase refrigerant flowing into the pump 3 becomes smaller than the saturated vapor pressure in the pump 3, gas is generated, causing cavitation. The inert gas is filled by a preset amount so that the pressure of the refrigerant flowing into the pump 3 arranged in the refrigerant flow path 10 of the cooling device 110 becomes equal to or higher than the saturated vapor pressure of the refrigerant during operation of the cooling device 110. The cooling device 110 is an example of a "heat transport device" in the claims.
 冷却装置110には、凝縮器1、タンク2、ポンプ3および蒸発器4と、凝縮器1、タンク2、ポンプ3および蒸発器4の各々に接続される配管とによって、冷媒流路10が形成されている。 In the cooling device 110, a refrigerant flow path 10 is formed by a condenser 1, a tank 2, a pump 3, an evaporator 4, and piping connected to each of the condenser 1, the tank 2, the pump 3, and the evaporator 4.
 凝縮器1は、冷媒(二酸化炭素)を凝縮する。凝縮器1は、チラーによって、冷媒を冷却して凝縮させるように構成されている。凝縮器1から流出した冷媒は、タンク2に送られる。タンク2は、冷媒を貯留する容器である。タンク2には、凝縮器1によって凝縮された冷媒が流入する。タンク2は、液体または気液二相になった冷媒を貯留する。タンク2に貯留された冷媒は、ポンプ3に送られる。また、タンク2には、冷媒とともに、不活性ガスが貯留される。 Condenser 1 condenses the refrigerant (carbon dioxide). Condenser 1 is configured to cool and condense the refrigerant using a chiller. The refrigerant flowing out of condenser 1 is sent to tank 2. Tank 2 is a container that stores the refrigerant. The refrigerant condensed by condenser 1 flows into tank 2. Tank 2 stores the refrigerant that has become a liquid or a two-phase gas-liquid state. The refrigerant stored in tank 2 is sent to pump 3. Tank 2 also stores an inert gas along with the refrigerant.
 ポンプ3は、タンク2に貯留された冷媒(二酸化炭素)を蒸発器4に送る。ポンプ3の動作は、装置制御部5によって制御されている。蒸発器4は、ポンプ3から吐出された冷媒を蒸発させることによって、図示しない冷却対象を冷却する。そして、蒸発器4から流出した冷媒は、凝縮器1に戻され、凝縮器1において凝縮される。 The pump 3 sends the refrigerant (carbon dioxide) stored in the tank 2 to the evaporator 4. The operation of the pump 3 is controlled by the device control unit 5. The evaporator 4 cools a cooling target (not shown) by evaporating the refrigerant discharged from the pump 3. The refrigerant flowing out of the evaporator 4 is then returned to the condenser 1, where it is condensed.
 装置制御部5は、冷却装置110の全体の制御を行うように構成されている。装置制御部5は、CPU(Central Processing Unit)などのプロセッサ、メモリなどを含んでいる。装置制御部5は、内部または外部のメモリ(記憶装置)に記録(格納)された制御用のソフトウェア(プログラム)によって、冷却装置110の全体の制御を行うように構成されている。 The device control unit 5 is configured to control the entire cooling device 110. The device control unit 5 includes a processor such as a CPU (Central Processing Unit), memory, etc. The device control unit 5 is configured to control the entire cooling device 110 using control software (programs) recorded (stored) in an internal or external memory (storage device).
 冷却装置110は、冷媒流路内の冷媒の温度を検出する温度センサ61および62を備える。また、冷却装置110は、冷媒流路内の圧力を検出する圧力センサ63および64を備える。なお、圧力センサ63および64は、請求の範囲の「圧力検出部」の一例である。 The cooling device 110 is equipped with temperature sensors 61 and 62 that detect the temperature of the refrigerant in the refrigerant flow path. The cooling device 110 is also equipped with pressure sensors 63 and 64 that detect the pressure in the refrigerant flow path. Note that the pressure sensors 63 and 64 are an example of the "pressure detection unit" in the claims.
 温度センサ61は、タンク2とポンプ3との間に配置され、タンク2から流出した冷媒の温度を検出する。また、温度センサ62は、蒸発器4と凝縮器1との間に配置され、蒸発器4から流出する冷媒の温度を検出する。 The temperature sensor 61 is disposed between the tank 2 and the pump 3, and detects the temperature of the refrigerant flowing out of the tank 2. The temperature sensor 62 is disposed between the evaporator 4 and the condenser 1, and detects the temperature of the refrigerant flowing out of the evaporator 4.
 圧力センサ63は、タンク2とポンプ3との間に配置され、タンク2とポンプ3との間を流れる冷媒の圧力を検出する。また、圧力センサ64は、蒸発器4と凝縮器1との間に配置され、蒸発器4と凝縮器1との間を流れる冷媒の圧力を検出する。 The pressure sensor 63 is disposed between the tank 2 and the pump 3, and detects the pressure of the refrigerant flowing between the tank 2 and the pump 3. The pressure sensor 64 is disposed between the evaporator 4 and the condenser 1, and detects the pressure of the refrigerant flowing between the evaporator 4 and the condenser 1.
 また、装置制御部5は、ポンプ3との通信を行うように接続されている。また、装置制御部5は、温度センサ61および62の各々と通信を行うように接続されている。また、装置制御部5は、圧力センサ63および64の各々と通信を行うように接続されている。 The device control unit 5 is also connected to communicate with the pump 3. The device control unit 5 is also connected to communicate with each of the temperature sensors 61 and 62. The device control unit 5 is also connected to communicate with each of the pressure sensors 63 and 64.
 装置制御部5は、温度センサ61、温度センサ62、圧力センサ63および圧力センサ64の各々の検出信号を取得して、冷却装置110の制御を行うように構成されている。 The device control unit 5 is configured to acquire the detection signals of the temperature sensor 61, the temperature sensor 62, the pressure sensor 63, and the pressure sensor 64, and control the cooling device 110.
 また、冷却装置110の冷媒流路10には、マニホールド7を介して、ボンベ121、ボンベ122、および、真空ポンプ123の各々が接続されている。 In addition, cylinder 121, cylinder 122, and vacuum pump 123 are each connected to refrigerant flow path 10 of cooling device 110 via manifold 7.
 ボンベ121には、二酸化炭素(冷媒)が充填されている。ボンベ121とマニホールド7との間には、流量調整弁81が設けられている。流量調整弁81は、開度を調整することによって、ボンベ121から流出する二酸化炭素の流量を調整する。 The cylinder 121 is filled with carbon dioxide (refrigerant). A flow rate control valve 81 is provided between the cylinder 121 and the manifold 7. The flow rate control valve 81 adjusts the opening degree to adjust the flow rate of carbon dioxide flowing out of the cylinder 121.
 ボンベ122には、不活性ガスが充填されている。ボンベ122には、たとえば、窒素が充填されている。ボンベ122とマニホールド7との間には、流量調整弁82が設けられている。流量調整弁82は、開度を調整することによって、ボンベ122から流出する不活性ガス(窒素)の流量を調整する。 The cylinder 122 is filled with an inert gas. The cylinder 122 is filled with, for example, nitrogen. A flow control valve 82 is provided between the cylinder 122 and the manifold 7. The flow control valve 82 adjusts the flow rate of the inert gas (nitrogen) flowing out of the cylinder 122 by adjusting its opening.
 真空ポンプ123は、冷却装置110の冷媒流路内を真空引きするためのポンプである。なお、本明細書中において、「真空」とは、絶対真空ではなく、特定の空間が、大気圧より低い圧力の気体で満たされている状態のことを示している。 The vacuum pump 123 is a pump for drawing a vacuum inside the refrigerant flow path of the cooling device 110. Note that in this specification, "vacuum" does not mean an absolute vacuum, but rather means a state in which a specific space is filled with gas at a pressure lower than atmospheric pressure.
 マニホールド7は、冷却装置110の冷媒流路10に接続される。具体的には、マニホールド7の内部の流路が、タンク2上流側の配管(タンク2と凝縮器1との間の配管)に接続される。また、マニホールド7には、ボンベ121、ボンベ122および真空ポンプ123の各々に接続する配管が接続される。マニホールド7は、バルブ7aおよび7bの開度を調整して、内部に形成された流路の閉塞および開放を行うことによって、冷媒流路10が接続する配管を切り替えることができる。これにより、冷媒流路10内への二酸化炭素(冷媒)の導入、冷媒流路10内への不活性ガスの導入、および、冷媒流路10内の真空引き(排気)を、マニホールド7によって切り替えることができる。 The manifold 7 is connected to the refrigerant flow path 10 of the cooling device 110. Specifically, the flow path inside the manifold 7 is connected to the piping upstream of the tank 2 (the piping between the tank 2 and the condenser 1). In addition, the manifold 7 is connected to piping that connects to each of the cylinders 121 and 122 and the vacuum pump 123. The manifold 7 can switch the piping to which the refrigerant flow path 10 is connected by adjusting the opening of the valves 7a and 7b to close and open the flow paths formed inside. This allows the manifold 7 to switch between introducing carbon dioxide (refrigerant) into the refrigerant flow path 10, introducing an inert gas into the refrigerant flow path 10, and drawing a vacuum (exhaust) inside the refrigerant flow path 10.
 (第1実施形態による冷媒の充填方法)
 図2を参照して、冷却装置110への第1実施形態による冷媒の充填方法の処理フロー(ステップ901~904)について、説明する。
(Refrigerant charging method according to the first embodiment)
With reference to FIG. 2, a process flow (steps 901 to 904) of the method for charging the cooling device 110 with the refrigerant according to the first embodiment will be described.
 まず、ステップ901において、作業者は、冷媒流路10内の真空引きを行う。作業者は、マニホールド7(バルブ7aおよび7b)と、真空ポンプ123とを操作して、冷媒流路10からボンベ121およびボンベ122までの間の配管内の真空引きを行う。冷媒流路10内の真空引きの完了後、作業者は、ステップ902の作業を行う。 First, in step 901, the worker draws a vacuum inside the refrigerant flow path 10. The worker operates the manifold 7 ( valves 7a and 7b) and the vacuum pump 123 to draw a vacuum inside the piping between the refrigerant flow path 10 and the cylinders 121 and 122. After completing the vacuum drawing inside the refrigerant flow path 10, the worker performs the work of step 902.
 ステップ902において、作業者は、事前充填を行う。ステップ902において、作業者は、不活性ガスを冷却装置110の冷媒流路10に予め充填した後に、二酸化炭素を、ドライアイス(固体)の発生を抑制する充填速度で、冷却装置110の冷媒流路10内の圧力が二酸化炭素の三重点圧力以上になるように、冷却装置110の冷媒流路10に充填する。すなわち、冷媒流路10への二酸化炭素の充填前に、不活性ガスが冷媒流路10内に充填される。不活性ガスは、前述したように、ポンプ3におけるキャビテーションの発生を防止するために冷媒流路10内に充填される。なお、キャビテーション防止に必要な不活性ガスの充填量(設定量)は、ポンプ3の性能によって異なる。すなわち、キャビテーション防止に必要な不活性ガスを、冷媒流路10内に充填した後の冷媒流路10内の圧力は、ポンプ3の性能によって異なる。不活性ガスは、冷却装置110の冷媒流路10内の圧力がキャビテーションの発生しない所定の圧力になるように、予め設定された充填量(設定量)分だけ充填される。第1実施形態では、不活性ガス充填後の冷媒流路10内の圧力は、二酸化炭素の三重点圧力未満である。 In step 902, the worker performs pre-filling. In step 902, the worker pre-fills the refrigerant flow path 10 of the cooling device 110 with an inert gas, and then fills the refrigerant flow path 10 of the cooling device 110 with carbon dioxide at a filling rate that suppresses the generation of dry ice (solid) so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide. That is, before the refrigerant flow path 10 is filled with carbon dioxide, the inert gas is filled into the refrigerant flow path 10. As described above, the inert gas is filled into the refrigerant flow path 10 to prevent cavitation from occurring in the pump 3. Note that the filling amount (set amount) of the inert gas required to prevent cavitation differs depending on the performance of the pump 3. That is, the pressure in the refrigerant flow path 10 after the inert gas required to prevent cavitation is filled into the refrigerant flow path 10 differs depending on the performance of the pump 3. The inert gas is filled by a preset filling amount (set amount) so that the pressure in the refrigerant flow path 10 of the cooling device 110 becomes a predetermined pressure at which cavitation does not occur. In the first embodiment, the pressure in the refrigerant flow path 10 after filling with the inert gas is less than the triple point pressure of carbon dioxide.
