WO2024080018A1 - Wireless relay device and wireless relay method - Google Patents

Wireless relay device and wireless relay method Download PDF

Info

Publication number
WO2024080018A1
WO2024080018A1 PCT/JP2023/031436 JP2023031436W WO2024080018A1 WO 2024080018 A1 WO2024080018 A1 WO 2024080018A1 JP 2023031436 W JP2023031436 W JP 2023031436W WO 2024080018 A1 WO2024080018 A1 WO 2024080018A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
unit
terminal
signal
information
Prior art date
Application number
PCT/JP2023/031436
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 栗田
浩樹 原田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2024080018A1 publication Critical patent/WO2024080018A1/en

Links

Images

Definitions

  • the present invention relates to a wireless relay device and a wireless relay method in a wireless communication system.
  • 3GPP registered trademark
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • 5G Fifth Generation Partnership Project
  • NR New Radio
  • 5G various wireless technologies and network architectures are being studied to meet the requirements of achieving a throughput of 10 Gbps or more while keeping latency in wireless sections to 1 ms or less (for example, Non-Patent Document 1).
  • Next-generation communications are expected to use high-frequency bands. Due to the characteristics of these high-frequency bands, there is a demand for improved communication quality due to the reduced number of scatterers, the reduced shadowing effect, and increased attenuation over distance. It is expected that beam control and an environment that guarantees communication quality will be required.
  • Non-Patent Document 2 For example, in high frequency bands, there is a problem that blind spots are easily created due to the strong directional nature of radio waves. Therefore, methods are being tried to improve communication quality in multipath environments by using passive repeaters or active reflectors (RIS: Reconfigurable Intelligent Surfaces), smart repeaters that receive, amplify, and re-radiate signals, etc. (for example, Non-Patent Document 2).
  • RIS Reconfigurable Intelligent Surfaces
  • smart repeaters that receive, amplify, and re-radiate signals, etc.
  • wireless relay devices such as reflectors or smart repeaters that relay radio waves by reflecting or transmitting radio waves from a radio wave source such as a base station to a radio wave receiving destination such as a terminal are being considered.
  • a wireless relay device controlled by a network relays wireless signals between base stations and terminals.
  • the present invention has been made in consideration of the above points, and aims to relay wireless signals in a wireless communication system using a wireless relay device controlled by a network.
  • a wireless relay device has a communication unit that receives signaling including control information related to a relay function from a base station, a control unit that controls the relay function based on the control information, and a relay unit that performs a relay function of receiving a first signal from the base station, transmitting the first signal to a terminal, receiving a second signal from the terminal, and transmitting the second signal to the base station, the relay unit transmitting the first signal to the terminal using multiple TRPs (Transmission/Reception Points), and the control unit controlling the multiple TRPs based on the control information.
  • TRPs Transmission/Reception Points
  • the disclosed technology allows wireless signals to be relayed in a wireless communication system by a wireless relay device controlled by a network.
  • FIG. 1 is a diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a base station 10 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a terminal 20 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a wireless relay device 30 according to an embodiment of the present invention.
  • 5 is a diagram illustrating an example of operation of the wireless relay device 30 according to the embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of communication in a high frequency band.
  • 1 is a diagram illustrating an example of a reflective wireless relay device 30 according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of a transparent wireless relay device 30 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a network controlled repeater in an embodiment of the present invention.
  • FIG. 13 is a diagram for explaining an example (1) of transmission by TRP.
  • FIG. 13 is a diagram for explaining an example (2) of transmission by TRP.
  • FIG. 13 is a diagram for explaining an example (3) of transmission by TRP.
  • FIG. 11 is a diagram for explaining an example (1) of a notification according to an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a second example of a notification according to an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a notification example (3) according to an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a notification example (4) according to an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a notification example (5) according to an embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a sixth example of a notification according to an embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a notification example (7) according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an example (1) of TDM mapping in an embodiment of the present invention.
  • FIG. 13 is a diagram for explaining an example (2) of TDM mapping in an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining an example (3) of TDM mapping in an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining an example (4) of TDM mapping in an embodiment of the present invention.
  • FIG. 1 is a diagram for explaining an example (1) of beam notification in an embodiment of the present invention.
  • FIG. 13 is a diagram for explaining an example (2) of beam notification in an embodiment of the present invention.
  • 2 is a diagram illustrating an example of a hardware configuration of a base station 10, a terminal 20, or a wireless relay device 30 according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the configuration of a vehicle 2001 according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • NR NR
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical random access channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • NR corresponds to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc.
  • NR- even if a signal is used in NR, it is not necessarily specified as "NR-".
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (e.g., Flexible Duplex, etc.).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • another method e.g., Flexible Duplex, etc.
  • radio parameters and the like when radio parameters and the like are “configured,” this may mean that predetermined values are pre-configured, or that radio parameters notified from the base station 10 or the terminal 20 are configured.
  • FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention.
  • the wireless communication system in the embodiment of the present invention includes a base station 10 and a terminal 20. There may be multiple base stations 10 and multiple terminals 20.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of the wireless signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks.
  • the TTI Transmission Time Interval
  • the time domain may be a slot or a subslot
  • the TTI may be a subframe.
  • the base station 10 is capable of performing carrier aggregation, which bundles multiple cells (multiple CCs (component carriers)) together to communicate with the terminal 20.
  • carrier aggregation one primary cell (PCell, Primary Cell) and one or more secondary cells (SCell, Secondary Cell) are used.
  • the base station 10 transmits a synchronization signal, system information, etc. to the terminal 20.
  • the synchronization signal is, for example, NR-PSS and NR-SSS.
  • the system information is, for example, transmitted on NR-PBCH or PDSCH, and is also called broadcast information.
  • the base station 10 transmits control signals or data to the terminal 20 on DL (Downlink), and receives control signals or data from the terminal 20 on UL (Uplink).
  • control signals such as PUCCH and PDCCH
  • shared channels such as PUSCH and PDSCH
  • data are merely examples.
  • the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 in DL and transmits control signals or data to the base station 10 in UL, thereby utilizing various communication services provided by the wireless communication system.
  • the terminal 20 may be referred to as a UE, and the base station 10 may be referred to as a gNB.
  • the terminal 20 is capable of performing carrier aggregation, which bundles multiple cells (multiple CCs) together to communicate with the base station 10.
  • carrier aggregation one primary cell and one or more secondary cells are used.
  • a PUCCH-SCell having a PUCCH may also be used.
  • the base station 10 is, for example, a wireless base station operated in 5G or 6G and forms a cell.
  • the cell is a relatively large cell and is called a macro cell.
  • Base station 10A to base station 10D are base stations operated in 5G or 6G.
  • Base station 10A to base station 10D form cells CA to D, respectively, which are smaller in size than a macro cell.
  • Cells A to D may be called small cells, macro cells, etc. As shown in FIG. 1, cells A to D may be formed to be included in a macro cell.
  • a macrocell may generally be interpreted as a communication area with a radius of several hundred meters to several tens of kilometers that is covered by a single base station.
  • a small cell may also be interpreted as a general term for a cell that has low transmission power and covers a smaller area than a macrocell.
  • the base station 10 and base stations 0A to 10D may be written as gNodeB (gNB) or BS (Base Station), etc.
  • the terminal 20 may be written as UE or MS, etc.
  • the specific configuration of the wireless communication system, including the number and types of base stations and terminals, is not limited to the example shown in FIG. 1.
  • the wireless communication system is not necessarily limited to a wireless communication system conforming to 5G or 6G.
  • the wireless communication system may be a next-generation wireless communication system conforming to 6G or a wireless communication system conforming to LTE.
  • the base station 10 and base stations 10A-10D perform wireless communication with the terminal 20 according to 5G or 6G.
  • the base station 10 and base stations 10A-10D and the terminal 20 may support Massive MIMO, which generates a more directional beam by controlling wireless signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which uses a bundle of multiple component carriers (CCs), Dual Connectivity (DC), which simultaneously communicates between the terminal 20 and each of two NG-RAN nodes, and IAB (Integrated Access and Backhaul), which integrates wireless backhaul between wireless communication nodes such as gNBs and wireless access to the terminal 20.
  • Massive MIMO which generates a more directional beam by controlling wireless signals transmitted from multiple antenna elements
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • IAB Integrated Access and Backhaul
  • the wireless communication system may also be compatible with higher frequency bands than the following frequency ranges (Frequency Range, FR) defined in 3GPP Release 15.
  • FR1 may be compatible with 410 MHz-7.125 GHz
  • FR2 may be compatible with 24.25 GHz-52.6 GHz.
  • the wireless communication system may be compatible with frequency bands exceeding 52.6 GHz up to 114.25 GHz. Such frequency bands may be referred to as millimeter wave bands.
  • the base station 10 that supports massive MIMO can transmit beams.
  • Massive MIMO generally means MIMO communication using an antenna with 100 or more antenna elements, and the multiplexing effect of multiple streams enables faster wireless communication than before.
  • Advanced beamforming is also possible.
  • the beam width can be dynamically changed depending on the frequency band used or the state of the terminal 20.
  • the use of narrow beams can increase the received signal power due to the beamforming gain.
  • effects such as reduced interference and effective use of wireless resources are expected.
  • the wireless communication system may also include a wireless relay device 30.
  • the wireless relay device 30 may be a reflector (RIS), a phase control reflector, a passive repeater, an IRS (Intelligent Reflecting Surface), etc.
  • RIS Reconfigurable Intelligent Surface
  • Specific examples of a reflector may include what is called a metamaterial reflector, a dynamic metasurface, a metasurface lens, etc. (e.g., Non-Patent Document 2).
  • the wireless relay device 30 relays, for example, a wireless signal transmitted from the base station 10A.
  • “relay” may refer to at least one of “reflection,” “transmission,” “concentration (concentrating radio waves at approximately one point),” and “diffraction.”
  • the terminal 20 can receive the wireless signal relayed by the wireless relay device 30.
  • the wireless relay device 30 may relay a wireless signal transmitted from the terminal 20, or may relay a wireless signal transmitted from the base station 10.
  • the wireless relay device 30 can change the phase of the wireless signal that is relayed to the terminal 20.
  • the wireless relay device 30 may be called a phase-variable reflector.
  • the wireless relay device 30 may have a function of changing the phase of the wireless signal and relaying it, but is not limited to this.
  • the wireless relay device 30 may also be called a repeater, relay device, reflect array, IRS, transmit array, or the like.
  • a wireless relay device 30 such as a RIS may be called a battery-less device, a metamaterial functional device, an intelligent reflecting surface, a smart repeater, etc.
  • a wireless relay device 30 such as a RIS or a smart repeater may be defined as having the functions shown in 1)-5) below.
  • the signals may have a receiving function for signals transmitted from the base station 10.
  • the signals may be DL signals such as SSB (SS/PBCH block), PDCCH, PDSCH, DM-RS (Demodulation Reference Signal), PT-RS (Phase Tracking Reference Signal), CSI-RS (Channel State Information Reference Signal), RIS-only signals, etc. It may have a receiving function for signals carrying information related to metamaterial functions. It may also have a transmitting function for transmitting the signals to the terminal 20.
  • SSB may be a signal including a synchronization signal and notification information.
  • the signals may be UL signals such as PRACH, PUCCH, PUSCH, DM-RS, PT-RS, SRS (Sounding Reference Signal), RIS-only signals, etc. It may have a function of transmitting information related to metamaterial functions. It may also have a receiving function of receiving the signals from the terminal 20.
  • It may have a frame synchronization function with the base station 10. It may also have a frame synchronization function with the terminal 20.
  • the terminal 20 may have a function of reflecting a signal transmitted from the base station 10 or the terminal 20.
  • the reflection function may be a function related to phase change, a function related to beam control (for example, a function related to control of TCI (Transmission Configuration Indication)-state and QCL (Quasi Co Location), a selection and application of a beam, and a selection and application of a spatial filter/precoding weight).
  • the power changing function may be power amplification.
  • a wireless relay device 30 such as a RIS or a smart repeater may mean that up to function A below is performed, but transmission is made without performing function B below.
  • Function A Apply a phase shifter.
  • Function B No compensation circuit (e.g., amplification, filtering) is used.
  • Function A Apply phase shifters and compensation circuits.
  • Function B No frequency conversion is performed.
  • a wireless relay device 30 when the phase is changed, the amplitude may be amplified.
  • "relaying" in a wireless relay device 30 such as a RIS may mean transmitting a received signal as is without performing processing at the layer 2 or layer 3 level, transmitting a received signal at the physical layer level as is, or transmitting a received signal as is without interpreting the signal (in which case, a phase change or amplitude amplification, etc. may be performed).
  • the base station 10, the terminal 20, and the wireless relay device 30 each include a function to execute the embodiments described below. However, the base station 10, the terminal 20, and the wireless relay device 30 may each include only one of the functions of the embodiments.
  • Fig. 2 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 has a transmitting unit 110, a receiving unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in Fig. 2 is merely an example. As long as the operation related to the embodiment of the present invention can be executed, the names of the functional divisions and the functional units may be any.
  • the transmitting unit 110 and the receiving unit 120 may be called a communication unit.
  • the transmitting unit 110 has a function of generating a signal to be transmitted to the terminal 20 and transmitting the signal wirelessly.
  • the receiving unit 120 has a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information of a higher layer from the received signals.
  • the transmitting unit 110 also has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL data, etc. to the terminal 20.
  • the transmitting unit 110 also transmits setting information, etc., which will be described in the embodiments.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in a storage device, and reads it out from the storage device as necessary.
  • the control unit 140 performs, for example, resource allocation and overall control of the base station 10. Note that the functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and the functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120.
  • the transmitting unit 110 and the receiving unit 120 may be called the transmitter and the receiver, respectively.
  • Fig. 3 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmitting unit 210, a receiving unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in Fig. 3 is merely an example. As long as the operation related to the embodiment of the present invention can be executed, the names of the functional divisions and functional units may be any.
  • the transmitting unit 210 and the receiving unit 220 may be called a communication unit.
  • the transmitter 210 creates a transmission signal from the transmission data and transmits the transmission signal wirelessly.
  • the receiver 220 receives various signals wirelessly and obtains higher layer signals from the received physical layer signals.
  • the transmitter 210 also transmits HARQ-ACK, and the receiver 220 receives setting information etc., which will be explained in the embodiment.
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in a storage device, and reads it out from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the control unit 240 performs control of the entire terminal 20, etc. Note that the functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and the functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220.
  • the transmitting unit 210 and the receiving unit 220 may also be called a transmitter and a receiver, respectively.
  • Fig. 4 is a diagram showing an example of a functional configuration of the wireless relay device 30 according to the embodiment of the present invention.
  • the wireless relay device 30 has a transmitting unit 310, a receiving unit 320, a control unit 330, a variable unit 340, and an antenna unit 350.
  • the functional divisions and the names of the functional units may be any.
  • the transmitting unit 310 and the receiving unit 320 may be called a communication unit.
  • the antenna section 350 includes at least one antenna connected to the variable section 340.
  • the antenna section 350 may be arranged as an array antenna.
  • the antenna section 350 may be specifically referred to as a relay antenna.
  • the variable section 340 and the antenna section 350 may be referred to as a relay section.
  • the variable section 340 is connected to the antenna section 350 and can change the phase, load, amplitude, etc.
  • the variable section 340 may be a variable phase shifter, phase shifter, amplifier, etc.
  • the phase of the radio waves that reach the relay antenna from the radio wave generating source it is possible to change the direction or beam of the radio waves, etc.
  • the control unit 330 is a control means for controlling the variable unit 340.
  • the control unit 330 functions as a control unit for controlling the relay state when relaying radio waves from the base station 10 or the terminal 20 without signal interpretation.
  • the control unit 330 may change the relay state based on control information received from the base station 10 or the terminal 20 via the communication unit, or may change the relay state based on the reception state of the radio waves from the base station 10 or the terminal 20.
  • the control unit 330 may select appropriate reception beams and transmission beams (directions) based on control information such as SSB, and control the variable unit 340.
  • the control unit 330 may select an appropriate combination of reception direction and transmission direction based on criteria such as the highest reception quality or the highest received power from the reception state, and control the variable unit 340.
  • the control unit 330 can control the variable unit 340 based on, for example, information on the propagation path between the terminal 20 or the base station 10A and the antenna unit 350 (including information estimated from the reception state and control information; the same applies below).
  • the control unit 330 can relay the radio wave received from the base station 10A to a specific direction such as the radio wave receiving destination (terminal 20 in this case) by changing the phase without using transmission power using a known method such as an active repeater or RIS.
  • the control unit 330 controls the phase of the radio signal to be relayed to the terminal 20 or the base station 10A based on the estimated propagation path information H PT and H RP .
  • the radio relay device 30 controls (changes) only the phase of the radio signal (radio wave) by the control unit 330, and may relay without power supply without amplifying the power of the relayed radio signal.
  • control unit 330 may acquire information based on the reception state. Furthermore, the receiving unit 320 may acquire control information from the base station 10A or the terminal 20. For example, the receiving unit 320 may receive various signals such as SSB (including the various signals exemplified in the above-mentioned functions) transmitted from the base station 10A or the terminal 20 as control information.
  • SSB including the various signals exemplified in the above-mentioned functions
  • control unit 330 may estimate propagation path information (H PT and H RP ) between the radio wave source (e.g., the base station 10A or the terminal 20) and the antenna unit 350 based on the reception state (e.g., change in reception power , etc. ) during control by the variable unit 340.
  • H PT and H RP propagation path information
  • the propagation path information (propagation channel information) for each propagation path is specifically information such as amplitude or phase, and in an embodiment of the present invention, is information estimated regarding the propagation path of the radio waves arriving at the antenna unit 350.
  • the control unit 330 may estimate the propagation path information of the antenna unit 350 based on the change in received power when the phase of the variable unit 340 of the array-shaped antenna unit 350 is switched to orthogonal, using a principle similar to that of I/Q (In-phase/Quadrature) detection.
  • FIG. 5 is a diagram showing an example of the operation of the wireless relay device 30 in an embodiment of the present invention.
  • the wireless relay device 30 is interposed between the base station 10A (or another base station 10, etc.) and the terminal 20, and relays (reflects, transmits, aggregates, diffracts, etc.) wireless signals transmitted and received between the base station 10A and the terminal 20.
  • the base station 10A and the terminal 20 transmit and receive wireless signals directly without going through the wireless relay device 30.
  • the wireless relay device 30 relays the wireless signals transmitted and received between the base station 10A and the terminal 20.
  • the wireless relay device 30 estimates propagation path information H PT , H RT between the radio wave generating source such as the base station 10A or the terminal 20 and the relay antenna based on a change in the received power when controlling the variable unit 340 such as a variable phase shifter, and relays the radio signal to the radio wave receiving destination such as the terminal 20 by controlling the variable unit 340 such as a variable phase shifter based on the estimated propagation path information.
  • the wireless relay device 30 is not limited to estimating the propagation path information H PT , H RT , and may relay the radio signal to the radio wave receiving destination such as the base station 10A or the terminal 20 by controlling the variable unit 340 such as a variable phase shifter based on control information received from the base station 10A or the terminal 20.
  • a propagation path or propagation channel refers to an individual communication path for wireless communication, and in this case, it is the communication path between each transmitting and receiving antenna (such as the base station antenna and terminal antenna in the figure).
  • the wireless relay device 30 includes an antenna unit 350 having a small multi-element antenna compatible with massive MIMO, and a variable unit 340 having a variable phase device or phase shifter that changes the phase of the wireless signal, essentially the radio wave, to a specific phase, and uses the variable unit 340 to control the phase of the radio wave relayed to the terminal 20 or base station 10A.
  • FIG. 6 is a diagram showing an example of communication in a high frequency band.
  • a high frequency band of several GHz to several tens of GHz or more blind zones are likely to occur due to the strong linearity of radio waves. If there is line of sight between the base station 10A and the terminal 20, there is no effect on wireless communication between the base station 10A and the terminal 20 even when the high frequency band is used. On the other hand, if the line of sight between the base station 10A and the terminal 20 is blocked by an obstruction such as a building or tree, for example, the wireless quality will deteriorate significantly. In other words, if the terminal 20 moves into a blind zone blocked by an obstruction, communication may be interrupted.
  • Radio wave propagation control devices are of two types: passive and active.
  • Passive types have the advantage of not needing control information, but are unable to keep up with moving objects or environmental changes.
  • active types have the disadvantage of needing control information and increasing overhead, but they can variably control the propagation characteristics of radio waves by changing the load (phase) state of the control antenna, and can keep up with moving objects and environmental changes.
  • FB feedback
  • propagation path information model a variable radio wave propagation control device randomly changes the load (phase) state and has the terminal 20 or the like feed back the communication state, and searches for optimal conditions.
  • the propagation path information model the load state is determined based on propagation path information between the base station and the radio wave propagation control device, making it possible to perform optimal radio wave propagation control. Either type can be applied in the embodiments of the present invention.
  • relay methods such as reflection, transmission, diffraction, and aggregation.
  • the following describes the configuration of the reflection type and the transmission type (for the diffraction type and the aggregation type, see Non-Patent Document 2, etc.).
  • FIG. 7 is a diagram showing an example of a reflective wireless relay device 30 in an embodiment of the present invention.
  • An example of the system configuration of a reflective wireless relay device 30 will be described with reference to FIG. 7.
  • FIG. 7 is a diagram showing the relationship between a transmitting antenna Tx of a base station 10A or the like, a relay antenna Sx of a transparent wireless relay device 30, and a receiving antenna Rx of a terminal 20 or the like.
  • MIMO is used as an example, and there are multiple propagation paths between Tx and Sx and multiple propagation paths between Sx and Rx, and the wireless relay device 30 relays radio waves by controlling a variable unit 340 having a variable phase shifter or the like of the relay antenna Sx.
  • the array-like relay antennas are arranged facing the same direction. This makes it possible to estimate the propagation path of the relay antennas based on the reception state observed when the phase conditions of the relay antennas are changed multiple times.
  • FIG. 8 is a diagram showing an example of a transparent type wireless relay device 30 in an embodiment of the present invention.
  • An example of the system configuration of the transparent type wireless relay device 30 will be described with reference to FIG. 8.
  • FIG. 8 is a diagram showing the relationship between the transmitting antenna Tx of the base station 10A, the relay antenna Sx of the transparent type wireless relay device 30, and the receiving antenna Rx of the terminal 20.
  • MIMO is used as an example, and there are multiple propagation paths between Tx and Sx and multiple propagation paths between Sx and Rx.
  • the wireless relay device 30 relays radio waves arriving from one side to the other side via a variable unit 340 such as a variable phase shifter of the relay antenna Sx.
  • the reference antenna on the left side of the figure and the relay antenna on the right side of the figure are arranged in pairs facing in opposite directions so that radio waves arriving from one side can be relayed to the other side.
  • the power that has arrived at the relay antenna may be detected by a power detector or the like to measure the reception state.
  • the propagation path of the relay antenna can be estimated based on the received signal observed when the phase conditions of the relay antenna are changed multiple times.
  • Future networks such as 6G will require even higher quality than 5G. For example, ultra-high speeds on the order of tera bps and high reliability and low latency at the level of optical communications will be required.
  • designs will need to take into account ultra-extended coverage, ultra-long distance communications, ultra-reliable communications, virtual cells, flexible networks, mesh networks, enhanced side links, and RIS or smart repeaters.
  • the RIS reflects or transmits the beam transmitted from the base station 10 or terminal 20 in a predetermined direction and delivers it to the terminal 20 or base station 10.
  • a passive RIS is a device that does not change control of reflection angle or beam width, etc. according to the position of the mobile station, and does not require control information, but precise beam control is difficult.
  • An active RIS is a device that changes control of reflection angle and beam width, etc. according to the position of the mobile station, and allows precise beam control, but requires control information, which increases overhead.
  • a RIS can increase the number of communication transmission points.
  • the RIS may be any of the names shown in 1)-5) below, but is not limited to these.
  • the RIS may be any device having a specific function, and the specific function may be, for example, at least one of the functions 1) and 2) shown below.
  • UE Function A function for receiving signals transmitted from the base station 10 (e.g., DL signals, SSB, PDCCH, PDSCH, DM-RS, PT-RS, CSI-RS, RIS-dedicated signals). The receiving function may receive information related to the metamaterial function described below in 2). A function for transmitting signals to the base station 10 (e.g., UL signals, PRACH, PUCCH, PUSCH, DM-RS, PT-RS, SRS, RIS-dedicated signals). The transmitting function may transmit information related to the metamaterial function described below in 2). A function for frame synchronization with the base station 10.
