WO2024080047A1 - Optical laminate - Google Patents

Optical laminate Download PDF

Info

Publication number
WO2024080047A1
WO2024080047A1 PCT/JP2023/032890 JP2023032890W WO2024080047A1 WO 2024080047 A1 WO2024080047 A1 WO 2024080047A1 JP 2023032890 W JP2023032890 W JP 2023032890W WO 2024080047 A1 WO2024080047 A1 WO 2024080047A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase difference
difference member
film
less
optical laminate
Prior art date
Application number
PCT/JP2023/032890
Other languages
French (fr)
Japanese (ja)
Inventor
卓哉 田中
章典 伊▲崎▼
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022164783A external-priority patent/JP2024057839A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024080047A1 publication Critical patent/WO2024080047A1/en

Links

Images

Definitions

  • the present invention relates to an optical laminate.
  • Image display devices such as liquid crystal display devices and electroluminescence (EL) display devices (e.g., organic EL display devices, inorganic EL display devices), are rapidly becoming popular.
  • EL electroluminescence
  • image display devices optical laminates containing polarizing members and phase difference members are widely used to realize image display and improve the performance of image display.
  • new uses of image display devices have been developed in recent years.
  • One example of such uses is an aerial display (see, for example, Patent Document 1).
  • aerial displays aerial displays utilizing aerial imaging by retroreflection (AIRR: aerial imaging by retroreflection) are being considered for use in various situations, and there is a demand for improving the conversion efficiency from device incident light to a real image.
  • ATR aerial imaging by retroreflection
  • the present invention has been made to solve the above-mentioned problems of the conventional art, and its main objective is to provide an optical laminate that has excellent optical compensation performance in the stacking direction and in an oblique direction intersecting with the stacking direction.
  • An optical laminate according to an embodiment of the present invention comprises a polarizing member and a plurality of phase difference members arranged on the viewing side of the polarizing member, and has an ellipticity of 0.75 or more measured at an azimuth angle of 0° and an elevation angle of 90° and an elevation angle of 30°.
  • the ellipticity measured at an elevation angle of 90° and an elevation angle of 30° at an azimuth angle of 45° may be 0.70 or more.
  • the angle between the absorption axis direction of the polarizing member and the slow axis direction of the fifth phase difference member may be 90° ⁇ 1.5° or less.
  • an optical laminate that has excellent optical compensation performance in both the lamination direction and the oblique direction. If such an optical laminate is applied to a retroreflective aerial imaging device, it is possible to create a clear aerial image.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention.
  • FIG. 3 is a schematic plan view for explaining the azimuth angle in the optical laminate of FIG.
  • FIG. 4 is a schematic side view for explaining the elevation angle in the optical laminate of FIG.
  • FIG. 5 is a schematic diagram of an aerial imaging device including an optical stack according to one embodiment of the present invention.
  • Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., the slow axis direction)
  • ny is the refractive index in the direction perpendicular to the slow axis in the plane (i.e., the fast axis direction)
  • nz is the refractive index in the thickness direction.
  • In-plane retardation (Re) "Re( ⁇ )” is the in-plane retardation measured with light having a wavelength of ⁇ nm at 23° C.
  • Re(550) is the in-plane retardation measured with light having a wavelength of 550 nm at 23° C.
  • Retardation in the thickness direction (Rth) is the retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23° C.
  • Rth(550) is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23° C.
  • Figure 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention.
  • the optical laminate 100 of the illustrated example includes a polarizing member 5 including a polarizing film 51; and a plurality of phase difference members arranged on the viewing side of the polarizing member 5.
  • the ellipticity measured at an elevation angle of 90° and an elevation angle of 30° at an azimuth angle of 0° is 0.75 or more.
  • the ellipticity measured at an elevation angle of 90° at an azimuth angle of 0° is preferably 0.80 or more, more preferably 0.85 or more, even more preferably 0.88 or more, and particularly preferably 0.90 or more.
  • the ellipticity measured at an elevation angle of 30° at an azimuth angle of 0° is preferably 0.80 or more, more preferably 0.82 or more, even more preferably 0.84 or more, and particularly preferably 0.85 or more.
  • the optical compensation performance can be improved in the stacking direction of the optical laminate and in the oblique direction intersecting the stacking direction.
  • the upper limit of the ellipticity measured at an azimuth angle of 0° and an elevation angle of 90° and an elevation angle of 30° is typically 1.00 or less, and is, for example, 0.95 or less.
  • the term "azimuth angle” refers to the angle ⁇ 1 between the absorption axis direction of the polarizing film as a reference and the surface direction of the optical laminate (direction perpendicular to the lamination direction) as shown in Fig. 3.
  • the azimuth angle ⁇ 1 is 0°
  • the surface direction and the reference direction are substantially parallel to each other.
  • the “elevation angle” is the angle ⁇ 2 between the reference direction and the measurement direction located on the same virtual plane as the reference direction, as shown in FIG. 4, based on the surface direction of the optical laminate.
  • the measurement direction is typically a direction connecting the light receiving part of an ellipticity measuring device (typically a Mueller matrix polarimeter) and any point on the surface of the optical laminate when measuring the ellipticity.
  • an ellipticity measuring device typically a Mueller matrix polarimeter
  • the measurement direction and the reference direction are substantially parallel
  • the measurement direction and the stacking direction are substantially parallel.
  • ellipticity is an index showing whether light (polarized light) is close to circularly polarized light or close to linearly polarized light, and is the ratio (b/a) of the minor axis radius b to the major axis radius a of elliptically polarized light.
  • An ellipticity of 1.0 means substantially circularly polarized light
  • an ellipticity of 0 means substantially linearly polarized light.
  • the ellipticity can be calculated, for example, by the following method. Light having wavelengths of 450 nm, 550 nm, and 650 nm is incident on the optical laminate from the polarizing member side, and the major axis radius a and the minor axis radius b of the emitted light (elliptically polarized light) that passes through multiple phase difference members are measured at a predetermined elevation angle and azimuth angle, and the average value of the minor axis radius b/major axis radius a of the lights having different wavelengths is defined as the ellipticity. More specifically, the ellipticity can be calculated in accordance with the method described in the examples below.
  • the optical laminate 100 has an ellipticity of 0.70 or more measured at an elevation angle of 90° and an elevation angle of 30° at an azimuth angle of 45°.
  • the ellipticity measured at an elevation angle of 90° at an azimuth angle of 45° is preferably 0.80 or more, more preferably 0.85 or more, even more preferably 0.88 or more, and particularly preferably 0.90 or more.
  • the ellipticity measured at an elevation angle of 30° at an azimuth angle of 45° is preferably 0.80 or more, more preferably 0.81 or more, even more preferably 0.83 or more, and particularly preferably 0.84 or more.
  • the optical compensation performance in the stacking direction and in the oblique direction can be stably improved.
  • the upper limit of the ellipticity measured at an elevation angle of 90° and an elevation angle of 30° at an azimuth angle of 45° is typically 1.00 or less, and is, for example, 0.95 or less.
  • the multiple phase difference members include, in this order from the viewing side, the first phase difference member 1 described above; the second phase difference member 2 described above; a third phase difference member 3 having a refractive index of nz>nx ⁇ ny; and a fourth phase difference member 4 having a refractive index of nx>ny ⁇ nz.
  • the plurality of phase difference members may include the first phase difference member 1 described above; the second phase difference member 2 described above; and a fifth phase difference member 50 having a refractive index of nx>nz>ny, in this order from the viewing side. That is, the plurality of phase difference members may include the fifth phase difference member 50 instead of the third phase difference member 3 and the fourth phase difference member 4.
  • the angle between the absorption axis direction of the polarizing film 51 provided in the polarizing member 5 and the slow axis direction of the fifth phase difference member 50 is, for example, 90° ⁇ 1.5° or less (i.e., 88.5° or more and 91.5° or less), preferably less than 90° ⁇ 1.0° (i.e., more than 89.0° and less than 91.0°), and more preferably 90° ⁇ 0.5° or less (i.e., 89.5° or more and 90.5° or less).
  • the optical compensation performance in the stacking direction and in the oblique direction can be improved more stably.
  • the number of phase difference members is four in Fig. 1 and three in Fig. 2, but the number of phase difference members is not limited to this.
  • the multiple phase difference members may further include another phase difference member in addition to the above-mentioned phase difference members.
  • the optical laminate 100 further comprises a substrate 6 located on the opposite side of the first phase difference member 1 from the second phase difference member 2; and an optical functional layer 7 located on the opposite side of the first phase difference member 1 from the substrate 6.
  • the optical laminate 100 further includes a first surface protective film 8 located on the opposite side of the first phase difference member 1 from the second phase difference member 2.
  • the first surface protective film 8 is located on the opposite side of the substrate 6 from the first phase difference member 1.
  • the optical laminate 100 may further include a second surface protective film 9.
  • the second surface protective film 9 is located on the opposite side of the first phase difference member 1 with respect to the first surface protective film 8, and is temporarily attached to the first surface protective film 8.
  • the optical laminate 100 further includes an adhesive layer 20 located on the opposite side of the polarizing member 5 to the multiple retardation members (opposite the viewing side). This allows the optical laminate 100 to be attached to various optical components (e.g., image display cells, retroreflective sheets) by the adhesive layer 20.
  • various optical components e.g., image display cells, retroreflective sheets
  • the optical laminate 100 may further include a release liner 10.
  • the release liner 10 is located on the opposite side of the adhesive layer 20 from the polarizing member 5, and is temporarily attached to the surface of the adhesive layer 20.
  • the release liner 10 is temporarily attached to the adhesive layer 20 until the optical laminate is attached to an optical component, and is peeled off from the adhesive layer 20 when the optical laminate is attached.
  • the optical laminate 100 is typically rectangular when viewed from the stacking direction. More specifically, the optical laminate 100 may be rectangular with long sides of about 10 mm to 70 mm and short sides of about 10 mm to 70 mm, or long sides of about 20 mm to 40 mm and short sides of about 10 mm to 30 mm, and more specifically, long sides of about 30 mm and short sides of about 20 mm.
  • the polarizing member 5 is typically an absorptive polarizing member.
  • the polarizing member 5 includes a polarizing film 51.
  • the polarizing member 5 may further include a protective layer.
  • the protective layer may be provided on at least one surface of the polarizing film, or may be provided on both surfaces of the polarizing film.
  • the polarizing member 5 includes a protective layer 52 provided on the surface of the polarizing film 51 opposite to the viewing side.
  • the protective layer 52 is typically bonded to the polarizing film 51 via any suitable adhesive layer 53.
  • a typical example of the adhesive forming the adhesive layer 53 is an ultraviolet-curing adhesive.
  • the thickness of the adhesive layer 53 is, for example, 1.5 ⁇ m or more, preferably 2.0 ⁇ m or more, and, for example, 5.0 ⁇ m or less, preferably 3.0 ⁇ m or less.
  • the polarizing film 51 typically includes a resin film containing a dichroic material.
  • the polarizing film 51 may be made of a single-layer resin film or may be made using a laminate of two or more layers.
  • an absorptive polarizing film When made from a single-layer resin film, for example, an absorptive polarizing film can be obtained by subjecting a hydrophilic polymer film such as a polyvinyl alcohol (PVA)-based film, a partially formalized PVA-based film, or an ethylene-vinyl acetate copolymer-based partially saponified film to a dyeing process using a dichroic substance such as iodine or a dichroic dye, and a stretching process.
  • PVA polyvinyl alcohol
  • a partially formalized PVA-based film e.g., ethylene-vinyl acetate copolymer-based partially saponified film
  • a dichroic substance such as iodine or a dichroic dye
  • the dyeing with iodine is carried out, for example, by immersing the PVA-based film in an aqueous iodine solution.
  • the stretching ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be carried out after the dyeing process, or may be carried out while dyeing. Alternatively, the film may be stretched and then dyed. If necessary, the PVA-based film may be subjected to a swelling process, a crosslinking process, a washing process, a drying process, etc.
  • examples of the laminate include a laminate of a resin substrate and a PVA-based resin layer (PVA-based resin film) laminated on the resin substrate, or a laminate of a resin substrate and a PVA-based resin layer formed by coating on the resin substrate.
  • PVA-based resin film PVA-based resin film
  • the absorptive polarizing film obtained using a laminate of a resin substrate and a PVA-based resin layer formed by coating on the resin substrate can be produced, for example, by applying a PVA-based resin solution to the resin substrate and drying to form a PVA-based resin layer on the resin substrate to obtain a laminate of the resin substrate and the PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer into an absorptive polarizing film.
  • a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin is formed on one side of the resin substrate.
  • the stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching it.
  • the stretching may further include air-stretching the laminate at a high temperature (e.g., 95°C or higher) before stretching in the boric acid aqueous solution, if necessary.
  • the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction, thereby shrinking the laminate by 2% or more in the width direction.
  • the manufacturing method of this embodiment includes subjecting the laminate to an air-assisted stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order.
  • auxiliary stretching it is possible to increase the crystallinity of PVA even when PVA is applied onto a thermoplastic resin, and it is possible to achieve high optical properties.
  • problems such as a decrease in the orientation of PVA or dissolution can be prevented when the PVA is immersed in water in the subsequent dyeing step or stretching step, and it is possible to achieve high optical properties.
  • the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of polyvinyl alcohol molecules and the decrease in orientation can be suppressed compared to when the PVA-based resin layer does not contain a halide.
  • the obtained resin substrate/absorptive polarizing film laminate may be used as it is (i.e., the resin substrate may be used as a protective layer for the absorptive polarizing film), or any suitable protective layer may be laminated on the peeled surface obtained by peeling the resin substrate from the resin substrate/absorptive polarizing film laminate, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorptive polarizing film are described in, for example, JP 2012-73580 A and JP 6470455 A. The entire disclosures of these publications are incorporated herein by reference.
  • the thickness of the polarizing film is, for example, 1 ⁇ m or more and 20 ⁇ m or less, preferably 2 ⁇ m or more and 15 ⁇ m or less, more preferably 12 ⁇ m or less, even more preferably 10 ⁇ m or less, particularly preferably 8 ⁇ m or less, and especially preferably 5 ⁇ m or less.
  • the polarizing film preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm.
  • the crossed transmittance (Tc) of the polarizing film is, for example, 0.5% or less, preferably 0.1% or less, and more preferably 0.05% or less.
  • the single transmittance (Ts) of the polarizing film is, for example, 41.0% to 46.0%, and preferably 42.0% or more.
  • the degree of polarization of the polarizing film is, for example, 97.0 to 99.997% or more, preferably 99.0% or more, and more preferably 99.9% or more.
  • the protective layer is formed of any suitable film that can be used as a protective layer for a polarizing film.
  • suitable film include cycloolefin (COP) resins such as polynorbornene resins, polyester resins such as polyethylene terephthalate (PET) resins, cellulose resins such as triacetyl cellulose (TAC), transparent resins such as polycarbonate (PC), (meth)acrylic resins, polyvinyl alcohol resins, polyamides, polyimides, polyethersulfones, polysulfones, polystyrenes, polyolefins, and acetate resins.
  • COP cycloolefin
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • PC polycarbonate
  • (meth)acrylic resins polyvinyl alcohol resins, polyamides, polyimides, polyethersulfones, polysulfones, polystyrenes, polyolefins
  • thermosetting resins or ultraviolet-curing resins such as (meth)acrylic resins, urethane resins, (meth)acrylic urethane resins, epoxy resins, and silicone resins are also included.
  • (meth)acrylic resin refers to acrylic resins and/or methacrylic resins.
  • glassy polymers such as siloxane polymers are also included. Also usable is the polymer film described in JP 2001-343529 A (WO 01/37007).
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain can be used, for example, a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide, and an acrylonitrile-styrene copolymer.
  • the polymer film can be, for example, an extrusion molded product of the above resin composition.
  • the materials of the resin film can be used alone or in combination.
  • the thickness of the protective layer is typically 5 mm or less, preferably 1 mm or less, more preferably 1 ⁇ m to 500 ⁇ m, and even more preferably 5 ⁇ m to 150 ⁇ m.
  • a hard coat layer 54 may be provided on the surface of the protective layer 52 opposite to the polarizing film 51 (opposite to the viewing side). That is, the polarizing member 5 may include a hard coat layer 54.
  • the hard coat layer 54 is formed directly on the surface of the protective layer 52. In this specification, “directly” means that no adhesive layer (adhesive layer or pressure-sensitive adhesive layer) is interposed.
  • the hard coat layer 54 preferably has sufficient surface hardness, excellent mechanical strength, and excellent light transmittance.
  • the hard coat layer 54 may be formed from any appropriate resin.
  • the hard coat layer 54 is typically formed from an ultraviolet curing resin. Examples of ultraviolet curing resins include polyester, acrylic, urethane, amide, silicone, and epoxy resins.
  • the thickness of the hard coat layer 54 is, for example, 0.5 ⁇ m or more, preferably 1 ⁇ m or more, for example, 20 ⁇ m or less, and preferably 15 ⁇ m or less.
  • the first phase difference member 1 is located on the opposite side of the polarizing member 5 with respect to the second phase difference member 2.
  • the first phase difference member 1 is typically a phase difference film.
  • the first phase difference member 1 is typically attached to the second phase difference member 2 via any suitable adhesive layer 11.
  • a typical example of the adhesive forming the adhesive layer 11 is an ultraviolet-curing adhesive.
  • the thickness of the adhesive layer 11 is, for example, 1.5 ⁇ m or more, preferably 2.0 ⁇ m or more, and, for example, 5.0 ⁇ m or less, preferably 3.0 ⁇ m or less.
  • the in-plane retardation Re(550) of the first phase difference member 1 may be, for example, 0 nm or more and less than 10 nm.
  • the thickness direction retardation Rth(550) of the first retardation member 1 is typically less than 0 nm, preferably ⁇ 5 nm or less, more preferably ⁇ 50 nm or less, and for example, ⁇ 200 nm or more, preferably ⁇ 150 nm or more, more preferably ⁇ 110 nm or more.
  • the first phase difference member 1 may be formed of any appropriate material.
  • the first phase difference member 1 is preferably composed of a film containing a liquid crystal material fixed in homeotropic alignment.
  • the liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the liquid crystal compound and the method of forming the optical compensation layer include the liquid crystal compound and the method of forming the optical compensation layer described in [0020] to [0028] of JP-A-2002-333642.
  • the thickness of the first phase difference member 1 is, for example, 10 ⁇ m or less, preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, and typically 0.5 ⁇ m or more.
  • the second phase difference member 2 is located between the first phase difference member 1 and the third phase difference member 3 in FIG. 1, and between the first phase difference member 1 and the fifth phase difference member 50 in FIG. 2.
  • the second phase difference member 2 is typically a phase difference film.
  • the second phase difference member 2 is typically attached to the third phase difference member 3 or the fifth phase difference member 50 via any suitable adhesive layer 21.
  • adhesives that form the adhesive layer 21 include (meth)acrylic adhesives, urethane adhesives, silicone adhesives, and rubber adhesives, and preferably (meth)acrylic adhesives.
  • the thickness of the adhesive layer 21 is, for example, 3.5 ⁇ m or more and 35 ⁇ m or less.
  • the second phase difference member 2 functions as a ⁇ /4 member as described above.
  • the in-plane retardation Re(550) of the second phase difference member 2 is typically 100 nm or more and 200 nm or less, preferably 110 nm or more and 180 nm or less, more preferably 130 nm or more and 150 nm or less.
  • the Nz coefficient of the second phase difference member 2 is preferably 0.9 to 2.0, more preferably 0.9 to 1.5, and further preferably 0.9 to 1.2.
  • the angle between the absorption axis direction of the polarizing film 51 and the slow axis direction of the second phase difference member 2 is typically 40° or more and 50° or less, preferably 42° or more and 48° or less, more preferably 44° or more and 46° or less, and particularly preferably 45°.
  • the second phase difference member 2 may exhibit an inverse dispersion wavelength characteristic in which the phase difference value increases according to the wavelength of the measurement light, may exhibit a positive wavelength dispersion characteristic in which the phase difference value decreases according to the wavelength of the measurement light, or may exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light.
  • the second phase difference member 2 preferably exhibits an inverse dispersion wavelength characteristic. That is, the second phase difference member 2 preferably satisfies the relationship Re(450) ⁇ Re(550).
  • the resin constituting the second phase difference member 2 may be, for example, a polycarbonate-based resin, a polyester carbonate-based resin, a polyester-based resin, a polyvinyl acetal-based resin, a polyarylate-based resin, a cyclic olefin-based resin, a cellulose-based resin, a polyvinyl alcohol-based resin, a polyamide-based resin, a polyimide-based resin, a polyether-based resin, a polystyrene-based resin, or a (meth)acrylic-based resin. Such resins may be used alone or in combination.
  • the resin constituting the second phase difference member 2 preferably includes a polycarbonate-based resin.
  • the polycarbonate-based resin preferably contains at least one structural unit selected from the group consisting of structural units represented by the following general formula (1) and/or structural units represented by the following general formula (2). These structural units are structural units derived from divalent oligofluorene, and may be referred to as oligofluorene structural units hereinafter. Such polycarbonate-based resins and the like have positive refractive index anisotropy.
  • R 1 to R 3 are each independently a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms;
  • R 4 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 4 to 10 carbon atoms, a substituted or unsubstituted acyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, a substituted or unsubstituted aryloxy group having 1 to 10 carbon atoms, a substituted or unsubstituted amino group, a substituted or unsubstituted vinyl group having 1 to 10 carbon atoms, a substituted or unsubstituted ethynyl group having 1 to 10 carbon atoms, a sulfur atom having a substituent,
  • the content of the oligofluorene structural unit in the polycarbonate resin is, for example, 1 mass% or more, preferably 10 mass% or more, more preferably 15 mass% or more, and even more preferably 18 mass% or more, and is, for example, 40 mass% or less, preferably 35 mass% or less, more preferably 30 mass% or less, and even more preferably 25 mass% or less.
  • the content of the oligofluorene structural unit is equal to or greater than the above lower limit, the desired reverse dispersion wavelength dependency can be stably expressed in the second phase difference member.
  • the phase difference can be stably expressed.
  • the polycarbonate-based resin contains, in addition to the oligofluorene structural unit, a structural unit represented by the following structural formula (3) and/or a structural unit represented by the following structural formula (4).
  • the second phase difference member 2 can exhibit the desired reverse dispersion wavelength dependency more stably.
  • the content ratio of the structural unit represented by the above structural formula (3) in the polycarbonate-based resin is, for example, 5 mass% or more, preferably 10 mass% or more, more preferably 20 mass% or more, and even more preferably 25 mass% or more, and is, for example, 90 mass% or less, preferably 70 mass% or less, and more preferably 50 mass% or less.
  • the content ratio of the structural unit represented by the above structural formula (4) in the polycarbonate-based resin is, for example, 5 mass% or more, preferably 10 mass% or more, and more preferably 15 mass% or more, and for example, 90 mass% or less, preferably 70 mass% or less, and more preferably 50 mass% or less.
  • the resin constituting the second phase difference member 2 particularly preferably contains a (meth)acrylic resin in addition to a polycarbonate resin.
  • the (meth)acrylic resin typically contains a structural unit derived from methyl methacrylate.
  • the content ratio of the structural unit derived from methyl methacrylate in the (meth)acrylic resin is, for example, 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more. If the content ratio of the structural unit derived from methyl methacrylate is equal to or more than the above lower limit, excellent compatibility with the polycarbonate resin can be exhibited.
  • the content ratio of the structural unit derived from methyl methacrylate is typically 100% by mass or less.
  • the weight average molecular weight Mw of the (meth)acrylic resin is, for example, 10,000 or more, preferably 30,000 or more, more preferably 50,000 or more, and is, for example, 200,000 or less, preferably 180,000 or less, more preferably 150,000 or less.
  • the weight average molecular weight is a polystyrene-equivalent molecular weight measured by GPC. If the weight average molecular weight Mw is within this range, excellent compatibility with the polycarbonate resin can be stably expressed.
  • the content of the (meth)acrylic resin in the resin constituting the second phase difference member 2 is, for example, 0 mass% or more, preferably 0.5 mass% or more, more preferably 0.6 mass% or more, and for example, 2.0 mass% or less, preferably 1.5 mass% or less, more preferably 1.0 mass% or less, even more preferably 0.9 mass% or less, and particularly preferably 0.8 mass% or less.
  • the content of the (meth)acrylic resin is within the above range, the extensibility and retardation expression can be significantly increased, and haze can be suppressed.
  • Such a second retardation member 2 is typically a stretched film of a polymer film formed from the resin constituting the above-mentioned second retardation member, and is prepared by stretching a polymer film.
  • the thickness of the second phase difference member 2 can be set so as to obtain desired optical characteristics.
  • the thickness of the second phase difference member 2 is, for example, 15 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and is, for example, 60 ⁇ m or less, preferably 55 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • the third phase difference member 3 is located between the second phase difference member 2 and the fourth phase difference member 4.
  • the third phase difference member 3 is typically attached to the fourth phase difference member 4 via any appropriate adhesive layer 31.
  • the adhesive forming the adhesive layer 31 and the range of the thickness of the adhesive layer 31 are similar to those of the adhesive layer 11 described above.
  • the third phase difference member 3 has a refractive index of nz>nx ⁇ ny.
  • the third phase difference member 3 preferably has a refractive index of nz>nx>ny.
  • a layer (film) having a refractive index of nz>nx>ny is sometimes called a "positive B plate” or the like.
  • the in-plane retardation Re(550) of the third retardation member 3 is, for example, 15 nm or more, preferably 20 nm or more, and is, for example, 55 nm or less, preferably 45 nm or less.
  • the third retardation member 3 has a thickness direction retardation Rth(550) of typically 0 nm or less, preferably ⁇ 20 nm or less, more preferably ⁇ 60 nm or less, for example, ⁇ 250 nm or more, preferably ⁇ 200 nm or more, more preferably ⁇ 150 nm or more.
  • the angle between the slow axis direction of the third phase difference member 3 and the absorption axis direction of the polarizing film 51 is typically 80° to 100°, preferably 85° to 95°, more preferably 88° to 92°, and even more preferably 89° to 91°.
  • the slow axis direction of the third phase difference member 3 and the absorption axis direction of the polarizing film 51 may be substantially parallel.
  • the angle between the slow axis direction of the third phase difference member 3 and the absorption axis direction of the polarizing film 51 is typically 0° ⁇ 5° or less, and preferably 0° ⁇ 1° or less.
  • the third phase difference member 3 may exhibit a reverse dispersion wavelength characteristic, a positive wavelength dispersion characteristic, or a flat wavelength dispersion characteristic.
  • the third phase difference member 3 preferably exhibits a reverse dispersion wavelength characteristic. That is, the third phase difference member 3 preferably satisfies the relationship Re(450) ⁇ Re(550).
  • the third phase difference member 3 may have any appropriate configuration. Specifically, it may be a single phase difference member, or may be a laminate of two or more identical or different phase difference members.
  • the third phase difference member 3 is preferably a single phase difference member (phase difference film).
  • the resin constituting the third phase difference member 3 include thermoplastic resins, and preferably, polymers exhibiting negative birefringence and polymers exhibiting positive birefringence. Such resins can be used alone or in combination. More preferably, the resin constituting the third phase difference member 3 includes a polymer exhibiting negative birefringence.
  • a phase difference member having an index ellipsoid of nz>nx>ny and excellent uniformity in the slow axis direction can be easily obtained.
