WO2024080097A1 - Rotating electric machine stator manufacturing method and rotating electric machine stator manufacturing device - Google Patents

Rotating electric machine stator manufacturing method and rotating electric machine stator manufacturing device Download PDF

Info

Publication number
WO2024080097A1
WO2024080097A1 PCT/JP2023/034370 JP2023034370W WO2024080097A1 WO 2024080097 A1 WO2024080097 A1 WO 2024080097A1 JP 2023034370 W JP2023034370 W JP 2023034370W WO 2024080097 A1 WO2024080097 A1 WO 2024080097A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
welding
electric machine
rotating electric
stator
Prior art date
Application number
PCT/JP2023/034370
Other languages
French (fr)
Japanese (ja)
Inventor
英晴 牛田
泰輔 中村
泰守 中野
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2024080097A1 publication Critical patent/WO2024080097A1/en

Links

Definitions

  • This disclosure relates to a method and an apparatus for manufacturing a stator for a rotating electric machine.
  • a technology is known that achieves welding between coil pieces by bringing the tips of one coil piece and another coil piece into contact with each other and scanning a laser beam in a loop while moving it in a direction that includes a directional component parallel to the contact surface of the tips.
  • the loop pitch depending on the relationship between the beam diameter of the laser beam and the amount of movement in the forward direction per one loop-shaped scan (hereinafter also referred to simply as the "loop pitch"), it is difficult to efficiently achieve high-quality welding. For example, if the loop pitch is too large compared to the beam diameter of the laser beam, the molten pool cannot be properly maintained, and there is a risk of reduced welding quality. Also, if the loop pitch is too small compared to the beam diameter of the laser beam, there is a risk of excessive welding time and heat input per unit length of the area to be welded.
  • the present disclosure aims to efficiently achieve high-quality welding between coil pieces of a stator for a rotating electric machine.
  • the method for manufacturing a stator for a rotating electric machine is provided, wherein the amount of movement in the traveling direction per one loop-shaped scan is equal to or smaller than the beam diameter of the laser beam.
  • the present disclosure makes it possible to efficiently achieve high-quality welding between coil pieces of a stator for a rotating electric machine.
  • FIG. 1 is a cross-sectional view showing a schematic cross-sectional structure of a motor according to an embodiment
  • FIG. 2 is a plan view of the stator core in a single component state.
  • 3A and 3B are diagrams illustrating a pair of coil pieces to be assembled to a stator core.
  • FIG. 2 is a schematic front view of one coil piece. 1 is a diagram showing the tip portions of the coil pieces joined together and their vicinity;
  • FIG. FIG. 2 is a diagram illustrating a schematic view of a welding target portion as viewed from the irradiation side.
  • 6 is a cross-sectional view taken along line AA in FIG. 5 through the area to be welded.
  • FIG. 1 is a diagram showing the relationship between the laser wavelength and the laser absorptance of various solid materials.
  • FIG. 4 is an explanatory diagram of a change in absorption rate during welding.
  • FIG. 13 is an image diagram of a keyhole etc. when a green laser is used.
  • FIG. 13 is an image diagram of a keyhole etc. when an infrared laser is used.
  • 4A to 4C are explanatory diagrams of the irradiation mode of a green laser according to the manufacturing method of this embodiment.
  • FIG. 2 is an explanatory diagram relating to scanning of a laser beam, and is an explanatory diagram of an emission center of a laser beam.
  • FIG. 2 is an explanatory diagram relating to laser beam scanning, and is an explanatory diagram of a movement mode of the laser beam.
  • FIG. 13 is an explanatory diagram of an irradiation mode in the case of an infrared laser according to a comparative example.
  • FIG. 4 is a cross-sectional view taken along the welding direction on the contact surface according to the present embodiment.
  • FIG. 11 is a cross-sectional view taken along the welding direction on the contact surface according to the comparative example.
  • 13 is an image of the bottom edge of the bonded surface according to the present embodiment. 13 is an image of the lower end of the joint surface according to the comparative example.
  • FIG. 13 is an explanatory diagram of robustness against deviation of the irradiation position in the radial direction.
  • FIG. 11 is a table showing multiple conditions (conditions 1 to 3) of the tests carried out.
  • FIG. 11 is a graph showing the relationship between the wobbling diameter and the number of sputters under different conditions.
  • FIG. 11 is a graph showing the relationship between the wobbling diameter and the bonding area and welding depth.
  • 1 is a diagram showing a preferred welding speed for each Y direction position (a change profile of the welding speed according to the Y direction position) with the horizontal axis representing the Y direction position along the Y direction and the vertical axis representing the welding speed.
  • 11 is an explanatory diagram of the wobbling pitch in the section from Y-direction position P1 to Y-direction position P2.
  • FIG. 13 is an explanatory diagram of the wobbling pitch in the section from Y direction position P3 to Y direction position P5.
  • FIG. 11 is an explanatory diagram of a first comparative example.
  • FIG. 11 is an explanatory diagram of a problem in the first comparative example.
  • FIG. 11 is an explanatory diagram of a second comparative example.
  • FIG. 13 is an explanatory diagram of a problem in the second comparative example.
  • 4 is a flowchart illustrating a manufacturing method of a motor stator.
  • FIG. 2 is a system configuration diagram of the manufacturing apparatus.
  • FIG. 1 is a cross-sectional view that shows a schematic cross-sectional structure of a motor 1 (an example of a rotating electric machine) according to one embodiment.
  • the rotating shaft 12 of the motor 1 is shown.
  • the axial direction refers to the direction in which the rotating shaft (center of rotation) 12 of the motor 1 extends
  • the radial direction refers to the radial direction centered on the rotating shaft 12. Therefore, the radially outer side refers to the side away from the rotating shaft 12, and the radially inner side refers to the side toward the rotating shaft 12. Additionally, the circumferential direction corresponds to the direction of rotation around the rotating shaft 12.
  • Motor 1 may be a motor for driving a vehicle, such as that used in a hybrid vehicle or an electric vehicle. However, motor 1 may also be used for any other purpose.
  • the motor 1 is an inner rotor type, with the stator 21 surrounding the radial outside of the rotor 30.
  • the radial outside of the stator 21 is fixed to the motor housing 10.
  • the rotor 30 is disposed radially inside the stator 21.
  • the rotor 30 includes a rotor core 32 and a rotor shaft 34.
  • the rotor core 32 is fixed to the radial outside of the rotor shaft 34 and rotates integrally with the rotor shaft 34.
  • the rotor shaft 34 is rotatably supported in the motor housing 10 via bearings 14a and 14b.
  • the rotor shaft 34 defines the rotating shaft 12 of the motor 1.
  • the rotor core 32 is formed, for example, from laminated steel plates of a circular magnetic material. Permanent magnets 321 are inserted into the magnet holes 320 of the rotor core 32. The number and arrangement of the permanent magnets 321 are optional. In a modified example, the rotor core 32 may be formed from a green compact in which magnetic powder is compressed and solidified.
  • End plates 35A, 35B are attached to both axial sides of rotor core 32.
  • end plates 35A, 35B may also have a function of adjusting imbalance of rotor 30 (a function of eliminating imbalance by cutting, etc.).
  • the rotor shaft 34 has a hollow portion 34A.
  • the hollow portion 34A extends over the entire axial length of the rotor shaft 34.
  • the hollow portion 34A may function as an oil passage.
  • oil is supplied to the hollow portion 34A from one axial end, and the oil flows along the radially inner surface of the rotor shaft 34, thereby cooling the rotor core 32 from the radially inner side.
  • the oil flowing along the radially inner surface of the rotor shaft 34 may be ejected radially outward through oil holes 341, 342 formed at both ends of the rotor shaft 34 (arrows R5, R6), and may be used to cool the coil ends 220A, 220B.
  • FIG. 1 shows a motor 1 with a specific structure
  • the structure of the motor 1 is arbitrary as long as it has a stator coil 24 (described below) joined by welding.
  • the rotor shaft 34 may not have a hollow portion 34A, or may have a hollow portion with an inner diameter significantly smaller than that of the hollow portion 34A.
  • FIG. 1 shows a specific cooling method
  • the cooling method of the motor 1 is arbitrary.
  • an oil introduction pipe inserted into the hollow portion 34A may be provided, or oil may be dripped from an oil passage in the motor housing 10 from the radial outside toward the coil ends 220A, 220B.
  • FIG. 1 shows an inner rotor type motor 1 in which the rotor 30 is disposed inside the stator 21
  • the present invention may be applied to other types of motors.
  • the present invention may be applied to an outer rotor type motor in which the rotor 30 is disposed concentrically outside the stator 21, or a dual rotor type motor in which the rotor 30 is disposed both outside and inside the stator 21.
  • Figure 2 is a plan view of the stator core 22 in a standalone state.
  • Figure 3 is a schematic diagram of a pair of coil pieces 52 assembled to the stator core 22.
  • Figure 3 shows the relationship between the pair of coil pieces 52 and the slots 220 with the radially inner side of the stator core 22 unfolded.
  • the stator core 22 is shown by a dotted line, and some of the slots 220 are not shown.
  • the stator 21 includes a stator core 22 and a stator coil 24 (see Figure 1).
  • the stator core 22 is made of, for example, a circular ring-shaped laminated steel plate of a magnetic material, but in a modified example, the stator core 22 may be formed of a green compact in which magnetic powder is compressed and solidified.
  • the stator core 22 may be formed of a split core that is split in the circumferential direction, or may not be split in the circumferential direction.
  • a plurality of slots 220 around which the stator coil 24 is wound are formed on the radially inner side of the stator core 22. Specifically, as shown in FIG.
  • the stator core 22 includes a circular back yoke 22A and a plurality of teeth 22B that extend radially inward from the back yoke 22A, and the slots 220 are formed between the plurality of teeth 22B in the circumferential direction.
  • the number of slots 220 is arbitrary, but in this embodiment, as an example, there are 48 slots 220.
  • the stator coil 24 includes a U-phase coil, a V-phase coil, and a W-phase coil (hereinafter, when U, V, and W are not distinguished, they will be referred to as "phase coils").
  • the base end of each phase coil is connected to an input terminal (not shown), and the end of each phase coil is connected to the end of the other phase coil to form the neutral point of the motor 1.
  • the stator coil 24 is star-connected.
  • the connection mode of the stator coil 24 may be changed as appropriate depending on the required motor characteristics, etc.
  • the stator coil 24 may be delta-connected instead of star-connected.
  • FIG. 4 is a schematic front view of one coil piece 52.
  • the coil pieces 52 are in the form of segment coils in which the phase coil is divided into units that are easy to assemble (for example, units that can be inserted into two slots 220).
  • the coil pieces 52 are formed by coating a linear conductor (rectangular wire) 60 with a rectangular cross section with an insulating coating 62.
  • the linear conductor 60 is formed from copper, as an example.
  • the linear conductor 60 may be formed from another conductive material such as iron.
  • the coil pieces 52 Before being assembled to the stator core 22, the coil pieces 52 may be formed into a generally U-shape having a pair of straight portions 50 and a connecting portion 54 connecting the pair of straight portions 50.
  • the pair of straight portions 50 When assembling the coil pieces 52 to the stator core 22, the pair of straight portions 50 are each inserted into a slot 220 (see FIG. 3).
  • the connecting portion 54 extends circumferentially so as to straddle a plurality of teeth 22B (and therefore a plurality of slots 220) at the other axial end side of the stator core 22, as shown in FIG. 3.
  • the number of slots 220 that the connecting portion 54 straddles is arbitrary, but is three in FIG. 3.
  • the straight portions 50 After being inserted into the slot 220, the straight portions 50 are bent circumferentially midway, as shown by the two-dot chain line in FIG. 4. As a result, the straight portion 50 becomes a leg portion 56 that extends axially within the slot 220, and a bridge portion 58 that extends circumferentially at one axial end of the stator core 22.
  • the pair of straight portions 50 are bent in a direction away from each other, but this is not limited thereto.
  • the pair of straight portions 50 may be bent in a direction toward each other.
  • the stator coil 24 may also have a neutral point coil piece for connecting the ends of the three phase coils to form a neutral point.
  • multiple legs 56 of the coil piece 52 shown in FIG. 4 are inserted side by side in the radial direction. Therefore, multiple circumferentially extending bridge portions 58 are lined up in the radial direction at one axial end of the stator core 22. As shown in FIG. 3, the bridge portion 58 of one coil piece 52 protruding from one slot 220 and extending to a first circumferential side (e.g., clockwise) is joined to the bridge portion 58 of another coil piece 52 protruding from another slot 220 and extending to a second circumferential side (e.g., counterclockwise).
  • a first circumferential side e.g., clockwise
  • a second circumferential side e.g., counterclockwise
  • first turn, second turn, and third turn are assembled in one slot 220.
  • first turn, second turn, and third turn starting from the radially outermost coil piece 52.
  • first turn coil piece 52 and the second turn coil piece 52 have their tip portions 40 joined together by a joining process described below
  • the third turn coil piece 52 and the fourth turn coil piece 52 have their tip portions 40 joined together by a joining process described below
  • fifth turn coil piece 52 and the sixth turn coil piece 52 have their tip portions 40 joined together by a joining process described below.
  • the coil pieces 52 are covered with an insulating coating 62, but the insulating coating 62 is removed only from the tip portion 40. This is to ensure electrical connection with the other coil pieces 52 at the tip portion 40.
  • FIG. 5 is a diagram showing the tip 40 of the coil pieces 52 joined together and its vicinity.
  • FIG. 5 also shows a schematic representation of the circumferential range D1 of the area 90 to be welded.
  • FIG. 6 is a schematic representation of the area 90 to be welded as viewed from the irradiation side.
  • FIG. 7 is a cross-sectional view taken along line A-A in FIG. 5, which passes through the area 90 to be welded.
  • FIG. 7 also shows a schematic representation of the range of the molten pool formed during welding, as indicated by the hatched area 1102.
  • FIG. 8 is a diagram showing the relationship between the laser wavelength and the laser absorptance of various individual materials.
  • the Z direction along the axial direction is defined.
  • the Z1 side in the Z direction i.e. the side irradiated with the laser beam
  • the Z2 side in the Z direction is referred to as the "lower side”.
  • the X direction along the radial direction and the X1 side and X2 side along the X direction are defined.
  • the structure relating to one coil piece 52 may be designated by adding the letter "A" after the reference numeral, such as tip portion 40A, and the structure relating to the other coil piece 52 may be designated by adding the letter "B" after the reference numeral, such as tip portion 40B.
  • the tip portions 40 may cross each other in an X-shape. In this case, each tip portion 40 may be cut so that no protruding portion is formed on the upper side of the X-shape.
  • the area to be welded 90 extends linearly along the abutment surface 401, as shown by range D1 in Fig. 6. That is, the area to be welded 90 extends linearly over range D1 in the Y direction with a width of range D2 in the X direction as shown in Fig. 7, as viewed from the side irradiated with the laser beam (see arrow W in Fig. 5).
  • the abutment surface 401 has a rectangular shape surrounded by axial outer end faces 42A, 42B and extension direction end faces 44A, 44B when viewed in the radial direction, but may have other shapes.
  • the welding target area 90 is set along the upper side (the exposed upper side of the four sides of the rectangle) formed by the axially outer end faces 42A, 42B of both tip portions 40 in the view (viewed radially) shown in FIG. 5.
  • the welding target area 90 extends horizontally, but in the view (viewed radially) shown in FIG. 5, it may extend in an upwardly convex C-shape or in other shapes depending on other shapes that the tip portion 40 can take.
  • the axially outer end faces 42A, 42B extend in the XY plane, but may be inclined relative to the XY plane.
  • welding is used as a joining method when joining the tip portions 40 of the coil pieces 52.
  • the welding method is not arc welding, such as TIG welding, but laser welding using a laser beam source as a heat source.
  • TIG welding By using laser welding instead of TIG welding, the axial length of the coil ends 220A, 220B can be reduced. That is, in the case of TIG welding, it is necessary to bend the tips of the coil pieces to be abutted axially outward and extend them in the axial direction, whereas in the case of laser welding, such bending is not necessary, and as shown in FIG. 5, welding can be achieved in a state in which the tip portions 40 of the coil pieces 52 to be abutted extend in the circumferential direction. This allows the axial length of the coil ends 220A, 220B to be reduced compared to when the tip portions 40 of the coil pieces 52 to be abutted are bent axially outward and extend in the axial direction.
  • a welding laser beam is applied to the welding target area 90 of the two abutted tip portions 40.
  • the irradiation direction (propagation direction) of the laser beam is approximately parallel to the axial direction, and is directed from the axial outside toward the axially outer end faces 42 (including the exposed sides of the abutment faces 401) of the two abutted tip portions 40.
  • Laser welding allows localized heating, so that only the tip portions 40 and their vicinity can be heated, effectively reducing damage (carbonization) of the insulating coating 62. As a result, multiple coil pieces 52 can be electrically connected while maintaining appropriate insulation performance.
  • FIG 8 is a diagram showing the relationship between the laser wavelength and the laser absorptance (hereinafter simply referred to as "absorption rate") for individual materials.
  • the horizontal axis represents the wavelength ⁇ and the vertical axis represents the absorptance, and the characteristics of individual materials, copper (Cu), aluminum (Al), silver (Ag), nickel (Ni), and iron (Fe), are shown.
  • the infrared laser most of the laser beam is reflected by the coil pieces 52 and not absorbed. For this reason, a relatively large amount of heat input is required to obtain the required joint area between the coil pieces 52 to be joined, which can cause significant thermal effects and unstable welding.
  • a green laser is used instead of an infrared laser.
  • the concept of a green laser includes not only a laser with a wavelength of 532 nm, i.e., an SHG (Second Harmonic Generation) laser, but also lasers with wavelengths close to 532 nm.
  • a laser with a wavelength of 0.6 ⁇ m or less that does not belong to the category of green lasers may be used.
  • the wavelength of a green laser can be obtained by converting the fundamental wavelength generated by, for example, a YAG laser or YVO4 laser through an oxide single crystal (for example, LBO: lithium triborate).
  • the absorption rate is high at about 50% for copper, which is the material of the linear conductor 60 of the coil piece 52. Therefore, according to this embodiment, it is possible to ensure the necessary joint area between the coil pieces 52 with a smaller amount of heat input compared to when an infrared laser is used.
  • Figure 9 is an explanatory diagram of how the absorption rate changes during welding.
  • the horizontal axis represents the laser power density and the vertical axis represents the laser absorption rate of copper, and the characteristics 100G for a green laser and 100R for an infrared laser are shown.
  • Figure 9 shows points P100 and P200 at which copper starts to melt for the green laser and the infrared laser, as well as point P300 at which a keyhole is formed.
  • the green laser can start melting copper at a lower laser power density than the infrared laser.
  • the difference between the absorptivity at point P300 at which a keyhole is formed and the absorptivity at the start of irradiation i.e., the absorptivity when the laser power density is 0
  • the change in absorptivity during welding is about 80%
  • the change in absorptivity during welding is about 40%, which is about half.
  • the change (drop) in absorption rate during welding is relatively large at approximately 80%, making the keyhole unstable and prone to variations in weld depth and width, and disturbance of the molten pool (e.g., spatter, etc.).
  • the change (drop) in absorption rate during welding is relatively small at approximately 40%, making the keyhole less likely to become unstable, and also less likely to cause variations in weld depth and width, and disturbance of the molten pool (e.g., spatter, etc.).
  • Spatter refers to metal particles that fly off when a laser or other device is irradiated.
  • FIG. 10B is an image diagram of a keyhole when an infrared laser is used, where 1100 indicates a weld bead, 1102 indicates a molten pool, and 1104 indicates a keyhole.
  • the arrow R1116 also shows a typical state of gas escape.
  • the arrow R110 also shows a typical state in which the irradiation position of the infrared laser is moved due to the small beam diameter.
  • FIG. 10A is an image of a keyhole when a green laser is used, and the meaning of the symbols is as described above with reference to FIG. 10B.
  • FIG. 10A it is easy to understand from FIG. 10A how the keyhole is stabilized and gas escape is improved due to the expansion of the beam diameter.
  • the movement trajectory (irradiation time) of the irradiation position required to obtain the required fusion width can be made relatively short (shortened) (described later).
  • FIG. 11 is an explanatory diagram of the irradiation mode of the green laser according to the manufacturing method of this embodiment.
  • FIG. 11A is an explanatory diagram of the scanning of the laser beam, and is an explanatory diagram of the emission center Ct0 of the laser beam.
  • FIG. 11B is an explanatory diagram of the scanning of the laser beam, and is an explanatory diagram of the movement mode of the laser beam.
  • FIG. 12 is an explanatory diagram of the irradiation mode in the case of an infrared laser according to a comparative example.
  • FIGS. 11 and 12 are schematic diagrams viewed in the laser irradiation direction, and the laser irradiation area (or the area to be irradiated) at the welding target part 90 at a certain point during welding is shown as a hatched area.
  • the circles 110 and 110' of the laser beam indicate the irradiation range at a certain point during welding, and the beam diameters ⁇ A and ⁇ A' are also shown.
  • the line Lref represents the abutment surface 401 (the upper side of the abutment surface 401).
  • the manufacturing method of this embodiment involves scanning the laser beam in a loop (see arrow R112) while moving it in the welding direction (travel direction).
  • the travel direction is along the upper edge of the contact surface 401 described above (i.e., a direction parallel to the upper edge), but may be slightly inclined relative to that edge due to errors, etc.
  • on the contact surface 401 refers to the portion that forms the upper edge of the contact surface 401 (see line Lref).
  • loop-shaped is a concept including any shape that can form a loop, such as a circle, an ellipse, and does not need to be completely closed, and may be a spirally continuous shape.
  • the loop shape is a shape in which circles are spirally continuous.
  • Such a loop shape can be realized, for example, by using a laser beam emitted (scanned) from the emission part in a manner that draws a circular trajectory a certain number of times per unit time.
  • FIG. 11A the circular trajectory (scanning) of the laser beam when the laser beam (emission part) is not moved is shown in the hatched region R11.
  • the emission center Ct0 of the laser beam is aligned with the abutment surface 401, thereby realizing a traveling direction along the upper side of the abutment surface 401.
  • the dashed dotted line TRct represents the trajectory (arrow indicates the traveling direction) of the center Ct1 of the laser beam when such a movement of the laser beam (linear movement along the upper side of the abutment surface 401) is performed.
  • the diameter of the circle associated with the loop (hereinafter also referred to as the "wobbling diameter ⁇ B") is arbitrary, but a preferred range will be described later.
  • the wobbling diameter ⁇ B may be larger than the beam diameter ⁇ A of the laser beam.
  • the amount of movement in the direction of travel per one loop scan (hereinafter also referred to as "wobbling pitch pt") is equal to or less than the beam diameter ⁇ A of the laser beam.
  • “per one loop scan” refers to one revolution from one phase of the circle to the same phase. This allows the irradiation range for one loop and the irradiation range for the next loop to be set continuously along the welding direction on the contact surface 401, as shown in FIG. 11. For example, if the wobbling pitch pt is 1/2 the beam diameter ⁇ A of the laser beam, the irradiation range for one loop and the irradiation range for the next loop will overlap by 1/2 the beam diameter ⁇ A on the contact surface 401.
  • the molten pool formed in the area to be welded 90 can be moved in the welding direction on the contact surface 401 while maintaining the molten pool.
  • the molten pool can be moved in the welding direction on the contact surface 401 by the wobbling pitch pt for each loop while maintaining the molten pool.
  • the wobbling pitch pt is constant for one welding target portion 90, but may be variable.
  • the size of the beam diameter ⁇ A may be the size at the emission end.
  • the beam diameter ⁇ A represents a Gaussian beam diameter (1/e 2 ), but in the case of an elliptical beam, the length of the major axis or minor axis of the elliptical spot may be substituted.
  • the beam diameter ⁇ A is preferably ⁇ 0.1 mm or more, and more preferably ⁇ 0.15 mm or more.
  • the wobbling pitch pt can also be increased under the condition that the laser beam has a beam diameter ⁇ A or less.
  • the laser beam is continuously irradiated with a laser output of 3.0 kW or more for multiple loop scans.
  • the laser beam may be continuously irradiated to the entire area 90 to be welded. This makes it easier to maintain the molten pool and shortens the welding time, although the output may be lower than with irradiation using pulsed oscillation.
  • the beam diameter ⁇ A' is relatively small, for example ⁇ 0.08 mm, due to the use of an infrared laser as described above.
  • the wobbling pitch pt' is 0.1 mm.
  • the irradiation range for each loop is discontinuous along the welding direction on the contact surface 401.
  • FIG. 13 is a cross-sectional view taken along line B-B in FIG. 11 for this embodiment (cross-sectional view taken along the welding direction on the abutment surface 401), and FIG. 14 is a cross-sectional view taken along line C-C in FIG. 12 for the comparative example.
  • the joint surface is shown as a schematic diagram by hatched areas SC13 and SC14.
  • the joint surface refers to the surface of the abutment surface 401 that is joined due to welding.
  • FIG. 15 and FIG. 16 show images of a part of the joint surface (the lower end of the joint surface) when cut at the abutment surface 401, FIG.
  • FIG. 15 shows an image according to this embodiment
  • FIG. 16 shows an image according to the comparative example.
  • the irradiation ranges for each loop are discontinuous along the welding direction on the abutting surface 401, so the height H1' of the lower end of the joint surface (welding depth H1') varies greatly along the welding direction, as shown in Figures 14 and 16. That is, between the irradiation ranges for each loop, there are areas where the height H1' suddenly becomes small (the welding depth suddenly becomes shallow). As a result, there is an inconvenience that the joint area (the area of the joint surface) tends to become insufficient. To address this, it is possible to further reduce the wobbling pitch pt' so that the irradiation ranges for each loop overlap, but such a measure is likely to cause other inconveniences, such as excessive welding time or excessive heat input.
  • the irradiation ranges of each loop are continuous along the welding direction on the contact surface 401.
  • the beam diameter ⁇ A is relatively large, even if the wobbling pitch pt is increased, the irradiation ranges of each loop can be continuous, and the welding time and heat input can be reduced (efficient).
  • the wobbling pitch pt may be 1/4 or more of the beam diameter ⁇ A of the laser beam under conditions of the beam diameter ⁇ A or less, more preferably 1/3 or more of the beam diameter ⁇ A, and most preferably 1/2 or more.
  • FIG. 17 is an explanatory diagram of robustness against deviations in the radial irradiation position.
  • the horizontal axis represents the laser radial deviation amount
  • the vertical axis represents the bonding area
  • characteristic curves 1701, 1702, and 1703 for three different methods are shown.
  • the laser radial deviation amount represents the radial position of the center of the irradiation area when the abutment surface 401 is set to "0”
  • negative values represent the radial inward position.
  • Characteristic curve 1701 shows the case of this embodiment
  • characteristic curve 1702 shows the case of the first comparative example
  • characteristic curve 1703 shows the case of the second comparative example.
  • the second comparative example uses a green laser, but the scanning method is linear scanning, unlike this embodiment. That is, in the second comparative example, the green laser scans linearly along the welding direction on the abutment surface 401.
  • the present embodiment and the first comparative example have relatively high robustness against deviation of the irradiation position in the radial direction, and even if the irradiation position is shifted 0.2 mm inward or outward in the radial direction, the bonding area does not fall to 3 mm2 or less. In the case of the present embodiment, it can be seen that in the region where the irradiation position is shifted 0.4 mm or more inward or outward in the radial direction, the robustness is higher than that of the first comparative example.
  • FIG. 18 is a table showing the multiple conditions (conditions 1 to 3) under which the test was conducted.
  • FIG. 19 is a graph showing the relationship between the wobbling diameter ⁇ B and the number of spatters for each condition
  • FIG. 20 is a graph showing the relationship between the wobbling diameter ⁇ B and the joint area and the weld depth.
  • graph 201 relates to the weld area
  • graph 202 relates to the weld depth.
  • plot p1 relates to condition 1
  • plot p2 relates to condition 2
  • plot p3 relates to condition 3.
  • the laser scanning speed is adjusted so that the heat input is the same under conditions 1 to 3.
  • the laser scanning speed corresponds to the length of the laser beam irradiation path per unit time (the length along the loop-shaped path).
  • the welding speed is the movement distance of the laser beam irradiation position per unit time, and is a value obtained by, for example, dividing the movement distance of the laser beam irradiation position over a certain time period (the movement distance along the welding direction on the contact surface 401) by the same time period.
  • the conditions common to each condition (fixed conditions) are that a green laser is used, that the beam diameter ⁇ A is 0.273 mm, and that the output distribution density is a Gaussian distribution.
  • a larger wobbling diameter ⁇ B is advantageous from the viewpoint of reducing the number of spatters, but a smaller wobbling diameter ⁇ B is advantageous from the viewpoint of increasing the welding depth and the joining area. Therefore, taking these trade-offs into consideration, a preferred range of the wobbling diameter ⁇ B may be adapted. For example, when the wobbling diameter ⁇ B is less than ⁇ 0.4, the number of spatters may increase sharply as the wobbling diameter ⁇ B decreases, so the wobbling diameter ⁇ B may preferably be ⁇ 0.4 mm or more.
  • the wobbling diameter ⁇ B exceeds ⁇ 0.75 mm, the joining area becomes relatively small, so the wobbling diameter ⁇ B may preferably be ⁇ 0.75 mm or less.
  • the wobbling diameter ⁇ B is between 1.46 and 2.74 times the beam diameter ⁇ A of the laser beam. Therefore, the wobbling diameter ⁇ B may be adapted to be between 1.4 and 2.8 times the beam diameter ⁇ A of the laser beam.
  • FIG. 21 is a diagram showing a preferred welding speed for each Y-direction position (a profile of changes in the welding speed according to the Y-direction position), with the horizontal axis representing the Y-direction position along the Y-direction and the vertical axis representing the welding speed.
  • the positive side of the horizontal axis corresponds to the Y2 side described above, and in this example, the Y1 side of the welding target portion 90 (see FIG. 6) is set as the welding start position, and the laser beam emission center Ct0 (see FIG. 11A) is moved from the Y1 side to the Y2 side during welding.
  • FIG. 11A the profile of changes in the welding speed
  • each Y-direction position (a profile of changes in the laser output according to the Y-direction position) in the form of a waveform R21.
  • the Y-direction position P1 indicates the irradiation start position
  • the Y-direction position P5 indicates the irradiation end position.
  • the section from the Y-direction position P1 to the Y-direction position P5 corresponds to the range D1 described above with reference to FIG. 5 and FIG. 6.
  • the welding speed is lowest at the start of irradiation and is increased thereafter.
  • the welding speed V1 in the section from Y-direction position P1 to Y-direction position P2
  • the welding speed V2 in the section from Y-direction position P2 to Y-direction position P3
  • the welding speed V3 in the section from Y-direction position P3 to Y-direction position P5.
  • Welding speed V1 is preferably significantly smaller than 80 mm/s, for example in the range of 5-35 mm/s, and may be approximately 20 mm/s.
  • Welding speed V3 is preferably 80 mm/s or greater, for example approximately 100 mm/s.
  • the section from Y-direction position P1 to Y-direction position P2 is preferably shorter than the section from Y-direction position P3 to Y-direction position P5, and more preferably shorter than the section from Y-direction position P3 to Y-direction position P4.
  • the section from Y-direction position P1 to Y-direction position P2 is preferably less than 20% of range D1, and preferably 10% or less.
  • the section from Y-direction position P2 to Y-direction position P3 may be shorter than the section from Y-direction position P1 to Y-direction position P2.
  • the laser output is preferably highest in the section from Y-direction position P3 to Y-direction position P4.
  • the laser output may gradually increase from Y-direction position P1 and be maintained at a constant value in the section from Y-direction position P3 to Y-direction position P4.
  • the laser output may then be reduced toward 0 (output off) using the section from Y-direction position P4 to Y-direction position P5.
  • the laser output is maximized in the section from Y-direction position P3 to Y-direction position P4 within the section of welding speed V3, and the main portion of the welding target area 90 can be welded with high quality in a short time.
  • FIG. 22 is an explanatory diagram of the wobbling pitch pt (wobbling pitch pt at welding speed V1) (an example of the "first movement amount") in the section from Y-direction position P1 to Y-direction position P2, and
  • FIG. 23 is an explanatory diagram of the wobbling pitch pt (wobbling pitch pt at welding speed V3) (an example of the "second movement amount") in the section from Y-direction position P3 to Y-direction position P5.
  • the distance in the Y direction between these two circles 110 corresponds to the wobbling pitch pt.
  • the laser scanning speed is constant over the entire section from the Y direction position P1 to the Y direction position P5.
  • the wobbling pitch pt increases accordingly.
  • the lap ratio (area of overlapping part/area of circle x 100) of the two circles 110 decreases accordingly.
  • the welding speed V3 may be set so that the lap ratio (area of overlapping part/area of circle x 100) of the two circles 110 is preferably 15% or more and 20% or less.
  • FIGS. 24A and 24B are explanatory diagrams of the first comparative example, and 24B is an explanatory diagram of the problem associated with the first comparative example.
  • 25A and 25B are explanatory diagrams of the second comparative example, and 25B is an explanatory diagram of the problem associated with the second comparative example.
  • Both Figs. 24A and 25A are diagrams showing preferred welding speeds for each Y direction position (profile of changes in welding speed according to Y direction position) with the horizontal axis representing Y direction position along the Y direction and the vertical axis representing welding speed, similar to Fig. 21 described above for this embodiment.
  • Both Figs. 24B and 25B are diagrams showing schematic views of the welding target location 90' or 90" as viewed from the irradiation side, similar to Fig. 6 described above for this embodiment.
  • the laser beam moves in the Y direction at a relatively high speed before the molten pool becomes large enough at the welding start position (Y direction position P1), making it easier for the laser beam to irradiate the outside of the molten pool.
  • the laser beam moves from the Y1 side to the Y2 side, the laser beam is easier to irradiate the outside of the molten pool on the Y2 side.
  • defects are more likely to occur at the welding start position (Y direction position P1).
  • the material (solid) of the irradiated area at the tip 40 of the coil piece 52 is blown away, making it easier for a cavity (represented by the unhatched area in FIG. 24B) to occur.
  • a relatively small welding speed V1 is used in the section from Y-direction position P1 to Y-direction position P2. This makes it difficult for the laser beam to be irradiated to the outside of the molten pool before the molten pool becomes sufficiently large. As a result, the inconveniences that occur in the first comparative example can be reduced.
  • the length of the section from Y-direction position P1 to Y-direction position P2 is preferably set so that in this section, the circle 110 is formed two or more times at the corresponding wobbling pitch pt (see FIG. 23), and more preferably, is set so that in this section, the circle 110 is formed 7 to 13 times at the corresponding wobbling pitch pt.
  • the fusion width w2 (see the radial range D2 of the welding target portion 90 shown in FIG. 7) is likely to be larger than the desired value, as shown in FIG. 25B.
  • the fusion width w2 becomes larger as it moves toward the Y2 side (the same applies to the welding depth H1 shown in FIG. 13).
  • a relatively slow welding speed V1 is used in the section from Y-direction position P1 to Y-direction position P2, but a higher welding speed (particularly welding speed V3) is used in the subsequent section.
  • a higher welding speed particularly welding speed V3
  • the welding time (time required for welding) per welding area 90 can be made relatively short. In other words, the inconveniences that arise in the second comparative example can be reduced.
  • welding speed V1, V2, and V3 are used, but welding speed V1 or welding speed V3 may be used instead of welding speed V2. Alternatively, four or more types of welding speeds may be used.
  • FIG. 26 is a flow chart showing the outline of the manufacturing method for the stator 21 of the motor 1.
  • FIG. 27 is a system configuration diagram of the manufacturing device 300.
  • this manufacturing method includes an assembly process (step S150) in which the coil pieces 52 are attached to the stator core 22.
  • this manufacturing method includes a joining process (step S152) in which the tip ends 40 of the coil pieces 52 are joined together by laser welding. The method of joining the tip ends 40 of the coil pieces 52 together by laser welding is as described above.
  • the joining process includes a setting process (step S1521) in which the tip portions 40 of each pair of coil pieces 52 are set so as to abut against each other in the radial direction, as described above.
  • the setting process the state in which the tip portions 40 of each pair of coil pieces 52 are abutted against each other in the radial direction may be maintained using a jig 302.
  • the joining process includes an irradiation process (step S1522) in which, after the setting process, a laser beam is irradiated from the irradiation device 304 to the welding target points 90 as described above.
  • the manner of irradiation of the laser beam from the irradiation device 304 is as described above, and may be controlled by the control device 301.
  • the setting process and the irradiation process may be performed as a set for one or more predetermined number of welding target points 90, or may be performed collectively for all welding target points 90 related to one stator 21.
  • the present manufacturing method may end by completing the stator 21 by appropriately performing various necessary processes after the joining process.

