WO2023218866A1 - Wireless repeater, base station, and wireless repeating method - Google Patents

Wireless repeater, base station, and wireless repeating method Download PDF

Info

Publication number
WO2023218866A1
WO2023218866A1 PCT/JP2023/015365 JP2023015365W WO2023218866A1 WO 2023218866 A1 WO2023218866 A1 WO 2023218866A1 JP 2023015365 W JP2023015365 W JP 2023015365W WO 2023218866 A1 WO2023218866 A1 WO 2023218866A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay device
base station
wireless relay
wireless
terminal
Prior art date
Application number
PCT/JP2023/015365
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 栗田
浩樹 原田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2023218866A1 publication Critical patent/WO2023218866A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to a wireless relay device, a base station, and a wireless relay method in a wireless communication system.
  • NR New Radio
  • LTE Long Term Evolution
  • Next-generation communications are expected to use high frequency bands. Due to the characteristics of the high frequency band, improvement in communication quality is required from the viewpoints of reducing the number of scatterers, reducing shadowing effects, increasing distance attenuation, and the like. It is assumed that beam control and environment that ensure communication quality will be required.
  • Non-Patent Document 2 For example, in high frequency bands, there is a problem that dead zones are likely to occur due to the strong straightness of radio waves. Therefore, wireless relay devices such as passive repeaters, active reflectors (RIS: Reconfigurable Intelligent Surface), and smart repeaters that receive, amplify, and re-radiate signals are used to improve communication quality in a multipath environment. Methods for improving this are being tried (for example, Non-Patent Document 2).
  • the present invention has been made in view of the above points, and an object of the present invention is to realize appropriate time control by a wireless relay device.
  • a wireless communication device includes a communication unit that relays a downlink radio signal or an uplink radio signal, and a transmission unit that reports a timing gap between reception and transmission of the downlink radio signal or the uplink radio signal to a base station.
  • a relay device is provided.
  • a technology that enables appropriate time control by a wireless relay device.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • 1 is a diagram showing an example of a functional configuration of a base station according to an embodiment of the present invention.
  • 1 is a diagram illustrating an example of a functional configuration of a terminal according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of a functional configuration of a wireless relay device according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of the operation of the wireless relay device according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of communication in a high frequency band.
  • 1 is a diagram illustrating an example of a reflective wireless relay device according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of a transparent wireless relay device according to an embodiment of the present invention.
  • FIG. FIG. 3 is a diagram for explaining a downlink transmission beam and a downlink reception beam.
  • FIG. 3 is a diagram for explaining a time control method according to the present embodiment.
  • FIG. 3 is a diagram for explaining a timing gap according to Example 1 of the present embodiment.
  • FIG. 7 is a diagram for explaining inconsistency in downlink in Example 3 of the present embodiment.
  • FIG. 7 is a diagram for explaining mismatch in uplink in Example 3 of the present embodiment.
  • FIG. 7 is a diagram for explaining timing matching in Example 6 of the present embodiment.
  • 1 is a diagram showing an example of a hardware configuration of a base station, a terminal, or a wireless relay device according to an embodiment of the present invention.
  • 1 is a diagram showing an example of the configuration of a vehicle according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • NR system after LTE-Advanced
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical Terms such as random access channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
  • configure the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • a wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. There may be a plurality of base stations 10 and a plurality of terminals 20, respectively.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of a radio signal are defined in the time domain and frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too.
  • a TTI Transmission Time Interval
  • a TTI Transmission Time Interval
  • a TTI Transmission Time Interval
  • the base station 10 is capable of performing carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled to communicate with the terminal 20.
  • multiple CCs component carriers
  • carrier aggregation one primary cell (PCell, Primary Cell) and one or more secondary cells (SCell, Secondary Cell) are used.
  • the base station 10 transmits a synchronization signal, system information, etc. to the terminal 20.
  • the synchronization signals are, for example, NR-PSS and NR-SSS.
  • System information is transmitted, for example, on NR-PBCH or PDSCH, and is also referred to as broadcast information.
  • the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink).
  • control channels such as PUCCH and PDCCH
  • data shared channels
  • the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Note that the terminal 20 may be called a UE, and the base station 10 may be called a gNB.
  • the terminal 20 is capable of performing carrier aggregation, which bundles multiple cells (multiple CCs) and communicates with the base station 10.
  • Carrier aggregation uses one primary cell and one or more secondary cells. Also, a PUCCH-SCell with PUCCH may be used.
  • the base station 10 is a wireless base station operated in 5G or 6G, for example, and forms a cell.
  • the cell is a relatively large cell and is called a macro cell.
  • the base stations 10A to 10D are base stations operated in 5G or 6G.
  • Base station 10A to base station 10D form cells CA to D, respectively, which are smaller in size than the macro cell.
  • Cells A to D may be called small cells, macro cells, or the like. As shown in FIG. 1, cells A to D may be formed to be included in a macro cell.
  • a macro cell may generally be interpreted as a communicable area with a radius of several hundred meters to several tens of kilometers covered by one base station. Furthermore, a small cell may be interpreted as a general term for cells that have low transmission power and cover a smaller area compared to a macro cell.
  • the base station 10 and the base stations 10A to 10D may be expressed as gNodeB (gNB) or BS (Base Station). Further, the terminal 20 may be expressed as UE, MS, or the like. Furthermore, the specific configuration of the wireless communication system, including the number and types of base stations and terminals, is not limited to the example shown in FIG.
  • the wireless communication system is not necessarily limited to a wireless communication system compliant with 5G or 6G.
  • the wireless communication system may be a 6G next generation wireless communication system or a wireless communication system compliant with LTE.
  • the base station 10 and the base stations 10A to 10D perform wireless communication with the terminal 20 according to 5G or 6G, for example.
  • the base station 10 and the base station 10A to the base station 10D and the terminal 20 use Massive MIMO (Massive MIMO), which generates beams with higher directivity by controlling radio signals transmitted from multiple antenna elements.
  • Massive MIMO Massive MIMO
  • Carrier aggregation (CA) that uses a bundle of component carriers (CC), dual connectivity (DC) that simultaneously communicates between the terminal 20 and each of two NG-RAN nodes, and wireless communication between wireless communication nodes such as gNB It may also support IAB (Integrated Access and Backhaul) in which backhaul and wireless access to the terminal 20 are integrated.
  • IAB Integrated Access and Backhaul
  • the wireless communication system can also support a high frequency band higher than the frequency range (FR) defined in 3GPP Release 15 below.
  • FR1 may correspond to 410 MHz to 7.125 GHz
  • FR2 may correspond to 24.25 GHz to 52.6 GHz.
  • the wireless communication system may support frequency bands greater than 52.6 GHz and up to 114.25 GHz.
  • the frequency band may be called a millimeter wave band.
  • the base station 10 that supports massive MIMO can transmit a beam.
  • Massive MIMO generally refers to MIMO communication using an antenna having 100 or more antenna elements, and enables faster wireless communication than before due to the multiplexing effect of multiple streams. It also enables advanced beamforming.
