WO2024080084A1 - Infrared shielding fiber structure and clothing employing same - Google Patents

Infrared shielding fiber structure and clothing employing same Download PDF

Info

Publication number
WO2024080084A1
WO2024080084A1 PCT/JP2023/033840 JP2023033840W WO2024080084A1 WO 2024080084 A1 WO2024080084 A1 WO 2024080084A1 JP 2023033840 W JP2023033840 W JP 2023033840W WO 2024080084 A1 WO2024080084 A1 WO 2024080084A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
infrared shielding
infrared
microparticles
fiber
Prior art date
Application number
PCT/JP2023/033840
Other languages
French (fr)
Japanese (ja)
Inventor
美香 岡田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2024080084A1 publication Critical patent/WO2024080084A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/48Oxides or hydroxides of chromium, molybdenum or tungsten; Chromates; Dichromates; Molybdates; Tungstates

Definitions

  • the present invention relates to infrared-shielding fiber structures such as woven fabrics, knitted fabrics, and nonwoven fabrics that are made by processing infrared-shielding fibers that contain infrared-shielding microparticles selected from tungsten oxide microparticles or composite tungsten oxide microparticles on the surface and/or inside, and to clothing such as innerwear and sportswear that use the infrared-shielding fiber structures, and in particular to improvements in infrared-shielding fiber structures and clothing that can prevent surreptitious photography using infrared rays.
  • infrared-shielding fiber structures such as woven fabrics, knitted fabrics, and nonwoven fabrics that are made by processing infrared-shielding fibers that contain infrared-shielding microparticles selected from tungsten oxide microparticles or composite tungsten oxide microparticles on the surface and/or inside
  • clothing such as innerwear and sportswear that use the infrared
  • Patent Document 1 discloses a knitted fabric made by attaching a dye selected from anthraquinone, indigo, benzoquinone, naphthoquinone, and phthalcyanine dyes to a core-sheath synthetic fiber to make an infrared-shielding fiber, and then processing this infrared-shielding fiber. Since the dyes absorb infrared rays, the knitted fabric disclosed in Patent Document 1 can certainly prevent voyeurism using infrared rays. However, since anthraquinone, indigo, and other dyes are organic materials, they have poor weather resistance and also have the disadvantage of discoloring over time. For this reason, the knitted fabric disclosed in Patent Document 1 has the problem that its ability to prevent voyeurism using infrared rays decreases over time, and there is also the fatal problem that the knitted fabric discolors over time.
  • Patent Documents 2 and 3 disclose infrared shielding fibers using inorganic infrared shielding microparticles and textile products made by processing the infrared shielding fibers and using them for cold weather clothing, etc., although the purpose is different from that described in Patent Document 1 (to provide a knitted fabric that can prevent surreptitious photography by infrared rays).
  • Patent Document 2 discloses a textile product made by processing near-infrared absorbing fibers (infrared shielding fibers) that contain inorganic materials (tungsten oxide microparticles or composite tungsten oxide microparticles) that absorb infrared rays from sunlight, etc., on the surface and/or inside
  • Patent Document 3 discloses infrared absorbing fibers (infrared shielding fibers) and textile products in which the chemical resistance of the infrared shielding microparticles is improved by coating the surfaces of tungsten oxide microparticles or composite tungsten oxide microparticles (infrared shielding microparticles) with polyester resin, polycarbonate resin, etc.
  • Patent Document 1 a knitted fabric that can prevent surreptitious photography using infrared rays
  • Patent Documents 2 and 3 textile products that have an increased heat retention effect and can be used for cold weather clothing, etc.
  • the present invention was made with a focus on these problems, and its objective is to provide an infrared-shielding textile structure that does not lose its ability to prevent surreptitious infrared photography over time, and that can prevent discoloration of the knitted fabric over time, as well as clothing that uses the same.
  • the inventor therefore conducted the following technical analysis to solve the above problems.
  • infrared voyeurism can be prevented when the average reflectance in the infrared range (wavelengths 800 nm to 1,300 nm) is 65% or less, preferably 60% or less, and more preferably 55% or less.
  • the first invention according to the present invention is, An infrared-shielding fiber structure obtained by processing an infrared-shielding fiber having one or more infrared-shielding particles selected from tungsten oxide particles or composite tungsten oxide particles contained on the surface and/or inside thereof,
  • the infrared shielding fine particles have a particle size of 1 nm or more and 800 nm or less
  • the content of the infrared shielding fine particles per unit area of the infrared shielding fiber structure is 0.10 g/ m2 or more and 4.5 g/ m2 or less
  • the second invention is In the infrared shielding fiber structure according to the first aspect of the present invention, It is characterized by having an average reflectance of 65% or less in the wavelength range of 800 nm to 1,300 nm.
  • the third aspect of the present invention is in the infrared shielding fiber structure according to the first aspect of the present invention.
  • the tungsten oxide microparticles are microparticles of a tungsten oxide represented by the general formula WO x (wherein W is tungsten, O is oxygen, and 2.45 ⁇ X ⁇ 2.999), the composite tungsten oxide microparticles are characterized by being composite tungsten oxide microparticles represented by the general formula M YWO Z (wherein M element is one or more elements selected from H, He, alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I; W
  • the infrared shielding fiber is a fiber selected from any one of synthetic fibers, semi-synthetic fibers, natural fibers, regenerated fibers, inorganic fibers, and blends, doubling yarns, and mixed yarns obtained by blending these fibers
  • the sixth invention is In the infrared shielding fiber structure according to the fifth aspect of the present invention,
  • the synthetic fiber is any one of polyurethane fibers, polyamide fibers, acrylic fibers, polyester fibers, polyolefin fibers, polyvinyl alcohol fibers, polyvinylidene chloride fibers, polyvinyl chloride fibers, and polyether ester fibers;
  • the seventh invention is In the infrared shielding fiber structure according to the fifth aspect of the present invention,
  • the semi-synthetic fiber is any one of semi-synthetic fibers selected from the group consisting of cellulose-based fibers, protein-based fiber
  • infrared shielding fiber structure and the clothing using the infrared shielding fiber structure of the present invention Since inorganic infrared shielding microparticles (tungsten oxide microparticles or composite tungsten oxide microparticles) are used, it is possible to prevent discoloration over time of infrared shielding fiber structures such as woven fabrics and knitted fabrics, and the content of infrared shielding microparticles per unit area of the infrared shielding fiber structure is set to 0.10 g/ m2 or more and 4.5 g/ m2 or less, and the average reflectance in the infrared region (wavelength 800 nm to 1,300 nm) of the infrared shielding fiber structure and clothing using the infrared shielding fiber structure is 65% or less, making it possible to maintain the anti-secret photography function using infrared rays for a long period of time.
  • inorganic infrared shielding microparticles tungsten oxide microparticles or composite tungsten oxide microp
  • the tungsten oxide microparticles or composite tungsten oxide microparticles used in the present invention have a higher infrared absorption capacity per unit weight than other inorganic infrared shielding microparticles (microparticles such as ITO and ATO), and a sufficient infrared absorption effect can be obtained with a small content, so the physical properties of the fiber are not impaired and it is possible to increase the design freedom of clothing.
  • FIG. 1 is a graph showing the relationship between wavelength (nm) and reflectance (%) for knit products (textile structures) according to Examples 1 to 7 and Comparative Examples 1 and 2.
  • the infrared shielding fiber structure of the present invention is constructed by processing infrared shielding fibers that contain inorganic infrared shielding microparticles (tungsten oxide microparticles or composite tungsten oxide microparticles) on the surface and/or inside, and examples of the infrared shielding fiber structure include woven fabrics, knitted fabrics, nonwoven fabrics, etc.
  • inorganic infrared shielding microparticles tungsten oxide microparticles or composite tungsten oxide microparticles
  • examples of the infrared shielding fiber structure include woven fabrics, knitted fabrics, nonwoven fabrics, etc.
  • the infrared shielding fiber can be obtained by incorporating infrared shielding particles (particles having an infrared shielding function) on the surface and/or inside of the fiber.
  • the following describes tungsten oxide microparticles and composite tungsten oxide microparticles that have infrared shielding properties.
  • the tungsten oxide microparticles having an infrared shielding function are microparticles represented by the general formula WO x (wherein W is tungsten, O is oxygen, and 2.45 ⁇ X ⁇ 2.999),
  • the composite tungsten oxide microparticles having an infrared shielding function are microparticles represented by the general formula M YWO Z (wherein M element is one or more elements selected from H, He, alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I; W is tungsten; O is oxygen; 0.001 ⁇ Y ⁇ 1.0, 2.2 ⁇ Z ⁇ 3.0) and
  • tungsten oxide microparticles or composite tungsten oxide microparticles When tungsten oxide microparticles or composite tungsten oxide microparticles are applied to various fibers, they function as an infrared shielding component.
  • Examples of tungsten oxide particles represented by the general formula WOx ( 2.45 ⁇ X ⁇ 2.999) include W18O49, W20O58 , and W4O11 . If the value of X is 2.45 or more, the appearance of unintended WO2 crystal phase in the infrared shielding particles can be completely avoided, and the chemical stability of the material can be obtained. Also, if the value of X is 2.999 or less, a sufficient amount of free electrons is generated, resulting in efficient infrared shielding particles.
  • WOx compounds in which the range of x is 2.45 ⁇ X ⁇ 2.95 are included in compounds called Magneli phases.
  • examples of composite tungsten oxide microparticles represented by the above general formula M YWO Z and having a hexagonal crystal structure include composite tungsten oxide microparticles containing one or more elements selected from the group consisting of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn as the preferred M element.
  • the amount Y of the added M element must be 0.001 or more and 1.0 or less, and is preferably around 0.33 . This is because the value of Y theoretically calculated from the hexagonal crystal structure is 0.33 , and preferable optical properties can be obtained with an amount added around this value.
  • Typical examples include Cs0.33WO3 , Rb0.33WO3 , K0.33WO3 , Ba0.33WO3 , etc., and as long as Y and Z fall within the above ranges, useful infrared shielding properties can be obtained.
  • the particle size of the infrared shielding microparticles does not cause problems during the fiberization process such as spinning and drawing, and it is preferable that the average particle size of the infrared shielding microparticles is 800 nm or less. If the average particle size of the above microparticles is 800 nm or less, it is possible to avoid a decrease in spinnability such as clogging of the nozzle and thread breakage during the spinning process.
  • the average particle size is 800 nm or less.
  • Infrared shielding microparticles selected from tungsten oxide microparticles or composite tungsten oxide microparticles transmit visible light (wavelength 380 nm to 780 nm) and largely absorb light in the near infrared region, particularly in the vicinity of wavelengths of 780 to 2200 nm, so that the transmitted color tone is often blue to green.
  • the particle size (particle diameter) of the infrared shielding microparticles can be ensured by making the particle size (particle diameter) of the infrared shielding microparticles smaller than 800 nm, but when transparency is important, the particle diameter is set to 200 nm or less, more preferably 100 nm or less. On the other hand, if the particle diameter is 1 nm or more, industrial production is easy, so the particle size (particle diameter) of the infrared shielding microparticles must be 1 nm or more and 800 nm or less.
  • the infrared absorbing ability per unit weight of the above tungsten oxide fine particles and composite tungsten oxide fine particles is very high, so compared to ITO and ATO, the effect is exhibited at about 1/4 to 1/10 of the usage amount.
  • the composite tungsten oxide fine particles when K, Rb, or Cs is used as the M element, the infrared absorbing ability of wavelengths of 780 nm or more is particularly excellent, so it is suitable for preventing infrared voyeurism (prevention of see-through by CCD cameras).
  • the above-mentioned ITO and ATO cannot be expected to absorb infrared rays in the wavelength range of 780 nm to 900 nm. Therefore, the effect of preventing infrared voyeurism (prevention of see-through by CCD cameras) cannot be expected from an infrared shielding fiber structure using ITO or ATO.
  • the content of infrared shielding microparticles (tungsten oxide microparticles or composite tungsten oxide microparticles) contained on the surface and/or inside of the fiber is preferably set between 0.001% and 80% by weight, and when taking into consideration the weight of the fiber after the infrared shielding microparticles are added and the raw material cost, the content is more preferably set between 0.005% and 50% by weight.
  • infrared shielding microparticles are 0.001% by weight or more, a sufficient infrared absorbing effect can be obtained even if the fabric (infrared shielding fiber structure) is thin, if it is 80% by weight or less, it is possible to avoid a decrease in spinnability due to clogging of the nozzle or thread breakage during the spinning process, and if it is 50% by weight or less, the amount of infrared shielding microparticles added can be small, so the physical properties of the fiber are not impaired.
  • the content of infrared shielding microparticles per unit area of the infrared shielding fiber structure is 0.10 g/m 2 or more and 4.5 g/m 2 or more, preferably 0.15 g/m 2 or more, and more preferably 0.20 g/m 2 or more. If the content of infrared shielding microparticles per unit area of the infrared shielding fiber structure is 0.10 g/m 2 or more, the average reflectance of the infrared shielding fiber structure in the infrared region (wavelength 800 nm to 1300 nm) can be 65% or less.
  • the average reflectance of the infrared shielding fiber structure is 65% or less, it is possible to prevent infrared voyeurism (see-through by a CCD camera) in clothing using the infrared shielding fiber structure as a woven or knitted fabric, and it is more preferable that the average reflectance of the infrared shielding fiber structure is 60% or less, and even more preferable that it is 55% or less.
  • the above-mentioned content of infrared shielding microparticles per unit area of the infrared shielding fiber structure must be 0.15 g/ m2 or more, and in order to make the average reflectance 55% or less, the above-mentioned content of infrared shielding microparticles must be 0.20 g/ m2 or more.
  • the upper limit of the content of infrared shielding microparticles per unit area of the infrared shielding fiber structure is preferably 3.5 g/ m2 .
  • the content of infrared shielding microparticles per unit area is 3.5 g/ m2 , the average reflectance is 0.2% or less, and the effect of preventing voyeurism by infrared rays is sufficiently exhibited.
  • the infrared shielding fiber structure contains an excessive amount of infrared shielding microparticles per unit area, it may be difficult to develop the color depending on the color to which the infrared shielding fiber structure is dyed.
  • the average reflectance of a fiber structure that does not contain infrared-shielding microparticles in the infrared range is 77%, as confirmed in Comparative Example 1 below, and at this reflectance, it is possible to take surreptitious photographs using infrared light (see-through with a CCD camera).
  • the above average reflectance is the average value of the reflectance of the infrared shielding fiber structure measured with a spectrophotometer when the wavelength is increased in 5 nm intervals in the wavelength range from 800 nm to 1300 nm.
  • infrared shielding microparticles that absorb infrared rays are contained on the fiber surface and/or inside, and when the infrared shielding fiber structure is irradiated with light, the infrared shielding microparticles absorb the infrared rays, resulting in a low reflectance in the infrared region (wavelengths of 800 nm to 1300 nm).
  • the reflectance of infrared rays is reduced.
  • the image will be unclear due to the reduced reflectance in the wavelength range of 800 nm to 1300 nm.
  • the wavelength range of widely used CCD sensors is 400 nm to 1200 nm.
  • the reflectance of the irradiated light components in the infrared range (wavelengths 800 nm to 1300 nm) is reduced, making it possible to prevent surreptitious photography using infrared rays (see-through with a CCD camera).
  • the infrared shielding microparticles (tungsten oxide microparticles or composite tungsten oxide microparticles) used in the present invention absorb only a small amount of light in the visible light range compared to the absorption of light in the infrared range (wavelengths of 800 nm to 1300 nm).
  • the infrared shielding microparticles of the present invention absorb only a small amount of light in the visible light range, it is possible to freely impart color to the infrared shielding fiber structure by dyeing or the like.
  • the infrared shielding fiber structure of the present invention is used in clothing, the amount of infrared rays contained in natural light that reach the human skin can be reduced, thereby reducing damage to the skin.
  • the fiber used for the infrared shielding fiber according to the present invention can be selected from various types depending on the application, and any of synthetic fibers, semi-synthetic fibers, natural fibers, regenerated fibers, inorganic fibers, and mixed yarns obtained by blending, doubling, blending, etc. thereof may be used. Furthermore, in consideration of the incorporation of inorganic fine particles into the fiber by a simple method and the durability of heat retention, synthetic fibers are preferable.
  • the synthetic fiber used in the infrared shielding fiber according to the present invention is not particularly limited, and examples thereof include polyurethane fibers, polyamide fibers, acrylic fibers, polyester fibers, polyolefin fibers, polyvinyl alcohol fibers, polyvinylidene chloride fibers, polyvinyl chloride fibers, and polyether ester fibers.
  • polyamide fibers include nylon, nylon 6, nylon 66, nylon 11, nylon 610, nylon 612, aromatic nylon, aramid, etc.
  • acrylic fibers include polyacrylonitrile, acrylonitrile-vinyl chloride copolymer, and modacrylic.
  • polyester fibers include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polyethylene naphthalate.
  • polyolefin fibers examples include polyethylene, polypropylene, polystyrene, etc.
  • polyvinyl alcohol fiber Another example of a polyvinyl alcohol fiber is vinylon.
  • polyvinylidene chloride fibers is vinylidene.
  • polyvinyl chloride-based fiber Another example of polyvinyl chloride-based fiber is polyvinyl chloride.
  • polyether ester fibers include Lexe and Success.
  • fibers used in the infrared shielding fiber according to the present invention are semi-synthetic fibers
  • examples of the fibers include cellulose-based fibers, protein-based fibers, chlorinated rubber, and hydrochloric rubber.
  • cellulosic fibers include acetate, triacetate, and acetate oxide.
  • Another example of protein fiber is Promix.
  • Fibers used in the infrared shielding fiber according to the present invention are natural fibers, examples thereof include vegetable fibers, animal fibers, and mineral fibers.
  • plant fibers include cotton, kapok, flax, hemp, jute, Manila hemp, sisal, New Zealand hemp, ramie, palm, rush, and wheat straw.
  • animal fibers include wool, silk, down, feathers, etc., such as sheep's wool, goat hair, mohair, cashmere, alpaca, angora, camel, and vicuna.
  • mineral fibers include asbestos.
  • the fibers used in the infrared shielding fiber according to the present invention are regenerated fibers
  • examples of the regenerated fibers include cellulose-based fibers, protein-based fibers, alginate fibers, rubber fibers, chitin fibers, and mannan fibers.
  • cellulosic fibers include rayon, viscose rayon, cupro, polynosic, and cuprammonium rayon.
  • protein-based fibers include casein fiber, peanut protein fiber, corn protein fiber, soy protein fiber, and regenerated silk thread.
  • inorganic fibers examples thereof include metal fibers, carbon fibers, and silicate fibers.
  • metal fibers include metal fibers, gold threads, silver threads, and heat-resistant alloy fibers.
  • silicate fibers include glass fibers, slag fibers, and rock fibers.
  • the cross-sectional shape of the infrared shielding fiber according to the present invention is not particularly limited, and examples thereof include a circular, triangular, hollow, flat, Y-shaped, star-shaped, and sheath-core type.
  • the inclusion of fine particles on the surface and/or inside of the fiber can be in various shapes, and for example, in the case of a sheath-core type, the fine particles may be contained in the core or sheath of the fiber.
  • the shape of the infrared shielding fiber may be a filament (long fiber) or a staple (short fiber).
  • the infrared shielding fiber of the present invention can contain antioxidants, flame retardants, deodorants, insect repellents, antibacterial agents, ultraviolet absorbing agents, etc. depending on the purpose, as long as the performance of the fiber is not impaired.
  • A a method for directly mixing the infrared-shielding microparticles with a raw polymer of a synthetic fiber and spinning the mixture
  • B a method for producing a master batch in which the infrared-shielding microparticles are incorporated in a high concentration in a part of the raw polymer in advance, and then diluting and adjusting the master batch to a predetermined concentration at the time of spinning the master batch
  • C a method for uniformly dispersing the infrared-shielding microparticles in a raw monomer or oligomer solution in advance, synthesizing a target raw polymer using the dispersion solution, and at the same time, dispersing the infrared-shielding microparticles uniformly in the raw polymer, and then spinning the resulting mixture
  • D a method for attaching the infrared-shielding microparticles to the surface of fibers obtained by spinning in advance using a
  • the method for producing the masterbatch is not particularly limited, but for example, a tungsten oxide microparticle and/or composite tungsten oxide microparticle dispersion, a thermoplastic resin powder or pellets, and other additives as necessary can be uniformly melt-mixed while removing the solvent using a mixer such as a Riboblender, tumbler, Nauter mixer, Henschel mixer, super mixer, or planetary mixer, or a kneader such as a Banbury mixer, kneader, roll, kneader-ruder, single-screw extruder, or twin-screw extruder, to prepare a masterbatch as a mixture in which the microparticles are uniformly dispersed in the thermoplastic resin.
  • a mixer such as a Riboblender, tumbler, Nauter mixer, Henschel mixer, super mixer, or planetary mixer, or a kneader such as a Banbury mixer, kneader, roll, kn
  • the solvent of the dispersion can be removed by a known method, and the resulting powder can be uniformly melt-mixed with thermoplastic resin powder or pellets, and other additives as necessary, to produce a mixture in which the microparticles are uniformly dispersed in the thermoplastic resin.
  • a method can be used in which the powder of tungsten oxide microparticles and/or composite tungsten oxide microparticles is directly added to a thermoplastic resin and uniformly melt-mixed.
  • the mixture of tungsten oxide microparticles and/or composite tungsten oxide microparticles obtained by the above-mentioned method and a thermoplastic resin is kneaded in a pent-type single-screw or twin-screw extruder and processed into pellets to obtain a master batch containing infrared shielding microparticles.
  • Method (D) For example, in order to attach infrared shielding microparticles to the surface of natural fibers, first, a treatment liquid is prepared by mixing tungsten oxide microparticles and/or composite tungsten oxide microparticles with at least one binder resin selected from acrylic, epoxy, urethane, and polyester, and a solvent such as water. Next, the natural fibers are immersed in the prepared treatment liquid, or the natural fibers are impregnated with the prepared treatment liquid by padding, printing, spraying, or the like, and then dried, thereby allowing the tungsten oxide microparticles and/or composite tungsten oxide microparticles to be attached to the natural fibers. And, in addition to the natural fibers mentioned above, method (D) can also be applied to semi-synthetic fibers, regenerated fibers, inorganic fibers, or blends, doubling yarns, or mixed fibers thereof.
  • the method for dispersing the tungsten oxide microparticles and/or composite tungsten oxide microparticles may be any method that can uniformly disperse the microparticles in the liquid.
  • methods such as a media stirring mill, a ball mill, a sand mill, and ultrasonic dispersion can be suitably applied.
  • the dispersion medium for the infrared shielding microparticles is not particularly limited and can be selected according to the fibers to be mixed.
  • various common organic solvents such as alcohols, ethers, esters, ketones, aromatic compounds, etc., or water can be used.
  • the dispersion of the infrared shielding microparticles may be directly mixed with the fibers or the polymer that is the raw material thereof.
  • the pH may be adjusted by adding an acid or alkali to the dispersion of the infrared shielding microparticles, and it is also preferable to add various surfactants, coupling agents, etc. to further improve the dispersion stability of the microparticles.
  • the surfaces of the tungsten oxide microparticles and/or composite tungsten oxide microparticles with a compound containing one or more elements selected from silicon, zirconium, titanium, and aluminum.
  • These compounds are basically transparent, and their addition does not reduce the visible light transmittance of the infrared shielding microparticles, so the design of the fiber is not impaired.
  • the surface of the tungsten oxide microparticles and/or composite tungsten oxide microparticles may be coated with a thermoplastic resin such as polyester resin, polycarbonate resin, acrylic resin, polystyrene resin, polyamide resin, vinyl chloride resin, olefin resin, fluororesin, polyvinyl acetate resin, thermoplastic polyurethane resin, acrylonitrile butadiene styrene resin, polyvinyl acetal resin, acrylonitrile-styrene copolymer resin, ethylene-vinyl acetate copolymer resin, etc., or a thermosetting resin such as phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, thermosetting polyurethane resin, polyimide resin, silicone resin, etc.
  • a thermoplastic resin such as polyester resin, polycarbonate resin, acrylic resin, polystyrene resin, polyamide resin, vinyl chloride resin, olefin resin, fluorores
  • the infrared shielding fiber of the present invention is capable of shielding infrared rays by containing small amounts of tungsten oxide microparticles and/or composite tungsten oxide microparticles on the surface and/or inside the fiber as heat ray shielding components.
  • Infrared shielding fibers are processed into long or short fibers depending on the application, and then spun into woven or knitted fabrics using known methods to form infrared shielding fiber structures. Infrared shielding fibers can also be processed into nonwoven fabrics using known methods to form infrared shielding fiber structures. Of course, the yarn (spun yarn) spun from infrared shielding fibers may be colorless or dyed. Infrared shielding fiber structures such as woven fabrics, knitted fabrics, and nonwoven fabrics may also be dyed partially or entirely.
  • the infrared shielding fiber structure of the present invention is weather resistant and colorless, and because the amount of infrared shielding microparticles added is small, there is a high degree of freedom in coloring the fiber structure and the resulting clothing, such as dyeing, without impairing the design, and the basic physical properties of the fiber, such as strength and elongation, can be avoided.
  • the infrared shielding fiber structure of the present invention can prevent infrared voyeurism (viewing with a CCD camera) without impairing the basic physical properties of the textile product, and can be used in clothing such as innerwear, sportswear, and stockings.
  • the tungsten oxide microparticles and/or composite tungsten oxide microparticles can be obtained by weighing out a predetermined amount of a tungsten compound, which is the starting material for the oxide microparticles, mixing the mixture, and then heat-treating the mixture in an inert gas atmosphere or a reducing gas atmosphere.
  • the tungsten compound starting material is preferably one or more of tungsten trioxide powder, tungsten dioxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and then drying, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol, adding water to precipitate and drying the precipitate, tungsten compound powder obtained by drying an aqueous solution of ammonium tungstate, and metallic tungsten powder.
  • tungsten oxide microparticles When manufacturing tungsten oxide microparticles, it is more preferable to use tungsten oxide hydrate powder, tungsten trioxide, or a tungsten compound powder obtained by drying an ammonium tungstate aqueous solution, from the viewpoint of ease of the manufacturing process, and when manufacturing composite tungsten oxide microparticles, it is more preferable to use an ammonium tungstate aqueous solution or a tungsten hexachloride solution, from the viewpoint that each element can be easily mixed uniformly when the starting raw material is a solution.
  • the starting material for the composite tungsten oxide microparticles having an infrared shielding function is a tungsten compound similar to the starting material for the microparticles having an infrared shielding function containing tungsten oxide microparticles described above, but further includes a tungsten compound containing element M in the form of a single element or a compound.
  • a tungsten compound which is a starting material in which each component is uniformly mixed at the molecular level, it is preferable to mix each raw material in a solution, and it is preferable that the tungsten compound containing element M is soluble in a solvent such as water or an organic solvent.
  • tungstates, chlorides, nitrates, sulfates, oxalates, oxides, carbonates, hydroxides, etc. containing element M can be mentioned, but are not limited to these, and it is preferable that it is in the form of a solution.
  • the tungsten compound which is the starting material for obtaining tungsten oxide microparticles represented by the general formula WOX , may be any one or more selected from tungsten trioxide powder, tungsten dioxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and then drying, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol, adding water to precipitate and drying the precipitate, tungsten compound powder obtained by drying an aqueous solution of ammonium tungstate, and metallic tungsten powder. From the viewpoint of ease of the manufacturing process, it is more preferable to use tungsten oxide hydrate powder, tungsten trioxide powder, or tungsten compound powder obtained by drying an aqueous solution of ammonium tungstate.
  • the starting material for obtaining composite tungsten oxide microparticles containing element M and represented by the general formula M YWO Z may be a powder obtained by mixing one or more powders selected from tungsten trioxide powder, tungsten dioxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and then drying, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol, adding water to precipitate and drying the precipitate, tungsten compound powder obtained by drying an aqueous solution of ammonium tungstate, and metallic tungsten powder with the above-mentioned powder of a simple substance or compound containing element M.
  • the tungsten compound which is the starting material for obtaining composite tungsten oxide microparticles, is in the form of a solution or dispersion, each element can be easily mixed uniformly.
  • the starting material for the composite tungsten oxide microparticles is a powder obtained by mixing an alcohol solution of tungsten hexachloride or an aqueous solution of ammonium tungstate with a solution of a compound containing the above-mentioned M element and then drying the mixture.
  • the starting material for the composite tungsten oxide microparticles is a powder obtained by mixing a dispersion liquid in which tungsten hexachloride is dissolved in alcohol and then water is added to form a precipitate with a powder of a simple substance or compound containing the above M element, or a solution of a compound containing the above M element, and then drying the powder.
  • Compounds containing the above-mentioned M element include, but are not limited to, tungstates, chlorides, nitrates, sulfates, oxalates, oxides, carbonates, hydroxides, etc. of the M element, and any compound that can be made into a solution may be used. Furthermore, when the composite tungsten oxide microparticles are manufactured industrially, the use of tungsten oxide hydrate powder or tungsten trioxide and carbonates or hydroxides of the M element is a preferred manufacturing method, since no harmful gases are generated during the heat treatment stage, etc.
  • the heat treatment conditions of the tungsten oxide fine particles and the composite tungsten oxide fine particles in the inert atmosphere are preferably 650°C or higher.
  • the starting material heat-treated at 650°C or higher has sufficient infrared shielding function, and is efficient as fine particles having infrared shielding function.
  • the inert gas it is preferable to use an inert gas such as Ar or N2 .
  • the heat treatment conditions in the reducing atmosphere it is preferable to first heat-treat the starting material in a reducing gas atmosphere at 100°C or higher and 850°C or lower, and then heat-treat it in an inert gas atmosphere at a temperature of 650°C or higher and 1200°C or lower.
  • the reducing gas at this time is not particularly limited, but H2 is preferable.
  • the composition of the reducing atmosphere is preferably 0.1% or more by volume of H2 , more preferably 2% or more. If H2 is 0.1% or more by volume, reduction can be efficiently promoted.
  • Example 1 10 parts by weight of Cs0.33WO3 microparticles (specific surface area 20 m2 /g), 80 parts by weight of toluene, and 10 parts by weight of a dispersant for dispersing microparticles were mixed and dispersed in a media stirring mill to prepare a Cs0.33WO3 microparticle dispersion liquid (liquid a) with an average dispersed particle diameter of 32 nm.
  • Cs0.33WO3 microparticle dispersion powder (powder a) was added to polyethylene terephthalate resin pellets, which is a thermoplastic resin, and mixed uniformly in a blender. The mixture was then melt-kneaded and extruded in a twin-screw extruder, and the extruded strands were cut into pellets to obtain master batch a containing 80% by weight of Cs0.33WO3 microparticles , which is an infrared absorbing component.
  • the obtained master batch a was mixed with a master batch b made of polyethylene terephthalate prepared in the same manner but without the addition of Cs0.33WO3 fine particles at a weight ratio of 1:1 to obtain a mixed master batch containing 40 % by weight of Cs0.33WO3 fine particles.
  • the average particle size of the Cs0.33WO3 fine particles at the time of producing the mixed master batch was observed to be 25 nm from a dark field image formed by a single diffraction ring using a TEM (transmission electron microscope).
  • the mixed master batch containing 40% by weight of the above-mentioned Cs0.33WO3 microparticles was melt spun and then drawn to produce polyester multifilament yarn a, which was then cut to produce polyester staple a containing 40% by weight of Cs0.33WO3 microparticles .
  • the above master batch b not containing Cs0.33WO3 microparticles was melt spun and then drawn to produce polyester multifilament yarn b, and then the polyester multifilament yarn b was cut in the same manner as above to produce polyester staple b not containing Cs0.33WO3 microparticles .
  • a spun yarn was produced using polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles , and a knit product (infrared shielding fiber structure) was produced using this spun yarn.
  • the knit product obtained was dyed brown with a cationic dye to produce the knit product of Example 1.
  • the knit product according to Example 1 was obtained by dyeing in order to avoid a situation in which visible light would be visible through an undyed white knit product.
  • (Average reflectance of knitted product according to Example 1) When producing the above spun yarn, the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 1 was adjusted to be 0.13 g/ m2 .
  • the reflectance of the knitted product of Example 1 was measured at 5 nm intervals at wavelengths between 800 nm and 1300 nm, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knitted product of Example 1 at wavelengths between 800 nm and 1300 nm was found to be 62%.
  • Example 1 Evaluation of the knitted product according to Example 1
  • the knit product of Example 1 was evaluated for its "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)" by the following test method in accordance with the Japan Spinners Inspection Association's Boken standard "BQE A 033".
  • Test method (1) A test piece for a knitted product (infrared shielding fiber structure) is placed over a transmittance judgment plate (eye chart) and placed on the test table. (2) Using an infrared projector, project light onto the surface of the test piece with an intensity of approximately 7 mW/ cm2 . (3) The above test piece is photographed normally with a digital camera. (4) The above test piece is photographed using an infrared camera. (5) Check the image taken through the glass and determine whether or not infrared rays are transmitted.
  • Example 2 A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce a knit product according to Example 2.
  • the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 2 was adjusted to 0.17 g/ m2.
  • the same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 2 at wavelengths of 800 nm to 1300 nm was 58%.
  • Example 2 Evaluation of the knitted product according to Example 2 As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 2 also showed no transmission of infrared rays.
  • Example 3 A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce the knit product of Example 3.
  • the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 3 was adjusted to 0.26 g/ m2.
  • the same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 3 at wavelengths of 800 nm to 1300 nm was 50%.
  • Example 3 Evaluation of the knitted product according to Example 3 As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 3 also showed no transmission of infrared rays.
  • Example 4 A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce the knit product of Example 4.
  • the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 4 was adjusted to 0.87 g/ m2 .
  • the same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 4 at wavelengths of 800 nm to 1300 nm was 18%.
  • Example 4 Evaluation of the knitted product according to Example 4 As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 4 also showed no transmission of infrared rays.
  • Example 5 A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce the knit product of Example 5.
  • the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 5 was adjusted to 1.73 g/ m2 .
  • the same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 5 at wavelengths of 800 nm to 1300 nm was 4%.
  • Example 5 Evaluation of the knitted product according to Example 5 As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 5 also showed no transmission of infrared rays.
  • Example 6 A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce the knit product of Example 6.
  • the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 6 was adjusted to 2.60 g/ m2 .
  • the same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 6 at wavelengths of 800 nm to 1300 nm was 1%.
  • Example 6 Evaluation of knitted product according to Example 6 As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 6 also showed no transmission of infrared rays.
  • Example 7 A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce the knit product of Example 7.
  • the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set to adjust the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 7 to 4.33 g/ m2.
  • the same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 7 at wavelengths of 800 nm to 1300 nm was 0.07%.
  • Example 7 Evaluation of the knitted product according to Example 7 As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 7 also showed no transmission of infrared rays.
  • the reflectance of the knitted product of Comparative Example 1 at wavelengths between 800 nm and 1300 nm was measured at 5 nm intervals, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knitted product of Comparative Example 1 at wavelengths between 800 nm and 1300 nm was found to be 77%.
  • Example 1 Evaluation of knitted product according to Comparative Example 1 As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)," and it was found that infrared rays could be transmitted through the knit product of Comparative Example 1.
  • the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Comparative Example 2 was adjusted to 0.09 g/ m2.
  • the same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Comparative Example 2 at wavelengths of 800 nm to 1300 nm was 67%.
  • Example 2 Evaluation of knitted product according to Comparative Example 2 As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and it was found that the knit product of Comparative Example 2 also allowed infrared rays to pass through.
  • the infrared shielding textile structure of the present invention can maintain its infrared voyeurism prevention function for a long period of time, making it industrially applicable to innerwear, sportswear, and other items that are easily photographed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Curtains And Furnishings For Windows Or Doors (AREA)

Abstract

The problem to be solved by the present invention is to provide: an infrared shielding fiber structure capable of preventing discoloration of a knitted fabric over time without causing deterioration of an infrared-covert-photography prevention function over time; and clothing employing the same. An infrared shielding fiber structure according to the present invention is formed by processing infrared shielding fibers containing, on a surface and/or in the interior thereof, infrared shielding microparticles selected from tungsten oxide microparticles represented by general formula WOX (where W is tungsten, O is oxygen, and 2.45 ≤ X ≤ 2.999) and composite tungsten oxide microparticles represented by general formula MYWOZ (where element M is an element selected from Cs, Rb, K, Tl, In, etc., 0.001 ≤ Y ≤ 1.0, and 2.2 ≤ Z ≤ 3.0), the infrared shielding fiber structure being characterized in that the particle size of the microparticles is 1 nm to 800 nm and the microparticle content per unit area of the structure is 0.10 g/m2 to 4.5 g/m2, and, because the average reflectance of the structure becomes 65% or lower at wavelengths of 800 nm to 1300 nm, it is possible to maintain the infrared-covert-photography prevention function for an extended period of time.