Abstract

Disclosed is a rotating electric machine stator manufacturing method including: a step for bringing the leading end portions of one coil piece and another coil piece for forming a stator coil of a rotating electric machine into contact with each other; and an irradiation step for irradiating a laser beam having a wavelength of 0.6 μm or less toward one side on the exposed side of the contact surface of the leading end portions. The irradiation step involves scanning the laser beam in a loop shape while moving the laser beam in the travel direction, which includes a directional component along which the one side extends. The amount of movement in the travel direction per scanning loop is less than or equal to the diameter of the laser beam.

Description

回転電機用ステータ製造方法及び回転電機用ステータ製造装置Manufacturing method and device for manufacturing a stator for a rotating electric machine
 本開示は、回転電機用ステータ製造方法及び回転電機用ステータ製造装置に関する。 This disclosure relates to a method and an apparatus for manufacturing a stator for a rotating electric machine.
 一のコイル片と他の一のコイル片の先端部同士を当接させた状態において、レーザビームを、先端部の当接面に平行な方向成分を含む進行方向に移動させながらループ状に走査することで、コイル片間の溶接を実現する技術が知られている。 A technology is known that achieves welding between coil pieces by bringing the tips of one coil piece and another coil piece into contact with each other and scanning a laser beam in a loop while moving it in a direction that includes a directional component parallel to the contact surface of the tips.
特開2021-44883号公報JP 2021-44883 A
 しかしながら、上記のような従来技術では、レーザビームのビーム径と、1周のループ状の走査あたりの進行方向の移動量(以下、単に「ループのピッチ」とも称する)との関係によっては、高い品質の溶接を効率的に実現することが難しい。例えば、レーザビームのビーム径に対して、ループのピッチが過大であると、溶融池を適切に維持できず、溶接品質が低下するおそれがある。また、レーザビームのビーム径に対して、ループのピッチが過小であると、溶接対象箇所の単位長さ当たりの溶接時間や入熱量が過大となるおそれがある。 However, in the conventional techniques described above, depending on the relationship between the beam diameter of the laser beam and the amount of movement in the forward direction per one loop-shaped scan (hereinafter also referred to simply as the "loop pitch"), it is difficult to efficiently achieve high-quality welding. For example, if the loop pitch is too large compared to the beam diameter of the laser beam, the molten pool cannot be properly maintained, and there is a risk of reduced welding quality. Also, if the loop pitch is too small compared to the beam diameter of the laser beam, there is a risk of excessive welding time and heat input per unit length of the area to be welded.
 そこで、1つの側面では、本開示は、回転電機用ステータのコイル片間の溶接に関して、高い品質の溶接を効率的に実現することを目的とする。 In one aspect, the present disclosure aims to efficiently achieve high-quality welding between coil pieces of a stator for a rotating electric machine.
 1つの側面では、回転電機のステータコイルを形成するための一のコイル片と他の一のコイル片の先端部同士を当接させる工程と、
 前記先端部同士の当接面の露出側の一辺に向けて、0.6μm以下の波長のレーザビームを照射する照射工程とを含み、
 前記照射工程は、前記レーザビームを、前記一辺が延在する方向成分を含む進行方向に移動させながらループ状に走査することを含み、
 1周の前記ループ状の走査あたりの前記進行方向の移動量は、前記レーザビームのビーム径以下である、回転電機用ステータ製造方法が提供される。
According to one aspect, a step of bringing a tip end portion of one coil piece and a tip end portion of another coil piece into contact with each other to form a stator coil of a rotating electric machine;
and an irradiation step of irradiating a laser beam having a wavelength of 0.6 μm or less toward one side of an exposed side of the contact surface between the tip portions,
the irradiation step includes scanning the laser beam in a loop while moving the laser beam in a traveling direction including a directional component in which the one side extends,
The method for manufacturing a stator for a rotating electric machine is provided, wherein the amount of movement in the traveling direction per one loop-shaped scan is equal to or smaller than the beam diameter of the laser beam.
 1つの側面では、本開示によれば、回転電機用ステータのコイル片間の溶接に関して、高い品質の溶接を効率的に実現することが可能となる。 In one aspect, the present disclosure makes it possible to efficiently achieve high-quality welding between coil pieces of a stator for a rotating electric machine.
一実施例によるモータの断面構造を概略的に示す断面図である。1 is a cross-sectional view showing a schematic cross-sectional structure of a motor according to an embodiment; ステータコアの単品状態の平面図である。FIG. 2 is a plan view of the stator core in a single component state. ステータコアに組み付けられる1対のコイル片を模式的に示す図である。3A and 3B are diagrams illustrating a pair of coil pieces to be assembled to a stator core. 一のコイル片の概略正面図である。FIG. 2 is a schematic front view of one coil piece. 互いに接合されたコイル片の先端部及びその近傍を示す図である。1 is a diagram showing the tip portions of the coil pieces joined together and their vicinity; FIG. 照射側から視た溶接対象箇所を概略的に示す図である。FIG. 2 is a diagram illustrating a schematic view of a welding target portion as viewed from the irradiation side. 溶接対象箇所を通る図5のラインA-Aに沿った断面図である。6 is a cross-sectional view taken along line AA in FIG. 5 through the area to be welded. レーザ波長と各種材料の個体に対するレーザ吸収率との関係を示す図である。FIG. 1 is a diagram showing the relationship between the laser wavelength and the laser absorptance of various solid materials. 溶接中の吸収率の変化態様の説明図である。FIG. 4 is an explanatory diagram of a change in absorption rate during welding. グリーンレーザを用いた場合のキーホール等のイメージ図である。FIG. 13 is an image diagram of a keyhole etc. when a green laser is used. 赤外レーザを用いた場合のキーホール等のイメージ図である。FIG. 13 is an image diagram of a keyhole etc. when an infrared laser is used. 本実施例の製造方法によるグリーンレーザの照射態様の説明図である。4A to 4C are explanatory diagrams of the irradiation mode of a green laser according to the manufacturing method of this embodiment. レーザビームの走査に係る説明図であり、レーザビームの出射中心の説明図である。FIG. 2 is an explanatory diagram relating to scanning of a laser beam, and is an explanatory diagram of an emission center of a laser beam. レーザビームの走査に係る説明図であり、レーザビームの移動態様の説明図である。FIG. 2 is an explanatory diagram relating to laser beam scanning, and is an explanatory diagram of a movement mode of the laser beam. 比較例による赤外レーザの場合の照射態様の説明図である。FIG. 13 is an explanatory diagram of an irradiation mode in the case of an infrared laser according to a comparative example. 本実施例による当接面上の溶接方向に沿った断面図である。FIG. 4 is a cross-sectional view taken along the welding direction on the contact surface according to the present embodiment. 比較例による当接面上の溶接方向に沿った断面図である。FIG. 11 is a cross-sectional view taken along the welding direction on the contact surface according to the comparative example. 本実施例による接合面の下端部の画像である。13 is an image of the bottom edge of the bonded surface according to the present embodiment. 比較例による接合面の下端部の画像である。13 is an image of the lower end of the joint surface according to the comparative example. 径方向の照射位置のズレに対するロバスト性の説明図である。FIG. 13 is an explanatory diagram of robustness against deviation of the irradiation position in the radial direction. 実施した試験の複数の条件(条件1~条件3)を示す表図である。FIG. 1 is a table showing multiple conditions (conditions 1 to 3) of the tests carried out. ウォブリング径とスパッタ数との関係を、条件別に示すグラフ図である。FIG. 11 is a graph showing the relationship between the wobbling diameter and the number of sputters under different conditions. ウォブリング径と接合面積及び溶接深さとの関係を示すグラフ図である。FIG. 11 is a graph showing the relationship between the wobbling diameter and the bonding area and welding depth. 横軸をY方向に沿ったY方向位置とし、縦軸を溶接速度として、Y方向位置ごとの好ましい溶接速度(Y方向位置に応じた溶接速度の変化プロフィール)を示す図である。1 is a diagram showing a preferred welding speed for each Y direction position (a change profile of the welding speed according to the Y direction position) with the horizontal axis representing the Y direction position along the Y direction and the vertical axis representing the welding speed. Y方向位置P1からY方向位置P2までの区間でのウォブリングピッチの説明図である。11 is an explanatory diagram of the wobbling pitch in the section from Y-direction position P1 to Y-direction position P2. FIG. Y方向位置P3からY方向位置P5までの区間でのウォブリングピッチの説明図である。13 is an explanatory diagram of the wobbling pitch in the section from Y direction position P3 to Y direction position P5. FIG. 第1比較例の説明図である。FIG. 11 is an explanatory diagram of a first comparative example. 第1比較例の問題点の説明図である。FIG. 11 is an explanatory diagram of a problem in the first comparative example. 第2比較例の説明図である。FIG. 11 is an explanatory diagram of a second comparative example. 第2比較例の問題点の説明図である。FIG. 13 is an explanatory diagram of a problem in the second comparative example. モータのステータの製造方法の流れを概略的に示すフローチャートである。4 is a flowchart illustrating a manufacturing method of a motor stator. 製造装置のシステム構成図である。FIG. 2 is a system configuration diagram of the manufacturing apparatus.
 以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図面の寸法比率はあくまでも一例であり、これに限定されるものではなく、また、図面内の形状等は、説明の都合上、部分的に誇張している場合がある。 Each embodiment will be described in detail below with reference to the attached drawings. Note that the dimensional ratios in the drawings are merely examples and are not limiting. Also, shapes in the drawings may be partially exaggerated for the sake of explanation.
 図1は、一実施例によるモータ1(回転電機の一例)の断面構造を概略的に示す断面図である。 FIG. 1 is a cross-sectional view that shows a schematic cross-sectional structure of a motor 1 (an example of a rotating electric machine) according to one embodiment.
 図1には、モータ1の回転軸12が図示されている。以下の説明において、軸方向とは、モータ1の回転軸(回転中心)12が延在する方向を指し、径方向とは、回転軸12を中心とした径方向を指す。従って、径方向外側とは、回転軸12から離れる側を指し、径方向内側とは、回転軸12に向かう側を指す。また、周方向とは、回転軸12まわりの回転方向に対応する。 In Figure 1, the rotating shaft 12 of the motor 1 is shown. In the following description, the axial direction refers to the direction in which the rotating shaft (center of rotation) 12 of the motor 1 extends, and the radial direction refers to the radial direction centered on the rotating shaft 12. Therefore, the radially outer side refers to the side away from the rotating shaft 12, and the radially inner side refers to the side toward the rotating shaft 12. Additionally, the circumferential direction corresponds to the direction of rotation around the rotating shaft 12.
 モータ1は、例えばハイブリッド車両や電気自動車で使用される車両駆動用のモータであってよい。ただし、モータ1は、他の任意の用途に使用されるものであってもよい。 Motor 1 may be a motor for driving a vehicle, such as that used in a hybrid vehicle or an electric vehicle. However, motor 1 may also be used for any other purpose.
 モータ1は、インナーロータ型であり、ステータ21がロータ30の径方向外側を囲繞するように設けられる。ステータ21は、径方向外側がモータハウジング10に固定される。 The motor 1 is an inner rotor type, with the stator 21 surrounding the radial outside of the rotor 30. The radial outside of the stator 21 is fixed to the motor housing 10.
 ロータ30は、ステータ21の径方向内側に配置される。ロータ30は、ロータコア32と、ロータシャフト34とを備える。ロータコア32は、ロータシャフト34の径方向外側に固定され、ロータシャフト34と一体となって回転する。ロータシャフト34は、モータハウジング10にベアリング14a、14bを介して回転可能に支持される。なお、ロータシャフト34は、モータ1の回転軸12を画成する。 The rotor 30 is disposed radially inside the stator 21. The rotor 30 includes a rotor core 32 and a rotor shaft 34. The rotor core 32 is fixed to the radial outside of the rotor shaft 34 and rotates integrally with the rotor shaft 34. The rotor shaft 34 is rotatably supported in the motor housing 10 via bearings 14a and 14b. The rotor shaft 34 defines the rotating shaft 12 of the motor 1.
 ロータコア32は、例えば円環状の磁性体の積層鋼板から形成される。ロータコア32の磁石孔320には、永久磁石321が挿入される。永久磁石321の数や配列等は任意である。変形例では、ロータコア32は、磁性粉末が圧縮して固められた圧粉体により形成されてもよい。 The rotor core 32 is formed, for example, from laminated steel plates of a circular magnetic material. Permanent magnets 321 are inserted into the magnet holes 320 of the rotor core 32. The number and arrangement of the permanent magnets 321 are optional. In a modified example, the rotor core 32 may be formed from a green compact in which magnetic powder is compressed and solidified.
 ロータコア32の軸方向の両側には、エンドプレート35A、35Bが取り付けられる。エンドプレート35A、35Bは、ロータコア32を支持する支持機能の他、ロータ30のアンバランスの調整機能(切削等されることでアンバランスを無くす機能)を有してよい。 End plates 35A, 35B are attached to both axial sides of rotor core 32. In addition to supporting rotor core 32, end plates 35A, 35B may also have a function of adjusting imbalance of rotor 30 (a function of eliminating imbalance by cutting, etc.).
 ロータシャフト34は、図1に示すように、中空部34Aを有する。中空部34Aは、ロータシャフト34の軸方向の全長にわたり延在する。中空部34Aは、油路として機能してもよい。例えば、中空部34Aには、図1にて矢印R1で示すように、軸方向の一端側から油が供給され、ロータシャフト34の径方向内側の表面を伝って油が流れることで、ロータコア32を径方向内側から冷却できる。また、ロータシャフト34の径方向内側の表面を伝う油は、ロータシャフト34の両端部に形成される油穴341、342を通って径方向外側へと噴出され(矢印R5、R6)、コイルエンド220A、220Bの冷却に供されてもよい。 As shown in FIG. 1, the rotor shaft 34 has a hollow portion 34A. The hollow portion 34A extends over the entire axial length of the rotor shaft 34. The hollow portion 34A may function as an oil passage. For example, as shown by arrow R1 in FIG. 1, oil is supplied to the hollow portion 34A from one axial end, and the oil flows along the radially inner surface of the rotor shaft 34, thereby cooling the rotor core 32 from the radially inner side. In addition, the oil flowing along the radially inner surface of the rotor shaft 34 may be ejected radially outward through oil holes 341, 342 formed at both ends of the rotor shaft 34 (arrows R5, R6), and may be used to cool the coil ends 220A, 220B.
 なお、図1では、特定の構造のモータ1が示されるが、モータ1の構造は、溶接により接合されるステータコイル24(後述)を有する限り、任意である。従って、例えば、ロータシャフト34は、中空部34Aを有さなくてもよいし、中空部34Aよりも有意に内径の小さい中空部を有してもよい。また、図1では、特定の冷却方法が開示されているが、モータ1の冷却方法は任意である。従って、例えば、中空部34A内に挿入される油導入管が設けられてもよいし、モータハウジング10内の油路から径方向外側からコイルエンド220A、220Bに向けて油が滴下されてもよい。 Note that while FIG. 1 shows a motor 1 with a specific structure, the structure of the motor 1 is arbitrary as long as it has a stator coil 24 (described below) joined by welding. Thus, for example, the rotor shaft 34 may not have a hollow portion 34A, or may have a hollow portion with an inner diameter significantly smaller than that of the hollow portion 34A. Also, while FIG. 1 shows a specific cooling method, the cooling method of the motor 1 is arbitrary. Thus, for example, an oil introduction pipe inserted into the hollow portion 34A may be provided, or oil may be dripped from an oil passage in the motor housing 10 from the radial outside toward the coil ends 220A, 220B.
 また、図1では、ロータ30がステータ21の内側に配されたインナーロータ型のモータ1であるが、他の形態のモータに適用されてもよい。例えば、ステータ21の外側にロータ30が同心に配されたアウターロータ型のモータや、ステータ21の外側及び内側の双方にロータ30が配されたデュアルロータ型のモータ等に適用されてもよい。 In addition, while FIG. 1 shows an inner rotor type motor 1 in which the rotor 30 is disposed inside the stator 21, the present invention may be applied to other types of motors. For example, the present invention may be applied to an outer rotor type motor in which the rotor 30 is disposed concentrically outside the stator 21, or a dual rotor type motor in which the rotor 30 is disposed both outside and inside the stator 21.
 次に、図2以降を参照して、ステータ21に関する構成を詳説する。 Next, the configuration of the stator 21 will be explained in detail with reference to Figure 2 onwards.
 図2は、ステータコア22の単品状態の平面図である。図3は、ステータコア22に組み付けられる1対のコイル片52を模式的に示す図である。図3では、ステータコア22の径方向内側を展開した状態で、1対のコイル片52とスロット220との関係が示される。また、図3では、ステータコア22が点線で示され、スロット220の一部については図示が省略されている。 Figure 2 is a plan view of the stator core 22 in a standalone state. Figure 3 is a schematic diagram of a pair of coil pieces 52 assembled to the stator core 22. Figure 3 shows the relationship between the pair of coil pieces 52 and the slots 220 with the radially inner side of the stator core 22 unfolded. Also, in Figure 3, the stator core 22 is shown by a dotted line, and some of the slots 220 are not shown.