 第1実施形態では、ステップ902(事前充填)において、二酸化炭素を冷媒流路10内に充填する前に、真空引きされた冷媒流路10内に、予め不活性ガスが充填される。不活性ガスを真空引きされた冷媒流路10内に、事前充填する際には、当然、ドライアイスは発生しない。したがって、不活性ガスを予め充填することによって、真空引きされた冷媒流路10内に二酸化炭素を徐々に充填して、冷媒流路10内の圧力を徐々に昇圧する場合に比べて、冷媒流路10内の圧力を、二酸化炭素の三重点圧力に近づくように、容易に昇圧することができる。これにより、真空引きされた冷媒流路10内に不活性ガスを予め充填した後に、二酸化炭素を冷媒流路10に充填することによって、真空引きされた冷媒流路10内に二酸化炭素を充填した後に、不活性ガスを充填する場合に比べて、冷媒流路10内でドライアイスが発生することなく、冷媒流路10内の圧力を容易に二酸化炭素の三重点圧力以上に昇圧することができる。 In the first embodiment, in step 902 (pre-filling), before filling the refrigerant flow path 10 with carbon dioxide, an inert gas is pre-filled into the refrigerant flow path 10 that has been evacuated. When pre-filling the refrigerant flow path 10 that has been evacuated with an inert gas, dry ice is not generated. Therefore, by pre-filling the inert gas, the pressure in the refrigerant flow path 10 can be easily increased to approach the triple point pressure of carbon dioxide, compared to the case where the refrigerant flow path 10 that has been evacuated is gradually filled with carbon dioxide and the pressure in the refrigerant flow path 10 is gradually increased. As a result, by pre-filling the refrigerant flow path 10 that has been evacuated with an inert gas and then filling the refrigerant flow path 10 with carbon dioxide, the pressure in the refrigerant flow path 10 can be easily increased to or above the triple point pressure of carbon dioxide, without generating dry ice, compared to the case where the refrigerant flow path 10 that has been evacuated is filled with carbon dioxide and then filled with an inert gas.
 ステップ902において、作業者は、二酸化炭素を、ドライアイスの発生を抑制する充填速度で、冷却装置110の冷媒流路10内の圧力が二酸化炭素の三重点圧力(0.52MPa-a)以上になるように、冷却装置110の冷媒流路10に充填する。すなわち、作業者は、内部の圧力が二酸化炭素の三重点圧力(0.52MPa-a)未満であり、不活性ガスが充填された状態の冷却装置110の冷媒流路10に、内部の圧力が二酸化炭素の三重点圧力(0.52MPa-a)以上になるように、二酸化炭素を充填する。たとえば、冷却装置110の冷媒流路10内の圧力が、二酸化炭素の三重点圧力(0.52MPa-a)未満の状態から、0.7MPa-a以上になるように、二酸化炭素が充填される。なお、ステップ902は、請求の範囲の「事前充填ステップ」の一例である。 In step 902, the operator fills the refrigerant flow path 10 of the cooling device 110 with carbon dioxide at a filling rate that suppresses the generation of dry ice, so that the pressure inside the refrigerant flow path 10 of the cooling device 110 is equal to or greater than the triple point pressure of carbon dioxide (0.52 MPa-a). That is, the operator fills the refrigerant flow path 10 of the cooling device 110, which is in a state where the internal pressure is less than the triple point pressure of carbon dioxide (0.52 MPa-a) and is filled with inert gas, with carbon dioxide, so that the internal pressure is equal to or greater than the triple point pressure of carbon dioxide (0.52 MPa-a). For example, carbon dioxide is filled so that the pressure inside the refrigerant flow path 10 of the cooling device 110 changes from a state where the pressure is less than the triple point pressure of carbon dioxide (0.52 MPa-a) to 0.7 MPa-a or greater. Note that step 902 is an example of a "pre-filling step" in the claims.
 なお、ステップ902(事前充填)における二酸化炭素の充填速度は、後述するステップ904(本充填)における二酸化炭素の充填速度よりも小さい。なお、本充填における二酸化炭素の充填速度に対する、事前充填における二酸化炭素の充填速度の比は、冷却装置110(冷媒流路10)の内容積に応じる。作業者は、マニホールド7のバルブ7aおよび流量調整弁81の開度を調整して、ドライアイスが冷媒流路10内に発生しないように、二酸化炭素を徐々に冷媒流路10内に充填する。 Note that the carbon dioxide filling rate in step 902 (pre-filling) is lower than the carbon dioxide filling rate in step 904 (main filling) described below. Note that the ratio of the carbon dioxide filling rate in pre-filling to the carbon dioxide filling rate in main filling depends on the internal volume of the cooling device 110 (refrigerant flow path 10). The operator adjusts the opening of valve 7a and flow control valve 81 of manifold 7 to gradually fill carbon dioxide into refrigerant flow path 10 so that dry ice does not form in the refrigerant flow path 10.
 ステップ903において、作業者は、冷却装置110の冷媒流路10内の温度が、所定の温度範囲内の温度になっているか否かを確認する。作業者は、温度センサ61および62によって、検出された冷媒流路10内の温度を確認する。そして、作業者は、温度センサ61および62が検出した冷媒流路10内の温度に基づいて、冷媒流路10内においてドライアイスが発生していないことを確認する。作業者は、冷却装置110が備える図示しない表示部およびゲージ(メータ)などによって、冷媒流路10内の温度を確認してもよいし、後述する第2実施形態のように、充填作業用の装置を用いて、冷媒流路10内の温度を確認してもよい。 In step 903, the worker checks whether the temperature in the refrigerant flow path 10 of the cooling device 110 is within a predetermined temperature range. The worker checks the temperature in the refrigerant flow path 10 detected by the temperature sensors 61 and 62. The worker then checks that no dry ice has been generated in the refrigerant flow path 10 based on the temperature in the refrigerant flow path 10 detected by the temperature sensors 61 and 62. The worker may check the temperature in the refrigerant flow path 10 using a display unit and a gauge (meter) (not shown) provided in the cooling device 110, or may check the temperature in the refrigerant flow path 10 using a filling device as in the second embodiment described below.
 作業者は、冷却装置110の冷媒流路10内の温度が、所定の温度範囲内の温度になっていない場合には、冷却装置110の冷媒流路10内の温度が、所定の温度範囲内の温度になるまで待機する。そして、冷却装置110の冷媒流路10内の温度が、所定の温度範囲内の温度になっている場合には、作業者は、二酸化炭素の本充填(ステップ904)を開始する。 If the temperature in the refrigerant flow path 10 of the cooling device 110 is not within the predetermined temperature range, the operator waits until the temperature in the refrigerant flow path 10 of the cooling device 110 is within the predetermined temperature range. Then, if the temperature in the refrigerant flow path 10 of the cooling device 110 is within the predetermined temperature range, the operator starts the main charging of carbon dioxide (step 904).
 すなわち、ステップ904は、冷却装置110の冷媒流路10内の温度が、所定の温度範囲内の温度になったことに基づいて開始される。なお、ステップ904は、請求の範囲の「本充填ステップ」の一例である。 In other words, step 904 is started when the temperature in the refrigerant flow path 10 of the cooling device 110 falls within a predetermined temperature range. Note that step 904 is an example of the "main filling step" in the claims.
 ステップ904において、作業者は、二酸化炭素の本充填を行う。具体的には、作業者は、冷却装置110の冷媒流路10内の圧力が二酸化炭素の三重点圧力以上の状態で、冷却装置110の運転に必要な所定量まで、冷却装置110の冷媒流路10に二酸化炭素を充填する。具体的には、作業者は、マニホールド7のバルブ7aおよび流量調整弁81の開度を調整して、冷媒流路10に、冷却装置110の運転に必要な所定量の二酸化炭素を充填する。 In step 904, the worker performs the actual filling of carbon dioxide. Specifically, the worker fills the refrigerant flow path 10 of the cooling device 110 with carbon dioxide up to a predetermined amount required for operation of the cooling device 110, while the pressure inside the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide. Specifically, the worker adjusts the opening of the valve 7a and the flow control valve 81 of the manifold 7 to fill the refrigerant flow path 10 with the predetermined amount of carbon dioxide required for operation of the cooling device 110.
 (第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
(Effects of the First Embodiment)
In the first embodiment, the following effects can be obtained.
 第1実施形態では、不活性ガスを、冷却装置110(熱輸送装置)の冷媒流路10内の圧力が所定の圧力になるように、冷却装置110の冷媒流路10に充填した後に、冷却装置110の運転に必要な所定量まで、冷却装置110の冷媒流路10に冷媒を充填する本充填を行う。これにより、冷媒を充填した後に不活性ガスを充填する場合と異なり、冷媒に不活性ガスが溶け込むことに起因して不活性ガスの充填量を把握することが困難になることを抑制できる。その結果、熱力学サイクルを用いた冷却装置110において、冷媒とは別個に充填される不活性ガスの充填量を容易に把握することができる。また、第1実施形態では、冷媒を冷媒流路10内に本充填する前に不活性ガスを充填するため、冷媒を充填した後に不活性ガスを充填する場合に比べて、充填させる際に要する不活性ガスの圧力を小さくすることができる。そのため、比較的高圧な不活性ガス源を設ける必要がないため、冷媒流路10内に不活性ガスを容易に充填することができる。 In the first embodiment, the inert gas is filled into the refrigerant flow path 10 of the cooling device 110 (heat transport device) so that the pressure in the refrigerant flow path 10 of the cooling device 110 becomes a predetermined pressure, and then the refrigerant is filled into the refrigerant flow path 10 of the cooling device 110 to a predetermined amount required for the operation of the cooling device 110. This makes it possible to suppress the difficulty in grasping the amount of inert gas filled due to the inert gas dissolving in the refrigerant, unlike the case where the inert gas is filled after the refrigerant is filled. As a result, in the cooling device 110 using a thermodynamic cycle, the amount of inert gas filled separately from the refrigerant can be easily grasped. In addition, in the first embodiment, the inert gas is filled before the refrigerant is filled into the refrigerant flow path 10, so the pressure of the inert gas required for filling can be reduced compared to the case where the inert gas is filled after the refrigerant is filled. Therefore, since there is no need to provide a relatively high-pressure inert gas source, the inert gas can be easily filled into the refrigerant flow path 10.
 また、所定の圧力まで不活性ガスを充填することによって不活性ガスの冷媒流路10への充填量を把握できるので、不活性ガスの重量に基づいて充填量を測定する場合に比べて、不活性ガスの充填量を容易に把握できる。とくに、必要な不活性ガスの量が少ない場合には、重量に基づいて充填量を測定することが困難となる場合があるため、所定の圧力まで不活性ガスを充填することによって不活性ガスの充填量をより効果的に把握することができる。 In addition, by filling the refrigerant flow path 10 with inert gas up to a predetermined pressure, the amount of inert gas filled can be determined, making it easier to determine the amount of inert gas filled compared to measuring the amount filled based on the weight of the inert gas. In particular, when the amount of inert gas required is small, it may be difficult to measure the amount filled based on weight, so by filling the refrigerant flow path 10 with inert gas up to a predetermined pressure, the amount of inert gas filled can be determined more effectively.
 また、第1実施形態では、事前充填ステップ(ステップ902)は、冷却装置110(熱輸送装置)の動作時に冷却装置110の冷媒流路10に配置されたポンプ3において気体が生じるキャビテーションが発生しない所定の圧力になるように、不活性ガスを充填する。このように構成すれば、冷媒(二酸化炭素)を本充填するステップ904よりも前の事前充填ステップ(ステップ902)において不活性ガスを充填することによって、不活性ガスの充填量を容易に把握することができるので、事前充填ステップにおいてキャビテーションが発生しない所定の圧力になるように不活性ガスを充填することによって、キャビテーションの発生を防止するために充填される不活性ガスの充填量を効果的に容易に把握することができる。 In the first embodiment, the pre-filling step (step 902) fills the cooling device 110 (heat transport device) with inert gas to a predetermined pressure that does not cause cavitation, which generates gas in the pump 3 arranged in the refrigerant flow path 10 of the cooling device 110 when the cooling device 110 (heat transport device) is in operation. With this configuration, the amount of inert gas filled can be easily determined by filling the inert gas in the pre-filling step (step 902) prior to step 904 in which the refrigerant (carbon dioxide) is actually filled, and therefore, by filling the inert gas in the pre-filling step to a predetermined pressure that does not cause cavitation, the amount of inert gas filled to prevent cavitation can be effectively and easily determined.
 また、第1実施形態では、事前充填ステップ(ステップ902)は、冷却装置110(熱輸送装置)の動作時に冷却装置110の冷媒流路10に配置されたポンプ3に流入する冷媒(二酸化炭素)の圧力が冷媒の飽和蒸気圧以上となるように、不活性ガスを冷却装置110の冷媒流路10内の圧力が所定の圧力になるように充填する。このように構成すれば、事前充填ステップ(ステップ902)において不活性ガスが充填されるため、冷却装置110の動作時にポンプ3に流入する冷媒の圧力が冷媒の飽和蒸気圧以上となるように設定された充填量(設定量)分だけ、不活性ガスが充填されていることをより効果的に容易に把握することができる。 In the first embodiment, the pre-filling step (step 902) fills the refrigerant flow path 10 of the cooling device 110 with inert gas so that the pressure inside the refrigerant flow path 10 of the cooling device 110 becomes a predetermined pressure so that the pressure of the refrigerant (carbon dioxide) flowing into the pump 3 arranged in the refrigerant flow path 10 of the cooling device 110 (heat transport device) becomes equal to or higher than the saturated vapor pressure of the refrigerant when the cooling device 110 (heat transport device) is in operation. With this configuration, since the inert gas is filled in the pre-filling step (step 902), it is possible to more effectively and easily grasp that the inert gas has been filled by the amount of filling (set amount) set so that the pressure of the refrigerant flowing into the pump 3 becomes equal to or higher than the saturated vapor pressure of the refrigerant when the cooling device 110 is in operation.