Description

赤外線遮蔽繊維構造物とこれを用いた衣類Infrared shielding textile structure and clothing using the same
 本発明は、タングステン酸化物微粒子または複合タングステン酸化物微粒子から選択される赤外線遮蔽微粒子を、表面および/または内部に含有させた赤外線遮蔽繊維を加工して成る織物、編物、不織布等の赤外線遮蔽繊維構造物と、該赤外線遮蔽繊維構造物を用いたインナーウエア、スポーツウエア等の衣類に係り、特に、赤外線による盗撮を防止できる赤外線遮蔽繊維構造物と衣類の改良に関する。 The present invention relates to infrared-shielding fiber structures such as woven fabrics, knitted fabrics, and nonwoven fabrics that are made by processing infrared-shielding fibers that contain infrared-shielding microparticles selected from tungsten oxide microparticles or composite tungsten oxide microparticles on the surface and/or inside, and to clothing such as innerwear and sportswear that use the infrared-shielding fiber structures, and in particular to improvements in infrared-shielding fiber structures and clothing that can prevent surreptitious photography using infrared rays.
 自然光を光源としてCCDカメラ等で人体を撮影すると、自然光に含まれる赤外線により衣類を透過した状態で人体が撮影されることから、近年、上記現象を利用した犯罪行為(いわゆる盗撮)が社会問題となっている。この問題を解決するため、赤外線を吸収または反射する赤外線遮蔽繊維を製造し、この赤外線遮蔽繊維を加工して成る衣類(赤外線遮蔽繊維構造物)が開発されている。 When a human body is photographed using a CCD camera or similar device with natural light as a light source, the infrared rays contained in the natural light are transmitted through clothing and the photograph is taken of the human body. In recent years, criminal acts exploiting this phenomenon (so-called voyeurism) have become a social problem. To solve this problem, infrared-shielding fibers that absorb or reflect infrared rays have been manufactured, and clothing made from processed infrared-shielding fibers (infrared-shielding fiber structures) has been developed.
 例えば、特許文献1には、アントラキノン系、インジゴ系、ベンゾキノン系、ナフトキノン系、フタルシアニン系から選ばれた染料を芯鞘型合成繊維に付着させて赤外線遮蔽繊維とし、この赤外線遮蔽繊維を加工して成る編地が開示されている。上記染料は赤外線を吸収するため、特許文献1に開示された編地は赤外線による盗撮を確かに防止することができる。しかし、アントラキノン系、インジゴ系等の染料は有機系材料であるため、耐候性に難があり、更には経時的に変色する欠点があった。このため、特許文献1に開示された編地には、赤外線による盗撮の防止機能が経時的に低下する問題があり、更に、編地が経時的に変色してしまう致命的な問題が存在した。 For example, Patent Document 1 discloses a knitted fabric made by attaching a dye selected from anthraquinone, indigo, benzoquinone, naphthoquinone, and phthalcyanine dyes to a core-sheath synthetic fiber to make an infrared-shielding fiber, and then processing this infrared-shielding fiber. Since the dyes absorb infrared rays, the knitted fabric disclosed in Patent Document 1 can certainly prevent voyeurism using infrared rays. However, since anthraquinone, indigo, and other dyes are organic materials, they have poor weather resistance and also have the disadvantage of discoloring over time. For this reason, the knitted fabric disclosed in Patent Document 1 has the problem that its ability to prevent voyeurism using infrared rays decreases over time, and there is also the fatal problem that the knitted fabric discolors over time.
 他方、特許文献2~3には、特許文献1に記載された目的(赤外線による盗撮を防止できる編地を提供すること)とは異なるが、無機系の赤外線遮蔽微粒子を用いた赤外線遮蔽繊維とこの赤外線遮蔽繊維を加工して防寒用衣料等に利用できる繊維製品が開示されている。すなわち、特許文献2には、太陽光等からの赤外線を吸収する無機系の材料(タングステン酸化物微粒子または複合タングステン酸化物微粒子)を、表面および/または内部に含有させて近赤外線吸収繊維(赤外線遮蔽繊維)とし、この近赤外線吸収繊維を加工して成る繊維製品が開示され、特許文献3には、タングステン酸化物微粒子または複合タングステン酸化物微粒子(赤外線遮蔽微粒子)表面をポリエステル樹脂、ポリカーボネート樹脂等で被覆して赤外線遮蔽微粒子の耐薬品特性を改善させた赤外線吸収繊維(赤外線遮蔽繊維)と繊維製品が開示されている。 On the other hand, Patent Documents 2 and 3 disclose infrared shielding fibers using inorganic infrared shielding microparticles and textile products made by processing the infrared shielding fibers and using them for cold weather clothing, etc., although the purpose is different from that described in Patent Document 1 (to provide a knitted fabric that can prevent surreptitious photography by infrared rays). That is, Patent Document 2 discloses a textile product made by processing near-infrared absorbing fibers (infrared shielding fibers) that contain inorganic materials (tungsten oxide microparticles or composite tungsten oxide microparticles) that absorb infrared rays from sunlight, etc., on the surface and/or inside, and Patent Document 3 discloses infrared absorbing fibers (infrared shielding fibers) and textile products in which the chemical resistance of the infrared shielding microparticles is improved by coating the surfaces of tungsten oxide microparticles or composite tungsten oxide microparticles (infrared shielding microparticles) with polyester resin, polycarbonate resin, etc.
 そこで、無機系の材料(タングステン酸化物微粒子または複合タングステン酸化物微粒子)が表面および/または内部に含まれる特許文献2~3に係る赤外線遮蔽繊維を適用して、特許文献1に係る編地の問題(すなわち、赤外線による盗撮の防止機能が経時的に低下し、編地が経時的に変色してしまう問題)を解消する方法が検討されている。 Therefore, methods are being considered to solve the problems with the knitted fabric described in Patent Document 1 (i.e., the problem that the ability to prevent voyeurism by infrared rays decreases over time and the knitted fabric discolors over time) by applying the infrared shielding fibers described in Patent Documents 2 and 3, which contain inorganic materials (tungsten oxide microparticles or composite tungsten oxide microparticles) on the surface and/or inside.
特開2008-223171号公報JP 2008-223171 A 国際公開第2006/049025号International Publication No. WO 2006/049025 特開2021-075825号公報JP 2021-075825 A
 しかし、特許文献1に係る編地の利用目的(赤外線による盗撮を防止できる編地)と、特許文献2~3に係る繊維製品の利用目的(保温効果を高めて防寒用衣料等に使用できる繊維製品)が著しく相違するため、特許文献2~3に係る繊維製品を特許文献1に係る編地にそのまま転用しても、特許文献1の上記問題(赤外線による盗撮の防止機能が経時的に低下し、編地が経時的に変色してしまう問題)を解決することはできなかった。 However, since the intended use of the knitted fabric in Patent Document 1 (a knitted fabric that can prevent surreptitious photography using infrared rays) is significantly different from the intended use of the textile products in Patent Documents 2 and 3 (textile products that have an increased heat retention effect and can be used for cold weather clothing, etc.), even if the textile products in Patent Documents 2 and 3 were directly converted into the knitted fabric in Patent Document 1, the above-mentioned problems in Patent Document 1 (the problem that the ability to prevent surreptitious photography using infrared rays decreases over time and the knitted fabric discolors over time) could not be solved.
 本発明はこのような問題点に着目してなされたもので、その課題とするところは、赤外線による盗撮の防止機能が経時的に低下せず、編地の経時的な変色も防止できる赤外線遮蔽繊維構造物とこれを用いた衣類を提供することにある。 The present invention was made with a focus on these problems, and its objective is to provide an infrared-shielding textile structure that does not lose its ability to prevent surreptitious infrared photography over time, and that can prevent discoloration of the knitted fabric over time, as well as clothing that uses the same.
 そこで、本発明者は、上記課題を解決するため以下のような技術的分析を行った。 The inventor therefore conducted the following technical analysis to solve the above problems.
 まず、自然光を光源としてCCDカメラ等で人体を撮影した場合、自然光に含まれる赤外線による上記盗撮が防止できる織物、編物等の反射率について技術的分析を行った。 First, a technical analysis was conducted on the reflectance of woven and knitted fabrics that could prevent the above-mentioned voyeurism caused by the infrared rays contained in natural light when photographing the human body with a CCD camera or the like using natural light as a light source.
 その結果、赤外線領域(波長800nm~1300nm)の平均反射率が65%以下、望ましくは60%以下、より望ましくは55%以下である場合に、赤外線による盗撮が防止できることを見出すに至った。 As a result, it was discovered that infrared voyeurism can be prevented when the average reflectance in the infrared range (wavelengths 800 nm to 1,300 nm) is 65% or less, preferably 60% or less, and more preferably 55% or less.
 次に、無機系の赤外線遮蔽微粒子(タングステン酸化物微粒子または複合タングステン酸化物微粒子)が適用された特許文献2~3に係る繊維製品(赤外線遮蔽繊維構造物)を分析対象とし、当該繊維製品の物性(例えば、風合い等)を損なわずに赤外線領域(波長800nm~1300nm)の平均反射率が65%以下になる条件について技術的分析を行った。 Next, the textile products (infrared shielding textile structures) according to Patent Documents 2 and 3, which use inorganic infrared shielding microparticles (tungsten oxide microparticles or composite tungsten oxide microparticles), were analyzed, and a technical analysis was conducted to determine the conditions under which the average reflectance in the infrared region (wavelengths 800 nm to 1,300 nm) would be 65% or less without impairing the physical properties (e.g., texture, etc.) of the textile products.
 その結果、上記繊維製品(赤外線遮蔽繊維構造物)の単位面積当たりの赤外線遮蔽微粒子の含有量が0.10g/m2以上4.5g/m2以下である場合に、波長800nm~1300nmの平均反射率が65%以下になることを見出すに至った。 As a result, it was found that when the content of the infrared shielding fine particles per unit area of the above-mentioned textile product (infrared shielding textile structure) is 0.10 g/ m2 or more and 4.5 g/ m2 or less, the average reflectance at wavelengths of 800 nm to 1,300 nm becomes 65% or less.
 本発明は、このような技術的分析と技術的発見により完成されている。 The present invention has been completed through such technical analysis and technical discoveries.
 すなわち、本発明に係る第1の発明は、
 タングステン酸化物微粒子または複合タングステン酸化物微粒子から選択される1以上の赤外線遮蔽微粒子を、表面および/または内部に含有させた赤外線遮蔽繊維を加工して成る赤外線遮蔽繊維構造物であって、
 上記赤外線遮蔽微粒子の粒径が1nm以上800nm以下であり、
 上記赤外線遮蔽繊維構造物の単位面積当たりの赤外線遮蔽微粒子の含有量が0.10g/m2以上4.5g/m2以下であることを特徴とし、
 第2の発明は、
 第1の発明に記載の赤外線遮蔽繊維構造物において、
 波長800nm~1300nmにおける平均反射率が65%以下であることを特徴とする。
That is, the first invention according to the present invention is,
An infrared-shielding fiber structure obtained by processing an infrared-shielding fiber having one or more infrared-shielding particles selected from tungsten oxide particles or composite tungsten oxide particles contained on the surface and/or inside thereof,
The infrared shielding fine particles have a particle size of 1 nm or more and 800 nm or less,
The content of the infrared shielding fine particles per unit area of the infrared shielding fiber structure is 0.10 g/ m2 or more and 4.5 g/ m2 or less,
The second invention is
In the infrared shielding fiber structure according to the first aspect of the present invention,
It is characterized by having an average reflectance of 65% or less in the wavelength range of 800 nm to 1,300 nm.
 また、本発明に係る第3の発明は、
 第1の発明に記載の赤外線遮蔽繊維構造物において、
 上記タングステン酸化物微粒子が、一般式WOX(但し、Wはタングステン、Oは酸素、2.45≦X≦2.999)で示されるタングステン酸化物微粒子であり、
 上記複合タングステン酸化物微粒子が、一般式MYWOZ(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、かつ、六方晶の結晶構造を持つ複合タングステン酸化物微粒子であることを特徴とし、
 第4の発明は、
 第3の発明に記載の赤外線遮蔽繊維構造物において、
 上記複合タングステン酸化物微粒子のM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snの内から選択される1種類以上の元素であることを特徴とする。
The third aspect of the present invention is
In the infrared shielding fiber structure according to the first aspect of the present invention,
The tungsten oxide microparticles are microparticles of a tungsten oxide represented by the general formula WO x (wherein W is tungsten, O is oxygen, and 2.45≦X≦2.999),
the composite tungsten oxide microparticles are characterized by being composite tungsten oxide microparticles represented by the general formula M YWO Z (wherein M element is one or more elements selected from H, He, alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I; W is tungsten; O is oxygen; 0.001≦Y≦1.0, 2.2≦Z≦3.0) and having a hexagonal crystal structure;
The fourth invention is
In the infrared shielding fiber structure according to the third aspect of the present invention,
The M element of the composite tungsten oxide fine particles is characterized by being one or more elements selected from the group consisting of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn.
 次に、本発明に係る第5の発明は、
 第1の発明に記載の赤外線遮蔽繊維構造物において、
 上記赤外線遮蔽繊維が、合成繊維、半合成繊維、天然繊維、再生繊維、無機繊維、またはこれらの繊維の混紡、合糸、混繊による混合糸のいずれかから選択される繊維であることを特徴とし、
 第6の発明は、
 第5の発明に記載の赤外線遮蔽繊維構造物において、
 上記合成繊維が、ポリウレタン繊維、ポリアミド系繊維、アクリル系繊維、ポリエステル系繊維、ポリオレフィン系繊維、ポリビニルアルコール系繊維、ポリ塩化ビニリデン系繊維、ポリ塩化ビニル系繊維、ポリエーテルエステル系繊維から選択されるいずれかの合成繊維であることを特徴とし、
 第7の発明は、
 第5の発明に記載の赤外線遮蔽繊維構造物において、
 上記半合成繊維が、セルロース系繊維、タンパク質系繊維、塩化ゴム、塩酸ゴムから選択されるいずれかの半合成繊維であることを特徴とし、
 第8の発明は、
 第5の発明に記載の赤外線遮蔽繊維構造物において、
 上記天然繊維が、植物繊維、動物繊維、鉱物繊維から選択されるいずれかの天然繊維であることを特徴とし、
 第9の発明は、
 第5の発明に記載の赤外線遮蔽繊維構造物において、
 上記再生繊維が、セルロース系繊維、タンパク質系繊維、アルギン繊維、ゴム繊維、キチン繊維、マンナン繊維から選択されるいずれかの再生繊維であることを特徴とし、
 また、本発明に係る第10の発明は、
 衣類において、
 第1の発明~第3の発明のいずれかに記載の赤外線遮蔽繊維構造物を用いたことを特徴とする。
Next, the fifth invention according to the present invention is
In the infrared shielding fiber structure according to the first aspect of the present invention,
The infrared shielding fiber is a fiber selected from any one of synthetic fibers, semi-synthetic fibers, natural fibers, regenerated fibers, inorganic fibers, and blends, doubling yarns, and mixed yarns obtained by blending these fibers,
The sixth invention is
In the infrared shielding fiber structure according to the fifth aspect of the present invention,
The synthetic fiber is any one of polyurethane fibers, polyamide fibers, acrylic fibers, polyester fibers, polyolefin fibers, polyvinyl alcohol fibers, polyvinylidene chloride fibers, polyvinyl chloride fibers, and polyether ester fibers;
The seventh invention is
In the infrared shielding fiber structure according to the fifth aspect of the present invention,
The semi-synthetic fiber is any one of semi-synthetic fibers selected from the group consisting of cellulose-based fibers, protein-based fibers, chlorinated rubber, and hydrochloric rubber;
The eighth invention is
In the infrared shielding fiber structure according to the fifth aspect of the present invention,
The natural fiber is any one of natural fibers selected from plant fibers, animal fibers, and mineral fibers,
The ninth invention is
In the infrared shielding fiber structure according to the fifth aspect of the present invention,
The regenerated fiber is any one of regenerated fibers selected from cellulose-based fibers, protein-based fibers, alginate fibers, rubber fibers, chitin fibers, and mannan fibers;
The tenth aspect of the present invention is
In clothing,
The present invention is characterized by using an infrared shielding fiber structure according to any one of the first to third aspects of the present invention.
 本発明に係る赤外線遮蔽繊維構造物と赤外線遮蔽繊維構造物を用いた衣類によれば、
 無機系の赤外線遮蔽微粒子(タングステン酸化物微粒子または複合タングステン酸化物微粒子)が用いられているため、織物、編物等赤外線遮蔽繊維構造物の経時的な変色を防止することが可能となり、かつ、赤外線遮蔽繊維構造物の単位面積当たりの赤外線遮蔽微粒子の含有量が0.10g/m2以上4.5g/m2以下に設定され、赤外線遮蔽繊維構造物および該赤外線遮蔽繊維構造物を用いた衣類の赤外線領域(波長800nm~1300nm)における平均反射率が65%以下になるため、赤外線による盗撮防止機能を長期に亘り維持することが可能となる。
According to the infrared shielding fiber structure and the clothing using the infrared shielding fiber structure of the present invention,
Since inorganic infrared shielding microparticles (tungsten oxide microparticles or composite tungsten oxide microparticles) are used, it is possible to prevent discoloration over time of infrared shielding fiber structures such as woven fabrics and knitted fabrics, and the content of infrared shielding microparticles per unit area of the infrared shielding fiber structure is set to 0.10 g/ m2 or more and 4.5 g/ m2 or less, and the average reflectance in the infrared region (wavelength 800 nm to 1,300 nm) of the infrared shielding fiber structure and clothing using the infrared shielding fiber structure is 65% or less, making it possible to maintain the anti-secret photography function using infrared rays for a long period of time.
 更に、本発明で用いられるタングステン酸化物微粒子または複合タングステン酸化物微粒子は、他の無機系赤外線遮蔽微粒子(ITO、ATO等の微粒子)に較べて単位重量当たりの赤外線吸収能力が高く、少ない含有量で十分な赤外線吸収効果が得られるため、繊維の物性を損なうことが無く、衣類における意匠の自由度も高めることが可能となる。 Furthermore, the tungsten oxide microparticles or composite tungsten oxide microparticles used in the present invention have a higher infrared absorption capacity per unit weight than other inorganic infrared shielding microparticles (microparticles such as ITO and ATO), and a sufficient infrared absorption effect can be obtained with a small content, so the physical properties of the fiber are not impaired and it is possible to increase the design freedom of clothing.
実施例1~7と比較例1~2に係るニット製品(繊維構造物)の波長(nm)と反射率(%)との関係を示すグラフ図。FIG. 1 is a graph showing the relationship between wavelength (nm) and reflectance (%) for knit products (textile structures) according to Examples 1 to 7 and Comparative Examples 1 and 2.
 以下、本発明の実施形態について詳細に説明する。 The following describes in detail an embodiment of the present invention.