  • signals transmitted from the base station 10 e.g., DL signals, SSB, PDCCH, PDSCH, DM-RS, PT-RS, CSI-RS, RIS-dedicated signals.
  • the receiving function may receive information related to the metamaterial function described below in 2).
  • a function for transmitting signals to the base station 10 e.g., UL signals
  • Metamaterial function A reflection function (e.g., phase change) of a signal transmitted from the base station 10 or the terminal 20.
  • the phase may be changed for each of the multiple reflecting elements of the RIS to reflect the signal, or a common phase change may be performed by multiple reflecting elements to reflect the signal.
  • a function related to beam control e.g., TCI-state, a function related to control of QCL, selective application of beam, selective application of spatial filter/precoding weight).
  • a power change function e.g., power amplification of a signal transmitted from the base station 10 or the terminal 20.
  • a different power change may be performed for each of the reflecting elements of the RIS, or a common power change may be performed by multiple reflecting elements.
  • RIS may mean reflecting radio waves/signals.
  • base station and “terminal” are used, but are not limited to these and may be replaced with communication devices.
  • RIS may be replaced with smart repeater, relay, etc.
  • the RIS may operate under the assumptions set forth below in 1)-6). 1) The network operator configures the RIS. 2) The RIS is fixed and does not move. 3) The RIS relays signals from only one base station. 4) It can receive and transmit control signals. 5) It operates in half-duplex mode. 6) It operates in a single RIS environment.
  • Network-controlled repeaters which are wireless relay devices controlled by a network, are being considered (for example, Non-Patent Document 3). Unlike conventional repeaters that amplify and forward, network-controlled repeaters can control, for example, beam, timing, DL or UL, ON or OFF, and transmission power from the network.
  • network-controlled repeaters are also referred to as “repeaters.”
  • the network-controlled repeater is used as an in-band RF repeater to extend coverage in the FR1 and FR2 bands. In particular, it is intended for use in FR2 deployments in outdoor and outdoor to indoor (O2I) scenarios.
  • the environment of the network-controlled repeater may be a single-hop, non-mobile environment.
  • the network-controlled repeater may also be transparent to the UE.
  • the network-controlled repeater can simultaneously maintain a gNB-repeater link and a repeater-UE link.
  • FIG. 9 is a diagram showing an example of a network-controlled repeater in an embodiment of the present invention.
  • a network-controlled repeater may be configured as shown in FIG. 9.
  • the network-controlled repeater is also referred to as NCR.
  • An NCR-MT Mobile Termination
  • C-link control link
  • the control link may be based on an NR-Uu interface.
  • NCR-Fwd (Forwarding) may be defined as a device having the function of amplifying and forwarding UL and DL RF signals between the base station 10 and the terminal 20 via a backhaul link and an access link.
  • the operation of the NCR-Fwd may be controlled based on side control information received from the base station 10.
  • the backhaul link corresponds to communication between the base station 10 and the NCR-Fwd
  • the access link corresponds to communication between the terminal 20 and the NCR-Fwd.
  • beam-related information is useful and recommended as side control information that controls the operation of NCR 30 at least for the access link.
  • a beam-related notification in the access link a beam index or a source RS index such as a TCI indicator is assumed.
  • the NCR30 may operate, for example, as shown in 1)-7) below.
  • beam-related information is used as side control information that controls the operation of NCR 30 for at least the access link.
  • Time domain resource granularity supports slot level and symbol level.
  • M-TRP Multiple Transmission/Reception Point
  • Figure 10 is a diagram for explaining an example (1) of transmission by TRP. As shown in Figure 10, S-TRP (Single TRP) transmission is supported, and one PDCCH schedules one PDSCH.
  • S-TRP Single TRP
  • Figure 11 is a diagram for explaining an example (2) of transmission by TRP.
  • Figure 11 shows an example of S-DCI (Single DCI) and M-TRP framework.
  • One PDCCH schedules multiple PDSCH/PUSCH for multiple TRPs. Multiple beams are notified for one PDSCH/PUSCH.
  • Figure 12 is a diagram for explaining an example (3) of transmission by TRP.
  • Figure 12 shows an example of M-DCI (Multiple DCI) and M-TRP framework.
  • One PDCCH schedules PDSCH/PUSCH to one TRP, and multiple PDCCHs schedule multiple PDSCH/PUSCH to multiple TRPs.
  • One beam is notified for one PDSCH/PUSCH.
  • dynamic switching between S-TRP and M-TRP may be supported.
  • Semi-static switching between single PDCCH-based M-TRP and multiple PDCCH-based M-TRP may be supported.
  • PDSCH 2 beams are notified. Spatial Division Multiplex (SDM) PDSCH: 2 beams are used for the same time/frequency domain resources, and each beam is used for a different layer. Frequency Division Multiplex (FDM) PDSCH: 2 beams are used for the same time domain resources, and each beam is used for a different frequency domain resource. Time Division Multiplex (TDM) PDSCH: 1 beam is used for 1 time domain resource, and a different beam is used for a different time domain resource. Single Frequency Network (SFN) PDSCH: 2 beams are used for the same time/frequency domain resources.
  • SDM Spatial Division Multiplex
  • FDM Frequency Division Multiplex
  • TDM Time Division Multiplex
  • SFN Single Frequency Network
  • PUSCH 2 beams are signaled.
  • TDM PUSCH: 1 beam is used for 1 time domain resource, different beams are used for different time domain resources.
  • SFN PUSCH: 2 beams are used for the same time/frequency domain resource.
  • TDM PUCCH 1 beam is used for 1 time domain resource, different beams are used for different time domain resources.
  • SFN PUCCH 2 beams are used for the same time/frequency domain resource.
  • PDSCH 1 beam is notified.
  • 2 PDSCHs of different TRPs overlapping in the time / frequency domain PUSCH: 1 beam is notified.
  • 2 PUSCHs of different TRPs overlapping in the time / frequency domain PUCCH: 1 beam is notified.
  • Proposals 0 to 7 are explained as methods for supporting the M-TRP framework in NCR access links.
  • FIG. 13 is a diagram for explaining an example (1) of a notification in an embodiment of the present invention.
  • the M-TRP framework may be applied to a scenario of simultaneous transmission and reception using multiple beams transmitted from or received at one UE.
  • FIG. 14 is a diagram for explaining a notification example (2) in an embodiment of the present invention.
  • the M-TRP framework may be applied to a scenario of simultaneous transmission and reception using multiple beams transmitted from or received at multiple UEs.
  • FIG. 15 is a diagram for explaining an example (3) of notification in an embodiment of the present invention.
  • M-TRP transmission in the NCR access link may be supported based on the implementation.
  • two NCR nodes may support M-TRP transmission in the access link.
  • the gNB may independently control the access link beams of the two NCR nodes using side control information.
  • Each NCR node may be notified of one beam per unit time as the beam control of the access link.
  • the NCR-Fwd operates multiple carriers, multiple carrier groups, or multiple subbands
  • one beam may be notified for one carrier, one carrier group, or one subband as the beam control of the access link.
  • FIG. 16 is a diagram for explaining an example (4) of notification in an embodiment of the present invention.
  • one NCR node may have multiple TRPs or panels (hereinafter, "TRP or panel” will be referred to as "TRP") in the NCR-Fwd in the access link.
  • TRP TRP
  • the NCR may report the capabilities related to the access link beam of the NCR-Fwd of each TRP to the gNB for each TRP. The report may be made via a control link.
  • the capabilities may include the number of TRPs supported, the number of NCR-Fwd access link beams supported by each TRP, the beam type (wide beam or narrow beam) supported by each TRP, the beam width of each TRP, etc.
  • the NCR may report to the gNB the correspondence between the NCR-Fwd access link beams and the TRPs.
  • the NCR may report to the gNB which beams belong to which TRPs.
  • the NCR may report to the gNB a capability indicating whether or not the NCR-Fwd supports simultaneous transmission and reception using multiple beams from multiple TRPs. Note that, as a default, simultaneous transmission and reception using multiple beams from multiple TRPs by the NCR-Fwd may be supported.
  • Proposal 2 is based on Proposal 1.
  • FIG. 17 is a diagram for explaining a notification example (5) in an embodiment of the present invention.
  • one piece of side control information may notify an NCR-Fwd access link beam for one TRP.
  • One beam per unit time in one TRP may be notified by the side control information.
  • the NCR-Fwd operates multiple carriers, multiple carrier groups, or multiple subbands
  • one beam may be notified for one carrier, one carrier group, or one subband as access link beam control.
  • the NCR-Fwd may perform simultaneous transmission and reception using the multiple beams.
  • the side control information may determine which TRP to notify of the beam information as shown below in 1)-4).
  • Proposal 3 is based on Proposal 1.
  • FIG. 18 is a diagram for explaining a notification example (6) in an embodiment of the present invention.
  • one side control information may notify NCR-Fwd access link beams for multiple TRPs. Multiple beams may be notified per unit time in one TRP by the side control information. Each beam corresponds to one TRP.
  • the NCR-Fwd may perform simultaneous transmission and reception using multiple access link beams in one unit time.
  • one beam may be notified for one carrier, one carrier group, or one subband as access link beam control.
  • Multiple beams may be reported by multiple beam indices or by a beam group or beam pair index.
  • Proposal 3 is based on Proposal 1.
  • FIG. 19 is a diagram for explaining a notification example (7) in an embodiment of the present invention.
  • one side control information may notify NCR-Fwd access link beams for multiple TRPs. Multiple beams for multiple unit times may be notified by the side control information. Each beam corresponds to one TRP. Multiple beams may be applied to multiple unit times by TDM. One beam may be applied to one unit time.
  • the NCR-Fwd operates multiple carriers, multiple carrier groups, or multiple subbands
  • one beam may be notified for one carrier, one carrier group, or one subband as access link beam control.
  • Multiple beams may be reported by multiple beam indices or by a beam group or beam pair index.
  • the mapping pattern between multiple beams and multiple unit times may be predefined or may be set.
  • the mapping shown in 1)-4) below may be applied. Multiple of 1)-4) below may be supported, or the network may notify any of 1)-4).
  • FIG. 20 is a diagram for explaining an example (1) of TDM mapping in an embodiment of the present invention.
  • the mapping may be a cyclic pattern.
  • the first, second, ..., Xth beams may be applied to the first, second, ..., Xth unit times.
  • the target unit time is longer than X
  • the same pattern with a period of X may be repeated for the remaining unit times.
  • FIG. 21 is a diagram for explaining an example (2) of TDM mapping in an embodiment of the present invention.
  • the mapping may be a pattern including continuous portions.
  • the first, second, ..., Xth beam may be applied to the first and second, third and fourth, ..., (2X-1)th and 2Xth unit times.
  • the target unit time is longer than 2X, the same pattern with a period of 2X may be repeated in the remaining unit times.
  • FIG. 22 is a diagram for explaining an example (3) of TDM mapping in an embodiment of the present invention.
  • the mapping may be a pattern including continuous parts.
  • the first beam may be applied to the first N unit times, the second beam to the next N unit times, and so on, with the Xth beam being applied to the Xth N unit times.
  • the target unit time is longer than N ⁇ X, the same pattern with a period of N ⁇ X may be repeated for the remaining unit times.
  • FIG. 23 is a diagram for explaining an example (4) of TDM mapping in an embodiment of the present invention.
  • beams may be patterned evenly by unit time. For example, if M is the total number of time units and X beams are notified, the first beam is applied to the first floor (M/X) number of time units, the second beam is applied to the next floor (M/X) number of time units, and so on, until the Xth beam is applied to the remaining time units.
  • Proposal 5 is based on Proposals 2, 3, and 4.
  • Side control information notifying the NCR-Fwd access link beam may notify beam information from a set of candidate beam indexes such as 1) or 2) shown below. Note that one beam index may correspond to multiple beams.
  • FIG. 24 is a diagram for explaining an example (1) of beam notification in an embodiment of the present invention. As shown in FIG. 24, multiple TRPs may share a common set of beam index candidates. For a certain TRP, the side control information notifies the beam index included in the common set.
  • FIG. 25 is a diagram for explaining an example (2) of beam notification in an embodiment of the present invention.
  • an independent set of beam index candidates may be set for each TRP.
  • the side control information notifies the beam index included in the set corresponding to the TRP.
  • a method for switching between the S-TRP framework and the M-TRP framework, or a method for switching to a different M-TRP framework may be as follows. Note that S-TRP means using a single TRP for the NCR-Fwd access link.
  • Proposal 2, Proposal 3 and Proposal 4 may be switched by higher layer parameters.
  • Proposal 2, Proposal 3 and Proposal 4 may be enabled by higher layer parameters. More specifically, Proposal 2 may be enabled when multiple groups of CORESET/SS sets are configured as different options of Proposal 2, or when multiple RNTIs are configured, or when multiple groups of NCR-MT beams of the control link are configured.
  • S-TRP, Proposal 2, Proposal 3 and Proposal 4 may be switched based on explicit notification by side control information.
  • the S-TRP, Proposal 3 and Proposal 4 may be switched based on the number of beams announced. For example, if multiple beams are announced, Proposal 3 or Proposal 4 may be enabled. For example, if a single beam is announced, the S-TRP framework may be enabled.
  • notification of the beam to be applied to the NCR-Fwd backhaul link may be performed as shown below in 1)-3).
  • FIG. 26 is a diagram for explaining an example (1) of a backhaul link in an embodiment of the present invention. As shown in FIG. 26, multiple beams may be notified for the backhaul link by replacing the "access link" in the above-mentioned proposals 1 to 6 with the "backhaul link.”
  • FIG. 27 is a diagram for explaining an example (2) of a backhaul link in an embodiment of the present invention. As shown in FIG. 26, one beam may be notified per unit time by side control information for the backhaul link, and the one beam may be applied.
  • multiple beams may be applied to the backhaul link in one unit time.
  • One of the multiple beams may be determined as the beam for the NCR-MT control link according to a predefined rule, and the other beams may be notified by side control information. Also, one of the multiple beams may be notified by side control information, and the other beams may be determined as the beam for the NCR-MT control link according to a predefined rule.
  • NCR capabilities may be defined:
  • embodiments of the present invention may be applied only when the corresponding capabilities are supported by the NCR and/or when corresponding higher layer signaling is provided.
  • the beam may be identified by referring to a spatial domain filter, spatial relationship, QCL, and TCI state.
  • the side control information may be notified by RRC signaling, MAC-CE, or DCI.
  • the unit time may be any of a slot, a symbol, a slot group, a symbol group, a subframe, etc.
  • the above-described embodiment allows the network-controlled repeater to control the beam applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd.
  • wireless signals can be relayed by a wireless relay device controlled by the network.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
  • the functional block may be realized by combining software with the one device or the multiple devices.
  • Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function is called a transmitting unit or transmitter. In either case, as mentioned above, there are no particular limitations on the method of realization.
  • the base station 10, terminal 20, wireless relay device 30, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 28 is a diagram showing an example of the hardware configuration of the base station 10, terminal 20, and wireless relay device 30 in one embodiment of the present disclosure.
  • the above-mentioned base station 10, terminal 20, and wireless relay device 30 may be physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
  • the term "apparatus" can be interpreted as a circuit, device, unit, etc.
  • the hardware configurations of the base station 10, the terminal 20, and the wireless relay device 30 may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
  • the functions of the base station 10, the terminal 20, and the wireless relay device 30 are realized by loading specific software (programs) onto hardware such as the processor 1001 and the memory device 1002, causing the processor 1001 to perform calculations, control communications by the communication device 1004, and control at least one of the reading and writing of data in the memory device 1002 and the auxiliary memory device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), software module, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to the program.
  • the program is a program that causes a computer to execute at least a part of the operations described in the above embodiment.
  • the control unit 140 of the base station 10 shown in FIG. 2 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 3 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium, and may be composed of at least one of, for example, a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), a RAM (Random Access Memory), etc.
  • the storage device 1002 may also be called a register, a cache, a main memory, etc.
  • the storage device 1002 can store executable programs (program codes), software modules, etc., for implementing a communication method according to one embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database, a server, or other suitable medium that includes at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmitting/receiving antenna, an amplifier unit, a transmitting/receiving unit, a transmission path interface, etc. may be realized by the communication device 1004.
  • the transmitting/receiving unit may be implemented as a transmitting unit or a receiving unit that is physically or logically separated.
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the base station 10, the terminal 20, and the wireless relay device 30 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware.
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • the wireless relay device 30 may have a variable phase shifter, a phase shifter, an amplifier, an antenna, an array antenna, etc. as hardware constituting the variable section 340 and the antenna section 350, as necessary.
  • FIG. 29 shows an example configuration of a vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
  • a communication device mounted on the vehicle 2001 and may be applied to the communication module 2013, for example.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2029 provided in the vehicle 2001.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from the various sensors 2021-2029 include a current signal from a current sensor 2021 that senses the motor current, a front and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, a front and rear wheel air pressure signal obtained by an air pressure sensor 2023, a vehicle speed signal obtained by a vehicle speed sensor 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, a shift lever operation signal obtained by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by an object detection sensor 2028.
  • the information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices.
  • the information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide various multimedia information and multimedia services to the occupants of the vehicle 2001.
  • the information service unit 2012 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
  • input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
  • the driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) maps, autonomous vehicle (AV) maps, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and AI processor, as well as one or more ECUs that control these devices.
  • the driving assistance system unit 2030 transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via the communication port.
  • the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and sensors 2021 to 29, which are provided on the vehicle 2001.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, etc.
  • the communication module 2013 may transmit at least one of the signals from the various sensors 2021-2028 described above input to the electronic control unit 2010, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 2012 to an external device via wireless communication.
  • the electronic control unit 2010, the various sensors 2021-2028, the information service unit 2012, etc. may be referred to as input units that accept input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on the information service unit 2012 provided in the vehicle 2001.
  • the information service unit 2012 may be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013).
  • the communication module 2013 also stores various information received from an external device in a memory 2032 that can be used by the microprocessor 2031.
  • the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axles 2009, sensors 2021 to 2029, etc. provided in the vehicle 2001.
  • a wireless relay device has a communication unit that receives signaling from a base station including control information related to a relay function, a control unit that controls the relay function based on the control information, and a relay unit that performs a relay function of receiving a first signal from the base station, transmitting the first signal to a terminal, receiving a second signal from the terminal, and transmitting the second signal to the base station, wherein the relay unit transmits the first signal to the terminal using multiple TRPs (Transmission/Reception Points), and the control unit controls the multiple TRPs based on the control information.
  • TRPs Transmission/Reception Points
  • the network-controlled repeater can control the beam applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd.
  • wireless signals can be relayed by a wireless relay device controlled by the network.
  • the control unit may determine the beam to be applied by the TRP based on the control information that differs for each TRP.
  • the network controlled repeater can control the beam to be applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd.
  • the control unit may determine the beam to be applied by the TRP based on the control information for one of the multiple TRPs.
  • the network controlled repeater can control the beam to be applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd.
  • the control unit may apply one beam to the TRP per unit time.
  • the network controlled repeater can control the beam to be applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd.
  • the control unit may map the multiple beams indicated by the control information to multiple unit times.
  • the network control repeater can control the beams to be applied to the wireless signals relayed in the access link or backhaul link of the NCR-Fwd.
  • a wireless relay method in which a wireless relay device executes the following steps: receiving signaling including control information related to a relay function from a base station; controlling the relay function based on the control information; executing a relay function of receiving a first signal from the base station, transmitting the first signal to a terminal, receiving a second signal from the terminal, and transmitting the second signal to the base station; transmitting the first signal to the terminal using multiple TRPs (Transmission/Reception Points); and controlling the multiple TRPs based on the control information.
  • TRPs Transmission/Reception Points
  • the network-controlled repeater can control the beam applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd.
  • wireless signals can be relayed by a wireless relay device controlled by the network.
  • the operations of multiple functional units may be physically performed by one part, or the operations of one functional unit may be physically performed by multiple parts.
  • the order of the processing procedures described in the embodiment may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described using functional block diagrams, but such devices may be realized by hardware, software, or a combination thereof.
  • the software operated by the processor possessed by the base station 10 in accordance with an embodiment of the present invention and the software operated by the processor possessed by the terminal 20 in accordance with an embodiment of the present invention may each be stored in random access memory (RAM), flash memory, read only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods.
  • the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • Each aspect/embodiment described in this disclosure may be a mobile communication system (mobile communications system) for mobile communications over a wide range of networks, including LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer or a decimal number)), FRA (Future Ra).
  • the present invention may be applied to at least one of systems using IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and next-generation systems that are expanded, modified, created, or defined based on these. It may also be applied to a combination of multiple systems (for example, a combination of at least one
  • certain operations that are described as being performed by the base station 10 may in some cases be performed by its upper node.
  • various operations performed for communication with a terminal 20 may be performed by at least one of the base station 10 and other network nodes other than the base station 10 (such as, but not limited to, an MME or S-GW).
  • the base station 10 may be a combination of multiple other network nodes (such as an MME and an S-GW).
  • the information or signals described in this disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
  • the input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table.
  • the input and output information may be overwritten, updated, or added to.
  • the output information may be deleted.
  • the input information may be sent to another device.
  • the determination in this disclosure may be based on a value represented by one bit (0 or 1), a Boolean (true or false) value, or a comparison of numerical values (e.g., a comparison with a predetermined value).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
  • system and “network” are used interchangeably.
  • a radio resource may be indicated by an index.
  • the names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • base station BS
  • radio base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • access point e.g., "transmission point”
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (e.g., three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (RRH: Remote Radio Head)).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control or operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • At least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving object is a movable object, and the moving speed is arbitrary. It also includes the case where the moving object is stopped.
  • the moving object includes, but is not limited to, for example, a vehicle, a transport vehicle, an automobile, a motorcycle, a bicycle, a connected car, an excavator, a bulldozer, a wheel loader, a dump truck, a forklift, a train, a bus, a handcar, a rickshaw, a ship and other watercraft, an airplane, a rocket, an artificial satellite, a drone (registered trademark), a multicopter, a quadcopter, a balloon, and objects mounted thereon.
  • the moving object may also be a moving object that travels autonomously based on an operation command.
  • At least one of the base station and the mobile station may be a device that does not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple terminals 20 (which may be called, for example, D2D (Device-to-Device) or V2X (Vehicle-to-Everything)).
  • the terminal 20 may be configured to have the functions of the base station 10 described above.
  • terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "side").
  • the uplink channel, downlink channel, etc. may be read as a side channel.
  • the user terminal in this disclosure may be interpreted as a base station.
  • the base station may be configured to have the functions of the user terminal described above.
  • determining may encompass a wide variety of actions.
  • Determining and “determining” may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), and considering ascertaining as “judging” or “determining.”
  • determining and “determining” may include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and considering ascertaining as “judging” or “determining.”
  • judgment” and “decision” can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been “judged” or “decided.” In other words, “judgment” and “decision” can include considering some action to have been “judged” or “decided.” Additionally, “judgment (decision)” can be interpreted as “assuming,” “ex
  • connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between elements may be physical, logical, or a combination thereof.
  • “connected” may be read as "access.”
  • two elements may be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
  • the reference signal may also be abbreviated as RS (Reference Signal) or may be called a pilot depending on the applicable standard.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • a radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe. A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • SCS Subcarrier Spacing
  • TTI Transmission Time Interval
  • radio frame structure a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • a slot may consist of one or more symbols in the time domain (such as OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.).
  • a slot may be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate wireless resources (such as frequency bandwidth and transmission power that can be used by each terminal 20) to each terminal 20 in TTI units.
  • wireless resources such as frequency bandwidth and transmission power that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on the numerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
  • PRB physical resource block
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (REs).
  • REs resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for the terminal 20.
  • At least one of the configured BWPs may be active, and the terminal 20 may not be expected to transmit or receive a specific signal/channel outside the active BWP.
  • BWP bit stream
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
  • notification of specific information is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
  • variable section 340 and the antenna section 350 are an example of a relay section.
  • Base station 110 Transmitter 120 Receiver 130 Setting unit 140 Control unit 20 Terminal 210 Transmitter 220 Receiver 230 Setting unit 240 Control unit 30 Wireless relay device 310 Transmitter 320 Receiver 330 Control unit 340 Variable unit 350 Antenna unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 RPM sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system unit 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port) 2033 Communication port (IO port)