  • "exhibiting negative birefringence” means that when a polymer is oriented by stretching or the like, the refractive index in the stretching direction becomes relatively small. In other words, the refractive index in the direction perpendicular to the stretching direction becomes large.
  • Examples of polymers exhibiting negative birefringence include polymers in which a chemical bond or functional group with large polarization anisotropy, such as an aromatic ring or a carbonyl group, is introduced into the side chain.
  • examples include acrylic resins, styrene resins, maleimide resins, and fumaric acid ester resins, and preferably styrene resins and fumaric acid ester resins.
  • Preferred examples of the styrene-based resin constituting the third phase difference member 3 include styrene-maleic anhydride copolymer, styrene-acrylonitrile copolymer, styrene-(meth)acrylate copolymer, styrene-maleimide copolymer, vinyl ester-maleimide copolymer, and olefin-maleimide copolymer.
  • a fumaric acid ester-(meth)acrylate copolymer is preferably used. These can be used alone or in combination of two or more.
  • a polymer having a repeating unit represented by the following general formula (I) is preferably used.
  • Such a polymer exhibits even higher negative birefringence and can have excellent heat resistance and mechanical strength.
  • Such a polymer can be obtained, for example, by using an N-phenyl-substituted maleimide in which a phenyl group having a substituent at least at the ortho position is introduced as the N-substituent of the maleimide monomer as the starting material.
  • R 1 to R 5 each independently represent hydrogen, a halogen atom, a carboxylic acid, a carboxylate, a hydroxyl group, a nitro group, or a linear or branched alkyl or alkoxy group having 1 to 8 carbon atoms (provided that R 1 and R 5 are not simultaneously hydrogen atoms), R 6 and R 7 represent hydrogen or a linear or branched alkyl or alkoxy group having 1 to 8 carbon atoms, and n represents an integer of 2 or greater.
  • Such a third phase difference member 3 is typically a stretched film of a polymer film formed from the resin constituting the third phase difference member 3 described above, and is prepared by stretching the polymer film under any appropriate stretching conditions.
  • the thickness of the third phase difference member 3 can be set so as to obtain desired optical characteristics.
  • the thickness of the third phase difference member 3 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and is, for example, 70 ⁇ m or less, preferably 60 ⁇ m or less, and further preferably 40 ⁇ m or less.
  • the fourth phase difference member 4 is typically attached to the polarizing film 51 via any appropriate adhesive layer 41.
  • the adhesive forming the adhesive layer 41 and the range of the thickness of the adhesive layer 41 are similar to those of the above-mentioned adhesive layer 11.
  • the fourth phase difference member 4 is typically a phase difference film.
  • the fourth phase difference member 4 exhibits a refractive index of nx>ny ⁇ nz as described above.
  • a layer (film) having a refractive index of nx>ny>nz may be called a "negative B plate” or the like.
  • the fourth phase difference member 4 preferably exhibits a refractive index of nx>ny>nz.
  • the in-plane retardation Re(550) of the fourth retardation member 4 is, for example, 70 nm or more, preferably 90 nm or more, and is, for example, 140 nm or less, preferably 130 nm or less.
  • the fourth retardation member 4 has a thickness direction retardation Rth(550) of, for example, 40 nm or more, preferably 60 nm or more, and for example, 120 nm or less, preferably 100 nm or less.
  • the angle between the slow axis direction of the fourth phase difference member 4 and the absorption axis direction of the polarizing film 51 is typically 80° to 100°, preferably 85° to 95°, more preferably 88° to 92°, and even more preferably 89° to 91°.
  • the slow axis direction of the fourth phase difference member 4 and the absorption axis direction of the polarizing film 51 may be substantially parallel.
  • the angle between the slow axis direction of the fourth phase difference member 4 and the absorption axis direction of the polarizing film 51 is typically 0° ⁇ 5° or less, and preferably 0° ⁇ 1° or less.
  • the slow axis direction of the third phase difference member 3 is preferably substantially parallel to the slow axis direction of the fourth phase difference member 4.
  • the angle formed between the slow axis direction of the third phase difference member 3 and the slow axis direction of the fourth phase difference member 4 is typically 0° ⁇ 5° or less, preferably 0° ⁇ 1° or less.
  • the fourth phase difference member 4 may exhibit a reverse wavelength dispersion characteristic, a positive wavelength dispersion characteristic, or a flat wavelength dispersion characteristic.
  • the fourth phase difference member 4 preferably exhibits a flat wavelength dispersion characteristic.
  • the resin constituting the fourth phase difference member 4 may be, for example, a norbornene-based resin, a polycarbonate-based resin, a cellulose-based resin, a polyvinyl alcohol-based resin, or a polysulfone-based resin. Such resins may be used alone or in combination.
  • the resin constituting the fourth phase difference member 4 preferably includes a norbornene-based resin and/or a cellulose-based resin.
  • Such a fourth phase difference member 4 is typically a stretched film of a polymer film formed from the resin constituting the fourth phase difference member 4 described above, and is prepared by stretching the polymer film under any appropriate stretching conditions.
  • the thickness of the fourth phase difference member 4 can be set so as to obtain desired optical characteristics.
  • the thickness of the fourth phase difference member 4 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 60 ⁇ m or more, and is, for example, 100 ⁇ m or less, preferably 90 ⁇ m or less, and further preferably 80 ⁇ m or less.
  • the fifth retardation member 50 is typically attached to a polarizing film 51 via any suitable adhesive layer 41 .
  • the fifth phase difference member 50 has a refractive index of nx>nz>ny.
  • a layer (film) having a refractive index of nx>nz>ny is sometimes called a "Z film” or the like.
  • the in-plane retardation Re(550) of the fifth retardation member 50 is typically 210 nm or more and 360 nm or less, and preferably 250 nm or more and 290 nm or less.
  • the Nz coefficient of the fifth phase difference member 50 is typically 0.1 or more and 1.0 or less, and preferably 0.3 or more and 0.7 or less.
  • the fifth phase difference member 50 may exhibit a reverse wavelength dispersion characteristic, a positive wavelength dispersion characteristic, or a flat wavelength dispersion characteristic.
  • the fifth phase difference member 50 preferably exhibits a flat wavelength dispersion characteristic.
  • the fifth phase difference member 50 is typically a phase difference film made of any suitable resin that can realize the above characteristics.
  • the resin that constitutes the fifth phase difference member 50 include polyarylate resins, polyamide resins, polyimide resins, polyester resins, polyaryletherketone resins, polyamideimide resins, polyesterimide resins, polyvinyl alcohol resins, polyfumaric acid ester resins, polyethersulfone resins, polysulfone resins, cycloolefin resins, polycarbonate resins, cellulose resins, and polyurethane resins. These resins can be used alone or in combination.
  • a cycloolefin resin is preferably used, and more preferably a norbornene resin is used.
  • the norbornene resin include "cycloolefin resin obtained by hydrogenating a ring-opening polymer of a norbornene monomer" described in JP-A-2006-208925.
  • the fifth phase difference member 50 can be produced, for example, by laminating a high shrinkage film (e.g., a polypropylene film) to both sides of a polymer film mainly composed of the above-mentioned resin, and then heat-stretching the film by a longitudinal uniaxial stretching method using a roll stretching machine.
  • the high shrinkage film is used to impart a shrinkage force in a direction perpendicular to the stretching direction during heat stretching, and to increase the refractive index (nz) in the thickness direction of the fifth phase difference member 50.
  • the thickness of the fifth phase difference member 50 is typically 20 ⁇ m or more, preferably 30 ⁇ m or more, and more preferably 40 ⁇ m or more, and is typically 200 ⁇ m or less, and preferably 150 ⁇ m or less.
  • the substrate 6 is a substrate for forming a functional layer for forming the optical functional layer 7, and is located on the opposite side (visualization side) of the second phase difference member 2 with respect to the first phase difference member 1.
  • the substrate 6 is typically attached to the first phase difference member 1 via any appropriate pressure-sensitive adhesive layer 61.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 61 and the thickness range of the pressure-sensitive adhesive layer 61 are the same as those of the pressure-sensitive adhesive layer 21 described above.
  • the substrate 6 is formed of any suitable resin film.
  • resins constituting the resin film include polyester-based resins such as polyethylene terephthalate (PET), cycloolefin-based resins such as norbornene-based resins, resins (COC) obtained by addition polymerization of cycloolefins (e.g., norbornene) and ⁇ -olefins (e.g., ethylene), cellulose-based resins such as triacetyl cellulose (TAC), and (meth)acrylic resins.
  • PET polyethylene terephthalate
  • COC resins obtained by addition polymerization of cycloolefins (e.g., norbornene) and ⁇ -olefins (e.g., ethylene)
  • cellulose-based resins such as triacetyl cellulose (TAC)
  • TAC triacetyl cellulose
  • the resin constituting the substrate 6 preferably contains a (meth)acrylic resin,
  • the thickness of the substrate 6 can be appropriately set depending on the purpose.
  • the thickness of the substrate 6 is, for example, 20 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more, and is, for example, 200 ⁇ m or less, preferably 150 ⁇ m or less, more preferably 90 ⁇ m or less.
  • the optical functional layer 7 is typically formed directly on the surface (viewing side surface) of the substrate 6 opposite to the first phase difference member 1.
  • Examples of the optical functional layer 7 include a hard coat layer, an anti-reflection layer, an anti-sticking layer, and an anti-glare layer.
  • the optical functional layer 7 is an anti-reflection layer 7a.
  • the anti-reflection layer 7a is provided to prevent reflection of external light (eg, fluorescent light) and the like.
  • the antireflection layer 7a may have any suitable structure.
  • Representative structures of the antireflection layer 7a include (1) a single layer of a low refractive index layer having an optical thickness of 120 nm to 140 nm and a refractive index of about 1.35 to 1.55, (2) a laminate having a medium refractive index layer, a high refractive index layer, and a low refractive index layer in this order from the substrate 6, and (3) an alternating multilayer laminate of a high refractive index layer and a low refractive index layer.
  • Examples of materials that can form a low refractive index layer include silicon oxide (SiO 2 ) and magnesium fluoride (MgF 2 ).
  • the refractive index of the low refractive index layer is typically about 1.35 to 1.55.
  • Examples of materials that can form a high refractive index layer include titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 3 or Nb 2 O 5 ), tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), and ZrO 2 -TiO 2.
  • the refractive index of the high refractive index layer is typically about 1.60 to 2.20.
  • Examples of materials that can form a medium refractive index layer include titanium oxide (TiO 2 ) and a mixture of a material that can form a low refractive index layer and a material that can form a high refractive index layer (for example, a mixture of titanium oxide and silicon oxide).
  • the refractive index of the medium refractive index layer is typically about 1.50 to 1.85.
  • the thicknesses of the low refractive index layer, the medium refractive index layer and the high refractive index layer can be set so as to realize an appropriate optical film thickness depending on the layer structure of the antireflection layer, the desired antireflection performance, and the like.
  • the antireflection layer 7a has a thickness of, for example, about 20 nm to 300 nm.
  • the difference between the maximum reflectance and the minimum reflectance of the antireflection layer 7a in the wavelength range of 400 nm to 700 nm is preferably 2.0% or less, more preferably 1.9% or less, and even more preferably 1.8% or less. If the difference between the maximum reflectance and the minimum reflectance is in such a range, coloring of reflected light can be effectively prevented.
  • the first surface protective film 8 is located on the opposite side (visualization side) of the first phase difference member 1 with respect to the substrate 6, and is attached to the optical functional layer 7 (more specifically, the antireflection layer 7a) by an adhesive layer 82.
  • the first surface protective film 8 may be temporarily attached during the transportation process of the optical laminate and peeled off before use of the optical laminate (used as a processing material), or may be used while still attached to the surface of the optical laminate (for the purpose of permanent adhesion).
  • the first surface protective film 8 includes a film substrate 81 and an adhesive layer 82 laminated on the film substrate 81 .
  • the second surface protective film 9 is a processing material that is temporarily attached during the transportation process of the optical laminate and is peeled off from the first surface protective film 8 before the foreign matter inspection of the optical laminate.
  • the second surface protective film 9 is attached to the film base 81 of the first surface protective film 8.
  • the pressure-sensitive adhesive layer 20 is located on the opposite side of the polarizing film 51 with respect to the protective layer 52, and is laminated on the hard coat layer 54.
  • the pressure-sensitive adhesive layer 20 is formed of the same pressure-sensitive adhesive layer 21 as described above.
  • the thickness of the pressure-sensitive adhesive layer 20 is typically 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 12 ⁇ m or more, and typically 60 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 23 ⁇ m or less.
  • the release liner 10 is formed of any suitable resin film. Specific examples of materials that are the main components of the resin film include polyethylene terephthalate (PET), polyethylene, and polypropylene. The resin film materials can be used alone or in combination.
  • the release liner 10 can be transparent or non-transparent.
  • a release treatment layer may be provided on the surface of the release liner 10 that comes into contact with the pressure-sensitive adhesive layer 20.
  • release treatment agents that form the release treatment layer include silicone-based release treatment agents, fluorine-based release treatment agents, and long-chain alkyl acrylate-based release agents.
  • the release treatment agents may be used alone or in combination.
  • the thickness of the release treatment layer is typically 50 nm or more and 400 nm or less.
  • the thickness of the release liner 10 is typically 5 ⁇ m or more, preferably 20 ⁇ m or more, and typically 60 ⁇ m or less, preferably 45 ⁇ m or less. When a release treatment layer is applied, the thickness of the release liner includes the thickness of the release treatment layer.
  • Image display device The optical laminate described in the above items A to M can be applied to an image display device. More specifically, the second surface protective film 9 is peeled off from the first surface protective film 8, the release liner 10 is peeled off from the adhesive layer 20, and then the optical laminate is attached to an image display element (image display cell) by the adhesive layer 20 and applied to an image display device. Therefore, one embodiment of the present invention also includes an image display device using such an optical laminate. Representative examples of image display devices include liquid crystal display devices and organic EL display devices.
  • the image display device according to the embodiment of the present invention typically includes the optical laminate described in the above items A to M on the viewing side.
  • the image display device includes an image display panel.
  • the image display panel includes an image display element (image display cell).
  • the image display device may be referred to as an optical display device
  • the image display panel may be referred to as an optical display panel
  • the image display cell may be referred to as an optical display cell.
  • the optical laminate is applied to an image display device such that the lamination direction is substantially parallel to the thickness direction of the image display panel, thereby stably imparting excellent optical compensation performance to the image display device in the front direction and in an oblique direction intersecting with the front direction.
  • the optical laminate may be suitably applied to a retroreflective aerial imaging device (AIRR type aerial display). That is, the optical laminate 100 is preferably an optical laminate for a retroreflective aerial imaging device.
  • a retroreflective aerial imaging device 102 (hereinafter simply referred to as aerial imaging device 102) includes a display element 25, the above-mentioned optical laminate 100, a beam splitter 26, a retroreflective sheet 27, and a ⁇ /4 retardation plate 28.
  • the display element 25, the beam splitter 26, and the retroreflective sheet 27 are arranged in a generally triangular shape in a side view.
  • the display element 25 has a display surface for displaying an image.
  • Examples of the display element 25 include a liquid crystal display and an organic EL display.
  • the optical laminate 100 is provided between the display element 25 and the beam splitter 26.
  • the optical laminate 100 is typically attached to the display surface of the display element 25. More specifically, after the second surface protective film 9 is peeled off from the first surface protective film 8 and the release liner 10 is peeled off from the adhesive layer 20, the optical laminate is attached to the display element 25 by the adhesive layer 20. Light corresponding to an image displayed on the display element 25 is incident on the optical laminate 100.
  • the optical laminate 100 converts the light (random light) of the display element 25 incident from all directions into circularly polarized light in a first rotation direction.
  • the lamination direction of the optical laminate 100 is typically substantially parallel to the direction perpendicular to the display surface.
  • the multiple phase difference members are located on the opposite side of the display element 25 with respect to the polarizing member 5.
  • the multiple phase difference members include a first phase difference member 1, a second phase difference member 2, a third phase difference member 3, and a fourth phase difference member 4, the first phase difference member 1, the second phase difference member 2, the third phase difference member 3, and the fourth phase difference member 4 are arranged in this order from the beam splitter 26 side.
  • the multiple phase difference members include a first phase difference member 1, a second phase difference member 2, and a fifth phase difference member 50, the first phase difference member 1, the second phase difference member 2, and the fifth phase difference member 50 are arranged in this order from the beam splitter 26 side.
  • Beam splitter 26 is a circular polarizing beam splitter that selectively reflects circularly polarized light in a first rotation direction and selectively transmits circularly polarized light in a second rotation direction opposite to the first rotation direction.
  • Beam splitter 26 is composed of, for example, cholesteric liquid crystal.
  • the angle between beam splitter 26 and display element 25 is typically within 45° ⁇ 5°.
  • the retroreflective sheet 27 can retroreflect the light reflected by the beam splitter 26 back towards the beam splitter 26 (reflecting the light from the beam splitter in a direction opposite to the incident direction). Any appropriate configuration can be adopted for the retroreflective sheet 27. Examples of retroreflective sheets include a bead type and a prism type. The angle between the retroreflective sheet 27 and the display element 25 is typically within 90° ⁇ 5°.
  • the ⁇ /4 retardation plate 28 is disposed between the retroreflective sheet 27 and the beam splitter 26.
  • the ⁇ /4 retardation plate 28 is typically provided on the surface of the retroreflective sheet 27 on the beam splitter side.
  • the ⁇ /4 retardation plate 28 typically has a refractive index of nx>ny ⁇ nz.
  • the in-plane retardation Re(550) of the ⁇ /4 retardation plate 28 is, for example, 100 nm to 200 nm, and preferably 130 nm to 150 nm.
  • the thickness of the ⁇ /4 phase difference plate 28 is set so as to have an appropriate function as a ⁇ /4 plate.
  • the thickness of the ⁇ /4 phase difference plate 28 is, for example, 20 to 100 ⁇ m, preferably 20 to 60 ⁇ m, and more preferably 30 to 50 ⁇ m.
  • the optical stack 100 converts the incident light (random light) into circularly polarized light in a first rotation direction and emits the light. Since the ellipticity is equal to or greater than the lower limit, the optical stack 100 can efficiently convert both the light incident along the stacking direction and the light incident in an oblique direction intersecting the stacking direction. Then, the beam splitter 26 reflects the circularly polarized light in the first rotation direction from the optical laminate 100 toward the retroreflective sheet 27.
  • the circularly polarized light in the first rotation direction reflected by the beam splitter 26 passes through the ⁇ /4 phase difference plate 28 before reaching the retroreflective sheet 27 and after being retroreflected by the retroreflective sheet 27. This reverses the rotation direction of the circularly polarized light. That is, the circularly polarized light in the first rotation direction becomes circularly polarized light in the second rotation direction. Then, the circularly polarized light in the second rotation direction passes through the beam splitter 26 and is imaged at a position that is plane-symmetrical to the display element 25 with respect to the beam splitter 26. As a result, a clear aerial image I is formed.
  • the ellipticity of the optical laminate obtained in the examples and comparative examples is measured using a high-speed and high-precision Mueller matrix polarimeter (Axometrics, AxoScan).More specifically, the optical laminate is set in the polarimeter, and light with wavelengths of 450 nm, 550 nm, and 650 nm is incident from the polarizing member side at 23 ° C., and light is emitted from the first phase difference member side, and the minor axis radius b/major axis radius a of the emitted light at the azimuth angle and elevation angle shown in Table 1 are measured, and the average value of the minor axis radius b/major axis radius a of the light of the above three kinds of wavelengths is shown in Table 1 as ellipticity.
  • Axometrics AxoScan
  • thermoplastic resin substrate a long amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a Tg of about 75° C. was used, and one side of the resin substrate was subjected to a corona treatment.
  • a PVA aqueous solution (coating solution) was prepared by adding 13 parts by mass of potassium iodide to 100 parts by mass of a PVA-based resin prepared by mixing polyvinyl alcohol (degree of polymerization 4,200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name "GOHSEFFIMER”) in a ratio of 9:1, and dissolving the resultant in water.
  • the above PVA aqueous solution was applied to the corona-treated surface of a resin substrate and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m, thereby producing a laminate.
  • the obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (machine direction) in an oven at 130° C. (auxiliary in-air stretching treatment).
  • the laminate was immersed in an insolubilizing bath (a boric acid aqueous solution obtained by mixing 4 parts by mass of boric acid with 100 parts by mass of water) having a liquid temperature of 40° C. for 30 seconds (insolubilizing treatment).
  • the film was immersed in a dye bath (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1:7 to 100 parts by mass of water) having a liquid temperature of 30° C.
  • the plate was immersed in a crosslinking bath (a boric acid aqueous solution obtained by mixing 3 parts by mass of potassium iodide and 5 parts by mass of boric acid with respect to 100 parts by mass of water) at a liquid temperature of 40° C. for 30 seconds (crosslinking treatment).
  • a crosslinking bath a boric acid aqueous solution obtained by mixing 3 parts by mass of potassium iodide and 5 parts by mass of boric acid with respect to 100 parts by mass of water
  • the laminate was immersed in an aqueous boric acid solution (boric acid concentration: 4 wt %, potassium iodide concentration: 5 wt %) at a liquid temperature of 70° C., and uniaxially stretched in the longitudinal direction (longitudinal direction) between rolls with different peripheral speeds to a total stretch ratio of 5.5 times (underwater stretching treatment). Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by mixing 4 parts by mass of potassium iodide with 100 parts by mass of water) at a liquid temperature of 20° C. (cleaning treatment).
  • a cleaning bath an aqueous solution obtained by mixing 4 parts by mass of potassium iodide with 100 parts by mass of water
  • the film was dried in an oven maintained at about 90° C., while being brought into contact with a SUS heated roll whose surface temperature was maintained at about 75° C. (drying shrinkage treatment).
  • a polarizing film having a thickness of about 5 ⁇ m was formed on the resin substrate, and a laminate having a resin substrate/polarizing film structure was obtained.
  • a cellulose-based resin film (thickness: 32 ⁇ m) provided with a hard coat layer was attached as a protective layer to the polarizing film surface (the surface opposite to the resin substrate) of the obtained laminate via an ultraviolet-curable adhesive layer.
  • the resin substrate was then peeled off to obtain a polarizing member having a protective layer/polarizing film configuration.
  • a liquid crystal coating solution was prepared by dissolving 20 parts by mass of a side-chain liquid crystal polymer represented by the following chemical formula (II) (the numbers 65 and 35 in the formula indicate the mole percentages of the monomer units, and are conveniently represented as a block polymer: weight average molecular weight 5000), 80 parts by mass of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: product name Paliocolor LC242), and 5 parts by mass of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals: product name Irgacure 907) in 200 parts by mass of cyclopentanone.
  • a side-chain liquid crystal polymer represented by the following chemical formula (II) (the numbers 65 and 35 in the formula indicate the mole percentages of the monomer units, and are conveniently represented as a block polymer: weight average molecular weight 5000), 80 parts by mass of a polymerizable liquid crystal exhibiting a
  • the coating liquid was then applied to a substrate film (norbornene-based resin film: manufactured by Zeon Corporation, product name "ZEONEX”) using a bar coater, and the liquid crystal was aligned by heating and drying for 4 minutes at 80° C.
  • the liquid crystal layer was irradiated with ultraviolet light to harden the liquid crystal layer, thereby forming a first retardation member (first retardation film) having a thickness of 4 ⁇ m on the substrate.
  • the retardation Rth(550) in the thickness direction of the first retardation member (positive C plate) is shown in Table 1.
  • the reactor was heated with a heat medium, and stirring was started when the internal temperature reached 100 ° C.
  • the internal temperature was allowed to reach 220°C 40 minutes after the start of the temperature rise, and the pressure was controlled to maintain this temperature while simultaneously starting decompression, and the pressure was reduced to 13.3 kPa in 90 minutes after reaching 220°C.
  • Phenol vapor by-produced during the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer components contained in the phenol vapor were returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C and recovered.
  • the obtained polyester carbonate-based resin was vacuum-dried at 80°C for 5 hours, and then stretched in the width direction of the roll at a stretching temperature of 150°C using a film-forming device equipped with a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder setting temperature: 250°C), a T-die (width 200 mm, setting temperature: 250°C), a chill roll (setting temperature: 120 to 130°C) and a winder, to obtain a second retardation member (second retardation film) having a thickness of 47 ⁇ m as described in Table 1.
  • the second phase difference member thus obtained has an Re(550) of 147 nm and can function as a ⁇ /4 member.
  • the mixture was then cooled to room temperature, and the suspension containing the produced polymer particles was centrifuged.
  • the obtained polymer was washed twice with distilled water and twice with methanol, and then dried under reduced pressure.
  • the obtained fumaric acid ester-based resin was dissolved in a toluene-methyl ethyl ketone mixed solution (toluene/methyl ethyl ketone 50% by mass/50% by mass) to prepare a 20% by mass solution. Further, 5 parts by mass of tributyl trimellitate as a plasticizer was added to 100 parts by mass of the fumaric acid ester-based resin to prepare a dope.
  • the prepared dope was formed into a film of a desired thickness on a biaxially stretched polyester (polyethylene terephthalate/isophthalate copolymer) film (thickness: 75 ⁇ m, width: 1350 mm) as a support film, and then dried by heating.
  • the laminate was set in the unwinding section of a stretching device, and while unwinding and transporting the laminate downstream, the stretching ratio and stretching temperature were adjusted to obtain the retardation values shown in Table 1, and free-end uniaxial stretching was performed in a stretching furnace.
  • the support was peeled off from the laminate after stretching to obtain a third retardation member (third retardation film).
  • the third retardation member (third retardation film) thus obtained had a refractive index of nz>nx>ny.
  • the in-plane retardation Re(550) and the thickness direction retardation Rth(550) of the third retardation member are shown in Table 1.
  • a third retardation member (third retardation film) having a thickness of 5 ⁇ m shown in Table 1 was obtained in the same manner as in Production Example 4, except that the stretching ratio was changed so as to obtain the retardation value shown in Table 1.
  • the second phase difference member and the third phase difference member were bonded together with a (meth)acrylic pressure-sensitive adhesive layer (thickness 23 ⁇ m).
  • the third phase difference member and the fourth phase difference member were bonded together with an ultraviolet-curing adhesive layer (thickness 1 ⁇ m).
  • the fourth phase difference member and the polarizing member (specifically, the polarizing film) were bonded together with an ultraviolet-curing adhesive layer (thickness 1 ⁇ m). In this way, an optical laminate was produced.
  • the obtained optical laminate was subjected to the above-mentioned measurement of ellipticity.
  • the second phase difference member and the fifth phase difference member were bonded together with a (meth)acrylic pressure-sensitive adhesive layer (thickness 23 ⁇ m).
  • the fifth phase difference member and the polarizing member (specifically, the polarizing film) were bonded together with an ultraviolet-curing adhesive layer (thickness 1 ⁇ m). In this way, an optical laminate was produced.
  • the obtained optical laminate was subjected to the above-mentioned measurement of ellipticity.
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • the configurations shown in the above-described embodiments can be replaced with configurations that are substantially the same as those shown in the above-described embodiments, that have the same effects, or that can achieve the same purpose.
  • the optical laminate of the present invention can be used in image display devices (typically liquid crystal display devices and organic EL display devices), and can be particularly suitably used in retroreflective aerial imaging devices (floating displays).
  • image display devices typically liquid crystal display devices and organic EL display devices
  • retroreflective aerial imaging devices floating displays