  • the beam width can be dynamically changed depending on the frequency band used or the status of the terminal 20. Further, by using a narrow beam, the received signal power can be increased due to beamforming gain. Furthermore, effects such as reduction of interference and effective use of radio resources are expected.
  • the wireless communication system may include a wireless relay device 30.
  • the wireless relay device 30 includes a reflector (RIS), a metamaterial function device, a power saving device (Battery less device), a phase control reflector, a passive repeater, an IRS (Intelligent reflective surface). :Intelligent Reflecting Surface, Smart Repeater, Network Controlled Repeater, etc.
  • RIS reflector
  • Specific examples of the reflector (RIS) may include those called metamaterial reflectors, dynamic metasurfaces, metasurface lenses, etc. (for example, Non-Patent Document 2).
  • the wireless relay device 30 relays a wireless signal transmitted from the base station 10A, for example.
  • “relay” may refer to at least one of “reflection”, “transmission”, “concentration (concentrating radio waves at approximately one point)", and “diffraction”.
  • the terminal 20 can receive the wireless signal relayed by the wireless relay device 30.
  • the wireless relay device 30 may relay the wireless signal transmitted from the terminal 20 or the wireless signal transmitted from the base station 10.
  • the wireless relay device 30 can change the phase of a wireless signal relayed toward the terminal 20.
  • the wireless relay device 30 may be called a phase variable reflector.
  • the wireless relay device 30 may have a function of changing the phase of a wireless signal and relaying the signal, but the present invention is not limited to this.
  • the wireless relay device 30 may be called an RIS, a repeater, a relay device, a reflect array, a transmit array, or the like.
  • the wireless relay device 30 may be defined as having the functions shown in 1) to 5) below.
  • the signals may have a function of receiving signals transmitted from the base station 10.
  • the signals are DL signals, SSB (SS/PBCH block), PDCCH, PDSCH, DM-RS (Demodulation Reference Signal), PT-RS (Phase Tracking Reference Signal), and CSI-RS (Channel Status Information Reference Signal).
  • SSB SS/PBCH block
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • DM-RS Demodulation Reference Signal
  • PT-RS Phase Tracking Reference Signal
  • CSI-RS Channel Status Information Reference Signal
  • RIS-dedicated signal etc. It may also have a function of receiving a signal carrying information related to the metamaterial function. Note that it may also have a transmission function to transmit the signal to the terminal 20.
  • the signal may have a function of transmitting signals to the base station 10.
  • the signal may be a UL signal such as PRACH, PUCCH, PUSCH, DM-RS, PT-RS, SRS, or RIS-dedicated signal. It may also have a function of transmitting information related to the metamaterial function. Note that it may have a receiving function to receive the signal from the terminal 20.
  • It may have a frame synchronization function with the base station 10. Note that it may also have a frame synchronization function with the terminal 20.
  • the reflection function includes a function related to phase change, a function related to beam control (for example, a function related to control of TCI (Transmission Configuration Indication)-state, QCL (Quasi Co Location), beam selection application, spatial filter/ selective application of precoding weights).
  • the power change function may be power amplification.
  • receiving and transmitting or “relaying” in the wireless relay device 30 such as RIS or smart repeater means that the following function A is performed, but the following function B is not performed and the transmission is performed. You may.
  • Function A Apply phase shifter.
  • Function B No compensation circuit (eg, amplification, filter) is involved.
  • Function A Apply phase shifter and compensation circuit.
  • Function B No frequency conversion involved.
  • the wireless relay device 30 when the phase is changed, the amplitude may be amplified.
  • “relay” in the wireless relay device 30 such as RIS means to transmit a received signal as is without performing processing at the layer 2 or layer 3 level, or to transmit a signal received at the physical layer level as is. Alternatively, it may mean transmitting the received signal as it is without interpreting the signal (in this case, the phase may be changed, the amplitude may be amplified, etc.).
  • the base station 10, the terminal 20, and the wireless relay device 30 include a function to execute the embodiment described later.
  • the base station 10, the terminal 20, and the wireless relay device 30 may each have only one of the functions of the embodiments.
  • FIG. 2 is a diagram showing an example of the functional configuration of a base station according to an embodiment of the present invention.
  • base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 2 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 110 and the receiving section 120 may also be called a communication section.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals.
  • the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL data, etc. to the terminal 20. Further, the transmitter 110 transmits setting information and the like that will be explained in the embodiment.
  • the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device, and reads them from the storage device as necessary.
  • the control unit 140 performs, for example, resource allocation, overall control of the base station 10, and the like. Note that the functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and the functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. Further, the transmitter 110 and the receiver 120 may be called a transmitter and a receiver, respectively.
  • FIG. 3 is a diagram showing an example of a functional configuration of a terminal according to an embodiment of the present invention.
  • the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 3 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 210 and the receiving section 220 may also be called a communication section.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the transmitter 210 transmits HARQ-ACK, and the receiver 220 receives configuration information and the like that will be explained in the embodiment.
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in a storage device, and reads it from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the control unit 240 controls the entire terminal 20 and the like. Note that a functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220. Further, the transmitter 210 and the receiver 220 may be called a transmitter and a receiver, respectively.
  • FIG. 4 is a diagram showing an example of the functional configuration of a wireless relay device according to an embodiment of the present invention.
  • the wireless relay device 30 includes a transmitting section 310, a receiving section 320, a control section 330, a variable section 340, and an antenna section 350.
  • the functional divisions and functional parts may have any names.
  • the transmitting section 310 and the receiving section 320 may also be called a communication section.
  • the antenna section 350 includes at least one antenna connected to the variable section 340.
  • the antenna section 350 may be arranged as an array antenna.
  • antenna section 350 may be particularly referred to as a relay antenna.
  • the variable section 340 and the antenna section 350 may also be referred to as a relay section.
  • the variable section 340 is connected to the antenna section 350 and can change the phase, load, amplitude, etc.
  • the variable section 340 may be a variable phase shifter, a phase shifter, an amplifier, or the like. For example, by changing the phase of radio waves that reach a relay antenna from a radio wave generation source, the direction or beam of the radio waves can be changed.
  • the control section 330 is a control means that controls the variable section 340.
  • the control unit 330 functions as a control unit that controls the relay state when radio waves from the base station 10 or the terminal 20 are relayed without signal interpretation.
  • the control unit 330 may change the relay state based on control information received from the base station 10 or the terminal 20 via the communication unit, and may change the relay state based on the reception state of radio waves from the base station 10 or the terminal 20.
  • the relay state may also be changed.
  • the control unit 330 may select an appropriate reception beam and transmission beam (direction thereof) based on control information such as SSB, and control the variable unit 340.
  • the control section 330 may select an appropriate combination of reception direction and transmission direction from the reception state based on criteria such as reception quality or maximum reception power, and control the variable section 340.
  • the control unit 330 also provides information regarding the propagation path between the terminal 20 or the base station 10A and the antenna unit 350 (including information estimated based on the reception state and control information; the same applies hereinafter). ), the variable section 340 can be controlled.
  • the control unit 330 uses a publicly known method such as an active repeater or RIS to change the phase of the radio waves received from the base station 10A without using transmission power, so that the control unit 330 changes the phase of the radio waves received from the base station 10A without using the transmission power. 20) etc. can be relayed in a specific direction.