Abstract

This wireless relay device comprises: a communication unit that receives signaling including control information relating to a relay function from a base station; a control unit that controls the relay function on the basis of the control information; and a relay unit that performs the relay function of receiving a first signal from the base station, transmitting the first signal to a terminal, receiving a second signal from the terminal, and transmitting the second signal to the base station. The relay unit transmits the first signal to the terminal by using a plurality of Transmission/Reception Points (TRPs). The control unit controls the plurality of TRPs on the basis of the control information.

Description

無線中継装置及び無線中継方法Radio relay device and radio relay method
 本発明は、無線通信システムにおける無線中継装置及び無線中継方法に関する。 The present invention relates to a wireless relay device and a wireless relay method in a wireless communication system.
 3GPP(登録商標)(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「NR」という。)の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術及びネットワークアーキテクチャの検討が行われている(例えば非特許文献1)。 3GPP (registered trademark) (3rd Generation Partnership Project) is currently studying a wireless communication method called 5G or NR (New Radio) (hereinafter, this wireless communication method will be referred to as "NR") in order to achieve even larger system capacity, even faster data transmission speeds, and even lower latency in wireless sections. In 5G, various wireless technologies and network architectures are being studied to meet the requirements of achieving a throughput of 10 Gbps or more while keeping latency in wireless sections to 1 ms or less (for example, Non-Patent Document 1).
 次世代通信では、高周波数帯の使用が見込まれている。当該高周波数帯の特性による、散乱体数の減少、シャドーウィング効果の低下及び距離減衰の増加等の観点から、通信品質の改善が要求される。通信品質を担保するビーム制御及び環境等が必要とされると想定される。 Next-generation communications are expected to use high-frequency bands. Due to the characteristics of these high-frequency bands, there is a demand for improved communication quality due to the reduced number of scatterers, the reduced shadowing effect, and increased attenuation over distance. It is expected that beam control and an environment that guarantees communication quality will be required.
 例えば、高周波数帯域では、電波の強い直進性等によって、不感地帯が発生しやすい問題がある。そこで、パッシブなリピータ又はアクティブ型の反射板(RIS:Reconfigurable Intelligent Surface)、信号を受信及び増幅し再放射するスマートリピータ等を用いて、マルチパス環境下において、通信品質を改善させる方法が試行されている(例えば非特許文献2)。 For example, in high frequency bands, there is a problem that blind spots are easily created due to the strong directional nature of radio waves. Therefore, methods are being tried to improve communication quality in multipath environments by using passive repeaters or active reflectors (RIS: Reconfigurable Intelligent Surfaces), smart repeaters that receive, amplify, and re-radiate signals, etc. (for example, Non-Patent Document 2).
 上記のように、基地局等の電波発生源から端末等の電波受信先に電波を反射させるか又は透過させて当該電波を中継する反射板又はスマートリピータ等の無線中継装置が検討されている。ここで、特にネットワークにより制御される無線中継装置が、基地局端末間の無線信号を中継する場合の通信制御を明確にする必要がある。 As mentioned above, wireless relay devices such as reflectors or smart repeaters that relay radio waves by reflecting or transmitting radio waves from a radio wave source such as a base station to a radio wave receiving destination such as a terminal are being considered. Here, it is necessary to clarify communication control, particularly when a wireless relay device controlled by a network relays wireless signals between base stations and terminals.
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、ネットワークに制御される無線中継装置によって無線信号を中継することを目的とする。 The present invention has been made in consideration of the above points, and aims to relay wireless signals in a wireless communication system using a wireless relay device controlled by a network.
 開示の技術によれば、中継機能に係る制御情報を含むシグナリングを基地局から受信する通信部と、前記制御情報に基づいて、中継機能を制御する制御部と、第1の信号を前記基地局から受信し、前記第1の信号を端末に送信し、第2の信号を前記端末から受信し、前記第2の信号を前記基地局に送信する中継機能を実行する中継部とを有し、前記中継部は、前記第1の信号を複数のTRP(Transmission/Reception Point)を使用して前記端末に送信し、前記制御部は、前記複数のTRPを前記制御情報に基づいて制御する無線中継装置が提供される。 According to the disclosed technology, a wireless relay device is provided that has a communication unit that receives signaling including control information related to a relay function from a base station, a control unit that controls the relay function based on the control information, and a relay unit that performs a relay function of receiving a first signal from the base station, transmitting the first signal to a terminal, receiving a second signal from the terminal, and transmitting the second signal to the base station, the relay unit transmitting the first signal to the terminal using multiple TRPs (Transmission/Reception Points), and the control unit controlling the multiple TRPs based on the control information.
 開示の技術によれば、無線通信システムにおいて、ネットワークに制御される無線中継装置によって無線信号を中継することができる。 The disclosed technology allows wireless signals to be relayed in a wireless communication system by a wireless relay device controlled by a network.
本発明の実施の形態における無線通信システムを説明するための図である。1 is a diagram illustrating a wireless communication system according to an embodiment of the present invention. 本発明の実施の形態における基地局10の機能構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional configuration of a base station 10 according to an embodiment of the present invention. 本発明の実施の形態における端末20の機能構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional configuration of a terminal 20 according to an embodiment of the present invention. 本発明の実施の形態における無線中継装置30の機能構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional configuration of a wireless relay device 30 according to an embodiment of the present invention. 本発明の実施の形態における無線中継装置30の動作例を示す図である。5 is a diagram illustrating an example of operation of the wireless relay device 30 according to the embodiment of the present invention. 高周波数帯域における通信の例を示す図である。FIG. 1 is a diagram illustrating an example of communication in a high frequency band. 本発明の実施の形態における反射型の無線中継装置30の例を示す図である。1 is a diagram illustrating an example of a reflective wireless relay device 30 according to an embodiment of the present invention. 本発明の実施の形態における透過型の無線中継装置30の例を示す図である。1 is a diagram illustrating an example of a transparent wireless relay device 30 according to an embodiment of the present invention. 本発明の実施の形態におけるネットワーク制御リピータの例を示す図である。FIG. 2 is a diagram illustrating an example of a network controlled repeater in an embodiment of the present invention. TRPによる送信の例(1)を説明するための図である。FIG. 13 is a diagram for explaining an example (1) of transmission by TRP. TRPによる送信の例(2)を説明するための図である。FIG. 13 is a diagram for explaining an example (2) of transmission by TRP. TRPによる送信の例(3)を説明するための図である。FIG. 13 is a diagram for explaining an example (3) of transmission by TRP. 本発明の実施の形態における通知の例(1)を説明するための図である。FIG. 11 is a diagram for explaining an example (1) of a notification according to an embodiment of the present invention. 本発明の実施の形態における通知の例(2)を説明するための図である。FIG. 11 is a diagram for explaining a second example of a notification according to an embodiment of the present invention. 本発明の実施の形態における通知の例(3)を説明するための図である。FIG. 11 is a diagram for explaining a notification example (3) according to an embodiment of the present invention. 本発明の実施の形態における通知の例(4)を説明するための図である。FIG. 11 is a diagram for explaining a notification example (4) according to an embodiment of the present invention. 本発明の実施の形態における通知の例(5)を説明するための図である。FIG. 11 is a diagram for explaining a notification example (5) according to an embodiment of the present invention. 本発明の実施の形態における通知の例(6)を説明するための図である。FIG. 13 is a diagram for explaining a sixth example of a notification according to an embodiment of the present invention. 本発明の実施の形態における通知の例(7)を説明するための図である。FIG. 13 is a diagram for explaining a notification example (7) according to an embodiment of the present invention. 本発明の実施の形態におけるTDMマッピングの例(1)を説明するための図である。FIG. 2 is a diagram for explaining an example (1) of TDM mapping in an embodiment of the present invention. 本発明の実施の形態におけるTDMマッピングの例(2)を説明するための図である。FIG. 13 is a diagram for explaining an example (2) of TDM mapping in an embodiment of the present invention. 本発明の実施の形態におけるTDMマッピングの例(3)を説明するための図である。FIG. 11 is a diagram for explaining an example (3) of TDM mapping in an embodiment of the present invention. 本発明の実施の形態におけるTDMマッピングの例(4)を説明するための図である。FIG. 11 is a diagram for explaining an example (4) of TDM mapping in an embodiment of the present invention. 本発明の実施の形態におけるビーム通知の例(1)を説明するための図である。FIG. 1 is a diagram for explaining an example (1) of beam notification in an embodiment of the present invention. 本発明の実施の形態におけるビーム通知の例(2)を説明するための図である。FIG. 13 is a diagram for explaining an example (2) of beam notification in an embodiment of the present invention. 本発明の実施の形態におけるバックホールリンクの例(1)を説明するための図である。A diagram for explaining an example (1) of a backhaul link in an embodiment of the present invention. 本発明の実施の形態におけるバックホールリンクの例(2)を説明するための図である。A diagram for explaining an example (2) of a backhaul link in an embodiment of the present invention. 本発明の実施の形態における基地局10、端末20又は無線中継装置30のハードウェア構成の一例を示す図である。2 is a diagram illustrating an example of a hardware configuration of a base station 10, a terminal 20, or a wireless relay device 30 according to an embodiment of the present invention. 本発明の実施の形態における車両2001の構成の一例を示す図である。FIG. 2 is a diagram showing an example of the configuration of a vehicle 2001 according to an embodiment of the present invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Below, an embodiment of the present invention will be described with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present invention can be applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。 In operating the wireless communication system according to the embodiment of the present invention, existing technology is used as appropriate. However, the existing technology is, for example, the existing LTE, but is not limited to the existing LTE. Furthermore, the term "LTE" used in this specification has a broad meaning including LTE-Advanced and systems subsequent to LTE-Advanced (e.g., NR) unless otherwise specified.
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。 In addition, in the embodiment of the present invention described below, terms such as SS (Synchronization signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical broadcast channel), PRACH (Physical random access channel), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), PUCCH (Physical Uplink Control Channel), and PUSCH (Physical Uplink Shared Channel), which are used in existing LTE, are used. This is for convenience of description, and similar signals, functions, etc. may be called by other names. Furthermore, the above-mentioned terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc. However, even if a signal is used in NR, it is not necessarily specified as "NR-".
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Furthermore, in an embodiment of the present invention, the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (e.g., Flexible Duplex, etc.).
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。 In addition, in the embodiment of the present invention, when radio parameters and the like are "configured," this may mean that predetermined values are pre-configured, or that radio parameters notified from the base station 10 or the terminal 20 are configured.
 図1は、本発明の実施の形態における無線通信システムを説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。基地局10及び端末20は、それぞれ複数であってもよい。 FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention. As shown in FIG. 1, the wireless communication system in the embodiment of the present invention includes a base station 10 and a terminal 20. There may be multiple base stations 10 and multiple terminals 20.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロット又はサブスロットであってもよいし、TTIがサブフレームであってもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The physical resources of the wireless signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. In addition, the TTI (Transmission Time Interval) in the time domain may be a slot or a subslot, and the TTI may be a subframe.
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのプライマリセル(PCell, Primary Cell)と1以上のセカンダリセル(SCell, Secondary Cell)が使用される。 The base station 10 is capable of performing carrier aggregation, which bundles multiple cells (multiple CCs (component carriers)) together to communicate with the terminal 20. In carrier aggregation, one primary cell (PCell, Primary Cell) and one or more secondary cells (SCell, Secondary Cell) are used.
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH、PDCCH等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。 The base station 10 transmits a synchronization signal, system information, etc. to the terminal 20. The synchronization signal is, for example, NR-PSS and NR-SSS. The system information is, for example, transmitted on NR-PBCH or PDSCH, and is also called broadcast information. As shown in FIG. 1, the base station 10 transmits control signals or data to the terminal 20 on DL (Downlink), and receives control signals or data from the terminal 20 on UL (Uplink). Note that, here, those transmitted on control channels such as PUCCH and PDCCH are called control signals, and those transmitted on shared channels such as PUSCH and PDSCH are called data, but these names are merely examples.
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。 The terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 in DL and transmits control signals or data to the base station 10 in UL, thereby utilizing various communication services provided by the wireless communication system. The terminal 20 may be referred to as a UE, and the base station 10 may be referred to as a gNB.
 端末20は、複数のセル(複数のCC)を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのプライマリセルと1以上のセカンダリセルが使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。 The terminal 20 is capable of performing carrier aggregation, which bundles multiple cells (multiple CCs) together to communicate with the base station 10. In carrier aggregation, one primary cell and one or more secondary cells are used. A PUCCH-SCell having a PUCCH may also be used.
 また、本発明の実施の形態における無線通信システムにおいて、基地局10は、一例として5G又は6Gで運用される無線基地局であり、セルを形成する。なお、セルは、比較的サイズの大きいセルであり、マクロセルと呼ばれる。 In the wireless communication system according to the embodiment of the present invention, the base station 10 is, for example, a wireless base station operated in 5G or 6G and forms a cell. The cell is a relatively large cell and is called a macro cell.
 基地局10A-基地局10Dは、5G又は6Gで運用される基地局である。基地局10A-基地局10Dは、マクロセルと比較してサイズが小さいセルCA-セルDをそれぞれ形成する。セルA-セルDは、スモールセル又はマクロセル等と呼ばれてもよい。図1に示されるように、セルA-セルDは、マクロセルに含まれるように形成されてもよい。 Base station 10A to base station 10D are base stations operated in 5G or 6G. Base station 10A to base station 10D form cells CA to D, respectively, which are smaller in size than a macro cell. Cells A to D may be called small cells, macro cells, etc. As shown in FIG. 1, cells A to D may be formed to be included in a macro cell.
 マクロセルは、一般に1つの基地局がカバーする半径数百メートルから数十キロメートルの通信可能エリアと解釈されてもよい。また、スモールセルは、送信電力が小さく、マクロセルと比較して小さいエリアをカバーするセルの総称と解釈されてもよい。 A macrocell may generally be interpreted as a communication area with a radius of several hundred meters to several tens of kilometers that is covered by a single base station. A small cell may also be interpreted as a general term for a cell that has low transmission power and covers a smaller area than a macrocell.
 なお、基地局10及び基地局0A-基地局10Dは、gNodeB(gNB)またはBS(Base Station)などと表記されてもよい。また、端末20は、UE又はMS等と表記されてもよい。さらに、基地局及び端末の数や種類を含む無線通信システムの具体的な構成は、図1に示した例に限定されない。 Note that the base station 10 and base stations 0A to 10D may be written as gNodeB (gNB) or BS (Base Station), etc. Furthermore, the terminal 20 may be written as UE or MS, etc. Furthermore, the specific configuration of the wireless communication system, including the number and types of base stations and terminals, is not limited to the example shown in FIG. 1.
 また、無線通信システムは、必ずしも5G又は6Gに従った無線通信システムに限定されない。例えば、無線通信システムは、6Gの次世代の無線通信システム、あるいはLTEに従った無線通信システムであってもよい。 Furthermore, the wireless communication system is not necessarily limited to a wireless communication system conforming to 5G or 6G. For example, the wireless communication system may be a next-generation wireless communication system conforming to 6G or a wireless communication system conforming to LTE.
 基地局10及び基地局10A-基地局10Dは、一例として、端末20と5G又は6Gに従った無線通信を実行する。基地局10及び基地局10A-基地局10D及び端末20は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するマッシブMIMO(Massive MIMO)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、端末20と2つのNG-RANノードそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)、および、gNB等の無線通信ノード間の無線バックホールと端末20への無線アクセスとが統合されたIAB(Integrated Access and Backhaul)等に対応してもよい。 As an example, the base station 10 and base stations 10A-10D perform wireless communication with the terminal 20 according to 5G or 6G. The base station 10 and base stations 10A-10D and the terminal 20 may support Massive MIMO, which generates a more directional beam by controlling wireless signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which uses a bundle of multiple component carriers (CCs), Dual Connectivity (DC), which simultaneously communicates between the terminal 20 and each of two NG-RAN nodes, and IAB (Integrated Access and Backhaul), which integrates wireless backhaul between wireless communication nodes such as gNBs and wireless access to the terminal 20.
 また、無線通信システムは、3GPPリリース15において規定されている以下の周波数レンジ(Frequency Range, FR)よりも高い高周波数帯域にも対応し得る。例えば、FR1として、410MHz-7.125GHzに対応してもよいし、FR2として、24.25GHz-52.6GHzに対応してもよい。さらに、無線通信システムは、52.6GHzを超え、114.25GHzまでの周波数帯域に対応してもよい。当該周波数帯域はミリ波帯と呼ばれてもよい。 The wireless communication system may also be compatible with higher frequency bands than the following frequency ranges (Frequency Range, FR) defined in 3GPP Release 15. For example, FR1 may be compatible with 410 MHz-7.125 GHz, and FR2 may be compatible with 24.25 GHz-52.6 GHz. Furthermore, the wireless communication system may be compatible with frequency bands exceeding 52.6 GHz up to 114.25 GHz. Such frequency bands may be referred to as millimeter wave bands.
 ここで、マッシブMIMOに対応する基地局10は、ビームを送信できる。マッシブMIMOとは、一般的に、100素子以上のアンテナ素子を有するアンテナを用いたMIMO通信を意味し、複数ストリームの多重化効果などによって、従来よりも高速な無線通信が可能となる。また、高度なビームフォーミングも可能となる。ビーム幅は、使用する周波数帯域又は端末20の状態等に応じて動的に変更し得る。また、狭いビームを用いることによるビームフォーミング利得による受信信号電力の増加を図ることができる。さらに、与干渉の低減及び無線リソースの有効利用等の効果が見込まれる。 Here, the base station 10 that supports massive MIMO can transmit beams. Massive MIMO generally means MIMO communication using an antenna with 100 or more antenna elements, and the multiplexing effect of multiple streams enables faster wireless communication than before. Advanced beamforming is also possible. The beam width can be dynamically changed depending on the frequency band used or the state of the terminal 20. In addition, the use of narrow beams can increase the received signal power due to the beamforming gain. Furthermore, effects such as reduced interference and effective use of wireless resources are expected.
 また、無線通信システムは、無線中継装置30を含んでよい。本発明の実施の形態において、一例として、無線中継装置30は、反射板(RIS)、位相制御リフレクタ、パッシブリピータ、IRS(インテリジェント反射面:Intelligent Reflecting Surface)等であってもよい。反射板(RIS:Reconfigurable Intelligent Surface)の具体例として、メタマテリアル反射板、動的メタサーフェス、メタサーフェスレンズ等と呼ばれるものであってもよい(例えば非特許文献2)。 The wireless communication system may also include a wireless relay device 30. In an embodiment of the present invention, as an example, the wireless relay device 30 may be a reflector (RIS), a phase control reflector, a passive repeater, an IRS (Intelligent Reflecting Surface), etc. Specific examples of a reflector (RIS: Reconfigurable Intelligent Surface) may include what is called a metamaterial reflector, a dynamic metasurface, a metasurface lens, etc. (e.g., Non-Patent Document 2).
 本発明の実施の形態において、無線中継装置30は、例えば、基地局10Aから送信された無線信号を中継する。本発明の実施の形態の説明において「中継」とは、「反射」、「透過」、「集約(電波を略一点に集中させること)」及び「回折」のうち少なくとも一つを指してもよい。端末20は、無線中継装置30によって中継された無線信号を受信できる。さらに、無線中継装置30は、端末20から送信された無線信号を中継してもよいし、基地局10から送信された無線信号を中継してもよい。 In an embodiment of the present invention, the wireless relay device 30 relays, for example, a wireless signal transmitted from the base station 10A. In the description of the embodiment of the present invention, "relay" may refer to at least one of "reflection," "transmission," "concentration (concentrating radio waves at approximately one point)," and "diffraction." The terminal 20 can receive the wireless signal relayed by the wireless relay device 30. Furthermore, the wireless relay device 30 may relay a wireless signal transmitted from the terminal 20, or may relay a wireless signal transmitted from the base station 10.