Abstract

Provided is an optical laminate having excellent optical compensation performance in a lamination direction and an oblique direction. An optical laminate according to an embodiment of the present invention comprises: a polarizing member; and a plurality of retardation members disposed on the viewing side of the polarizing member, wherein the ellipticity measured at each of an elevation angle of 90° and an elevation angle of 30° at an azimuth angle of 0° is 0.75 or more.

Description

光学積層体Optical laminate
 本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
 液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、画像表示の性能を高めるために、偏光部材と位相差部材とを含む光学積層体が広く使用されている。ところで、近年、画像表示装置の新たな用途が開発されている。そのような用途の一例としては、空中ディスプレイなどが挙げられる(例えば、特許文献1参照)。空中ディスプレイのなかでも、再帰反射による空中結像(AIRR : aerial imaging by retro-reflection)を活用した空中ディスプレイは、様々な場面での利用が検討されており、デバイス入射光から実像への変換効率の向上が望まれている。しかし、偏光部材と位相差部材とを含む光学積層体をAIRR型の空中ディスプレイに適用しても、光学補償性能が不十分であり、光学積層体に対して表示素子から斜めに入射される光を効率よく変換できない場合がある。そのため、鮮明な空中結像を作り出すことが困難である。 Image display devices, such as liquid crystal display devices and electroluminescence (EL) display devices (e.g., organic EL display devices, inorganic EL display devices), are rapidly becoming popular. In image display devices, optical laminates containing polarizing members and phase difference members are widely used to realize image display and improve the performance of image display. Meanwhile, new uses of image display devices have been developed in recent years. One example of such uses is an aerial display (see, for example, Patent Document 1). Among aerial displays, aerial displays utilizing aerial imaging by retroreflection (AIRR: aerial imaging by retroreflection) are being considered for use in various situations, and there is a demand for improving the conversion efficiency from device incident light to a real image. However, even if an optical laminate containing a polarizing member and a phase difference member is applied to an AIRR-type aerial display, the optical compensation performance is insufficient, and there are cases in which light obliquely incident from a display element to the optical laminate cannot be efficiently converted. Therefore, it is difficult to create a clear aerial image.
特開2022-31074号公報JP 2022-31074 A
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、積層方向、および、積層方向と交差する斜め方向において、優れた光学補償性能を有する光学積層体を提供することにある。 The present invention has been made to solve the above-mentioned problems of the conventional art, and its main objective is to provide an optical laminate that has excellent optical compensation performance in the stacking direction and in an oblique direction intersecting with the stacking direction.
[1]本発明の実施形態による光学積層体は、偏光部材と;該偏光部材の視認側に配置される複数の位相差部材と;を備え、方位角0°において仰角90°および仰角30°のそれぞれで測定される楕円率が、0.75以上である。
[2]上記[1]に記載の光学積層体において、方位角45°における仰角90°および仰角30°のそれぞれで測定される楕円率が、0.70以上であってもよい。
[3]上記[1]または[2]に記載の光学積層体において、上記複数の位相差部材は、nz>nx=nyの屈折率を有する第一位相差部材と;λ/4部材として機能する第二位相差部材と;nz>nx≧nyの屈折率を有する第三位相差部材と;nx>ny≧nzの屈折率を有する第四位相差部材と;を視認側からこの順に含んでもよい。
[4]上記[1]または[2]に記載の光学積層体において、上記複数の位相差部材は、nz>nx=nyの屈折率を有する第一位相差部材と;λ/4部材として機能する第二位相差部材と;nx>nz>nyの屈折率を有する第五位相差部材と;を視認側からこの順に含んでもよい。該偏光部材の吸収軸方向と該第五位相差部材の遅相軸方向とがなす角度は、90°±1.5°以下であってもよい。
[1] An optical laminate according to an embodiment of the present invention comprises a polarizing member and a plurality of phase difference members arranged on the viewing side of the polarizing member, and has an ellipticity of 0.75 or more measured at an azimuth angle of 0° and an elevation angle of 90° and an elevation angle of 30°.
[2] In the optical laminate according to the above [1], the ellipticity measured at an elevation angle of 90° and an elevation angle of 30° at an azimuth angle of 45° may be 0.70 or more.
[3] In the optical laminate described in [1] or [2] above, the multiple phase difference members may include, in this order from the viewing side, a first phase difference member having a refractive index of nz>nx=ny; a second phase difference member functioning as a λ/4 member; a third phase difference member having a refractive index of nz>nx≧ny; and a fourth phase difference member having a refractive index of nx>ny≧nz.
[4] In the optical laminate according to [1] or [2], the plurality of phase difference members may include, in this order from the viewing side, a first phase difference member having a refractive index of nz>nx=ny, a second phase difference member functioning as a λ/4 member, and a fifth phase difference member having a refractive index of nx>nz>ny. The angle between the absorption axis direction of the polarizing member and the slow axis direction of the fifth phase difference member may be 90°±1.5° or less.
 本発明の実施形態によれば、積層方向および斜め方向において、優れた光学補償性能を有する光学積層体を実現し得る。このような光学積層体を再帰反射型の空中結像装置に適用すれば、鮮明な空中結像を作り出すことができる。 According to an embodiment of the present invention, it is possible to realize an optical laminate that has excellent optical compensation performance in both the lamination direction and the oblique direction. If such an optical laminate is applied to a retroreflective aerial imaging device, it is possible to create a clear aerial image.
図1は、本発明の1つの実施形態による光学積層体の概略断面図である。FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. 図2は、本発明の別の実施形態による光学積層体の概略断面図である。FIG. 2 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention. 図3は、図1の光学積層体における方位角を説明するための概略平面図である。FIG. 3 is a schematic plan view for explaining the azimuth angle in the optical laminate of FIG. 図4は、図1の光学積層体における仰角を説明するための概略側面図である。FIG. 4 is a schematic side view for explaining the elevation angle in the optical laminate of FIG. 図5は、本発明の1つの実施形態による光学積層体を備える空中結像装置の概略構成図である。FIG. 5 is a schematic diagram of an aerial imaging device including an optical stack according to one embodiment of the present invention.
 以下、本発明の代表的な実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Below, we will explain some representative embodiments of the present invention, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
The definitions of terms and symbols used in this specification are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., the slow axis direction), "ny" is the refractive index in the direction perpendicular to the slow axis in the plane (i.e., the fast axis direction), and "nz" is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
"Re(λ)" is the in-plane retardation measured with light having a wavelength of λ nm at 23° C. For example, "Re(550)" is the in-plane retardation measured with light having a wavelength of 550 nm at 23° C. Re(λ) is calculated by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Retardation in the thickness direction (Rth)
"Rth(λ)" is the retardation in the thickness direction measured with light having a wavelength of λ nm at 23° C. For example, "Rth(550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23° C. Rth(λ) is calculated by the formula: Rth(λ)=(nx-nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz Coefficient The Nz coefficient is calculated by Nz=Rth/Re.
(5) Angle When referring to an angle in this specification, the angle includes both clockwise and counterclockwise angles with respect to a reference direction. Thus, for example, "45°" means ±45°.
A.光学積層体の全体構成
 図1は本発明の1つの実施形態による光学積層体の概略断面図であり;図2は本発明の別の実施形態による光学積層体の概略断面図である。
 図示例の光学積層体100は、偏光膜51を含む偏光部材5と;偏光部材5の視認側に配置される複数の位相差部材と;を備えている。光学積層体100では、方位角0°において仰角90°および仰角30°のそれぞれで測定される楕円率が、0.75以上である。方位角0°における仰角90°で測定される楕円率は、好ましくは0.80以上、より好ましくは0.85以上、さらに好ましくは0.88以上、とりわけ好ましくは0.90以上である。方位角0°における仰角30°で測定される楕円率は、好ましくは0.80以上、より好ましくは0.82以上、さらに好ましくは0.84以上、とりわけ好ましくは0.85以上である。
 方位角0°において仰角90°および仰角30°のそれぞれで測定される楕円率が上記下限以上であると、光学積層体の積層方向、および、積層方向と交差する斜め方向において、光学補償性能を向上できる。そのため、このような光学積層体を後述する空中結像装置に適用すると、光学積層体に対して斜め方向に入射される光を効率よく変換でき、鮮明な空中結像を作り出すことができる。方位角0°において仰角90°および仰角30°のそれぞれで測定される楕円率の上限は、代表的には1.00以下であり、また例えば0.95以下である。
A. Overall Configuration of the Optical Laminate Figure 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention; Figure 2 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention.
The optical laminate 100 of the illustrated example includes a polarizing member 5 including a polarizing film 51; and a plurality of phase difference members arranged on the viewing side of the polarizing member 5. In the optical laminate 100, the ellipticity measured at an elevation angle of 90° and an elevation angle of 30° at an azimuth angle of 0° is 0.75 or more. The ellipticity measured at an elevation angle of 90° at an azimuth angle of 0° is preferably 0.80 or more, more preferably 0.85 or more, even more preferably 0.88 or more, and particularly preferably 0.90 or more. The ellipticity measured at an elevation angle of 30° at an azimuth angle of 0° is preferably 0.80 or more, more preferably 0.82 or more, even more preferably 0.84 or more, and particularly preferably 0.85 or more.
When the ellipticity measured at an azimuth angle of 0° and an elevation angle of 90° and an elevation angle of 30° is equal to or greater than the lower limit, the optical compensation performance can be improved in the stacking direction of the optical laminate and in the oblique direction intersecting the stacking direction. Therefore, when such an optical laminate is applied to an aerial imaging device described later, light incident in an oblique direction on the optical laminate can be efficiently converted, and a clear aerial image can be created. The upper limit of the ellipticity measured at an azimuth angle of 0° and an elevation angle of 90° and an elevation angle of 30° is typically 1.00 or less, and is, for example, 0.95 or less.
 本明細書において「方位角」とは、図3に示すように、偏光膜の吸収軸方向を基準として、当該基準方向と;光学積層体の面方向(積層方向と直交する方向)と;がなす角度θ1を意味する。方位角θ1が0°である場合、面方向と基準方向とは実質的に平行である。
 本明細書において「仰角」とは、図4に示すように、光学積層体の面方向を基準として、当該基準方向と;当該基準方向と同一の仮想平面上に位置する測定方向と;がなす角度θ2である。測定方向は、代表的には、楕円率の測定時において楕円率測定装置(代表的にはミュラーマトリクス・ポラリメータ)の受光部と、光学積層体の表面の任意の点とを結ぶ方向である。仰角が0°である場合、測定方向と基準方向とは実質的に平行であり、仰角が90°である場合、測定方向と積層方向とは実質的に平行である。
 本明細書において「楕円率」とは、光(偏光)が円偏光に近いか直線偏光に近いかを示す指標であって、楕円偏光の長軸半径aに対する短軸半径bの比(b/a)である。楕円率が1.0とは実質的に円偏光を意味し、楕円率が0とは実質的に直線偏光を示す。
 楕円率は、例えば以下の方法により算出できる。
 波長450nm、550nmおよび650nmのそれぞれの光を、偏光部材側から光学積層体に入射し、複数の位相差部材を通過して出射された出射光(楕円偏光)の長軸半径aおよび短軸半径bを所定の仰角および方位角で測定し、それら波長の異なる光の短軸半径b/長軸半径aの平均値を楕円率とする。なお、より詳細には、楕円率は、後述する実施例に記載の方法に準拠して算出できる。
In this specification, the term "azimuth angle" refers to the angle θ1 between the absorption axis direction of the polarizing film as a reference and the surface direction of the optical laminate (direction perpendicular to the lamination direction) as shown in Fig. 3. When the azimuth angle θ1 is 0°, the surface direction and the reference direction are substantially parallel to each other.
In this specification, the "elevation angle" is the angle θ2 between the reference direction and the measurement direction located on the same virtual plane as the reference direction, as shown in FIG. 4, based on the surface direction of the optical laminate. The measurement direction is typically a direction connecting the light receiving part of an ellipticity measuring device (typically a Mueller matrix polarimeter) and any point on the surface of the optical laminate when measuring the ellipticity. When the elevation angle is 0°, the measurement direction and the reference direction are substantially parallel, and when the elevation angle is 90°, the measurement direction and the stacking direction are substantially parallel.
In this specification, "ellipticity" is an index showing whether light (polarized light) is close to circularly polarized light or close to linearly polarized light, and is the ratio (b/a) of the minor axis radius b to the major axis radius a of elliptically polarized light. An ellipticity of 1.0 means substantially circularly polarized light, and an ellipticity of 0 means substantially linearly polarized light.
The ellipticity can be calculated, for example, by the following method.
Light having wavelengths of 450 nm, 550 nm, and 650 nm is incident on the optical laminate from the polarizing member side, and the major axis radius a and the minor axis radius b of the emitted light (elliptically polarized light) that passes through multiple phase difference members are measured at a predetermined elevation angle and azimuth angle, and the average value of the minor axis radius b/major axis radius a of the lights having different wavelengths is defined as the ellipticity. More specifically, the ellipticity can be calculated in accordance with the method described in the examples below.
 1つの実施形態において、光学積層体100では、方位角45°において仰角90°および仰角30°のそれぞれで測定される楕円率が、0.70以上である。方位角45°における仰角90°で測定される楕円率は、好ましくは0.80以上、より好ましくは0.85以上、さらに好ましくは0.88以上、とりわけ好ましくは0.90以上である。方位角45°における仰角30°で測定される楕円率は、好ましくは0.80以上、より好ましくは0.81以上、さらに好ましくは0.83以上、とりわけ好ましくは0.84以上である。
 方位角45°において仰角90°および仰角30°のそれぞれで測定される楕円率が上記下限以上であると、積層方向および斜め方向における光学補償性能を安定して向上できる。方位角45°において仰角90°および仰角30°のそれぞれで測定される楕円率の上限は、代表的には1.00以下であり、また例えば0.95以下である。
In one embodiment, the optical laminate 100 has an ellipticity of 0.70 or more measured at an elevation angle of 90° and an elevation angle of 30° at an azimuth angle of 45°. The ellipticity measured at an elevation angle of 90° at an azimuth angle of 45° is preferably 0.80 or more, more preferably 0.85 or more, even more preferably 0.88 or more, and particularly preferably 0.90 or more. The ellipticity measured at an elevation angle of 30° at an azimuth angle of 45° is preferably 0.80 or more, more preferably 0.81 or more, even more preferably 0.83 or more, and particularly preferably 0.84 or more.
When the ellipticity measured at an elevation angle of 90° and an elevation angle of 30° at an azimuth angle of 45° is equal to or greater than the lower limit, the optical compensation performance in the stacking direction and in the oblique direction can be stably improved. The upper limit of the ellipticity measured at an elevation angle of 90° and an elevation angle of 30° at an azimuth angle of 45° is typically 1.00 or less, and is, for example, 0.95 or less.
 図1および図2に示すように、複数の位相差部材は、代表的には、nz>nx=nyの屈折率を有する第一位相差部材1と;λ/4部材として機能する第二位相差部材2と;を視認側からこの順に含んでいる。このような構成によれば、積層方向および斜め方向における光学補償性能をより安定して向上できる。 As shown in Figures 1 and 2, the multiple phase difference members typically include, in this order from the viewing side, a first phase difference member 1 having a refractive index of nz>nx=ny; and a second phase difference member 2 functioning as a λ/4 member. With this configuration, the optical compensation performance in the stacking direction and oblique directions can be improved more stably.
 図1に示すように、1つの実施形態において、複数の位相差部材は、上記した第一位相差部材1と;上記した第二位相差部材2と;nz>nx≧nyの屈折率を有する第三位相差部材3と;nx>ny≧nzの屈折率を有する第四位相差部材4と;を視認側からこの順に含んでいる。
 また、図2に示すように、複数の位相差部材は、上記した第一位相差部材1と;上記した第二位相差部材2と;nx>nz>nyの屈折率を有する第五位相差部材50と;を視認側からこの順に含んでいてもよい。すなわち、複数の位相差部材は、第三位相差部材3および第四位相差部材4に代えて、第五位相差部材50を含んでいてもよい。この場合、偏光部材5が備える偏光膜51の吸収軸方向と第五位相差部材50の遅相軸方向とがなす角度は、例えば90°±1.5°以下(すなわち88.5°以上91.5°以下)であり、好ましくは90°±1.0°未満(すなわち89.0°を超過し91.0°未満)であり、より好ましくは90°±0.5°以下(すなわち89.5°以上90.5°以下)である。
 これら構成によれば、積層方向および斜め方向における光学補償性能をより一層安定して向上できる。
 なお、図1では位相差部材の数が4つであり、図2では位相差部材の数が3つであるが、位相差部材の数はこれに限定されない。複数の位相差部材は、上記した位相差部材に加えて、別の位相差部材をさらに含んでいてもよい。
As shown in FIG. 1 , in one embodiment, the multiple phase difference members include, in this order from the viewing side, the first phase difference member 1 described above; the second phase difference member 2 described above; a third phase difference member 3 having a refractive index of nz>nx≧ny; and a fourth phase difference member 4 having a refractive index of nx>ny≧nz.
2, the plurality of phase difference members may include the first phase difference member 1 described above; the second phase difference member 2 described above; and a fifth phase difference member 50 having a refractive index of nx>nz>ny, in this order from the viewing side. That is, the plurality of phase difference members may include the fifth phase difference member 50 instead of the third phase difference member 3 and the fourth phase difference member 4. In this case, the angle between the absorption axis direction of the polarizing film 51 provided in the polarizing member 5 and the slow axis direction of the fifth phase difference member 50 is, for example, 90°±1.5° or less (i.e., 88.5° or more and 91.5° or less), preferably less than 90°±1.0° (i.e., more than 89.0° and less than 91.0°), and more preferably 90°±0.5° or less (i.e., 89.5° or more and 90.5° or less).
According to these configurations, the optical compensation performance in the stacking direction and in the oblique direction can be improved more stably.
In addition, the number of phase difference members is four in Fig. 1 and three in Fig. 2, but the number of phase difference members is not limited to this. The multiple phase difference members may further include another phase difference member in addition to the above-mentioned phase difference members.
 1つの実施形態において、光学積層体100は、第一位相差部材1に対して第二位相差部材2と反対側に位置する基材6と;基材6に対して第一位相差部材1の反対側に位置する光学機能層7と;をさらに備えている。光学積層体が光学機能層を備えることにより、光学機能層に応じた光学的機能を光学積層体に付与することができる。 In one embodiment, the optical laminate 100 further comprises a substrate 6 located on the opposite side of the first phase difference member 1 from the second phase difference member 2; and an optical functional layer 7 located on the opposite side of the first phase difference member 1 from the substrate 6. By providing the optical laminate with an optical functional layer, it is possible to impart an optical function corresponding to the optical functional layer to the optical laminate.
 1つの実施形態において、光学積層体100は、第一位相差部材1に対して第二位相差部材2と反対側に位置する第1表面保護フィルム8をさらに備えている。図示例では、第1表面保護フィルム8は、基材6に対して第一位相差部材1と反対側に位置している。 In one embodiment, the optical laminate 100 further includes a first surface protective film 8 located on the opposite side of the first phase difference member 1 from the second phase difference member 2. In the illustrated example, the first surface protective film 8 is located on the opposite side of the substrate 6 from the first phase difference member 1.
 また、光学積層体100は、第2表面保護フィルム9をさらに備えていてもよい。第2表面保護フィルム9は、第1表面保護フィルム8に対して第一位相差部材1と反対側に位置しており、第1表面保護フィルム8に仮着されている。 The optical laminate 100 may further include a second surface protective film 9. The second surface protective film 9 is located on the opposite side of the first phase difference member 1 with respect to the first surface protective film 8, and is temporarily attached to the first surface protective film 8.
 1つの実施形態において、光学積層体100は、偏光部材5に対して複数の相差部材と反対側(視認側と反対側)に位置する粘着剤層20をさらに備えている。これによって、光学積層体100は、粘着剤層20により、各種光学部品(例えば、画像表示セル、再帰反射シート)に貼り付け可能とされる。 In one embodiment, the optical laminate 100 further includes an adhesive layer 20 located on the opposite side of the polarizing member 5 to the multiple retardation members (opposite the viewing side). This allows the optical laminate 100 to be attached to various optical components (e.g., image display cells, retroreflective sheets) by the adhesive layer 20.
 また、光学積層体100は、はく離ライナー10をさらに備えていてもよい。はく離ライナー10は、粘着剤層20に対して偏光部材5と反対側に位置しており、粘着剤層20の表面に仮着されている。はく離ライナー10は、光学積層体が光学部品に貼り付けられるまで粘着剤層20に仮着されており、光学積層体の貼り付け時に粘着剤層20から剥離される。 The optical laminate 100 may further include a release liner 10. The release liner 10 is located on the opposite side of the adhesive layer 20 from the polarizing member 5, and is temporarily attached to the surface of the adhesive layer 20. The release liner 10 is temporarily attached to the adhesive layer 20 until the optical laminate is attached to an optical component, and is peeled off from the adhesive layer 20 when the optical laminate is attached.
 光学積層体100は、代表的には積層方向から見て矩形状である。より具体的には、光学積層体100は、長辺10mm~70mmおよび短辺10mm~70mm程度、また長辺20mm~40mmおよび短辺10mm~30mm程度、より詳細には長辺30mmおよび短辺20mm程度の矩形状であり得る。 The optical laminate 100 is typically rectangular when viewed from the stacking direction. More specifically, the optical laminate 100 may be rectangular with long sides of about 10 mm to 70 mm and short sides of about 10 mm to 70 mm, or long sides of about 20 mm to 40 mm and short sides of about 10 mm to 30 mm, and more specifically, long sides of about 30 mm and short sides of about 20 mm.
 以下、光学積層体の構成要素について説明する。 The components of the optical laminate are explained below.
B.偏光部材
 偏光部材5は、代表的には、吸収型偏光部材である。偏光部材5は、偏光膜51を備えている。偏光部材5は、保護層をさらに備えてもよい。保護層は、偏光膜の少なくとも一方の面に設けられてもよく、偏光膜の両面に設けられてもよい。図示例では、偏光部材5は、偏光膜51の視認側と反対側の面に設けられる保護層52を備えている。保護層52は、代表的には、任意の適切な接着剤層53を介して偏光膜51に貼り合わされている。接着剤層53を形成する接着剤として、代表的には紫外線硬化型接着剤が挙げられる。接着剤層53の厚みは、例えば1.5μm以上、好ましくは2.0μm以上であり、例えば5.0μm以下、好ましくは3.0μm以下である。
B. Polarizing Member The polarizing member 5 is typically an absorptive polarizing member. The polarizing member 5 includes a polarizing film 51. The polarizing member 5 may further include a protective layer. The protective layer may be provided on at least one surface of the polarizing film, or may be provided on both surfaces of the polarizing film. In the illustrated example, the polarizing member 5 includes a protective layer 52 provided on the surface of the polarizing film 51 opposite to the viewing side. The protective layer 52 is typically bonded to the polarizing film 51 via any suitable adhesive layer 53. A typical example of the adhesive forming the adhesive layer 53 is an ultraviolet-curing adhesive. The thickness of the adhesive layer 53 is, for example, 1.5 μm or more, preferably 2.0 μm or more, and, for example, 5.0 μm or less, preferably 3.0 μm or less.
 B-1.偏光膜
 偏光膜51は、任意の適切な吸収型偏光膜が採用され得る。偏光膜51は、代表的には、二色性物質を含む樹脂フィルムを含む。偏光膜51は、単層の樹脂フィルムから作製してもよく、二層以上の積層体を用いて作製してもよい。
B-1. Polarizing film Any appropriate absorptive polarizing film may be adopted as the polarizing film 51. The polarizing film 51 typically includes a resin film containing a dichroic material. The polarizing film 51 may be made of a single-layer resin film or may be made using a laminate of two or more layers.