  • the control unit 330 controls the phase of the radio signal for relaying toward the terminal 20 or the base station 10A based on the estimated propagation path information H PT and H RP . That is, by changing the phase of an array antenna or the like, radio waves can be relayed in a specific direction using the same principle as beamforming or the like.
  • the wireless relay device 30 controls (changes) only the phase of the wireless signal (radio wave) by the control unit 330, and relays without power supply without amplifying the power of the wireless signal to be relayed. You may.
  • control unit 330 may acquire information based on the reception state. Further, the receiving unit 320 may acquire control information from the base station 10A or the terminal 20. For example, the receiving unit 320 may receive various signals such as SSB (including the various signals exemplified in the above functions) transmitted from the base station 10A or the terminal 20 as the control information.
  • SSB including the various signals exemplified in the above functions
  • control unit 330 controls the propagation path between the radio wave generation source (for example, the base station 10A or the terminal 20) and the antenna unit 350 based on the reception state (for example, change in received power, etc.) during control of the variable unit 340.
  • the information (H PT and H RP ) may be estimated.
  • Propagation path information regarding each propagation path is specifically information such as amplitude or phase, and in the embodiment of the present invention, information estimated regarding the propagation path of radio waves arriving at antenna section 350. It is.
  • the control unit 330 uses a principle similar to I/Q (In-phase/Quadrature) detection, and is based on the change in received power when the phase of the variable unit 340 of the array-shaped antenna unit 350 is switched orthogonally. Then, the propagation path information of the antenna section 350 may be estimated.
  • FIG. 5 is a diagram showing an example of the operation of the wireless relay device according to the embodiment of the present invention.
  • the wireless relay device 30 is interposed between the base station 10A (or another base station 10, etc.) and the terminal 20, and is interposed between the base station 10A and the terminal 20. Relays (reflects, transmits, aggregates, diffracts, etc.) wireless signals sent and received at
  • the base station 10A and the terminal 20 directly transmit and receive wireless signals without going through the wireless relay device 30 when the wireless quality is good.
  • the wireless relay device 30 relays the wireless signals transmitted and received between the base station 10A and the terminal 20. do.
  • the radio relay device 30 obtains propagation path information between a radio wave generation source such as the base station 10A or the terminal 20 and the relay antenna based on changes in received power during control of the variable unit 340 such as a variable phase shifter.
  • the wireless signal is relayed to the radio wave receiving destination such as the terminal 20 .
  • the wireless relay device 30 is not limited to estimating the propagation path information H PT and H RT , and controls the variable unit 340 such as a variable phase shifter based on the control information received from the base station 10A or the terminal 20. Accordingly, the wireless signal may be relayed to a radio wave reception destination such as the base station 10A or the terminal 20.
  • the propagation path or propagation channel is an individual communication path for wireless communication, and here, it is a communication path between each transmitting and receiving antenna (base station antenna, terminal antenna, etc. in the figure).
  • the wireless relay device 30 includes an antenna unit 350 having a small multi-element antenna compatible with massive MIMO, and a variable phase shifter or phase shifter that changes the phase of a wireless signal, essentially a radio wave, to a specific phase.
  • the variable unit 340 is used to control the phase of radio waves relayed to the terminal 20 or the base station 10A.
  • FIG. 6 is a diagram showing an example of communication in a high frequency band.
  • a dead zone is likely to occur due to the strong straightness of radio waves.
  • the distance between the base station 10A and the terminal 20 is visible, even when using the high frequency band, there is no effect on the wireless communication between the base station 10A and the terminal 20.
  • the line of sight between the base station 10A and the terminal 20 is blocked by a shielding object such as a building or a tree, the wireless quality will be significantly degraded. That is, if the terminal 20 moves to a blind zone where it is blocked by a shielding object, communication may be interrupted.
  • radio wave propagation control devices such as RIS or smart repeaters.
  • communication characteristics can be improved by controlling the propagation characteristics of base station signals, coverage can be expanded without the need for a signal source, and installation and operating costs can be reduced by adding more base stations.
  • passive type has the advantage of not requiring control information, it cannot follow moving objects or environmental changes.
  • active type has the disadvantage of requiring control information and increasing overhead, it is possible to variably control the radio wave propagation characteristics by changing the load (phase) state of the control antenna, and it is possible to control the propagation characteristics of the radio waves and the environment. It is also possible to follow fluctuations, etc.
  • FB feedback
  • propagation path information standards There are two types of active radio wave propagation control devices and control methods: feedback (FB) standards and propagation path information standards.
  • FB feedback
  • propagation path information standards In the FB standard, a variable radio wave propagation control device searches for optimal conditions by having the terminal 20 or the like feed back the communication state when the load (phase) state is randomly changed.
  • the propagation path information norm the load state is determined based on the propagation path information between the base station and the radio wave propagation control device, and optimal radio wave propagation control is possible. In the embodiment of the present invention, any type can be applied.
  • Non-Patent Document 2 there are various types of relay methods such as reflection, transmission, diffraction, and aggregation. (see Non-Patent Document 2, etc.).
  • FIG. 7 is a diagram showing an example of a reflective wireless relay device according to an embodiment of the present invention.
  • An example of the system configuration of the reflective wireless relay device 30 will be described using FIG. 7.
  • FIG. 7 is a diagram showing the relationship among the transmitting antenna Tx of the base station 10A, etc., the relay antenna Sx of the transparent wireless relay device 30, and the receiving antenna Rx of the terminal 20, etc.
  • MIMO is taken as an example, and there are multiple propagation paths between Tx and Sx and multiple propagation paths between Sx and Rx.
  • the device 30 controls a variable section 340 having a variable phase shifter and the like of the relay antenna Sx to relay radio waves.
  • the array-shaped relay antennas are arranged facing in the same direction. Thereby, the propagation path of the relay antenna can be estimated based on the reception state observed when changing the phase condition of the relay antenna in multiple ways.
  • FIG. 8 is a diagram showing an example of a transparent wireless relay device according to an embodiment of the present invention.
  • An example of the system configuration of the transparent wireless relay device 30 will be described using FIG. 8.
  • FIG. 8 is a diagram showing the relationship among the transmitting antenna Tx of the base station 10A, etc., the relay antenna Sx of the transparent wireless relay device 30, and the receiving antenna Rx of the terminal 20, etc.
  • MIMO is taken as an example, and there are multiple propagation paths between Tx and Sx and multiple propagation paths between Sx and Rx.
  • the relay device 30 relays the radio waves arriving from one side to the other side via a variable part 340 such as a variable phase shifter of the relay antenna Sx.
  • the reference antenna on the left side of the figure and the relay antenna on the right side of the figure are paired and oriented in opposite directions so that radio waves arriving from one side can be relayed to the other side. It is located.
  • the receiving state may be measured by configuring the relay antenna to be able to detect the power reaching the relay antenna using a power detector or the like.
  • the propagation path of the relay antenna can be estimated based on the received signal observed when the phase conditions of the relay antenna are changed in multiple ways.
  • future networks such as 6G will require even higher quality than 5G.
  • ultra-high speed on the order of tera bps, high reliability and low delay on the level of optical communication, etc. are required.