 一例として、無線中継装置30は、端末20に向けて中継する無線信号の位相を変化させることができる。このような観点から、無線中継装置30は、位相可変リフレクタと呼ばれてもよい。なお、本実施の形態において、無線中継装置30は、無線信号の位相を変化させて中継する機能を有するものとする場合があるが、これに限られない。また、無線中継装置30は、リピータ、中継装置、リフレクトアレイ、IRS、或いはトランスミットアレイ等と呼ばれてもよい。 As an example, the wireless relay device 30 can change the phase of the wireless signal that is relayed to the terminal 20. From this perspective, the wireless relay device 30 may be called a phase-variable reflector. Note that in this embodiment, the wireless relay device 30 may have a function of changing the phase of the wireless signal and relaying it, but is not limited to this. The wireless relay device 30 may also be called a repeater, relay device, reflect array, IRS, transmit array, or the like.
 また、本発明の実施の形態において、RIS等の無線中継装置30は、Battery less device、メタマテリアル機能装置、Intelligent reflecting surface、Smart repeater等と呼ばれてもよい。一例として、RIS又はスマートリピータ等の無線中継装置30は、以下1)-5)に示される機能を有するものとして定義されてもよい。 In addition, in an embodiment of the present invention, a wireless relay device 30 such as a RIS may be called a battery-less device, a metamaterial functional device, an intelligent reflecting surface, a smart repeater, etc. As an example, a wireless relay device 30 such as a RIS or a smart repeater may be defined as having the functions shown in 1)-5) below.
1)基地局10から送信される信号の受信機能を有してもよい。当該信号は、DL信号である、SSB(SS/PBCH block)、PDCCH、PDSCH、DM-RS(Demodulation Reference Signal)、PT-RS(Phase Tracking Reference Signal)、CSI-RS(Channel State Information Reference Signal)、RIS専用信号等であってもよい。メタマテリアル機能に係る情報を運ぶ信号の受信機能を有してもよい。なお、当該信号を端末20に送信する送信機能を有してもよい。SSBは、同期信号及び報知情報を含む信号であってもよい。 1) It may have a receiving function for signals transmitted from the base station 10. The signals may be DL signals such as SSB (SS/PBCH block), PDCCH, PDSCH, DM-RS (Demodulation Reference Signal), PT-RS (Phase Tracking Reference Signal), CSI-RS (Channel State Information Reference Signal), RIS-only signals, etc. It may have a receiving function for signals carrying information related to metamaterial functions. It may also have a transmitting function for transmitting the signals to the terminal 20. SSB may be a signal including a synchronization signal and notification information.
2)基地局10への信号の送信機能を有してもよい。当該信号は、UL信号である、PRACH、PUCCH、PUSCH、DM-RS、PT-RS、SRS(Sounding Reference Signal)、RIS専用信号等であってもよい。メタマテリアル機能に係る情報の送信機能を有してもよい。なお、当該信号を端末20から受信する受信機能を有してもよい。 2) It may have a function of transmitting signals to the base station 10. The signals may be UL signals such as PRACH, PUCCH, PUSCH, DM-RS, PT-RS, SRS (Sounding Reference Signal), RIS-only signals, etc. It may have a function of transmitting information related to metamaterial functions. It may also have a receiving function of receiving the signals from the terminal 20.
3)基地局10とのフレーム同期機能を有してもよい。なお、端末20とのフレーム同期機能を有してもよい。 3) It may have a frame synchronization function with the base station 10. It may also have a frame synchronization function with the terminal 20.
4)基地局10又は端末20から送信された信号の反射機能を有してもよい。例えば、当該反射機能は、位相変更に係る機能、ビーム制御に係る機能(例えば、TCI(Transmission Configuration Indication)-state、QCL(Quasi Co Location)の制御に係る機能、ビームの選択適用、空間フィルタ/プリコーディングウェイトの選択適用)であってもよい。
5)基地局10又は端末20から送信された信号の電力変更機能を有してもよい。例えば、当該電力変更機能は、電力増幅であってもよい。
4) The terminal 20 may have a function of reflecting a signal transmitted from the base station 10 or the terminal 20. For example, the reflection function may be a function related to phase change, a function related to beam control (for example, a function related to control of TCI (Transmission Configuration Indication)-state and QCL (Quasi Co Location), a selection and application of a beam, and a selection and application of a spatial filter/precoding weight).
5) It may have a function of changing the power of a signal transmitted from the base station 10 or the terminal 20. For example, the power changing function may be power amplification.
 また、RIS又はスマートリピータ等の無線中継装置30における「受信して送信」や「中継」とは、以下の機能Aまで行われるが、以下の機能Bまでは行われずに送信されることを意味してもよい。
機能A:移相器を適用する。
機能B:補償回路(例えば、増幅、フィルタ)は介さない。
In addition, "receive and transmit" or "relay" in a wireless relay device 30 such as a RIS or a smart repeater may mean that up to function A below is performed, but transmission is made without performing function B below.
Function A: Apply a phase shifter.
Function B: No compensation circuit (e.g., amplification, filtering) is used.
他の例として、
機能A:移相器及び補償回路を適用する。
機能B:周波数変換は介さない。
As another example,
Function A: Apply phase shifters and compensation circuits.
Function B: No frequency conversion is performed.
 なお、RIS等の無線中継装置30において、位相が変化されるとき、振幅が増幅されてもよい。また、RIS等の無線中継装置30における「中継」とは、レイヤ2又はレイア3レベルの処理を行わずに、受信した信号をそのまま送信すること、物理層レベルで受信した信号をそのまま送信すること、あるいは、信号を解釈せずに受信した信号をそのまま送信することを意味してもよい(その際、位相の変化や振幅の増幅等が行われてもよい)。 In addition, in a wireless relay device 30 such as a RIS, when the phase is changed, the amplitude may be amplified. Furthermore, "relaying" in a wireless relay device 30 such as a RIS may mean transmitting a received signal as is without performing processing at the layer 2 or layer 3 level, transmitting a received signal at the physical layer level as is, or transmitting a received signal as is without interpreting the signal (in which case, a phase change or amplitude amplification, etc. may be performed).
 (装置構成)
 次に、本発明の実施の形態における処理及び動作を実行する基地局10、端末20及び無線中継装置30の機能構成例を説明する。基地局10、端末20及び無線中継装置30は後述する実施例を実行する機能を含む。ただし、基地局10、端末20及び無線中継装置30はそれぞれ、実施例のうちのいずれかの機能のみを備えてもよい。
(Device configuration)
Next, a functional configuration example of the base station 10, the terminal 20, and the wireless relay device 30 that executes the processes and operations in the embodiment of the present invention will be described. The base station 10, the terminal 20, and the wireless relay device 30 each include a function to execute the embodiments described below. However, the base station 10, the terminal 20, and the wireless relay device 30 may each include only one of the functions of the embodiments.
 <基地局10>
 図2は、基地局10の機能構成の一例を示す図である。図2に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図2に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
<Base Station 10>
Fig. 2 is a diagram showing an example of the functional configuration of the base station 10. As shown in Fig. 2, the base station 10 has a transmitting unit 110, a receiving unit 120, a setting unit 130, and a control unit 140. The functional configuration shown in Fig. 2 is merely an example. As long as the operation related to the embodiment of the present invention can be executed, the names of the functional divisions and the functional units may be any. The transmitting unit 110 and the receiving unit 120 may be called a communication unit.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。また、送信部110は、実施例で説明する設定情報等を送信する。 The transmitting unit 110 has a function of generating a signal to be transmitted to the terminal 20 and transmitting the signal wirelessly. The receiving unit 120 has a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information of a higher layer from the received signals. The transmitting unit 110 also has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL data, etc. to the terminal 20. The transmitting unit 110 also transmits setting information, etc., which will be described in the embodiments.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。制御部140は、例えば、リソース割り当て、基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。 The setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in a storage device, and reads it out from the storage device as necessary. The control unit 140 performs, for example, resource allocation and overall control of the base station 10. Note that the functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and the functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. The transmitting unit 110 and the receiving unit 120 may be called the transmitter and the receiver, respectively.
 <端末20>
 図3は、端末20の機能構成の一例を示す図である。図3に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図3に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
<Terminal 20>
Fig. 3 is a diagram showing an example of the functional configuration of the terminal 20. As shown in Fig. 3, the terminal 20 has a transmitting unit 210, a receiving unit 220, a setting unit 230, and a control unit 240. The functional configuration shown in Fig. 3 is merely an example. As long as the operation related to the embodiment of the present invention can be executed, the names of the functional divisions and functional units may be any. The transmitting unit 210 and the receiving unit 220 may be called a communication unit.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、送信部210はHARQ-ACKを送信し、受信部220は、実施例で説明する設定情報等を受信する。 The transmitter 210 creates a transmission signal from the transmission data and transmits the transmission signal wirelessly. The receiver 220 receives various signals wirelessly and obtains higher layer signals from the received physical layer signals. The transmitter 210 also transmits HARQ-ACK, and the receiver 220 receives setting information etc., which will be explained in the embodiment.
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、端末20全体の制御等を行う。なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。 The setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in a storage device, and reads it out from the storage device as necessary. The setting unit 230 also stores setting information that is set in advance. The control unit 240 performs control of the entire terminal 20, etc. Note that the functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and the functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220. The transmitting unit 210 and the receiving unit 220 may also be called a transmitter and a receiver, respectively.
 <無線中継装置30>
 図4は、本発明の実施の形態における無線中継装置30の機能構成の一例を示す図である。図4に示されるように、無線中継装置30は、送信部310、受信部320、制御部330、可変部340及びアンテナ部350を有する。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部310と受信部320とを通信部と呼んでもよい。
<Wireless relay device 30>
Fig. 4 is a diagram showing an example of a functional configuration of the wireless relay device 30 according to the embodiment of the present invention. As shown in Fig. 4, the wireless relay device 30 has a transmitting unit 310, a receiving unit 320, a control unit 330, a variable unit 340, and an antenna unit 350. As long as the operation according to the embodiment of the present invention can be performed, the functional divisions and the names of the functional units may be any. The transmitting unit 310 and the receiving unit 320 may be called a communication unit.
 アンテナ部350には、可変部340に接続された少なくとも1つのアンテナが含まれる。例えば、アンテナ部350は、アレイアンテナとして配置されてもよい。本発明の実施の形態において、アンテナ部350を特に中継アンテナと呼ぶ場合がある。なお、可変部340及びアンテナ部350を中継部と呼んでもよい。 The antenna section 350 includes at least one antenna connected to the variable section 340. For example, the antenna section 350 may be arranged as an array antenna. In the embodiment of the present invention, the antenna section 350 may be specifically referred to as a relay antenna. The variable section 340 and the antenna section 350 may be referred to as a relay section.
 可変部340は、アンテナ部350に接続されており、位相、負荷、振幅等を変化させることができる。例えば、可変部340は、可変位相器、移相器、アンプ等であってもよい。例えば、電波発生源から中継アンテナに届いた電波の位相を変えることにより、電波の向き又はビーム等を変化させることができる。 The variable section 340 is connected to the antenna section 350 and can change the phase, load, amplitude, etc. For example, the variable section 340 may be a variable phase shifter, phase shifter, amplifier, etc. For example, by changing the phase of the radio waves that reach the relay antenna from the radio wave generating source, it is possible to change the direction or beam of the radio waves, etc.
 制御部330は、可変部340を制御する制御手段である。本発明の実施の形態において、制御部330は、基地局10又は端末20からの電波を信号解釈せず中継する際の中継状態を制御する制御部として機能する。ここで、制御部330は、基地局10又は端末20から通信部を介して受信した制御情報に基づいて中継状態を変化させてもよく、基地局10又は端末20からの電波の受信状態に基づいて、中継状態を変化させてもよい。例えば、制御部330は、SSB等の制御情報に基づいて、適切な受信ビームと送信ビーム(の向き)を選択し、可変部340を制御してもよい。同様に、制御部330は、受信状態から、受信品質あるいは受信電力が最も大きい等の基準に基づいて、適切な受信方向と送信方向の組み合わせを選択し、可変部340を制御してもよい。 The control unit 330 is a control means for controlling the variable unit 340. In an embodiment of the present invention, the control unit 330 functions as a control unit for controlling the relay state when relaying radio waves from the base station 10 or the terminal 20 without signal interpretation. Here, the control unit 330 may change the relay state based on control information received from the base station 10 or the terminal 20 via the communication unit, or may change the relay state based on the reception state of the radio waves from the base station 10 or the terminal 20. For example, the control unit 330 may select appropriate reception beams and transmission beams (directions) based on control information such as SSB, and control the variable unit 340. Similarly, the control unit 330 may select an appropriate combination of reception direction and transmission direction based on criteria such as the highest reception quality or the highest received power from the reception state, and control the variable unit 340.
 また、本発明の実施の形態において、制御部330は、例えば、端末20又は基地局10Aとアンテナ部350との間の伝搬路に関する情報(受信状態により推定した情報及び制御情報を含む。以下同様)に基づいて、可変部340を制御することができる。例えば、制御部330は、アクティブリピータ又はRIS等の公知手法を用いて、基地局10Aから受信した電波を、送信電力を用いずに、位相を変化させることによって、電波受信先(この場合は端末20)等の特定の方向へ中継することができる。具体的には、制御部330は、推定した伝搬路情報HPT及びHRPに基づいて、端末20又は基地局10Aに向けて中継するために無線信号の位相を制御する。すなわち、ビームフォーミング等と同様の原理で、アレーアンテナ等の位相を変化させることで、特定の方向へ電波を中継することができる。なお、無線中継装置30は、制御部330によって無線信号(電波)の位相のみを制御して(変化させて)おり、中継される無線信号の電力の増幅などを行うことなく、無給電で中継してもよい。 In the embodiment of the present invention, the control unit 330 can control the variable unit 340 based on, for example, information on the propagation path between the terminal 20 or the base station 10A and the antenna unit 350 (including information estimated from the reception state and control information; the same applies below). For example, the control unit 330 can relay the radio wave received from the base station 10A to a specific direction such as the radio wave receiving destination (terminal 20 in this case) by changing the phase without using transmission power using a known method such as an active repeater or RIS. Specifically, the control unit 330 controls the phase of the radio signal to be relayed to the terminal 20 or the base station 10A based on the estimated propagation path information H PT and H RP . That is, by changing the phase of an array antenna or the like based on the same principle as beamforming, etc., the radio wave can be relayed to a specific direction. Note that the radio relay device 30 controls (changes) only the phase of the radio signal (radio wave) by the control unit 330, and may relay without power supply without amplifying the power of the relayed radio signal.
 また、制御部330は、本発明の実施の形態において、受信状態により情報を取得してもよい。また、受信部320は、基地局10A又は端末20からの制御情報を取得してもよい。例えば、受信部320は、基地局10A又は端末20から送信された、SSB等の各種の信号(上述の機能で例示した各種の信号を含む)を制御情報として受信してもよい。 Furthermore, in an embodiment of the present invention, the control unit 330 may acquire information based on the reception state. Furthermore, the receiving unit 320 may acquire control information from the base station 10A or the terminal 20. For example, the receiving unit 320 may receive various signals such as SSB (including the various signals exemplified in the above-mentioned functions) transmitted from the base station 10A or the terminal 20 as control information.
 また、制御部330は、可変部340の制御時の受信状態(例えば、受信電力の変化等)に基づいて、電波発生源(例えば、基地局10A又は端末20)とアンテナ部350間の伝搬路情報(HPT及びHRP)を推定してもよい。 In addition, the control unit 330 may estimate propagation path information (H PT and H RP ) between the radio wave source (e.g., the base station 10A or the terminal 20) and the antenna unit 350 based on the reception state (e.g., change in reception power , etc. ) during control by the variable unit 340.
 各伝搬路に関する伝搬路情報(伝搬チャネル情報)は、具体的には、振幅又は位相等の情報であり、本発明の実施の形態において、アンテナ部350に到来する電波の伝搬路に関して推定した情報である。一例として、制御部330は、I/Q(In-phase/Quadrature)検波と同様の原理で、アレー状のアンテナ部350の可変部340の位相を直交に切り替えたときの受信電力の変化に基づいて、アンテナ部350の伝搬路情報を推定してもよい。 The propagation path information (propagation channel information) for each propagation path is specifically information such as amplitude or phase, and in an embodiment of the present invention, is information estimated regarding the propagation path of the radio waves arriving at the antenna unit 350. As an example, the control unit 330 may estimate the propagation path information of the antenna unit 350 based on the change in received power when the phase of the variable unit 340 of the array-shaped antenna unit 350 is switched to orthogonal, using a principle similar to that of I/Q (In-phase/Quadrature) detection.
 図5は、本発明の実施の形態における無線中継装置30の動作例を示す図である。図5に示されるように、一例として、無線中継装置30は、基地局10A(他の基地局10等でもよい)と、端末20との間に介在し、基地局10Aと端末20との間において送受信される無線信号を中継(反射、透過、集約、回折等)する。 FIG. 5 is a diagram showing an example of the operation of the wireless relay device 30 in an embodiment of the present invention. As shown in FIG. 5, as an example, the wireless relay device 30 is interposed between the base station 10A (or another base station 10, etc.) and the terminal 20, and relays (reflects, transmits, aggregates, diffracts, etc.) wireless signals transmitted and received between the base station 10A and the terminal 20.
 具体例として、基地局10Aと端末20とは、無線品質が良好な場合には、無線中継装置30を経由せずに、直接、無線信号を送受信する。一方、基地局10Aと端末20との間に遮蔽物がある場合等、当該無線品質が劣化した場合、無線中継装置30は、基地局10Aと端末20との間において送受信される無線信号を中継する。 As a specific example, when the wireless quality is good, the base station 10A and the terminal 20 transmit and receive wireless signals directly without going through the wireless relay device 30. On the other hand, when the wireless quality deteriorates, for example when there is an obstruction between the base station 10A and the terminal 20, the wireless relay device 30 relays the wireless signals transmitted and received between the base station 10A and the terminal 20.
 具体的には、無線中継装置30は、可変位相器等の可変部340の制御時の受信電力の変化に基づいて、基地局10A又は端末20等の電波発生源と中継アンテナ間の伝搬路情報HPT、HRTを推定し、推定した伝搬路情報に基づいて、可変位相器などの可変部340を制御することにより端末20等の電波受信先に向けて無線信号を中継する。なお、伝搬路情報HPT、HRTを推定することに限られず、無線中継装置30は、基地局10A又は端末20から受信した制御情報に基づいて、可変位相器などの可変部340を制御することにより基地局10A又は端末20等の電波受信先に向けて無線信号を中継してもよい。 Specifically, the wireless relay device 30 estimates propagation path information H PT , H RT between the radio wave generating source such as the base station 10A or the terminal 20 and the relay antenna based on a change in the received power when controlling the variable unit 340 such as a variable phase shifter, and relays the radio signal to the radio wave receiving destination such as the terminal 20 by controlling the variable unit 340 such as a variable phase shifter based on the estimated propagation path information. Note that the wireless relay device 30 is not limited to estimating the propagation path information H PT , H RT , and may relay the radio signal to the radio wave receiving destination such as the base station 10A or the terminal 20 by controlling the variable unit 340 such as a variable phase shifter based on control information received from the base station 10A or the terminal 20.
 ここで、伝搬路あるいは伝搬チャネルとは、無線通信の個々の通信路であり、ここでは、各送受信アンテナ(図中の基地局アンテナ及び端末アンテナ等)間の通信路である。 Here, a propagation path or propagation channel refers to an individual communication path for wireless communication, and in this case, it is the communication path between each transmitting and receiving antenna (such as the base station antenna and terminal antenna in the figure).
 一例として、無線中継装置30は、マッシブMIMOに対応した小型多素子アンテナを有するアンテナ部350と、無線信号、実質的には、電波の位相を特定の位相に変化させる可変位相器あるいは移相器を有する可変部340を備え、可変部340を用いて、端末20又は基地局10Aに中継される電波の位相を制御する。 As an example, the wireless relay device 30 includes an antenna unit 350 having a small multi-element antenna compatible with massive MIMO, and a variable unit 340 having a variable phase device or phase shifter that changes the phase of the wireless signal, essentially the radio wave, to a specific phase, and uses the variable unit 340 to control the phase of the radio wave relayed to the terminal 20 or base station 10A.
 図6は、高周波数帯域における通信の例を示す図である。図6に示されるように、数GHz-数十GHz以上の高周波数帯域を用いる場合において、電波の強い直進性によって、不感地帯が発生しやすい。基地局10Aと端末20との間が見通せる場合、当該高周波数帯域を用いる場合でも、基地局10Aと端末20間の無線通信に影響はない。一方、例えば、建造物又は樹木など、遮蔽物によって、基地局10Aと端末20との間の見通しが遮蔽されると、無線品質が大幅に劣化する。すなわち、端末20が遮蔽物によって遮蔽される不感地帯に移動すると、通信が途絶えることになり得る。 FIG. 6 is a diagram showing an example of communication in a high frequency band. As shown in FIG. 6, when using a high frequency band of several GHz to several tens of GHz or more, blind zones are likely to occur due to the strong linearity of radio waves. If there is line of sight between the base station 10A and the terminal 20, there is no effect on wireless communication between the base station 10A and the terminal 20 even when the high frequency band is used. On the other hand, if the line of sight between the base station 10A and the terminal 20 is blocked by an obstruction such as a building or tree, for example, the wireless quality will deteriorate significantly. In other words, if the terminal 20 moves into a blind zone blocked by an obstruction, communication may be interrupted.