 まず、本発明に係る赤外線遮蔽繊維構造物は、無機系の赤外線遮蔽微粒子(タングステン酸化物微粒子または複合タングステン酸化物微粒子)を表面および/または内部に含有させた赤外線遮蔽繊維を加工して構成され、当該赤外線遮蔽繊維構造物として、織物、編物、不織布等が例示される。 First, the infrared shielding fiber structure of the present invention is constructed by processing infrared shielding fibers that contain inorganic infrared shielding microparticles (tungsten oxide microparticles or composite tungsten oxide microparticles) on the surface and/or inside, and examples of the infrared shielding fiber structure include woven fabrics, knitted fabrics, nonwoven fabrics, etc.
(1)赤外線遮蔽微粒子
 本発明に係る赤外線遮蔽繊維(近赤外線遮蔽繊維)は、赤外線遮蔽微粒子(赤外線遮蔽機能を有する微粒子)を繊維表面および/または内部に含有させることで得られる。
(1) Infrared Shielding Particles The infrared shielding fiber (near infrared shielding fiber) according to the present invention can be obtained by incorporating infrared shielding particles (particles having an infrared shielding function) on the surface and/or inside of the fiber.
 以下、赤外線遮蔽機能を有するタングステン酸化物微粒子、および、複合タングステン酸化物微粒子について説明する。 The following describes tungsten oxide microparticles and composite tungsten oxide microparticles that have infrared shielding properties.
 赤外線遮蔽機能を有する上記タングステン酸化物微粒子は、一般式WOX(但し、Wはタングステン、Oは酸素、2.45≦X≦2.999)で示される微粒子であり、
 赤外線遮蔽機能を有する上記複合タングステン酸化物微粒子は、一般式MYWOZ(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、かつ、六方晶の結晶構造を持つ微粒子である。
The tungsten oxide microparticles having an infrared shielding function are microparticles represented by the general formula WO x (wherein W is tungsten, O is oxygen, and 2.45≦X≦2.999),
The composite tungsten oxide microparticles having an infrared shielding function are microparticles represented by the general formula M YWO Z (wherein M element is one or more elements selected from H, He, alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I; W is tungsten; O is oxygen; 0.001≦Y≦1.0, 2.2≦Z≦3.0) and have a hexagonal crystal structure.
 そして、タングステン酸化物微粒子や複合タングステン酸化物微粒子が各種繊維に適用された場合、赤外線遮蔽成分として機能する。 When tungsten oxide microparticles or composite tungsten oxide microparticles are applied to various fibers, they function as an infrared shielding component.
 上記一般式WOX(2.45≦X≦2.999)で示されるタングステン酸化物微粒子としては、例えば、W1849、W2058、W411等を挙げることができる。Xの値が2.45以上であれば当該赤外線遮蔽微粒子中に目的外であるWO2の結晶相が現れるのを完全に回避でき、かつ、材料の化学的安定性を得ることができる。また、Xの値が2.999以下であれば十分な量の自由電子が生成されるため効率のよい赤外線遮蔽微粒子となる。 Examples of tungsten oxide particles represented by the general formula WOx ( 2.45 < X < 2.999) include W18O49, W20O58 , and W4O11 . If the value of X is 2.45 or more, the appearance of unintended WO2 crystal phase in the infrared shielding particles can be completely avoided, and the chemical stability of the material can be obtained. Also, if the value of X is 2.999 or less, a sufficient amount of free electrons is generated, resulting in efficient infrared shielding particles.
 そして、Xの範囲が2.45≦X≦2.95であるようなWOX化合物は、いわゆるマグネリ相と呼ばれる化合物に含まれる。 And, WOx compounds in which the range of x is 2.45≦X≦2.95 are included in compounds called Magneli phases.
 また、上記一般式MYWOZで示され、かつ、六方晶の結晶構造を持つ複合タングステン酸化物微粒子としては、例えば、好ましいM元素として、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snの各元素から選択される1種類以上の元素を含むような複合タングステン酸化物微粒子が挙げられる。 Moreover, examples of composite tungsten oxide microparticles represented by the above general formula M YWO Z and having a hexagonal crystal structure include composite tungsten oxide microparticles containing one or more elements selected from the group consisting of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn as the preferred M element.
 添加されるM元素の添加量Yは、0.001以上1.0以下であることを要し、好ましくは0.33付近である。これは、六方晶の結晶構造から理論的に算出されるYの値が0.33であり、この前後の添加量で好ましい光学特性が得られるからである。典型的な例としてはCs0.33WO3、Rb0.33WO3、K0.33WO3、Ba0.33WO3等を挙げることができるが、Y、Zが上記範囲に収まるものであれば、有用な赤外線遮蔽特性を得ることができる。 The amount Y of the added M element must be 0.001 or more and 1.0 or less, and is preferably around 0.33 . This is because the value of Y theoretically calculated from the hexagonal crystal structure is 0.33 , and preferable optical properties can be obtained with an amount added around this value. Typical examples include Cs0.33WO3 , Rb0.33WO3 , K0.33WO3 , Ba0.33WO3 , etc., and as long as Y and Z fall within the above ranges, useful infrared shielding properties can be obtained.
(2)赤外線遮蔽微粒子の粒径
 赤外線遮蔽微粒子の粒径については、紡糸、延伸等の繊維化工程時に問題を生じないことが重要で、赤外線遮蔽微粒子の平均粒径が800nm以下であることが好ましい。上記微粒子の平均粒径が800nm以下であれば、紡糸工程で口金(ノズル)への目塞がりや糸切れ等の可紡性の低下を回避することができる。また、たとえ紡糸を行なうことができても、延伸工程で糸切れ等の問題が生じ、しかも、紡糸原料中に粒子が均一に混合、分散し難くなる場合もあるので、当該観点からも平均粒径が800nm以下であることが好ましい。
(2) Particle size of infrared shielding microparticles It is important that the particle size of the infrared shielding microparticles does not cause problems during the fiberization process such as spinning and drawing, and it is preferable that the average particle size of the infrared shielding microparticles is 800 nm or less. If the average particle size of the above microparticles is 800 nm or less, it is possible to avoid a decrease in spinnability such as clogging of the nozzle and thread breakage during the spinning process. Even if spinning can be performed, problems such as thread breakage may occur during the drawing process, and it may be difficult to uniformly mix and disperse the particles in the spinning raw material, so from this viewpoint, it is preferable that the average particle size is 800 nm or less.
 一方、赤外線遮蔽微粒子を繊維表面および/または内部に含有させた赤外線遮蔽繊維構造物の染色性等の意匠性を考慮すると、当該赤外線遮蔽微粒子は、透明性を保持したまま近赤外線を効率よく吸収して赤外線遮蔽を行なうことが必要となる。タングステン酸化物微粒子または複合タングステン酸化物微粒子から選択される赤外線遮蔽微粒子は、可視光線域(波長380nm~780nm)を透過し、近赤外線領域、特に、波長780~2200nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となるものが多い。このため、赤外線遮蔽微粒子の粒径(粒子径)を800nmよりも小さくすれば透明性を確保することができるが、透明性を重視する場合には、粒子径を200nm以下、更に好ましくは100nm以下とする。一方、粒子径が1nm以上であれば、工業的な製造は容易であることから、赤外線遮蔽微粒子の粒径(粒子径)は1nm以上800nm以下であることを要する。 On the other hand, when considering the design such as dyeability of an infrared shielding fiber structure containing infrared shielding microparticles on the fiber surface and/or inside, it is necessary for the infrared shielding microparticles to efficiently absorb near infrared rays while maintaining transparency, thereby shielding infrared rays. Infrared shielding microparticles selected from tungsten oxide microparticles or composite tungsten oxide microparticles transmit visible light (wavelength 380 nm to 780 nm) and largely absorb light in the near infrared region, particularly in the vicinity of wavelengths of 780 to 2200 nm, so that the transmitted color tone is often blue to green. For this reason, transparency can be ensured by making the particle size (particle diameter) of the infrared shielding microparticles smaller than 800 nm, but when transparency is important, the particle diameter is set to 200 nm or less, more preferably 100 nm or less. On the other hand, if the particle diameter is 1 nm or more, industrial production is easy, so the particle size (particle diameter) of the infrared shielding microparticles must be 1 nm or more and 800 nm or less.
(3)繊維表面および/または内部に含まれる赤外線遮蔽微粒子の含有量
 上記タングステン酸化物微粒子および複合タングステン酸化物微粒子の単位重量当たりの赤外線吸収能力は非常に高いため、ITOやATOと比較し、その1/4~1/10程度の使用量でその効果を発揮する。複合タングステン酸化物微粒子において、六方晶系の結晶構造を持ち、M元素にK、Rb、Csを用いた場合、波長780nm以上の赤外線吸収能力が特に優れているため、赤外線による盗撮防止(CCDカメラによる透視防止)に適している。他方、上述したITOやATOにおいては、波長780nm~900nm領域における赤外線の吸収は期待できない。このため、ITOやATOを用いた赤外線遮蔽繊維構造物では、赤外線による盗撮防止(CCDカメラによる透視防止)の効果を期待することはできない。
(3) Content of infrared shielding fine particles contained on the surface and/or inside of the fiber The infrared absorbing ability per unit weight of the above tungsten oxide fine particles and composite tungsten oxide fine particles is very high, so compared to ITO and ATO, the effect is exhibited at about 1/4 to 1/10 of the usage amount. In the composite tungsten oxide fine particles, when K, Rb, or Cs is used as the M element, the infrared absorbing ability of wavelengths of 780 nm or more is particularly excellent, so it is suitable for preventing infrared voyeurism (prevention of see-through by CCD cameras). On the other hand, the above-mentioned ITO and ATO cannot be expected to absorb infrared rays in the wavelength range of 780 nm to 900 nm. Therefore, the effect of preventing infrared voyeurism (prevention of see-through by CCD cameras) cannot be expected from an infrared shielding fiber structure using ITO or ATO.
 そして、繊維表面および/または内部に含まれる赤外線遮蔽微粒子(タングステン酸化物微粒子または複合タングステン酸化物微粒子)の含有量については、0.001重量%~80重量%の間に設定されることが好ましく、赤外線遮蔽微粒子の添加後における繊維の重量や原料コストを考慮した場合、上記含有量は0.005重量%~50重量%の間に設定されることが更に好ましい。赤外線遮蔽微粒子の含有量が0.001重量%以上であれば、生地(赤外線遮蔽繊維構造物)が薄くても十分な赤外線吸収効果を得ることができ、80重量%以下であれば、紡糸工程で口金(ノズル)への目塞がりや糸切れ等による可紡性の低下を回避でき、50重量%以下であれば、赤外線遮蔽微粒子の添加量が少なくてすむので繊維の物性を損なうことがない。 The content of infrared shielding microparticles (tungsten oxide microparticles or composite tungsten oxide microparticles) contained on the surface and/or inside of the fiber is preferably set between 0.001% and 80% by weight, and when taking into consideration the weight of the fiber after the infrared shielding microparticles are added and the raw material cost, the content is more preferably set between 0.005% and 50% by weight. If the content of infrared shielding microparticles is 0.001% by weight or more, a sufficient infrared absorbing effect can be obtained even if the fabric (infrared shielding fiber structure) is thin, if it is 80% by weight or less, it is possible to avoid a decrease in spinnability due to clogging of the nozzle or thread breakage during the spinning process, and if it is 50% by weight or less, the amount of infrared shielding microparticles added can be small, so the physical properties of the fiber are not impaired.
(4)赤外線遮蔽繊維構造物の単位面積当たりの赤外線遮蔽微粒子の含有量
 赤外線遮蔽繊維構造物の単位面積当たりの赤外線遮蔽微粒子の含有量は、上述したように0.10g/m2以上4.5g/m2であり、好ましくは0.15g/m2以上であり、更に好ましくは0.20g/m2以上である。赤外線遮蔽繊維構造物の単位面積当たりの赤外線遮蔽微粒子の含有量が0.10g/m2以上であれば、赤外線領域(波長800nm~1300nm)における赤外線遮蔽繊維構造物の平均反射率を65%以下にすることができる。赤外線遮蔽繊維構造物の平均反射率が65%以下ならば、赤外線遮蔽繊維構造物を織物や編物にして用いた衣類において、赤外線による盗撮(CCDカメラによる透視)を防止することができ、赤外線遮蔽繊維構造物の平均反射率が60%以下ならより好ましく、55%以下なら更に好ましい。尚、赤外線遮蔽繊維構造物の平均反射率を60%以下とするには、赤外線遮蔽繊維構造物の単位面積当たりの赤外線遮蔽微粒子の上記含有量を0.15g/m2以上にする必要があり、また、平均反射率を55%以下とするには、赤外線遮蔽微粒子の上記含有量を0.20g/m2以上にする必要がある。
(4) Content of infrared shielding microparticles per unit area of infrared shielding fiber structure As described above, the content of infrared shielding microparticles per unit area of the infrared shielding fiber structure is 0.10 g/m 2 or more and 4.5 g/m 2 or more, preferably 0.15 g/m 2 or more, and more preferably 0.20 g/m 2 or more. If the content of infrared shielding microparticles per unit area of the infrared shielding fiber structure is 0.10 g/m 2 or more, the average reflectance of the infrared shielding fiber structure in the infrared region (wavelength 800 nm to 1300 nm) can be 65% or less. If the average reflectance of the infrared shielding fiber structure is 65% or less, it is possible to prevent infrared voyeurism (see-through by a CCD camera) in clothing using the infrared shielding fiber structure as a woven or knitted fabric, and it is more preferable that the average reflectance of the infrared shielding fiber structure is 60% or less, and even more preferable that it is 55% or less. In addition, in order to make the average reflectance of the infrared shielding fiber structure 60% or less, the above-mentioned content of infrared shielding microparticles per unit area of the infrared shielding fiber structure must be 0.15 g/ m2 or more, and in order to make the average reflectance 55% or less, the above-mentioned content of infrared shielding microparticles must be 0.20 g/ m2 or more.
 一方、赤外線遮蔽繊維構造物の単位面積当たりの赤外線遮蔽微粒子の含有量が4.5g/m2を超えると、平均反射率は0.07%よりも低くなるが、より低い平均反射率に調整しても赤外線による盗撮防止の効果はそれ以上向上しない。このため、赤外線遮蔽繊維構造物の単位面積当たりの赤外線遮蔽微粒子における含有率の上限は、望ましくは、3.5g/m2である。単位面積当たりの赤外線遮蔽微粒子の含有率が3.5g/m2であれば、平均反射率は0.2%以下となり、赤外線による盗撮防止の効果が十分発揮される。但し、赤外線遮蔽繊維構造物の単位面積当たりの赤外線遮蔽微粒子を過剰に含む場合、外線遮蔽繊維構造物を染色する色彩によってはその発色を困難にすることがある。 On the other hand, when the content of infrared shielding microparticles per unit area of the infrared shielding fiber structure exceeds 4.5 g/ m2 , the average reflectance is lower than 0.07%, but even if the average reflectance is adjusted to a lower value, the effect of preventing voyeurism by infrared rays is not further improved. Therefore, the upper limit of the content of infrared shielding microparticles per unit area of the infrared shielding fiber structure is preferably 3.5 g/ m2 . If the content of infrared shielding microparticles per unit area is 3.5 g/ m2 , the average reflectance is 0.2% or less, and the effect of preventing voyeurism by infrared rays is sufficiently exhibited. However, if the infrared shielding fiber structure contains an excessive amount of infrared shielding microparticles per unit area, it may be difficult to develop the color depending on the color to which the infrared shielding fiber structure is dyed.
 尚、赤外線遮蔽微粒子を含まない繊維構造物の赤外線領域(波長800nm~1300nm)における平均反射率は、下記比較例1で確認されるように77%であり、この反射率では、赤外線による盗撮(CCDカメラによる透視)が可能になってしまう。 Furthermore, the average reflectance of a fiber structure that does not contain infrared-shielding microparticles in the infrared range (wavelengths of 800 nm to 1,300 nm) is 77%, as confirmed in Comparative Example 1 below, and at this reflectance, it is possible to take surreptitious photographs using infrared light (see-through with a CCD camera).
 また、上記平均反射率とは、波長800nm~1300nmまでの領域において、5nm間隔で波長を長くした際の分光光度計で測定される上記赤外線遮蔽繊維構造物における反射率の平均値である。 The above average reflectance is the average value of the reflectance of the infrared shielding fiber structure measured with a spectrophotometer when the wavelength is increased in 5 nm intervals in the wavelength range from 800 nm to 1300 nm.
 ここで、赤外線による盗撮(CCDカメラによる透視)を防止する解決策に関し、本発明では、赤外線遮蔽繊維構造物の反射率に注目していることについて説明する。 Here, we will explain how the present invention focuses on the reflectance of infrared shielding textile structures in order to provide a solution to prevent voyeurism using infrared rays (see-through using a CCD camera).
 眼で物を見た場合、その物を認識できるのは、その物に照射された光が反射し、眼でその物の像を形成できるからであり、カメラで撮影される像も同様である。 When we look at an object with our eyes, we are able to recognize it because the light shone on the object is reflected and an image of the object is formed by our eyes, and the same is true for images captured by a camera.
 そして、本発明に係る赤外線遮蔽繊維構造物では、赤外線を吸収する赤外線遮蔽微粒子が繊維表面および/または内部に含まれており、赤外線遮蔽繊維構造物に光が照射されと上記赤外線遮蔽微粒子が赤外線を吸収するため、赤外線領域(波長800nm~1300nm)における反射率が低くなる。すなわち、本発明に係る赤外線遮蔽繊維構造物に照射された光成分の内、赤外線の反射率は下がっている。この結果、本発明に係る赤外線遮蔽繊維構造物をCCDカメラで撮影しようとしても、波長800nm~1300nmの反射率が下がっているため不鮮明な画像になってしまう。 In the infrared shielding fiber structure of the present invention, infrared shielding microparticles that absorb infrared rays are contained on the fiber surface and/or inside, and when the infrared shielding fiber structure is irradiated with light, the infrared shielding microparticles absorb the infrared rays, resulting in a low reflectance in the infrared region (wavelengths of 800 nm to 1300 nm). In other words, of the light components irradiated to the infrared shielding fiber structure of the present invention, the reflectance of infrared rays is reduced. As a result, even if an attempt is made to photograph the infrared shielding fiber structure of the present invention with a CCD camera, the image will be unclear due to the reduced reflectance in the wavelength range of 800 nm to 1300 nm.
 尚、広く使われているCCDセンサの波長領域は400nm~1200nmであることが知られている。本発明に係る赤外線遮蔽繊維構造物では、照射された光成分の内、赤外線領域(波長800nm~1300nm)の反射率が下がるので、赤外線による盗撮(CCDカメラによる透視)を防止することが可能となる。 It is known that the wavelength range of widely used CCD sensors is 400 nm to 1200 nm. With the infrared-shielding fiber structure of the present invention, the reflectance of the irradiated light components in the infrared range (wavelengths 800 nm to 1300 nm) is reduced, making it possible to prevent surreptitious photography using infrared rays (see-through with a CCD camera).