  • very high frequencies for example terahertz waves
  • the advantages are expected to be higher speeds due to ultra-wideband use and lower delays due to short symbol lengths, but the advantages are that the coverage is narrower due to the large attenuation factor.
  • disadvantages such as a decrease in reliability due to high straightness are also expected. It is necessary to consider how to ensure redundancy for each location where 6G communication is required, that is, how to increase the number of communication transmission points.
  • the wireless relay device 30 reflects or transmits the beam transmitted from the base station 10 or the terminal 20 in a predetermined direction, and delivers it to the terminal 20 or the base station 10.
  • the wireless relay device 30 may be, for example, a passive RIS, an active RIS, or the like.
  • a passive RIS is a device that does not change control of the reflection angle or beam width depending on the position of the mobile station, and while control information is unnecessary, precise beam control is difficult.
  • An active RIS is a device that changes control of the reflection angle, beam width, etc. according to the position of the mobile station, and while it allows precise beam control, it requires control information, which increases overhead.
  • the wireless relay device 30 can increase the number of communication transmission points.
  • the wireless relay device 30 may be any device that has a predetermined function, and the predetermined function may be, for example, at least one of functions 1) and 2) shown below.
  • the radio relay device 30 has a function of receiving signals transmitted from the base station 10 (for example, DL signal, SSB, PDCCH, PDSCH, DM-RS, PT-RS, CSI-RS, RIS dedicated signal). May have.
  • the wireless relay device 30 may receive information related to the following 2) metamaterial function using the reception function.
  • the radio relay device 30 may have a function of transmitting signals to the base station 10 (eg, UL signal, PRACH, PUCCH, PUSCH, DM-RS, PT-RS, SRS, RIS-dedicated signal).
  • the wireless relay device 30 may transmit information related to the following 2) metamaterial function using the transmission function.
  • the wireless relay device 30 may have a frame synchronization function with the base station 10.
  • the wireless relay device 30 may have a reflection function (for example, phase change) of a signal transmitted from the base station 10 or the terminal 20.
  • the wireless relay device 30 may reflect the signal by changing the phase of each of the plurality of reflection elements included in the wireless relay device 30, or may reflect the signal by changing the phase common to the plurality of reflection elements. It's okay.
  • the radio relay device 30 may have functions related to beam control (for example, functions related to TCI-state and QCL control, selective application of beams, and selective application of spatial filters/precoding weights).
  • the wireless relay device 30 may have a function of changing the power of the signal transmitted from the base station 10 or the terminal 20 (for example, power amplification).
  • the wireless relay device 30 may perform different power changes for each reflective element included in the wireless relay device 30, or may perform a common power change for a plurality of reflective elements.
  • “Receiving and transmitting” in the wireless relay device 30 may mean reflecting radio waves/signals.
  • base station and “terminal” will be used hereinafter, the term “base station” and “terminal” are not limited to these, and may be replaced with communication device.
  • the wireless relay device 30 may be based on the following assumptions. - A BW operator installs the wireless relay device 30. - The wireless relay device 30 is fixed and does not move. - The wireless relay device 30 relays signals transmitted from only one base station. - The wireless relay device 30 is capable of receiving and transmitting control signals. - The wireless relay device 30 operates in half-duplex. - The wireless relay device 30 operates in a Single-RIS environment.
  • network-controlled wireless repeaters are capable of beam/timing/DL-UL/ON-OFF/power control.
  • FIG. 9 is a diagram for explaining the functions that the wireless relay device has.
  • the wireless relay device 30 has a "terminal function" for decoding the side control information and a “relay function” for amplifying and transmitting the side control information.
  • the wireless relay device 30 has the function of simultaneously operating the "terminal function” and "relay function (for base station)"
  • the time and frequency resources of the "terminal function” and “relay function” can be shared, and the terminal 20
  • the settings can also be shared with the wireless relay device 30.
  • the wireless relay device 30 does not have a simultaneous operation function (such as the circuit/component configuration of the wireless relay device 30), it is necessary to separate the time/frequency resources for “terminal function” and “relay function (for base station)”. There is.
  • the transmission types of the wireless relay device 30 are classified into the following three types. 1) Uplink transmission (terminal function to base station) 2) Uplink transmission (relay function to base station) 3) Downlink transmission (relay function to terminal)
  • FIG. 10 is a diagram for explaining the time control method according to this embodiment. Specifically, the following timing-related points need to be considered. 1) Timing gap between uplink reception and uplink transmission, or between downlink reception and downlink transmission (see box 901 in Figure 10) 2) Time synchronization with the base station 10 3) Mismatch between the DL and UL boundaries (see frame line 902 in FIG. 10) 4) DL/UL switching timing 5) Uplink transmission timing of relay function (to base station 10) 6) Timing adjustment between terminal 20 and relay function
  • Example 1 In this embodiment, an example will be described in which the wireless relay device 30 reports a timing gap between uplink reception and uplink transmission, or between downlink reception and downlink transmission.
  • the wireless relay device 30 may report a timing gap between uplink reception and uplink transmission, or between downlink reception and downlink transmission.
  • FIG. 11 is a diagram for explaining the timing gap according to Example 1 of this embodiment.
  • Arrow 903 indicates the timing gap for the uplink.
  • Arrow 904 indicates the timing gap for the downlink.
  • the wireless relay device 30 includes only analog circuits (no digital circuits for decoding/encoding), there is no need to consider timing gaps. Therefore, there is no need for the wireless relay device 30 to consider the processing time of the analog circuit.
  • the timing gap can be included in the propagation delay, especially if the downlink and uplink timing gaps are the same.
  • Timing gaps are handled by the implementation or OAM.
  • Timing gaps are reported by the wireless relay device 30.
  • the wireless relay device 30 reports to the base station 10 a general downlink/uplink timing gap, a downlink/uplink separated timing gap, or a difference in timing gap between downlink/uplink. do.
  • the wireless relay device 30 may report the timing gap via UCI/MAC-CE/RRC or as a relay function.
  • the base station 10 may use the received information, for example, for the purpose of adjusting the transmission timing of the base station 10/terminal 20.
  • the wireless relay device 30 can report the timing gap between uplink reception and uplink transmission, or between downlink reception and downlink transmission.
  • Example 2 In this embodiment, an example will be described in which the wireless relay device 30 performs time synchronization with the base station 10.
  • the wireless relay device 30 may perform time synchronization with the base station 10 using the following options. It should be noted that the terminal functionality may be assumed to be time synchronized with the base station 10 using conventional terminal procedures, or by OAM, or by a proprietary time source.
  • Time synchronization is required for the relay function to derive the downlink/uplink boundary in order to switch between downlink and uplink operations.
  • the wireless relay device 30 may have the relay function follow the time synchronization of the terminal function. In particular, when the terminal function and the relay function share a time source, option 1 may be considered. In this case, the wireless relay device 30 may assume that there is no additional signaling.
  • the wireless relay device 30 may instruct time synchronization information of the relay function. For example, additional information is provided via side control information.