 高速大容量、かつ低遅延特性を活かしたアプリケーション(遠隔操作等)の存在を考慮すると、不感地帯を解消し、無線通信システム内での通信が途絶えることなく、基地局と端末とが接続を確保することが重要である。 Considering the existence of applications (remote control, etc.) that take advantage of high speed, large capacity, and low latency characteristics, it is important to eliminate blind spots, ensure uninterrupted communication within the wireless communication system, and ensure a connection between the base station and terminals.
 そこで、RIS又はスマートリピータ等の電波伝搬制御装置のように、基地局10Aと端末20との間の電波を中継することができる技術が開発されている。このように、基地局信号の伝搬特性を制御することで通信特性を改善させることができ、信号源不要でカバレッジ拡大、基地局の増設による設置及び運用コストの減少を図ることができる。 Therefore, technology has been developed that can relay radio waves between the base station 10A and the terminal 20, such as radio wave propagation control devices such as RIS or smart repeaters. In this way, communication characteristics can be improved by controlling the propagation characteristics of the base station signal, and it is possible to expand coverage without the need for a signal source, and reduce installation and operation costs by adding base stations.
 従来の電波伝搬制御装置では、パッシブ型とアクティブ型がある。パッシブ型は、制御情報が不要であるというメリットがあるものの、移動体又は環境変動等に追従することができない。一方、アクティブ型は、制御情報が必要でオーバヘッドが増加するデメリットがあるものの、制御アンテナの負荷(位相)状態を変化させて、電波の伝搬特性を可変的に制御可能であり、移動体及び環境変動等にも追従することができる。  Conventional radio wave propagation control devices are of two types: passive and active. Passive types have the advantage of not needing control information, but are unable to keep up with moving objects or environmental changes. On the other hand, active types have the disadvantage of needing control information and increasing overhead, but they can variably control the propagation characteristics of radio waves by changing the load (phase) state of the control antenna, and can keep up with moving objects and environmental changes.
 アクティブ型の電波伝搬制御装置と制御手法には、フィードバック(FB)規範と伝搬路情報規範の2つのタイプがある。FB規範では、可変型の電波伝搬制御装置が、負荷(位相)状態をランダムに変化させたときの通信状態を、端末20等にフィードバックしてもらい、最適条件を探索する。一方、伝搬路情報規範では、基地局と電波伝搬制御装置との間の伝搬路情報に基づいて負荷状態を決定し、最適な電波伝搬制御が可能となる。本発明の実施の形態においては、いずれのタイプであっても適用可能である。 There are two types of active radio wave propagation control devices and control methods: the feedback (FB) model and the propagation path information model. In the FB model, a variable radio wave propagation control device randomly changes the load (phase) state and has the terminal 20 or the like feed back the communication state, and searches for optimal conditions. On the other hand, in the propagation path information model, the load state is determined based on propagation path information between the base station and the radio wave propagation control device, making it possible to perform optimal radio wave propagation control. Either type can be applied in the embodiments of the present invention.
 また、中継方法としては、反射、透過、回折、集約等のタイプがあるが、本実施の形態において、一例として、以下に、反射型と透過型の構成例について説明する(回折型と集約型は非特許文献2等参照)。 Furthermore, there are various types of relay methods, such as reflection, transmission, diffraction, and aggregation. In this embodiment, as an example, the following describes the configuration of the reflection type and the transmission type (for the diffraction type and the aggregation type, see Non-Patent Document 2, etc.).
 図7は、本発明の実施の形態における反射型の無線中継装置30の例を示す図である。反射型の無線中継装置30のシステム構成の一例について、図7を用いて説明する。図7は、基地局10A等の送信アンテナTxと、透過型の無線中継装置30の中継アンテナSxと、端末20等の受信アンテナRxの関係を示した図である。図7に示すように、本発明の実施の形態においては、MIMOを一例としており、Tx-Sx間の複数の伝搬路と、Sx-Rx間の複数の伝搬路が存在しており、無線中継装置30は、中継アンテナSxの可変位相器等を有する可変部340を制御して電波を中継する。 FIG. 7 is a diagram showing an example of a reflective wireless relay device 30 in an embodiment of the present invention. An example of the system configuration of a reflective wireless relay device 30 will be described with reference to FIG. 7. FIG. 7 is a diagram showing the relationship between a transmitting antenna Tx of a base station 10A or the like, a relay antenna Sx of a transparent wireless relay device 30, and a receiving antenna Rx of a terminal 20 or the like. As shown in FIG. 7, in the embodiment of the present invention, MIMO is used as an example, and there are multiple propagation paths between Tx and Sx and multiple propagation paths between Sx and Rx, and the wireless relay device 30 relays radio waves by controlling a variable unit 340 having a variable phase shifter or the like of the relay antenna Sx.
 図7に示されるように、反射型の場合、アレー状の中継アンテナは、同じ方向に向けられて配置されている。これにより、中継アンテナの位相条件を複数変化させた際に観測される受信状態に基づいて、中継アンテナの伝搬路を推定することができる。 As shown in Figure 7, in the case of the reflective type, the array-like relay antennas are arranged facing the same direction. This makes it possible to estimate the propagation path of the relay antennas based on the reception state observed when the phase conditions of the relay antennas are changed multiple times.
 図8は、本発明の実施の形態における透過型の無線中継装置30の例を示す図である。透過型の無線中継装置30のシステム構成の一例について、図8を用いて説明する。図8は、基地局10A等の送信アンテナTxと、透過型の無線中継装置30の中継アンテナSxと、端末20等の受信アンテナRxの関係を示した図である。図8に示されるように、本発明の実施の形態においては、MIMOを一例としており、Tx-Sx間の複数の伝搬路と、Sx-Rx間の複数の伝搬路が存在しており、無線中継装置30は、図示の如く、中継アンテナSxの可変位相器等の可変部340を介して、一方の側から到来した電波を他方の側へ中継する。このように、透過型の場合、図左側の基準アンテナと図右側中継アンテナは、一方の側から到来した電波を他方の側へ中継することができるように、それぞれ一対で反対方向に向けられて配置されている。透過型、反射型のいずれであっても、電力検出器等により、中継アンテナに届いた電力を検出できるように構成して、受信状態を計測してもよい。また、中継アンテナの位相条件を複数変化させた際に観測される受信信号に基づいて、中継アンテナの伝搬路を推定することができる。 FIG. 8 is a diagram showing an example of a transparent type wireless relay device 30 in an embodiment of the present invention. An example of the system configuration of the transparent type wireless relay device 30 will be described with reference to FIG. 8. FIG. 8 is a diagram showing the relationship between the transmitting antenna Tx of the base station 10A, the relay antenna Sx of the transparent type wireless relay device 30, and the receiving antenna Rx of the terminal 20. As shown in FIG. 8, in the embodiment of the present invention, MIMO is used as an example, and there are multiple propagation paths between Tx and Sx and multiple propagation paths between Sx and Rx. As shown in the figure, the wireless relay device 30 relays radio waves arriving from one side to the other side via a variable unit 340 such as a variable phase shifter of the relay antenna Sx. Thus, in the case of the transparent type, the reference antenna on the left side of the figure and the relay antenna on the right side of the figure are arranged in pairs facing in opposite directions so that radio waves arriving from one side can be relayed to the other side. Whether the type is transparent or reflective, the power that has arrived at the relay antenna may be detected by a power detector or the like to measure the reception state. In addition, the propagation path of the relay antenna can be estimated based on the received signal observed when the phase conditions of the relay antenna are changed multiple times.
 例えば6G等の将来のネットワークでは、5Gと比較してさらに高い品質が要求される。例えば、テラbpsオーダの超高速、光通信レベルの高信頼低遅延等が求められる。また、超カバレッジ拡張、超長距離通信、超信頼性通信、仮想セル、フレキシブルネットワーク、メッシュネットワーク、サイドリンクの強化、RIS又はスマートリピータを考慮した設計が必要となる。 Future networks such as 6G will require even higher quality than 5G. For example, ultra-high speeds on the order of tera bps and high reliability and low latency at the level of optical communications will be required. In addition, designs will need to take into account ultra-extended coverage, ultra-long distance communications, ultra-reliable communications, virtual cells, flexible networks, mesh networks, enhanced side links, and RIS or smart repeaters.
 当該品質の実現に向けて、非常に高い周波数、例えばテラHz波の利用が想定される。例えば、テラHz波のような非常に高い周波数を利用する場合、超広帯域利用による高速化、シンボル長の短さによる低遅延化が利点として想定される一方、減衰率の大きさによるカバレッジの狭さ、直進性の高さによる信頼性の低下等の欠点も想定される。6G通信が必要とされる各地点に対して、どのように冗長性を確保するか、すなわちどのように通信の送信ポイントを増加させるかを検討することが要求される。 In order to achieve this quality, it is expected that extremely high frequencies, such as terahertz waves, will be used. For example, when using extremely high frequencies such as terahertz waves, the expected advantages are high speed due to the use of ultra-wideband and low latency due to short symbol lengths, but there are also expected disadvantages such as narrow coverage due to a large attenuation rate and reduced reliability due to high line-to-line propagation. It is necessary to consider how to ensure redundancy for each location where 6G communications are required, in other words, how to increase the number of communication transmission points.
 上述のように、RISは、基地局10又は端末20から送信されるビームを所定の方向に反射又は透過し、端末20又は基地局10に届ける。パッシブ型RISは、移動局の位置に応じて反射角度又はビーム幅等の制御を変更しない装置であって、制御情報が不必要である一方、精密なビーム制御が困難である。アクティブ型RISは、移動局の位置に応じて反射角度及びビーム幅等の制御を変更する装置であって、精密なビーム制御が可能である一方、制御情報が必要なためオーバヘッドば増大する。RISにより、通信の送信ポイントを増加させることができる。 As described above, the RIS reflects or transmits the beam transmitted from the base station 10 or terminal 20 in a predetermined direction and delivers it to the terminal 20 or base station 10. A passive RIS is a device that does not change control of reflection angle or beam width, etc. according to the position of the mobile station, and does not require control information, but precise beam control is difficult. An active RIS is a device that changes control of reflection angle and beam width, etc. according to the position of the mobile station, and allows precise beam control, but requires control information, which increases overhead. A RIS can increase the number of communication transmission points.
 なお、RISは、以下1)-5)に示される名称であってもよく、これらに限定されない。
1)バッテリレスデバイス(Battery less device)
2)メタマテリアル機能装置
3)インテリジェント反射板(Intelligent reflecting surface)
4)スマートリピータ(Smart repeater)
5)ネットワーク制御リピータ(Network-controlled repeater)
The RIS may be any of the names shown in 1)-5) below, but is not limited to these.
1) Battery less device
2) Metamaterial functional device 3) Intelligent reflecting surface
4) Smart repeater
5) Network-controlled repeater
 RISは、所定の機能を有する装置であればよく、当該所定の機能は例えば以下に示される1)及び2)の少なくとも一つの機能であってもよい。 The RIS may be any device having a specific function, and the specific function may be, for example, at least one of the functions 1) and 2) shown below.
1)UE機能
基地局10から送信される信号の受信機能(例えば、DL信号、SSB、PDCCH、PDSCH、DM-RS、PT-RS、CSI-RS、RIS専用信号)。当該受信機能により、下記2)メタマテリアル機能に係る情報を受信してもよい。基地局10への信号の送信機能(例えば、UL信号、PRACH、PUCCH、PUSCH、DM-RS、PT-RS、SRS、RIS専用信号)。当該送信機能により、下記2)メタマテリアル機能に係る情報を送信してもよい。基地局10とのフレーム同期機能。
1) UE Function: A function for receiving signals transmitted from the base station 10 (e.g., DL signals, SSB, PDCCH, PDSCH, DM-RS, PT-RS, CSI-RS, RIS-dedicated signals). The receiving function may receive information related to the metamaterial function described below in 2). A function for transmitting signals to the base station 10 (e.g., UL signals, PRACH, PUCCH, PUSCH, DM-RS, PT-RS, SRS, RIS-dedicated signals). The transmitting function may transmit information related to the metamaterial function described below in 2). A function for frame synchronization with the base station 10.
2)メタマテリアル機能
基地局10又は端末20から送信された信号の反射機能(例えば、位相変更)。RISが有する複数の反射素子ごとに位相を変更して信号の反射を行ってもよいし、複数の反射素子で共通の位相変更を行って信号の反射を行ってもよい。ビーム制御に係る機能(例えば、TCI-state、QCLの制御に係る機能、ビームの選択適用、空間フィルタ/プリコーディングウェイトの選択適用)。基地局10又は端末20から送信された信号の電力変更機能(例えば、電力増幅)。RISが有する反射素子ごとに異なる電力変更を行ってもよいし、複数の反射素子で共通の電力変更を行ってもよい。
2) Metamaterial function A reflection function (e.g., phase change) of a signal transmitted from the base station 10 or the terminal 20. The phase may be changed for each of the multiple reflecting elements of the RIS to reflect the signal, or a common phase change may be performed by multiple reflecting elements to reflect the signal. A function related to beam control (e.g., TCI-state, a function related to control of QCL, selective application of beam, selective application of spatial filter/precoding weight). A power change function (e.g., power amplification) of a signal transmitted from the base station 10 or the terminal 20. A different power change may be performed for each of the reflecting elements of the RIS, or a common power change may be performed by multiple reflecting elements.
 RISにおける「受信して送信」は、電波/信号を反射することを意味してもよい。以降では「基地局」、「端末」の用語を使用するが、これらに限定されず、通信装置に置換されてもよい。RISはスマートリピータ、中継機等に置換されてもよい。 "Receiving and transmitting" in RIS may mean reflecting radio waves/signals. Hereinafter, the terms "base station" and "terminal" are used, but are not limited to these and may be replaced with communication devices. RIS may be replaced with smart repeater, relay, etc.
 例えば、RISは、以下1)-6)に示される想定で動作してもよい。
1)ネットワークオペレータがRISを設定する
2)RISは固定されており移動しない
3)RISは一つのみの基地局からの信号を中継する
4)制御信号の受信及び送信が可能
5)半二重複信で動作する
6)単一のRIS環境
For example, the RIS may operate under the assumptions set forth below in 1)-6).
1) The network operator configures the RIS. 2) The RIS is fixed and does not move. 3) The RIS relays signals from only one base station. 4) It can receive and transmit control signals. 5) It operates in half-duplex mode. 6) It operates in a single RIS environment.
 ネットワークに制御される無線中継装置であるネットワーク制御リピータが検討されている(例えば非特許文献3)。ネットワーク制御リピータは、従来の増幅及び転送するリピータとは異なり、例えば、ビーム、タイミング、DL又はUL、ON又はOFF、送信電力をネットワークから制御することができる。以下、「ネットワーク制御リピータ」を「リピータ」とも記載する。 Network-controlled repeaters, which are wireless relay devices controlled by a network, are being considered (for example, Non-Patent Document 3). Unlike conventional repeaters that amplify and forward, network-controlled repeaters can control, for example, beam, timing, DL or UL, ON or OFF, and transmission power from the network. Hereinafter, "network-controlled repeaters" are also referred to as "repeaters."
 ネットワーク制御リピータは、FR1及びFR2バンドにおけるカバレッジを拡張するためインバンドRFリピータとして使用される。特に、アウトドアシナリオ及びO2I(outdoor to indoor)シナリオにおけるFR2の配置への使用を想定する。例えば、ネットワーク制御リピータの環境として、シングルホップかつ移動しない環境を想定してもよい。また、ネットワーク制御リピータは、UEに対して透過的であってもよい。また、ネットワーク制御リピータは、gNB-リピータ間のリンクとリピータ-UE間のリンクを同時に維持することができる。 The network-controlled repeater is used as an in-band RF repeater to extend coverage in the FR1 and FR2 bands. In particular, it is intended for use in FR2 deployments in outdoor and outdoor to indoor (O2I) scenarios. For example, the environment of the network-controlled repeater may be a single-hop, non-mobile environment. The network-controlled repeater may also be transparent to the UE. The network-controlled repeater can simultaneously maintain a gNB-repeater link and a repeater-UE link.
 ネットワーク制御リピータをネットワークから制御するサイド制御情報(Side control information)について、以下の検討が行われている。
・ビームフォーミングに係る情報
・送信又は受信のタイミングに係る情報
・UL-DL TDD設定に係る情報
・干渉制御及び省電力化のためのON-OFF情報
・干渉制御のための電力制御
Network Control The following studies are being conducted on side control information for controlling repeaters from the network.
- Information related to beamforming - Information related to transmission or reception timing - Information related to UL-DL TDD setting - ON-OFF information for interference control and power saving - Power control for interference control
 また、L1及びL2シグナリングによるサイド制御情報が検討されている。また、ネットワーク制御リピータの識別及び認証について検討されている。 Side control information via L1 and L2 signaling is also being considered. Identification and authentication of network control repeaters is also being considered.
 図9は、本発明の実施の形態におけるネットワーク制御リピータの例を示す図である。ネットワーク制御リピータ(Network-controlled repeater、NCR)は、図9に示されるように構成されてもよい。以下、ネットワーク制御リピータをNCRとも記載する。NCR-MT(端末終端、Mobile Termination)は、制御リンク(Control link、C-リンク)を介して、基地局10と通信する機能を有する装置として定義されてもよい。例えば、制御リンクを介してサイド制御情報をやり取りすることが可能となる。制御リンクは、NR-Uuインタフェースに基づいてもよい。 FIG. 9 is a diagram showing an example of a network-controlled repeater in an embodiment of the present invention. A network-controlled repeater (NCR) may be configured as shown in FIG. 9. Hereinafter, the network-controlled repeater is also referred to as NCR. An NCR-MT (Mobile Termination) may be defined as a device having a function of communicating with a base station 10 via a control link (C-link). For example, it becomes possible to exchange side control information via the control link. The control link may be based on an NR-Uu interface.
 NCR-Fwd(転送、Forwarding)は、バックホールリンク(Backhaul link)及びアクセスリンク(Access link)を介して、基地局10と端末20間のUL及びDLのRF信号の増幅及び転送を実行する機能を有する装置として定義されてもよい。NCR-Fwdの動作は、基地局10から受信したサイド制御情報に基づいて制御されてもよい。図9に示されるように、バックホールリンクは、基地局10とNCR-Fwd間の通信に対応し、アクセスリンクは、端末20とNCR-Fwd間の通信に対応する。 NCR-Fwd (Forwarding) may be defined as a device having the function of amplifying and forwarding UL and DL RF signals between the base station 10 and the terminal 20 via a backhaul link and an access link. The operation of the NCR-Fwd may be controlled based on side control information received from the base station 10. As shown in FIG. 9, the backhaul link corresponds to communication between the base station 10 and the NCR-Fwd, and the access link corresponds to communication between the terminal 20 and the NCR-Fwd.
 例えばFR2において、少なくともアクセスリンク向けのNCR30の動作を制御するサイド制御情報としてビームに係る情報は有益であり推奨される。アクセスリンクにおけるビームに係る通知として、ビームのインデックス又は例えばTCIインジケータのようなソースRSのインデックスが想定される。 For example, in FR2, beam-related information is useful and recommended as side control information that controls the operation of NCR 30 at least for the access link. As a beam-related notification in the access link, a beam index or a source RS index such as a TCI indicator is assumed.
 NCR-Fwdのアクセスリンクにおけるビームを指示するため、例えば、以下1)-7)に示されるようにNCR30は動作してもよい。 To instruct the beam in the access link of the NCR-Fwd, the NCR30 may operate, for example, as shown in 1)-7) below.
1)FR2において、少なくともアクセスリンク向けのNCR30の動作を制御するサイド制御情報としてビームに係る情報を使用する。
2)動的通知及びセミスタティック通知をサポートする。
3)ビーム通知ごとに時間領域リソースを明示的に指示する。
4)動的ビーム通知、セミスタティックビーム通知、準持続的(semi-persistent)通知をサポートする。
5)時間領域リソースの粒度はスロットレベル及びシンボルレベルをサポートする。
6)NCR-FwdにおけるDL及びULアクセスリンクのビーム一致(beam correspondence)を想定する。
7)アクセスリンクにおけるビーム通知にビームインデックスを使用する。
1) In FR2, beam-related information is used as side control information that controls the operation of NCR 30 for at least the access link.
2) Supports dynamic and semi-static notifications.
3) Explicitly indicate time domain resources for each beam notification.
4) Supports dynamic beam notification, semi-static beam notification, and semi-persistent notification.
5) Time domain resource granularity supports slot level and symbol level.
6) Assume beam correspondence of DL and UL access links in NCR-Fwd.
7) Use beam index for beam notification in access link.
 ここで、UEのビームマネジメントのため、M-TRP(Multiple Transmission/Reception Point)送信がサポートされる。 Here, M-TRP (Multiple Transmission/Reception Point) transmission is supported for UE beam management.
 図10は、TRPによる送信の例(1)を説明するための図である。図10に示されるように、S-TRP(Single TRP)送信がサポートされ、1PDCCHは1PDSCHをスケジューリングする。 Figure 10 is a diagram for explaining an example (1) of transmission by TRP. As shown in Figure 10, S-TRP (Single TRP) transmission is supported, and one PDCCH schedules one PDSCH.
 図11は、TRPによる送信の例(2)を説明するための図である。図11は、S-DCI(Single DCI)及びM-TRPフレームワークの例を示す。1PDCCHは複数のPDSCH/PUSCHを複数のTRPに対してスケジューリングする。複数のビームが1PDSCH/PUSCH向けに通知される。 Figure 11 is a diagram for explaining an example (2) of transmission by TRP. Figure 11 shows an example of S-DCI (Single DCI) and M-TRP framework. One PDCCH schedules multiple PDSCH/PUSCH for multiple TRPs. Multiple beams are notified for one PDSCH/PUSCH.
 図12は、TRPによる送信の例(3)を説明するための図である。図12は、M-DCI(Multiple DCI)及びM-TRPフレームワークの例を示す。1PDCCHはPDSCH/PUSCHを1TRPにスケジューリングし、複数のPDCCHは複数のPDSCH/PUSCHを複数のTRPにスケジューリングする。1ビームが1PDSCH/PUSCH向けに通知される。 Figure 12 is a diagram for explaining an example (3) of transmission by TRP. Figure 12 shows an example of M-DCI (Multiple DCI) and M-TRP framework. One PDCCH schedules PDSCH/PUSCH to one TRP, and multiple PDCCHs schedule multiple PDSCH/PUSCH to multiple TRPs. One beam is notified for one PDSCH/PUSCH.
 なお、S-TRPとM-TRPの動的切り替えがサポートされてもよい。単一PDCCHベースのM-TRPと複数PDCCHベースのM-TRPのセミスタティック切り替えがサポートされてもよい。 In addition, dynamic switching between S-TRP and M-TRP may be supported. Semi-static switching between single PDCCH-based M-TRP and multiple PDCCH-based M-TRP may be supported.
 S-DCI及びM-TRPにおいて、以下に示される動作がサポートされてもよい。 The following operations may be supported in S-DCI and M-TRP:
PDSCH:2ビームが通知される
・SDM(Spatial Division Multiplex)PDSCH:2ビームが同一の時間/周波数領域リソースに使用され、各ビームは異なるレイヤに使用される
・FDM(Frequency Division Multiplex)PDSCH:2ビームが同一の時間領域リソースに使用され、各ビームは異なる周波数領域リソースに使用される
・TDM(Time Division Multiplex)PDSCH:1ビームが1時間領域リソースに使用され、異なるビームが異なる時間領域リソースに使用される
・SFN(Single Frequency Network)PDSCH:2ビームが同一の時間/周波数領域リソースに使用される
PDSCH: 2 beams are notified. Spatial Division Multiplex (SDM) PDSCH: 2 beams are used for the same time/frequency domain resources, and each beam is used for a different layer. Frequency Division Multiplex (FDM) PDSCH: 2 beams are used for the same time domain resources, and each beam is used for a different frequency domain resource. Time Division Multiplex (TDM) PDSCH: 1 beam is used for 1 time domain resource, and a different beam is used for a different time domain resource. Single Frequency Network (SFN) PDSCH: 2 beams are used for the same time/frequency domain resources.
PUSCH:2ビームが通知される
・TDM PUSCH:1ビームが1時間領域リソースに使用され、異なるビームが異なる時間領域リソースに使用される