 単層の樹脂フィルムから作製する場合、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理、延伸処理等を施すことにより吸収型偏光膜を得ることができる。中でも、PVA系フィルムをヨウ素で染色し一軸延伸して得られる吸収型偏光膜が好ましい。 When made from a single-layer resin film, for example, an absorptive polarizing film can be obtained by subjecting a hydrophilic polymer film such as a polyvinyl alcohol (PVA)-based film, a partially formalized PVA-based film, or an ethylene-vinyl acetate copolymer-based partially saponified film to a dyeing process using a dichroic substance such as iodine or a dichroic dye, and a stretching process. Among these, an absorptive polarizing film obtained by dyeing a PVA-based film with iodine and stretching it uniaxially is preferred.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。 The dyeing with iodine is carried out, for example, by immersing the PVA-based film in an aqueous iodine solution. The stretching ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be carried out after the dyeing process, or may be carried out while dyeing. Alternatively, the film may be stretched and then dyed. If necessary, the PVA-based film may be subjected to a swelling process, a crosslinking process, a washing process, a drying process, etc.
 上記二層以上の積層体を用いて作製する場合の積層体としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる吸収型偏光膜は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を吸収型偏光膜とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる吸収型偏光膜の光学特性は向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/吸収型偏光膜の積層体はそのまま用いてもよく(すなわち、樹脂基材を吸収型偏光膜の保護層としてもよく)、樹脂基材/吸収型偏光膜の積層体から樹脂基材を剥離した剥離面に、もしくは、剥離面とは反対側の面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような吸収型偏光膜の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 When the laminate is produced using the above-mentioned two or more layer laminate, examples of the laminate include a laminate of a resin substrate and a PVA-based resin layer (PVA-based resin film) laminated on the resin substrate, or a laminate of a resin substrate and a PVA-based resin layer formed by coating on the resin substrate. The absorptive polarizing film obtained using a laminate of a resin substrate and a PVA-based resin layer formed by coating on the resin substrate can be produced, for example, by applying a PVA-based resin solution to the resin substrate and drying to form a PVA-based resin layer on the resin substrate to obtain a laminate of the resin substrate and the PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer into an absorptive polarizing film. In this embodiment, preferably, a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin is formed on one side of the resin substrate. The stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching it. Furthermore, the stretching may further include air-stretching the laminate at a high temperature (e.g., 95°C or higher) before stretching in the boric acid aqueous solution, if necessary. In addition, in this embodiment, the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction, thereby shrinking the laminate by 2% or more in the width direction. Typically, the manufacturing method of this embodiment includes subjecting the laminate to an air-assisted stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order. By introducing the auxiliary stretching, it is possible to increase the crystallinity of PVA even when PVA is applied onto a thermoplastic resin, and it is possible to achieve high optical properties. At the same time, by increasing the orientation of PVA in advance, problems such as a decrease in the orientation of PVA or dissolution can be prevented when the PVA is immersed in water in the subsequent dyeing step or stretching step, and it is possible to achieve high optical properties. Furthermore, when the PVA-based resin layer is immersed in a liquid, the disorder of the orientation of polyvinyl alcohol molecules and the decrease in orientation can be suppressed compared to when the PVA-based resin layer does not contain a halide. This can improve the optical properties of the absorptive polarizing film obtained by immersing the laminate in a liquid in a treatment process such as a dyeing process and an underwater stretching process. Furthermore, the optical properties can be improved by shrinking the laminate in the width direction by a drying shrinkage process. The obtained resin substrate/absorptive polarizing film laminate may be used as it is (i.e., the resin substrate may be used as a protective layer for the absorptive polarizing film), or any suitable protective layer may be laminated on the peeled surface obtained by peeling the resin substrate from the resin substrate/absorptive polarizing film laminate, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorptive polarizing film are described in, for example, JP 2012-73580 A and JP 6470455 A. The entire disclosures of these publications are incorporated herein by reference.
 偏光膜の厚みは、例えば1μm以上20μm以下、好ましくは2μm以上15μm以下、より好ましくは12μm以下、さらに好ましくは10μm以下、とりわけ好ましくは8μm以下、特に好ましくは5μm以下である。 The thickness of the polarizing film is, for example, 1 μm or more and 20 μm or less, preferably 2 μm or more and 15 μm or less, more preferably 12 μm or less, even more preferably 10 μm or less, particularly preferably 8 μm or less, and especially preferably 5 μm or less.
 偏光膜は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光膜の直交透過率(Tc)は、例えば0.5%以下、好ましくは0.1%以下、より好ましくは0.05%以下である。偏光膜の単体透過率(Ts)は、例えば41.0%~46.0%であり、好ましくは42.0%以上である。偏光膜の偏光度は、例えば97.0~99.997%以上であり、好ましくは99.0%以上であり、より好ましくは99.9%以上である。 The polarizing film preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm. The crossed transmittance (Tc) of the polarizing film is, for example, 0.5% or less, preferably 0.1% or less, and more preferably 0.05% or less. The single transmittance (Ts) of the polarizing film is, for example, 41.0% to 46.0%, and preferably 42.0% or more. The degree of polarization of the polarizing film is, for example, 97.0 to 99.997% or more, preferably 99.0% or more, and more preferably 99.9% or more.
B-2.保護層
 保護層は、偏光膜の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、ポリノルボルネン系等のシクロオレフィン(COP)系、ポリエチレンテレフタレート(PET)系等のポリエステル系、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリカーボネート(PC)系、(メタ)アクリル系、ポリビニルアルコール系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリオレフィン系、アセテート系等の透明樹脂が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂および/またはメタクリル系樹脂をいう。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。樹脂フィルムの材料は、単独でまたは組み合わせて使用できる。
B-2. Protective layer The protective layer is formed of any suitable film that can be used as a protective layer for a polarizing film. Specific examples of materials that are the main components of the film include cycloolefin (COP) resins such as polynorbornene resins, polyester resins such as polyethylene terephthalate (PET) resins, cellulose resins such as triacetyl cellulose (TAC), transparent resins such as polycarbonate (PC), (meth)acrylic resins, polyvinyl alcohol resins, polyamides, polyimides, polyethersulfones, polysulfones, polystyrenes, polyolefins, and acetate resins. In addition, thermosetting resins or ultraviolet-curing resins such as (meth)acrylic resins, urethane resins, (meth)acrylic urethane resins, epoxy resins, and silicone resins are also included. Note that the term "(meth)acrylic resin" refers to acrylic resins and/or methacrylic resins. In addition, glassy polymers such as siloxane polymers are also included. Also usable is the polymer film described in JP 2001-343529 A (WO 01/37007). As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain can be used, for example, a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide, and an acrylonitrile-styrene copolymer. The polymer film can be, for example, an extrusion molded product of the above resin composition. The materials of the resin film can be used alone or in combination.
 保護層の厚みは、代表的には5mm以下であり、好ましくは1mm以下、より好ましくは1μm~500μm、さらに好ましくは5μm~150μmである。 The thickness of the protective layer is typically 5 mm or less, preferably 1 mm or less, more preferably 1 μm to 500 μm, and even more preferably 5 μm to 150 μm.
 また、保護層52における偏光膜51と反対側(視認側と反対側)の表面には、ハードコート層54が設けられていてもよい。すなわち、偏光部材5は、ハードコート層54を含んでいてもよい。ハードコート層54は、保護層52の表面に直接形成されている。本明細書において「直接」とは接着層(接着剤層または粘着剤層)が介在しないことを意味する。
 ハードコート層54は、好ましくは、十分な表面硬度、優れた機械的強度、および優れた光透過性を有する。ハードコート層54は、任意の適切な樹脂から形成され得る。ハードコート層54は、代表的には紫外線硬化型樹脂から形成される。紫外線硬化型樹脂としては、例えば、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系が挙げられる。ハードコート層54の厚みは、例えば0.5μm以上、好ましくは1μm以上、例えば20μm以下、好ましくは15μm以下である。
In addition, a hard coat layer 54 may be provided on the surface of the protective layer 52 opposite to the polarizing film 51 (opposite to the viewing side). That is, the polarizing member 5 may include a hard coat layer 54. The hard coat layer 54 is formed directly on the surface of the protective layer 52. In this specification, "directly" means that no adhesive layer (adhesive layer or pressure-sensitive adhesive layer) is interposed.
The hard coat layer 54 preferably has sufficient surface hardness, excellent mechanical strength, and excellent light transmittance. The hard coat layer 54 may be formed from any appropriate resin. The hard coat layer 54 is typically formed from an ultraviolet curing resin. Examples of ultraviolet curing resins include polyester, acrylic, urethane, amide, silicone, and epoxy resins. The thickness of the hard coat layer 54 is, for example, 0.5 μm or more, preferably 1 μm or more, for example, 20 μm or less, and preferably 15 μm or less.
C.第一位相差部材
 第一位相差部材1は、第二位相差部材2に対して偏光部材5と反対側に位置している。第一位相差部材1は、代表的には位相差フィルムである。第一位相差部材1は、代表的には、任意の適切な接着剤層11を介して第二位相差部材2に貼り付けられている。接着剤層11を形成する接着剤として、代表的には紫外線硬化型接着剤が挙げられる。接着剤層11の厚みは、例えば1.5μm以上、好ましくは2.0μm以上であり、例えば5.0μm以下、好ましくは3.0μm以下である。
C. First Phase Difference Member The first phase difference member 1 is located on the opposite side of the polarizing member 5 with respect to the second phase difference member 2. The first phase difference member 1 is typically a phase difference film. The first phase difference member 1 is typically attached to the second phase difference member 2 via any suitable adhesive layer 11. A typical example of the adhesive forming the adhesive layer 11 is an ultraviolet-curing adhesive. The thickness of the adhesive layer 11 is, for example, 1.5 μm or more, preferably 2.0 μm or more, and, for example, 5.0 μm or less, preferably 3.0 μm or less.
 第一位相差部材1は、上記のようにnz>nx=nyの屈折率を有する。nz>nx=nyの屈折率を有する層(フィルム)は、「ポジティブCプレート」等と称される場合がある。なお、「nx=ny」はnxとnyとが完全に等しい場合だけではなく、実質的に等しい場合を包含する。第一位相差部材1の面内位相差Re(550)は、例えば0nm以上10nm未満であり得る。
 第一位相差部材1の厚み方向の位相差Rth(550)は、代表的には0nm未満、好ましくは―5nm以下、より好ましくは―50nm以下であり、例えば-200nm以上、好ましくは―150nm以上、より好ましくは―110nm以上である。
The first phase difference member 1 has a refractive index of nz>nx=ny as described above. A layer (film) having a refractive index of nz>nx=ny may be called a "positive C plate" or the like. Note that "nx=ny" includes not only the case where nx and ny are completely equal, but also the case where they are substantially equal. The in-plane retardation Re(550) of the first phase difference member 1 may be, for example, 0 nm or more and less than 10 nm.
The thickness direction retardation Rth(550) of the first retardation member 1 is typically less than 0 nm, preferably −5 nm or less, more preferably −50 nm or less, and for example, −200 nm or more, preferably −150 nm or more, more preferably −110 nm or more.
 第一位相差部材1は、任意の適切な材料で形成され得る。第一位相差部材1は、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムから構成される。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該光学補償層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および当該光学補償層の形成方法が挙げられる。この場合、第一位相差部材1の厚みは、例えば10μm以下、好ましくは8μm以下、より好ましくは5μm以下であり、代表的には0.5μm以上である。 The first phase difference member 1 may be formed of any appropriate material. The first phase difference member 1 is preferably composed of a film containing a liquid crystal material fixed in homeotropic alignment. The liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the liquid crystal compound and the method of forming the optical compensation layer include the liquid crystal compound and the method of forming the optical compensation layer described in [0020] to [0028] of JP-A-2002-333642. In this case, the thickness of the first phase difference member 1 is, for example, 10 μm or less, preferably 8 μm or less, more preferably 5 μm or less, and typically 0.5 μm or more.
D.第二位相差部材
 第二位相差部材2は、図1において第一位相差部材1と第三位相差部材3との間に位置し、図2において第一位相差部材1と第五位相差部材50との間に位置している。第二位相差部材2は、代表的には位相差フィルムである。第二位相差部材2は、代表的には、任意の適切な粘着剤層21を介して第三位相差部材3または第五位相差部材50に貼り付けられている。粘着剤層21を形成する粘着剤として、例えば、(メタ)アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、ゴム系粘着剤が挙げられ、好ましくは(メタ)アクリル系粘着剤が挙げられる。粘着剤層21の厚みは、例えば3.5μm以上35μm以下である。
D. Second Phase Difference Member The second phase difference member 2 is located between the first phase difference member 1 and the third phase difference member 3 in FIG. 1, and between the first phase difference member 1 and the fifth phase difference member 50 in FIG. 2. The second phase difference member 2 is typically a phase difference film. The second phase difference member 2 is typically attached to the third phase difference member 3 or the fifth phase difference member 50 via any suitable adhesive layer 21. Examples of adhesives that form the adhesive layer 21 include (meth)acrylic adhesives, urethane adhesives, silicone adhesives, and rubber adhesives, and preferably (meth)acrylic adhesives. The thickness of the adhesive layer 21 is, for example, 3.5 μm or more and 35 μm or less.
 第二位相差部材2は、上記のようにλ/4部材として機能する。第二位相差部材2は、代表的にはnx>ny≧nzの屈折率を有する。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。
 第二位相差部材2の面内位相差Re(550)は、代表的には100nm以上200nm以下、好ましくは110nm以上180nm以下、より好ましくは130nm以上150nm以下である。第二位相差部材2のNz係数は、好ましくは0.9~2.0であり、より好ましくは0.9~1.5であり、さらに好ましくは0.9~1.2である。
The second phase difference member 2 functions as a λ/4 member as described above. The second phase difference member 2 typically has a refractive index of nx>ny≧nz. Note that "ny=nz" here includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal.
The in-plane retardation Re(550) of the second phase difference member 2 is typically 100 nm or more and 200 nm or less, preferably 110 nm or more and 180 nm or less, more preferably 130 nm or more and 150 nm or less. The Nz coefficient of the second phase difference member 2 is preferably 0.9 to 2.0, more preferably 0.9 to 1.5, and further preferably 0.9 to 1.2.
 偏光膜51の吸収軸方向と第二位相差部材2の遅相軸方向とがなす角度は、代表的には40°以上50°以下、好ましくは42°以上48°以下、より好ましくは44°以上46°以下、とりわけ好ましくは45°である。
 第二位相差部材2は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。第二位相差部材2は、好ましくは逆分散波長特性を示す。すなわち、第二位相差部材2は、好ましくはRe(450)<Re(550)の関係を満たす。
The angle between the absorption axis direction of the polarizing film 51 and the slow axis direction of the second phase difference member 2 is typically 40° or more and 50° or less, preferably 42° or more and 48° or less, more preferably 44° or more and 46° or less, and particularly preferably 45°.
The second phase difference member 2 may exhibit an inverse dispersion wavelength characteristic in which the phase difference value increases according to the wavelength of the measurement light, may exhibit a positive wavelength dispersion characteristic in which the phase difference value decreases according to the wavelength of the measurement light, or may exhibit a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light. The second phase difference member 2 preferably exhibits an inverse dispersion wavelength characteristic. That is, the second phase difference member 2 preferably satisfies the relationship Re(450)<Re(550).
 第二位相差部材2を構成する樹脂としては、例えばポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、(メタ)アクリル系樹脂が挙げられる。このような樹脂は、単独でまたは組み合わせて使用できる。第二位相差部材2を構成する樹脂は、好ましくはポリカーボネート系樹脂を含む。 The resin constituting the second phase difference member 2 may be, for example, a polycarbonate-based resin, a polyester carbonate-based resin, a polyester-based resin, a polyvinyl acetal-based resin, a polyarylate-based resin, a cyclic olefin-based resin, a cellulose-based resin, a polyvinyl alcohol-based resin, a polyamide-based resin, a polyimide-based resin, a polyether-based resin, a polystyrene-based resin, or a (meth)acrylic-based resin. Such resins may be used alone or in combination. The resin constituting the second phase difference member 2 preferably includes a polycarbonate-based resin.
 ポリカーボネート系樹脂は、好ましくは、下記一般式(1)で表される構造単位および/または下記一般式(2)で表される構造単位からなる群から選択される少なくとも1つの構造単位を含む。これらの構造単位は、2価のオリゴフルオレンに由来する構造単位であり、以下、オリゴフルオレン構造単位と称する場合がある。このようなポリカーボネート系樹脂等は、正の屈折率異方性を有する。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
一般式(1)および(2)中、R~Rは、それぞれ独立に、直接結合、置換または非置換の炭素数1~4のアルキレン基であり;R~Rは、それぞれ独立に、水素原子、置換または非置換の炭素数1~10のアルキル基、置換または非置換の炭素数4~10のアリール基、置換または非置換の炭素数1~10のアシル基、置換または非置換の炭素数1~10のアルコキシ基、置換または非置換の炭素数1~10のアリールオキシ基、置換または非置換のアミノ基、置換または非置換の炭素数1~10のビニル基、置換または非置換の炭素数1~10のエチニル基、置換基を有する硫黄原子、置換基を有するケイ素原子、ハロゲン原子、ニトロ基、またはシアノ基であり;ただし、R~Rは、互いに同一であっても、異なっていてもよく、R~Rのうち隣接する少なくとも2つの基が互いに結合して環を形成していてもよい。
The polycarbonate-based resin preferably contains at least one structural unit selected from the group consisting of structural units represented by the following general formula (1) and/or structural units represented by the following general formula (2). These structural units are structural units derived from divalent oligofluorene, and may be referred to as oligofluorene structural units hereinafter. Such polycarbonate-based resins and the like have positive refractive index anisotropy.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
In general formulas (1) and (2), R 1 to R 3 are each independently a direct bond or a substituted or unsubstituted alkylene group having 1 to 4 carbon atoms; R 4 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 4 to 10 carbon atoms, a substituted or unsubstituted acyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, a substituted or unsubstituted aryloxy group having 1 to 10 carbon atoms, a substituted or unsubstituted amino group, a substituted or unsubstituted vinyl group having 1 to 10 carbon atoms, a substituted or unsubstituted ethynyl group having 1 to 10 carbon atoms, a sulfur atom having a substituent, a silicon atom having a substituent, a halogen atom, a nitro group, or a cyano group; provided that R 4 to R 9 may be the same or different, and at least two adjacent groups among R 4 to R 9 may be bonded to each other to form a ring.
 ポリカーボネート系樹脂におけるオリゴフルオレン構造単位の含有割合は、例えば1質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは18質量%以上であり、例えば40質量%以下、好ましくは35質量%以下、より好ましくは30質量%以下、さらに好ましくは25質量%以下である。オリゴフルオレン構造単位の含有割合が上記下限以上であると、第二位相差部材において所望の逆分散波長依存性を安定して発現させることができる。オリゴフルオレン構造単位の含有割合が上記上限以下であると、位相差を安定して発現できる。 The content of the oligofluorene structural unit in the polycarbonate resin is, for example, 1 mass% or more, preferably 10 mass% or more, more preferably 15 mass% or more, and even more preferably 18 mass% or more, and is, for example, 40 mass% or less, preferably 35 mass% or less, more preferably 30 mass% or less, and even more preferably 25 mass% or less. When the content of the oligofluorene structural unit is equal to or greater than the above lower limit, the desired reverse dispersion wavelength dependency can be stably expressed in the second phase difference member. When the content of the oligofluorene structural unit is equal to or less than the above upper limit, the phase difference can be stably expressed.
 ポリカーボネート系樹脂は、より好ましくは、オリゴフルオレン構造単位に加えて、下記構造式(3)で表される構造単位、および/または下記構造式(4)で表される構造単位を含む。ポリカーボネート系樹脂が下記構造式(3)および/または下記構造式(4)で表される構造単位を含有すると、第二位相差部材2において所望の逆分散波長依存性をより安定して発現させることができる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 ポリカーボネート系樹脂における上記構造式(3)で表される構造単位の含有割合は、例えば5質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは25質量%以上であり、例えば90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下である。
 ポリカーボネート系樹脂における上記構造式(4)で表される構造単位の含有割合は、例えば5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上であり、例えば90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下である。
More preferably, the polycarbonate-based resin contains, in addition to the oligofluorene structural unit, a structural unit represented by the following structural formula (3) and/or a structural unit represented by the following structural formula (4). When the polycarbonate-based resin contains the structural unit represented by the following structural formula (3) and/or the following structural formula (4), the second phase difference member 2 can exhibit the desired reverse dispersion wavelength dependency more stably.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
The content ratio of the structural unit represented by the above structural formula (3) in the polycarbonate-based resin is, for example, 5 mass% or more, preferably 10 mass% or more, more preferably 20 mass% or more, and even more preferably 25 mass% or more, and is, for example, 90 mass% or less, preferably 70 mass% or less, and more preferably 50 mass% or less.
The content ratio of the structural unit represented by the above structural formula (4) in the polycarbonate-based resin is, for example, 5 mass% or more, preferably 10 mass% or more, and more preferably 15 mass% or more, and for example, 90 mass% or less, preferably 70 mass% or less, and more preferably 50 mass% or less.
 第二位相差部材2を構成する樹脂は、とりわけ好ましくは、ポリカーボネート系樹脂に加えて、(メタ)アクリル系樹脂を含む。
 (メタ)アクリル系樹脂は、代表的にはメタクリル酸メチル由来の構造単位を含む。(メタ)アクリル系樹脂におけるメタクリル酸メチル由来の構造単位の含有割合は、例えば70質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。メタクリル酸メチル由来の構造単位の含有割合が上記下限以上であれば、ポリカーボネート系樹脂との優れた相溶性を発現できる。メタクリル酸メチル由来の構造単位の含有割合は、代表的には100質量%以下である。