 一方、本発明で適用されている上記赤外線遮蔽微粒子(タングステン酸化物微粒子または複合タングステン酸化物微粒子)の可視光線領域における光の吸収は、赤外線領域(波長800nm~1300nm)における光の吸収に較べて僅かである。すなわち、本発明に係る赤外線遮蔽微粒子の可視光線領域における光の吸収は少ないため、染色等により、赤外線遮蔽繊維構造物に自由に色彩を付与することができる。更に、本発明に係る赤外線遮蔽繊維構造物を衣類に用いた場合、自然光に含まれる赤外線の人体の肌に届く量を低減できるため、肌へのダメージを低減することができる。 On the other hand, the infrared shielding microparticles (tungsten oxide microparticles or composite tungsten oxide microparticles) used in the present invention absorb only a small amount of light in the visible light range compared to the absorption of light in the infrared range (wavelengths of 800 nm to 1300 nm). In other words, since the infrared shielding microparticles of the present invention absorb only a small amount of light in the visible light range, it is possible to freely impart color to the infrared shielding fiber structure by dyeing or the like. Furthermore, when the infrared shielding fiber structure of the present invention is used in clothing, the amount of infrared rays contained in natural light that reach the human skin can be reduced, thereby reducing damage to the skin.
(5)赤外線遮蔽繊維
 本発明に係る赤外線遮蔽繊維に使用される繊維は、用途に応じて各種選択可能であり、合成繊維、半合成繊維、天然繊維、再生繊維、無機繊維、または、これらの混紡、合糸、混繊等による混合糸のいずれを使用してもよい。更に、無機微粒子を簡便な方法で繊維内に含有させることや保温持続性を考慮すると、合成繊維が好ましい。
(5) Infrared Shielding Fiber The fiber used for the infrared shielding fiber according to the present invention can be selected from various types depending on the application, and any of synthetic fibers, semi-synthetic fibers, natural fibers, regenerated fibers, inorganic fibers, and mixed yarns obtained by blending, doubling, blending, etc. thereof may be used. Furthermore, in consideration of the incorporation of inorganic fine particles into the fiber by a simple method and the durability of heat retention, synthetic fibers are preferable.
(5-1)合成繊維
 本発明に係る赤外線遮蔽繊維に使用される合成繊維は、特に限定されないが、例えば、ポリウレタン繊維、ポリアミド系繊維、アクリル系繊維、ポリエステル系繊維、ポリオレフィン系繊維、ポリビニルアルコール系繊維、ポリ塩化ビニリデン系繊維、ポリ塩化ビニル系繊維、ポリエーテルエステル系繊維等が挙げられる。
(5-1) Synthetic Fiber The synthetic fiber used in the infrared shielding fiber according to the present invention is not particularly limited, and examples thereof include polyurethane fibers, polyamide fibers, acrylic fibers, polyester fibers, polyolefin fibers, polyvinyl alcohol fibers, polyvinylidene chloride fibers, polyvinyl chloride fibers, and polyether ester fibers.
 例えば、ポリアミド系繊維として、ナイロン、ナイロン6、ナイロン66、ナイロン11、ナイロン610、ナイロン612、芳香族ナイロン、アラミド等が挙げられる。 For example, polyamide fibers include nylon, nylon 6, nylon 66, nylon 11, nylon 610, nylon 612, aromatic nylon, aramid, etc.
 また例えば、アクリル系繊維として、ポリアクリロニトリル、アクリロニトリル-塩化ビニル共重合体、モダクリル等が挙げられる。 Other examples of acrylic fibers include polyacrylonitrile, acrylonitrile-vinyl chloride copolymer, and modacrylic.
 また例えば、ポリエステル系繊維として、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。 Other examples of polyester fibers include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polyethylene naphthalate.
 また例えば、ポリオレフィン系繊維としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン等が挙げられる。 Furthermore, examples of polyolefin fibers include polyethylene, polypropylene, polystyrene, etc.
 また例えば、ポリビニルアルコール系繊維として、ビニロン等が挙げられる。 Another example of a polyvinyl alcohol fiber is vinylon.
 また例えば、ポリ塩化ビニリデン系繊維として、ビニリデン等が挙げられる。 Another example of polyvinylidene chloride fibers is vinylidene.
 また例えば、ポリ塩化ビニル系繊維として、ポリ塩化ビニル等が挙げられる。 Another example of polyvinyl chloride-based fiber is polyvinyl chloride.
 また例えば、ポリエーテルエステル系繊維として、レクセ、サクセス等が挙げられる。 Other examples of polyether ester fibers include Lexe and Success.
(5-2)半合成繊維
 本発明に係る赤外線遮蔽繊維に使用される繊維が半合成繊維である場合は、例えば、セルロース系繊維、タンパク質系繊維、塩化ゴム、塩酸ゴム等が挙げられる。
(5-2) Semi-synthetic fibers When the fibers used in the infrared shielding fiber according to the present invention are semi-synthetic fibers, examples of the fibers include cellulose-based fibers, protein-based fibers, chlorinated rubber, and hydrochloric rubber.
 また例えば、セルロース系繊維として、アセテート、トリアセテート、酸化アセテート等が挙げられる。 Other examples of cellulosic fibers include acetate, triacetate, and acetate oxide.
 また例えば、タンパク質繊維として、プロミックス等が挙げられる。 Another example of protein fiber is Promix.
(5-3)天然繊維
 本発明に係る赤外線遮蔽繊維に使用される繊維が天然繊維である場合は、例えば、植物繊維、動物繊維、鉱物繊維等が挙げられる。
(5-3) Natural Fibers When the fibers used in the infrared shielding fiber according to the present invention are natural fibers, examples thereof include vegetable fibers, animal fibers, and mineral fibers.
 また例えば、植物繊維としては、綿、カポック、亜麻、大麻、黄麻、マニラ麻、サイザル麻、ニュージーランド麻、羅布麻、やし、いぐさ、麦わら等が挙げられる。 Further examples of plant fibers include cotton, kapok, flax, hemp, jute, Manila hemp, sisal, New Zealand hemp, ramie, palm, rush, and wheat straw.
 また例えば、動物繊維として、羊毛、やぎ毛、モヘヤ、カシミヤ、アルパカ、アンゴラ、キャメル、ビキューナ等のウール、シルク、ダウン、フェザー等が挙げられる。 Other examples of animal fibers include wool, silk, down, feathers, etc., such as sheep's wool, goat hair, mohair, cashmere, alpaca, angora, camel, and vicuna.
 また例えば、鉱物繊維として、石綿、アスベスト等が挙げられる。 Other examples of mineral fibers include asbestos.
(5-4)再生繊維
 本発明に係る赤外線遮蔽繊維に使用される繊維が再生繊維である場合は、例えば、セルロース系繊維、タンパク質系繊維、アルギン繊維、ゴム繊維、キチン繊維、マンナン繊維等が挙げられる。
(5-4) Regenerated Fibers When the fibers used in the infrared shielding fiber according to the present invention are regenerated fibers, examples of the regenerated fibers include cellulose-based fibers, protein-based fibers, alginate fibers, rubber fibers, chitin fibers, and mannan fibers.
 また例えば、セルロース系繊維として、レーヨン、ビスコースレーヨン、キュプラ、ポリノジック、銅アンモニアレーヨン等が挙げられる。 Other examples of cellulosic fibers include rayon, viscose rayon, cupro, polynosic, and cuprammonium rayon.
 また例えば、タンパク質系繊維として、カゼイン繊維、落花生タンパク繊維、とうもろこしタンパク繊維、大豆タンパク繊維、再生絹糸等が挙げられる。 Further examples of protein-based fibers include casein fiber, peanut protein fiber, corn protein fiber, soy protein fiber, and regenerated silk thread.
(5-5)無機繊維
 本発明に係る赤外線遮蔽繊維に使用される繊維が無機繊維である場合は、例えば、金属繊維、炭素繊維、ケイ酸塩繊維等が挙げられる。
(5-5) Inorganic Fibers When the fibers used in the infrared shielding fiber according to the present invention are inorganic fibers, examples thereof include metal fibers, carbon fibers, and silicate fibers.
 また例えば、金属繊維として、金属繊維、金糸、銀糸、耐熱合金繊維等が挙げられる。 Other examples of metal fibers include metal fibers, gold threads, silver threads, and heat-resistant alloy fibers.
 また例えば、ケイ酸塩繊維として、ガラス繊維、鉱さい繊維、岩石繊維等が挙げられる。 Other examples of silicate fibers include glass fibers, slag fibers, and rock fibers.
(6)赤外線遮蔽繊維の断面形状等
 本発明に係る赤外線遮蔽繊維の断面形状は、特に限定されないが、例えば、円形、三角形、中空状、偏平状、Y型、星型、芯鞘型等が挙げられる。繊維の表面および/または内部への微粒子の含有は、種々の形状で可能であり、例えば、芯鞘型の場合、微粒子を繊維の芯部に含有しても、鞘部に含有してもよい。また、赤外線遮蔽繊維の形状は、フィラメント(長繊維)であっても、ステープル(短繊維)であってもよい。
(6) Cross-sectional shape of infrared shielding fiber, etc. The cross-sectional shape of the infrared shielding fiber according to the present invention is not particularly limited, and examples thereof include a circular, triangular, hollow, flat, Y-shaped, star-shaped, and sheath-core type. The inclusion of fine particles on the surface and/or inside of the fiber can be in various shapes, and for example, in the case of a sheath-core type, the fine particles may be contained in the core or sheath of the fiber. The shape of the infrared shielding fiber may be a filament (long fiber) or a staple (short fiber).
 また、本発明に係る赤外線遮蔽繊維へは、当該繊維の性能を損なわない範囲内で、目的に応じて、酸化防止剤、難燃剤、消臭剤、防虫剤、抗菌剤、紫外線吸収剤等を含有させて使用することができる。 In addition, the infrared shielding fiber of the present invention can contain antioxidants, flame retardants, deodorants, insect repellents, antibacterial agents, ultraviolet absorbing agents, etc. depending on the purpose, as long as the performance of the fiber is not impaired.
(7)繊維表面および/または内部に赤外線遮蔽微粒子を含有させる方法
 本発明に係る繊維表面および/または内部に赤外線遮蔽微粒子を含有させる方法については特に限定されない。例えば、(A)合成繊維の原料ポリマーへ上記赤外線遮蔽微粒子を直接混合して紡糸する方法、(B)予め原料ポリマーの一部へ上記赤外線遮蔽微粒子を高濃度に含有せしめたマスターバッチを製造し、これを紡糸時に所定の濃度に希釈調整してから紡糸する方法、(C)上記赤外線遮蔽微粒子を、予め原料モノマーまたはオリゴマー溶液中に均一に分散させておき、この分散溶液を用いて目的とする原料ポリマーを合成すると同時に、当該赤外線遮蔽微粒子を均一に原料ポリマー中に分散せしめた後、紡糸する方法、(D)予め紡糸して得られた繊維の表面へ、上記赤外線遮蔽微粒子を、結合剤等を用いて付着させる方法等が挙げられる。
(7) Method for Including Infrared-Shielding Microparticles on the Surface and/or Inside of Fibers There is no particular limitation on the method for including infrared-shielding microparticles on the surface and/or inside of fibers according to the present invention. For example, there may be mentioned (A) a method for directly mixing the infrared-shielding microparticles with a raw polymer of a synthetic fiber and spinning the mixture, (B) a method for producing a master batch in which the infrared-shielding microparticles are incorporated in a high concentration in a part of the raw polymer in advance, and then diluting and adjusting the master batch to a predetermined concentration at the time of spinning the master batch, (C) a method for uniformly dispersing the infrared-shielding microparticles in a raw monomer or oligomer solution in advance, synthesizing a target raw polymer using the dispersion solution, and at the same time, dispersing the infrared-shielding microparticles uniformly in the raw polymer, and then spinning the resulting mixture, and (D) a method for attaching the infrared-shielding microparticles to the surface of fibers obtained by spinning in advance using a binder or the like.
 ここで、上記(B)で説明した、マスターバッチを製造し、これを紡糸時に希釈調整してから紡糸する方法の好ましい例について、以下、詳細に説明する。 Here, a preferred example of the method described in (B) above, in which a master batch is produced, diluted and adjusted at the time of spinning, and then spun, will be described in detail below.
 マスターバッチの製造方法は特に限定されないが、例えば、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子分散液と、熱可塑性樹脂の粉粒体またはペレットと、必要に応じて他の添加剤とを、リボブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサー等の混合機、およびバンバリーミキサー、ニーダー、ロール、ニーダールーダー、一軸押出機、二軸押出機等の混練機を使用して溶剤を除去しながら均一に溶融混合することで、熱可塑性樹脂に微粒子を均一に分散した混合物としてマスターバッチを調製することができる。 The method for producing the masterbatch is not particularly limited, but for example, a tungsten oxide microparticle and/or composite tungsten oxide microparticle dispersion, a thermoplastic resin powder or pellets, and other additives as necessary can be uniformly melt-mixed while removing the solvent using a mixer such as a Riboblender, tumbler, Nauter mixer, Henschel mixer, super mixer, or planetary mixer, or a kneader such as a Banbury mixer, kneader, roll, kneader-ruder, single-screw extruder, or twin-screw extruder, to prepare a masterbatch as a mixture in which the microparticles are uniformly dispersed in the thermoplastic resin.
 更に、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子分散液を調製後、当該分散液の溶剤を公知の方法で除去し、得られた粉末と、熱可塑性樹脂の粉粒体またはペレットと、必要に応じて他の添加剤と、を均一に溶融混合し、熱可塑性樹脂に当該微粒子を均一に分散した混合物を製造することもできる。この他、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子の粉末を、直接、熱可塑性樹脂へ添加し、均一に溶融混合する方法を用いることもできる。 Furthermore, after preparing a dispersion of tungsten oxide microparticles and/or composite tungsten oxide microparticles, the solvent of the dispersion can be removed by a known method, and the resulting powder can be uniformly melt-mixed with thermoplastic resin powder or pellets, and other additives as necessary, to produce a mixture in which the microparticles are uniformly dispersed in the thermoplastic resin. In addition, a method can be used in which the powder of tungsten oxide microparticles and/or composite tungsten oxide microparticles is directly added to a thermoplastic resin and uniformly melt-mixed.
 上述した方法により得られたタングステン酸化物微粒子および/または複合タングステン酸化物微粒子と、熱可塑性樹脂との混合物を、ペント式一軸若しくは二軸の押出機で混練し、ペレット状に加工することにより、赤外線遮蔽微粒子含有マスターバッチを得ることができる。 The mixture of tungsten oxide microparticles and/or composite tungsten oxide microparticles obtained by the above-mentioned method and a thermoplastic resin is kneaded in a pent-type single-screw or twin-screw extruder and processed into pellets to obtain a master batch containing infrared shielding microparticles.
 ここで、上述した(A)~(D)の方法について、以下、具体的に説明する。 The above methods (A) to (D) will now be described in detail.
 (A)の方法:例えば、繊維としてポリエステル繊維を用いる場合、熱可塑性樹脂であるポリエチレンテレフタレート樹脂ペレットにタングステン酸化物微粒子および/または複合タングステン酸化物微粒子分散液を添加し、ブレンダーで均一に混合した後、溶媒を除去する。当該溶媒を除去した混合物を二軸押出機で溶融混練し、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子含有マスターバッチを得る。得られたタングステン酸化物微粒子および/または複合タングステン酸化物微粒子含有マスターバッチを、樹脂の溶融温度付近で溶融混合し、常法に従って紡糸する。 Method (A): For example, when polyester fibers are used as the fibers, a dispersion of tungsten oxide microparticles and/or composite tungsten oxide microparticles is added to polyethylene terephthalate resin pellets, which is a thermoplastic resin, and the mixture is mixed uniformly in a blender, after which the solvent is removed. The mixture from which the solvent has been removed is melt-kneaded in a twin-screw extruder to obtain a master batch containing tungsten oxide microparticles and/or composite tungsten oxide microparticles. The obtained master batch containing tungsten oxide microparticles and/or composite tungsten oxide microparticles is melt-mixed near the melting temperature of the resin, and spun according to conventional methods.
 (B)の方法:予め調製しておいたタングステン酸化物微粒子および/または複合タングステン酸化物微粒子含有マスターバッチを用いる以外は、(A)と同様にして、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子含有マスターバッチと、微粒子無添加のポリエチレンテレフタレートよりなるマスターバッチの目的量とを、樹脂の溶融温度付近で溶融混合し、常法に従って紡糸する。  Method (B): In the same manner as (A), except that a master batch containing tungsten oxide microparticles and/or composite tungsten oxide microparticles that has been prepared in advance is used, a master batch containing tungsten oxide microparticles and/or composite tungsten oxide microparticles and a target amount of a master batch consisting of polyethylene terephthalate to which no microparticles have been added are melt-mixed at about the melting temperature of the resin, and spun in the usual manner.
 (C)の方法:例えば、繊維としてウレタン繊維を用いる場合、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子を含有した高分子ジオールと、有機ジイソシアネートとを、二軸押出機内で反応させてイソシアネート基末端プレポリマーを合成した後、ここへ鎖伸長剤を反応させてポリウレタン溶液(原料ポリマー)を製造する。当該ポリウレタン溶液を常法に従って紡糸する。 Method (C): For example, when using urethane fibers as the fibers, a polymer diol containing tungsten oxide microparticles and/or composite tungsten oxide microparticles is reacted with an organic diisocyanate in a twin-screw extruder to synthesize an isocyanate-terminated prepolymer, which is then reacted with a chain extender to produce a polyurethane solution (raw polymer). The polyurethane solution is spun in the usual manner.
 (D)の方法:例えば、天然繊維の表面に赤外線遮蔽微粒子を付着させるためには、まず、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子と、アクリル・エポキシ・ウレタン・ポリエステルから選ばれた少なくとも1種のバインダー樹脂と、水等の溶媒と、を混合した処理液を調製する。次に、調製された処理液に当該天然繊維を浸漬させるか、調製された処理液をパディング、印刷またはスプレー等により当該天然繊維へ含浸させ、乾燥することで、当該天然繊維にタングステン酸化物微粒子および/または複合タングステン酸化物微粒子を付着させることができる。そして当該(D)の方法は、上述した天然繊維の他、半合成繊維、再生繊維、無機繊維、または、これらの混紡、合糸、混繊等のいずれにも適用することができる。  Method (D): For example, in order to attach infrared shielding microparticles to the surface of natural fibers, first, a treatment liquid is prepared by mixing tungsten oxide microparticles and/or composite tungsten oxide microparticles with at least one binder resin selected from acrylic, epoxy, urethane, and polyester, and a solvent such as water. Next, the natural fibers are immersed in the prepared treatment liquid, or the natural fibers are impregnated with the prepared treatment liquid by padding, printing, spraying, or the like, and then dried, thereby allowing the tungsten oxide microparticles and/or composite tungsten oxide microparticles to be attached to the natural fibers. And, in addition to the natural fibers mentioned above, method (D) can also be applied to semi-synthetic fibers, regenerated fibers, inorganic fibers, or blends, doubling yarns, or mixed fibers thereof.