  • the wireless relay device 30 needs to know the propagation delay between the base station 10 and the wireless relay device 30. This allows the wireless relay device 30 to reuse the IAB specifications in order to call the propagation delay itself or propagation delay derivation information (such as T_delta), or to derive the propagation delay (using TA and T_delta). Good too.
  • the radio relay device 30 needs to know the transmission time point of the base station 10 in order to derive the uplink/downlink boundary.
  • the wireless relay device 30 derives the transmission time point of the base station 10 from the downlink reception timing and propagation delay in the terminal function or from its own time source GNSS (Global Navigation Satellite System) (similar to option 3). Good too.
  • GNSS Global Navigation Satellite System
  • the wireless relay device 30 may assume that a new specific signal/channel for time synchronization of the relay function is introduced.
  • Time synchronization may depend on the implementation of the wireless relay device 30.
  • the wireless relay device 30 may use its own time source, GNSS, etc. This option may require information regarding the propagation delay between the base station 10 and the wireless relay device 30, and the wireless relay device 30 may adopt option 2 for derivation.
  • the wireless relay device 30 can perform appropriate time synchronization with the base station 10.
  • Example 3 In this embodiment, an example will be described in which mismatch between downlink and uplink boundaries is processed.
  • FIG. 12 is a diagram for explaining inconsistency in the downlink in Example 3 of the present embodiment.
  • Line segment 905 indicates the timing of switching from uplink to downlink.
  • Line segment 906 indicates the timing of the downlink to uplink switch.
  • FIG. 13 is a diagram for explaining inconsistency in uplink in Example 3 of this embodiment.
  • the wireless relay device 30 may process the mismatch between the downlink and uplink boundaries using one of the following methods. Misalignment may occur, especially if the timing gap is large.
  • the radio relay device 30 determines the potential between the downlink and uplink boundary. Considering the inconsistency, one of the following options may be used.
  • the wireless relay device 30 may perform a downlink operation during overlap.
  • the wireless relay device 30 may perform an uplink operation during overlap.
  • the wireless relay device 30 does not need to perform either a downlink operation or an uplink operation at the time of overlap.
  • ⁇ Plan 4> It may depend on the implementation of the wireless relay device 30.
  • the wireless relay device 30 may perform switching in consideration of timing gaps.
  • the wireless relay device 30 may assume that there is no overlap. For example, the radio relay device 30 may insert a guard symbol between the downlink and the uplink when switching from the downlink to the uplink or from the uplink to the downlink. In guard symbols, the wireless relay device 30 performs neither downlink nor uplink operations.
  • the wireless relay device 30 can appropriately process the mismatch between the DL and UL boundaries.
  • Example 4 In this embodiment, an example will be described in which the wireless relay device 30 switches between DL and UL operations.
  • the wireless relay device 30 switches between downlink and uplink operations based on the following information. As a premise, since the wireless relay device 30 cannot perform downlink operation and uplink operation at the same time, it is necessary to switch the operation. Further, the terminal function may have information indicating the downlink/uplink TDD configuration.
  • the relay function may use information about the TDD configuration of the relay function.
  • the wireless relay device 30 may share TDD configuration information between the relay function and the terminal function.
  • the TDD configuration information may be "TDD-config-common", “TDD-config-dedicated”, etc. in DCI format 2_0.
  • the wireless relay device 30 may assume that there is no additional signaling.
  • the wireless relay device 30 may assume that a new separate TDD configuration for the relay function is added.
  • the wireless relay device 30 may assume that additional information is provided via side control information.
  • the TDD configuration of the relay function may be the same as the TDD configuration of the terminal function.
  • IAB-MT it is possible to instruct IAB-MT to specify the IAB-specific TDD configuration (tdd-UL-DL-ConfigurationDedicated-IAB-MT). config-dedicated, and a special TDD pattern derived by tdd-UL-DL-ConfigurationDedicated-IAB-MT) may be instructed to the wireless relay device 30.
  • Downlink/uplink switching timing may be displayed.
  • the wireless relay device 30 may assume that the downlink/uplink switching time is directly instructed. For example, the wireless relay device 30 is instructed as 10002 (0: no switching, 1: uplink to UD, 2: UD to uplink). Then, the wireless relay device 30 may switch the operation at the start/end of the instructed time resource (slot/symbol/subframe/frame).
  • the wireless relay device 30 can appropriately switch between DL and UL operations.
  • Example 5 In this embodiment, an example will be described in which the wireless relay device 30 determines uplink transmission timing.
  • the uplink transmission timing of the wireless relay device 30 is derived by the following option. Note that since the wireless relay device 30 uses only analog devices for its functions, it may be difficult for the wireless relay device 30 to control uplink and downlink transmission timing of the relay function. Therefore, this embodiment is useful when the wireless relay device 30 can control the uplink timing of the relay function.
  • the wireless relay device 30 may assume that the uplink transmission timing of the terminal function is controlled by conventional TA (Timing Advance).
  • the relay function may follow the uplink transmission timing of the terminal function.
  • a single TA loop is used for the wireless relay device 30 (or the terminal function of the wireless relay device 30).
  • the wireless relay device 30 may assume that the terminal function and relay function follow the instructions. In this case, the wireless relay device 30 may assume that the transmission timings of the terminal function and the relay function match. Note that in this case, the wireless relay device 30 may assume that there is no additional signaling.
  • the wireless relay device 30 may assume that in addition to the transmission timing information of the terminal function, transmission timing information of the relay function is instructed.
  • the wireless relay device 30 may assume a plurality of TA loops for the terminal function and the relay function. If the wireless relay device 30 needs to coordinate the transmission timing of the terminal function and the relay function, the terminal function may follow the uplink transmission timing of the terminal function.
  • the wireless relay device 30 can appropriately determine the uplink transmission timing.
  • Example 6 In this embodiment, an example will be described in which the wireless relay device 30 synchronizes the uplink transmission timing of the relay function and the terminal function.
  • the wireless relay device 30 may match the uplink transmission timing of the relay function and the terminal function as in any of the following options.
  • the relay function's uplink transmission timing may depend on the relay function's uplink reception timing. That is, it depends on the uplink transmission timing of the next hop UE. In order to match the uplink transmission timings of the relay function and the terminal function, the uplink transmission timing of the next hop UE is important.
  • FIG. 14 is a diagram for explaining timing alignment in Example 6 of this embodiment.
  • the terminal function of the radio relay device 30 and the next hop UE may follow a conventional TA mechanism.
  • the base station 10 may control the terminal function of the radio relay device 30 and the transmission timing of the next hop UE, and receive the signals at the same timing.
  • the transmission timing of the terminal function and the relay function may be adjusted.
  • Base station 10 may use the additional information to indicate transmission timing to the next hop UE. For example, the base station 10 determines the uplink transmission time of the next hop UE based on the uplink transmission time of the wireless relay device 30 (controlled based on a conventional TA mechanism) and the propagation delay between the wireless relay device 30 and the terminal 20. The transmission timing may also be controlled.
  • the (1/2) TA of the next hop UE may represent the sum of the propagation delay (between the base station 10 and the radio relay device 30) and the propagation delay (between the radio relay device 30 and the terminal 20).
  • the propagation delay (between the wireless relay device 30 and the terminal 20) may be derived from the wireless relay device 30/terminal 20 and wireless relay device 30/terminal 20 reports to the base station 10.