 (メタ)アクリル系樹脂の重量平均分子量Mwは、例えば10,000以上、好ましくは30,000以上、より好ましくは50,000以上であり、例えば200,000以下、好ましくは180,000以下、より好ましくは150,000以下である。なお、上記の重量平均分子量はGPCにより測定されるポリスチレン換算の分子量である。重量平均分子量Mwがこのような範囲であれば、ポリカーボネート系樹脂との優れた相溶性を安定して発現できる。
 第二位相差部材2を構成する樹脂における(メタ)アクリル系樹脂の含有割合は、例えば0質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、例えば2.0質量%以下、好ましくは1.5質量%以下、より好ましくは1.0質量%以下、さらに好ましくは0.9質量%以下、とりわけ好ましくは0.8質量%以下である。(メタ)アクリル系樹脂の含有割合が上記範囲内であると、伸張性および位相差発現性を顕著に増大させることができ、かつ、ヘイズを抑制することができる。
The resin constituting the second phase difference member 2 particularly preferably contains a (meth)acrylic resin in addition to a polycarbonate resin.
The (meth)acrylic resin typically contains a structural unit derived from methyl methacrylate. The content ratio of the structural unit derived from methyl methacrylate in the (meth)acrylic resin is, for example, 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more. If the content ratio of the structural unit derived from methyl methacrylate is equal to or more than the above lower limit, excellent compatibility with the polycarbonate resin can be exhibited. The content ratio of the structural unit derived from methyl methacrylate is typically 100% by mass or less.
The weight average molecular weight Mw of the (meth)acrylic resin is, for example, 10,000 or more, preferably 30,000 or more, more preferably 50,000 or more, and is, for example, 200,000 or less, preferably 180,000 or less, more preferably 150,000 or less. The weight average molecular weight is a polystyrene-equivalent molecular weight measured by GPC. If the weight average molecular weight Mw is within this range, excellent compatibility with the polycarbonate resin can be stably expressed.
The content of the (meth)acrylic resin in the resin constituting the second phase difference member 2 is, for example, 0 mass% or more, preferably 0.5 mass% or more, more preferably 0.6 mass% or more, and for example, 2.0 mass% or less, preferably 1.5 mass% or less, more preferably 1.0 mass% or less, even more preferably 0.9 mass% or less, and particularly preferably 0.8 mass% or less. When the content of the (meth)acrylic resin is within the above range, the extensibility and retardation expression can be significantly increased, and haze can be suppressed.
 このような第二位相差部材2は、代表的には、上記した第二位相差部材を構成する樹脂から形成される高分子フィルムの延伸フィルムであり、高分子フィルムを延伸することにより調製される。
 第二位相差部材2の厚みは、所望の光学特性が得られるように設定され得る。第二位相差部材2の厚みは、例えば15μm以上、好ましくは10μm以上、より好ましくは20μm以上であり、例えば60μm以下、好ましくは55μm以下、さらに好ましくは50μm以下である。
Such a second retardation member 2 is typically a stretched film of a polymer film formed from the resin constituting the above-mentioned second retardation member, and is prepared by stretching a polymer film.
The thickness of the second phase difference member 2 can be set so as to obtain desired optical characteristics. The thickness of the second phase difference member 2 is, for example, 15 μm or more, preferably 10 μm or more, more preferably 20 μm or more, and is, for example, 60 μm or less, preferably 55 μm or less, and further preferably 50 μm or less.
E.第三位相差部材
 図1に示すように、第三位相差部材3は、第二位相差部材2と第四位相差部材4との間に位置している。第三位相差部材3は、代表的には、任意の適切な接着剤層31を介して第四位相差部材4に貼り付けられている。接着剤層31を形成する接着剤、および、接着剤層31の厚みの範囲は、上記した接着剤層11と同様である。
E. Third Phase Difference Member As shown in Fig. 1, the third phase difference member 3 is located between the second phase difference member 2 and the fourth phase difference member 4. The third phase difference member 3 is typically attached to the fourth phase difference member 4 via any appropriate adhesive layer 31. The adhesive forming the adhesive layer 31 and the range of the thickness of the adhesive layer 31 are similar to those of the adhesive layer 11 described above.
 第三位相差部材3は、上記のようにnz>nx≧nyの屈折率を有する。第三位相差部材3は、好ましくはnz>nx>nyの屈折率を有する。nz>nx>nyの屈折率を有する層(フィルム)は、「ポジティブBプレート」等と称される場合がある。
 第三位相差部材3の面内位相差Re(550)は、例えば15nm以上、好ましくは20nm以上であり、例えば55nm以下、好ましくは45nm以下である。
 第三位相差部材3の厚み方向の位相差Rth(550)は、代表的には0nm以下、好ましくは―20nm以下、より好ましくは―60nm以下であり、例えば-250nm以上、好ましくは―200nm以上、より好ましくは―150nm以上である。
As described above, the third phase difference member 3 has a refractive index of nz>nx≧ny. The third phase difference member 3 preferably has a refractive index of nz>nx>ny. A layer (film) having a refractive index of nz>nx>ny is sometimes called a "positive B plate" or the like.
The in-plane retardation Re(550) of the third retardation member 3 is, for example, 15 nm or more, preferably 20 nm or more, and is, for example, 55 nm or less, preferably 45 nm or less.
The third retardation member 3 has a thickness direction retardation Rth(550) of typically 0 nm or less, preferably −20 nm or less, more preferably −60 nm or less, for example, −250 nm or more, preferably −200 nm or more, more preferably −150 nm or more.
 第三位相差部材3がnz>nx>nyの屈折率を有する場合、第三位相差部材3の遅相軸方向と偏光膜51の吸収軸方向とがなす角度は、代表的には80°以上100°以下、好ましくは85°以上95°以下、より好ましくは88°以上92°以下、さらに好ましくは89°以上91°以下である。また、第三位相差部材3の遅相軸方向と偏光膜51の吸収軸方向とは、実質的に平行であってもよい。この場合、第三位相差部材3の遅相軸方向と偏光膜51の吸収軸方向とがなす角度は、代表的には0°±5°以下、好ましくは0°±1°以下である。 When the third phase difference member 3 has a refractive index of nz>nx>ny, the angle between the slow axis direction of the third phase difference member 3 and the absorption axis direction of the polarizing film 51 is typically 80° to 100°, preferably 85° to 95°, more preferably 88° to 92°, and even more preferably 89° to 91°. The slow axis direction of the third phase difference member 3 and the absorption axis direction of the polarizing film 51 may be substantially parallel. In this case, the angle between the slow axis direction of the third phase difference member 3 and the absorption axis direction of the polarizing film 51 is typically 0°±5° or less, and preferably 0°±1° or less.
 第三位相差部材3は、逆分散波長特性を示してもよく、正の波長分散特性を示してもよく、フラットな波長分散特性を示してもよい。第三位相差部材3は、好ましくは逆分散波長特性を示す。すなわち、第三位相差部材3は、好ましくはRe(450)<Re(550)の関係を満たす。 The third phase difference member 3 may exhibit a reverse dispersion wavelength characteristic, a positive wavelength dispersion characteristic, or a flat wavelength dispersion characteristic. The third phase difference member 3 preferably exhibits a reverse dispersion wavelength characteristic. That is, the third phase difference member 3 preferably satisfies the relationship Re(450)<Re(550).
 第三位相差部材3は、任意の適切な構成であり得る。具体的には、位相差部材単独であってもよいし、同一または異なる2枚以上の位相差部材の積層体であってもよい。第三位相差部材3は、好ましくは、単独の位相差部材(位相差フィルム)である。
 第三位相差部材3を構成する樹脂としては、例えば熱可塑性樹脂が挙げられ、好ましくは、負の複屈折を示すポリマー、正の複屈折を示すポリマーが挙げられる。このような樹脂は、単独でまたは組み合わせて使用できる。第三位相差部材3を構成する樹脂は、より好ましくは、負の複屈折を示すポリマーを含む。負の複屈折を示すポリマーを用いることにより、nz>nx>nyの屈折率楕円体を有する位相差部材であって、遅相軸方向の均一性に優れた位相差部材を簡便に得ることができる。ここで、「負の複屈折を示す」とは、ポリマーを延伸等により配向させた場合に、その延伸方向の屈折率が相対的に小さくなることをいう。換言すると、延伸方向と直交する方向の屈折率が大きくなることをいう。負の複屈折を示すポリマーとしては、例えば、芳香環やカルボニル基などの分極異方性の大きい化学結合や官能基が、側鎖に導入されたポリマーが挙げられる。具体的には、アクリル系樹脂、スチレン系樹脂、マレイミド系樹脂、フマル酸エステル系樹脂が挙げられ、好ましくはスチレン系樹脂およびフマル酸エステル系樹脂が挙げられる。
 第三位相差部材3を構成するスチレン系樹脂として、好ましくは、スチレン-無水マレイン酸共重合体、スチレン-アクリロニトリル共重合体、スチレン-(メタ)アクリレート共重合体、スチレン-マレイミド共重合体、ビニルエステル-マレイミド共重合体、オレフィン-マレイミド共重合体が挙げられる。
 第三位相差部材3を構成するフマル酸エステル系樹脂として、好ましくは、フマル酸エステル-(メタ)アクリレート共重合体が挙げられる。
 これらは単独でまたは二種以上組み合わせて用いることができる。
The third phase difference member 3 may have any appropriate configuration. Specifically, it may be a single phase difference member, or may be a laminate of two or more identical or different phase difference members. The third phase difference member 3 is preferably a single phase difference member (phase difference film).
Examples of the resin constituting the third phase difference member 3 include thermoplastic resins, and preferably, polymers exhibiting negative birefringence and polymers exhibiting positive birefringence. Such resins can be used alone or in combination. More preferably, the resin constituting the third phase difference member 3 includes a polymer exhibiting negative birefringence. By using a polymer exhibiting negative birefringence, a phase difference member having an index ellipsoid of nz>nx>ny and excellent uniformity in the slow axis direction can be easily obtained. Here, "exhibiting negative birefringence" means that when a polymer is oriented by stretching or the like, the refractive index in the stretching direction becomes relatively small. In other words, the refractive index in the direction perpendicular to the stretching direction becomes large. Examples of polymers exhibiting negative birefringence include polymers in which a chemical bond or functional group with large polarization anisotropy, such as an aromatic ring or a carbonyl group, is introduced into the side chain. Specifically, examples include acrylic resins, styrene resins, maleimide resins, and fumaric acid ester resins, and preferably styrene resins and fumaric acid ester resins.
Preferred examples of the styrene-based resin constituting the third phase difference member 3 include styrene-maleic anhydride copolymer, styrene-acrylonitrile copolymer, styrene-(meth)acrylate copolymer, styrene-maleimide copolymer, vinyl ester-maleimide copolymer, and olefin-maleimide copolymer.
As the fumaric acid ester-based resin constituting the third phase difference member 3, a fumaric acid ester-(meth)acrylate copolymer is preferably used.
These can be used alone or in combination of two or more.
 また、上記負の複屈折を示すポリマーとして、好ましくは、下記一般式(I)で表わされる繰り返し単位を有するポリマーも用いられる。このようなポリマーは、より一層、高い負の複屈折を示し、かつ、耐熱性、機械的強度に優れ得る。このようなポリマーは、例えば、出発原料のマレイミド系モノマーのN置換基として、少なくともオルト位に置換基を有するフェニル基を導入したN-フェニル置換マレイミドを用いることにより得ることができる。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(I)中、R~Rは、それぞれ独立して、水素、ハロゲン原子、カルボン酸、カルボン酸エステル、水酸基、ニトロ基、または炭素数1~8の直鎖もしくは分枝のアルキル基もしくはアルコキシ基を表し(ただし、RおよびRは、同時に水素原子ではない)、RおよびRは、水素または炭素数1~8の直鎖もしくは分枝のアルキル基もしくはアルコキシ基を表し、nは、2以上の整数を表す。
As the polymer exhibiting negative birefringence, a polymer having a repeating unit represented by the following general formula (I) is preferably used. Such a polymer exhibits even higher negative birefringence and can have excellent heat resistance and mechanical strength. Such a polymer can be obtained, for example, by using an N-phenyl-substituted maleimide in which a phenyl group having a substituent at least at the ortho position is introduced as the N-substituent of the maleimide monomer as the starting material.
Figure JPOXMLDOC01-appb-C000005
In the above general formula (I), R 1 to R 5 each independently represent hydrogen, a halogen atom, a carboxylic acid, a carboxylate, a hydroxyl group, a nitro group, or a linear or branched alkyl or alkoxy group having 1 to 8 carbon atoms (provided that R 1 and R 5 are not simultaneously hydrogen atoms), R 6 and R 7 represent hydrogen or a linear or branched alkyl or alkoxy group having 1 to 8 carbon atoms, and n represents an integer of 2 or greater.
 このような第三位相差部材3は、代表的には、上記した第三位相差部材3を構成する樹脂から形成される高分子フィルムの延伸フィルムであり、高分子フィルムを任意の適切な延伸条件で延伸することにより調製される。
 第三位相差部材3の厚みは、所望の光学特性が得られるように設定され得る。第三位相差部材3の厚みは、例えば5μm以上、好ましくは10μm以上、より好ましくは20μm以上であり、例えば70μm以下、好ましくは60μm以下、さらに好ましくは40μm以下である。
Such a third phase difference member 3 is typically a stretched film of a polymer film formed from the resin constituting the third phase difference member 3 described above, and is prepared by stretching the polymer film under any appropriate stretching conditions.
The thickness of the third phase difference member 3 can be set so as to obtain desired optical characteristics. The thickness of the third phase difference member 3 is, for example, 5 μm or more, preferably 10 μm or more, more preferably 20 μm or more, and is, for example, 70 μm or less, preferably 60 μm or less, and further preferably 40 μm or less.
F.第四位相差部材4
 第四位相差部材4は、代表的には、任意の適切な接着剤層41を介して偏光膜51に貼り合わされている。接着剤層41を形成する接着剤、および、接着剤層41の厚みの範囲は、上記した接着剤層11と同様である。第四位相差部材4は、代表的には位相差フィルムである。
F. Fourth phase difference member 4
The fourth phase difference member 4 is typically attached to the polarizing film 51 via any appropriate adhesive layer 41. The adhesive forming the adhesive layer 41 and the range of the thickness of the adhesive layer 41 are similar to those of the above-mentioned adhesive layer 11. The fourth phase difference member 4 is typically a phase difference film.
 第四位相差部材4は、上記のようにnx>ny≧nzの屈折率を示する。nx>ny>nzの屈折率を有する層(フィルム)は、「ネガティブBプレート」等と称される場合がある。nx>ny=nzの屈折率を有する層(フィルム)は、「ポジティブAプレート」等と称される場合がある。なお、「ny=nz」はnyとnzとが完全に等しい場合だけではなく、実質的に等しい場合を包含する。第四位相差部材4は、好ましくはnx>ny>nzの屈折率を示する。
 第四位相差部材4の面内位相差Re(550)は、例えば70nm以上、好ましくは90nm以上であり、例えば140nm以下、好ましくは130nm以下である。
 第四位相差部材4の厚み方向の位相差Rth(550)は、例えば40nm以上、好ましくは60nm以上であり、例えば120nm以下、好ましくは100nm以下である。
The fourth phase difference member 4 exhibits a refractive index of nx>ny≧nz as described above. A layer (film) having a refractive index of nx>ny>nz may be called a "negative B plate" or the like. A layer (film) having a refractive index of nx>ny=nz may be called a "positive A plate" or the like. Note that "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. The fourth phase difference member 4 preferably exhibits a refractive index of nx>ny>nz.
The in-plane retardation Re(550) of the fourth retardation member 4 is, for example, 70 nm or more, preferably 90 nm or more, and is, for example, 140 nm or less, preferably 130 nm or less.
The fourth retardation member 4 has a thickness direction retardation Rth(550) of, for example, 40 nm or more, preferably 60 nm or more, and for example, 120 nm or less, preferably 100 nm or less.
 第四位相差部材4の遅相軸方向と偏光膜51の吸収軸方向とがなす角度は、代表的には80°以上100°以下、好ましくは85°以上95°以下、より好ましくは88°以上92°以下、さらに好ましくは89°以上91°以下である。また、第四位相差部材4の遅相軸方向と偏光膜51の吸収軸方向とは、実質的に平行であってもよい。この場合、第四位相差部材4の遅相軸方向と偏光膜51の吸収軸方向とがなす角度は、代表的には0°±5°以下、好ましくは0°±1°以下である。
 第三位相差部材3の遅相軸方向と第四位相差部材4の遅相軸方向とは、好ましくは、実質的に平行である。この場合、第三位相差部材3の遅相軸方向と第四位相差部材4の遅相軸方向とがなす角度は、代表的には0°±5°以下、好ましくは0°±1°以下である。
The angle between the slow axis direction of the fourth phase difference member 4 and the absorption axis direction of the polarizing film 51 is typically 80° to 100°, preferably 85° to 95°, more preferably 88° to 92°, and even more preferably 89° to 91°. The slow axis direction of the fourth phase difference member 4 and the absorption axis direction of the polarizing film 51 may be substantially parallel. In this case, the angle between the slow axis direction of the fourth phase difference member 4 and the absorption axis direction of the polarizing film 51 is typically 0°±5° or less, and preferably 0°±1° or less.
The slow axis direction of the third phase difference member 3 is preferably substantially parallel to the slow axis direction of the fourth phase difference member 4. In this case, the angle formed between the slow axis direction of the third phase difference member 3 and the slow axis direction of the fourth phase difference member 4 is typically 0°±5° or less, preferably 0°±1° or less.
 第四位相差部材4は、逆分散波長特性を示してもよく、正の波長分散特性を示してもよく、フラットな波長分散特性を示してもよい。第四位相差部材4は、好ましくはフラットな波長分散特性を示す。 The fourth phase difference member 4 may exhibit a reverse wavelength dispersion characteristic, a positive wavelength dispersion characteristic, or a flat wavelength dispersion characteristic. The fourth phase difference member 4 preferably exhibits a flat wavelength dispersion characteristic.
 第四位相差部材4を構成する樹脂としては、例えばノルボルネン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリスルホン系樹脂が挙げられる。このような樹脂は、単独でまたは組み合わせて使用できる。第四位相差部材4を構成する樹脂は、好ましくは、ノルボルネン系樹脂および/またはセルロース系樹脂を含む。 The resin constituting the fourth phase difference member 4 may be, for example, a norbornene-based resin, a polycarbonate-based resin, a cellulose-based resin, a polyvinyl alcohol-based resin, or a polysulfone-based resin. Such resins may be used alone or in combination. The resin constituting the fourth phase difference member 4 preferably includes a norbornene-based resin and/or a cellulose-based resin.
 このような第四位相差部材4は、代表的には、上記した第四位相差部材4を構成する樹脂から形成される高分子フィルムの延伸フィルムであり、高分子フィルムを任意の適切な延伸条件で延伸することにより調製される。
 第四位相差部材4の厚みは、所望の光学特性が得られるように設定され得る。第四位相差部材4の厚みは、例えば10μm以上、好ましくは20μm以上、より好ましくは60μm以上であり、例えば100μm以下、好ましくは90μm以下、さらに好ましくは80μm以下である。
Such a fourth phase difference member 4 is typically a stretched film of a polymer film formed from the resin constituting the fourth phase difference member 4 described above, and is prepared by stretching the polymer film under any appropriate stretching conditions.
The thickness of the fourth phase difference member 4 can be set so as to obtain desired optical characteristics. The thickness of the fourth phase difference member 4 is, for example, 10 μm or more, preferably 20 μm or more, more preferably 60 μm or more, and is, for example, 100 μm or less, preferably 90 μm or less, and further preferably 80 μm or less.
G.第五位相差部材
 図2に示すように、第五位相差部材50は、代表的には、任意の適切な接着剤層41を介して偏光膜51に貼り合わされている。
G. Fifth Retardation Member As shown in FIG. 2, the fifth retardation member 50 is typically attached to a polarizing film 51 via any suitable adhesive layer 41 .
 第五位相差部材50は、上記のように、nx>nz>nyの屈折率を有する。nx>nz>nyの屈折率を有する層(フィルム)は、「Zフィルム」等と称される場合がある。
 第五位相差部材50の面内位相差Re(550)は、代表的には210nm以上360nm以下、好ましくは250nm以上290nm以下である。
 第五位相差部材50のNz係数は、代表的には0.1以上1.0以下であり、好ましくは0.3以上0.7以下である。
As described above, the fifth phase difference member 50 has a refractive index of nx>nz>ny. A layer (film) having a refractive index of nx>nz>ny is sometimes called a "Z film" or the like.
The in-plane retardation Re(550) of the fifth retardation member 50 is typically 210 nm or more and 360 nm or less, and preferably 250 nm or more and 290 nm or less.
The Nz coefficient of the fifth phase difference member 50 is typically 0.1 or more and 1.0 or less, and preferably 0.3 or more and 0.7 or less.
 第五位相差部材50は、逆分散波長特性を示してもよく、正の波長分散特性を示してもよく、フラットな波長分散特性を示してもよい。第五位相差部材50は、好ましくは、フラットな波長分散特性を示す。 The fifth phase difference member 50 may exhibit a reverse wavelength dispersion characteristic, a positive wavelength dispersion characteristic, or a flat wavelength dispersion characteristic. The fifth phase difference member 50 preferably exhibits a flat wavelength dispersion characteristic.
 第五位相差部材50は、代表的には、上記特性を実現し得る任意の適切な樹脂で構成された位相差フィルムである。第五位相差部材50を構成する樹脂としては、例えば、ポリアリレート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエステル系樹脂、ポリアリールエーテルケトン系樹脂、ポリアミドイミド系樹脂、ポリエステルイミド系樹脂、ポリビニルアルコール系樹脂、ポリフマル酸エステル系樹脂、ポリエーテルサルフォン系樹脂、ポリサルフォン系樹脂、シクロオレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂およびポリウレタン系樹脂が挙げられる。このような樹脂は、単独でまたは組み合わせて使用できる。
 第五位相差部材50を構成する樹脂として、好ましくは、シクロオレフィン系樹脂が挙げられ、より好ましくは、ノルボルネン系樹脂が挙げられる。ノルボルネン系樹脂として具体的には、特開2006―208925号公報に記載される「ノルボルネン系モノマーの開環重合体を水素添加したシクロオレフィン系樹脂」が挙げられる。
The fifth phase difference member 50 is typically a phase difference film made of any suitable resin that can realize the above characteristics. Examples of the resin that constitutes the fifth phase difference member 50 include polyarylate resins, polyamide resins, polyimide resins, polyester resins, polyaryletherketone resins, polyamideimide resins, polyesterimide resins, polyvinyl alcohol resins, polyfumaric acid ester resins, polyethersulfone resins, polysulfone resins, cycloolefin resins, polycarbonate resins, cellulose resins, and polyurethane resins. These resins can be used alone or in combination.
As the resin constituting the fifth phase difference member 50, a cycloolefin resin is preferably used, and more preferably a norbornene resin is used. Specific examples of the norbornene resin include "cycloolefin resin obtained by hydrogenating a ring-opening polymer of a norbornene monomer" described in JP-A-2006-208925.
 第五位相差部材50は、例えば、上記した樹脂を主成分とする高分子フィルムの両面に高収縮性フィルム(例えば、ポリプロピレンフィルム)を貼り合せて、ロール延伸機にて縦一軸延伸法で、加熱延伸することにより作製できる。高収縮性フィルムは、加熱延伸時に延伸方向と直交する方向の収縮力を付与し、第五位相差部材50の厚み方向の屈折率(nz)を高めるために用いられる。上記高分子フィルムの両面に高収縮性フィルムを貼り合せる方法としては、特に制限はないが、上記高分子フィルムと上記高収縮性フィルムとの間に、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤層を設けて接着する方法が挙げられる。
 第五位相差部材50の厚みは、代表的には20μm以上、好ましくは30μm以上、より好ましくは40μm以上であり、代表的には200μm以下、好ましくは150μm以下である。
The fifth phase difference member 50 can be produced, for example, by laminating a high shrinkage film (e.g., a polypropylene film) to both sides of a polymer film mainly composed of the above-mentioned resin, and then heat-stretching the film by a longitudinal uniaxial stretching method using a roll stretching machine. The high shrinkage film is used to impart a shrinkage force in a direction perpendicular to the stretching direction during heat stretching, and to increase the refractive index (nz) in the thickness direction of the fifth phase difference member 50. There are no particular limitations on the method of laminating the high shrinkage film to both sides of the polymer film, but examples of the method include a method of providing an acrylic adhesive layer having an acrylic polymer as a base polymer between the polymer film and the high shrinkage film to bond them together.
The thickness of the fifth phase difference member 50 is typically 20 μm or more, preferably 30 μm or more, and more preferably 40 μm or more, and is typically 200 μm or less, and preferably 150 μm or less.
H.基材
 基材6は、光学機能層7を形成するための機能層形成用基材であって、第一位相差部材1に対して第二位相差部材2と反対側(視認側)に位置する。基材6は、代表的には、任意の適切な粘着剤層61を介して第一位相差部材1に貼り付けられている。粘着剤層61を形成する粘着剤、および、粘着剤層61の厚みの範囲は、上記した粘着剤層21と同様である。
H. Substrate The substrate 6 is a substrate for forming a functional layer for forming the optical functional layer 7, and is located on the opposite side (visualization side) of the second phase difference member 2 with respect to the first phase difference member 1. The substrate 6 is typically attached to the first phase difference member 1 via any appropriate pressure-sensitive adhesive layer 61. The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 61 and the thickness range of the pressure-sensitive adhesive layer 61 are the same as those of the pressure-sensitive adhesive layer 21 described above.