 また、第1実施形態では、事前充填ステップ(ステップ902)は、冷却装置110(熱輸送装置)の冷媒流路10内の圧力が所定の圧力になるように、不活性ガスとして窒素を充填する。このように構成すれば、比較的安定した物質である窒素を不活性ガスとして充填することによって、不活性ガスによるキャビテーションの発生をより安定して抑制することができる。そのため、事前充填ステップ(ステップ902)において不活性ガスとして窒素を充填することによって、冷却装置110の動作をより安定させることができるとともに、冷却装置110の動作をより安定させるための不活性ガスの充填量をより一層効果的に容易に把握することができる。 In the first embodiment, the pre-filling step (step 902) fills in nitrogen as an inert gas so that the pressure in the refrigerant flow path 10 of the cooling device 110 (heat transport device) becomes a predetermined pressure. With this configuration, by filling nitrogen, a relatively stable substance, as the inert gas, the occurrence of cavitation due to the inert gas can be more stably suppressed. Therefore, by filling nitrogen as the inert gas in the pre-filling step (step 902), the operation of the cooling device 110 can be more stabilized, and the amount of inert gas to be filled to further stabilize the operation of the cooling device 110 can be more effectively and easily grasped.
 また、第1実施形態では、不活性ガスを冷却装置110(熱輸送装置)の冷媒流路10に予め充填した後に、二酸化炭素(冷媒)を、ドライアイス(固体)の発生を抑制する充填速度で、冷却装置110の冷媒流路10内の圧力が二酸化炭素の三重点圧力以上になるように、冷却装置110の真空引きされた冷媒流路10に充填する事前充填を行う。これにより、冷媒流路10内の圧力を二酸化炭素の三重点圧力以上にした状態で、二酸化炭素を冷却装置110の運転に必要な所定量まで、冷却装置110の冷媒流路10に二酸化炭素を充填する本充填を行うことができる。その結果、二酸化炭素の本充填の際に、ドライアイスが発生しない圧力状態の冷媒流路10に二酸化炭素を充填することができるので、二酸化炭素の加熱または冷却を行わずに、ドライアイスの発生に起因する冷媒流路10の閉塞の発生を抑制することができる。これにより、二酸化炭素の充填の際に、二酸化炭素の加熱または冷却を行う場合と異なり、二酸化炭素の加熱または冷却を行うための装置を追加する必要がないので、冷却装置110の冷媒流路10内に二酸化炭素冷媒を充填するための装置の装置構成の複雑化を抑制しつつ、ドライアイスの発生に起因する冷媒流路10の閉塞の発生を抑制することができる。 In the first embodiment, the refrigerant flow path 10 of the cooling device 110 (heat transport device) is pre-filled with an inert gas, and then carbon dioxide (refrigerant) is pre-filled into the evacuated refrigerant flow path 10 of the cooling device 110 at a filling rate that suppresses the generation of dry ice (solid) so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide. This allows the main filling of filling the refrigerant flow path 10 of the cooling device 110 with carbon dioxide up to a predetermined amount required for the operation of the cooling device 110 with carbon dioxide, with the pressure in the refrigerant flow path 10 being equal to or higher than the triple point pressure of carbon dioxide. As a result, during the main filling of carbon dioxide, carbon dioxide can be filled into the refrigerant flow path 10 at a pressure state in which dry ice is not generated, and therefore the occurrence of blockage of the refrigerant flow path 10 due to the generation of dry ice can be suppressed without heating or cooling the carbon dioxide. As a result, unlike when carbon dioxide is heated or cooled during filling, there is no need to add a device for heating or cooling the carbon dioxide, so it is possible to prevent the occurrence of blockage of the refrigerant flow path 10 due to the generation of dry ice while suppressing the complexity of the device configuration for filling the refrigerant flow path 10 of the cooling device 110 with carbon dioxide refrigerant.
 また、上記第1実施形態による冷却装置110(熱輸送装置)への冷媒の充填方法では、以下のように実施することによって、下記のような更なる効果が得られる。 In addition, the method of filling the cooling device 110 (heat transport device) with refrigerant according to the first embodiment described above can be carried out as follows to obtain the following additional effects.
 第1実施形態では、本充填ステップ(ステップ904)は、冷却装置110(熱輸送装置)の冷媒流路10内の温度が、所定の温度範囲内の温度になったことに基づいて開始される。これにより、冷媒流路10において、ドライアイスの発生に起因する温度低下が発生していないことを確認した後に、二酸化炭素の本充填を開始することができる。その結果、二酸化炭素の本充填の際に、ドライアイスの発生に起因して、冷媒流路10が閉塞してしまうことを、より効果的に抑制することができる。 In the first embodiment, the main filling step (step 904) is started based on the temperature in the refrigerant flow path 10 of the cooling device 110 (heat transport device) reaching a temperature within a predetermined temperature range. This allows the main filling of carbon dioxide to be started after it has been confirmed that no temperature drop due to the generation of dry ice has occurred in the refrigerant flow path 10. As a result, it is possible to more effectively prevent the refrigerant flow path 10 from becoming clogged due to the generation of dry ice during the main filling of carbon dioxide.
 また、第1実施形態では、事前充填ステップ(ステップ902)における二酸化炭素の充填速度は、本充填ステップ(ステップ904)における二酸化炭素の充填速度よりも小さい。これにより、事前充填ステップにおける二酸化炭素の充填速度と、本充填ステップにおける二酸化炭素の充填速度とが略同じ場合に比べて、断熱膨張による二酸化炭素の急激な温度の低下を抑制することができる。その結果、冷媒流路10内において、断熱膨張による急激な温度の低下に起因して、二酸化炭素がドライアイスになってしまうことを抑制することができる。また、事前充填ステップにおける二酸化炭素の充填速度よりも、本充填ステップにおける二酸化炭素の充填速度が大きいので、二酸化炭素の本充填に要する時間を短くすることができる。その結果、冷却装置110(熱輸送装置)の運転に必要な所定量まで、二酸化炭素を充填するまでの時間を短縮することができる。 In addition, in the first embodiment, the carbon dioxide filling rate in the pre-filling step (step 902) is lower than the carbon dioxide filling rate in the main filling step (step 904). This makes it possible to suppress a sudden drop in temperature of the carbon dioxide due to adiabatic expansion, compared to when the carbon dioxide filling rate in the pre-filling step and the carbon dioxide filling rate in the main filling step are approximately the same. As a result, it is possible to suppress the carbon dioxide from turning into dry ice due to a sudden drop in temperature due to adiabatic expansion in the refrigerant flow path 10. In addition, since the carbon dioxide filling rate in the main filling step is higher than the carbon dioxide filling rate in the pre-filling step, the time required for the main filling of carbon dioxide can be shortened. As a result, the time required to fill carbon dioxide to a predetermined amount required for the operation of the cooling device 110 (heat transport device) can be shortened.
 [第2実施形態]
 第2実施形態として、冷媒充填制御装置100が、作業者に対して、冷却装置110への冷媒の充填方法の作業を促す表示を行う、冷却装置110への冷媒の充填方法を、図3および図4を参照して、説明する。
[Second embodiment]
As a second embodiment, a method of filling a cooling device 110 with a refrigerant in which the refrigerant filling control device 100 displays a message to prompt an operator to fill the cooling device 110 with a refrigerant will be described with reference to FIGS. 3 and 4.
 冷媒充填制御装置100は、制御部101と、表示部102とを備える。なお、冷媒充填制御装置100は、請求の範囲の「熱輸送装置用の冷媒充填制御装置」の一例である。また、表示部102は、請求の範囲の「報知部」の一例である。 The refrigerant charging control device 100 includes a control unit 101 and a display unit 102. The refrigerant charging control device 100 is an example of a "refrigerant charging control device for a heat transport device" as claimed. The display unit 102 is an example of a "notification unit" as claimed.
 制御部101は、冷媒充填制御装置100全体の制御を行うように構成されている。制御部101は、CPUなどのプロセッサ、メモリなどを含んでいる。制御部101は、内部または外部のメモリ(記憶装置)に記録(格納)された制御用のソフトウェア(プログラム)によって、冷却装置110への二酸化炭素冷媒の充填に関する制御を行うように構成されている。 The control unit 101 is configured to control the entire refrigerant charging control device 100. The control unit 101 includes a processor such as a CPU, a memory, etc. The control unit 101 is configured to control the charging of the carbon dioxide refrigerant into the cooling device 110 by control software (programs) recorded (stored) in an internal or external memory (storage device).
 制御部101は、温度センサ61および62によって検出される冷却装置110の冷媒流路10を流れる冷媒の温度を取得する制御を行う。制御部101は、圧力センサ63および64によって検出される冷却装置110の冷媒流路10を流れる冷媒の圧力を取得する制御を行う。すなわち、制御部101は、圧力センサ63および64によって検出される冷却装置110の冷媒流路10内の圧力を取得する制御を行う。 The control unit 101 controls the acquisition of the temperature of the refrigerant flowing through the refrigerant flow path 10 of the cooling device 110, which is detected by the temperature sensors 61 and 62. The control unit 101 controls the acquisition of the pressure of the refrigerant flowing through the refrigerant flow path 10 of the cooling device 110, which is detected by the pressure sensors 63 and 64. In other words, the control unit 101 controls the acquisition of the pressure within the refrigerant flow path 10 of the cooling device 110, which is detected by the pressure sensors 63 and 64.
 表示部102は、制御部101が取得した冷却装置110の冷媒流路10を流れる冷媒の圧力を表示(報知)する。また、表示部102は、制御部101が取得した冷却装置110の冷媒流路10を流れる冷媒の温度を表示(報知)する。すなわち、表示部102は、冷却装置110の冷媒流路10に冷媒(二酸化炭素)を充填するための情報を表示(報知)する。表示部102は、液晶ディスプレイまたは有機ELディスプレイを含む。また、表示部102は、ゲージ(メータ)を含んでもよい。 The display unit 102 displays (informs) the pressure of the refrigerant flowing through the refrigerant flow path 10 of the cooling device 110, which is acquired by the control unit 101. The display unit 102 also displays (informs) the temperature of the refrigerant flowing through the refrigerant flow path 10 of the cooling device 110, which is acquired by the control unit 101. In other words, the display unit 102 displays (informs) information for filling the refrigerant (carbon dioxide) into the refrigerant flow path 10 of the cooling device 110. The display unit 102 includes a liquid crystal display or an organic EL display. The display unit 102 may also include a gauge (meter).
 制御部101は、不活性ガスおよび冷媒(二酸化炭素)を、冷却装置110の冷媒流路10内の圧力が二酸化炭素の三重点圧力以上になるように、冷却装置110の真空引きされた冷媒流路10に充填する事前充填が完了しているか否かを判定する制御を行う。第2実施形態では、制御部101は、事前充填を行う場合に、圧力センサ63および64によって検出される冷却装置110の冷媒流路10を流れる冷媒の圧力(冷媒流路10内の圧力)に基づいて、事前充填が完了しているか否かを判定する制御を行う。 The control unit 101 performs control to determine whether or not pre-filling is completed, in which an inert gas and a refrigerant (carbon dioxide) are filled into the evacuated refrigerant flow path 10 of the cooling device 110 so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or greater than the triple point pressure of carbon dioxide. In the second embodiment, when performing pre-filling, the control unit 101 performs control to determine whether or not pre-filling is completed based on the pressure of the refrigerant flowing through the refrigerant flow path 10 of the cooling device 110 (pressure in the refrigerant flow path 10) detected by the pressure sensors 63 and 64.
 具体的には、制御部101は、本充填を行う前に不活性ガスを所定の圧力まで充填する事前充填を行う場合に、圧力センサ63および64によって検出される冷却装置110の冷媒流路10内の圧力に基づいて、不活性ガスの充填が完了しているか否かを判定する制御を行う。たとえば、制御部101は、キャビテーションが発生しない充填量に対応する不活性ガスの事前充填における所定の圧力の値を予め記憶している。そして、事前充填において不活性ガスが充填されている最中において、圧力センサ63および64によって検出される冷媒流路10内の圧力が、予め設定されている所定の圧力まで上昇したか否かによって、不活性ガスの充填が完了しているか否かを判定する。その後、制御部101は、同様に、圧力センサ63および64によって検出される冷媒流路10内の圧力(冷媒流路10を流れる冷媒の圧力)が、予め設定された冷媒の三重点圧力以上の値まで上昇したか否かによって、事前充填における冷媒の充填が完了しているか否かを判定する。 Specifically, when pre-filling is performed to fill the inert gas to a predetermined pressure before the main filling, the control unit 101 performs control to determine whether or not the filling of the inert gas is completed based on the pressure in the refrigerant flow path 10 of the cooling device 110 detected by the pressure sensors 63 and 64. For example, the control unit 101 pre-stores a value of a predetermined pressure in pre-filling of the inert gas corresponding to a filling amount at which cavitation does not occur. Then, while the inert gas is being filled in pre-filling, the control unit 101 determines whether or not the filling of the inert gas is completed based on whether or not the pressure in the refrigerant flow path 10 detected by the pressure sensors 63 and 64 has risen to a predetermined pressure. Thereafter, the control unit 101 similarly determines whether or not the filling of the refrigerant in pre-filling is completed based on whether or not the pressure in the refrigerant flow path 10 (the pressure of the refrigerant flowing through the refrigerant flow path 10) detected by the pressure sensors 63 and 64 has risen to a value equal to or higher than the triple point pressure of the refrigerant that is previously set.