・SDM PUSCH:2ビームが同一の時間/周波数領域リソースに使用され、各ビームは異なるレイヤに使用される
・SFN PUSCH:2ビームが同一の時間/周波数領域リソースに使用される
PUSCH: 2 beams are signaled. TDM PUSCH: 1 beam is used for 1 time domain resource, different beams are used for different time domain resources. SDM PUSCH: 2 beams are used for the same time/frequency domain resource, each beam is used for a different layer. SFN PUSCH: 2 beams are used for the same time/frequency domain resource.
PUCCH:2ビームが通知される
・TDM PUCCH:1ビームが1時間領域リソースに使用され、異なるビームが異なる時間領域リソースに使用される
・SFN PUCCH:2ビームが同一の時間/周波数領域リソースに使用される
PUCCH: 2 beams are signaled. TDM PUCCH: 1 beam is used for 1 time domain resource, different beams are used for different time domain resources. SFN PUCCH: 2 beams are used for the same time/frequency domain resource.
 M-DCI及びM-TRPにおいて、以下に示される動作がサポートされてもよい。 The following operations may be supported in M-DCI and M-TRP:
PDSCH:1ビームが通知される
・時間/周波数領域でオーバラップする異なるTRPの2PDSCH
PUSCH:1ビームが通知される
・時間/周波数領域でオーバラップする異なるTRPの2PUSCH
PUCCH:1ビームが通知される
・時間/周波数領域でオーバラップする異なるTRPの2PUCCH
PDSCH: 1 beam is notified. 2 PDSCHs of different TRPs overlapping in the time / frequency domain
PUSCH: 1 beam is notified. 2 PUSCHs of different TRPs overlapping in the time / frequency domain
PUCCH: 1 beam is notified. 2 PUCCHs of different TRPs overlapping in the time / frequency domain
 以下、NCRアクセスリンクにおけるM-TRPフレームワークをサポートする方法として提案0-提案7について説明する。 Below, Proposals 0 to 7 are explained as methods for supporting the M-TRP framework in NCR access links.
 図13は、本発明の実施の形態における通知の例(1)を説明するための図である。図13に示されるように、1UEから送信される又は1UEにおいて受信される複数ビームを使用する同時送受信するシナリオに当該M-TRPフレームワークは適用されてもよい。 FIG. 13 is a diagram for explaining an example (1) of a notification in an embodiment of the present invention. As shown in FIG. 13, the M-TRP framework may be applied to a scenario of simultaneous transmission and reception using multiple beams transmitted from or received at one UE.
 図14は、本発明の実施の形態における通知の例(2)を説明するための図である。図14に示されるように、複数UEから送信される又は複数UEにおいて受信される複数ビームを使用する同時送受信するシナリオに当該M-TRPフレームワークは適用されてもよい。 FIG. 14 is a diagram for explaining a notification example (2) in an embodiment of the present invention. As shown in FIG. 14, the M-TRP framework may be applied to a scenario of simultaneous transmission and reception using multiple beams transmitted from or received at multiple UEs.
 以下、提案0について説明する。 The following explains Proposal 0.
 図15は、本発明の実施の形態における通知の例(3)を説明するための図である。NCRアクセスリンクにおけるM-TRP送信は、実装に基づいてサポートされてもよい。図15に示されるように、2つのNCRノードがアクセスリンクにおけるM-TRP送信をサポートしてもよい。gNBはサイド制御情報により2つのNCRノードのアクセスリンクビームを独立して制御してもよい。各NCRノードに対して、アクセスリンクのビーム制御として1単位時間あたり1ビームが通知されてもよい。また、NCR-Fwdがは複数のキャリア、複数のキャリアグループ又は複数のサブバンドを運用する場合、アクセスリンクのビーム制御として、1キャリア、1キャリアグループ又は1サブバンドに対して1ビームが通知されてもよい。 FIG. 15 is a diagram for explaining an example (3) of notification in an embodiment of the present invention. M-TRP transmission in the NCR access link may be supported based on the implementation. As shown in FIG. 15, two NCR nodes may support M-TRP transmission in the access link. The gNB may independently control the access link beams of the two NCR nodes using side control information. Each NCR node may be notified of one beam per unit time as the beam control of the access link. In addition, when the NCR-Fwd operates multiple carriers, multiple carrier groups, or multiple subbands, one beam may be notified for one carrier, one carrier group, or one subband as the beam control of the access link.
 以下、提案1について説明する。 Proposal 1 is explained below.
 図16は、本発明の実施の形態における通知の例(4)を説明するための図である。図16に示されるように、1つのNCRノードは、アクセスリンクにおけるNCR-Fwdに複数のTRP又はパネル(以下、「TRP又はパネル」を「TRP」と記載する。)を有してもよい。NCRは各TRPのNCR-Fwdのアクセスリンクビームに係る能力をTRPごとにgNBに報告してもよい。当該報告はコントロールリンクを介して行われてもよい。当該能力は、サポートするTRP数、各TRPがサポートするNCR-Fwdアクセスリンクビーム数、各TRPがサポートするビームタイプ(ワイドビーム又はナロービーム)、各TRPがビーム幅等を含んでもよい。 FIG. 16 is a diagram for explaining an example (4) of notification in an embodiment of the present invention. As shown in FIG. 16, one NCR node may have multiple TRPs or panels (hereinafter, "TRP or panel" will be referred to as "TRP") in the NCR-Fwd in the access link. The NCR may report the capabilities related to the access link beam of the NCR-Fwd of each TRP to the gNB for each TRP. The report may be made via a control link. The capabilities may include the number of TRPs supported, the number of NCR-Fwd access link beams supported by each TRP, the beam type (wide beam or narrow beam) supported by each TRP, the beam width of each TRP, etc.
 NCRは、NCR-FwdアクセスリンクビームとTRP間の対応をgNBに報告してもよい。NCRは、いずれのビームがいずれのTRPに属するかをgNBに報告してもよい。NCRは、NCR-Fwdによる複数TRPからの複数ビームを使用する同時送受信をサポートするか否かを示す能力をgNBに報告してもよい。なお、デフォルトとして、NCR-Fwdによる複数TRPからの複数ビームを使用する同時送受信がサポートされてもよい。 The NCR may report to the gNB the correspondence between the NCR-Fwd access link beams and the TRPs. The NCR may report to the gNB which beams belong to which TRPs. The NCR may report to the gNB a capability indicating whether or not the NCR-Fwd supports simultaneous transmission and reception using multiple beams from multiple TRPs. Note that, as a default, simultaneous transmission and reception using multiple beams from multiple TRPs by the NCR-Fwd may be supported.
 以下、提案2について説明する。提案2は、提案1を前提とする。 The following explains Proposal 2. Proposal 2 is based on Proposal 1.
 図17は、本発明の実施の形態における通知の例(5)を説明するための図である。図17に示されるように、1つのサイド制御情報が1つのTRP向けNCR-Fwdアクセスリンクビームを通知してもよい。サイド制御情報により、1TRPにおける1単位時間あたり1ビームが通知されてもよい。また、NCR-Fwdがは複数のキャリア、複数のキャリアグループ又は複数のサブバンドを運用する場合、アクセスリンクのビーム制御として、1キャリア、1キャリアグループ又は1サブバンドに対して1ビームが通知されてもよい。 FIG. 17 is a diagram for explaining a notification example (5) in an embodiment of the present invention. As shown in FIG. 17, one piece of side control information may notify an NCR-Fwd access link beam for one TRP. One beam per unit time in one TRP may be notified by the side control information. In addition, when the NCR-Fwd operates multiple carriers, multiple carrier groups, or multiple subbands, one beam may be notified for one carrier, one carrier group, or one subband as access link beam control.
 1単位時間あたり複数TRPの複数ビームが通知された場合、NCR-Fwdは複数ビームを使用する同時送受信を実行してもよい。 If multiple beams for multiple TRPs are notified per unit time, the NCR-Fwd may perform simultaneous transmission and reception using the multiple beams.
 サイド制御情報がいずれのTRPにビーム情報を通知するかを以下に示される1)-4)のように決定してもよい。 The side control information may determine which TRP to notify of the beam information as shown below in 1)-4).
1)サイド制御情報でTRPのインデックスを明示的に通知する。
2)サイド制御情報に関連付けられるCORESET/SSセットのグループに基づいてTRPを特定する。
3)サイド制御情報に関連付けられるRNTIに基づいてTRPを特定する。
4)サイド制御情報に関連付けられるコントロールリンクにおけるNCR-MTビームのグループに基づいてTRPを特定する。
1) Explicitly notify the TRP index in side control information.
2) Identifying the TRP based on the group of CORESET/SS sets associated with the side control information.
3) Identifying the TRP based on the RNTI associated with the side control information.
4) Identifying the TRP based on a group of NCR-MT beams in a control link associated with the side control information.
 以下、提案3について説明する。提案3は、提案1を前提とする。 The following explains Proposal 3. Proposal 3 is based on Proposal 1.
 図18は、本発明の実施の形態における通知の例(6)を説明するための図である。図18に示されるように、1つのサイド制御情報が複数のTRP向けNCR-Fwdアクセスリンクビームを通知してもよい。サイド制御情報により、1TRPにおける1単位時間あたり複数ビームが通知されてもよい。各ビームはそれぞれ1TRPに対応する。NCR-Fwdは1単位時間に複数のアクセスリンクビームを使用する同時送受信を行ってもよい。また、NCR-Fwdがは複数のキャリア、複数のキャリアグループ又は複数のサブバンドを運用する場合、アクセスリンクのビーム制御として、1キャリア、1キャリアグループ又は1サブバンドに対して1ビームが通知されてもよい。 FIG. 18 is a diagram for explaining a notification example (6) in an embodiment of the present invention. As shown in FIG. 18, one side control information may notify NCR-Fwd access link beams for multiple TRPs. Multiple beams may be notified per unit time in one TRP by the side control information. Each beam corresponds to one TRP. The NCR-Fwd may perform simultaneous transmission and reception using multiple access link beams in one unit time. In addition, when the NCR-Fwd operates multiple carriers, multiple carrier groups, or multiple subbands, one beam may be notified for one carrier, one carrier group, or one subband as access link beam control.
 複数のビームは、複数のビームインデックスにより通知されてもよいし、ビームグループ又はビームペアのインデックスにより通知されてもよい。 Multiple beams may be reported by multiple beam indices or by a beam group or beam pair index.
 以下、提案4について説明する。提案3は、提案1を前提とする。 The following explains Proposal 4. Proposal 3 is based on Proposal 1.
 図19は、本発明の実施の形態における通知の例(7)を説明するための図である。図19に示されるように、1つのサイド制御情報が複数のTRP向けNCR-Fwdアクセスリンクビームを通知してもよい。サイド制御情報により、複数の単位時間に対する複数ビームが通知されてもよい。各ビームはそれぞれ1TRPに対応する。複数ビームは、TDMにより複数の単位時間に適用されてもよい。1ビームは1単位時間に適用されてもよい。また、NCR-Fwdがは複数のキャリア、複数のキャリアグループ又は複数のサブバンドを運用する場合、アクセスリンクのビーム制御として、1キャリア、1キャリアグループ又は1サブバンドに対して1ビームが通知されてもよい。 FIG. 19 is a diagram for explaining a notification example (7) in an embodiment of the present invention. As shown in FIG. 19, one side control information may notify NCR-Fwd access link beams for multiple TRPs. Multiple beams for multiple unit times may be notified by the side control information. Each beam corresponds to one TRP. Multiple beams may be applied to multiple unit times by TDM. One beam may be applied to one unit time. In addition, when the NCR-Fwd operates multiple carriers, multiple carrier groups, or multiple subbands, one beam may be notified for one carrier, one carrier group, or one subband as access link beam control.
 複数のビームは、複数のビームインデックスにより通知されてもよいし、ビームグループ又はビームペアのインデックスにより通知されてもよい。 Multiple beams may be reported by multiple beam indices or by a beam group or beam pair index.
 複数ビームと複数の単位時間の間のマッピングパターンは予め定義されてもよいし、設定されてもよい。以下1)-4)に示されるマッピングが適用されてもよい。以下の1)-4)のうち複数がサポートされてよいし、ネットワークが1)-4)のいずれかを通知してもよい。 The mapping pattern between multiple beams and multiple unit times may be predefined or may be set. The mapping shown in 1)-4) below may be applied. Multiple of 1)-4) below may be supported, or the network may notify any of 1)-4).
1)図20は、本発明の実施の形態におけるTDMマッピングの例(1)を説明するための図である。図20に示されるように、マッピングをサイクリックパターンとしてもよい。例えば、X個のビームが通知された場合、1番目、2番目、・・・、X番目のビームは、1番目、2番目、・・・、X番目の単位時間に適用されてもよい。対象とする単位時間がXよりも長い場合、Xを周期とする同一パターンを残りの単位時間において繰り返してもよい。図20は、X=2の例である。 1) FIG. 20 is a diagram for explaining an example (1) of TDM mapping in an embodiment of the present invention. As shown in FIG. 20, the mapping may be a cyclic pattern. For example, when X beams are notified, the first, second, ..., Xth beams may be applied to the first, second, ..., Xth unit times. When the target unit time is longer than X, the same pattern with a period of X may be repeated for the remaining unit times. FIG. 20 shows an example where X=2.
2)図21は、本発明の実施の形態におけるTDMマッピングの例(2)を説明するための図である。図21に示されるように、マッピングを連続部分を含むパターンとしてもよい。例えば、X個のビームが通知された場合、1番目、2番目、・・・、X番目のビームは、1番目及び2番目、3番目及び4番目、・・・、(2X-1)番目及び2X番目の単位時間に適用されてもよい。対象とする単位時間が2Xよりも長い場合、2Xを周期とする同一パターンを残りの単位時間において繰り返してもよい。図21は、X=2の例である。 2) FIG. 21 is a diagram for explaining an example (2) of TDM mapping in an embodiment of the present invention. As shown in FIG. 21, the mapping may be a pattern including continuous portions. For example, when X beams are notified, the first, second, ..., Xth beam may be applied to the first and second, third and fourth, ..., (2X-1)th and 2Xth unit times. When the target unit time is longer than 2X, the same pattern with a period of 2X may be repeated in the remaining unit times. FIG. 21 shows an example where X=2.
3)図22は、本発明の実施の形態におけるTDMマッピングの例(3)を説明するための図である。図22に示されるように、マッピングを連続部分を含むパターンとしてもよい。例えば、X個のビームが通知された場合、1番目のビームは最初のN個の単位時間に適用され、2番目のビームは次のN個の単位時間に適用され、を繰り返し、X番目のビームはX番目のN個の単位時間に適用されてもよい。対象とする単位時間がN×Xよりも長い場合、N×Xを周期とする同一パターンを残りの単位時間において繰り返してもよい。図22は、X=2、N=4の例である。 3) FIG. 22 is a diagram for explaining an example (3) of TDM mapping in an embodiment of the present invention. As shown in FIG. 22, the mapping may be a pattern including continuous parts. For example, when X beams are notified, the first beam may be applied to the first N unit times, the second beam to the next N unit times, and so on, with the Xth beam being applied to the Xth N unit times. When the target unit time is longer than N×X, the same pattern with a period of N×X may be repeated for the remaining unit times. FIG. 22 shows an example where X=2 and N=4.
4)図23は、本発明の実施の形態におけるTDMマッピングの例(4)を説明するための図である。図23に示されるように、ビームを単位時間数で均等にパターンとしてもよい。例えば、Mを総時間単位数としX個のビームが通知された場合、1番目のビームを、最初のfloor(M/X)個の時間単位に適用し、2番目のビームを次のfloor(M/X)個の時間単位に適用し、を繰り返し、X番目のビームを残りの時間単位に適用する。図23は、X=2、M=10の例である。 4) FIG. 23 is a diagram for explaining an example (4) of TDM mapping in an embodiment of the present invention. As shown in FIG. 23, beams may be patterned evenly by unit time. For example, if M is the total number of time units and X beams are notified, the first beam is applied to the first floor (M/X) number of time units, the second beam is applied to the next floor (M/X) number of time units, and so on, until the Xth beam is applied to the remaining time units. FIG. 23 shows an example where X=2 and M=10.
 以下、提案5について説明する。提案5は、提案2、提案3及び提案4を前提とする。 The following explains Proposal 5. Proposal 5 is based on Proposals 2, 3, and 4.
 NCR-Fwdアクセスリンクビームを通知するサイド制御情報は、以下に示される1)又は2)のようなビームインデックスの候補のセットから、ビーム情報を通知してもよい。なお1ビームインデックスが複数ビームに対応してもよい。 Side control information notifying the NCR-Fwd access link beam may notify beam information from a set of candidate beam indexes such as 1) or 2) shown below. Note that one beam index may correspond to multiple beams.
1)図24は、本発明の実施の形態におけるビーム通知の例(1)を説明するための図である。図24に示されるように、複数のTRPがビームインデックス候補の共通セットを共有してもよい。あるTRPに対して、サイド制御情報は当該共通セットに含まれるビームインデックスを通知する。 1) FIG. 24 is a diagram for explaining an example (1) of beam notification in an embodiment of the present invention. As shown in FIG. 24, multiple TRPs may share a common set of beam index candidates. For a certain TRP, the side control information notifies the beam index included in the common set.
2)図25は、本発明の実施の形態におけるビーム通知の例(2)を説明するための図である。図25に示されるように、各TRPに独立したビームインデックス候補のセットが設定されてもよい。あるTRPに対して、サイド制御情報は当該TRPに対応するセットに含まれるビームインデックスを通知する。 2) FIG. 25 is a diagram for explaining an example (2) of beam notification in an embodiment of the present invention. As shown in FIG. 25, an independent set of beam index candidates may be set for each TRP. For a certain TRP, the side control information notifies the beam index included in the set corresponding to the TRP.
 以下、提案6について説明する。 Proposal 6 is explained below.
 S-TRPフレームワークとM-TRPフレームワークを切り替える方法、あるいは異なるM-TRPフレームワークに切り替える方法は、以下のようであってもよい。なお、S-TRPは、NCR-Fwdアクセスリンクのため単一のTRPを使用することを意味する。  A method for switching between the S-TRP framework and the M-TRP framework, or a method for switching to a different M-TRP framework, may be as follows. Note that S-TRP means using a single TRP for the NCR-Fwd access link.
 S-TRP、提案2、提案3及び提案4は、上位レイヤパラメータにより切り替えられてもよい。提案2、提案3及び提案4は、上位レイヤパラメータによって有効化されてもよい。より具体的には、提案2の異なるオプションとして、CORESET/SSセットのグループが複数設定された場合、又は複数のRNTIが設定された場合、又はコントロールリンクのNCR-MTビームのグループが複数設定された場合、提案2を有効化してもよい。 S-TRP, Proposal 2, Proposal 3 and Proposal 4 may be switched by higher layer parameters. Proposal 2, Proposal 3 and Proposal 4 may be enabled by higher layer parameters. More specifically, Proposal 2 may be enabled when multiple groups of CORESET/SS sets are configured as different options of Proposal 2, or when multiple RNTIs are configured, or when multiple groups of NCR-MT beams of the control link are configured.
 S-TRP、提案2、提案3及び提案4は、サイド制御情報による明示的な通知に基づいて切り替えられてもよい。 S-TRP, Proposal 2, Proposal 3 and Proposal 4 may be switched based on explicit notification by side control information.
 S-TRP、提案3及び提案4は、通知されたビーム数に基づいて切り替えられてもよい。例えば、複数のビームが通知された場合、提案3又は提案4を有効化してもよい。例えば、単一のビームが通知された場合、S-TRPフレームワークを有効化してもよい。 The S-TRP, Proposal 3 and Proposal 4 may be switched based on the number of beams announced. For example, if multiple beams are announced, Proposal 3 or Proposal 4 may be enabled. For example, if a single beam is announced, the S-TRP framework may be enabled.
 以下、提案7について説明する。 Proposal 7 is explained below.
 NCR-FwdアクセスリンクにおいてM-TRPフレームワークが有効化されているとき、以下に示される1)-3)のようにNCR-Fwdバックホールリンクに適用するビームの通知が実行されてもよい。 When the M-TRP framework is enabled in the NCR-Fwd access link, notification of the beam to be applied to the NCR-Fwd backhaul link may be performed as shown below in 1)-3).
1)図26は、本発明の実施の形態におけるバックホールリンクの例(1)を説明するための図である。図26に示されるように、バックホールリンク向けに、上述した提案1-提案6における「アクセスリンク」を「バックホールリンク」に置換した動作により、複数のビームが通知されてもよい。 1) FIG. 26 is a diagram for explaining an example (1) of a backhaul link in an embodiment of the present invention. As shown in FIG. 26, multiple beams may be notified for the backhaul link by replacing the "access link" in the above-mentioned proposals 1 to 6 with the "backhaul link."
2)図27は、本発明の実施の形態におけるバックホールリンクの例(2)を説明するための図である。図26に示されるように、バックホールリンク向けに、サイド制御情報により1ビームが1単位時間に通知され、当該1ビームが適用されてもよい。 2) FIG. 27 is a diagram for explaining an example (2) of a backhaul link in an embodiment of the present invention. As shown in FIG. 26, one beam may be notified per unit time by side control information for the backhaul link, and the one beam may be applied.
3)図26に示されるように、バックホールリンク向けに、複数ビームが1単位時間に適用されてもよい。複数ビームのうち1ビームが予め規定されたルールによりNCR-MTコントロールリンクのビームとして決定されてもよく、他のビームはサイド制御情報により通知されてもよい。また、複数ビームのうち1ビームがサイド制御情報により通知され、他のビームは予め規定されたルールによりNCR-MTコントロールリンクのビームとして決定されてもよい。 3) As shown in FIG. 26, multiple beams may be applied to the backhaul link in one unit time. One of the multiple beams may be determined as the beam for the NCR-MT control link according to a predefined rule, and the other beams may be notified by side control information. Also, one of the multiple beams may be notified by side control information, and the other beams may be determined as the beam for the NCR-MT control link according to a predefined rule.
 以下に示すNCRの能力が定義されてもよい。 The following NCR capabilities may be defined:
・NCRアクセスリンク向けに提案1、提案2、提案3又は提案4をサポートするか否か。
・NCRバックホールリンク向けに提案7をサポートするか否か。
• Whether to support Proposal 1, Proposal 2, Proposal 3 or Proposal 4 for NCR access links.
• Whether or not to support Proposal 7 for NCR backhaul links.
 なお、本発明の実施の形態は、NCRにより対応する能力がサポートされる場合、及び/又は、対応する上位レイヤシグナリングが与えられた場合のみに適用されてもよい。 Note that embodiments of the present invention may be applied only when the corresponding capabilities are supported by the NCR and/or when corresponding higher layer signaling is provided.
 なお、本発明の実施の形態において、ビームは、空間領域フィルタ、空間関係、QCL、TCI状態を参照して特定されてもよい。サイド制御情報は、RRCシグナリンク、MAC-CE又はDCIにより通知されてもよい。単位時間は、スロット、シンボル、スロットグループ、シンボルグループ、サブフレーム等のいずれであってもよい。 In addition, in an embodiment of the present invention, the beam may be identified by referring to a spatial domain filter, spatial relationship, QCL, and TCI state. The side control information may be notified by RRC signaling, MAC-CE, or DCI. The unit time may be any of a slot, a symbol, a slot group, a symbol group, a subframe, etc.
 上述の実施例により、ネットワーク制御リピータは、NCR-Fwdのアクセスリンク又はバックホールリンクにおいて中継する無線信号に適用するビームを制御することができる。 The above-described embodiment allows the network-controlled repeater to control the beam applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd.
 すなわち、無線通信システムにおいて、ネットワークに制御される無線中継装置によって無線信号を中継することができる。 In other words, in a wireless communication system, wireless signals can be relayed by a wireless relay device controlled by the network.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図2、図3及び図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 2, 3, and 4) used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.). The functional block may be realized by combining software with the one device or the multiple devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)あるいは送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function is called a transmitting unit or transmitter. In either case, as mentioned above, there are no particular limitations on the method of realization.
 例えば、本開示の一実施の形態における基地局10、端末20及び無線中継装置30等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図28は、本開示の一実施の形態に係る基地局10、端末20及び無線中継装置30のハードウェア構成の一例を示す図である。上述の基地局10、端末20及び無線中継装置30は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, terminal 20, wireless relay device 30, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 28 is a diagram showing an example of the hardware configuration of the base station 10, terminal 20, and wireless relay device 30 in one embodiment of the present disclosure. The above-mentioned base station 10, terminal 20, and wireless relay device 30 may be physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10、端末20及び無線中継装置30のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "apparatus" can be interpreted as a circuit, device, unit, etc. The hardware configurations of the base station 10, the terminal 20, and the wireless relay device 30 may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