 尚、上記(A)~(D)に係る方法を実施する際、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子の分散方法は、上記微粒子を液体中に均一分散させることができる方法であればいかなる方法でもよく、例えば、媒体攪拌ミル、ボールミル、サンドミル、超音波分散等の方法が好適に適用できる。 When carrying out the methods (A) to (D) above, the method for dispersing the tungsten oxide microparticles and/or composite tungsten oxide microparticles may be any method that can uniformly disperse the microparticles in the liquid. For example, methods such as a media stirring mill, a ball mill, a sand mill, and ultrasonic dispersion can be suitably applied.
 また、上記赤外線遮蔽微粒子の分散媒は特に限定されるものではなく、混合する繊維に合わせて選択可能であり、例えば、アルコール、エーテル、エステル、ケトン、芳香族化合物等の一般的な各種有機溶媒や、水が使用可能である。 In addition, the dispersion medium for the infrared shielding microparticles is not particularly limited and can be selected according to the fibers to be mixed. For example, various common organic solvents such as alcohols, ethers, esters, ketones, aromatic compounds, etc., or water can be used.
 更に、上記赤外線遮蔽微粒子を当該繊維やその原料となるポリマーに付着、混合させる際には、赤外線遮蔽微粒子の分散液を、繊維やその原料となるポリマーに直接混合してもよい。また必要に応じて、赤外線遮蔽微粒子の分散液に酸やアルカリを添加してpHを調整しても良いし、微粒子の分散安定性を一層向上させるために、各種の界面活性剤、カップリング剤等を添加することも好ましい。 Furthermore, when the infrared shielding microparticles are attached to or mixed with the fibers or the polymer that is the raw material thereof, the dispersion of the infrared shielding microparticles may be directly mixed with the fibers or the polymer that is the raw material thereof. If necessary, the pH may be adjusted by adding an acid or alkali to the dispersion of the infrared shielding microparticles, and it is also preferable to add various surfactants, coupling agents, etc. to further improve the dispersion stability of the microparticles.
 また、上記赤外線遮蔽微粒子の耐候性を向上させるため、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子の表面を、ケイ素、ジルコニウム、チタン、アルミニウムから選択される1種類以上の元素を含む化合物で被覆することも好ましい。これらの化合物は基本的に透明であり、添加することで上記赤外線遮蔽微粒子の可視光透過率を低下させることがないため、繊維の意匠性を損なうことがない。 In addition, in order to improve the weather resistance of the infrared shielding microparticles, it is also preferable to coat the surfaces of the tungsten oxide microparticles and/or composite tungsten oxide microparticles with a compound containing one or more elements selected from silicon, zirconium, titanium, and aluminum. These compounds are basically transparent, and their addition does not reduce the visible light transmittance of the infrared shielding microparticles, so the design of the fiber is not impaired.
 更に、上記赤外線遮蔽微粒子の耐薬品特性を向上させるため、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子の表面を、ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリスチレン樹脂、ポリアミド樹脂、塩化ビニル樹脂、オレフィン樹脂、フッ素樹脂、ポリ酢酸ビニル樹脂、熱可塑性ポリウレタン樹脂、アクリロニトリルブタジエンスチレン樹脂、ポリビニルアセタール樹脂、アクリロニトリル・スチレン共重合体樹脂、エチレン・酢酸ビニル共重合体樹脂等の熱可塑性樹脂、あるいは、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、熱硬化性ポリウレタン樹脂、ポリイミド樹脂、シリコーン樹脂等の熱硬化性樹脂で被覆してもよい。 Furthermore, in order to improve the chemical resistance of the infrared shielding microparticles, the surface of the tungsten oxide microparticles and/or composite tungsten oxide microparticles may be coated with a thermoplastic resin such as polyester resin, polycarbonate resin, acrylic resin, polystyrene resin, polyamide resin, vinyl chloride resin, olefin resin, fluororesin, polyvinyl acetate resin, thermoplastic polyurethane resin, acrylonitrile butadiene styrene resin, polyvinyl acetal resin, acrylonitrile-styrene copolymer resin, ethylene-vinyl acetate copolymer resin, etc., or a thermosetting resin such as phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, thermosetting polyurethane resin, polyimide resin, silicone resin, etc.
 以上説明したように、本発明に係る赤外線遮蔽繊維は、熱線遮蔽成分としてタングステン酸化物微粒子および/または複合タングステン酸化物微粒子を繊維表面および/または内部に少量含有させることで赤外線を遮蔽することを可能としている。 As explained above, the infrared shielding fiber of the present invention is capable of shielding infrared rays by containing small amounts of tungsten oxide microparticles and/or composite tungsten oxide microparticles on the surface and/or inside the fiber as heat ray shielding components.
 赤外線遮蔽繊維は、用途に応じて長繊維、短繊維に加工させた後、紡績され、公知の方法で織物、編物に加工され赤外線遮蔽繊維構造物となる。また、赤外線遮蔽繊維は、公知の方法で加工され、不織布となり赤外線遮蔽繊維構造物となる。もちろん、赤外線遮蔽繊維を紡績した糸(紡績糸)は無色あるいは染色されてもよい。また、織物、編物、不織布等の赤外線遮蔽繊維構造物も部分若しくは全体的に染色されても良い。 Infrared shielding fibers are processed into long or short fibers depending on the application, and then spun into woven or knitted fabrics using known methods to form infrared shielding fiber structures. Infrared shielding fibers can also be processed into nonwoven fabrics using known methods to form infrared shielding fiber structures. Of course, the yarn (spun yarn) spun from infrared shielding fibers may be colorless or dyed. Infrared shielding fiber structures such as woven fabrics, knitted fabrics, and nonwoven fabrics may also be dyed partially or entirely.
 本発明に係る赤外線遮蔽繊維構造物は、耐候性が良く無色であり、赤外線遮蔽微粒子の添加量が少ないため、繊維構造物や得られる衣類に対し染色等の着色の自由度が高いことから意匠性を損なうことがなく、強度や伸度等の繊維における基本的な物性を損なうことも回避できる。この結果、本発明に係る赤外線遮蔽繊維構造物は、繊維製品における基本的な物性を損なうことなく赤外線による盗撮(CCDカメラによる透視)を防止できるため、インナーウエア、スポーツウエア、ストッキング等の衣類に使用することができる。 The infrared shielding fiber structure of the present invention is weather resistant and colorless, and because the amount of infrared shielding microparticles added is small, there is a high degree of freedom in coloring the fiber structure and the resulting clothing, such as dyeing, without impairing the design, and the basic physical properties of the fiber, such as strength and elongation, can be avoided. As a result, the infrared shielding fiber structure of the present invention can prevent infrared voyeurism (viewing with a CCD camera) without impairing the basic physical properties of the textile product, and can be used in clothing such as innerwear, sportswear, and stockings.
(8)赤外線遮蔽微粒子の製造方法
 次に、本発明に係る赤外線遮蔽微粒子の製造方法について、一般式WOXで表記されるタングステン酸化物微粒子、および、一般式MYWOZで表記される複合タングステン酸化物微粒子の製造方法を例に挙げて説明する。
(8) Manufacturing Method of Infrared Shielding Particles Next, the manufacturing method of infrared shielding particles according to the present invention will be described with reference to examples of a manufacturing method of tungsten oxide particles represented by a general formula of WOX and a manufacturing method of composite tungsten oxide particles represented by a general formula of M YWO Z.
 上記タングステン酸化物微粒子および/または複合タングステン酸化物微粒子は、当該酸化物微粒子の出発原料であるタングステン化合物を、所定量秤量し、混合した後、不活性ガス雰囲気若しくは還元性ガス雰囲気中で熱処理して得ることができる。 The tungsten oxide microparticles and/or composite tungsten oxide microparticles can be obtained by weighing out a predetermined amount of a tungsten compound, which is the starting material for the oxide microparticles, mixing the mixture, and then heat-treating the mixture in an inert gas atmosphere or a reducing gas atmosphere.
 出発原料であるタングステン化合物は、3酸化タングステン粉末、2酸化タングステン粉末、若しくはタングステン酸化物の水和物、若しくは、6塩化タングステン粉末、若しくはタングステン酸アンモニウム粉末、若しくは、6塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、若しくは、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、若しくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末から選ばれたいずれか一種類以上であることが好ましい。 The tungsten compound starting material is preferably one or more of tungsten trioxide powder, tungsten dioxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and then drying, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol, adding water to precipitate and drying the precipitate, tungsten compound powder obtained by drying an aqueous solution of ammonium tungstate, and metallic tungsten powder.
 ここで、タングステン酸化物微粒子を製造する場合には製造工程の容易さの観点より、タングステン酸化物の水和物粉末、3酸化タングステン、若しくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、を用いることが更に好ましく、複合タングステン酸化物微粒子を製造する場合には、出発原料が溶液であると、各元素は容易に均一混合可能となる観点より、タングステン酸アンモニウム水溶液や、6塩化タングステン溶液を用いることが更に好ましい。これら原料を用い、これを不活性ガス雰囲気若しくは還元性ガス雰囲気中で熱処理して、上述した赤外線遮蔽機能を有するタングステン酸化物微粒子および/または複合タングステン酸化物微粒子を得ることができる。 When manufacturing tungsten oxide microparticles, it is more preferable to use tungsten oxide hydrate powder, tungsten trioxide, or a tungsten compound powder obtained by drying an ammonium tungstate aqueous solution, from the viewpoint of ease of the manufacturing process, and when manufacturing composite tungsten oxide microparticles, it is more preferable to use an ammonium tungstate aqueous solution or a tungsten hexachloride solution, from the viewpoint that each element can be easily mixed uniformly when the starting raw material is a solution. By using these raw materials and heat treating them in an inert gas atmosphere or a reducing gas atmosphere, it is possible to obtain tungsten oxide microparticles and/or composite tungsten oxide microparticles having the above-mentioned infrared shielding function.
 また、赤外線遮蔽機能を有する複合タングステン酸化物微粒子の出発原料は、上述したタングステン酸化物微粒子を含有する赤外線遮蔽機能を有する微粒子の出発原料と同様のタングステン化合物であるが、更に元素Mを、元素単体または化合物のかたちで含有するタングステン化合物を出発原料とする。ここで、各成分が分子レベルで均一混合した出発原料であるタングステン化合物を製造するには、各原料を溶液で混合することが好ましく、元素Mを含むタングステン化合物が、水や有機溶媒等の溶媒に溶解可能なものであることが好ましい。例えば、元素Mを含有するタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物、等が挙げられるが、これらに限定されず、溶液状になるものであれば好ましい。 The starting material for the composite tungsten oxide microparticles having an infrared shielding function is a tungsten compound similar to the starting material for the microparticles having an infrared shielding function containing tungsten oxide microparticles described above, but further includes a tungsten compound containing element M in the form of a single element or a compound. Here, in order to manufacture a tungsten compound, which is a starting material in which each component is uniformly mixed at the molecular level, it is preferable to mix each raw material in a solution, and it is preferable that the tungsten compound containing element M is soluble in a solvent such as water or an organic solvent. For example, tungstates, chlorides, nitrates, sulfates, oxalates, oxides, carbonates, hydroxides, etc. containing element M can be mentioned, but are not limited to these, and it is preferable that it is in the form of a solution.
 上述したタングステン酸化物微粒子、複合タングステン酸化物微粒子を製造するための原料に関し、以下、再度詳細に説明する。 The raw materials used to manufacture the above-mentioned tungsten oxide microparticles and composite tungsten oxide microparticles will be explained in detail again below.
 一般式WOXで表記されるタングステン酸化物微粒子を得るための出発原料であるタングステン化合物には、3酸化タングステン粉末、2酸化タングステン粉末、若しくはタングステン酸化物の水和物、若しくは、6塩化タングステン粉末、若しくはタングステン酸アンモニウム粉末、若しくは、6塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、若しくは、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、若しくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末から選ばれたいずれか一種類以上を用いることができるが、製造工程の容易さの観点より、タングステン酸化物の水和物粉末、3酸化タングステン粉末、またはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末を用いることが更に好ましい。 The tungsten compound, which is the starting material for obtaining tungsten oxide microparticles represented by the general formula WOX , may be any one or more selected from tungsten trioxide powder, tungsten dioxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and then drying, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol, adding water to precipitate and drying the precipitate, tungsten compound powder obtained by drying an aqueous solution of ammonium tungstate, and metallic tungsten powder. From the viewpoint of ease of the manufacturing process, it is more preferable to use tungsten oxide hydrate powder, tungsten trioxide powder, or tungsten compound powder obtained by drying an aqueous solution of ammonium tungstate.
 元素Mを含む一般式MYWOZで表記される複合タングステン酸化物微粒子を得るための出発原料には、3酸化タングステン粉末、2酸化タングステン粉末、若しくはタングステン酸化物の水和物、若しくは、6塩化タングステン粉末、若しくはタングステン酸アンモニウム粉末、若しくは、6塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、若しくは、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、若しくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末から選ばれたいずれか一種類以上の粉末と、上記M元素を含有する単体または化合物の粉末とを、混合した粉末を用いることができる。 The starting material for obtaining composite tungsten oxide microparticles containing element M and represented by the general formula M YWO Z may be a powder obtained by mixing one or more powders selected from tungsten trioxide powder, tungsten dioxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and then drying, tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol, adding water to precipitate and drying the precipitate, tungsten compound powder obtained by drying an aqueous solution of ammonium tungstate, and metallic tungsten powder with the above-mentioned powder of a simple substance or compound containing element M.
 更に、複合タングステン酸化物微粒子を得るための出発原料であるタングステン化合物が、溶液または分散液であると、各元素は容易に均一混合可能となる。 Furthermore, if the tungsten compound, which is the starting material for obtaining composite tungsten oxide microparticles, is in the form of a solution or dispersion, each element can be easily mixed uniformly.
 当該観点より、複合タングステン酸化物の微粒子の出発原料が、6塩化タングステンのアルコール溶液またはタングステン酸アンモニウム水溶液と、上記M元素を含有する化合物の溶液とを、混合した後乾燥した粉末であることが更に好ましい。 From this perspective, it is even more preferable that the starting material for the composite tungsten oxide microparticles is a powder obtained by mixing an alcohol solution of tungsten hexachloride or an aqueous solution of ammonium tungstate with a solution of a compound containing the above-mentioned M element and then drying the mixture.
 同様に、複合タングステン酸化物の微粒子の出発原料が、6塩化タングステンをアルコール中に溶解させた後、水を添加して沈殿を生成させた分散液と、上記M元素を含有する単体または化合物の粉末、または、上記M元素を含有する化合物の溶液とを、混合した後乾燥した粉末であることも好ましい。 Similarly, it is also preferable that the starting material for the composite tungsten oxide microparticles is a powder obtained by mixing a dispersion liquid in which tungsten hexachloride is dissolved in alcohol and then water is added to form a precipitate with a powder of a simple substance or compound containing the above M element, or a solution of a compound containing the above M element, and then drying the powder.
 上記M元素を含有する化合物としては、M元素のタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物、等が挙げられるが、これらに限定されず、溶液状になるものであればよい。更に、当該複合タングステン酸化物微粒子を工業的に製造する場合に、タングステン酸化物の水和物粉末や3酸化タングステンと、M元素の炭酸塩や水酸化物とを用いると、熱処理等の段階で有害なガス等が発生することが無く、好ましい製造法である。 Compounds containing the above-mentioned M element include, but are not limited to, tungstates, chlorides, nitrates, sulfates, oxalates, oxides, carbonates, hydroxides, etc. of the M element, and any compound that can be made into a solution may be used. Furthermore, when the composite tungsten oxide microparticles are manufactured industrially, the use of tungsten oxide hydrate powder or tungsten trioxide and carbonates or hydroxides of the M element is a preferred manufacturing method, since no harmful gases are generated during the heat treatment stage, etc.
 ここで、タングステン酸化物微粒子および複合タングステン酸化物微粒子の不活性雰囲気中における熱処理条件としては、650℃以上が好ましい。650℃以上で熱処理された出発原料は十分な赤外線遮蔽機能を有し、赤外線遮蔽機能を有する微粒子として効率が良い。不活性ガスとしてはAr、N2等の不活性ガスを用いることが良い。また、還元性雰囲気中の熱処理条件としては、まず、出発原料を還元性ガス雰囲気中にて100℃以上850℃以下で熱処理し、次いで不活性ガス雰囲気中で650℃以上1200℃以下の温度で熱処理することが良い。このときの還元性ガスは、特に限定されないがH2が好ましい。また、還元性ガスとしてH2を用いる場合は、還元雰囲気の組成として、H2が体積比で0.1%以上が好ましく、更に好ましくは2%以上が良い。H2が体積比で0.1%以上あれば効率よく還元を進めることができる。 Here, the heat treatment conditions of the tungsten oxide fine particles and the composite tungsten oxide fine particles in the inert atmosphere are preferably 650°C or higher. The starting material heat-treated at 650°C or higher has sufficient infrared shielding function, and is efficient as fine particles having infrared shielding function. As the inert gas, it is preferable to use an inert gas such as Ar or N2 . In addition, as the heat treatment conditions in the reducing atmosphere, it is preferable to first heat-treat the starting material in a reducing gas atmosphere at 100°C or higher and 850°C or lower, and then heat-treat it in an inert gas atmosphere at a temperature of 650°C or higher and 1200°C or lower. The reducing gas at this time is not particularly limited, but H2 is preferable. In addition, when H2 is used as the reducing gas, the composition of the reducing atmosphere is preferably 0.1% or more by volume of H2 , more preferably 2% or more. If H2 is 0.1% or more by volume, reduction can be efficiently promoted.