  • Embodiment 4 may be adopted.
  • the wireless relay device 30 can synchronize the uplink transmission timing of the relay function and the terminal function.
  • Example 7 In this embodiment, an example will be described in which the wireless relay device 30 reports the function of timing-related information.
  • the radio relay device 30 may report, for example, the following timing-related information capability information to the base station 10 or the like.
  • - Function of side control information for timing-related parameters - Function to control uplink transmission timing
  • the radio relay device 30 may report capability information indicating supported frequency bands as shown below to the base station 10, for example.
  • ⁇ Single function for all frequency bands functions as wireless relay device 30
  • ⁇ Functions for each frequency band ⁇ Functions for each frequency range (e.g. FR1/FR2)
  • the radio relay device 30 may report capability information indicating supported duplex methods as shown below to the base station 10, for example. - Single function for all duplex methods (function as wireless relay device 30) ⁇ Functions for each duplex method (e.g. TDD/FDD)
  • the wireless relay device 30 can report the function of timing-related information.
  • the wireless relay device and base station of this embodiment may be configured as the wireless relay device and base station shown in each section below. Additionally, the following wireless relay method may be implemented.
  • (Section 1) a communication unit that relays downlink radio signals or uplink radio signals; a transmitter that reports to a base station a timing gap between reception and transmission of the downlink radio signal or the uplink radio signal; Wireless relay device. (Section 2) further comprising a control unit that executes time synchronization with the base station in a relay function; The wireless relay device according to item 1. (Section 3) The control unit processes inconsistencies between downlink and uplink boundaries; The wireless relay device according to item 2. (Section 4) The control unit switches between downlink and uplink operations based on information indicating a time division duplex configuration. The wireless relay device according to item 2 or 3.
  • (Section 5) a communication unit that transmits a downlink wireless signal to a wireless relay device; a receiving unit that receives information indicating a timing gap between reception and transmission of the downlink radio signal or the uplink radio signal from the radio relay device; a control unit that assumes that the wireless relay device executes time synchronization in a relay function based on information indicated in the timing gap; base station.
  • (Section 6) Relaying the downstream wireless signal or the upstream wireless signal; reporting a timing gap between reception and transmission of the downlink radio signal or the uplink radio signal to a base station; A wireless relay method performed by a wireless relay device.
  • any of the above configurations provides a technique that allows the wireless relay device to implement appropriate time control.
  • a timing gap between reception and transmission of a downlink radio signal or an uplink radio signal can be reported to the base station.
  • time synchronization with the base station can be performed in the relay function.
  • mismatches between downlink and uplink boundaries can be handled.
  • downlink and uplink operations can be switched based on the information indicating the time division duplex configuration.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the base station 10, terminal 20, wireless relay device 30, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 15 is a diagram illustrating an example of the hardware configuration of the base station 10, terminal 20, and wireless relay device 30 according to an embodiment of the present disclosure.
  • the base station 10, terminal 20, and wireless relay device 30 described above are physically computers that include a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. It may be configured as a device.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 10, terminal 20, and wireless relay device 30 is performed by the processor 1001 and the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. This is realized by controlling communication by the storage device 1002 and at least one of data writing in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
  • programs program codes
  • the control unit 140 of the base station 10 shown in FIG. 2 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 3 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may be called a register, cache, main memory, or the like.
  • the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • the radio relay device 30 may include a variable phase shifter, a phase shifter, an amplifier, an antenna, an array antenna, etc. as hardware that constitutes the variable section 340 and the antenna section 350, as necessary.
  • FIG. 16 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 receives signals from the various sensors 2021 to 2029 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 2010, various sensors 2021-2029, information service unit 2012, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
  • the communication module 2013 also stores various information received from external devices into a memory 2032 that can be used by the microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
  • the present invention may be
  • the base station 10 may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
  • MME Mobility Management Entity
  • S-GW Packet Control Function
  • the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
  • the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • Base Station BS
  • wireless base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
  • RRHs small indoor base stations
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft.
  • the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
  • the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • the terminal 20 may have the functions that the base station 10 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station may have the functions that the user terminal described above has.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for the terminal 20 within one carrier.
  • At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP.
  • Note that "cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a wireless repeater comprising: a communication unit that relays a downlink wireless signal or an uplink wireless signal; and a transmission unit that reports, to a base station, a timing gap from reception of the downlink wireless signal or the uplink wireless signal to transmission of the same.

Description

無線中継装置、基地局及び無線中継方法Wireless relay device, base station and wireless relay method
 本発明は、無線通信システムにおける無線中継装置、基地局及び無線中継方法に関する。 The present invention relates to a wireless relay device, a base station, and a wireless relay method in a wireless communication system.
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。 The requirements for NR (New Radio) (also referred to as "5G"), which is the successor system to LTE (Long Term Evolution), are a large capacity system, high data transmission speed, low latency, and the simultaneous use of a large number of terminals. Techniques that satisfy connectivity, low cost, power saving, etc. are being considered (for example, Non-Patent Document 1).
 次世代通信では、高周波数帯の使用が見込まれている。当該高周波数帯の特性による、散乱体数の減少、シャドーウィング効果の低下及び距離減衰の増加等の観点から、通信品質の改善が要求される。通信品質を担保するビーム制御及び環境等が必要とされると想定される。 Next-generation communications are expected to use high frequency bands. Due to the characteristics of the high frequency band, improvement in communication quality is required from the viewpoints of reducing the number of scatterers, reducing shadowing effects, increasing distance attenuation, and the like. It is assumed that beam control and environment that ensure communication quality will be required.
 例えば、高周波数帯域では、電波の強い直進性等によって、不感地帯が発生しやすい問題がある。そこで、パッシブなリピータ又はアクティブ型の反射板(RIS:Reconfigurable Intelligent Surface)、信号を受信及び増幅し再放射するスマートリピータ等のような無線中継装置を用いて、マルチパス環境下において、通信品質を改善させる方法が試行されている(例えば非特許文献2)。 For example, in high frequency bands, there is a problem that dead zones are likely to occur due to the strong straightness of radio waves. Therefore, wireless relay devices such as passive repeaters, active reflectors (RIS: Reconfigurable Intelligent Surface), and smart repeaters that receive, amplify, and re-radiate signals are used to improve communication quality in a multipath environment. Methods for improving this are being tried (for example, Non-Patent Document 2).
 従来、無線中継装置が基地局との時刻同期、送受信などのタイミング等に関する時間の制御が規定されていないため、無線中継装置による適切な時間の制御が実現できないという問題がある。 Conventionally, there is a problem that appropriate time control by the wireless relay device cannot be realized because there is no regulation regarding time synchronization of the wireless relay device with the base station, timing of transmission/reception, etc.
 本発明は上記の点に鑑みてなされたものであり、無線中継装置による適切な時間の制御を実現させることを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to realize appropriate time control by a wireless relay device.