 基地局10、端末20及び無線中継装置30における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the base station 10, the terminal 20, and the wireless relay device 30 are realized by loading specific software (programs) onto hardware such as the processor 1001 and the memory device 1002, causing the processor 1001 to perform calculations, control communications by the communication device 1004, and control at least one of the reading and writing of data in the memory device 1002 and the auxiliary memory device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc. For example, the above-mentioned control unit 140, control unit 240, etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図2に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図3に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 The processor 1001 reads out a program (program code), software module, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to the program. The program is a program that causes a computer to execute at least a part of the operations described in the above embodiment. For example, the control unit 140 of the base station 10 shown in FIG. 2 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001. For example, the control unit 240 of the terminal 20 shown in FIG. 3 may be stored in the storage device 1002 and realized by a control program that runs on the processor 1001. Although the above-mentioned various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The program may be transmitted from a network via a telecommunication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, and may be composed of at least one of, for example, a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), a RAM (Random Access Memory), etc. The storage device 1002 may also be called a register, a cache, a main memory, etc. The storage device 1002 can store executable programs (program codes), software modules, etc., for implementing a communication method according to one embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc. The above-mentioned storage medium may be, for example, a database, a server, or other suitable medium that includes at least one of the storage device 1002 and the auxiliary storage device 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc. The communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD). For example, the transmitting/receiving antenna, an amplifier unit, a transmitting/receiving unit, a transmission path interface, etc. may be realized by the communication device 1004. The transmitting/receiving unit may be implemented as a transmitting unit or a receiving unit that is physically or logically separated.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Furthermore, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
 また、基地局10、端末20及び無線中継装置30は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the base station 10, the terminal 20, and the wireless relay device 30 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
 さらに、無線中継装置30は、可変部340及びアンテナ部350を構成するハードウェアとして、可変位相器、移相器、アンプ、アンテナ、アレイアンテナ等を必要に応じて有してもよい。 Furthermore, the wireless relay device 30 may have a variable phase shifter, a phase shifter, an amplifier, an antenna, an array antenna, etc. as hardware constituting the variable section 340 and the antenna section 350, as necessary.
 図29に車両2001の構成例を示す。図29に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 FIG. 29 shows an example configuration of a vehicle 2001. As shown in FIG. 29, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013. Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on the vehicle 2001, and may be applied to the communication module 2013, for example.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2029 provided in the vehicle 2001. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from the various sensors 2021-2029 include a current signal from a current sensor 2021 that senses the motor current, a front and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, a front and rear wheel air pressure signal obtained by an air pressure sensor 2023, a vehicle speed signal obtained by a vehicle speed sensor 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, a shift lever operation signal obtained by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by an object detection sensor 2028.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices. The information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide various multimedia information and multimedia services to the occupants of the vehicle 2001. The information service unit 2012 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) maps, autonomous vehicle (AV) maps, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and AI processor, as well as one or more ECUs that control these devices. In addition, the driving assistance system unit 2030 transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via the communication port. For example, the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and sensors 2021 to 29, which are provided on the vehicle 2001.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, etc.
 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021-2028からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021-2028、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 2013 may transmit at least one of the signals from the various sensors 2021-2028 described above input to the electronic control unit 2010, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 2012 to an external device via wireless communication. The electronic control unit 2010, the various sensors 2021-2028, the information service unit 2012, etc. may be referred to as input units that accept input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on the information service unit 2012 provided in the vehicle 2001. The information service unit 2012 may be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). The communication module 2013 also stores various information received from an external device in a memory 2032 that can be used by the microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axles 2009, sensors 2021 to 2029, etc. provided in the vehicle 2001.
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、中継機能に係る制御情報を含むシグナリングを基地局から受信する通信部と、前記制御情報に基づいて、中継機能を制御する制御部と、第1の信号を前記基地局から受信し、前記第1の信号を端末に送信し、第2の信号を前記端末から受信し、前記第2の信号を前記基地局に送信する中継機能を実行する中継部とを有し、前記中継部は、前記第1の信号を複数のTRP(Transmission/Reception Point)を使用して前記端末に送信し、前記制御部は、前記複数のTRPを前記制御情報に基づいて制御する無線中継装置が提供される。
(Summary of the embodiment)
As described above, according to an embodiment of the present invention, a wireless relay device is provided that has a communication unit that receives signaling from a base station including control information related to a relay function, a control unit that controls the relay function based on the control information, and a relay unit that performs a relay function of receiving a first signal from the base station, transmitting the first signal to a terminal, receiving a second signal from the terminal, and transmitting the second signal to the base station, wherein the relay unit transmits the first signal to the terminal using multiple TRPs (Transmission/Reception Points), and the control unit controls the multiple TRPs based on the control information.
 上記の構成により、ネットワーク制御リピータは、NCR-Fwdのアクセスリンク又はバックホールリンクにおいて中継する無線信号に適用するビームを制御することができる。すなわち、無線通信システムにおいて、ネットワークに制御される無線中継装置によって無線信号を中継することができる。 With the above configuration, the network-controlled repeater can control the beam applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd. In other words, in a wireless communication system, wireless signals can be relayed by a wireless relay device controlled by the network.
 前記制御部は、前記TRPごとに異なる前記制御情報に基づいて、前記TRPが適用するビームを決定してもよい。当該構成により、ネットワーク制御リピータは、NCR-Fwdのアクセスリンク又はバックホールリンクにおいて中継する無線信号に適用するビームを制御することができる。 The control unit may determine the beam to be applied by the TRP based on the control information that differs for each TRP. With this configuration, the network controlled repeater can control the beam to be applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd.
 前記制御部は、前記複数のTRPに一つの前記制御情報に基づいて、前記TRPが適用するビームを決定してもよい。当該構成により、ネットワーク制御リピータは、NCR-Fwdのアクセスリンク又はバックホールリンクにおいて中継する無線信号に適用するビームを制御することができる。 The control unit may determine the beam to be applied by the TRP based on the control information for one of the multiple TRPs. With this configuration, the network controlled repeater can control the beam to be applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd.
 前記制御部は、単位時間あたり一つのビームを前記TRPに適用してもよい。当該構成により、ネットワーク制御リピータは、NCR-Fwdのアクセスリンク又はバックホールリンクにおいて中継する無線信号に適用するビームを制御することができる。 The control unit may apply one beam to the TRP per unit time. With this configuration, the network controlled repeater can control the beam to be applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd.
 前記制御部は、前記制御情報が示す複数のビームを複数の単位時間にマッピングしてもよい。当該構成により、ネットワーク制御リピータは、NCR-Fwdのアクセスリンク又はバックホールリンクにおいて中継する無線信号に適用するビームを制御することができる。 The control unit may map the multiple beams indicated by the control information to multiple unit times. With this configuration, the network control repeater can control the beams to be applied to the wireless signals relayed in the access link or backhaul link of the NCR-Fwd.
 また、本発明の実施の形態によれば、中継機能に係る制御情報を含むシグナリングを基地局から受信する手順と、前記制御情報に基づいて、中継機能を制御する手順と、第1の信号を前記基地局から受信し、前記第1の信号を端末に送信し、第2の信号を前記端末から受信し、前記第2の信号を前記基地局に送信する中継機能を実行する手順と、前記第1の信号を複数のTRP(Transmission/Reception Point)を使用して前記端末に送信する手順と、前記複数のTRPを前記制御情報に基づいて制御する手順とを無線中継装置が実行する無線中継方法が提供される。 Furthermore, according to an embodiment of the present invention, a wireless relay method is provided in which a wireless relay device executes the following steps: receiving signaling including control information related to a relay function from a base station; controlling the relay function based on the control information; executing a relay function of receiving a first signal from the base station, transmitting the first signal to a terminal, receiving a second signal from the terminal, and transmitting the second signal to the base station; transmitting the first signal to the terminal using multiple TRPs (Transmission/Reception Points); and controlling the multiple TRPs based on the control information.
 上記の構成により、ネットワーク制御リピータは、NCR-Fwdのアクセスリンク又はバックホールリンクにおいて中継する無線信号に適用するビームを制御することができる。すなわち、無線通信システムにおいて、ネットワークに制御される無線中継装置によって無線信号を中継することができる。 With the above configuration, the network-controlled repeater can control the beam applied to the wireless signal relayed in the access link or backhaul link of the NCR-Fwd. In other words, in a wireless communication system, wireless signals can be relayed by a wireless relay device controlled by the network.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary description of the embodiment)
Although the embodiment of the present invention has been described above, the disclosed invention is not limited to such an embodiment, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, and the like. Although the description has been given using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, those numerical values are merely examples and any appropriate value may be used. The division of items in the above description is not essential to the present invention, and items described in two or more items may be used in combination as necessary, and items described in one item may be applied to items described in another item (as long as there is no contradiction). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical parts. The operations of multiple functional units may be physically performed by one part, or the operations of one functional unit may be physically performed by multiple parts. The order of the processing procedures described in the embodiment may be changed as long as there is no contradiction. For convenience of the processing description, the base station 10 and the terminal 20 have been described using functional block diagrams, but such devices may be realized by hardware, software, or a combination thereof. The software operated by the processor possessed by the base station 10 in accordance with an embodiment of the present invention and the software operated by the processor possessed by the terminal 20 in accordance with an embodiment of the present invention may each be stored in random access memory (RAM), flash memory, read only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods. For example, the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these. Furthermore, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in this disclosure may be a mobile communication system (mobile communications system) for mobile communications over a wide range of networks, including LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer or a decimal number)), FRA (Future Ra The present invention may be applied to at least one of systems using IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and next-generation systems that are expanded, modified, created, or defined based on these. It may also be applied to a combination of multiple systems (for example, a combination of at least one of LTE and LTE-A with 5G, etc.).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing steps, sequences, flow charts, etc. of each aspect/embodiment described herein may be reordered unless inconsistent. For example, the methods described in this disclosure present elements of various steps using an exemplary order and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this specification, certain operations that are described as being performed by the base station 10 may in some cases be performed by its upper node. In a network consisting of one or more network nodes having a base station 10, it is clear that various operations performed for communication with a terminal 20 may be performed by at least one of the base station 10 and other network nodes other than the base station 10 (such as, but not limited to, an MME or S-GW). Although the above example shows a case where there is one other network node other than the base station 10, the other network node may be a combination of multiple other network nodes (such as an MME and an S-GW).
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information or signals described in this disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table. The input and output information may be overwritten, updated, or added to. The output information may be deleted. The input information may be sent to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in this disclosure may be based on a value represented by one bit (0 or 1), a Boolean (true or false) value, or a comparison of numerical values (e.g., a comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. Also, the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "base station (BS)", "radio base station", "base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", "carrier", and "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (e.g., three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (RRH: Remote Radio Head)). The term "cell" or "sector" refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In this disclosure, a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control or operate based on the information.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc. At least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc. The moving object is a movable object, and the moving speed is arbitrary. It also includes the case where the moving object is stopped. The moving object includes, but is not limited to, for example, a vehicle, a transport vehicle, an automobile, a motorcycle, a bicycle, a connected car, an excavator, a bulldozer, a wheel loader, a dump truck, a forklift, a train, a bus, a handcar, a rickshaw, a ship and other watercraft, an airplane, a rocket, an artificial satellite, a drone (registered trademark), a multicopter, a quadcopter, a balloon, and objects mounted thereon. The moving object may also be a moving object that travels autonomously based on an operation command. It may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). In addition, at least one of the base station and the mobile station may be a device that does not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Furthermore, the base station in the present disclosure may be read as a user terminal. For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple terminals 20 (which may be called, for example, D2D (Device-to-Device) or V2X (Vehicle-to-Everything)). In this case, the terminal 20 may be configured to have the functions of the base station 10 described above. Furthermore, terms such as "uplink" and "downlink" may be read as terms corresponding to terminal-to-terminal communication (for example, "side"). For example, the uplink channel, downlink channel, etc. may be read as a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, the user terminal in this disclosure may be interpreted as a base station. In this case, the base station may be configured to have the functions of the user terminal described above.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Determining" and "determining" may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), and considering ascertaining as "judging" or "determining." Also, "determining" and "determining" may include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and considering ascertaining as "judging" or "determining." Additionally, "judgment" and "decision" can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been "judged" or "decided." In other words, "judgment" and "decision" can include considering some action to have been "judged" or "decided." Additionally, "judgment (decision)" can be interpreted as "assuming," "expecting," "considering," etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access." As used in this disclosure, two elements may be considered to be "connected" or "coupled" to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal may also be abbreviated as RS (Reference Signal) or may be called a pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part," "circuit," "device," etc.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe. A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (such as OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.). A slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a Transmission Time Interval (TTI), multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station performs scheduling to allocate wireless resources (such as frequency bandwidth and transmission power that can be used by each terminal 20) to each terminal 20 in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on the numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Furthermore, the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (REs). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within the BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be configured within one carrier for the terminal 20.
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the terminal 20 may not be expected to transmit or receive a specific signal/channel outside the active BWP. Note that "cell," "carrier," and the like in this disclosure may be read as "BWP."
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the execution. In addition, notification of specific information (e.g., notification that "X is the case") is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
 なお、本開示において、可変部340及びアンテナ部350は、中継部の一例である。 In this disclosure, the variable section 340 and the antenna section 350 are an example of a relay section.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。  Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described herein. The present disclosure can be implemented in modified and altered forms without departing from the spirit and scope of the present disclosure as defined by the claims. Therefore, the description of the present disclosure is intended as an illustrative example and does not have any limiting meaning with respect to the present disclosure.
 本国際特許出願は2022年10月13日に出願した日本国特許出願第2022-165063号に基づきその優先権を主張するものであり、日本国特許出願第2022-165063号の全内容を本願に援用する。 This international patent application claims priority to Japanese Patent Application No. 2022-165063, filed on October 13, 2022, and the entire contents of Japanese Patent Application No. 2022-165063 are incorporated herein by reference.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
30    無線中継装置
310   送信部
320   受信部
330   制御部
340   可変部
350   アンテナ部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)
10 Base station 110 Transmitter 120 Receiver 130 Setting unit 140 Control unit 20 Terminal 210 Transmitter 220 Receiver 230 Setting unit 240 Control unit 30 Wireless relay device 310 Transmitter 320 Receiver 330 Control unit 340 Variable unit 350 Antenna unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 RPM sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system unit 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port (IO port)