 ステータ21は、ステータコア22と、ステータコイル24(図1参照)とを含む。 The stator 21 includes a stator core 22 and a stator coil 24 (see Figure 1).
 ステータコア22は、例えば円環状の磁性体の積層鋼板からなるが、変形例では、ステータコア22は、磁性粉末が圧縮して固められた圧粉体により形成されてもよい。なお、ステータコア22は、周方向で分割される分割コアにより形成されてもよいし、周方向で分割されない形態であってもよい。ステータコア22の径方向内側には、ステータコイル24が巻回される複数のスロット220が形成される。具体的には、ステータコア22は、図2に示すように、円環状のバックヨーク22Aと、バックヨーク22Aから径方向内側に向かって延びる複数のティース22Bとを含み、周方向で複数のティース22B間にスロット220が形成される。スロット220の数は任意であるが、本実施例では、一例として、48個である。 The stator core 22 is made of, for example, a circular ring-shaped laminated steel plate of a magnetic material, but in a modified example, the stator core 22 may be formed of a green compact in which magnetic powder is compressed and solidified. The stator core 22 may be formed of a split core that is split in the circumferential direction, or may not be split in the circumferential direction. A plurality of slots 220 around which the stator coil 24 is wound are formed on the radially inner side of the stator core 22. Specifically, as shown in FIG. 2, the stator core 22 includes a circular back yoke 22A and a plurality of teeth 22B that extend radially inward from the back yoke 22A, and the slots 220 are formed between the plurality of teeth 22B in the circumferential direction. The number of slots 220 is arbitrary, but in this embodiment, as an example, there are 48 slots 220.
 ステータコイル24は、U相コイル、V相コイル、及びW相コイル(以下、U、V、Wを区別しない場合は「相コイル」と称する)を含む。各相コイルの基端は、入力端子(図示せず)に接続されており、各相コイルの末端は、他の相コイルの末端に接続されてモータ1の中性点を形成する。すなわち、ステータコイル24は、スター結線される。ただし、ステータコイル24の結線態様は、必要とするモータ特性等に応じて、適宜、変更してもよく、例えば、ステータコイル24は、スター結線に代えて、デルタ結線されてもよい。 The stator coil 24 includes a U-phase coil, a V-phase coil, and a W-phase coil (hereinafter, when U, V, and W are not distinguished, they will be referred to as "phase coils"). The base end of each phase coil is connected to an input terminal (not shown), and the end of each phase coil is connected to the end of the other phase coil to form the neutral point of the motor 1. In other words, the stator coil 24 is star-connected. However, the connection mode of the stator coil 24 may be changed as appropriate depending on the required motor characteristics, etc. For example, the stator coil 24 may be delta-connected instead of star-connected.
 各相コイルは、複数のコイル片52を接合して構成される。図4は、一のコイル片52の概略正面図である。コイル片52は、相コイルを、組み付けやすい単位(例えば2つのスロット220に挿入される単位)で分割したセグメントコイルの形態である。コイル片52は、断面矩形状の線状導体(平角線)60を、絶縁被膜62で被覆してなる。本実施例では、線状導体60は、一例として、銅により形成される。ただし、変形例では、線状導体60は、鉄のような他の導体材料により形成されてもよい。 Each phase coil is formed by joining multiple coil pieces 52. FIG. 4 is a schematic front view of one coil piece 52. The coil pieces 52 are in the form of segment coils in which the phase coil is divided into units that are easy to assemble (for example, units that can be inserted into two slots 220). The coil pieces 52 are formed by coating a linear conductor (rectangular wire) 60 with a rectangular cross section with an insulating coating 62. In this embodiment, the linear conductor 60 is formed from copper, as an example. However, in a modified example, the linear conductor 60 may be formed from another conductive material such as iron.
 コイル片52は、ステータコア22に組み付ける前の段階では、一対の直進部50と、当該一対の直進部50を連結する連結部54と、を有した略U字状に成形されてよい。コイル片52をステータコア22に組み付ける際、一対の直進部50は、それぞれ、スロット220に挿入される(図3参照)。これにより、連結部54は、図3に示すように、ステータコア22の軸方向他端側において、複数のティース22B(及びそれに伴い複数のスロット220)を跨ぐように周方向に延びる。連結部54が跨ぐスロット220の数は、任意であるが、図3では3つである。また、直進部50は、スロット220に挿入された後は、図4において、二点鎖線で示すように、その途中で周方向に屈曲される。これにより、直進部50は、スロット220内において軸方向に延びる脚部56と、ステータコア22の軸方向一端側において周方向に延びる渡り部58と、になる。 Before being assembled to the stator core 22, the coil pieces 52 may be formed into a generally U-shape having a pair of straight portions 50 and a connecting portion 54 connecting the pair of straight portions 50. When assembling the coil pieces 52 to the stator core 22, the pair of straight portions 50 are each inserted into a slot 220 (see FIG. 3). As a result, the connecting portion 54 extends circumferentially so as to straddle a plurality of teeth 22B (and therefore a plurality of slots 220) at the other axial end side of the stator core 22, as shown in FIG. 3. The number of slots 220 that the connecting portion 54 straddles is arbitrary, but is three in FIG. 3. After being inserted into the slot 220, the straight portions 50 are bent circumferentially midway, as shown by the two-dot chain line in FIG. 4. As a result, the straight portion 50 becomes a leg portion 56 that extends axially within the slot 220, and a bridge portion 58 that extends circumferentially at one axial end of the stator core 22.
 なお、図4では、一対の直進部50は、互いに離れる方向に屈曲するが、これに限られない。例えば、一対の直進部50は、互いに近づく方向に屈曲されてもよい。また、ステータコイル24は、3相の相コイルの末端同士を連結して中性点を形成するための中性点用コイル片等も有することがある。 In FIG. 4, the pair of straight portions 50 are bent in a direction away from each other, but this is not limited thereto. For example, the pair of straight portions 50 may be bent in a direction toward each other. The stator coil 24 may also have a neutral point coil piece for connecting the ends of the three phase coils to form a neutral point.
 一つのスロット220には、図4に示すコイル片52の脚部56が複数、径方向に並んで挿入される。従って、ステータコア22の軸方向一端側には、周方向に延びる渡り部58が複数、径方向に並ぶ。図3に示すように、一つのスロット220から飛び出て周方向第1側(例えば時計回りの向き)に延びる一のコイル片52の渡り部58は、他のスロット220から飛び出て周方向第2側(例えば反時計回りの向き)に延びる他の一のコイル片52の渡り部58に接合される。 In one slot 220, multiple legs 56 of the coil piece 52 shown in FIG. 4 are inserted side by side in the radial direction. Therefore, multiple circumferentially extending bridge portions 58 are lined up in the radial direction at one axial end of the stator core 22. As shown in FIG. 3, the bridge portion 58 of one coil piece 52 protruding from one slot 220 and extending to a first circumferential side (e.g., clockwise) is joined to the bridge portion 58 of another coil piece 52 protruding from another slot 220 and extending to a second circumferential side (e.g., counterclockwise).
 本実施例では、一例として、1つのスロット220に6つのコイル片52が組み付けられる。以下では、径方向で最も外側のコイル片52から順に、第1ターン、第2ターン、第3ターンとも称する。この場合、第1ターンのコイル片52と第2ターンのコイル片52とは、後述の接合工程により先端部40同士が接合され、第3ターンのコイル片52と第4ターンのコイル片52とは、後述の接合工程により先端部40同士が接合され、第5ターンのコイル片52と第6ターンのコイル片52とは、後述の接合工程により先端部40同士が接合される。 In this embodiment, as an example, six coil pieces 52 are assembled in one slot 220. Hereinafter, they are also referred to as the first turn, second turn, and third turn, starting from the radially outermost coil piece 52. In this case, the first turn coil piece 52 and the second turn coil piece 52 have their tip portions 40 joined together by a joining process described below, the third turn coil piece 52 and the fourth turn coil piece 52 have their tip portions 40 joined together by a joining process described below, and the fifth turn coil piece 52 and the sixth turn coil piece 52 have their tip portions 40 joined together by a joining process described below.
 ここで、コイル片52は、上述したとおり、絶縁被膜62で被覆されているが、先端部40だけは、当該絶縁被膜62が除去される。これは、先端部40にて他のコイル片52との電気的接続を確保するためである。 As described above, the coil pieces 52 are covered with an insulating coating 62, but the insulating coating 62 is removed only from the tip portion 40. This is to ensure electrical connection with the other coil pieces 52 at the tip portion 40.
 図5は、互いに接合されたコイル片52の先端部40及びその近傍を示す図である。なお、図5には、溶接対象箇所90の周方向の範囲D1が模式的に示される。図6は、照射側から視た溶接対象箇所90を概略的に示す図である。図7は、溶接対象箇所90を通る図5のラインA-Aに沿った断面図である。図7には、溶接時に形成される溶融池の範囲が、ハッチング領域1102で模式的に示されている。図8は、レーザ波長と各種材料の個体に対するレーザ吸収率との関係を示す図である。 FIG. 5 is a diagram showing the tip 40 of the coil pieces 52 joined together and its vicinity. FIG. 5 also shows a schematic representation of the circumferential range D1 of the area 90 to be welded. FIG. 6 is a schematic representation of the area 90 to be welded as viewed from the irradiation side. FIG. 7 is a cross-sectional view taken along line A-A in FIG. 5, which passes through the area 90 to be welded. FIG. 7 also shows a schematic representation of the range of the molten pool formed during welding, as indicated by the hatched area 1102. FIG. 8 is a diagram showing the relationship between the laser wavelength and the laser absorptance of various individual materials.
 図5には、軸方向に沿ったZ方向が定義されている。以下では、説明上、Z方向Z1側(すなわちレーザビームの照射側)を「上側」とし、Z方向Z2側を「下側」とする。また、図6には、径方向に沿ったX方向と、X方向に沿ったX1側とX2側とが定義されている。 In Figure 5, the Z direction along the axial direction is defined. In the following explanation, for the sake of explanation, the Z1 side in the Z direction (i.e. the side irradiated with the laser beam) is referred to as the "upper side" and the Z2 side in the Z direction is referred to as the "lower side". Also, in Figure 6, the X direction along the radial direction and the X1 side and X2 side along the X direction are defined.
 コイル片52の先端部40を接合する際には、一のコイル片52と他の一のコイル片52は、それぞれの先端部40が、図5に示すビュー(径方向に視て)で重なりつつ、径方向に当接される。以下では、説明上、区別する際には、一のコイル片52に係る構成は、先端部40Aといった具合に、符号の後ろに記号“A”を付し、他の一のコイル片52に係る構成は、先端部40Bといった具合に、符号の後ろに記号“B”を付す場合がある。なお、他の実施例では、先端部40同士がX字状をなす態様で交差してもよい。この場合、X字状における上側のはみ出し部分が生じないように、それぞれの先端部40がカットされていてもよい。 When joining the tip portions 40 of the coil pieces 52, one coil piece 52 and another coil piece 52 are abutted in the radial direction while their respective tip portions 40 overlap in the view (diametrically viewed) shown in FIG. 5. In the following description, for the sake of distinction, the structure relating to one coil piece 52 may be designated by adding the letter "A" after the reference numeral, such as tip portion 40A, and the structure relating to the other coil piece 52 may be designated by adding the letter "B" after the reference numeral, such as tip portion 40B. In other embodiments, the tip portions 40 may cross each other in an X-shape. In this case, each tip portion 40 may be cut so that no protruding portion is formed on the upper side of the X-shape.
 この場合、溶接対象箇所90は、図6に範囲D1で示すように、当接面401に沿って直線状に延在する。すなわち、溶接対象箇所90は、レーザビームの照射側から視て(図5の矢印W参照)、図7に示すX方向の範囲D2の幅で、Y方向の範囲D1にわたり直線状に延在する。なお、本実施例では、当接面401は、径方向に視て、軸方向外側端面42A、42Bと延在方向端面44A、44Bで囲まれた矩形の形態であるが、他の形態であってもよい。 In this case, the area to be welded 90 extends linearly along the abutment surface 401, as shown by range D1 in Fig. 6. That is, the area to be welded 90 extends linearly over range D1 in the Y direction with a width of range D2 in the X direction as shown in Fig. 7, as viewed from the side irradiated with the laser beam (see arrow W in Fig. 5). Note that in this embodiment, the abutment surface 401 has a rectangular shape surrounded by axial outer end faces 42A, 42B and extension direction end faces 44A, 44B when viewed in the radial direction, but may have other shapes.
 本実施例では、溶接対象箇所90は、図5に示すビュー(径方向に視て)で、双方の先端部40の軸方向外側端面42A、42Bが形成する上側の辺(矩形の4辺のうちの、露出する上側の辺)に沿って設定される。なお、本実施例では、溶接対象箇所90は、水平方向に延在するが、図5に示すビュー(径方向に視て)で、先端部40の取りうる他の形状に応じて、上に凸のC字状に延在してもよいし、その他の形態であってもよい。また、図5及び図6に示す例では、軸方向外側端面42A、42Bは、XY平面内に延在するが、XY平面に対して傾斜してもよい。 In this embodiment, the welding target area 90 is set along the upper side (the exposed upper side of the four sides of the rectangle) formed by the axially outer end faces 42A, 42B of both tip portions 40 in the view (viewed radially) shown in FIG. 5. Note that in this embodiment, the welding target area 90 extends horizontally, but in the view (viewed radially) shown in FIG. 5, it may extend in an upwardly convex C-shape or in other shapes depending on other shapes that the tip portion 40 can take. Also, in the examples shown in FIGS. 5 and 6, the axially outer end faces 42A, 42B extend in the XY plane, but may be inclined relative to the XY plane.
 本実施例では、コイル片52の先端部40を接合する際の接合方法としては、溶接が利用される。そして、本実施例では、溶接方法としては、TIG溶接に代表されるアーク溶接ではなく、レーザビーム源を熱源とするレーザ溶接が採用される。TIG溶接に代えて、レーザ溶接を用いることで、コイルエンド220A、220Bの軸方向の長さを低減できる。すなわち、TIG溶接の場合は、当接させるコイル片の先端部同士を軸方向外側に屈曲させて軸方向に延在させる必要があるのに対して、レーザ溶接の場合は、かかる屈曲の必要性がなく、図5に示すように、当接させるコイル片52の先端部40同士を周方向に延在させた状態で溶接を実現できる。これにより、当接させるコイル片52の先端部40同士を軸方向外側に屈曲させて軸方向に延在させる場合に比べて、コイルエンド220A、220Bの軸方向の長さを低減できる。 In this embodiment, welding is used as a joining method when joining the tip portions 40 of the coil pieces 52. In this embodiment, the welding method is not arc welding, such as TIG welding, but laser welding using a laser beam source as a heat source. By using laser welding instead of TIG welding, the axial length of the coil ends 220A, 220B can be reduced. That is, in the case of TIG welding, it is necessary to bend the tips of the coil pieces to be abutted axially outward and extend them in the axial direction, whereas in the case of laser welding, such bending is not necessary, and as shown in FIG. 5, welding can be achieved in a state in which the tip portions 40 of the coil pieces 52 to be abutted extend in the circumferential direction. This allows the axial length of the coil ends 220A, 220B to be reduced compared to when the tip portions 40 of the coil pieces 52 to be abutted are bent axially outward and extend in the axial direction.
 レーザ溶接では、図5に模式的に示すように、当接された2つの先端部40における溶接対象箇所90に溶接用のレーザビームを当てる。なお、レーザビームの照射方向(伝搬方向)は、軸方向に略平行であり、当接された2つの先端部40の軸方向外側端面42(当接面401の露出側の辺を含む)に、軸方向外側から向かう方向である。レーザ溶接の場合は、局所的に加熱できるため、先端部40及びその近傍のみを加熱することができ、絶縁被膜62の損傷(炭化)等を効果的に低減できる。その結果、適切な絶縁性能を維持したまま、複数のコイル片52を電気的に接続できる。 In laser welding, as shown in FIG. 5, a welding laser beam is applied to the welding target area 90 of the two abutted tip portions 40. The irradiation direction (propagation direction) of the laser beam is approximately parallel to the axial direction, and is directed from the axial outside toward the axially outer end faces 42 (including the exposed sides of the abutment faces 401) of the two abutted tip portions 40. Laser welding allows localized heating, so that only the tip portions 40 and their vicinity can be heated, effectively reducing damage (carbonization) of the insulating coating 62. As a result, multiple coil pieces 52 can be electrically connected while maintaining appropriate insulation performance.
 図8は、レーザ波長と各種材料の個体に対するレーザ吸収率(以下、単に「吸収率」とも称する)との関係を示す図である。図8では、横軸に波長λを取り、縦軸に吸収率を取り、銅(Cu)、アルミ(Al)、銀(Ag)、ニッケル(Ni)、及び鉄(Fe)の各種材料の個体に係る特性が示される。 Figure 8 is a diagram showing the relationship between the laser wavelength and the laser absorptance (hereinafter simply referred to as "absorption rate") for individual materials. In Figure 8, the horizontal axis represents the wavelength λ and the vertical axis represents the absorptance, and the characteristics of individual materials, copper (Cu), aluminum (Al), silver (Ag), nickel (Ni), and iron (Fe), are shown.
 ところで、レーザ溶接で一般的に用いられる赤外レーザ(波長が1064nmのレーザ)は、図8にてλ2=1.06μmの点線との交点の黒丸で示すように、コイル片52の線状導体60の材料である銅に対して吸収率が約10%と低い。すなわち、赤外レーザの場合、レーザビームの大部分は、コイル片52で反射してしまい、吸収されない。このため、接合対象のコイル片52間での必要な接合面積を得るためには比較的大きい入熱量が必要となり、熱影響が大きく、溶接が不安定となるおそれがある。 Incidentally, the infrared laser (with a wavelength of 1064 nm) commonly used in laser welding has a low absorption rate of about 10% for copper, the material of the linear conductor 60 of the coil pieces 52, as shown by the black circle at the intersection with the dotted line of λ2 = 1.06 μm in Figure 8. In other words, in the case of an infrared laser, most of the laser beam is reflected by the coil pieces 52 and not absorbed. For this reason, a relatively large amount of heat input is required to obtain the required joint area between the coil pieces 52 to be joined, which can cause significant thermal effects and unstable welding.