 基材6は、任意の適切な樹脂フィルムで形成される。樹脂フィルムを構成する樹脂としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、シクロオレフィン(例えば、ノルボルネン)とα-オレフィン(例えば、エチレン)との付加重合により得られる樹脂(COC)、トリアセチルセルロース(TAC)等のセルロース系樹脂、(メタ)アクリル系樹脂が挙げられる。このような樹脂は、単独でまたは組み合わせて使用できる。基材6を構成する樹脂は、好ましくは(メタ)アクリル系樹脂を含み、より好ましくはグルタルイミド構造を有する(メタ)アクリル系樹脂を含む。 The substrate 6 is formed of any suitable resin film. Examples of resins constituting the resin film include polyester-based resins such as polyethylene terephthalate (PET), cycloolefin-based resins such as norbornene-based resins, resins (COC) obtained by addition polymerization of cycloolefins (e.g., norbornene) and α-olefins (e.g., ethylene), cellulose-based resins such as triacetyl cellulose (TAC), and (meth)acrylic resins. Such resins can be used alone or in combination. The resin constituting the substrate 6 preferably contains a (meth)acrylic resin, and more preferably contains a (meth)acrylic resin having a glutarimide structure.
 基材6の厚みは、目的に応じて適切に設定され得る。基材6の厚みは、例えば20μm以上、好ましくは50μm以上、より好ましくは70μm以上であり、例えば200μm以下、好ましくは150μm以下、より好ましくは90μm以下である。 The thickness of the substrate 6 can be appropriately set depending on the purpose. The thickness of the substrate 6 is, for example, 20 μm or more, preferably 50 μm or more, more preferably 70 μm or more, and is, for example, 200 μm or less, preferably 150 μm or less, more preferably 90 μm or less.
I.光学機能層
 光学機能層7は、代表的には基材6における第一位相差部材1と反対側の表面(視認側の表面)に直接形成されている。光学機能層7として、例えば、ハードコート層、反射防止層、スティッキング防止層、アンチグレア層が挙げられる。図示例では、光学機能層7は、反射防止層7aである。
I. Optical Functional Layer The optical functional layer 7 is typically formed directly on the surface (viewing side surface) of the substrate 6 opposite to the first phase difference member 1. Examples of the optical functional layer 7 include a hard coat layer, an anti-reflection layer, an anti-sticking layer, and an anti-glare layer. In the illustrated example, the optical functional layer 7 is an anti-reflection layer 7a.
 反射防止層7aは、外光(例えば、蛍光灯)等の反射を防止するために設けられる。
 反射防止層7aとしては、任意の適切な構成が採用され得る。反射防止層7aの代表的な構成としては、(1)光学膜厚が120nm~140nmである、屈折率1.35~1.55程度の低屈折率層の単一層;(2)基材6から順に中屈折率層と高屈折率層と低屈折率層とを有する積層体;(3)高屈折率層と低屈折率層との交互多層積層体;が挙げられる。
The anti-reflection layer 7a is provided to prevent reflection of external light (eg, fluorescent light) and the like.
The antireflection layer 7a may have any suitable structure. Representative structures of the antireflection layer 7a include (1) a single layer of a low refractive index layer having an optical thickness of 120 nm to 140 nm and a refractive index of about 1.35 to 1.55, (2) a laminate having a medium refractive index layer, a high refractive index layer, and a low refractive index layer in this order from the substrate 6, and (3) an alternating multilayer laminate of a high refractive index layer and a low refractive index layer.
 低屈折率層を形成し得る材料としては、例えば、酸化ケイ素(SiO)、フッ化マグネシウム(MgF)が挙げられる。低屈折率層の屈折率は、代表的には1.35~1.55程度である。高屈折率層を形成し得る材料としては、例えば、酸化チタン(TiO)、酸化ニオブ(NbまたはNb)、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、ZrO-TiOが挙げられる。高屈折率層の屈折率は、代表的には1.60~2.20程度である。中屈折率層を形成し得る材料としては、例えば、酸化チタン(TiO)、低屈折率層を形成し得る材料と高屈折率層を形成し得る材料との混合物(例えば、酸化チタンと酸化ケイ素との混合物)が挙げられる。中屈折率層の屈折率は、代表的には1.50~1.85程度である。低屈折率層、中屈折率層および高屈折率層の厚みは、反射防止層の層構造、所望の反射防止性能等に応じた適切な光学膜厚が実現されるように設定され得る。 Examples of materials that can form a low refractive index layer include silicon oxide (SiO 2 ) and magnesium fluoride (MgF 2 ). The refractive index of the low refractive index layer is typically about 1.35 to 1.55. Examples of materials that can form a high refractive index layer include titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 3 or Nb 2 O 5 ), tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), and ZrO 2 -TiO 2. The refractive index of the high refractive index layer is typically about 1.60 to 2.20. Examples of materials that can form a medium refractive index layer include titanium oxide (TiO 2 ) and a mixture of a material that can form a low refractive index layer and a material that can form a high refractive index layer (for example, a mixture of titanium oxide and silicon oxide). The refractive index of the medium refractive index layer is typically about 1.50 to 1.85. The thicknesses of the low refractive index layer, the medium refractive index layer and the high refractive index layer can be set so as to realize an appropriate optical film thickness depending on the layer structure of the antireflection layer, the desired antireflection performance, and the like.
 反射防止層7aの厚みは、例えば20nm~300nm程度である。
 反射防止層7aは、波長400nm~700nmの範囲における最大反射率と最小反射率の差が、好ましくは2.0%以下であり、より好ましくは1.9%以下であり、さらに好ましくは1.8%以下である。最大反射率と最小反射率の差がこのような範囲であれば、反射光の色づきが良好に防止され得る。
The antireflection layer 7a has a thickness of, for example, about 20 nm to 300 nm.
The difference between the maximum reflectance and the minimum reflectance of the antireflection layer 7a in the wavelength range of 400 nm to 700 nm is preferably 2.0% or less, more preferably 1.9% or less, and even more preferably 1.8% or less. If the difference between the maximum reflectance and the minimum reflectance is in such a range, coloring of reflected light can be effectively prevented.
J.第1表面保護フィルム
 図示例において、第1表面保護フィルム8は、基材6に対して第一位相差部材1と反対側(視認側)に位置しており、接着層82によって、光学機能層7(より具体的には反射防止層7a)に貼り付けられている。第1表面保護フィルム8は、光学積層体の輸送工程において一時的に仮着され、光学積層体の使用前に剥離されるもの(工程材として用いられるもの)であってもよく、光学積層体の表面に貼着したままの状態で使用されるもの(永久接着を目的としたもの)であってもよい。
 第1表面保護フィルム8は、フィルム基材81と;フィルム基材81に積層されている接着層82とを備えている。
J. First Surface Protective Film In the illustrated example, the first surface protective film 8 is located on the opposite side (visualization side) of the first phase difference member 1 with respect to the substrate 6, and is attached to the optical functional layer 7 (more specifically, the antireflection layer 7a) by an adhesive layer 82. The first surface protective film 8 may be temporarily attached during the transportation process of the optical laminate and peeled off before use of the optical laminate (used as a processing material), or may be used while still attached to the surface of the optical laminate (for the purpose of permanent adhesion).
The first surface protective film 8 includes a film substrate 81 and an adhesive layer 82 laminated on the film substrate 81 .
K.第2表面保護フィルム
 第2表面保護フィルム9は、光学積層体の輸送工程において一時的に仮着され、光学積層体の異物検査前に第1表面保護フィルム8から剥離される工程材である。第2表面保護フィルム9は、第1表面保護フィルム8のフィルム基材81に貼り付けられている。
K. Second Surface Protective Film The second surface protective film 9 is a processing material that is temporarily attached during the transportation process of the optical laminate and is peeled off from the first surface protective film 8 before the foreign matter inspection of the optical laminate. The second surface protective film 9 is attached to the film base 81 of the first surface protective film 8.
L.粘着剤層
 図示例では、粘着剤層20は、保護層52に対して偏光膜51の反対側に位置しており、ハードコート層54に積層されている。粘着剤層20を形成する粘着剤は、上記した粘着剤層21と同様である。
 粘着剤層20の厚みは、代表的には1μm以上、好ましくは5μm以上、より好ましくは12μm以上であり、代表的には60μm以下、好ましくは30μm以下、より好ましくは23μm以下である。
L. Pressure-sensitive adhesive layer In the illustrated example, the pressure-sensitive adhesive layer 20 is located on the opposite side of the polarizing film 51 with respect to the protective layer 52, and is laminated on the hard coat layer 54. The pressure-sensitive adhesive layer 20 is formed of the same pressure-sensitive adhesive layer 21 as described above.
The thickness of the pressure-sensitive adhesive layer 20 is typically 1 μm or more, preferably 5 μm or more, more preferably 12 μm or more, and typically 60 μm or less, preferably 30 μm or less, more preferably 23 μm or less.
M.はく離ライナー
 はく離ライナー10は、任意の適切な樹脂フィルムで形成される。当該樹脂フィルムの主成分となる材料の具体例としては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンが挙げられる。樹脂フィルムの材料は、単独でまたは組み合わせて使用できる。はく離ライナー10は、透明であってもよく、透明でなくてもよい。
M. Release Liner The release liner 10 is formed of any suitable resin film. Specific examples of materials that are the main components of the resin film include polyethylene terephthalate (PET), polyethylene, and polypropylene. The resin film materials can be used alone or in combination. The release liner 10 can be transparent or non-transparent.
 はく離ライナー10における粘着剤層20との接触面には、離型処理層が設けられていてもよい。離型処理層を形成する離型処理剤としては、例えば、シリコーン系離型処理剤、フッ素系離型処理剤、長鎖アルキルアクリレート系剥離剤が挙げられる。離型処理剤は、単独でまたは組み合わせて使用できる。離型処理層の厚みは、代表的には50nm以上400nm以下である。
 はく離ライナー10の厚みは、代表的には5μm以上、好ましくは20μm以上であり、代表的には60μm以下、好ましくは45μm以下である。なお、離型処理層が施されている場合、はく離ライナーの厚みは、離型処理層の厚みを含めた厚みである。
A release treatment layer may be provided on the surface of the release liner 10 that comes into contact with the pressure-sensitive adhesive layer 20. Examples of release treatment agents that form the release treatment layer include silicone-based release treatment agents, fluorine-based release treatment agents, and long-chain alkyl acrylate-based release agents. The release treatment agents may be used alone or in combination. The thickness of the release treatment layer is typically 50 nm or more and 400 nm or less.
The thickness of the release liner 10 is typically 5 μm or more, preferably 20 μm or more, and typically 60 μm or less, preferably 45 μm or less. When a release treatment layer is applied, the thickness of the release liner includes the thickness of the release treatment layer.
N.画像表示装置
 上記A項~M項に記載の光学積層体は、画像表示装置に適用され得る。より詳しくは、第2表面保護フィルム9を第1表面保護フィルム8から剥離し、はく離ライナー10を粘着剤層20から剥離した後、その光学積層体を粘着剤層20によって画像表示素子(画像表示セル)に貼り付けて、画像表示装置に適用する。したがって、本発明の1つの実施形態は、そのような光学積層体を用いた画像表示装置も包含する。画像表示装置の代表例としては、液晶表示装置、有機EL表示装置が挙げられる。本発明の実施形態による画像表示装置は、代表的には、その視認側に上記A項~M項に記載の光学積層体を備える。画像表示装置は、画像表示パネルを含む。画像表示パネルは、画像表示素子(画像表示セル)を含む。なお、画像表示装置を光学表示装置と称する場合があり、画像表示パネルを光学表示パネルと称する場合があり、画像表示セルを光学表示セルと称する場合がある。
 1つの実施形態において、光学積層体は、その積層方向が画像表示パネルの厚み方向と実質的に平行となるように、画像表示装置に適用される。これによって、画像表示装置に、正面方向および正面方向と交差する斜め方向における優れた光学補償性能を安定して付与できる。
N. Image display device The optical laminate described in the above items A to M can be applied to an image display device. More specifically, the second surface protective film 9 is peeled off from the first surface protective film 8, the release liner 10 is peeled off from the adhesive layer 20, and then the optical laminate is attached to an image display element (image display cell) by the adhesive layer 20 and applied to an image display device. Therefore, one embodiment of the present invention also includes an image display device using such an optical laminate. Representative examples of image display devices include liquid crystal display devices and organic EL display devices. The image display device according to the embodiment of the present invention typically includes the optical laminate described in the above items A to M on the viewing side. The image display device includes an image display panel. The image display panel includes an image display element (image display cell). Note that the image display device may be referred to as an optical display device, the image display panel may be referred to as an optical display panel, and the image display cell may be referred to as an optical display cell.
In one embodiment, the optical laminate is applied to an image display device such that the lamination direction is substantially parallel to the thickness direction of the image display panel, thereby stably imparting excellent optical compensation performance to the image display device in the front direction and in an oblique direction intersecting with the front direction.
 1つの実施形態において、光学積層体は、再帰反射型の空中結像装置(AIRR型空中ディスプレイ)に好適に適用され得る。つまり、光学積層体100は、好ましくは、再帰反射型空中結像装置用光学積層体である。
 図5に示すように、再帰反射型の空中結像装置102(以下、単に空中結像装置102とする)は、表示素子25と、上記した光学積層体100と、ビームスプリッター26と、再帰反射シート27と、λ/4位相差板28と、を備えている。図示例において、表示素子25と、ビームスプリッター26と、再帰反射シート27とは、側面視略三角形状に配置されている。
In one embodiment, the optical laminate may be suitably applied to a retroreflective aerial imaging device (AIRR type aerial display). That is, the optical laminate 100 is preferably an optical laminate for a retroreflective aerial imaging device.
5, a retroreflective aerial imaging device 102 (hereinafter simply referred to as aerial imaging device 102) includes a display element 25, the above-mentioned optical laminate 100, a beam splitter 26, a retroreflective sheet 27, and a λ/4 retardation plate 28. In the illustrated example, the display element 25, the beam splitter 26, and the retroreflective sheet 27 are arranged in a generally triangular shape in a side view.
 表示素子25は、画像を表示するための表示面を有している。表示素子25として、例えば、液晶ディスプレイ、有機ELディスプレイが挙げられる。
 光学積層体100は、表示素子25とビームスプリッター26との間に設けられている。光学積層体100は、代表的には、表示素子25の表示面に貼り付けられている。より詳しくは、第2表面保護フィルム9を第1表面保護フィルム8から剥離し、はく離ライナー10を粘着剤層20から剥離した後、その光学積層体が粘着剤層20によって表示素子25に貼り付けられている。光学積層体100には、表示素子25に表示される画像に応じた光が入射される。光学積層体100は、あらゆる方向から入射する表示素子25の光(ランダム光)を、第1回転方向の円偏光に変換する。
The display element 25 has a display surface for displaying an image. Examples of the display element 25 include a liquid crystal display and an organic EL display.
The optical laminate 100 is provided between the display element 25 and the beam splitter 26. The optical laminate 100 is typically attached to the display surface of the display element 25. More specifically, after the second surface protective film 9 is peeled off from the first surface protective film 8 and the release liner 10 is peeled off from the adhesive layer 20, the optical laminate is attached to the display element 25 by the adhesive layer 20. Light corresponding to an image displayed on the display element 25 is incident on the optical laminate 100. The optical laminate 100 converts the light (random light) of the display element 25 incident from all directions into circularly polarized light in a first rotation direction.
 光学積層体が空中結像装置に適用された状態において、光学積層体100の積層方向は、代表的には、表示面と直交する方向と実質的に平行である。光学積層体100において、複数の位相差部材は、偏光部材5に対して表示素子25の反対側に位置している。複数の位相差部材が、第一位相差部材1と第二位相差部材2と第三位相差部材3と第四位相差部材4とを備える場合、第一位相差部材1と第二位相差部材2と第三位相差部材3と第四位相差部材4とは、ビームスプリッター26側からこの順に配置されている。複数の位相差部材が、第一位相差部材1と第二位相差部材2と第五位相差部材50とを備える場合、第一位相差部材1と第二位相差部材2と第五位相差部材50とは、ビームスプリッター26側からこの順に配置されている。 When the optical laminate is applied to an aerial imaging device, the lamination direction of the optical laminate 100 is typically substantially parallel to the direction perpendicular to the display surface. In the optical laminate 100, the multiple phase difference members are located on the opposite side of the display element 25 with respect to the polarizing member 5. When the multiple phase difference members include a first phase difference member 1, a second phase difference member 2, a third phase difference member 3, and a fourth phase difference member 4, the first phase difference member 1, the second phase difference member 2, the third phase difference member 3, and the fourth phase difference member 4 are arranged in this order from the beam splitter 26 side. When the multiple phase difference members include a first phase difference member 1, a second phase difference member 2, and a fifth phase difference member 50, the first phase difference member 1, the second phase difference member 2, and the fifth phase difference member 50 are arranged in this order from the beam splitter 26 side.
 ビームスプリッター26は、円偏光ビームスプリッターであって、第1回転方向の円偏光を選択的に反射し、第1回転方向と逆の第2回転方向の円偏光を選択的に透過する。ビームスプリッター26は、例えば、コレステリック液晶から構成される。ビームスプリッター26と表示素子25とがなす角度は、代表的には45°±5°以内である。 Beam splitter 26 is a circular polarizing beam splitter that selectively reflects circularly polarized light in a first rotation direction and selectively transmits circularly polarized light in a second rotation direction opposite to the first rotation direction. Beam splitter 26 is composed of, for example, cholesteric liquid crystal. The angle between beam splitter 26 and display element 25 is typically within 45°±5°.
 再帰反射シート27は、ビームスプリッター26によって反射された光を、ビームスプリッター26に向けて再帰反射(ビームスプリッターからの光を入射方向と逆向きの方向に反射)可能である。再帰反射シート27として、任意の適切な構成を採用し得る。再帰反射シートとして、例えば、ビーズタイプ、プリズムタイプが挙げられる。再帰反射シート27と表示素子25とがなす角度は、代表的には90°±5°以内である。 The retroreflective sheet 27 can retroreflect the light reflected by the beam splitter 26 back towards the beam splitter 26 (reflecting the light from the beam splitter in a direction opposite to the incident direction). Any appropriate configuration can be adopted for the retroreflective sheet 27. Examples of retroreflective sheets include a bead type and a prism type. The angle between the retroreflective sheet 27 and the display element 25 is typically within 90°±5°.
 λ/4位相差板28は、再帰反射シート27とビームスプリッター26との間に配置されている。λ/4位相差板28は、代表的には、再帰反射シート27におけるビームスプリッター側の表面に設けられている。λ/4位相差板28は、代表的には、nx>ny≧nzの屈折率を有する。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。λ/4位相差板28の面内位相差Re(550)は、例えば100nm~200nmであり、好ましくは130nm~150nmである。
 λ/4位相差板28の厚みは、λ/4板として適切な機能を有するように、設定される。λ/4位相差板28の厚みは、例えば20~100μm、好ましくは20~60μm、より好ましくは30~50μmである。
The λ/4 retardation plate 28 is disposed between the retroreflective sheet 27 and the beam splitter 26. The λ/4 retardation plate 28 is typically provided on the surface of the retroreflective sheet 27 on the beam splitter side. The λ/4 retardation plate 28 typically has a refractive index of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. The in-plane retardation Re(550) of the λ/4 retardation plate 28 is, for example, 100 nm to 200 nm, and preferably 130 nm to 150 nm.
The thickness of the λ/4 phase difference plate 28 is set so as to have an appropriate function as a λ/4 plate. The thickness of the λ/4 phase difference plate 28 is, for example, 20 to 100 μm, preferably 20 to 60 μm, and more preferably 30 to 50 μm.
 次に、空中結像装置102における空中画像の形成について説明する。
 図示例の空中結像装置102では、表示素子25に表示される画像に応じた光が、まず、光学積層体100に入射される。光学積層体100は、入射された光(ランダム光)を第1回転方向の円偏光に変換して出射する。楕円率が上記下限以上であるので、光学積層体100は、積層方向に沿って入射される光、および、積層方向と交差する斜め方向で入射される光のそれぞれを効率よく変換できる。
 その後、ビームスプリッター26は、光学積層体100からの第1回転方向の円偏光を、再帰反射シート27に向けて反射する。ビームスプリッター26で反射された第1回転方向の円偏光は、再帰反射シート27に到達する前、および、再帰反射シート27によって再帰反射された後に、λ/4位相差板28を通過する。これによって、円偏光の回転方向が逆向きとなる。つまり、第1回転方向の円偏光が第2回転方向の円偏光となる。その後、第2回転方向の円偏光は、ビームスプリッター26を透過して、ビームスプリッター26に対して表示素子25と面対称な位置で結像する。以上によって、鮮明な空中結像Iが形成される。
Next, the formation of an aerial image in the aerial imaging device 102 will be described.
In the illustrated aerial imaging device 102, light corresponding to an image displayed on the display element 25 is first incident on the optical stack 100. The optical stack 100 converts the incident light (random light) into circularly polarized light in a first rotation direction and emits the light. Since the ellipticity is equal to or greater than the lower limit, the optical stack 100 can efficiently convert both the light incident along the stacking direction and the light incident in an oblique direction intersecting the stacking direction.
Then, the beam splitter 26 reflects the circularly polarized light in the first rotation direction from the optical laminate 100 toward the retroreflective sheet 27. The circularly polarized light in the first rotation direction reflected by the beam splitter 26 passes through the λ/4 phase difference plate 28 before reaching the retroreflective sheet 27 and after being retroreflected by the retroreflective sheet 27. This reverses the rotation direction of the circularly polarized light. That is, the circularly polarized light in the first rotation direction becomes circularly polarized light in the second rotation direction. Then, the circularly polarized light in the second rotation direction passes through the beam splitter 26 and is imaged at a position that is plane-symmetrical to the display element 25 with respect to the beam splitter 26. As a result, a clear aerial image I is formed.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。 The present invention will be specifically explained below with reference to examples, but the present invention is not limited to these examples. The methods for measuring each characteristic are as follows.
(1)位相差値の測定
 実施例および比較例に用いた第一位相差部材~第五位相差部材のそれぞれの位相差について、王子計測製KOBRA-WPRを用いて自動計測した。測定波長は550nm、測定温度は23℃であった。
(2)楕円率の測定
 実施例および比較例で得られた光学積層体の楕円率を、高速・高精度ミュラー行列ポラリメータ(Axometrics社製、AxoScan)を用いて測定した。より詳しくは、光学積層体を上記ポラリメータにセットして、23℃において偏光部材側から波長450nm、550nm、650nmの光を入射し、第一位相差部材側から光を出射させ、表1に示す方位角および仰角における出射光の短軸半径b/長軸半径aを測定し、上記3種類の波長の光における短軸半径b/長軸半径aの平均値を楕円率として表1に示す。
(1) Measurement of Retardation Value The retardation of each of the first to fifth retardation members used in the examples and comparative examples was automatically measured using KOBRA-WPR manufactured by Oji Scientific Instruments Co., Ltd. The measurement wavelength was 550 nm and the measurement temperature was 23°C.
(2) Measurement of ellipticity The ellipticity of the optical laminate obtained in the examples and comparative examples is measured using a high-speed and high-precision Mueller matrix polarimeter (Axometrics, AxoScan).More specifically, the optical laminate is set in the polarimeter, and light with wavelengths of 450 nm, 550 nm, and 650 nm is incident from the polarizing member side at 23 ° C., and light is emitted from the first phase difference member side, and the minor axis radius b/major axis radius a of the emitted light at the azimuth angle and elevation angle shown in Table 1 are measured, and the average value of the minor axis radius b/major axis radius a of the light of the above three kinds of wavelengths is shown in Table 1 as ellipticity.
[偏光部材の作製]
<製造例1>
 熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100質量部に、ヨウ化カリウム13質量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100質量部に対して、ホウ酸を4質量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100質量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100質量部に対して、ヨウ化カリウムを3質量部配合し、ホウ酸を5質量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100質量部に対して、ヨウ化カリウムを4質量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。
 このようにして、樹脂基材上に厚み約5μmの偏光膜を形成し、樹脂基材/偏光膜の構成を有する積層体を得た。
 得られた積層体の偏光膜表面(樹脂基材とは反対側の面)に、保護層として、ハードコート層が設けられたセルロース系樹脂フィルム(厚み:32μm)を、紫外線硬化型接着剤層を介して貼り合せた。次いで、樹脂基材を剥離し、保護層/偏光膜の構成を有する偏光部材を得た。
[Preparation of Polarizing Member]
<Production Example 1>