 以下、本発明の実施例について比較例も挙げて具体的に説明する。 The following is a detailed explanation of the present invention, including comparative examples.
[実施例1]
 Cs0.33WO3微粒子(比表面積20m2/g)を10重量部、トルエン80重量部、微粒子分散用分散剤10重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径32nmのCs0.33WO3微粒子分散液(a液)を調製した。
[Example 1]
10 parts by weight of Cs0.33WO3 microparticles (specific surface area 20 m2 /g), 80 parts by weight of toluene, and 10 parts by weight of a dispersant for dispersing microparticles were mixed and dispersed in a media stirring mill to prepare a Cs0.33WO3 microparticle dispersion liquid (liquid a) with an average dispersed particle diameter of 32 nm.
 次いで、スプレードライヤーを用いてCs0.33WO3微粒子分散液(a液)のトルエンを除去し、Cs0.33WO3微粒子分散粉(a粉)を得た。 Next, the toluene was removed from the Cs 0.33 WO 3 fine particle dispersion liquid (liquid a) using a spray dryer, to obtain a Cs 0.33 WO 3 fine particle dispersion powder (powder a).
 得られたCs0.33WO3微粒子分散粉(a粉)を、熱可塑性樹脂であるポリエチレンテレフタレート樹脂ペレットに添加し、ブレンダーで均一に混合した後、当該混合物を二軸押出機で溶融混練して押し出し、当該押し出されたストランドをペレット状にカットし、赤外線吸収成分であるCs0.33WO3微粒子を80重量%含有するマスターバッチaを得た。 The obtained Cs0.33WO3 microparticle dispersion powder (powder a) was added to polyethylene terephthalate resin pellets, which is a thermoplastic resin, and mixed uniformly in a blender. The mixture was then melt-kneaded and extruded in a twin-screw extruder, and the extruded strands were cut into pellets to obtain master batch a containing 80% by weight of Cs0.33WO3 microparticles , which is an infrared absorbing component.
 得られたマスターバッチaと、同じ方法で調製したCs0.33WO3微粒子を添加していないポリエチレンテレフタレートから成るマスターバッチbとを、重量比1:1で混合してCs0.33WO3微粒子を40重量%含有した混合マスターバッチを得た。尚、混合マスターバッチの製造時点におけるCs0.33WO3微粒子の平均粒径は、TEM(透過型電子顕微鏡)を用いた単独回折リングで結像した暗視野像から25nmと観測された。 The obtained master batch a was mixed with a master batch b made of polyethylene terephthalate prepared in the same manner but without the addition of Cs0.33WO3 fine particles at a weight ratio of 1:1 to obtain a mixed master batch containing 40 % by weight of Cs0.33WO3 fine particles. The average particle size of the Cs0.33WO3 fine particles at the time of producing the mixed master batch was observed to be 25 nm from a dark field image formed by a single diffraction ring using a TEM (transmission electron microscope).
 次いで、上記Cs0.33WO3微粒子を40重量%含有した混合マスターバッチを溶融紡糸し、続いて延伸を行ってポリエステルマルチフィラメント糸aを製造した後、該ポリエステルマルチフィラメント糸aを切断して、Cs0.33WO3微粒子を40重量%含有するポリエステルステープルaを作製した。 Next, the mixed master batch containing 40% by weight of the above-mentioned Cs0.33WO3 microparticles was melt spun and then drawn to produce polyester multifilament yarn a, which was then cut to produce polyester staple a containing 40% by weight of Cs0.33WO3 microparticles .
 また、Cs0.33WO3微粒子を含有しない上記マスターバッチbを溶融紡糸し、続いて延伸を行ってポリエステルマルチフィラメント糸bを製造した後、上記同様、ポリエステルマルチフィラメント糸bを切断して、Cs0.33WO3微粒子を含有しないポリエステルステープルbを作製した。 In addition, the above master batch b not containing Cs0.33WO3 microparticles was melt spun and then drawn to produce polyester multifilament yarn b, and then the polyester multifilament yarn b was cut in the same manner as above to produce polyester staple b not containing Cs0.33WO3 microparticles .
 そして、Cs0.33WO3微粒子を40重量%含有するポリエステルステープルaとCs0.33WO3微粒子を含有しないポリエステルステープルbを用いて紡績糸を製造し、この紡績糸を用いてニット製品(赤外線遮蔽繊維構造物)を作製し、かつ、得られたニット製品をカチオン染料で茶色に染色して実施例1に係るニット製品を作製した。 Then, a spun yarn was produced using polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles , and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The knit product obtained was dyed brown with a cationic dye to produce the knit product of Example 1.
 尚、染色して実施例1に係るニット製品を得たのは、染色されていない白色のニット製品では、可視光でも透けて見える事態を回避するためである。
(実施例1に係るニット製品の平均反射率)
 上記紡績糸を製造する際、Cs0.33WO3微粒子を40重量%含有するポリエステルステープルaとCs0.33WO3微粒子を含有しないポリエステルステープルbの混合割合を適宜設定し、実施例1に係るニット製品の単位面積当たりのCs0.33WO3微粒子の含有量が0.13g/m2となるよう調整している。
The knit product according to Example 1 was obtained by dyeing in order to avoid a situation in which visible light would be visible through an undyed white knit product.
(Average reflectance of knitted product according to Example 1)
When producing the above spun yarn, the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 1 was adjusted to be 0.13 g/ m2 .
 そして、日立製作所製の分光光度計を用い、実施例1に係るニット製品の波長800nm~1300nmにおける5nm間隔の反射率を測定したところ、図1に示す分光特性が得られ、この分光特性から実施例1に係るニット製品の波長800nm~1300nmにおける平均反射率は62%であった。 Then, using a spectrophotometer manufactured by Hitachi, Ltd., the reflectance of the knitted product of Example 1 was measured at 5 nm intervals at wavelengths between 800 nm and 1300 nm, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knitted product of Example 1 at wavelengths between 800 nm and 1300 nm was found to be 62%.
(実施例1に係るニット製品の評価)
 次いで、日本紡績検査協会のボーケン規格「BQE A 033」に準じた下記試験方法により、実施例1に係るニット製品の『赤外線による盗撮(CCDカメラによる透視)防止』に関する評価を行った。
(Evaluation of the knitted product according to Example 1)
Next, the knit product of Example 1 was evaluated for its "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)" by the following test method in accordance with the Japan Spinners Inspection Association's Boken standard "BQE A 033".
「試験方法」
(1)ニット製品(赤外線遮蔽繊維構造物)に係る試験片を透過判定板(視力検査表)に被せ、試験台に設置する。
(2)赤外線投光機を用いて、試験片表面に約7mW/cm2の強度で投光する。
(3)上記試験片をデジタルカメラで通常撮影する。
(4)上記試験片を赤外線カメラで透過撮影する。
(5)透過撮影した画像を確認し、赤外線透過の有無を判定する。
"Test method"
(1) A test piece for a knitted product (infrared shielding fiber structure) is placed over a transmittance judgment plate (eye chart) and placed on the test table.
(2) Using an infrared projector, project light onto the surface of the test piece with an intensity of approximately 7 mW/ cm2 .
(3) The above test piece is photographed normally with a digital camera.
(4) The above test piece is photographed using an infrared camera.
(5) Check the image taken through the glass and determine whether or not infrared rays are transmitted.
「判定結果」
 実施例1に係るニット製品は、赤外線による透過が認められなかった。
"judgment result"
The knitted product of Example 1 was not observed to transmit infrared rays.
 この結果を下記表1に示す。 The results are shown in Table 1 below.
[実施例2]
 上記ポリエステルステープルaとポリエステルステープルbを用いて紡績糸を製造し、この紡績糸を用いてニット製品(赤外線遮蔽繊維構造物)を作製し、得られたニット製品を実施例1と同様に染色して実施例2に係るニット製品を作製した。
[Example 2]
A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce a knit product according to Example 2.
 そして、上記紡績糸を製造する際、Cs0.33WO3微粒子を40重量%含有するポリエステルステープルaとCs0.33WO3微粒子を含有しないポリエステルステープルbの混合割合を適宜設定して、実施例2に係るニット製品の単位面積当たりのCs0.33WO3微粒子の含有量が0.17g/m2となるよう調整した以外は実施例1と同様に行ったところ、図1に示す分光特性が得られ、この分光特性から実施例2に係るニット製品の波長800nm~1300nmにおける平均反射率は58%であった。 Then, when producing the above spun yarn, the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 2 was adjusted to 0.17 g/ m2. The same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 2 at wavelengths of 800 nm to 1300 nm was 58%.
(実施例2に係るニット製品の評価)
 実施例1と同様、『赤外線による盗撮(CCDカメラによる透視)防止』に関する評価を行ったところ、実施例2に係るニット製品も赤外線による透過は認められなかった。
(Evaluation of the knitted product according to Example 2)
As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 2 also showed no transmission of infrared rays.
 この結果も下記表1に示す。 These results are also shown in Table 1 below.
[実施例3]
 上記ポリエステルステープルaとポリエステルステープルbを用いて紡績糸を製造し、この紡績糸を用いてニット製品(赤外線遮蔽繊維構造物)を作製し、得られたニット製品を実施例1と同様に染色して実施例3に係るニット製品を作製した。
[Example 3]
A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce the knit product of Example 3.
 そして、上記紡績糸を製造する際、Cs0.33WO3微粒子を40重量%含有するポリエステルステープルaとCs0.33WO3微粒子を含有しないポリエステルステープルbの混合割合を適宜設定して、実施例3に係るニット製品の単位面積当たりのCs0.33WO3微粒子の含有量が0.26g/m2となるよう調整した以外は実施例1と同様に行ったところ、図1に示す分光特性が得られ、この分光特性から実施例3に係るニット製品の波長800nm~1300nmにおける平均反射率は50%であった。 Then, when producing the above spun yarn, the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 3 was adjusted to 0.26 g/ m2. The same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 3 at wavelengths of 800 nm to 1300 nm was 50%.
(実施例3に係るニット製品の評価)
 実施例1と同様、『赤外線による盗撮(CCDカメラによる透視)防止』に関する評価を行ったところ、実施例3に係るニット製品も赤外線による透過は認められなかった。
(Evaluation of the knitted product according to Example 3)
As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 3 also showed no transmission of infrared rays.
 この結果も下記表1に示す。 These results are also shown in Table 1 below.
[実施例4]
 上記ポリエステルステープルaとポリエステルステープルbを用いて紡績糸を製造し、この紡績糸を用いてニット製品(赤外線遮蔽繊維構造物)を作製し、得られたニット製品を実施例1と同様に染色して実施例4に係るニット製品を作製した。
[Example 4]
A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce the knit product of Example 4.
 そして、上記紡績糸を製造する際、Cs0.33WO3微粒子を40重量%含有するポリエステルステープルaとCs0.33WO3微粒子を含有しないポリエステルステープルbの混合割合を適宜設定して、実施例4に係るニット製品の単位面積当たりのCs0.33WO3微粒子の含有量が0.87g/m2となるよう調整した以外は実施例1と同様に行ったところ、図1に示す分光特性が得られ、この分光特性から実施例4に係るニット製品の波長800nm~1300nmにおける平均反射率は18%であった。 Then, when producing the above spun yarn, the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 4 was adjusted to 0.87 g/ m2 . The same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 4 at wavelengths of 800 nm to 1300 nm was 18%.
(実施例4に係るニット製品の評価)
 実施例1と同様、『赤外線による盗撮(CCDカメラによる透視)防止』に関する評価を行ったところ、実施例4に係るニット製品も赤外線による透過は認められなかった。
(Evaluation of the knitted product according to Example 4)
As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 4 also showed no transmission of infrared rays.
 この結果も下記表1に示す。 These results are also shown in Table 1 below.
[実施例5]
 上記ポリエステルステープルaとポリエステルステープルbを用いて紡績糸を製造し、この紡績糸を用いてニット製品(赤外線遮蔽繊維構造物)を作製し、得られたニット製品を実施例1と同様に染色して実施例5に係るニット製品を作製した。
[Example 5]
A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce the knit product of Example 5.
 そして、上記紡績糸を製造する際、Cs0.33WO3微粒子を40重量%含有するポリエステルステープルaとCs0.33WO3微粒子を含有しないポリエステルステープルbの混合割合を適宜設定して、実施例5に係るニット製品の単位面積当たりのCs0.33WO3微粒子の含有量が1.73g/m2となるよう調整した以外は実施例1と同様に行ったところ、図1に示す分光特性が得られ、この分光特性から実施例5に係るニット製品の波長800nm~1300nmにおける平均反射率は4%であった。 Then, when producing the above spun yarn, the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 5 was adjusted to 1.73 g/ m2 . The same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 5 at wavelengths of 800 nm to 1300 nm was 4%.
(実施例5に係るニット製品の評価)
 実施例1と同様、『赤外線による盗撮(CCDカメラによる透視)防止』に関する評価を行ったところ、実施例5に係るニット製品も赤外線による透過は認められなかった。
(Evaluation of the knitted product according to Example 5)
As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 5 also showed no transmission of infrared rays.
 この結果も下記表1に示す。 These results are also shown in Table 1 below.
[実施例6]
 上記ポリエステルステープルaとポリエステルステープルbを用いて紡績糸を製造し、この紡績糸を用いてニット製品(赤外線遮蔽繊維構造物)を作製し、得られたニット製品を実施例1と同様に染色して実施例6に係るニット製品を作製した。
[Example 6]
A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce the knit product of Example 6.
 そして、上記紡績糸を製造する際、Cs0.33WO3微粒子を40重量%含有するポリエステルステープルaとCs0.33WO3微粒子を含有しないポリエステルステープルbの混合割合を適宜設定して、実施例6に係るニット製品の単位面積当たりのCs0.33WO3微粒子の含有量が2.60g/m2となるよう調整した以外は実施例1と同様に行ったところ、図1に示す分光特性が得られ、この分光特性から実施例6に係るニット製品の波長800nm~1300nmにおける平均反射率は1%であった。 Then, when producing the above spun yarn, the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 6 was adjusted to 2.60 g/ m2 . The same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 6 at wavelengths of 800 nm to 1300 nm was 1%.
(実施例6に係るニット製品の評価)
 実施例1と同様、『赤外線による盗撮(CCDカメラによる透視)防止』に関する評価を行ったところ、実施例6に係るニット製品も赤外線による透過は認められなかった。
(Evaluation of knitted product according to Example 6)
As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 6 also showed no transmission of infrared rays.
 この結果も下記表1に示す。 These results are also shown in Table 1 below.
[実施例7]
 上記ポリエステルステープルaとポリエステルステープルbを用いて紡績糸を製造し、この紡績糸を用いてニット製品(赤外線遮蔽繊維構造物)を作製し、得られたニット製品を実施例1と同様に染色して実施例7に係るニット製品を作製した。
[Example 7]
A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to produce the knit product of Example 7.
 そして、上記紡績糸を製造する際、Cs0.33WO3微粒子を40重量%含有するポリエステルステープルaとCs0.33WO3微粒子を含有しないポリエステルステープルbの混合割合を適宜設定して、実施例7に係るニット製品の単位面積当たりのCs0.33WO3微粒子の含有量が4.33g/m2となるよう調整した以外は実施例1と同様に行ったところ、図1に示す分光特性が得られ、この分光特性から実施例7に係るニット製品の波長800nm~1300nmにおける平均反射率は0.07%であった。 Then, when producing the above spun yarn, the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set to adjust the content of Cs0.33WO3 microparticles per unit area of the knit product of Example 7 to 4.33 g/ m2. The same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Example 7 at wavelengths of 800 nm to 1300 nm was 0.07%.
(実施例7に係るニット製品の評価)
 実施例1と同様、『赤外線による盗撮(CCDカメラによる透視)防止』に関する評価を行ったところ、実施例7に係るニット製品も赤外線による透過は認められなかった。
(Evaluation of the knitted product according to Example 7)
As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and the knit product of Example 7 also showed no transmission of infrared rays.
 この結果も下記表1に示す。 These results are also shown in Table 1 below.
[比較例1]
 Cs0.33WO3微粒子を含有しない上記ポリエステルステープルbのみを用いて紡績糸を製造し、この紡績糸を用いてニット製品を作製し、かつ、得られたニット製品を実施例1と同様に染色して比較例1に係るニット製品を得た。
[Comparative Example 1]
A spun yarn was produced using only the polyester staple b not containing Cs0.33WO3 microparticles , and a knit product was made using this spun yarn. The knit product obtained was dyed in the same manner as in Example 1 to obtain a knit product according to Comparative Example 1.
 そして、日立製作所製の分光光度計を用い、比較例1に係るニット製品の波長800nm~1300nmにおける5nm間隔の反射率を測定したところ、図1に示す分光特性が得られ、この分光特性から比較例1に係るニット製品の波長800nm~1300nmにおける平均反射率は77%であった。 Then, using a spectrophotometer manufactured by Hitachi, Ltd., the reflectance of the knitted product of Comparative Example 1 at wavelengths between 800 nm and 1300 nm was measured at 5 nm intervals, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knitted product of Comparative Example 1 at wavelengths between 800 nm and 1300 nm was found to be 77%.
(比較例1に係るニット製品の評価)
 実施例1と同様、『赤外線による盗撮(CCDカメラによる透視)防止』に関する評価を行ったところ、比較例1に係るニット製品は赤外線による透過が認められた。
(Evaluation of knitted product according to Comparative Example 1)
As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)," and it was found that infrared rays could be transmitted through the knit product of Comparative Example 1.
 この結果も下記表1に示す。 These results are also shown in Table 1 below.
[比較例2]
 上記ポリエステルステープルaとポリエステルステープルbを用いて紡績糸を製造し、この紡績糸を用いてニット製品(赤外線遮蔽繊維構造物)を作製し、得られたニット製品を実施例1と同様に染色して比較例2に係るニット製品を得た。
[Comparative Example 2]
A spun yarn was produced using the above polyester staple a and polyester staple b, and a knit product (infrared shielding fiber structure) was produced using this spun yarn. The obtained knit product was dyed in the same manner as in Example 1 to obtain a knit product according to Comparative Example 2.
 そして、上記紡績糸を製造する際、Cs0.33WO3微粒子を40重量%含有するポリエステルステープルaとCs0.33WO3微粒子を含有しないポリエステルステープルbの混合割合を適宜設定して、比較例2に係るニット製品の単位面積当たりのCs0.33WO3微粒子の含有量が0.09g/m2となるよう調整した以外は実施例1と同様に行ったところ、図1に示す分光特性が得られ、この分光特性から比較例2に係るニット製品の波長800nm~1300nmにおける平均反射率は67%であった。 Then, when producing the above spun yarn, the mixing ratio of polyester staple a containing 40% by weight of Cs0.33WO3 microparticles and polyester staple b containing no Cs0.33WO3 microparticles was appropriately set, and the content of Cs0.33WO3 microparticles per unit area of the knit product of Comparative Example 2 was adjusted to 0.09 g/ m2. The same procedure as in Example 1 was performed, and the spectral characteristics shown in Figure 1 were obtained. From these spectral characteristics, the average reflectance of the knit product of Comparative Example 2 at wavelengths of 800 nm to 1300 nm was 67%.
(比較例2に係るニット製品の評価)
 実施例1と同様、『赤外線による盗撮(CCDカメラによる透視)防止』に関する評価を行ったところ、比較例2に係るニット製品も赤外線による透過が認められた。
(Evaluation of knitted product according to Comparative Example 2)
As in Example 1, an evaluation was carried out regarding "prevention of surreptitious photography by infrared rays (see-through by a CCD camera)", and it was found that the knit product of Comparative Example 2 also allowed infrared rays to pass through.
 この結果も下記表1に示す。 These results are also shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明に係る赤外線遮蔽繊維構造物によれば、赤外線による盗撮防止機能を長期に亘り維持できるため、盗撮され易いインナーウエア、スポーツウエア等に適用される産業上の利用可能性を有している。 The infrared shielding textile structure of the present invention can maintain its infrared voyeurism prevention function for a long period of time, making it industrially applicable to innerwear, sportswear, and other items that are easily photographed.