 この点を鑑み、本実施例では、赤外レーザに代えて、グリーンレーザを利用する。なお、グリーンレーザとは、波長が532nmのレーザ、すなわちSHG(Second Harmonic Generation:第2高調波)レーザのみならず、532nmに近い波長のレーザをも含む概念である。なお、変形例では、グリーンレーザの範疇に属さない0.6μm以下の波長のレーザが利用されてもよい。グリーンレーザに係る波長は、例えばYAGレーザやYVO4レーザで生み出された基本波長を酸化物単結晶(例えば、LBO:リチウムトリボレート)に通して変換することで得られる。 In consideration of this, in this embodiment, a green laser is used instead of an infrared laser. Note that the concept of a green laser includes not only a laser with a wavelength of 532 nm, i.e., an SHG (Second Harmonic Generation) laser, but also lasers with wavelengths close to 532 nm. Note that in a modified example, a laser with a wavelength of 0.6 μm or less that does not belong to the category of green lasers may be used. The wavelength of a green laser can be obtained by converting the fundamental wavelength generated by, for example, a YAG laser or YVO4 laser through an oxide single crystal (for example, LBO: lithium triborate).
 グリーンレーザの場合、図8にてλ1=0.532μmの点線との交点の黒丸で示すように、コイル片52の線状導体60の材料である銅に対して吸収率が約50%と高い。従って、本実施例によれば、赤外レーザを利用する場合に比べて、少ない入熱量で、コイル片52間での必要な接合面積を確保することが可能となる。 In the case of a green laser, as shown by the black circle at the intersection with the dotted line of λ1 = 0.532 μm in Figure 8, the absorption rate is high at about 50% for copper, which is the material of the linear conductor 60 of the coil piece 52. Therefore, according to this embodiment, it is possible to ensure the necessary joint area between the coil pieces 52 with a smaller amount of heat input compared to when an infrared laser is used.
 なお、赤外レーザに比べてグリーンレーザの方が吸収率が高くなるという特性は、図8に示すように、銅の場合において顕著であるが、銅のみならず、他の金属材料の多くにおいて確認できる。従って、コイル片52の線状導体60の材料が銅以外の場合でもグリーンレーザによる溶接が実現されてもよい。 The characteristic that the absorption rate is higher with a green laser than with an infrared laser is particularly evident in the case of copper, as shown in FIG. 8, but this can also be seen in many other metal materials, not just copper. Therefore, welding with a green laser can be achieved even if the material of the linear conductor 60 of the coil piece 52 is something other than copper.
 図9は、溶接中の吸収率の変化態様の説明図である。図9では、横軸にレーザパワー密度を取り、縦軸に銅のレーザ吸収率を取り、グリーンレーザの場合の特性100Gと、赤外レーザの場合の特性100Rとが示される。 Figure 9 is an explanatory diagram of how the absorption rate changes during welding. In Figure 9, the horizontal axis represents the laser power density and the vertical axis represents the laser absorption rate of copper, and the characteristics 100G for a green laser and 100R for an infrared laser are shown.
 図9では、グリーンレーザの場合と赤外レーザの場合における銅の溶融が開始するポイントP100、P200が示されるとともに、キーホールが形成されるポイントP300が示される。図9にポイントP100、P200にて示すように、赤外レーザに比べてグリーンレーザの方が、小さいレーザパワー密度で銅の溶融を開始させることができることがわかる。また、上述した吸収率の相違に起因して、赤外レーザに比べてグリーンレーザの方が、キーホールが形成されるポイントP300での吸収率と照射開始時の吸収率(すなわちレーザパワー密度が0のときの吸収率)との差が小さいことがわかる。具体的には、赤外レーザの場合、溶接中の吸収率の変化が約80%であるのに対して、グリーンレーザの場合、溶接中の吸収率の変化が約40%となり、約半分である。 Figure 9 shows points P100 and P200 at which copper starts to melt for the green laser and the infrared laser, as well as point P300 at which a keyhole is formed. As shown by points P100 and P200 in Figure 9, it can be seen that the green laser can start melting copper at a lower laser power density than the infrared laser. Also, due to the difference in absorptivity described above, it can be seen that the difference between the absorptivity at point P300 at which a keyhole is formed and the absorptivity at the start of irradiation (i.e., the absorptivity when the laser power density is 0) is smaller for the green laser than for the infrared laser. Specifically, in the case of the infrared laser, the change in absorptivity during welding is about 80%, while in the case of the green laser, the change in absorptivity during welding is about 40%, which is about half.
 このように、赤外レーザの場合、溶接中の吸収率の変化(落差)が約80%と比較的大きいため、キーホールが不安定となり溶接深さや溶接幅のバラツキや溶融池の乱れ(例えば、スパッタ等)が生じやすい。これに対して、グリーンレーザの場合、溶接中の吸収率の変化(落差)が約40%と比較的小さいため、キーホールが不安定となり難く、また、溶接深さや溶接幅のバラツキや溶融池の乱れ(例えばスパッタ等)が生じ難い。なお、スパッタとは、レーザ等を照射することにより飛散する金属粒等である。 As such, with infrared lasers, the change (drop) in absorption rate during welding is relatively large at approximately 80%, making the keyhole unstable and prone to variations in weld depth and width, and disturbance of the molten pool (e.g., spatter, etc.). In contrast, with green lasers, the change (drop) in absorption rate during welding is relatively small at approximately 40%, making the keyhole less likely to become unstable, and also less likely to cause variations in weld depth and width, and disturbance of the molten pool (e.g., spatter, etc.). Spatter refers to metal particles that fly off when a laser or other device is irradiated.
 なお、赤外レーザの場合、上述のように吸収率が低いため、ビーム径を比較的小さくする(例えばφ0.075mm)ことで、吸収率の低さを補うことが一般的である。この点も、キーホールが不安定となる要因となる。なお、図10Bは、赤外レーザを用いた場合のキーホール等のイメージ図であり、1100は、溶接ビードを示し、1102は、溶融池を示し、1104は、キーホールを示す。また、矢印R1116は、ガス抜けの態様を模式的に示す。また、矢印R110は、ビーム径が小さいことに起因して赤外レーザの照射位置が移動される様子を模式的に示す。このように、赤外レーザの場合、上述のように吸収率が低くビーム径を比較的大きくすることが難しいことに起因して、必要な溶融幅を得るために蛇行を含んだ比較的長い照射位置の移動軌跡(連続的な照射時間)が必要となる傾向がある。 In the case of infrared lasers, since the absorption rate is low as described above, it is common to make the beam diameter relatively small (for example, φ0.075 mm) to compensate for the low absorption rate. This also causes the keyhole to become unstable. Note that FIG. 10B is an image diagram of a keyhole when an infrared laser is used, where 1100 indicates a weld bead, 1102 indicates a molten pool, and 1104 indicates a keyhole. The arrow R1116 also shows a typical state of gas escape. The arrow R110 also shows a typical state in which the irradiation position of the infrared laser is moved due to the small beam diameter. In this way, in the case of infrared lasers, since the absorption rate is low as described above and it is difficult to make the beam diameter relatively large, a relatively long movement trajectory of the irradiation position including meandering (continuous irradiation time) tends to be required to obtain the required fusion width.
 他方、グリーンレーザの場合、上述のように吸収率が比較的高いため、ビーム径を比較的大きくする(例えばφ0.15mm以上、)ことが可能であり、キーホールを大きくして安定化することができる。これにより、ガス抜けが良好となり、スパッタ等の発生を効果的に低減できる。なお、図10Aは、グリーンレーザを用いた場合のキーホール等のイメージ図であり、符号の意義は図10Bを参照して上述したとおりである。グリーンレーザの場合、図10Aから、ビーム径の拡大に起因してキーホールが安定化しガス抜けが良好となる様子がイメージとして容易に理解できる。また、グリーンレーザの場合、赤外レーザの場合とは対照的に、上述のように吸収率が比較的高くビーム径を比較的大きくすることが可能であることから、必要な溶融幅(図7に示す溶接対象箇所90の径方向の範囲D2参照)を得るために必要な照射位置の移動軌跡(照射時間)を比較的短く(小さく)できる(後述)。 On the other hand, in the case of a green laser, since the absorption rate is relatively high as described above, it is possible to make the beam diameter relatively large (for example, φ0.15 mm or more), and the keyhole can be made large and stabilized. This improves gas escape and effectively reduces the occurrence of spatters, etc. FIG. 10A is an image of a keyhole when a green laser is used, and the meaning of the symbols is as described above with reference to FIG. 10B. In the case of a green laser, it is easy to understand from FIG. 10A how the keyhole is stabilized and gas escape is improved due to the expansion of the beam diameter. In addition, in the case of a green laser, in contrast to the case of an infrared laser, since the absorption rate is relatively high as described above and the beam diameter can be made relatively large, the movement trajectory (irradiation time) of the irradiation position required to obtain the required fusion width (see the radial range D2 of the welding target part 90 shown in FIG. 7) can be made relatively short (shortened) (described later).
 以下では、このようなグリーンレーザを用いて、高い品質の溶接を効率的に実現する製造方法を開示する。 Below, we will disclose a manufacturing method that uses such a green laser to efficiently achieve high-quality welding.
 図11は、本実施例の製造方法によるグリーンレーザの照射態様の説明図である。図11Aは、レーザビームの走査に係る説明図であり、レーザビームの出射中心Ct0の説明図である。図11Bは、レーザビームの走査に係る説明図であり、レーザビームの移動態様の説明図である。図12は、比較例による赤外レーザの場合の照射態様の説明図である。図11及び図12は、レーザ照射方向に視た模式図であり、溶接途中のある時点での溶接対象箇所90におけるレーザの照射領域(又は照射予定箇所)がハッチング領域で模式的に示されている。図11及び図12において、レーザビームに係る円形110、110’は、溶接途中のある時点での照射範囲を示し、ビーム径φA、φA’が併せて示されている。また、図11及び図12において、ラインLrefは、当接面401(当接面401の上側の辺)を表す。 11 is an explanatory diagram of the irradiation mode of the green laser according to the manufacturing method of this embodiment. FIG. 11A is an explanatory diagram of the scanning of the laser beam, and is an explanatory diagram of the emission center Ct0 of the laser beam. FIG. 11B is an explanatory diagram of the scanning of the laser beam, and is an explanatory diagram of the movement mode of the laser beam. FIG. 12 is an explanatory diagram of the irradiation mode in the case of an infrared laser according to a comparative example. FIGS. 11 and 12 are schematic diagrams viewed in the laser irradiation direction, and the laser irradiation area (or the area to be irradiated) at the welding target part 90 at a certain point during welding is shown as a hatched area. In FIGS. 11 and 12, the circles 110 and 110' of the laser beam indicate the irradiation range at a certain point during welding, and the beam diameters φA and φA' are also shown. In addition, in FIGS. 11 and 12, the line Lref represents the abutment surface 401 (the upper side of the abutment surface 401).
 本実施例の製造方法は、図11に模式的に示すように、レーザビームを、溶接方向(進行方向)に移動させながらループ状(矢印R112参照)に走査することを含む。なお、進行方向は、上述した当接面401の上側の辺に沿った方向(すなわち上側の辺に平行な方向)であるが、誤差等に起因して当該辺に対してわずかに傾斜してもよい。なお、以下では、当接面401上とは、当接面401の上側の辺(ラインLref参照)を形成する部位を指す。 As shown diagrammatically in FIG. 11, the manufacturing method of this embodiment involves scanning the laser beam in a loop (see arrow R112) while moving it in the welding direction (travel direction). Note that the travel direction is along the upper edge of the contact surface 401 described above (i.e., a direction parallel to the upper edge), but may be slightly inclined relative to that edge due to errors, etc. Note that, hereinafter, "on the contact surface 401" refers to the portion that forms the upper edge of the contact surface 401 (see line Lref).
 「ループ状」とは、円形だけでなく、楕円形のような、ループを形成できる任意の形態を含む概念であり、また、完全に閉じている必要はなく、螺旋状に連続する形態であってもよい。本実施例では、一例として、ループ状は、円形が螺旋状に連続する形態であるものとする。このようなループ状は、例えば、単位時間あたり一定回数で円形軌跡を描く態様で出射部から出射(走査)されるレーザビームを用いて実現できる。図11Aでは、レーザビーム(出射部)の移動を行わない場合の、レーザビームの円形軌跡(走査)がハッチング領域R11で模式的に示されている。レーザビームの移動を行わない場合、円形110が、出射中心Ct0(=円形軌跡の中心)まわりに回転し、円形110が、出射中心Ct0(=円形軌跡の中心)まわりに円軌道を描く。この場合、円形110のループ状の軌跡は、出射中心Ct0(=円形軌跡の中心)を直線状に移動させることで、実現できる。この際、レーザビームの出射中心Ct0を、当接面401上に沿わせることで、当接面401の上側の辺に沿った進行方向が実現される。なお、図11及び図11Bにおいて、一点鎖線TRctは、このようなレーザビームの移動(当接面401の上側の辺に沿った直線状の移動)を行った際の、レーザビームの中心Ct1の軌跡(矢印は進む方向)を表す。 The term "loop-shaped" is a concept including any shape that can form a loop, such as a circle, an ellipse, and does not need to be completely closed, and may be a spirally continuous shape. In this embodiment, as an example, the loop shape is a shape in which circles are spirally continuous. Such a loop shape can be realized, for example, by using a laser beam emitted (scanned) from the emission part in a manner that draws a circular trajectory a certain number of times per unit time. In FIG. 11A, the circular trajectory (scanning) of the laser beam when the laser beam (emission part) is not moved is shown in the hatched region R11. When the laser beam is not moved, the circle 110 rotates around the emission center Ct0 (= center of the circular trajectory), and the circle 110 draws a circular orbit around the emission center Ct0 (= center of the circular trajectory). In this case, the loop-shaped trajectory of the circle 110 can be realized by moving the emission center Ct0 (= center of the circular trajectory) in a straight line. At this time, the emission center Ct0 of the laser beam is aligned with the abutment surface 401, thereby realizing a traveling direction along the upper side of the abutment surface 401. Note that in Figures 11 and 11B, the dashed dotted line TRct represents the trajectory (arrow indicates the traveling direction) of the center Ct1 of the laser beam when such a movement of the laser beam (linear movement along the upper side of the abutment surface 401) is performed.
 ループ状に係る円形の直径(以下、「ウォブリング径φB」とも称する)は、任意であるが、好ましい範囲は後述する。例えば、ウォブリング径φBは、レーザビームのビーム径φAよりも大きくてよい。 The diameter of the circle associated with the loop (hereinafter also referred to as the "wobbling diameter φB") is arbitrary, but a preferred range will be described later. For example, the wobbling diameter φB may be larger than the beam diameter φA of the laser beam.
 本実施例では、1周のループ状の走査あたりの進行方向の移動量(以下、「ウォブリングピッチpt」とも称する)は、レーザビームのビーム径φA以下である。なお、「1周のループ状の走査あたり」とは、円形のある一の位相から、回転して同位相に至るまでを1周とする。これにより、図11に示すように、一のループ状に係る照射範囲と、次の一のループ状に係る照射範囲とを、当接面401上で溶接方向に沿って、連続的に設定できる。例えば、ウォブリングピッチptが、レーザビームのビーム径φAの1/2であれば、一のループ状に係る照射範囲と、次の一のループ状に係る照射範囲とが、当接面401上で、ビーム径φAの1/2ずつ重なる。 In this embodiment, the amount of movement in the direction of travel per one loop scan (hereinafter also referred to as "wobbling pitch pt") is equal to or less than the beam diameter φA of the laser beam. Note that "per one loop scan" refers to one revolution from one phase of the circle to the same phase. This allows the irradiation range for one loop and the irradiation range for the next loop to be set continuously along the welding direction on the contact surface 401, as shown in FIG. 11. For example, if the wobbling pitch pt is 1/2 the beam diameter φA of the laser beam, the irradiation range for one loop and the irradiation range for the next loop will overlap by 1/2 the beam diameter φA on the contact surface 401.
 この場合、溶接対象箇所90内で形成される溶融池を維持したまま、溶融池を当接面401上で溶接方向へと移動させることができる。すなわち、本実施例によれば、溶融池を維持したまま、ループ状の周ごとに、溶融池を、当接面401上で溶接方向へと、ウォブリングピッチpt分だけ移動させることができる。 In this case, the molten pool formed in the area to be welded 90 can be moved in the welding direction on the contact surface 401 while maintaining the molten pool. In other words, according to this embodiment, the molten pool can be moved in the welding direction on the contact surface 401 by the wobbling pitch pt for each loop while maintaining the molten pool.
 ウォブリングピッチptは、一の溶接対象箇所90に対して一定であるが、可変とされてもよい。ビーム径φAの大きさは、出射端での大きさであってよい。この際、ビーム径φAは、ガウシアンビーム径(1/e)を表すが、楕円ビームの場合、楕円スポットの長軸又は短軸の長さが代用されてもよい。 The wobbling pitch pt is constant for one welding target portion 90, but may be variable. The size of the beam diameter φA may be the size at the emission end. In this case, the beam diameter φA represents a Gaussian beam diameter (1/e 2 ), but in the case of an elliptical beam, the length of the major axis or minor axis of the elliptical spot may be substituted.