 また、制御部101は、事前充填後において、冷却装置110の冷媒流路10内の温度が所定の温度範囲内になったか否かを判定する。具体的には、制御部101は、温度センサ61および62によって検出された冷媒流路10内の温度が、所定の温度範囲内になったか否かを判定する。たとえば、制御部101は、温度センサ61および62の各々によって検出された冷媒流路10内の温度の差分が、数℃未満に収まっているか否かを判定する。また、制御部101は、温度センサ61および62の各々によって検出された冷媒流路10内の温度の全てが、所定の温度範囲内に収まっているか否かを判定してもよい。 The control unit 101 also determines whether the temperature in the refrigerant flow path 10 of the cooling device 110 is within a predetermined temperature range after pre-filling. Specifically, the control unit 101 determines whether the temperature in the refrigerant flow path 10 detected by the temperature sensors 61 and 62 is within a predetermined temperature range. For example, the control unit 101 determines whether the difference in the temperatures in the refrigerant flow path 10 detected by each of the temperature sensors 61 and 62 is within less than a few degrees Celsius. The control unit 101 may also determine whether all of the temperatures in the refrigerant flow path 10 detected by each of the temperature sensors 61 and 62 are within the predetermined temperature range.
 制御部101は、事前充填が完了していると判定した場合には、冷却装置110の冷媒流路10内の圧力が二酸化炭素の三重点圧力以上の状態で、冷却装置110の運転に必要な所定量まで、冷却装置110の冷媒流路10に二酸化炭素を充填する本充填を行うことに関する制御を行う。 When the control unit 101 determines that pre-filling is complete, it controls the actual filling of the refrigerant flow path 10 of the cooling device 110 with carbon dioxide up to a predetermined amount required for the operation of the cooling device 110, while the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide.
 第2実施形態では、制御部101は、事前充填において、不活性ガスの充填が完了していると判定された場合に、不活性ガスの充填が完了していることを示す情報を表示部102により表示(報知)する。たとえば、制御部101は、表示部102に、「不活性ガスの充填が完了しました。」といった文章(文字)を表示させる制御を行う。また、制御部101は、不活性ガスの充填が完了していることを示す情報として、圧力センサ63および64から取得された冷却装置110の冷媒流路10内の圧力を表示部102により表示(報知)する。また、制御部101は、不活性ガスの充填が完了していることを示す情報と共に、続けて事前充填における二酸化炭素(冷媒)の充填を行うことを促す文章(文字)を表示部102により表示(報知)する。 In the second embodiment, when the control unit 101 determines that the filling of the inert gas is completed in the pre-filling, the control unit 101 causes the display unit 102 to display (report) information indicating that the filling of the inert gas is completed. For example, the control unit 101 controls the display unit 102 to display a sentence (characters) such as "The filling of the inert gas is completed." The control unit 101 also causes the display unit 102 to display (report) the pressure in the refrigerant flow path 10 of the cooling device 110 acquired from the pressure sensors 63 and 64 as information indicating that the filling of the inert gas is completed. The control unit 101 also causes the display unit 102 to display (report) a sentence (characters) encouraging the filling of carbon dioxide (refrigerant) in the pre-filling, together with the information indicating that the filling of the inert gas is completed.
 第2実施形態では、制御部101は、事前充填後において、冷却装置110の冷媒流路10内の温度が所定の温度範囲内になった場合には、本充填を行うことに関する制御として、本充填を行うことを作業者に促す表示(報知)を表示部102によって行う制御を行う。たとえば、制御部101が、表示部102に、「本充填を開始して下さい。」といった文章(文字)を表示させる制御を行う。これにより、作業者による本充填の開始が、冷媒充填制御装置100(表示部102)によって促される。 In the second embodiment, when the temperature in the refrigerant flow path 10 of the cooling device 110 falls within a predetermined temperature range after pre-filling, the control unit 101 controls the display unit 102 to display (notify) a message urging the operator to start main filling, as control related to performing main filling. For example, the control unit 101 controls the display unit 102 to display a sentence (characters) such as "Please start main filling." This causes the refrigerant filling control device 100 (display unit 102) to urge the operator to start main filling.
 そして、第2実施形態では、表示部102の表示に基づいて、マニホールド7(バルブ7a)、および、流量調整弁81を、作業者が操作して、冷媒流路10内への二酸化炭素(冷媒)の本充填が行われる。 In the second embodiment, the operator operates the manifold 7 (valve 7a) and the flow rate control valve 81 based on the display of the display unit 102 to fill the refrigerant flow path 10 with carbon dioxide (refrigerant).
 (第2実施形態による冷媒の充填方法)
 図4を参照して、第2実施形態による冷却装置110(熱輸送装置)への冷媒の充填方法の処理フローについて説明する。第2実施形態による冷却装置110への冷媒の充填方法では、図2におけるステップ902の事前充填ステップにおいて、ステップ931~ステップ934の処理が行われる。なお、ステップ901、903、および、904における処理は、第1実施形態と同様である。
(Refrigerant charging method according to the second embodiment)
A process flow of a method for charging a refrigerant into a cooling device 110 (heat transport device) according to the second embodiment will be described with reference to Fig. 4. In the method for charging a refrigerant into a cooling device 110 according to the second embodiment, the processes of steps 931 to 934 are performed in the pre-charging step of step 902 in Fig. 2. The processes of steps 901, 903, and 904 are the same as those in the first embodiment.
 ステップ931では、事前充填において、不活性ガスの充填が行われる。そして、ステップ932において、圧力センサ63および64によって検出される冷媒流路10内の圧力に基づいて、不活性ガスがキャビテーションの発生しない所定の圧力まで充填されたか否かが判断される。不活性ガスが所定の圧力まで充填されたと判断された場合には、不活性ガスの充填が完了していることを示す情報が表示部102に表示され、ステップ933に進む。不活性ガスが所定の圧力まで充填されたと判断されない場合には、所定の圧力まで処理が待機される。 In step 931, in pre-filling, inert gas is filled. Then, in step 932, it is determined whether the inert gas has been filled to a predetermined pressure at which cavitation does not occur, based on the pressure in the refrigerant flow path 10 detected by the pressure sensors 63 and 64. If it is determined that the inert gas has been filled to the predetermined pressure, information indicating that filling with inert gas is complete is displayed on the display unit 102, and the process proceeds to step 933. If it is not determined that the inert gas has been filled to the predetermined pressure, the process waits until the predetermined pressure is reached.
 そして、ステップ933において、事前充填における冷媒(二酸化炭素)の充填が行われる。そして、ステップ934において、圧力センサ63および64によって検出される冷媒流路10内の圧力に基づいて、冷媒が、三重点圧力以上の圧力まで充填されたか否かが判断される。たとえば、三重点圧力以上の0.7MPa-a以上まで冷媒が充填されたか否かが判断される。事前充填における冷媒(二酸化炭素)が三重点圧力以上まで充填されたと判断された場合には、ステップ903に進む。冷媒(二酸化炭素)が三重点圧力以上まで充填されたと判断されない場合には、処理が待機される。 Then, in step 933, the refrigerant (carbon dioxide) is charged in the pre-fill. Then, in step 934, it is determined whether the refrigerant has been charged to a pressure equal to or greater than the triple point pressure, based on the pressure in the refrigerant flow path 10 detected by the pressure sensors 63 and 64. For example, it is determined whether the refrigerant has been charged to 0.7 MPa-a or more, which is equal to or greater than the triple point pressure. If it is determined that the refrigerant (carbon dioxide) in the pre-fill has been charged to the triple point pressure or more, the process proceeds to step 903. If it is not determined that the refrigerant (carbon dioxide) has been charged to the triple point pressure or more, the process is put on hold.
 また、第2実施形態による冷却装置110への冷媒の充填方法の処理フローでは、ステップ903において、表示部102による表示(報知)が行われた後に、作業者による冷媒流路10内の温度の確認が行われる。その他の処理フローは、第1実施形態における処理フローと同様である。 In addition, in the process flow of the method of filling the cooling device 110 with refrigerant according to the second embodiment, in step 903, after the display unit 102 displays (notifies), the operator checks the temperature inside the refrigerant flow path 10. The rest of the process flow is the same as the process flow in the first embodiment.
 (第2実施形態の効果)
 第2実施形態では、以下のような効果を得ることができる。
(Effects of the Second Embodiment)
In the second embodiment, the following effects can be obtained.
 第2実施形態では、制御部101が、本充填を行う前に、不活性ガスを、冷却装置110(熱輸送装置)の冷媒流路10内の圧力が所定の圧力になるように冷却装置110の冷媒流路10に充填する。これにより、第1実施形態と同様に、冷媒を充填した後に不活性ガスを充填する場合と異なり、冷媒に不活性ガスが溶け込むことに起因して不活性ガスの充填量を把握することが困難になることを抑制できる。その結果、熱力学サイクルを用いた冷却装置110において、冷媒とは別個に充填される不活性ガスの充填量を容易に把握することができる。また、第2実施形態では、第1実施形態と同様に、比較的高圧な不活性ガス源を設ける必要がないため、冷媒流路内に不活性ガスを容易に充填することができる。 In the second embodiment, the control unit 101 fills the refrigerant flow path 10 of the cooling device 110 (heat transport device) with inert gas before the main filling so that the pressure in the refrigerant flow path 10 of the cooling device 110 (heat transport device) becomes a predetermined pressure. As a result, unlike the case of filling the inert gas after filling the refrigerant, as in the first embodiment, it is possible to suppress the difficulty in grasping the amount of inert gas filled due to the inert gas dissolving in the refrigerant. As a result, in the cooling device 110 using a thermodynamic cycle, it is possible to easily grasp the amount of inert gas filled separately from the refrigerant. Also, in the second embodiment, as in the first embodiment, there is no need to provide a relatively high-pressure inert gas source, so the inert gas can be easily filled into the refrigerant flow path.
 また、第2実施形態では、制御部101が、本充填を行う前に事前充填を行う場合に、圧力センサ63および64によって検出される冷却装置110(熱輸送装置)の冷媒流路10内の圧力に基づいて、不活性ガスの充填が完了しているか否かを判定する制御を行うため、人が、ゲージ(メータ)などを視認することによって、不活性ガスの充填が完了しているか否かを判断する場合に比べて、不活性ガスをより正確に充填することができる。 In addition, in the second embodiment, when pre-filling is performed before actual filling, the control unit 101 performs control to determine whether or not filling with inert gas is complete based on the pressure in the refrigerant flow path 10 of the cooling device 110 (heat transport device) detected by the pressure sensors 63 and 64. This allows the inert gas to be filled more accurately than when a person determines whether or not filling with inert gas is complete by visually checking a gauge (meter) or the like.
 また、第2実施形態では、事前充填によって、冷媒流路10内の圧力を二酸化炭素の三重点圧力以上にした後に、二酸化炭素を冷却装置110(熱輸送装置)の運転に必要な所定量まで、冷却装置110の冷媒流路10に二酸化炭素を充填する本充填を行うことに関する制御を、制御部101によって行うことができる。これにより、二酸化炭素の本充填の際に、ドライアイスが発生しない圧力状態の冷媒流路10に二酸化炭素を充填することができるので、二酸化炭素の加熱または冷却を行わずに、ドライアイスの発生に起因する冷媒流路10の閉塞の発生を抑制することができる。その結果、二酸化炭素の充填の際に、二酸化炭素の加熱または冷却を行う場合と異なり、二酸化炭素の加熱または冷却を行うための装置を追加する必要がないので、冷却装置110の冷媒流路10内に二酸化炭素冷媒を充填するための装置の装置構成の複雑化を抑制しつつ、ドライアイスの発生に起因する冷媒流路10の閉塞の発生を抑制することができる。また、作業者は、冷媒流路10を流れる冷媒の圧力を表示(報知)する表示部102(報知部)の表示によって、冷媒流路10内の圧力が、二酸化炭素の三重点圧力以上であるかを容易に把握することができる。 In the second embodiment, the control unit 101 can control the main filling of the refrigerant flow path 10 of the cooling device 110 with carbon dioxide up to a predetermined amount required for the operation of the cooling device 110 (heat transport device) after the pressure in the refrigerant flow path 10 is made equal to or higher than the triple point pressure of carbon dioxide by pre-filling. As a result, during the main filling of carbon dioxide, carbon dioxide can be filled into the refrigerant flow path 10 at a pressure state where dry ice is not generated, and the occurrence of blockage of the refrigerant flow path 10 due to the generation of dry ice can be suppressed without heating or cooling the carbon dioxide. As a result, unlike the case where carbon dioxide is heated or cooled during filling with carbon dioxide, there is no need to add a device for heating or cooling the carbon dioxide, so the occurrence of blockage of the refrigerant flow path 10 due to the generation of dry ice can be suppressed while suppressing the complication of the device configuration for filling the refrigerant flow path 10 of the cooling device 110 with the carbon dioxide refrigerant. In addition, the operator can easily understand whether the pressure in the refrigerant flow path 10 is equal to or higher than the triple point pressure of carbon dioxide by the display of the display unit 102 (notification unit) that displays (notifies) the pressure of the refrigerant flowing through the refrigerant flow path 10.
 また、上記第2実施形態による冷媒充填制御装置100では、以下のように構成することによって、下記のような更なる効果が得られる。 In addition, the refrigerant charging control device 100 according to the second embodiment described above can achieve the following additional effects by being configured as follows:
 第2実施形態では、冷媒充填制御装置100は、冷却装置110(熱輸送装置)の冷媒流路10に二酸化炭素(冷媒)を充填するための情報を報知する表示部102(報知部)を備える。制御部101は、不活性ガスの充填が完了していると判定された場合に、不活性ガスの充填が完了していることを示す情報を表示部102により報知する。このように構成すれば、作業者は、表示部102により報知された不活性ガスの充填が完了していることを示す情報を認識することによって、不活性ガスの充填が完了していることを容易に認識することができる。 In the second embodiment, the refrigerant charging control device 100 includes a display unit 102 (notification unit) that notifies information for charging the refrigerant flow path 10 of the cooling device 110 (heat transport device) with carbon dioxide (refrigerant). When the control unit 101 determines that charging of the inert gas is complete, the control unit 101 notifies information indicating that charging of the inert gas is complete via the display unit 102. With this configuration, an operator can easily recognize that charging of the inert gas is complete by recognizing the information indicating that charging of the inert gas is complete, which is notified by the display unit 102.