Claims (10)

  1.  タングステン酸化物微粒子または複合タングステン酸化物微粒子から選択される1以上の赤外線遮蔽微粒子を、表面および/または内部に含有させた赤外線遮蔽繊維を加工して成る赤外線遮蔽繊維構造物であって、
     上記赤外線遮蔽微粒子の粒径が1nm以上800nm以下であり、
     上記赤外線遮蔽繊維構造物の単位面積当たりの赤外線遮蔽微粒子の含有量が0.10g/m2以上4.5g/m2以下であることを特徴とする赤外線遮蔽繊維構造物。
    An infrared-shielding fiber structure obtained by processing an infrared-shielding fiber having one or more infrared-shielding particles selected from tungsten oxide particles or composite tungsten oxide particles contained on the surface and/or inside thereof,
    The infrared shielding fine particles have a particle size of 1 nm or more and 800 nm or less,
    2. An infrared shielding fiber structure having an infrared shielding fine particle content per unit area of 0.10 g/ m2 or more and 4.5 g/ m2 or less.
  2.  波長800nm~1300nmにおける平均反射率が65%以下であることを特徴とする請求項1に記載の赤外線遮蔽繊維構造物。 The infrared shielding fiber structure according to claim 1, characterized in that the average reflectance at wavelengths between 800 nm and 1300 nm is 65% or less.
  3.  上記タングステン酸化物微粒子が、一般式WOX(但し、Wはタングステン、Oは酸素、2.45≦X≦2.999)で示されるタングステン酸化物微粒子であり、
     上記複合タングステン酸化物微粒子が、一般式MYWOZ(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、かつ、六方晶の結晶構造を持つ複合タングステン酸化物微粒子であることを特徴とする請求項1に記載の赤外線遮蔽繊維構造物。
    The tungsten oxide microparticles are microparticles of a tungsten oxide represented by the general formula WO x (wherein W is tungsten, O is oxygen, and 2.45≦X≦2.999),
    2. The infrared shielding fiber structure according to claim 1, characterized in that the composite tungsten oxide microparticles are composite tungsten oxide microparticles represented by the general formula M YWO Z (wherein M element is one or more elements selected from H, He, alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, and O is oxygen, 0.001≦Y≦1.0, 2.2≦Z≦3.0) and have a hexagonal crystal structure.
  4.  上記複合タングステン酸化物微粒子のM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snの内から選択される1種類以上の元素であることを特徴とする請求項3に記載の赤外線遮蔽繊維構造物。 The infrared shielding fiber structure according to claim 3, characterized in that the M element of the composite tungsten oxide microparticles is one or more elements selected from the group consisting of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn.
  5.  上記赤外線遮蔽繊維が、合成繊維、半合成繊維、天然繊維、再生繊維、無機繊維、またはこれらの繊維の混紡、合糸、混繊による混合糸のいずれかから選択される繊維であることを特徴とする請求項1に記載の赤外線遮蔽繊維構造物。 The infrared shielding fiber structure according to claim 1, characterized in that the infrared shielding fiber is a fiber selected from synthetic fibers, semi-synthetic fibers, natural fibers, regenerated fibers, inorganic fibers, or blends, doubling yarns, or mixed yarns obtained by blending these fibers.
  6.  上記合成繊維が、ポリウレタン繊維、ポリアミド系繊維、アクリル系繊維、ポリエステル系繊維、ポリオレフィン系繊維、ポリビニルアルコール系繊維、ポリ塩化ビニリデン系繊維、ポリ塩化ビニル系繊維、ポリエーテルエステル系繊維から選択されるいずれかの合成繊維であることを特徴とする請求項5に記載の赤外線遮蔽繊維構造物。 The infrared shielding fiber structure according to claim 5, characterized in that the synthetic fiber is any one of the synthetic fibers selected from polyurethane fibers, polyamide fibers, acrylic fibers, polyester fibers, polyolefin fibers, polyvinyl alcohol fibers, polyvinylidene chloride fibers, polyvinyl chloride fibers, and polyether ester fibers.
  7.  上記半合成繊維が、セルロース系繊維、タンパク質系繊維、塩化ゴム、塩酸ゴムから選択されるいずれかの半合成繊維であることを特徴とする請求項5に記載の赤外線遮蔽繊維構造物。 The infrared shielding fiber structure according to claim 5, characterized in that the semi-synthetic fiber is any one of semi-synthetic fibers selected from cellulose-based fibers, protein-based fibers, chlorinated rubber, and hydrochloric rubber.
  8.  上記天然繊維が、植物繊維、動物繊維、鉱物繊維から選択されるいずれかの天然繊維であることを特徴とする請求項5に記載の赤外線遮蔽繊維構造物。 The infrared shielding fiber structure according to claim 5, characterized in that the natural fiber is any natural fiber selected from the group consisting of vegetable fibers, animal fibers, and mineral fibers.
  9.  上記再生繊維が、セルロース系繊維、タンパク質系繊維、アルギン繊維、ゴム繊維、キチン繊維、マンナン繊維から選択されるいずれかの再生繊維であることを特徴とする請求項5に記載の赤外線遮蔽繊維構造物。 The infrared shielding fiber structure according to claim 5, characterized in that the regenerated fiber is any one selected from the group consisting of cellulose-based fiber, protein-based fiber, alginate fiber, rubber fiber, chitin fiber, and mannan fiber.
  10.  請求項1~3のいずれかに記載の赤外線遮蔽繊維構造物を用いたことを特徴とする衣類。 Clothing characterized by using an infrared shielding textile structure according to any one of claims 1 to 3.
PCT/JP2023/033840 2022-10-11 2023-09-19 Infrared shielding fiber structure and clothing employing same WO2024080084A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022163250 2022-10-11
JP2022-163250 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024080084A1 true WO2024080084A1 (en) 2024-04-18