Claims (6)

  1.  中継機能に係る制御情報を含むシグナリングを基地局から受信する通信部と、
     前記制御情報に基づいて、中継機能を制御する制御部と、
     第1の信号を前記基地局から受信し、前記第1の信号を端末に送信し、第2の信号を前記端末から受信し、前記第2の信号を前記基地局に送信する中継機能を実行する中継部とを有し、
     前記中継部は、前記第1の信号を複数のTRP(Transmission/Reception Point)を使用して前記端末に送信し、
     前記制御部は、前記複数のTRPを前記制御情報に基づいて制御する無線中継装置。
    A communication unit that receives signaling including control information related to a relay function from a base station;
    A control unit that controls a relay function based on the control information;
    a relay unit that performs a relay function of receiving a first signal from the base station, transmitting the first signal to a terminal, receiving a second signal from the terminal, and transmitting the second signal to the base station;
    The relay unit transmits the first signal to the terminal using a plurality of TRPs (Transmission/Reception Points);
    The control unit is a wireless relay device that controls the multiple TRPs based on the control information.
  2.  前記制御部は、前記TRPごとに異なる前記制御情報に基づいて、前記TRPが適用するビームを決定する請求項1記載の無線中継装置。 The wireless relay device of claim 1, wherein the control unit determines the beam to be applied by the TRP based on the control information that differs for each TRP.
  3.  前記制御部は、前記複数のTRPに一つの前記制御情報に基づいて、前記TRPが適用するビームを決定する請求項1記載の無線中継装置。 The wireless relay device according to claim 1, wherein the control unit determines a beam to be applied to the TRP based on one of the control information for the multiple TRPs.
  4.  前記制御部は、単位時間あたり一つのビームを前記TRPに適用する請求項1記載の無線中継装置。 The wireless relay device of claim 1, wherein the control unit applies one beam to the TRP per unit time.
  5.  前記制御部は、前記制御情報が示す複数のビームを複数の単位時間にマッピングする請求項4記載の無線中継装置。 The wireless relay device according to claim 4, wherein the control unit maps the multiple beams indicated by the control information to multiple unit times.
  6.  中継機能に係る制御情報を含むシグナリングを基地局から受信する手順と、
     前記制御情報に基づいて、中継機能を制御する手順と、
     第1の信号を前記基地局から受信し、前記第1の信号を端末に送信し、第2の信号を前記端末から受信し、前記第2の信号を前記基地局に送信する中継機能を実行する手順と、
     前記第1の信号を複数のTRP(Transmission/Reception Point)を使用して前記端末に送信する手順と、
     前記複数のTRPを前記制御情報に基づいて制御する手順とを無線中継装置が実行する無線中継方法。
    receiving signaling including control information related to a relay function from a base station;
    A procedure for controlling a relay function based on the control information;
    performing a relay function of receiving a first signal from the base station, transmitting the first signal to a terminal, receiving a second signal from the terminal, and transmitting the second signal to the base station;
    transmitting the first signal to the terminal using a plurality of TRPs (Transmission/Reception Points);
    A wireless relay method in which a wireless relay device executes a procedure of controlling the multiple TRPs based on the control information.
PCT/JP2023/031436 2022-10-13 2023-08-30 Wireless relay device and wireless relay method WO2024080018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165063 2022-10-13
JP2022165063 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024080018A1 true WO2024080018A1 (en) 2024-04-18

Family

ID=90669504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031436 WO2024080018A1 (en) 2022-10-13 2023-08-30 Wireless relay device and wireless relay method

Country Status (1)

Country Link
WO (1) WO2024080018A1 (en)

Similar Documents

Publication Publication Date Title
WO2023105802A1 (en) Wireless relay device, base station, and wireless relay method
WO2024080018A1 (en) Wireless relay device and wireless relay method
WO2024069897A1 (en) Radio relay device and communication method
WO2023181377A1 (en) Radio relay device and communication method
WO2023181378A1 (en) Radio relaying device and communication method
WO2024038597A1 (en) Radio relay device and radio relay method
WO2023145029A1 (en) Wireless relay device and communication method
WO2023067818A1 (en) Radio relay device and communication method
WO2023105803A1 (en) Communication device, base station, and communication method
WO2023209924A1 (en) Wireless relay device, base station, and wireless relay method
WO2023145030A1 (en) Radio relay device and communication method
WO2023105804A1 (en) Wireless relay device, base station, and wireless relay method
WO2023209922A1 (en) Wireless relay device, base station, and wireless relay method
WO2024038596A1 (en) Wireless relay device and wireless relay method
WO2023112106A1 (en) Wireless relay device and communication method
WO2023119533A1 (en) Wireless relay device, communication device, and wireless relay method
WO2023119534A1 (en) Radio relay device, communication device, and radio relay method
WO2024018610A1 (en) Wireless relay device and communication method
WO2023209921A1 (en) Wireless relay device, base station, and wireless relay method
WO2023145031A1 (en) Radio relay device and communication method
WO2023209923A1 (en) Wireless relay device, base station, and wireless relay method
WO2023209905A1 (en) Radio relay device and communication method
WO2023127063A1 (en) Wireless relay device, communication device, and wireless relay method
WO2023218866A1 (en) Wireless repeater, base station, and wireless repeating method
WO2023073963A1 (en) Base station and communication method