 また、第2実施形態では、制御部101は、不活性ガスの充填が完了していることを示す情報として、取得した冷却装置110(熱輸送装置)の冷媒流路10内の圧力を表示部102(報知部)により報知する制御を行う。このように構成すれば、作業者は、表示部102により報知された不活性ガスの充填が完了していることを示す情報を認識することによって、冷媒流路10内の圧力の大きさを示す具体的な値を容易に認識することができる。そのため、作業者は、不活性ガスが所定の圧力まで充填されていることを容易に確認できる。 In addition, in the second embodiment, the control unit 101 controls the display unit 102 (notification unit) to notify the acquired pressure in the refrigerant flow path 10 of the cooling device 110 (heat transport device) as information indicating that the filling of the inert gas has been completed. With this configuration, the worker can easily recognize the specific value indicating the magnitude of the pressure in the refrigerant flow path 10 by recognizing the information indicating that the filling of the inert gas has been completed, which is notified by the display unit 102. Therefore, the worker can easily confirm that the inert gas has been filled up to a predetermined pressure.
 第2実施形態では、制御部101は、事前充填後において、冷却装置110(熱輸送装置)の冷媒流路10内の温度が所定の温度範囲内になったか否かを判定する。そして、冷却装置110の冷媒流路10内の温度が所定の温度範囲内になった場合には、本充填を行うことに関する制御として、本充填を行うことを作業者に促す表示(報知)を表示部102(報知部)によって行う制御を行う。これにより、作業者は、表示部102による表示を視認(確認)して、冷媒流路10において、ドライアイスの発生に起因する温度低下が発生していないことを容易に確認することができる。また、作業者は、表示部102による表示により、冷媒流路10において、ドライアイスの発生に起因する温度低下が発生していないことを確認した後に、二酸化炭素の本充填を開始することができる。その結果、二酸化炭素の本充填の際に、ドライアイスの発生に起因して、冷媒流路10が閉塞してしまうことを、より効果的に抑制することができる。 In the second embodiment, the control unit 101 judges whether the temperature in the refrigerant flow path 10 of the cooling device 110 (heat transport device) is within a predetermined temperature range after pre-filling. When the temperature in the refrigerant flow path 10 of the cooling device 110 is within the predetermined temperature range, the control unit 101 controls the display unit 102 (notification unit) to display (notify) the operator to perform the main filling. This allows the operator to visually check (confirm) the display by the display unit 102 and easily confirm that no temperature drop due to the generation of dry ice has occurred in the refrigerant flow path 10. In addition, the operator can start the main filling of carbon dioxide after confirming from the display by the display unit 102 that no temperature drop due to the generation of dry ice has occurred in the refrigerant flow path 10. As a result, it is possible to more effectively prevent the refrigerant flow path 10 from being blocked due to the generation of dry ice during the main filling of carbon dioxide.
 なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。 The other effects of the second embodiment are the same as those of the first embodiment.
 [第3実施形態]
 第3実施形態における冷却装置110への冷媒の充填方法について説明する。第3実施形態では、冷媒充填制御装置200(図5参照)が、冷却装置110への不活性ガスおよび二酸化炭素の事前充填、および、二酸化炭素の本充填を自動的に行う。なお、冷媒充填制御装置200は、請求の範囲の「熱輸送装置用の冷媒充填制御装置」の一例である。
[Third embodiment]
A method of charging the cooling device 110 with a refrigerant in the third embodiment will be described. In the third embodiment, a refrigerant charging control device 200 (see FIG. 5) automatically performs pre-charging of the cooling device 110 with an inert gas and carbon dioxide, and main charging of the cooling device 110 with carbon dioxide. The refrigerant charging control device 200 is an example of a "refrigerant charging control device for a heat transport device" in the claims.
 冷媒充填制御装置200の制御部101は、マニホールド7(バルブ7aおよび7b)、流量調整弁81、流量調整弁82および真空ポンプ123の各々を制御するように構成されている。これにより、上記第1および第2実施形態において、作業者の操作によって行われていた作業が、冷媒充填制御装置200の制御部101の制御によって、自動的に行われる。 The control unit 101 of the refrigerant charging control device 200 is configured to control each of the manifold 7 ( valves 7a and 7b), the flow rate control valve 81, the flow rate control valve 82, and the vacuum pump 123. As a result, the work that was performed by an operator in the first and second embodiments is performed automatically under the control of the control unit 101 of the refrigerant charging control device 200.
 第3実施形態では、たとえば、制御部101は、真空ポンプ123およびマニホールド7の動作を制御することによって、冷媒流路10内の真空引きを行う。そして、制御部101は、マニホールド7および流量調整弁82の動作を制御することによって、不活性ガスの充填を開始して、事前充填を開始する。制御部101は、事前充填において、不活性ガスの充填が完了していると判定された場合には、マニホールド7および流量調整弁82の動作を制御することによって、不活性ガスの充填を停止させる制御を行う。そして、制御部101は、マニホールド7および流量調整弁81の動作を制御することによって、事前充填による冷媒の充填を行うことによって事前充填を完了させる。 In the third embodiment, for example, the control unit 101 draws a vacuum in the refrigerant flow path 10 by controlling the operation of the vacuum pump 123 and the manifold 7. The control unit 101 then controls the operation of the manifold 7 and the flow rate control valve 82 to start filling with inert gas and start pre-filling. If the control unit 101 determines that filling with inert gas is complete during pre-filling, it controls the operation of the manifold 7 and the flow rate control valve 82 to stop filling with inert gas. The control unit 101 then controls the operation of the manifold 7 and the flow rate control valve 81 to fill with refrigerant by pre-filling, thereby completing pre-filling.
 第3実施形態では、制御部101は、冷却装置110の冷媒流路10内の温度が所定の温度範囲内になった場合には、本充填を行うことに関する制御として、二酸化炭素の充填の制御を行う。具体的には、制御部101は、事前充填後に、冷却装置110の冷媒流路10内の温度が所定の温度範囲内になった場合には、マニホールド7(バルブ7a)および流量調整弁81を制御して、ボンベ121に充填された二酸化炭素を冷媒流路10内に流入させる。 In the third embodiment, when the temperature in the refrigerant flow path 10 of the cooling device 110 falls within a predetermined temperature range, the control unit 101 controls the filling of carbon dioxide as control related to the main filling. Specifically, when the temperature in the refrigerant flow path 10 of the cooling device 110 falls within a predetermined temperature range after pre-filling, the control unit 101 controls the manifold 7 (valve 7a) and the flow rate adjustment valve 81 to allow the carbon dioxide filled in the cylinder 121 to flow into the refrigerant flow path 10.
 なお、第3実施形態のその他の構成は、上記第2実施形態と同様である。また、第3実施形態による冷却装置110への冷媒の充填方法の処理フローは、作業者の代わりに、冷媒充填制御装置200が各ステップを自動的に行う以外は、第1実施形態における処理フローと同様である。 The rest of the configuration of the third embodiment is the same as that of the second embodiment. The process flow of the method of charging the cooling device 110 with refrigerant according to the third embodiment is the same as that of the first embodiment, except that the refrigerant charging control device 200 automatically performs each step instead of the operator.
 (第3実施形態の効果)
 第3実施形態では、以下のような効果を得ることができる。
(Effects of the Third Embodiment)
In the third embodiment, the following effects can be obtained.
 第3実施形態では、制御部101は、不活性ガスの充填が完了していると判定された場合に、不活性ガスの充填を停止させる制御を行う。このように構成すれば、制御部101の制御により自動的に不活性ガスを充填する場合にも、事前充填により冷媒よりも前に不活性ガスを充填することによって、不活性ガスの充填量を容易にかつ正確に把握することができる。そのため、制御部101によって、不活性ガスをより容易に、かつ、より正確に充填することができる。 In the third embodiment, the control unit 101 performs control to stop the filling of the inert gas when it is determined that the filling of the inert gas has been completed. With this configuration, even when the inert gas is automatically filled under the control of the control unit 101, the amount of the inert gas filled can be easily and accurately grasped by filling the inert gas before the refrigerant by pre-filling. Therefore, the control unit 101 can fill the inert gas more easily and accurately.
 また、第3実施形態では、上記第2実施形態と同様に、冷却装置110(熱輸送装置)の冷媒流路10内に二酸化炭素冷媒を充填するための装置の装置構成の複雑化を抑制しつつ、ドライアイスの発生に起因する冷媒流路10の閉塞の発生を抑制することができる。 Furthermore, in the third embodiment, as in the second embodiment, it is possible to suppress the occurrence of blockage of the refrigerant flow path 10 due to the generation of dry ice while suppressing the complexity of the device configuration for filling the refrigerant flow path 10 of the cooling device 110 (heat transport device) with carbon dioxide refrigerant.
 また、上記第3実施形態による冷媒充填制御装置200では、以下のように構成することによって、下記のような更なる効果が得られる。 In addition, the refrigerant charging control device 200 according to the third embodiment described above can achieve the following additional effects by configuring it as follows:
 また、第3実施形態では、制御部101は、事前充填後において、冷却装置110(熱輸送装置)の冷媒流路10内の温度が所定の温度範囲内になったか否かを判定する。そして、冷却装置110の冷媒流路10内の温度が所定の温度範囲内になった場合には、本充填を行うことに関する制御として、二酸化炭素の充填の制御を行う。これにより、制御部101は、冷媒流路10において、ドライアイスの発生に起因する温度低下が発生していないことを確認した後に、二酸化炭素の充填の制御(本充填)を行うことができる。その結果、二酸化炭素の本充填の際に、ドライアイスの発生に起因して、冷媒流路10が閉塞してしまうことを、より効果的に抑制することができる。また、制御部101によって、二酸化炭素の充填の制御(本充填)が自動的に行われるので、作業者が、冷媒流路10において、ドライアイスの発生に起因する温度低下が発生していないことを確認した後に、二酸化炭素の本充填を開始する場合に比べて、二酸化炭素の充填の制御(本充填)を迅速に開始することができる。 In the third embodiment, the control unit 101 judges whether the temperature in the refrigerant flow path 10 of the cooling device 110 (heat transport device) is within a predetermined temperature range after pre-charging. When the temperature in the refrigerant flow path 10 of the cooling device 110 is within the predetermined temperature range, the control unit 101 controls the charging of carbon dioxide as a control for performing the main charging. This allows the control unit 101 to control the charging of carbon dioxide (main charging) after confirming that no temperature drop due to the generation of dry ice has occurred in the refrigerant flow path 10. As a result, the blocking of the refrigerant flow path 10 due to the generation of dry ice during the main charging of carbon dioxide can be more effectively suppressed. In addition, since the control unit 101 automatically controls the charging of carbon dioxide (main charging), the control unit 101 can start the control of the charging of carbon dioxide (main charging) more quickly than when an operator starts the main charging of carbon dioxide after confirming that no temperature drop due to the generation of dry ice has occurred in the refrigerant flow path 10.
 なお、第3実施形態のその他の効果は、上記第1実施形態と同様である。 The other effects of the third embodiment are the same as those of the first embodiment.
 [第4実施形態]
 第4実施形態における冷却装置110への二酸化炭素冷媒の充填方法について説明する。
[Fourth embodiment]
A method of charging the cooling device 110 with carbon dioxide refrigerant in the fourth embodiment will be described.
 第4実施形態は、ポンプ3におけるキャビテーションの発生を防止するために必要な量の不活性ガスを充填した際に、冷媒流路10内の圧力が二酸化炭素の三重点圧力以上に昇圧可能な場合における冷却装置110への二酸化炭素冷媒の充填方法である。第4実施形態における冷却装置110への二酸化炭素冷媒の充填方法では、事前充填において不活性ガスと二酸化炭素を充填する第1実施形態とは異なり、不活性ガスのみによって事前充填が行われる。 The fourth embodiment is a method for charging the cooling device 110 with carbon dioxide refrigerant in the case where the pressure in the refrigerant flow path 10 can be increased to or above the triple point pressure of carbon dioxide when the amount of inert gas required to prevent cavitation in the pump 3 is charged. In the method for charging the cooling device 110 with carbon dioxide refrigerant in the fourth embodiment, pre-charging is performed using only inert gas, unlike the first embodiment in which inert gas and carbon dioxide are charged during pre-charging.
 (第4実施形態による二酸化炭素冷媒の充填方法)
 図6を参照して、冷却装置110への第4実施形態による二酸化炭素冷媒の充填方法の処理フロー(ステップ911~913)について、説明する。
(Method of charging carbon dioxide refrigerant according to the fourth embodiment)
With reference to FIG. 6, a process flow (steps 911 to 913) of the method for charging the cooling device 110 with the carbon dioxide refrigerant according to the fourth embodiment will be described.
 まず、ステップ911において、作業者は、冷媒流路10内の真空引きを行う。冷媒流路10内の真空引きの完了後、作業者は、ステップ912の作業を行う。なお、ステップ911は、第1実施形態におけるステップ901と同様の処理である。 First, in step 911, the worker draws a vacuum inside the refrigerant flow path 10. After the refrigerant flow path 10 has been drawn a vacuum, the worker performs the work of step 912. Note that step 911 is the same process as step 901 in the first embodiment.