 本実施例では、ビーム径φAの大きさは、好ましくは、φ0.1mm以上であり、より好ましくは、φ0.15mm以上である。ここで、ビーム径φAの大きさを大きくすると、レーザビームのビーム径φA以下の条件の下でウォブリングピッチptも大きくすることができる。これにより、図10Aを参照して上述したようにかつ以下で比較例と比較して説明するように、必要な溶融幅を得るための移動軌跡(照射時間)を比較的短くでき、効率的な溶接を実現できる。 In this embodiment, the beam diameter φA is preferably φ0.1 mm or more, and more preferably φ0.15 mm or more. Here, by increasing the beam diameter φA, the wobbling pitch pt can also be increased under the condition that the laser beam has a beam diameter φA or less. As a result, as described above with reference to FIG. 10A and explained below in comparison with the comparative example, the movement trajectory (irradiation time) required to obtain the required fusion width can be made relatively short, and efficient welding can be achieved.
 本実施例において、レーザビームは、複数周のループ状の走査に対して、3.0kW以上のレーザ出力を有する態様で、連続的に照射される。例えば、レーザビームは、一の溶接対象箇所90全体に対して、連続照射されてよい。これにより、パルス発振による照射に比べて、出力自体は低くなりうる反面、溶融池を維持しやすくなるとともに、溶接時間の短縮も図ることができる。 In this embodiment, the laser beam is continuously irradiated with a laser output of 3.0 kW or more for multiple loop scans. For example, the laser beam may be continuously irradiated to the entire area 90 to be welded. This makes it easier to maintain the molten pool and shortens the welding time, although the output may be lower than with irradiation using pulsed oscillation.
 ここで、図12に示す比較例では、上述したように赤外レーザを利用することに起因してビーム径φA’が比較的小さくなり、例えばφ0.08mmである。また、ウォブリングピッチpt’は、0.1mmである。この場合、図12に示すように、各ループ状に係る照射範囲が、当接面401上で溶接方向に沿って、不連続となる。 In the comparative example shown in FIG. 12, the beam diameter φA' is relatively small, for example φ0.08 mm, due to the use of an infrared laser as described above. Also, the wobbling pitch pt' is 0.1 mm. In this case, as shown in FIG. 12, the irradiation range for each loop is discontinuous along the welding direction on the contact surface 401.
 図13は、本実施例の場合の、図11のラインB-Bに沿った断面図(当接面401上の溶接方向に沿った断面図)であり、図14は、比較例の場合の、図12のラインC-Cに沿った断面図(当接面401上の溶接方向に沿った断面図)である。当接面401で切断した際の接合面の状態を示す模式図である。図13及び図14には、接合面がハッチング領域SC13、SC14で模式的に示されている。なお、接合面とは、当接面401のうちの、溶接に起因して接合している面を指す。また、図15及び図16は、当接面401で切断した際の接合面の一部(接合面の下端部)の画像を示し、図15は、本実施例による画像を示し、図16は、比較例による画像を示す。図15に係る本実施例の条件は、一例として、ビーム径φA=0.27mm、ウォブリング径φB=0.6mm、ウォブリングピッチpt=0.2mmであった。また、図14に係る比較例の条件は、ビーム径φA’=0.08mm、ウォブリング径φB’=0.7mm、ウォブリングピッチpt’=0.1mmであった。 13 is a cross-sectional view taken along line B-B in FIG. 11 for this embodiment (cross-sectional view taken along the welding direction on the abutment surface 401), and FIG. 14 is a cross-sectional view taken along line C-C in FIG. 12 for the comparative example. A schematic diagram showing the state of the joint surface when cut at the abutment surface 401. In FIG. 13 and FIG. 14, the joint surface is shown as a schematic diagram by hatched areas SC13 and SC14. The joint surface refers to the surface of the abutment surface 401 that is joined due to welding. Also, FIG. 15 and FIG. 16 show images of a part of the joint surface (the lower end of the joint surface) when cut at the abutment surface 401, FIG. 15 shows an image according to this embodiment, and FIG. 16 shows an image according to the comparative example. The conditions of this embodiment according to FIG. 15 were, for example, beam diameter φA = 0.27 mm, wobbling diameter φB = 0.6 mm, and wobbling pitch pt = 0.2 mm. In addition, the conditions for the comparative example shown in FIG. 14 were beam diameter φA' = 0.08 mm, wobbling diameter φB' = 0.7 mm, and wobbling pitch pt' = 0.1 mm.
 比較例では、上述したように、各ループ状に係る照射範囲が、当接面401上で溶接方向に沿って、不連続となるため、接合面の下端部の高さH1’(溶接の深さH1’)は、図14及び図16に示すように、溶接方向に沿って大きく変動する。すなわち、各ループ状に係る照射範囲の間に、高さH1’が急激に小さい(溶接深さが急激に浅くなる)部位が発生する。この結果、接合面積(接合面の面積)が不足しやすくなるという不都合が生じる。これに対して、ウォブリングピッチpt’を更に小さくすることで、各ループ状に係る照射範囲を重なるようにする対策も考えられるが、かかる対策では、溶接時間が過大となったり、入熱量が過大となったりする他の不都合が生じやすい。 In the comparative example, as described above, the irradiation ranges for each loop are discontinuous along the welding direction on the abutting surface 401, so the height H1' of the lower end of the joint surface (welding depth H1') varies greatly along the welding direction, as shown in Figures 14 and 16. That is, between the irradiation ranges for each loop, there are areas where the height H1' suddenly becomes small (the welding depth suddenly becomes shallow). As a result, there is an inconvenience that the joint area (the area of the joint surface) tends to become insufficient. To address this, it is possible to further reduce the wobbling pitch pt' so that the irradiation ranges for each loop overlap, but such a measure is likely to cause other inconveniences, such as excessive welding time or excessive heat input.
 これに対して、本実施例によれば、上述したように、各ループ状に係る照射範囲が、当接面401上で溶接方向に沿って、連続する。これにより、上述した比較例で生じる不都合を低減又は防止できる。すなわち、接合面の下端部の高さH1(溶接の深さH1)は、図13及び図15に示すように、溶接方向に沿って大きく変動することなく、略一定となる。また、ビーム径φAが比較的大きいため、ウォブリングピッチptを大きくしても、各ループ状に係る照射範囲を連続させることができ、溶接時間や入熱量の低減(効率化)を図ることができる。この点、本実施例において、ウォブリングピッチptは、レーザビームのビーム径φA以下の条件下で、レーザビームのビーム径φAの1/4以上であってよく、より好ましくは、ビーム径φAの1/3以上であり、最も好ましくは1/2以上である。 In contrast, according to this embodiment, as described above, the irradiation ranges of each loop are continuous along the welding direction on the contact surface 401. This reduces or prevents the inconveniences that occur in the comparative example described above. That is, the height H1 of the lower end of the joint surface (welding depth H1) is approximately constant without fluctuating significantly along the welding direction, as shown in Figures 13 and 15. In addition, since the beam diameter φA is relatively large, even if the wobbling pitch pt is increased, the irradiation ranges of each loop can be continuous, and the welding time and heat input can be reduced (efficient). In this regard, in this embodiment, the wobbling pitch pt may be 1/4 or more of the beam diameter φA of the laser beam under conditions of the beam diameter φA or less, more preferably 1/3 or more of the beam diameter φA, and most preferably 1/2 or more.
 図17は、径方向の照射位置のズレに対するロバスト性の説明図である。図17には、横軸にレーザ径方向ズレ量を取り、縦軸に接合面積を取り、3種類の方法に関する特性曲線1701、1702、1703が示されている。レーザ径方向ズレ量とは、当接面401上を“0”としたときの、照射領域の中心の径方向の位置を表し、マイナスは径方向内側を表す。 FIG. 17 is an explanatory diagram of robustness against deviations in the radial irradiation position. In FIG. 17, the horizontal axis represents the laser radial deviation amount, and the vertical axis represents the bonding area, and characteristic curves 1701, 1702, and 1703 for three different methods are shown. The laser radial deviation amount represents the radial position of the center of the irradiation area when the abutment surface 401 is set to "0", and negative values represent the radial inward position.
 特性曲線1701は、本実施例の場合を示し、特性曲線1702は、第1比較例の場合を示し、特性曲線1703は、第2比較例の場合を示す。第1比較例は、図12等を参照して説明した比較例に対応し、ビーム径φA’=0.08mm、ウォブリング径φB’=0.7mmであった。第2比較例は、グリーンレーザを利用するが、走査方法が、本実施例とは異なり、直線上の走査である。すなわち、第2比較例では、グリーンレーザは、当接面401上を溶接方向に沿って直線状に走査される。なお、第2比較例の条件は、ビーム径=0.293mmであった。本実施例の条件は、ビーム径φA=0.27mm、ウォブリング径φB=0.6mmであった。 Characteristic curve 1701 shows the case of this embodiment, characteristic curve 1702 shows the case of the first comparative example, and characteristic curve 1703 shows the case of the second comparative example. The first comparative example corresponds to the comparative example described with reference to FIG. 12 etc., and had a beam diameter φA' = 0.08 mm and a wobbling diameter φB' = 0.7 mm. The second comparative example uses a green laser, but the scanning method is linear scanning, unlike this embodiment. That is, in the second comparative example, the green laser scans linearly along the welding direction on the abutment surface 401. The condition of the second comparative example was a beam diameter = 0.293 mm. The condition of this embodiment was a beam diameter φA = 0.27 mm and a wobbling diameter φB = 0.6 mm.
 図17に示すように、第2比較例では、径方向の照射位置のズレに対するロバスト性が最も低く、例えば、径方向内側に0.2mmずれると、接合面積が3mm以下に低下する。なお、ズレ量=0のときの接合面積が4mmよりも有意に大きい状態である。これに対して、本実施例及び第1比較例は、径方向の照射位置のズレに対するロバスト性が比較的高く、径方向内側又は径方向外側に0.2mmずれても、接合面積が3mm以下に低下することはない。本実施例の場合、径方向内外に0.4mm以上ずれるような領域では、第1比較例によりもロバスト性が高いことがわかる。 As shown in Fig. 17, the second comparative example has the lowest robustness against deviation of the irradiation position in the radial direction, and for example, when the irradiation position is shifted 0.2 mm inward in the radial direction, the bonding area falls to 3 mm2 or less. Note that when the deviation amount = 0, the bonding area is significantly larger than 4 mm2 . In contrast, the present embodiment and the first comparative example have relatively high robustness against deviation of the irradiation position in the radial direction, and even if the irradiation position is shifted 0.2 mm inward or outward in the radial direction, the bonding area does not fall to 3 mm2 or less. In the case of the present embodiment, it can be seen that in the region where the irradiation position is shifted 0.4 mm or more inward or outward in the radial direction, the robustness is higher than that of the first comparative example.
 次に、図18から図20を参照して、本実施例のウォブリング径φBの好ましい範囲について、試験結果に基づき説明する。 Next, with reference to Figures 18 to 20, the preferred range of the wobbling diameter φB in this embodiment will be explained based on test results.
 図18は、実施した試験の複数の条件(条件1~条件3)を示す表図である。図19は、ウォブリング径φBとスパッタ数との関係を、条件別に示すグラフ図であり、図20は、ウォブリング径φBと接合面積及び溶接深さとの関係を示すグラフ図である。図20において、グラフ201は、溶接面積に関し、グラフ202は、溶接深さに関する。図19及び図20において、プロットp1は、条件1に関し、プロットp2は、条件2に関し、プロットp3は、条件3に関する。 FIG. 18 is a table showing the multiple conditions (conditions 1 to 3) under which the test was conducted. FIG. 19 is a graph showing the relationship between the wobbling diameter φB and the number of spatters for each condition, and FIG. 20 is a graph showing the relationship between the wobbling diameter φB and the joint area and the weld depth. In FIG. 20, graph 201 relates to the weld area, and graph 202 relates to the weld depth. In FIGS. 19 and 20, plot p1 relates to condition 1, plot p2 relates to condition 2, and plot p3 relates to condition 3.
 条件1~条件3は、図18に示すように、入熱量が同じになるように、レーザ走査速度が調整されている。なお、図18において、レーザ走査速度は、単位時間あたりのレーザビームの照射軌跡の長さ(ループ状の軌跡に沿った長さ)に対応する。また、溶接速度とは、単位時間あたりのレーザビームの照射位置の移動距離であり、例えば、ある時間にわたるレーザビームの照射位置の移動距離(当接面401上の溶接方向に沿った移動距離)を同時間で割り算することで得られる値である。各条件に共通な条件(固定条件)は、グリーンレーザが利用される点、ビーム径φA=0.273mmである点、及び出力分布密度がガウシアン分布である点である。 As shown in FIG. 18, the laser scanning speed is adjusted so that the heat input is the same under conditions 1 to 3. In FIG. 18, the laser scanning speed corresponds to the length of the laser beam irradiation path per unit time (the length along the loop-shaped path). The welding speed is the movement distance of the laser beam irradiation position per unit time, and is a value obtained by, for example, dividing the movement distance of the laser beam irradiation position over a certain time period (the movement distance along the welding direction on the contact surface 401) by the same time period. The conditions common to each condition (fixed conditions) are that a green laser is used, that the beam diameter φA is 0.273 mm, and that the output distribution density is a Gaussian distribution.
 図19に示すように、ウォブリング径φBが大きくなるほど、溶融池が安定し、スパッタ数が低減する。なお、図10A及び図10Bを参照して上述した原理と同様、ウォブリング径φBが比較的小さいと、キーホールが不安定となり溶融池の乱れ(例えば、スパッタ等)が生じやすい。 As shown in Figure 19, the larger the wobbling diameter φB, the more stable the molten pool becomes and the less spatter there is. Note that, similar to the principle described above with reference to Figures 10A and 10B, if the wobbling diameter φB is relatively small, the keyhole becomes unstable and disturbances in the molten pool (e.g., spatters) are likely to occur.
 図20に示すように、入熱量が同じであるとき、溶接深さ(溶け込み深さ)は、ウォブリング径φBが小さいほど大きくなることがわかる。同様に、熱量が同じであるとき、接合面積は、ウォブリング径φBが小さいほど大きくなることがわかる。 As shown in Figure 20, when the heat input is the same, the smaller the wobbling diameter φB, the greater the weld depth (penetration depth). Similarly, when the heat input is the same, the smaller the wobbling diameter φB, the greater the joint area.
 このように、ウォブリング径φBは、スパッタ数を減らす観点からは大きいほうが有利であるが、溶接深さ及び接合面積を増加させる観点からは小さい方が有利である。従って、これらの背反を考慮して、ウォブリング径φBの好ましい範囲が適合されてよい。例えば、ウォブリング径φBがφ0.4未満であると、ウォブリング径φBの低下とともにスパッタ数が急増しうることを考慮して、ウォブリング径φBは、好ましくは、φ0.4mm以上とされてよい。また、ウォブリング径φBがφ0.75mmを超えると、接合面積が比較的小さくなることから、ウォブリング径φBは、好ましくは、φ0.75mm以下とされてよい。この場合、ウォブリング径φBは、レーザビームのビーム径φAの1.46倍から2.74倍の間となる。従って、ウォブリング径φBは、レーザビームのビーム径φAの1.4倍から2.8倍の間で適合されてよい。 Thus, a larger wobbling diameter φB is advantageous from the viewpoint of reducing the number of spatters, but a smaller wobbling diameter φB is advantageous from the viewpoint of increasing the welding depth and the joining area. Therefore, taking these trade-offs into consideration, a preferred range of the wobbling diameter φB may be adapted. For example, when the wobbling diameter φB is less than φ0.4, the number of spatters may increase sharply as the wobbling diameter φB decreases, so the wobbling diameter φB may preferably be φ0.4 mm or more. Furthermore, when the wobbling diameter φB exceeds φ0.75 mm, the joining area becomes relatively small, so the wobbling diameter φB may preferably be φ0.75 mm or less. In this case, the wobbling diameter φB is between 1.46 and 2.74 times the beam diameter φA of the laser beam. Therefore, the wobbling diameter φB may be adapted to be between 1.4 and 2.8 times the beam diameter φA of the laser beam.
 次に、図21から図25を参照して、本実施例の好ましい溶接速度の変化プロフィールについて説明する。 Next, the preferred welding speed change profile of this embodiment will be described with reference to Figures 21 to 25.
 図21は、横軸をY方向に沿ったY方向位置とし、縦軸を溶接速度として、Y方向位置ごとの好ましい溶接速度(Y方向位置に応じた溶接速度の変化プロフィール)を示す図である。なお、横軸の正側が、上述したY2側に対応し、ここでは、溶接対象箇所90(図6参照)のY1側が溶接開始位置とし、溶接の際にY1側からY2側に向けてレーザビームの出射中心Ct0(図11A参照)を移動させるものとする。図21には、溶接速度の変化プロフィールに加えて、Y方向位置ごとの好ましいレーザ出力(Y方向位置に応じたレーザ出力の変化プロフィール)も波形R21で併せて示されている。図21において、Y方向位置P1は、照射開始位置を示し、Y方向位置P5は、照射終了位置を示す。Y方向位置P1からY方向位置P5までの区間は、図5及び図6を参照して上述した範囲D1に対応する。 21 is a diagram showing a preferred welding speed for each Y-direction position (a profile of changes in the welding speed according to the Y-direction position), with the horizontal axis representing the Y-direction position along the Y-direction and the vertical axis representing the welding speed. The positive side of the horizontal axis corresponds to the Y2 side described above, and in this example, the Y1 side of the welding target portion 90 (see FIG. 6) is set as the welding start position, and the laser beam emission center Ct0 (see FIG. 11A) is moved from the Y1 side to the Y2 side during welding. In addition to the profile of changes in the welding speed, FIG. 21 also shows a preferred laser output for each Y-direction position (a profile of changes in the laser output according to the Y-direction position) in the form of a waveform R21. In FIG. 21, the Y-direction position P1 indicates the irradiation start position, and the Y-direction position P5 indicates the irradiation end position. The section from the Y-direction position P1 to the Y-direction position P5 corresponds to the range D1 described above with reference to FIG. 5 and FIG. 6.