As a thermoplastic resin substrate, a long amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a Tg of about 75° C. was used, and one side of the resin substrate was subjected to a corona treatment.
A PVA aqueous solution (coating solution) was prepared by adding 13 parts by mass of potassium iodide to 100 parts by mass of a PVA-based resin prepared by mixing polyvinyl alcohol (degree of polymerization 4,200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name "GOHSEFFIMER") in a ratio of 9:1, and dissolving the resultant in water.
The above PVA aqueous solution was applied to the corona-treated surface of a resin substrate and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 μm, thereby producing a laminate.
The obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (machine direction) in an oven at 130° C. (auxiliary in-air stretching treatment).
Next, the laminate was immersed in an insolubilizing bath (a boric acid aqueous solution obtained by mixing 4 parts by mass of boric acid with 100 parts by mass of water) having a liquid temperature of 40° C. for 30 seconds (insolubilizing treatment).
Next, the film was immersed in a dye bath (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1:7 to 100 parts by mass of water) having a liquid temperature of 30° C. for 60 seconds while adjusting the concentration so that the single transmittance (Ts) of the finally obtained polarizing film would be a desired value (dyeing treatment).
Next, the plate was immersed in a crosslinking bath (a boric acid aqueous solution obtained by mixing 3 parts by mass of potassium iodide and 5 parts by mass of boric acid with respect to 100 parts by mass of water) at a liquid temperature of 40° C. for 30 seconds (crosslinking treatment).
Thereafter, the laminate was immersed in an aqueous boric acid solution (boric acid concentration: 4 wt %, potassium iodide concentration: 5 wt %) at a liquid temperature of 70° C., and uniaxially stretched in the longitudinal direction (longitudinal direction) between rolls with different peripheral speeds to a total stretch ratio of 5.5 times (underwater stretching treatment).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by mixing 4 parts by mass of potassium iodide with 100 parts by mass of water) at a liquid temperature of 20° C. (cleaning treatment).
Thereafter, the film was dried in an oven maintained at about 90° C., while being brought into contact with a SUS heated roll whose surface temperature was maintained at about 75° C. (drying shrinkage treatment).
In this manner, a polarizing film having a thickness of about 5 μm was formed on the resin substrate, and a laminate having a resin substrate/polarizing film structure was obtained.
A cellulose-based resin film (thickness: 32 μm) provided with a hard coat layer was attached as a protective layer to the polarizing film surface (the surface opposite to the resin substrate) of the obtained laminate via an ultraviolet-curable adhesive layer. The resin substrate was then peeled off to obtain a polarizing member having a protective layer/polarizing film configuration.
[nz>nx=nyの屈折率を有する第一位相差部材(ポジティブCプレート)の作製]
<製造例2>
 下記化学式(II)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20質量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80質量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5質量部をシクロペンタノン200質量部に溶解して液晶塗工液を調製した。
Figure JPOXMLDOC01-appb-C000006
 そして、基材フィルム(ノルボルネン系樹脂フィルム:日本ゼオン社製、商品名「ゼオネックス」)に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、厚み4μmの第一位相差部材(第一位相差フィルム)を基材上に形成した。
 このようにして得られた第一位相差部材は、nz>nx=nyの屈折率を有していた。第一位相差部材(ポジティブCプレート)の厚み方向の位相差Rth(550)を表1に示す。
[Preparation of a first phase difference member (positive C plate) having a refractive index of nz>nx=ny]
<Production Example 2>
A liquid crystal coating solution was prepared by dissolving 20 parts by mass of a side-chain liquid crystal polymer represented by the following chemical formula (II) (the numbers 65 and 35 in the formula indicate the mole percentages of the monomer units, and are conveniently represented as a block polymer: weight average molecular weight 5000), 80 parts by mass of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: product name Paliocolor LC242), and 5 parts by mass of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals: product name Irgacure 907) in 200 parts by mass of cyclopentanone.
Figure JPOXMLDOC01-appb-C000006
The coating liquid was then applied to a substrate film (norbornene-based resin film: manufactured by Zeon Corporation, product name "ZEONEX") using a bar coater, and the liquid crystal was aligned by heating and drying for 4 minutes at 80° C. The liquid crystal layer was irradiated with ultraviolet light to harden the liquid crystal layer, thereby forming a first retardation member (first retardation film) having a thickness of 4 μm on the substrate.
The first retardation member thus obtained had a refractive index of nz>nx=ny. The retardation Rth(550) in the thickness direction of the first retardation member (positive C plate) is shown in Table 1.
[λ/4板として機能する第二位相差部材の作製]
<製造例3>
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置に、ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60質量部(0.046mol)、イソソルビド(ISB)29.21質量部(0.200mol)、スピログリコール(SPG)42.28質量部(0.139mol)、ジフェニルカーボネート(DPC)63.77質量部(0.298mol)、および、触媒として酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
 得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、延伸温度150℃でロールの幅方向に延伸し、表1に記載の厚み47μmの第二位相差部材(第二位相差フィルム)を得た。
 このようにして得られた第二位相差部材のRe(550)は147nmであり、λ/4部材として機能し得る。
[Preparation of second phase difference member functioning as a λ/4 plate]
<Production Example 3>
In a batch polymerization apparatus consisting of two vertical reactors equipped with stirring blades and a reflux condenser controlled at 100 ° C., 29.60 parts by mass (0.046 mol) of bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane, 29.21 parts by mass (0.200 mol) of isosorbide (ISB), 42.28 parts by mass (0.139 mol) of spiroglycol (SPG), 63.77 parts by mass (0.298 mol) of diphenyl carbonate (DPC), and 1.19 × 10 -2 parts by mass (6.78 × 10 -5 mol) of calcium acetate monohydrate as a catalyst were charged. After the inside of the reactor was replaced with nitrogen under reduced pressure, the reactor was heated with a heat medium, and stirring was started when the internal temperature reached 100 ° C. The internal temperature was allowed to reach 220°C 40 minutes after the start of the temperature rise, and the pressure was controlled to maintain this temperature while simultaneously starting decompression, and the pressure was reduced to 13.3 kPa in 90 minutes after reaching 220°C. Phenol vapor by-produced during the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer components contained in the phenol vapor were returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C and recovered. Nitrogen was introduced into the first reactor to restore the pressure to atmospheric pressure once, and the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, the temperature rise and decompression in the second reactor were started, and the internal temperature was set to 240°C and the pressure to 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was reached. Nitrogen was introduced into the reactor at the time the predetermined power was reached to restore the pressure, and the polyester carbonate resin produced was extruded into water, and the strands were cut to obtain pellets.
The obtained polyester carbonate-based resin (pellets) was vacuum-dried at 80°C for 5 hours, and then stretched in the width direction of the roll at a stretching temperature of 150°C using a film-forming device equipped with a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder setting temperature: 250°C), a T-die (width 200 mm, setting temperature: 250°C), a chill roll (setting temperature: 120 to 130°C) and a winder, to obtain a second retardation member (second retardation film) having a thickness of 47 μm as described in Table 1.
The second phase difference member thus obtained has an Re(550) of 147 nm and can function as a λ/4 member.
[nz>nx>nyの屈折率を有する第三位相差部材(ポジティブBプレート)の作製]
<製造例4>
 ヒドロキシプロピルメチルセルロース(信越化学社製、商品名メトローズ60SH-50)48質量部、蒸留水15601質量部、フマル酸ジイソプロピル8161質量部、アクリル酸3-エチル-3-オキセタニルメチル240質量部および重合開始剤であるt-ブチルパーオキシピバレート45質量部を入れ、窒素バブリングを1時間行った後、攪拌しながら49℃で24時間保持することにより、ラジカル懸濁重合を行なった。次いで、室温まで冷却し、生成したポリマー粒子を含む懸濁液を遠心分離した。得られたポリマーを蒸留水で2回及びメタノールで2回洗浄した後、減圧乾燥した。
 得られたフマル酸エステル系樹脂を、トルエン・メチルエチルケトン混合溶液(トルエン/メチルエチルケトン50質量%/50質量%)に溶解して20質量%溶液とした。さらに、フマル酸エステル系樹脂100質量部に対し、可塑剤としてトリブチルトリメリテート5質量部を添加して、ドープを調製した。
 支持体フィルムとして、ポリエステル(ポリエチレン-テレフタレート/イソフタレート共重合体)の二軸延伸フィルム(厚み75μm、幅1350mm)を用いて、調整したドープを任意の厚みに製膜し、加熱乾燥させた。
 上記の積層体を、延伸装置の繰出し部にセットし、積層体を繰り出して下流側に搬送しながら、表1に示す位相差値となるように延伸倍率および延伸温度を調製して、延伸炉内で自由端一軸延伸を行った。延伸後の積層体から支持体を剥離し、第三位相差部材(第三位相差フィルム)を得た。
 このようにして得られた第三位相差部材(第三位相差フィルム)は、nz>nx>nyの屈折率を有していた。第三位相差部材の面内位相差Re(550)、および、厚み方向の位相差Rth(550)を表1に示す。
<製造例5~9>
 表1に示す位相差値となるように延伸倍率を変更したこと以外は、製造例4と同様にして、表1に記載の厚み5μmの第三位相差部材(第三位相差フィルム)を得た。
[Preparation of a third phase difference member (positive B plate) having a refractive index of nz>nx>ny]
<Production Example 4>
Hydroxypropylmethylcellulose (manufactured by Shin-Etsu Chemical Co., Ltd., trade name Metolose 60SH-50) 48 parts by mass, distilled water 15601 parts by mass, diisopropyl fumarate 8161 parts by mass, 3-ethyl-3-oxetanylmethyl acrylate 240 parts by mass, and t-butyl peroxypivalate 45 parts by mass as a polymerization initiator were added, and after nitrogen bubbling for 1 hour, the mixture was stirred and held at 49°C for 24 hours to carry out radical suspension polymerization. The mixture was then cooled to room temperature, and the suspension containing the produced polymer particles was centrifuged. The obtained polymer was washed twice with distilled water and twice with methanol, and then dried under reduced pressure.
The obtained fumaric acid ester-based resin was dissolved in a toluene-methyl ethyl ketone mixed solution (toluene/methyl ethyl ketone 50% by mass/50% by mass) to prepare a 20% by mass solution. Further, 5 parts by mass of tributyl trimellitate as a plasticizer was added to 100 parts by mass of the fumaric acid ester-based resin to prepare a dope.
The prepared dope was formed into a film of a desired thickness on a biaxially stretched polyester (polyethylene terephthalate/isophthalate copolymer) film (thickness: 75 μm, width: 1350 mm) as a support film, and then dried by heating.
The laminate was set in the unwinding section of a stretching device, and while unwinding and transporting the laminate downstream, the stretching ratio and stretching temperature were adjusted to obtain the retardation values shown in Table 1, and free-end uniaxial stretching was performed in a stretching furnace. The support was peeled off from the laminate after stretching to obtain a third retardation member (third retardation film).
The third retardation member (third retardation film) thus obtained had a refractive index of nz>nx>ny. The in-plane retardation Re(550) and the thickness direction retardation Rth(550) of the third retardation member are shown in Table 1.
<Production Examples 5 to 9>
A third retardation member (third retardation film) having a thickness of 5 μm shown in Table 1 was obtained in the same manner as in Production Example 4, except that the stretching ratio was changed so as to obtain the retardation value shown in Table 1.
[nx>ny>nzの屈折率を有する第四位相差部材(ネガティブBプレート)の作製]
<製造例10>
 長尺のノルボルネン系樹脂フィルム(日本ゼオン社製、商品名Zeonor、厚み40μm、光弾性係数3.10×10-12/N)を、表1に示す位相差値となるように延伸倍率および乾燥温度を調製し、固定端横延伸することによって、厚み18μmの第四位相差部材(第四位相差フィルム)を作製した。
 このようにして得られた第四位相差部材は、nx>ny>nzの屈折率を有していた。第四位相差部材の面内位相差Re(550)、および、厚み方向の位相差Rth(550)を表1に示す。
<製造例11>
 表1に示す位相差値となるように延伸倍率および乾燥温度を変更したこと以外は、製造例10と同様にして、表1に記載の第四位相差部材を得た。
[Preparation of a fourth phase difference member (negative B plate) having a refractive index of nx>ny>nz]
<Production Example 10>
A long norbornene-based resin film (manufactured by Zeon Corporation, product name Zeonor, thickness 40 μm, photoelastic coefficient 3.10 × 10 -12 m 2 /N) was stretched laterally at a fixed end while adjusting the stretching ratio and drying temperature so as to obtain the retardation values shown in Table 1, to produce a fourth retardation member (fourth retardation film) with a thickness of 18 μm.
The fourth retardation member thus obtained had a refractive index of nx>ny>nz. The in-plane retardation Re(550) and the thickness direction retardation Rth(550) of the fourth retardation member are shown in Table 1.
<Production Example 11>
A fourth retardation member shown in Table 1 was obtained in the same manner as in Production Example 10, except that the stretching ratio and drying temperature were changed so as to obtain the retardation value shown in Table 1.
[nx>nz>nyの屈折率を有する第五位相差部材(Zフィルム)の作製]
<製造例12>
 厚み130μmのノルボルネン系樹脂フィルム(オプテス社製、ゼオノアZF-14-100)の片側に、厚み60μmの収縮性フィルム(東レ社製、トレファンBO2873)を、アクリル系粘着剤層(厚み20μm)を介して貼り合わせた。その後、146℃の空気循環式オーブン内で1.3倍に延伸することで、収縮性フィルム上に第五位相差部材(第五位相差フィルム)が形成された積層体を得た。次いで、収縮性フィルムから第五位相差部材を剥離した。
 このようにして得られた第五位相差部材は、nx>nz>nyの屈折率を有していた。第五位相差部材の面内位相差Re(550)、および、Nz係数を表1に示す。
[Preparation of fifth phase difference member (Z film) having refractive index of nx>nz>ny]
<Production Example 12>
A 60 μm thick shrinkable film (Toray Industries, Torayfan BO2873) was attached to one side of a 130 μm thick norbornene resin film (Optes, Zeonor ZF-14-100) via an acrylic adhesive layer (thickness 20 μm). The film was then stretched 1.3 times in an air circulating oven at 146° C. to obtain a laminate in which a fifth retardation member (fifth retardation film) was formed on the shrinkable film. The fifth retardation member was then peeled off from the shrinkable film.
The fifth retardation member thus obtained had a refractive index of nx>nz>ny. The in-plane retardation Re(550) and the Nz coefficient of the fifth retardation member are shown in Table 1.
<<実施例1~7>>
 表1に示すように、製造例2の第一位相差部材、製造例3の第二位相差部材、製造例4~9のいずれかの第三位相差部材、製造例10または11の第四位相差部材、および、製造例1の偏光部材(偏光膜/保護層)を、この順に積層した。積層は、偏光子の吸収軸方向と、位相差部材(第一位相差部材~第四位相差部材のそれぞれ)の遅相軸方向とがなす角度が、表1の値となるようにして行った。また、第一位相差部材と第二位相差部材とは、紫外線硬化型接着剤層(厚み1μm)によって貼り合わされた。第二位相差部材と第三位相差部材とは(メタ)アクリル系粘着剤層(厚み23μm)によって貼り合わされた。第三位相差部材と第四位相差部材とは、紫外線硬化型接着剤層(厚み1μm)によって貼り合わされた。第四位相差部材と偏光部材(具体的には偏光膜)とは、紫外線硬化型接着剤層(厚み1μm)によって貼り合わされた。
 これによって、光学積層体を作製した。得られた光学積層体を上記した楕円率の測定に供した。
<<Examples 1 to 7>>
As shown in Table 1, the first phase difference member of Production Example 2, the second phase difference member of Production Example 3, the third phase difference member of any of Production Examples 4 to 9, the fourth phase difference member of Production Example 10 or 11, and the polarizing member (polarizing film/protective layer) of Production Example 1 were laminated in this order. The lamination was performed so that the angle between the absorption axis direction of the polarizer and the slow axis direction of the phase difference member (each of the first phase difference member to the fourth phase difference member) was the value in Table 1. In addition, the first phase difference member and the second phase difference member were bonded together with an ultraviolet-curing adhesive layer (thickness 1 μm). The second phase difference member and the third phase difference member were bonded together with a (meth)acrylic pressure-sensitive adhesive layer (thickness 23 μm). The third phase difference member and the fourth phase difference member were bonded together with an ultraviolet-curing adhesive layer (thickness 1 μm). The fourth phase difference member and the polarizing member (specifically, the polarizing film) were bonded together with an ultraviolet-curing adhesive layer (thickness 1 μm).
In this way, an optical laminate was produced. The obtained optical laminate was subjected to the above-mentioned measurement of ellipticity.
<<実施例8>>
 表1に示すように、製造例2の第一位相差部材、製造例3の第二位相差部材、製造例12の第五位相差部材、および、製造例1の偏光部材(偏光膜/保護層)を、この順に積層した。積層は、偏光子の吸収軸方向と、位相差部材(第一位相差部材、第二位相差部材、および、第五位相差部材のそれぞれ)の遅相軸方向とがなす角度が、表1の値となるようにして行った。また、第一位相差部材と第二位相差部材とは、紫外線硬化型接着剤層(厚み1μm)によって貼り合わされた。第二位相差部材と第五位相差部材とは(メタ)アクリル系粘着剤層(厚み23μm)によって貼り合わされた。第五位相差部材と偏光部材(具体的には偏光膜)とは、紫外線硬化型接着剤層(厚み1μm)によって貼り合わされた。
 これによって、光学積層体を作製した。得られた光学積層体を上記した楕円率の測定に供した。
<<Example 8>>
As shown in Table 1, the first phase difference member of Production Example 2, the second phase difference member of Production Example 3, the fifth phase difference member of Production Example 12, and the polarizing member (polarizing film/protective layer) of Production Example 1 were laminated in this order. The lamination was performed so that the angle between the absorption axis direction of the polarizer and the slow axis direction of the phase difference members (each of the first phase difference member, the second phase difference member, and the fifth phase difference member) was the value in Table 1. In addition, the first phase difference member and the second phase difference member were bonded together with an ultraviolet-curing adhesive layer (thickness 1 μm). The second phase difference member and the fifth phase difference member were bonded together with a (meth)acrylic pressure-sensitive adhesive layer (thickness 23 μm). The fifth phase difference member and the polarizing member (specifically, the polarizing film) were bonded together with an ultraviolet-curing adhesive layer (thickness 1 μm).
In this way, an optical laminate was produced. The obtained optical laminate was subjected to the above-mentioned measurement of ellipticity.
<<実施例9>>
 表1に示すように、製造例2の第一位相差部材、製造例3の第二位相差部材、および、製造例1の偏光部材(偏光膜/保護層)を、この順に積層した。積層は、偏光子の吸収軸方向と、位相差部材(第一位相差部材または第二位相差部材)の遅相軸方向とがなす角度が、表1の値となるようにして行った。また、第一位相差部材と第二位相差部材とは、紫外線硬化型接着剤層(厚み1μm)によって貼り合わされた。第二位相差部材と偏光部材(具体的には偏光膜)とは、紫外線硬化型接着剤層(厚み1μm)によって貼り合わされた。
 これによって、光学積層体を作製した。得られた光学積層体を上記した楕円率の測定に供した。
<<Example 9>>
As shown in Table 1, the first phase difference member of Production Example 2, the second phase difference member of Production Example 3, and the polarizing member (polarizing film/protective layer) of Production Example 1 were laminated in this order. The lamination was performed so that the angle between the absorption axis direction of the polarizer and the slow axis direction of the phase difference member (first phase difference member or second phase difference member) was the value shown in Table 1. The first phase difference member and the second phase difference member were bonded together with an ultraviolet-curable adhesive layer (thickness 1 μm). The second phase difference member and the polarizing member (specifically, the polarizing film) were bonded together with an ultraviolet-curable adhesive layer (thickness 1 μm).
In this way, an optical laminate was produced. The obtained optical laminate was subjected to the above-mentioned measurement of ellipticity.
<<実施例10>>
 偏光子の吸収軸方向と第五位相差部材の遅相軸方向とがなす角度が表1の値となるように変更したこと以外は、実施例8と同様にして光学積層体を作製した。得られた光学積層体を上記した楕円率の測定に供した。
<<Example 10>>
An optical laminate was produced in the same manner as in Example 8, except that the angle between the absorption axis direction of the polarizer and the slow axis direction of the fifth retardation member was changed to the value in Table 1. The obtained optical laminate was subjected to the above-mentioned measurement of ellipticity.
<<比較例1>>
 表1に示すように、製造例3の第二位相差部材、および、製造例1の偏光部材(偏光膜/保護層)を、この順に積層した。積層は、偏光子の吸収軸方向と、第二位相差部材の遅相軸方向とがなす角度が、表1の値となるようにして行った。また、第二位相差部材と偏光部材(具体的には偏光膜)とは、紫外線硬化型接着剤層(厚み1μm)によって貼り合わされた。
 これによって、光学積層体を作製した。得られた光学積層体を上記した楕円率の測定に供した。
<<Comparative Example 1>>
As shown in Table 1, the second phase difference member of Production Example 3 and the polarizing member of Production Example 1 (polarizing film/protective layer) were laminated in this order. The lamination was performed so that the angle between the absorption axis direction of the polarizer and the slow axis direction of the second phase difference member was the value shown in Table 1. The second phase difference member and the polarizing member (specifically, the polarizing film) were bonded together with an ultraviolet-curing adhesive layer (thickness 1 μm).
In this way, an optical laminate was produced. The obtained optical laminate was subjected to the above-mentioned measurement of ellipticity.
<<比較例2~4>>
 偏光子の吸収軸方向と第五位相差部材の遅相軸方向とがなす角度が表1の値となるように変更したこと以外は、実施例8と同様にして光学積層体を作製した。得られた光学積層体を上記した楕円率の測定に供した。
<<Comparative Examples 2 to 4>>
An optical laminate was produced in the same manner as in Example 8, except that the angle between the absorption axis direction of the polarizer and the slow axis direction of the fifth retardation member was changed to the value in Table 1. The obtained optical laminate was subjected to the above-mentioned measurement of ellipticity.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。 The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the configurations shown in the above-described embodiments can be replaced with configurations that are substantially the same as those shown in the above-described embodiments, that have the same effects, or that can achieve the same purpose.
 本発明の光学積層体は、画像表示装置(代表的には、液晶表示装置、有機EL表示装置)に用いられ、特に、再帰反射型の空中結像装置(空中浮遊ディスプレイ)に好適に用いられ得る。 The optical laminate of the present invention can be used in image display devices (typically liquid crystal display devices and organic EL display devices), and can be particularly suitably used in retroreflective aerial imaging devices (floating displays).
 100  光学積層体
 1    第一位相差部材
 2    第二位相差部材
 3    第三位相差部材
 4    第四位相差部材
 5    偏光部材
 51   偏光膜
Reference Signs List 100 Optical laminate 1 First phase difference member 2 Second phase difference member 3 Third phase difference member 4 Fourth phase difference member 5 Polarizing member 51 Polarizing film