 ステップ912において、作業者は、不活性ガスによる事前充填を行う。ステップ912において、作業者は、不活性ガスを、冷却装置110の冷媒流路10内の圧力が二酸化炭素の三重点圧力(0.52MPa-a)以上になるように、冷却装置110の真空引きされた冷媒流路10に充填する。たとえば、作業者は、冷却装置110の冷媒流路10内の圧力が、0.7MPa-a以上になるように、不活性ガスを冷媒流路10に充填する。すなわち、第4実施形態では、事前充填において充填されるキャビテーションが発生しない不活性ガスの所定の圧力が、冷媒の三重点圧力よりも大きい。言い換えれば、キャビテーションが発生しない所定の圧力まで不活性ガスを充填した時点において、冷却装置110の冷媒流路10内の圧力が二酸化炭素の三重点圧力(0.52MPa-a)以上になる。なお、ステップ912は、請求の範囲の「事前充填ステップ」の一例である。 In step 912, the worker pre-fills with inert gas. In step 912, the worker fills the evacuated refrigerant flow path 10 of the cooling device 110 with inert gas so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide (0.52 MPa-a). For example, the worker fills the refrigerant flow path 10 of the cooling device 110 with inert gas so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than 0.7 MPa-a. That is, in the fourth embodiment, the predetermined pressure of the inert gas that does not cause cavitation, which is filled in pre-filling, is higher than the triple point pressure of the refrigerant. In other words, at the point in time when the inert gas is filled up to the predetermined pressure at which cavitation does not occur, the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide (0.52 MPa-a). Note that step 912 is an example of a "pre-filling step" in the claims.
 ステップ913において、作業者は、二酸化炭素の本充填を行う。具体的には、作業者は、冷却装置110の冷媒流路10内の圧力が二酸化炭素の三重点圧力以上の状態で、冷却装置110の運転に必要な所定量まで、冷却装置110の冷媒流路10に二酸化炭素を充填する。第4実施形態では、事前充填においては、不活性ガス(窒素)のみを充填するので、事前充填の際にドライアイスが発生することはない。そのため、事前充填の完了後に、冷媒流路10内の温度を確認することなく、本充填を行うことができる。なお、不活性ガスの断熱膨張による冷媒流路10内の温度低下を考慮して、第1実施形態と同様に、事前充填(ステップ912)の後に、冷媒流路10内の温度が確認されてもよい。なお、ステップ913は、請求の範囲の「本充填ステップ」の一例である。 In step 913, the worker performs the main filling of carbon dioxide. Specifically, the worker fills the refrigerant flow path 10 of the cooling device 110 with carbon dioxide up to a predetermined amount required for the operation of the cooling device 110, with the pressure in the refrigerant flow path 10 of the cooling device 110 being equal to or higher than the triple point pressure of carbon dioxide. In the fourth embodiment, only an inert gas (nitrogen) is filled in the pre-filling, so dry ice is not generated during the pre-filling. Therefore, after the pre-filling is completed, the main filling can be performed without checking the temperature in the refrigerant flow path 10. Note that, in consideration of the temperature drop in the refrigerant flow path 10 due to the adiabatic expansion of the inert gas, the temperature in the refrigerant flow path 10 may be checked after the pre-filling (step 912) as in the first embodiment. Note that step 913 is an example of a "main filling step" in the claims.
 (第4実施形態の効果)
 第4実施形態では、以下のような効果を得ることができる。
(Effects of the Fourth Embodiment)
In the fourth embodiment, the following effects can be obtained.
 第4実施形態では、不活性ガスを、冷却装置110(熱輸送装置)の冷媒流路10内の圧力が二酸化炭素の三重点圧力以上になるように、冷却装置110の真空引きされた冷媒流路10に充填する事前充填を行う。これにより、冷媒流路10内の圧力を二酸化炭素の三重点圧力以上にした状態で、二酸化炭素を冷却装置110の運転に必要な所定量まで、冷却装置110の冷媒流路10に二酸化炭素を充填する本充填を行うことができる。その結果、二酸化炭素の本充填の際に、ドライアイスが発生しない圧力状態の冷媒流路10に二酸化炭素を充填することができるので、二酸化炭素の加熱または冷却を行わずに、ドライアイスの発生に起因する冷媒流路10の閉塞の発生を抑制することができる。これにより、冷却装置110の冷媒流路10内に二酸化炭素冷媒を充填するための装置の装置構成の複雑化を抑制しつつ、ドライアイスの発生に起因する冷媒流路10の閉塞の発生を抑制することができる。 In the fourth embodiment, a pre-filling is performed by filling the evacuated refrigerant flow path 10 of the cooling device 110 (heat transport device) with an inert gas so that the pressure in the refrigerant flow path 10 of the cooling device 110 is equal to or higher than the triple point pressure of carbon dioxide. This allows the main filling to be performed by filling the refrigerant flow path 10 of the cooling device 110 with carbon dioxide up to a predetermined amount required for the operation of the cooling device 110 with carbon dioxide while keeping the pressure in the refrigerant flow path 10 equal to or higher than the triple point pressure of carbon dioxide. As a result, during the main filling of carbon dioxide, carbon dioxide can be filled into the refrigerant flow path 10 at a pressure state where dry ice is not generated, so that the occurrence of blockage of the refrigerant flow path 10 due to the generation of dry ice can be suppressed without heating or cooling the carbon dioxide. This allows the occurrence of blockage of the refrigerant flow path 10 due to the generation of dry ice to be suppressed while suppressing the complexity of the device configuration for filling the refrigerant flow path 10 of the cooling device 110 with carbon dioxide refrigerant.
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification]
It should be noted that the embodiments disclosed herein are illustrative and not restrictive in all respects. The scope of the present invention is indicated by the claims, not by the description of the embodiments above, and further includes all modifications (variations) within the meaning and scope of the claims.
 たとえば、上記第2実施形態では、冷媒充填制御装置100の制御部101は、冷却装置110(熱輸送装置)が備える圧力センサ63および64(圧力検出部)によって検出される冷媒流路10を流れる冷媒の圧力を取得する制御を行う例を示したが、本発明はこれに限られない。本発明では、冷媒充填制御装置が圧力検出部を備え、冷媒充填制御装置の圧力検出部によって検出される冷媒流路を流れる冷媒の圧力を取得する制御を、冷媒充填制御装置の制御部が行ってもよい。そして、冷媒充填制御装置の制御部は、冷媒充填制御装置が備える圧力検出部の検出結果に基づいて、二酸化炭素冷媒の充填に関わる制御を行ってもよい。 For example, in the above second embodiment, the control unit 101 of the refrigerant charging control device 100 performs control to acquire the pressure of the refrigerant flowing through the refrigerant flow path 10 detected by the pressure sensors 63 and 64 (pressure detection unit) provided in the cooling device 110 (heat transport device), but the present invention is not limited to this. In the present invention, the refrigerant charging control device may be provided with a pressure detection unit, and the control unit of the refrigerant charging control device may perform control to acquire the pressure of the refrigerant flowing through the refrigerant flow path detected by the pressure detection unit of the refrigerant charging control device. The control unit of the refrigerant charging control device may then perform control related to charging the carbon dioxide refrigerant based on the detection result of the pressure detection unit provided in the refrigerant charging control device.
 また、上記第2実施形態では、冷媒充填制御装置100の制御部101は、冷却装置110(熱輸送装置)が備える温度センサ61および62によって検出される冷媒流路10を流れる冷媒の温度を取得する制御を行う例を示したが、本発明はこれに限られない。本発明では、冷媒充填制御装置が温度センサを備え、冷媒充填制御装置の温度センサによって検出される冷媒流路を流れる冷媒の温度を取得する制御を、冷媒充填制御装置の制御部が行ってもよい。そして、冷媒充填制御装置の制御部は、冷媒充填制御装置が備える温度センサの検出結果に基づいて、二酸化炭素冷媒の充填に関わる制御を行ってもよい。 In the above second embodiment, the control unit 101 of the refrigerant charging control device 100 performs control to obtain the temperature of the refrigerant flowing through the refrigerant flow path 10 detected by the temperature sensors 61 and 62 provided in the cooling device 110 (heat transport device), but the present invention is not limited to this. In the present invention, the refrigerant charging control device may be provided with a temperature sensor, and the control unit of the refrigerant charging control device may perform control to obtain the temperature of the refrigerant flowing through the refrigerant flow path detected by the temperature sensor of the refrigerant charging control device. The control unit of the refrigerant charging control device may then perform control related to the charging of the carbon dioxide refrigerant based on the detection result of the temperature sensor provided in the refrigerant charging control device.
 また、上記第2実施形態では、表示部102(報知部)が、本充填を行うことを作業者に促す表示(報知)を行う制御を行う例を示したが、本発明はこれに限られない。本発明では、報知部は、音によって、本充填を行うことを作業者に促す報知を行ってもよい。なお、報知部を視覚的な情報によって報知する表示部とする場合に、表示部を、液晶ディスプレイ、有機ELディスプレイ、または、ゲージ(メータ)ではなく、バックライト式のインジケータとしてもよいし、マイクロLEDを用いたディスプレイとしてもよい。また、報知部を、音声による聴覚的な報知と、表示部などによる視覚的な報知との両方を行うように構成してもよい。 In the above second embodiment, an example has been shown in which the display unit 102 (alert unit) performs control to display (alert) a message urging the operator to perform main refilling, but the present invention is not limited to this. In the present invention, the alert unit may use sound to alert the operator to perform main refilling. Note that, when the alert unit is a display unit that uses visual information to alert, the display unit may be a backlit indicator or a display using micro LEDs, rather than a liquid crystal display, organic EL display, or gauge (meter). The alert unit may be configured to perform both auditory alerts using sound and visual alerts using a display unit, etc.
 また、上記第4実施形態では、冷媒充填制御装置100または200を用いずに、作業者によって、二酸化炭素冷媒の充填作業が行われる例を示したが、本発明はこれに限られない。本発明では、不活性ガスを、熱輸送装置の冷媒流路内の圧力が二酸化炭素の三重点圧力以上になるように、熱輸送装置の真空引きされた冷媒流路に充填する事前充填を行う二酸化炭素冷媒の充填方法においても、第2実施形態のように、本充填を行うことを作業者に促す表示(報知)を表示部102(報知部)によって行う制御を、冷媒充填制御装置100が行ってもよい。なお、第4実施形態のように、事前充填の完了後に、冷媒流路内の温度を確認することなく、本充填を行う場合には、冷媒充填制御装置の制御部は、冷却装置(熱輸送装置)の冷媒流路内の圧力が二酸化炭素の三重点圧力以上になったことに基づいて、報知部による報知の制御を行う。また、不活性ガスを、熱輸送装置の冷媒流路内の圧力が二酸化炭素の三重点圧力以上になるように、熱輸送装置の真空引きされた冷媒流路に充填する事前充填を行う二酸化炭素冷媒の充填方法における作業の一部または全部を、第3実施形態のように、冷媒充填制御装置200が自動的に実施してもよい。 In the fourth embodiment, the carbon dioxide refrigerant is charged by an operator without using the refrigerant charging control device 100 or 200, but the present invention is not limited to this. In the present invention, even in a carbon dioxide refrigerant charging method in which an inert gas is charged into the evacuated refrigerant flow path of a heat transport device so that the pressure in the refrigerant flow path of the heat transport device is equal to or higher than the triple point pressure of carbon dioxide, the refrigerant charging control device 100 may control the display unit 102 (notification unit) to display (notify) the operator to perform the main charging, as in the second embodiment. Note that, when the main charging is performed without checking the temperature in the refrigerant flow path after the completion of pre-charging, as in the fourth embodiment, the control unit of the refrigerant charging control device controls the notification by the notification unit based on the fact that the pressure in the refrigerant flow path of the cooling device (heat transport device) has become equal to or higher than the triple point pressure of carbon dioxide. In addition, as in the third embodiment, the refrigerant charging control device 200 may automatically perform some or all of the steps in the carbon dioxide refrigerant charging method, which involves pre-charging the evacuated refrigerant flow path of the heat transport device with an inert gas so that the pressure in the refrigerant flow path of the heat transport device is equal to or greater than the triple point pressure of carbon dioxide.
 また、第3実施形態では、冷媒充填制御装置200の制御部101は、冷却装置110(熱輸送装置)の冷媒流路10内の温度が所定の温度範囲内になった場合には、本充填を行うことに関する制御として、二酸化炭素の充填の制御を行う例を示したが、本発明はこれに限られない。本発明では、冷媒充填制御装置が、タッチパネル、キーボードまたはマウスなどの操作部を備え、操作部への作業者の入力操作に基づいて、冷媒充填制御装置の制御部が、二酸化炭素の充填の制御(本充填)を行ってもよい。また、操作部への作業者の入力操作に基づいて、冷却流路の真空引き、または、事前充填が、冷媒充填制御装置の制御部の制御によって行われてもよい。 In the third embodiment, the control unit 101 of the refrigerant charging control device 200 controls the charging of carbon dioxide as control related to the main charging when the temperature in the refrigerant flow path 10 of the cooling device 110 (heat transport device) falls within a predetermined temperature range, but the present invention is not limited to this. In the present invention, the refrigerant charging control device may be equipped with an operation unit such as a touch panel, keyboard, or mouse, and the control unit of the refrigerant charging control device may control the charging of carbon dioxide (main charging) based on input operations by an operator to the operation unit. Also, the cooling flow path may be evacuated or pre-charged by the control of the control unit of the refrigerant charging control device based on input operations by an operator to the operation unit.