 本実施例では、溶接速度は、照射開始時が最も低く、その後増加される。図21に示す例では、Y方向位置P1からY方向位置P2までの区間では、溶接速度=V1であり、Y方向位置P2からY方向位置P3までの区間では、溶接速度=V2であり、Y方向位置P3からY方向位置P5までの区間では、溶接速度=V3である。そして、V1<V2<V3である。 In this embodiment, the welding speed is lowest at the start of irradiation and is increased thereafter. In the example shown in FIG. 21, the welding speed = V1 in the section from Y-direction position P1 to Y-direction position P2, the welding speed = V2 in the section from Y-direction position P2 to Y-direction position P3, and the welding speed = V3 in the section from Y-direction position P3 to Y-direction position P5. And, V1 < V2 < V3.
 溶接速度V1は、好ましくは、80mm/sよりも有意に小さく、例えば5-35mm/sの範囲内であり、20mm/s程度であってよい。溶接速度V3は、好ましくは、80mm/s以上であり、例えば100mm/s程度であってよい。この場合、溶接速度V2は、溶接速度V1と溶接速度V3の中間値(=(V1+V3)/2)であってもよい。 Welding speed V1 is preferably significantly smaller than 80 mm/s, for example in the range of 5-35 mm/s, and may be approximately 20 mm/s. Welding speed V3 is preferably 80 mm/s or greater, for example approximately 100 mm/s. In this case, welding speed V2 may be the intermediate value between welding speed V1 and welding speed V3 (= (V1 + V3) / 2).
 Y方向位置P1からY方向位置P2までの区間は、好ましくは、Y方向位置P3からY方向位置P5までの区間よりも短く、より好ましくは、Y方向位置P3からY方向位置P4までの区間よりも短い。 The section from Y-direction position P1 to Y-direction position P2 is preferably shorter than the section from Y-direction position P3 to Y-direction position P5, and more preferably shorter than the section from Y-direction position P3 to Y-direction position P4.
 Y方向位置P1からY方向位置P2までの区間は、好ましくは、範囲D1に対して20%未満であり、好ましくは、10%以下である。Y方向位置P2からY方向位置P3までの区間は、Y方向位置P1からY方向位置P2までの区間よりも短くてよい。 The section from Y-direction position P1 to Y-direction position P2 is preferably less than 20% of range D1, and preferably 10% or less. The section from Y-direction position P2 to Y-direction position P3 may be shorter than the section from Y-direction position P1 to Y-direction position P2.
 レーザ出力は、好ましくは、Y方向位置P3からY方向位置P4までの区間で最も高い。例えば図21に示すように、レーザ出力は、Y方向位置P1から徐々に増加し、Y方向位置P3からY方向位置P4までの区間で一定値に維持されてよい。そして、レーザ出力は、Y方向位置P4からY方向位置P5までの区間を利用して0(出力オフ)に向けて低下されてよい。この場合、溶接速度V3の区間のうちの、Y方向位置P3からY方向位置P4までの区間でレーザ出力の最大化を図り、溶接対象箇所90の主要部を短時間で高品質に溶接できる。 The laser output is preferably highest in the section from Y-direction position P3 to Y-direction position P4. For example, as shown in FIG. 21, the laser output may gradually increase from Y-direction position P1 and be maintained at a constant value in the section from Y-direction position P3 to Y-direction position P4. The laser output may then be reduced toward 0 (output off) using the section from Y-direction position P4 to Y-direction position P5. In this case, the laser output is maximized in the section from Y-direction position P3 to Y-direction position P4 within the section of welding speed V3, and the main portion of the welding target area 90 can be welded with high quality in a short time.
 図22は、Y方向位置P1からY方向位置P2までの区間でのウォブリングピッチpt(溶接速度V1のときのウォブリングピッチpt)(「第1移動量」の一例)の説明図であり、図23は、Y方向位置P3からY方向位置P5までの区間でのウォブリングピッチpt(溶接速度V3のときのウォブリングピッチpt)(「第2移動量」の一例)の説明図である。 FIG. 22 is an explanatory diagram of the wobbling pitch pt (wobbling pitch pt at welding speed V1) (an example of the "first movement amount") in the section from Y-direction position P1 to Y-direction position P2, and FIG. 23 is an explanatory diagram of the wobbling pitch pt (wobbling pitch pt at welding speed V3) (an example of the "second movement amount") in the section from Y-direction position P3 to Y-direction position P5.
 図22及び図23のそれぞれには、図11に示したラインLref(当接面401)上でのレーザビームに係る円形110(図11参照)が2つ模式的に示されている。これらの2つの円形110の間のY方向の距離は、ウォブリングピッチptに対応する。ここでは、Y方向位置P1からY方向位置P5までの全区間にわたってレーザ走査速度が一定であるものとする。図22及び図23を対比してわかるように、溶接速度が増加すると、それに伴いウォブリングピッチptが増加する。他方、溶接速度が増加すると、それに伴い2つの円形110のラップ率(重複部分の面積/円形の面積×100)が減少する。溶接速度V3は、2つの円形110のラップ率(重複部分の面積/円形の面積×100)が好ましくは15%以上20%以下となるように設定されてよい。 22 and 23 each show two circles 110 (see FIG. 11) related to the laser beam on the line Lref (contact surface 401) shown in FIG. 11. The distance in the Y direction between these two circles 110 corresponds to the wobbling pitch pt. Here, it is assumed that the laser scanning speed is constant over the entire section from the Y direction position P1 to the Y direction position P5. As can be seen by comparing FIG. 22 and FIG. 23, when the welding speed increases, the wobbling pitch pt increases accordingly. On the other hand, when the welding speed increases, the lap ratio (area of overlapping part/area of circle x 100) of the two circles 110 decreases accordingly. The welding speed V3 may be set so that the lap ratio (area of overlapping part/area of circle x 100) of the two circles 110 is preferably 15% or more and 20% or less.
 ここで、図24Aから図25Bを参照しつつ、図21等を参照して上述した本実施例の溶接速度の変化プロフィールに係る効果を説明する。 Here, we will explain the effect of the welding speed change profile of this embodiment described above with reference to Figures 21 etc., while also referring to Figures 24A to 25B.
 図24A及び図24Bは、第1比較例の説明図であり、図24Bは、第1比較例に係る問題点の説明図である。図25A及び図25Bは、第2比較例の説明図であり、図25Bは、第2比較例に係る問題点の説明図である。図24A及び図25Aは、ともに、本実施例に係る前出の図21と同様に、横軸をY方向に沿ったY方向位置とし、縦軸を溶接速度として、Y方向位置ごとの好ましい溶接速度(Y方向位置に応じた溶接速度の変化プロフィール)を示す図である。図24B及び図25Bは、ともに、本実施例に係る前出の図6と同様に、照射側から視た溶接対象箇所90’又は90”を概略的に示す図である。 24A and 24B are explanatory diagrams of the first comparative example, and 24B is an explanatory diagram of the problem associated with the first comparative example. 25A and 25B are explanatory diagrams of the second comparative example, and 25B is an explanatory diagram of the problem associated with the second comparative example. Both Figs. 24A and 25A are diagrams showing preferred welding speeds for each Y direction position (profile of changes in welding speed according to Y direction position) with the horizontal axis representing Y direction position along the Y direction and the vertical axis representing welding speed, similar to Fig. 21 described above for this embodiment. Both Figs. 24B and 25B are diagrams showing schematic views of the welding target location 90' or 90" as viewed from the irradiation side, similar to Fig. 6 described above for this embodiment.
 第1比較例は、図24Aに示すように、Y方向位置P1からY方向位置P5までの全区間にわたって溶接速度が比較的高い速度(=溶接速度V3)で一定である。 In the first comparative example, as shown in FIG. 24A, the welding speed is constant at a relatively high speed (= welding speed V3) throughout the entire section from Y-direction position P1 to Y-direction position P5.
 この場合、溶接開始位置(Y方向位置P1)で溶融池が十分大きくなる前にレーザビームが比較的早い移動速度でY方向に移動し、溶融池の外側にレーザビームが照射されやすくなる。例えば、Y1側からY2側に向けてレーザビームを移動させる場合、溶融池に対してY2側の外側にレーザビームが照射されやすくなる。この場合、図24Bに模式的に示すように、溶接開始位置(Y方向位置P1)で欠陥が生じやすくなる。例えば、溶接開始位置(Y方向位置P1)で、コイル片52の先端部40における照射部の材料(個体)が吹き飛び、空洞(図24Bではハッチングされていない領域で表現)が生じやすくなる。 In this case, the laser beam moves in the Y direction at a relatively high speed before the molten pool becomes large enough at the welding start position (Y direction position P1), making it easier for the laser beam to irradiate the outside of the molten pool. For example, when the laser beam moves from the Y1 side to the Y2 side, the laser beam is easier to irradiate the outside of the molten pool on the Y2 side. In this case, as shown diagrammatically in FIG. 24B, defects are more likely to occur at the welding start position (Y direction position P1). For example, at the welding start position (Y direction position P1), the material (solid) of the irradiated area at the tip 40 of the coil piece 52 is blown away, making it easier for a cavity (represented by the unhatched area in FIG. 24B) to occur.
 これに対して、本実施例によれば、上述したように、Y方向位置P1からY方向位置P2までの区間では比較的小さい溶接速度V1が利用される。これにより、溶融池が十分大きくなる前に、溶融池の外側にレーザビームが照射され難くなる。その結果、第1比較例において生じるような不都合を低減できる。 In contrast, according to this embodiment, as described above, a relatively small welding speed V1 is used in the section from Y-direction position P1 to Y-direction position P2. This makes it difficult for the laser beam to be irradiated to the outside of the molten pool before the molten pool becomes sufficiently large. As a result, the inconveniences that occur in the first comparative example can be reduced.
 ここで、本実施例において、Y方向位置P1からY方向位置P2までの区間の長さは、好ましくは、当該区間において、対応するウォブリングピッチpt(図23参照)で円形110が2回分以上の回数で形成されるように設定され、より好ましくは、当該区間において、対応するウォブリングピッチptで円形110が7回から13回の範囲内の回数で形成されるように設定される。これにより、溶融池を適切に形成してから、Y方向位置P2以降の区間(例えば溶接速度V3に係る区間)に移行できる。 In this embodiment, the length of the section from Y-direction position P1 to Y-direction position P2 is preferably set so that in this section, the circle 110 is formed two or more times at the corresponding wobbling pitch pt (see FIG. 23), and more preferably, is set so that in this section, the circle 110 is formed 7 to 13 times at the corresponding wobbling pitch pt. This allows the molten pool to be properly formed before moving to the section after Y-direction position P2 (for example, the section related to welding speed V3).
 第2比較例は、図25Aに示すように、Y方向位置P1からY方向位置P5までの全区間にわたって溶接速度が比較的低い速度(=溶接速度V1)で一定である。この場合、図24Bに模式的に示すように、この場合、図25Bに模式的に示すように、溶融幅w2(図7に示す溶接対象箇所90の径方向の範囲D2参照)が所望の値よりも大きくなりやすい。例えば、Y1側からY2側に向けてレーザビームを移動させる場合、Y2側に向かうにつれて溶融幅w2が大きくなっていく(図13に示す溶接の深さH1についても同様)。その結果、溶接品質の低下のみならず、溶融幅w2や溶接の深さH1が過大となることによる不都合(例えばコイル片52の先端部40等を位置付ける治具の損傷等)も生じうる。また、一の溶接対象箇所90あたりの溶接時間(溶接に要する時間)が比較的長くなるという不都合もある。 In the second comparative example, as shown in FIG. 25A, the welding speed is constant at a relatively low speed (= welding speed V1) over the entire section from Y-direction position P1 to Y-direction position P5. In this case, as shown in FIG. 24B, the fusion width w2 (see the radial range D2 of the welding target portion 90 shown in FIG. 7) is likely to be larger than the desired value, as shown in FIG. 25B. For example, when the laser beam is moved from the Y1 side to the Y2 side, the fusion width w2 becomes larger as it moves toward the Y2 side (the same applies to the welding depth H1 shown in FIG. 13). As a result, not only the welding quality is deteriorated, but also inconveniences (such as damage to the jig for positioning the tip portion 40 of the coil piece 52, etc.) may occur due to the excessive fusion width w2 and welding depth H1. In addition, there is also the inconvenience that the welding time (time required for welding) per welding target portion 90 becomes relatively long.
 これに対して、本実施例によれば、上述したように、Y方向位置P1からY方向位置P2までの区間では比較的小さい溶接速度V1が利用されるものの、それに後続する区間では、より大きい溶接速度(特に溶接速度V3)が利用される。これにより、溶接対象箇所90の全体にわたって(すなわちY方向位置P1からY方向位置P5までの全区間にわたって)、溶融幅w2や溶接の深さH1を略一定にすることが可能となる。また、一の溶接対象箇所90あたりの溶接時間(溶接に要する時間)を比較的短くできる。すなわち、第2比較例において生じるような不都合を低減できる。 In contrast, according to this embodiment, as described above, a relatively slow welding speed V1 is used in the section from Y-direction position P1 to Y-direction position P2, but a higher welding speed (particularly welding speed V3) is used in the subsequent section. This makes it possible to make the fusion width w2 and the welding depth H1 approximately constant throughout the entire welding area 90 (i.e., throughout the entire section from Y-direction position P1 to Y-direction position P5). In addition, the welding time (time required for welding) per welding area 90 can be made relatively short. In other words, the inconveniences that arise in the second comparative example can be reduced.
 なお、図21等を参照して上述した本実施例の溶接速度の変化プロフィールでは、3種類の溶接速度V1、V2、V3が利用されるが、溶接速度V2に代えて、溶接速度V1又は溶接速度V3が利用される構成であってもよい。あるいは、4種類以上の溶接速度が利用されてもよい。 In the welding speed change profile of this embodiment described above with reference to FIG. 21 etc., three types of welding speeds V1, V2, and V3 are used, but welding speed V1 or welding speed V3 may be used instead of welding speed V2. Alternatively, four or more types of welding speeds may be used.
 次に、図26を参照して、本実施例の製造方法の流れとともに、製造装置300について概説する。 Next, referring to FIG. 26, the manufacturing method of this embodiment and the manufacturing apparatus 300 will be outlined.
 図26は、モータ1のステータ21の製造方法の流れを概略的に示すフローチャートである。図27は、製造装置300のシステム構成図である。 FIG. 26 is a flow chart showing the outline of the manufacturing method for the stator 21 of the motor 1. FIG. 27 is a system configuration diagram of the manufacturing device 300.
 まず、本製造方法は、コイル片52をステータコア22に組み付ける組付工程(ステップS150)を含む。また、本製造方法は、組付工程後に、コイル片52の先端部40同士をレーザ溶接により接合する接合工程(ステップS152)を含む。コイル片52の先端部40同士をレーザ溶接により接合する方法は、上述したとおりである。 First, this manufacturing method includes an assembly process (step S150) in which the coil pieces 52 are attached to the stator core 22. In addition, after the assembly process, this manufacturing method includes a joining process (step S152) in which the tip ends 40 of the coil pieces 52 are joined together by laser welding. The method of joining the tip ends 40 of the coil pieces 52 together by laser welding is as described above.
 この場合、接合工程は、上述したように、各対となるコイル片52のそれぞれの先端部40同士が径方向に当接するようにセットするセット工程(ステップS1521)を含む。なお、セット工程では、治具302を用いて、各対となるコイル片52のそれぞれの先端部40同士が径方向に当接した状態が、維持されてよい。 In this case, the joining process includes a setting process (step S1521) in which the tip portions 40 of each pair of coil pieces 52 are set so as to abut against each other in the radial direction, as described above. In the setting process, the state in which the tip portions 40 of each pair of coil pieces 52 are abutted against each other in the radial direction may be maintained using a jig 302.
 そして、接合工程は、セット工程後に、上述したように溶接対象箇所90に照射装置304からレーザビームを照射する照射工程(ステップS1522)を含む。照射装置304からレーザビームの照射態様は、上述したとおりであり、制御装置301により制御されてよい。なお、セット工程と照射工程は、1つ以上の所定数の溶接対象箇所90ごとにセットで実行されてもよいし、一のステータ21に係るすべての溶接対象箇所90に対して、一括的に実行されてもよい。なお、本製造方法は、接合工程後に、適宜、必要な各種の工程を行うことで、ステータ21を完成させて終了してよい。 The joining process includes an irradiation process (step S1522) in which, after the setting process, a laser beam is irradiated from the irradiation device 304 to the welding target points 90 as described above. The manner of irradiation of the laser beam from the irradiation device 304 is as described above, and may be controlled by the control device 301. The setting process and the irradiation process may be performed as a set for one or more predetermined number of welding target points 90, or may be performed collectively for all welding target points 90 related to one stator 21. The present manufacturing method may end by completing the stator 21 by appropriately performing various necessary processes after the joining process.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope of the claims. It is also possible to combine all or some of the components of the above-mentioned embodiments.
1・・・モータ(回転電機)、24・・・ステータコイル、52・・・コイル片、40・・・先端部、401・・・当接面、110・・・レーザビームに係る円形、300・・・製造装置、302・・・治具、304・・・照射装置 1: motor (rotating electric machine), 24: stator coil, 52: coil piece, 40: tip, 401: contact surface, 110: circle related to laser beam, 300: manufacturing device, 302: jig, 304: irradiation device