 開示の技術によれば、下り無線信号または上り無線信号を中継する通信部と、前記下り無線信号または前記上り無線信号の受信から送信におけるタイミングギャップを基地局に報告する送信部と、を備える無線中継装置が提供される。 According to the disclosed technology, a wireless communication device includes a communication unit that relays a downlink radio signal or an uplink radio signal, and a transmission unit that reports a timing gap between reception and transmission of the downlink radio signal or the uplink radio signal to a base station. A relay device is provided.
 開示の技術によれば、無線中継装置による適切な時間の制御を実現させることを可能とする技術が提供される。 According to the disclosed technology, a technology is provided that enables appropriate time control by a wireless relay device.
本発明の実施の形態に係る無線通信システムについて説明するための図である。1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention. 本発明の実施の形態に係る基地局の機能構成の一例を示す図である。1 is a diagram showing an example of a functional configuration of a base station according to an embodiment of the present invention. 本発明の実施の形態に係る端末の機能構成の一例を示す図である。1 is a diagram illustrating an example of a functional configuration of a terminal according to an embodiment of the present invention. 本発明の実施の形態に係る無線中継装置の機能構成の一例を示す図である。FIG. 1 is a diagram showing an example of a functional configuration of a wireless relay device according to an embodiment of the present invention. 本発明の実施の形態に係る無線中継装置の動作例を示す図である。FIG. 3 is a diagram illustrating an example of the operation of the wireless relay device according to the embodiment of the present invention. 高周波数帯域における通信の例を示す図である。FIG. 3 is a diagram showing an example of communication in a high frequency band. 本発明の実施の形態に係る反射型の無線中継装置の例を示す図である。1 is a diagram illustrating an example of a reflective wireless relay device according to an embodiment of the present invention. 本発明の実施の形態に係る透過型の無線中継装置の例を示す図である。1 is a diagram illustrating an example of a transparent wireless relay device according to an embodiment of the present invention. FIG. ダウンリンク送信ビームおよびダウンリンク受信ビームについて説明するための図である。FIG. 3 is a diagram for explaining a downlink transmission beam and a downlink reception beam. 本実施の形態に係る時間の制御方法について説明するための図である。FIG. 3 is a diagram for explaining a time control method according to the present embodiment. 本実施の形態の実施例1に係るタイミングギャップについて説明するための図である。FIG. 3 is a diagram for explaining a timing gap according to Example 1 of the present embodiment. 本実施の形態の実施例3のダウンリンクにおける不整合について説明するための図である。FIG. 7 is a diagram for explaining inconsistency in downlink in Example 3 of the present embodiment. 本実施の形態の実施例3のアップリンクにおける不整合について説明するための図である。FIG. 7 is a diagram for explaining mismatch in uplink in Example 3 of the present embodiment. 本実施の形態の実施例6のタイミングの整合について説明するための図である。FIG. 7 is a diagram for explaining timing matching in Example 6 of the present embodiment. 本発明の実施の形態に係る基地局、端末又は無線中継装置のハードウェア構成の一例を示す図である。1 is a diagram showing an example of a hardware configuration of a base station, a terminal, or a wireless relay device according to an embodiment of the present invention. 本発明の実施の形態に係る車両の構成の一例を示す図である。1 is a diagram showing an example of the configuration of a vehicle according to an embodiment of the present invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。 Existing technologies are used as appropriate for the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, existing LTE, but is not limited to existing LTE. Further, the term "LTE" used in this specification has a broad meaning including LTE-Advanced and a system after LTE-Advanced (eg, NR) unless otherwise specified.
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。 In addition, in the embodiments of the present invention described below, SS (Synchronization signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical broadcast channel), PRACH (Physical Terms such as random access channel), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), PUCCH (Physical Uplink Control Channel), and PUSCH (Physical Uplink Shared Channel) are used. This is for convenience of description, and signals, functions, etc. similar to these may be referred to by other names. Also, the above terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc. However, even if the signal is used for NR, it is not necessarily specified as "NR-".
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Further, in the embodiment of the present invention, the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。 Furthermore, in the embodiment of the present invention, "configure" the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
 図1は、本発明の実施の形態に係る無線通信システムについて説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。基地局10及び端末20は、それぞれ複数であってもよい。 FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention. A wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. There may be a plurality of base stations 10 and a plurality of terminals 20, respectively.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロット又はサブスロットであってもよいし、TTIがサブフレームであってもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The physical resources of a radio signal are defined in the time domain and frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too. Furthermore, a TTI (Transmission Time Interval) in the time domain may be a slot or a subslot, or a TTI may be a subframe.
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのプライマリセル(PCell, Primary Cell)と1以上のセカンダリセル(SCell, Secondary Cell)が使用される。 The base station 10 is capable of performing carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled to communicate with the terminal 20. In carrier aggregation, one primary cell (PCell, Primary Cell) and one or more secondary cells (SCell, Secondary Cell) are used.
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH、PDCCH等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。 The base station 10 transmits a synchronization signal, system information, etc. to the terminal 20. The synchronization signals are, for example, NR-PSS and NR-SSS. System information is transmitted, for example, on NR-PBCH or PDSCH, and is also referred to as broadcast information. As shown in FIG. 1, the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink). Note that here, what is transmitted on control channels such as PUCCH and PDCCH is called a control signal, and what is transmitted on shared channels such as PUSCH and PDSCH is called data. It is.
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。 The terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Note that the terminal 20 may be called a UE, and the base station 10 may be called a gNB.
 端末20は、複数のセル(複数のCC)を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのプライマリセルと1以上のセカンダリセルが使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。 The terminal 20 is capable of performing carrier aggregation, which bundles multiple cells (multiple CCs) and communicates with the base station 10. Carrier aggregation uses one primary cell and one or more secondary cells. Also, a PUCCH-SCell with PUCCH may be used.
 また、本発明の実施の形態における無線通信システムにおいて、基地局10は、一例として5G又は6Gで運用される無線基地局であり、セルを形成する。なお、セルは、比較的サイズの大きいセルであり、マクロセルと呼ばれる。 Furthermore, in the wireless communication system according to the embodiment of the present invention, the base station 10 is a wireless base station operated in 5G or 6G, for example, and forms a cell. Note that the cell is a relatively large cell and is called a macro cell.
 基地局10A-基地局10Dは、5G又は6Gで運用される基地局である。基地局10A-基地局10Dは、マクロセルと比較してサイズが小さいセルCA-セルDをそれぞれ形成する。セルA-セルDは、スモールセル又はマクロセル等と呼ばれてもよい。図1に示されるように、セルA-セルDは、マクロセルに含まれるように形成されてもよい。 The base stations 10A to 10D are base stations operated in 5G or 6G. Base station 10A to base station 10D form cells CA to D, respectively, which are smaller in size than the macro cell. Cells A to D may be called small cells, macro cells, or the like. As shown in FIG. 1, cells A to D may be formed to be included in a macro cell.
 マクロセルは、一般に1つの基地局がカバーする半径数百メートルから数十キロメートルの通信可能エリアと解釈されてもよい。また、スモールセルは、送信電力が小さく、マクロセルと比較して小さいエリアをカバーするセルの総称と解釈されてもよい。 A macro cell may generally be interpreted as a communicable area with a radius of several hundred meters to several tens of kilometers covered by one base station. Furthermore, a small cell may be interpreted as a general term for cells that have low transmission power and cover a smaller area compared to a macro cell.