Family

ID=90669088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033840 WO2024080084A1 (en) 2022-10-11 2023-09-19 Infrared shielding fiber structure and clothing employing same

Country Status (2)

Country Link
JP (1) JP2024056644A (en)
WO (1) WO2024080084A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235839A1 (en) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 Near-infrared-absorbing fiber, method for producing same, and textile product using same
WO2019054476A1 (en) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 Near infrared ray-absorbing fiber, fiber product using same, and method for producing fiber and fiber product
WO2021200748A1 (en) * 2020-03-31 2021-10-07 共同印刷株式会社 Infrared-absorbent resin composition and infrared-absorbent fiber
WO2022138512A1 (en) * 2020-12-24 2022-06-30 共同印刷株式会社 Tungsten-based infrared-absorbing pigment dispersion, dyeing liquid, fiber product, and method for treating fiber product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235839A1 (en) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 Near-infrared-absorbing fiber, method for producing same, and textile product using same
WO2019054476A1 (en) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 Near infrared ray-absorbing fiber, fiber product using same, and method for producing fiber and fiber product
WO2021200748A1 (en) * 2020-03-31 2021-10-07 共同印刷株式会社 Infrared-absorbent resin composition and infrared-absorbent fiber
WO2022138512A1 (en) * 2020-12-24 2022-06-30 共同印刷株式会社 Tungsten-based infrared-absorbing pigment dispersion, dyeing liquid, fiber product, and method for treating fiber product

Also Published As

Publication number Publication date
JP2024056644A (en) 2024-04-23

Similar Documents

Publication Publication Date Title
JP4355945B2 (en) Near-infrared absorbing fiber and fiber product using the same
DE19606266C2 (en) Process for the production of far infrared radiating polyester fibers
US20110091720A1 (en) Boride nanoparticle-containing fiber and textile product that uses the same
JP3883007B2 (en) Boride fine particle-containing fiber and fiber product using the same
US11371168B2 (en) Method for producing antimicrobial thermal and heat-retaining fiber, fiber produced by the method and fabric using the fiber
JP7226321B2 (en) Near-infrared absorbing fiber, textile product using the same, and method for producing the same
JP7363394B2 (en) Infrared absorbing fibers and textile products
TWI769267B (en) Near infrared absorbing fiber and method for producing the same, and fiber product using the same
KR101212986B1 (en) A functional textile for absorbing infrared ray
JP2013147785A (en) Regenerated cellulose fiber with photothermal conversion property, method for producing the same and fiber structure
WO2024080084A1 (en) Infrared shielding fiber structure and clothing employing same
TW202421889A (en) Infrared shielding fiber structure and clothing using the same
KR950013481B1 (en) Polyester fiber having excellent ultraviolet screening and cooling effect
JPH09316728A (en) Ultraviolet light-shielding polyamide fiber
EP4324963A1 (en) Infrared absorbing fiber and fiber product
TW202242219A (en) Infrared absorbing fiber and fiber product in which an infrared absorbing fiber comprises fibers and organic-inorganic hybrid infrared absorbing particles
WO2023058694A1 (en) Infrared absorbing fiber and fiber product
JPH05311502A (en) Rapidly drying swimming suit
JP2023151572A (en) Near-infrared absorption fiber, fiber product, and method for producing near-infrared absorption fiber
JP2002161473A (en) Yarn having solar heat-shielding property and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877090

Country of ref document: EP

Kind code of ref document: A1