 また、上記第2および第3実施形態では、冷媒充填制御装置100および冷媒充填制御装置200と、装置制御部5とが別個に設けられている例を示したが、本発明はこれに限られない。本発明では、冷媒充填制御装置100および冷媒充填制御装置200が実行する制御を、装置制御部5が実行するようにしてもよい。 In addition, in the second and third embodiments, the refrigerant charging control device 100 and the refrigerant charging control device 200 are provided separately from the device control unit 5, but the present invention is not limited to this. In the present invention, the control performed by the refrigerant charging control device 100 and the refrigerant charging control device 200 may be performed by the device control unit 5.
 また、上記第1~第4実施形態では、マニホールド7の内部の流路が、タンク2上流側の配管(タンク2と凝縮器1との間の配管)に接続される例を示したが、本発明はこれに限られない。本発明では、マニホールド7の内部の流路が、タンク2上流側の配管(タンク2と凝縮器1との間の配管)以外の冷媒流路10の配管に接続されていてもよい。 In addition, in the above first to fourth embodiments, an example was shown in which the flow path inside the manifold 7 is connected to the piping upstream of the tank 2 (the piping between the tank 2 and the condenser 1), but the present invention is not limited to this. In the present invention, the flow path inside the manifold 7 may be connected to a piping of the refrigerant flow path 10 other than the piping upstream of the tank 2 (the piping between the tank 2 and the condenser 1).
 また、上記第1~第4実施形態では、説明の便宜上、本発明の二酸化炭素冷媒の充填方法を処理フローに沿って順番に処理を行うフロー駆動型のフローチャートを用いて説明したが、本発明はこれに限られない。本発明では、二酸化炭素冷媒の充填方法における作業(処理動作)は、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行われてもよい。この場合、二酸化炭素冷媒の充填方法における作業(処理動作)は、完全なイベント駆動型により行われてもよいし、イベント駆動およびフロー駆動を組み合わせて行われてもよい。 In addition, in the above first to fourth embodiments, for convenience of explanation, the carbon dioxide refrigerant filling method of the present invention has been explained using a flow-driven flowchart in which processing is performed in sequence according to a processing flow, but the present invention is not limited to this. In the present invention, the work (processing operations) in the carbon dioxide refrigerant filling method may be performed by event-driven processing in which processing is performed on an event-by-event basis. In this case, the work (processing operations) in the carbon dioxide refrigerant filling method may be performed completely event-driven, or may be performed by combining event-driven and flow-driven operations.
 また、上記第1~第4実施形態では、真空引きされた冷媒流路10に不活性ガスとして窒素が充填された後に、冷媒として二酸化炭素が充填される例を示したが、本発明はこれに限られない。本発明では、冷媒は二酸化炭素に限られず、フルオロカーボンを冷媒としてもよいし、アンモニアおよび水などの自然冷媒を冷媒としてもよい。また、不活性ガスは窒素に限られず、不活性ガスを、希ガス、フルオロカーボン、または、二酸化炭素としてもよい。また、大気を不活性ガスとしてもよい。また、事前充填を行う前に、真空引きを行わないようにしてもよい。すなわち、大気圧の冷媒流路に対して、所定の圧力まで不活性ガスを充填するようにしてもよい。また、二酸化炭素以外の冷媒を用いる場合において、冷媒の充填において固体が発生しない場合には、三重点圧力以上であるか否かに係わらず、事前充填を完了させて本充填を行うようにしてもよい。すなわち、事前充填において不活性ガスが充填される所定の圧力が冷媒の三重点圧力より小さい場合にも、不活性ガスの充填が完了した場合に本充填による冷媒の充填を開始するようにしてもよい。すなわち、図4におけるステップ933およびステップ934を省略するようにしてもよい。その場合に、冷媒流路内の温度を測定しないようにしてもよい。すなわち、図4におけるステップ903を省略するようにしてもよい。 In the above first to fourth embodiments, the refrigerant flow path 10 is filled with nitrogen as an inert gas, and then carbon dioxide is filled as a refrigerant, but the present invention is not limited to this. In the present invention, the refrigerant is not limited to carbon dioxide, and fluorocarbon may be used as the refrigerant, or natural refrigerants such as ammonia and water may be used as the refrigerant. The inert gas is not limited to nitrogen, and the inert gas may be a rare gas, a fluorocarbon, or carbon dioxide. The air may be used as the inert gas. Also, before performing pre-filling, vacuuming may not be performed. That is, the refrigerant flow path at atmospheric pressure may be filled with inert gas up to a predetermined pressure. Also, when a refrigerant other than carbon dioxide is used, if no solid is generated during refrigerant filling, pre-filling may be completed and main filling may be performed regardless of whether the pressure is equal to or higher than the triple point pressure. That is, even if the predetermined pressure at which the inert gas is filled in pre-filling is lower than the triple point pressure of the refrigerant, main filling of the refrigerant may be started when filling of the inert gas is completed. That is, steps 933 and 934 in FIG. 4 may be omitted. In this case, the temperature inside the refrigerant flow path may not be measured. In other words, step 903 in FIG. 4 may be omitted.
 また、上記第1~第4実施形態では、事前充填において、冷却装置110(熱輸送装置)の動作時にポンプ3に流入する冷媒の圧力が冷媒の飽和蒸気圧以上となるように、キャビテーションが発生しない所定の圧力になるよう不活性ガスを冷媒流路10に充填する例を示したが、本発明はこれに限られない。本発明では、熱輸送装置の動作時にポンプ3に流入する冷媒の圧力が冷媒と不活性ガスとを合わせた状態での飽和蒸気圧以上となるように、事前充填における不活性ガスの充填量として所定の圧力が設定されていてもよい。 In the above first to fourth embodiments, an example was shown in which the inert gas is filled into the refrigerant flow path 10 in pre-filling so that the pressure of the refrigerant flowing into the pump 3 during operation of the cooling device 110 (heat transport device) is equal to or greater than the saturated vapor pressure of the refrigerant, and so that cavitation does not occur. However, the present invention is not limited to this. In the present invention, a predetermined pressure may be set as the amount of inert gas filled in pre-filling so that the pressure of the refrigerant flowing into the pump 3 during operation of the heat transport device is equal to or greater than the saturated vapor pressure of the combined refrigerant and inert gas.
 また、上記第1~第4実施形態では、冷却装置110(熱輸送装置)の冷媒流路10に不活性ガスおよび二酸化炭素(冷媒)を充填する例を示したが、本発明はこれに限られない。本発明では、熱輸送装置としての加熱装置において、冷媒流路に不活性ガスおよび冷媒を充填するようにしてもよい。 In addition, in the above first to fourth embodiments, an example was shown in which the refrigerant flow path 10 of the cooling device 110 (heat transport device) was filled with an inert gas and carbon dioxide (refrigerant), but the present invention is not limited to this. In the present invention, in a heating device serving as a heat transport device, the refrigerant flow path may be filled with an inert gas and a refrigerant.
 また、上記第1~第4実施形態では、不活性ガスの充填を含む事前充填ステップ(ステップ902)と、冷媒(二酸化炭素)の充填を行う本充填ステップ(ステップ904)とを備える例を示したが、本発明はこれに限られない。本発明では、熱輸送装置の冷媒流路内に冷凍機油の充填を行うステップをさらに備えていてもよい。冷凍機油の充填を行うステップは、事前充填ステップの前に行われてもよいし、事前充填ステップの後に行われてもよいし、事前充填ステップの最中に不活性ガスを充填した後に行われてもよい。また、冷凍機油の充填を行うステップは、本充填ステップの後に行われてもよい。 In addition, in the above first to fourth embodiments, an example was shown that includes a pre-filling step (step 902) that includes filling with an inert gas, and a main filling step (step 904) that fills with a refrigerant (carbon dioxide), but the present invention is not limited to this. The present invention may further include a step of filling the refrigerant flow path of the heat transport device with refrigeration oil. The step of filling with refrigeration oil may be performed before the pre-filling step, after the pre-filling step, or after filling with an inert gas during the pre-filling step. The step of filling with refrigeration oil may also be performed after the main filling step.
 また、上記第1~第4実施形態では、冷却装置110(熱輸送装置)が、冷媒を貯蔵するタンク2を備えている例を示したが、本発明はこれに限られない。本発明では、熱輸送装置を、タンクの替わりにアキュムレータを備えるように構成してもよい。 In addition, in the above first to fourth embodiments, an example was shown in which the cooling device 110 (heat transport device) is equipped with a tank 2 that stores a refrigerant, but the present invention is not limited to this. In the present invention, the heat transport device may be configured to include an accumulator instead of a tank.
 [態様]
 上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspects]
It will be appreciated by those skilled in the art that the exemplary embodiments described above are examples of the following aspects.
 (項目1)
 不活性ガスを、熱輸送装置の冷媒流路内の圧力が所定の圧力になるように、前記熱輸送装置の前記冷媒流路に充填する事前充填ステップと、
 前記事前充填ステップ後に、前記熱輸送装置の運転に必要な所定量まで、前記熱輸送装置の前記冷媒流路に冷媒を充填する本充填ステップと、を備える、熱輸送装置への冷媒の充填方法。
(Item 1)
a pre-charging step of charging an inert gas into the refrigerant passage of the heat transport device so that a pressure in the refrigerant passage of the heat transport device becomes a predetermined pressure;
a main filling step of filling the refrigerant into the refrigerant passage of the heat transport device with a predetermined amount of refrigerant required for operation of the heat transport device after the pre-filling step.
 (項目2)
 前記事前充填ステップは、前記熱輸送装置の動作時に前記熱輸送装置の前記冷媒流路に配置されたポンプにおいて気体が生じるキャビテーションが発生しない前記所定の圧力になるように、前記不活性ガスを充填する、項目1に記載の熱輸送装置への冷媒の充填方法。
(Item 2)
2. The method for filling a refrigerant into a heat transport device according to claim 1, wherein the pre-filling step fills the refrigerant with the inert gas so that the pressure reaches the predetermined pressure at which cavitation, which generates gas, does not occur in a pump disposed in the refrigerant flow path of the heat transport device during operation of the heat transport device.
 (項目3)
 前記事前充填ステップは、前記熱輸送装置の動作時に前記熱輸送装置の前記冷媒流路に配置された前記ポンプに流入する前記冷媒の圧力が前記冷媒の飽和蒸気圧以上となるように、前記不活性ガスを前記熱輸送装置の前記冷媒流路内の圧力が前記所定の圧力になるように充填する、項目1または2に記載の熱輸送装置への冷媒の充填方法。
(Item 3)
3. The method for filling a refrigerant into a heat transport device according to claim 1, wherein the pre-filling step includes filling the inert gas so that a pressure in the refrigerant flow path of the heat transport device becomes the predetermined pressure so that a pressure of the refrigerant flowing into the pump disposed in the refrigerant flow path of the heat transport device during operation of the heat transport device becomes equal to or higher than a saturated vapor pressure of the refrigerant.
 (項目4)
 前記事前充填ステップは、前記熱輸送装置の前記冷媒流路内の圧力が前記所定の圧力になるように、前記不活性ガスとして窒素を充填する、項目1~3のいずれか1項に記載の熱輸送装置への冷媒の充填方法。
(Item 4)
4. The method for filling a refrigerant into a heat transport device according to any one of claims 1 to 3, wherein the pre-filling step fills the refrigerant flow path of the heat transport device with nitrogen as the inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes the predetermined pressure.
 (項目5)
 前記事前充填ステップは、前記熱輸送装置の前記冷媒流路内が前記所定の圧力になるように前記不活性ガスを前記熱輸送装置の前記冷媒流路に予め充填した後に、前記冷媒を、固体の発生を抑制する充填速度で、前記熱輸送装置の前記冷媒流路内の圧力が前記冷媒の三重点圧力以上になるように、前記熱輸送装置の前記冷媒流路に充填する、項目1~4のいずれか1項に記載の熱輸送装置への冷媒の充填方法。
(Item 5)
5. The method for filling a refrigerant into a heat transport device according to any one of claims 1 to 4, wherein the pre-filling step comprises pre-filling the refrigerant flow path of the heat transport device with the inert gas so that the inside of the refrigerant flow path of the heat transport device is at the predetermined pressure, and then filling the refrigerant into the refrigerant flow path of the heat transport device at a filling rate that suppresses generation of solids, so that the pressure in the refrigerant flow path of the heat transport device is equal to or higher than the triple point pressure of the refrigerant.
 (項目6)
 圧力検出部によって検出される熱輸送装置の冷媒流路内の圧力を取得する制御を行う制御部を備え、
 前記制御部は、前記熱輸送装置の運転に必要な所定量まで、前記熱輸送装置の前記冷媒流路に冷媒を充填する本充填を行う前に、不活性ガスを、前記熱輸送装置の前記冷媒流路内の圧力が所定の圧力になるように、前記熱輸送装置の前記冷媒流路に充填する、事前充填を行う場合に、前記圧力検出部によって検出される前記熱輸送装置の前記冷媒流路内の圧力に基づいて、前記不活性ガスの充填が完了しているか否かを判定する制御を行う、熱輸送装置用の冷媒充填制御装置。
(Item 6)
a control unit that controls acquisition of a pressure in a refrigerant flow path of the heat transport device detected by the pressure detection unit;
The control unit is a refrigerant filling control device for a heat transport device, which performs control to determine whether filling of the inert gas is completed based on the pressure in the refrigerant flow path of the heat transport device detected by the pressure detection unit when pre-filling is performed by filling the refrigerant flow path of the heat transport device with an inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes a predetermined pressure before performing main filling in which refrigerant is filled into the refrigerant flow path of the heat transport device up to a predetermined amount required for operation of the heat transport device.