Claims (8)

  1.  回転電機のステータコイルを形成するための一のコイル片と他の一のコイル片の先端部同士を当接させる工程と、
     前記先端部同士の当接面の露出側の一辺に向けて、0.6μm以下の波長のレーザビームを照射する照射工程とを含み、
     前記照射工程は、前記レーザビームを、前記一辺が延在する方向成分を含む進行方向に移動させながらループ状に走査することを含み、
     1周の前記ループ状の走査あたりの前記進行方向の移動量は、前記レーザビームのビーム径以下である、回転電機用ステータ製造方法。
    a step of bringing a tip end portion of one coil piece and a tip end portion of another coil piece into contact with each other to form a stator coil for a rotating electric machine;
    and an irradiation step of irradiating a laser beam having a wavelength of 0.6 μm or less toward one side of an exposed side of the contact surface between the tip portions,
    the irradiation step includes scanning the laser beam in a loop while moving the laser beam in a traveling direction including a directional component in which the one side extends,
    a movement amount in the advance direction per one loop-shaped scan is equal to or less than a beam diameter of the laser beam.
  2.  前記照射工程において、前記レーザビームは、複数周の前記ループ状の走査に対して、3.0kW以上のレーザ出力を有する態様で、連続的に照射される、請求項1に記載の回転電機用ステータ製造方法。 The method for manufacturing a stator for a rotating electric machine according to claim 1, wherein in the irradiation process, the laser beam is continuously irradiated with a laser output of 3.0 kW or more for multiple revolutions of the loop-shaped scan.
  3.  前記ループ状の直径又は長軸方向の長さは、前記レーザビームのビーム径の1.4倍から2.8倍の間である、請求項1に記載の回転電機用ステータ製造方法。 The method for manufacturing a stator for a rotating electric machine according to claim 1, wherein the diameter or length in the major axis direction of the loop is between 1.4 and 2.8 times the beam diameter of the laser beam.
  4.  前記レーザビームのビーム径は、0.15mm以上である、請求項1に記載の回転電機用ステータ製造方法。 The method for manufacturing a stator for a rotating electric machine according to claim 1, wherein the beam diameter of the laser beam is 0.15 mm or more.
  5.  前記照射工程は、1周の前記ループ状の走査あたりの前記進行方向の移動量を、照射開始時に第1移動量とし、その後、前記第1移動量よりも大きい第2移動量に変更することを含む、請求項1から4のうちのいずれか1項に記載の回転電機用ステータ製造方法。 The method for manufacturing a stator for a rotating electric machine according to any one of claims 1 to 4, wherein the irradiation process includes setting the amount of movement in the direction of travel per one revolution of the loop-shaped scan to a first amount of movement at the start of irradiation, and then changing it to a second amount of movement that is greater than the first amount of movement.
  6.  前記照射工程は、前記レーザビームのレーザ出力を、前記第1移動量の区間よりも、前記第2移動量の区間で大きくすることを含む、請求項5に記載の回転電機用ステータ製造方法。 The method for manufacturing a stator for a rotating electric machine according to claim 5, wherein the irradiation step includes increasing the laser output of the laser beam in the second movement range compared to the first movement range.
  7.  前記照射工程は、単位時間あたり一定回数で円形を描く態様で出射される前記レーザビームを用いて、前記第1移動量の区間において、少なくとも2回以上の円形を描くことを含む、請求項6に記載の回転電機用ステータ製造方法。 The method for manufacturing a stator for a rotating electric machine according to claim 6, wherein the irradiation step includes drawing at least two circles in the first movement distance section using the laser beam emitted in a manner that draws a circle a fixed number of times per unit time.
  8.  回転電機のステータコイルを形成するための一のコイル片と他の一のコイル片の先端部同士を当接させる治具と、
     前記先端部同士の当接面の露出側の一辺に向けて、0.6μm以下の波長のレーザビームを照射する照射装置とを備え、
     前記照射装置は、前記レーザビームを、前記一辺が延在する方向成分を含む進行方向に移動させながらループ状に走査し、
     1周の前記ループ状の走査あたりの前記進行方向の移動量は、前記レーザビームのビーム径以下である、回転電機用ステータ製造装置。
    a jig for bringing tip portions of one coil piece and another coil piece into contact with each other to form a stator coil for a rotating electric machine;
    an irradiation device that irradiates a laser beam having a wavelength of 0.6 μm or less toward one side of an exposed side of the contact surface between the tip portions,
    the irradiation device scans the laser beam in a loop while moving the laser beam in a traveling direction including a directional component in which the one side extends,
    a movement amount in the advancement direction per one loop-shaped scan is equal to or less than a beam diameter of the laser beam.
PCT/JP2023/034370 2022-10-11 2023-09-21 Rotating electric machine stator manufacturing method and rotating electric machine stator manufacturing device WO2024080097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-163183 2022-10-11
JP2022163183 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024080097A1 true WO2024080097A1 (en) 2024-04-18