Claims (4)

  1.  偏光部材と、
     前記偏光部材の視認側に配置される複数の位相差部材と、を備え、
     方位角0°において仰角90°および仰角30°のそれぞれで測定される楕円率が、0.75以上である、光学積層体。
    A polarizing member;
    a plurality of phase difference members arranged on the viewing side of the polarizing member;
    An optical laminate having an ellipticity of 0.75 or more measured at an azimuth angle of 0° and an elevation angle of 90° and an elevation angle of 30°.
  2.  方位角45°において仰角90°および仰角30°のそれぞれで測定される楕円率が、0.70以上である、請求項1に記載の光学積層体。 The optical laminate of claim 1, in which the ellipticity measured at an azimuth angle of 45° and an elevation angle of 90° and an elevation angle of 30° is 0.70 or more.
  3.  前記複数の位相差部材は、
      nz>nx=nyの屈折率を有する第一位相差部材と、
      λ/4部材として機能する第二位相差部材と、
      nz>nx≧nyの屈折率を有する第三位相差部材と、
      nx>ny≧nzの屈折率を有する第四位相差部材と、を視認側からこの順に含む、請求項1または2に記載の光学積層体。
    The plurality of phase difference members include
    A first phase difference member having a refractive index of nz>nx=ny;
    A second phase difference member functioning as a λ/4 member;
    A third phase difference member having a refractive index of nz>nx≧ny;
    3. The optical laminate according to claim 1, further comprising, in this order from the viewing side, a fourth phase difference member having a refractive index of nx>ny≧nz.
  4.  前記複数の位相差部材は、
      nz>nx=nyの屈折率を有する第一位相差部材と、
      λ/4部材として機能する第二位相差部材と、
      nx>nz>nyの屈折率を有する第五位相差部材と、を視認側からこの順に含み、
     前記偏光部材の吸収軸方向と前記第五位相差部材の遅相軸方向とがなす角度が、90°±1.5°以下である、請求項1または2に記載の光学積層体。
    The plurality of phase difference members include
    A first phase difference member having a refractive index of nz>nx=ny;
    A second phase difference member functioning as a λ/4 member;
    a fifth phase difference member having a refractive index of nx>nz>ny, in that order from the viewing side;
    3. The optical laminate according to claim 1, wherein an angle between the absorption axis direction of the polarizing member and the slow axis direction of the fifth retardation member is 90°±1.5° or less.
PCT/JP2023/032890 2022-10-13 2023-09-08 Optical laminate WO2024080047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-164783 2022-10-13
JP2022164783A JP2024057839A (en) 2022-10-13 Optical laminate

Publications (1)

Publication Number Publication Date
WO2024080047A1 true WO2024080047A1 (en) 2024-04-18

Family

ID=90669428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032890 WO2024080047A1 (en) 2022-10-13 2023-09-08 Optical laminate

Country Status (1)

Country Link
WO (1) WO2024080047A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536186B1 (en) * 2004-09-20 2005-12-14 주식회사 엘지에스 Random vibration wave retardation plate and optical film and/or optical pickup device has them
KR100616104B1 (en) * 2005-11-29 2006-08-25 주식회사 엘지에스 Random vibration wave retardation plate and optical film and/or optical pickup device has them
KR20060094250A (en) * 2005-02-24 2006-08-29 주식회사 엘지에스 Reflection polarized light film and display device having the same
JP2009086651A (en) * 2007-09-11 2009-04-23 Toray Ind Inc Retardation film, circularly polarizing plate and display device using the same
WO2011049144A1 (en) * 2009-10-20 2011-04-28 旭硝子株式会社 Reflection type wavelength plate and optical head device
JP2015106114A (en) * 2013-12-02 2015-06-08 日東電工株式会社 Circular polarization plate for organic el display device, and organic el display device
WO2015122479A1 (en) * 2014-02-14 2015-08-20 富士フイルム株式会社 Brightness improvement film, optical sheet member, and liquid crystal display device
WO2016052360A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Circularly polarizing plate and display device
WO2018003416A1 (en) * 2016-06-30 2018-01-04 住友化学株式会社 Phase contrast film
WO2018012523A1 (en) * 2016-07-13 2018-01-18 Scivax株式会社 Optical element, light emitting element, optical device using said light emitting element, and method for producing said optical element
JP2019532338A (en) * 2016-10-24 2019-11-07 エルジー・ケム・リミテッド Antireflection optical filter and organic light emitting device
JP2020204783A (en) * 2020-09-10 2020-12-24 大日本印刷株式会社 Optical film and image display device
JP2021516364A (en) * 2018-03-02 2021-07-01 ゲイリー シャープ イノベーションズ リミテッド ライアビリティ カンパニー Retarder stack pair for polarization basis vector transformation
US20220299691A1 (en) * 2019-08-21 2022-09-22 Samsung Sdi Co., Ltd. Polarizing plate and optical display device including same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536186B1 (en) * 2004-09-20 2005-12-14 주식회사 엘지에스 Random vibration wave retardation plate and optical film and/or optical pickup device has them
KR20060094250A (en) * 2005-02-24 2006-08-29 주식회사 엘지에스 Reflection polarized light film and display device having the same
KR100616104B1 (en) * 2005-11-29 2006-08-25 주식회사 엘지에스 Random vibration wave retardation plate and optical film and/or optical pickup device has them
JP2009086651A (en) * 2007-09-11 2009-04-23 Toray Ind Inc Retardation film, circularly polarizing plate and display device using the same
WO2011049144A1 (en) * 2009-10-20 2011-04-28 旭硝子株式会社 Reflection type wavelength plate and optical head device
JP2015106114A (en) * 2013-12-02 2015-06-08 日東電工株式会社 Circular polarization plate for organic el display device, and organic el display device
WO2015122479A1 (en) * 2014-02-14 2015-08-20 富士フイルム株式会社 Brightness improvement film, optical sheet member, and liquid crystal display device
WO2016052360A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Circularly polarizing plate and display device
WO2018003416A1 (en) * 2016-06-30 2018-01-04 住友化学株式会社 Phase contrast film
WO2018012523A1 (en) * 2016-07-13 2018-01-18 Scivax株式会社 Optical element, light emitting element, optical device using said light emitting element, and method for producing said optical element
JP2019532338A (en) * 2016-10-24 2019-11-07 エルジー・ケム・リミテッド Antireflection optical filter and organic light emitting device
JP2021516364A (en) * 2018-03-02 2021-07-01 ゲイリー シャープ イノベーションズ リミテッド ライアビリティ カンパニー Retarder stack pair for polarization basis vector transformation
US20220299691A1 (en) * 2019-08-21 2022-09-22 Samsung Sdi Co., Ltd. Polarizing plate and optical display device including same
JP2020204783A (en) * 2020-09-10 2020-12-24 大日本印刷株式会社 Optical film and image display device

Similar Documents

Publication Publication Date Title
JP5528606B2 (en) Polarizing plate and organic EL panel
WO2015166930A1 (en) Circular polarizer for organic el display device, and organic el display device
JP6453746B2 (en) Elongated optical laminate and image display device
JP6321435B2 (en) Polarizing plate and organic EL panel
JP2008165185A (en) Multilayer optical film, liquid crystal panel using multilayer optical film, and liquid crystal display device
WO2017038415A1 (en) Polarizing plate having optical compensation layer, and organic el panel using same
JP2024051010A (en) Circular polarizing plate with antireflection layer and image display device using said circular polarizing plate with antireflection layer
JP2024045312A (en) Circularly polarizing plate with antireflection layer and image display device using the circularly polarizing plate with antireflection layer
JP2017161606A (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP2019008252A (en) Retardation film, circular polarization plate and manufacturing method of retardation film
KR20200110182A (en) Image display apparatus and circularly polarizing plate to be used in the image display apparatus
WO2024080047A1 (en) Optical laminate
JP2024057839A (en) Optical laminate
JP2024057833A (en) Optical laminate
KR20240051864A (en) Optical laminate
JP2008191376A (en) Liquid crystal panel and liquid crystal display
JP2019008327A (en) Circularly polarizing plate for organic el display device, and organic el display device
WO2023176690A1 (en) Display system, optical layered body, and display system manufacturing method
WO2023176624A1 (en) Lens part, display body, and display method
WO2023176625A1 (en) Lens part, display body, and display method
CN117891018A (en) Optical laminate
WO2023176361A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176630A1 (en) Optical laminate, lens unit, and display method
WO2023176692A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176363A1 (en) Display system, display method, display body, and display body manufacturing method