 (項目7)
 前記制御部は、前記不活性ガスの充填が完了していると判定された場合に、前記不活性ガスの充填を停止させる制御を行う、項目6に記載の熱輸送装置用の冷媒充填制御装置。
(Item 7)
7. The refrigerant charging control device for a heat transport device according to claim 6, wherein the control unit performs control to stop charging of the inert gas when it is determined that charging of the inert gas has been completed.
 (項目8)
 前記熱輸送装置の前記冷媒流路に前記冷媒を充填するための情報を報知する報知部をさらに備え、
 前記制御部は、前記不活性ガスの充填が完了していると判定された場合に、前記不活性ガスの充填が完了していることを示す情報を前記報知部により報知する、項目6または7に記載の熱輸送装置用の冷媒充填制御装置。
(Item 8)
a notification unit that notifies information for filling the refrigerant into the refrigerant flow path of the heat transport device,
8. The refrigerant filling control device for a heat transport device according to claim 6 or 7, wherein when it is determined that the filling of the inert gas is completed, the control unit notifies the notification unit of information indicating that the filling of the inert gas is completed.
 (項目9)
 前記制御部は、前記不活性ガスの充填が完了していることを示す情報として、取得した前記熱輸送装置の前記冷媒流路内の圧力を前記報知部により報知する制御を行う、項目8に記載の熱輸送装置用の冷媒充填制御装置。
(Item 9)
Item 9. A refrigerant filling control device for a heat transport device as described in item 8, wherein the control unit controls the notification unit to notify the acquired pressure in the refrigerant flow path of the heat transport device as information indicating that filling of the inert gas is completed.
 (項目10)
前記制御部は、前記圧力検出部によって検出される前記熱輸送装置の前記冷媒流路内の圧力に基づいて前記事前充填が完了していると判定した場合には、前記熱輸送装置の運転に必要な所定量まで、前記熱輸送装置の前記冷媒流路に前記冷媒を充填する前記本充填を行うことに関する制御を行う、項目6~9のいずれか1項に記載の熱輸送装置用の冷媒充填制御装置。
(Item 10)
A refrigerant filling control device for a heat transport device described in any one of items 6 to 9, wherein when the control unit determines that the pre-filling is completed based on the pressure in the refrigerant flow path of the heat transport device detected by the pressure detection unit, the control unit controls the main filling to fill the refrigerant into the refrigerant flow path of the heat transport device up to a predetermined amount required for operation of the heat transport device.
 10 冷媒流路
 63、64 圧力センサ(圧力検出部)
 100、200 冷媒充填制御装置
 101 制御部
 102 表示部(報知部)
 110 冷却装置(熱輸送装置)
10 Coolant flow path 63, 64 Pressure sensor (pressure detection unit)
100, 200 Refrigerant charging control device 101 Control unit 102 Display unit (notification unit)
110 Cooling device (heat transport device)

Claims (10)

  1.  不活性ガスを、熱輸送装置の冷媒流路内の圧力が所定の圧力になるように、前記熱輸送装置の前記冷媒流路に充填する事前充填ステップと、
     前記事前充填ステップ後に、前記熱輸送装置の運転に必要な所定量まで、前記熱輸送装置の前記冷媒流路に冷媒を充填する本充填ステップと、を備える、熱輸送装置への冷媒の充填方法。
    a pre-charging step of charging an inert gas into the refrigerant passage of the heat transport device so that a pressure in the refrigerant passage of the heat transport device becomes a predetermined pressure;
    a main filling step of filling the refrigerant into the refrigerant passage of the heat transport device with a predetermined amount of refrigerant required for operation of the heat transport device after the pre-filling step.
  2.  前記事前充填ステップは、前記熱輸送装置の動作時に前記熱輸送装置の前記冷媒流路に配置されたポンプにおいて気体が生じるキャビテーションが発生しない前記所定の圧力になるように、前記不活性ガスを充填する、請求項1に記載の熱輸送装置への冷媒の充填方法。 The method for filling a refrigerant into a heat transport device according to claim 1, wherein the pre-filling step fills the inert gas to the predetermined pressure at which cavitation, which generates gas, does not occur in a pump disposed in the refrigerant flow path of the heat transport device during operation of the heat transport device.
  3.  前記事前充填ステップは、前記熱輸送装置の動作時に前記熱輸送装置の前記冷媒流路に配置されたポンプに流入する前記冷媒の圧力が前記冷媒の飽和蒸気圧以上となるように、前記不活性ガスを前記熱輸送装置の前記冷媒流路内の圧力が前記所定の圧力になるように充填する、請求項1に記載の熱輸送装置への冷媒の充填方法。 The method for filling a refrigerant into a heat transport device according to claim 1, wherein the pre-filling step fills the inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes the predetermined pressure, so that the pressure of the refrigerant flowing into a pump arranged in the refrigerant flow path of the heat transport device during operation of the heat transport device becomes equal to or higher than the saturated vapor pressure of the refrigerant.
  4.  前記事前充填ステップは、前記熱輸送装置の前記冷媒流路内の圧力が前記所定の圧力になるように、前記不活性ガスとして窒素を充填する、請求項1に記載の熱輸送装置への冷媒の充填方法。 The method for filling a refrigerant into a heat transport device according to claim 1, wherein the pre-filling step fills the refrigerant flow path of the heat transport device with nitrogen as the inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes the predetermined pressure.
  5.  前記事前充填ステップは、前記熱輸送装置の前記冷媒流路内が前記所定の圧力になるように前記不活性ガスを前記熱輸送装置の前記冷媒流路に予め充填した後に、前記冷媒を、固体の発生を抑制する充填速度で、前記熱輸送装置の前記冷媒流路内の圧力が前記冷媒の三重点圧力以上になるように、前記熱輸送装置の前記冷媒流路に充填する、請求項1に記載の熱輸送装置への冷媒の充填方法。 The method for filling a refrigerant into a heat transport device according to claim 1, wherein the pre-filling step includes pre-filling the refrigerant flow path of the heat transport device with the inert gas so that the pressure inside the refrigerant flow path of the heat transport device is the predetermined pressure, and then filling the refrigerant into the refrigerant flow path of the heat transport device at a filling speed that suppresses the generation of solids, so that the pressure inside the refrigerant flow path of the heat transport device is equal to or higher than the triple point pressure of the refrigerant.
  6.  圧力検出部によって検出される熱輸送装置の冷媒流路内の圧力を取得する制御を行う制御部を備え、
     前記制御部は、前記熱輸送装置の運転に必要な所定量まで、前記熱輸送装置の前記冷媒流路に冷媒を充填する本充填を行う前に、不活性ガスを、前記熱輸送装置の前記冷媒流路内の圧力が所定の圧力になるように、前記熱輸送装置の前記冷媒流路に充填する、事前充填を行う場合に、前記圧力検出部によって検出される前記熱輸送装置の前記冷媒流路内の圧力に基づいて、前記不活性ガスの充填が完了しているか否かを判定する制御を行う、熱輸送装置用の冷媒充填制御装置。
    a control unit that controls acquisition of a pressure in a refrigerant flow path of the heat transport device detected by the pressure detection unit;
    The control unit is a refrigerant filling control device for a heat transport device, which performs control to determine whether filling of the inert gas is completed based on the pressure in the refrigerant flow path of the heat transport device detected by the pressure detection unit when pre-filling is performed by filling the refrigerant flow path of the heat transport device with an inert gas so that the pressure in the refrigerant flow path of the heat transport device becomes a predetermined pressure before performing main filling in which refrigerant is filled into the refrigerant flow path of the heat transport device up to a predetermined amount required for operation of the heat transport device.
  7.  前記制御部は、前記不活性ガスの充填が完了していると判定された場合に、前記不活性ガスの充填を停止させる制御を行う、請求項6に記載の熱輸送装置用の冷媒充填制御装置。 The refrigerant charging control device for a heat transport device according to claim 6, wherein the control unit performs control to stop charging of the inert gas when it is determined that charging of the inert gas is completed.
  8.  前記熱輸送装置の前記冷媒流路に前記冷媒を充填するための情報を報知する報知部をさらに備え、
     前記制御部は、前記不活性ガスの充填が完了していると判定された場合に、前記不活性ガスの充填が完了していることを示す情報を前記報知部により報知する、請求項6に記載の熱輸送装置用の冷媒充填制御装置。
    a notification unit that notifies information for filling the refrigerant into the refrigerant flow path of the heat transport device,
    7. The refrigerant filling control device for a heat transport device as described in claim 6, wherein the control unit, when it determines that the filling of the inert gas is completed, notifies the notification unit of information indicating that the filling of the inert gas is completed.
  9.  前記制御部は、前記不活性ガスの充填が完了していることを示す情報として、取得した前記熱輸送装置の前記冷媒流路内の圧力を前記報知部により報知する制御を行う、請求項8に記載の熱輸送装置用の冷媒充填制御装置。 The refrigerant charging control device for a heat transport device according to claim 8, wherein the control unit controls the notification unit to notify the acquired pressure in the refrigerant flow path of the heat transport device as information indicating that the charging of the inert gas has been completed.
  10.  前記制御部は、前記圧力検出部によって検出される前記熱輸送装置の前記冷媒流路内の圧力に基づいて前記事前充填が完了していると判定した場合には、前記熱輸送装置の運転に必要な所定量まで、前記熱輸送装置の前記冷媒流路に前記冷媒を充填する前記本充填を行うことに関する制御を行う、請求項6に記載の熱輸送装置用の冷媒充填制御装置。 The refrigerant charging control device for a heat transport device according to claim 6, wherein the control unit, when determining that the pre-charging is complete based on the pressure in the refrigerant flow path of the heat transport device detected by the pressure detection unit, controls the main charging to charge the refrigerant into the refrigerant flow path of the heat transport device up to a predetermined amount required for the operation of the heat transport device.
PCT/JP2023/036301 2022-10-11 2023-10-05 Method for filling heat transport device with refrigerant and refrigerant filling control device for heat transport device WO2024080213A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-163034 2022-10-11
JP2022163034 2022-10-11
JP2023112593 2023-07-07
JP2023-112593 2023-07-07

Publications (1)

Publication Number Publication Date
WO2024080213A1 true WO2024080213A1 (en) 2024-04-18

Family

ID=90669208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036301 WO2024080213A1 (en) 2022-10-11 2023-10-05 Method for filling heat transport device with refrigerant and refrigerant filling control device for heat transport device

Country Status (1)

Country Link
WO (1) WO2024080213A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018480A1 (en) * 2006-08-10 2008-02-14 Daikin Industries, Ltd. Coolant filling method in a refrigeration device using carbon dioxide as coolant
JP2008039308A (en) * 2006-08-08 2008-02-21 Daikin Ind Ltd Air conditioner and its cleaning method
WO2017119113A1 (en) * 2016-01-08 2017-07-13 三菱電機株式会社 Evaporative cooling device and evaporative cooling system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039308A (en) * 2006-08-08 2008-02-21 Daikin Ind Ltd Air conditioner and its cleaning method
WO2008018480A1 (en) * 2006-08-10 2008-02-14 Daikin Industries, Ltd. Coolant filling method in a refrigeration device using carbon dioxide as coolant
WO2017119113A1 (en) * 2016-01-08 2017-07-13 三菱電機株式会社 Evaporative cooling device and evaporative cooling system

Similar Documents

Publication Publication Date Title
EP2729743B1 (en) A method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
CN105431692B (en) Refrigerating circuit
CN110792922A (en) Device and method for filling a container with a pressurized gas
JP2002195705A (en) Supercritical refrigerating cycle
JP5821412B2 (en) Refrigerant filling device
US11672197B2 (en) Systems and methods for suppressing vaporization of volatile fluids in agricultural fluid application systems
WO2024080213A1 (en) Method for filling heat transport device with refrigerant and refrigerant filling control device for heat transport device
CN110792924A (en) Device and method for filling a container with a pressurized gas
CN103423910B (en) Cooling system and maintenance decision method in period
Sakoda et al. Transient temperature and pressure behavior of high-pressure 100 MPa hydrogen during discharge through orifices
CN114129254B (en) Dynamic pressure balancing system in balloon of cryoablation instrument
JP6390908B2 (en) Fluid cooling method
Zhou et al. Experimental study of the influence of burst parameters on the initiation of CO2 BLEVE
JP2024056610A (en) Method for charging carbon dioxide refrigerant into heat transport device and refrigerant charging control device for heat transport device
JP2005106314A (en) Refrigeration unit
JP4798116B2 (en) Refrigerant flow control device
US11525612B2 (en) Method for refrigerant charge determination in a cooling circuit
Li et al. An experimental study on the choked flow characteristics of CO2 pipelines in various phases
JP2009079818A (en) Vending machine
Zhang et al. Experimental investigation on the rapid evaporation of high-pressure R113 liquid due to sudden depressurization
JP7227710B2 (en) Apparatus and method for refilling a container with pressurized gas
CN114585869B (en) Temperature control system and control method thereof
JP7352336B2 (en) Apparatus and method for replenishing containers with pressurized gas
US20230107572A1 (en) Method and device for providing sub-cooling of refrigerants
JP2008162438A (en) Vehicular air-conditioner