Family

ID=90669130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034370 WO2024080097A1 (en) 2022-10-11 2023-09-21 Rotating electric machine stator manufacturing method and rotating electric machine stator manufacturing device

Country Status (1)

Country Link
WO (1) WO2024080097A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020340A (en) * 2016-08-02 2018-02-08 トヨタ自動車株式会社 Laser welding method of flat wire
JP2021044883A (en) * 2019-09-09 2021-03-18 トヨタ自動車株式会社 Method of joining conductors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020340A (en) * 2016-08-02 2018-02-08 トヨタ自動車株式会社 Laser welding method of flat wire
JP2021044883A (en) * 2019-09-09 2021-03-18 トヨタ自動車株式会社 Method of joining conductors

Similar Documents

Publication Publication Date Title
JP5958109B2 (en) Conductor joining method for rotating electrical machine
JP6593280B2 (en) Laser welding method for flat wire
JP2019181506A (en) Rectangular wire laser welding method
JP7335419B2 (en) Stator manufacturing method for rotary electric machine
JP7432626B2 (en) How to remove the insulation coating of conductor wires
WO2022196823A1 (en) Method for manufacturing stator for rotating electrical machine
WO2024080097A1 (en) Rotating electric machine stator manufacturing method and rotating electric machine stator manufacturing device
WO2020170413A1 (en) Method for welding copper-containing members, and method for manufacturing dynamo-electric machine
JPWO2018179923A1 (en) Core manufacturing method and core
WO2022196821A1 (en) Method of producing stator for rotating electrical machine
WO2022196822A1 (en) Method for manufacturing stator for rotary electric machine
JP7460403B2 (en) Manufacturing method of a stator for a rotating electric machine
WO2021220666A1 (en) Laser welding method and method for manufacturing electric rotating machine using same
US20230098415A1 (en) Method for manufacturing stator for rotary electric machine
JP7181171B2 (en) How to join conductors
JP7410757B2 (en) Stator manufacturing method for rotating electric machines
JP2017040368A (en) Joining method of core ring of torque converter, manufacturing method of torque converter, and torque converter manufactured by using the same
CN115136474A (en) Method for manufacturing stator for rotating electric machine
JP2022149720A (en) Stator manufacturing method for rotary electric machine
WO2023282060A1 (en) Electric motor stator manufacturing device and method for manufacturing electric motor stator
JP2021145481A (en) Method of manufacturing stator for rotary electric machine
JP2022177664A (en) Laser welding method