 なお、基地局10及び基地局10A-基地局10Dは、gNodeB(gNB)またはBS(Base Station)などと表記されてもよい。また、端末20は、UE又はMS等と表記されてもよい。さらに、基地局及び端末の数や種類を含む無線通信システムの具体的な構成は、図1に示した例に限定されない。 Note that the base station 10 and the base stations 10A to 10D may be expressed as gNodeB (gNB) or BS (Base Station). Further, the terminal 20 may be expressed as UE, MS, or the like. Furthermore, the specific configuration of the wireless communication system, including the number and types of base stations and terminals, is not limited to the example shown in FIG.
 また、無線通信システムは、必ずしも5G又は6Gに従った無線通信システムに限定されない。例えば、無線通信システムは、6Gの次世代の無線通信システム、あるいはLTEに従った無線通信システムであってもよい。 Furthermore, the wireless communication system is not necessarily limited to a wireless communication system compliant with 5G or 6G. For example, the wireless communication system may be a 6G next generation wireless communication system or a wireless communication system compliant with LTE.
 基地局10及び基地局10A-基地局10Dは、一例として、端末20と5G又は6Gに従った無線通信を実行する。基地局10及び基地局10A-基地局10D及び端末20は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するマッシブMIMO(Massive MIMO)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、端末20と2つのNG-RANノードそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)、および、gNB等の無線通信ノード間の無線バックホールと端末20への無線アクセスとが統合されたIAB(Integrated Access and Backhaul)等に対応してもよい。 The base station 10 and the base stations 10A to 10D perform wireless communication with the terminal 20 according to 5G or 6G, for example. The base station 10 and the base station 10A to the base station 10D and the terminal 20 use Massive MIMO (Massive MIMO), which generates beams with higher directivity by controlling radio signals transmitted from multiple antenna elements. Carrier aggregation (CA) that uses a bundle of component carriers (CC), dual connectivity (DC) that simultaneously communicates between the terminal 20 and each of two NG-RAN nodes, and wireless communication between wireless communication nodes such as gNB It may also support IAB (Integrated Access and Backhaul) in which backhaul and wireless access to the terminal 20 are integrated.
 また、無線通信システムは、3GPPリリース15において規定されている以下の周波数レンジ(Frequency Range, FR)よりも高い高周波数帯域にも対応し得る。例えば、FR1として、410MHz-7.125GHzに対応してもよいし、FR2として、24.25GHz-52.6GHzに対応してもよい。さらに、無線通信システムは、52.6GHzを超え、114.25GHzまでの周波数帯域に対応してもよい。当該周波数帯域はミリ波帯と呼ばれてもよい。 Furthermore, the wireless communication system can also support a high frequency band higher than the frequency range (FR) defined in 3GPP Release 15 below. For example, FR1 may correspond to 410 MHz to 7.125 GHz, and FR2 may correspond to 24.25 GHz to 52.6 GHz. Additionally, the wireless communication system may support frequency bands greater than 52.6 GHz and up to 114.25 GHz. The frequency band may be called a millimeter wave band.
 ここで、マッシブMIMOに対応する基地局10は、ビームを送信できる。マッシブMIMOとは、一般的に、100素子以上のアンテナ素子を有するアンテナを用いたMIMO通信を意味し、複数ストリームの多重化効果などによって、従来よりも高速な無線通信が可能となる。また、高度なビームフォーミングも可能となる。ビーム幅は、使用する周波数帯域又は端末20の状態等に応じて動的に変更し得る。また、狭いビームを用いることによるビームフォーミング利得による受信信号電力の増加を図ることができる。さらに、与干渉の低減及び無線リソースの有効利用等の効果が見込まれる。 Here, the base station 10 that supports massive MIMO can transmit a beam. Massive MIMO generally refers to MIMO communication using an antenna having 100 or more antenna elements, and enables faster wireless communication than before due to the multiplexing effect of multiple streams. It also enables advanced beamforming. The beam width can be dynamically changed depending on the frequency band used or the status of the terminal 20. Further, by using a narrow beam, the received signal power can be increased due to beamforming gain. Furthermore, effects such as reduction of interference and effective use of radio resources are expected.
 また、無線通信システムは、無線中継装置30を含んでよい。本発明の実施の形態において、一例として、無線中継装置30は、反射板(RIS)、メタマテリアル機能装置、省電力化装置(Battery less device)、位相制御リフレクタ、パッシブリピータ、IRS(インテリジェント反射面:Intelligent Reflecting Surface)、スマートリピータ(Smart Repeater)、ネットワーク制御リピータ(Network Controlled Repeater)等であってもよい。反射板(RIS)の具体例として、メタマテリアル反射板、動的メタサーフェス、メタサーフェスレンズ等と呼ばれるものであってもよい(例えば非特許文献2)。 Additionally, the wireless communication system may include a wireless relay device 30. In the embodiment of the present invention, as an example, the wireless relay device 30 includes a reflector (RIS), a metamaterial function device, a power saving device (Battery less device), a phase control reflector, a passive repeater, an IRS (Intelligent reflective surface). :Intelligent Reflecting Surface, Smart Repeater, Network Controlled Repeater, etc. Specific examples of the reflector (RIS) may include those called metamaterial reflectors, dynamic metasurfaces, metasurface lenses, etc. (for example, Non-Patent Document 2).
 本発明の実施の形態において、無線中継装置30は、例えば、基地局10Aから送信された無線信号を中継する。本発明の実施の形態の説明において「中継」とは、「反射」、「透過」、「集約(電波を略一点に集中させること)」及び「回折」のうち少なくとも一つを指してもよい。端末20は、無線中継装置30によって中継された無線信号を受信できる。さらに、無線中継装置30は、端末20から送信された無線信号を中継してもよいし、基地局10から送信された無線信号を中継してもよい。 In the embodiment of the present invention, the wireless relay device 30 relays a wireless signal transmitted from the base station 10A, for example. In the description of the embodiments of the present invention, "relay" may refer to at least one of "reflection", "transmission", "concentration (concentrating radio waves at approximately one point)", and "diffraction". . The terminal 20 can receive the wireless signal relayed by the wireless relay device 30. Furthermore, the wireless relay device 30 may relay the wireless signal transmitted from the terminal 20 or the wireless signal transmitted from the base station 10.
 一例として、無線中継装置30は、端末20に向けて中継する無線信号の位相を変化させることができる。このような観点から、無線中継装置30は、位相可変リフレクタと呼ばれてもよい。なお、本実施の形態において、無線中継装置30は、無線信号の位相を変化させて中継する機能を有するものとする場合があるが、これに限られない。また、無線中継装置30は、RIS、リピータ、中継装置、リフレクトアレイ、或いはトランスミットアレイ等と呼ばれてもよい。 As an example, the wireless relay device 30 can change the phase of a wireless signal relayed toward the terminal 20. From this point of view, the wireless relay device 30 may be called a phase variable reflector. Note that in this embodiment, the wireless relay device 30 may have a function of changing the phase of a wireless signal and relaying the signal, but the present invention is not limited to this. Furthermore, the wireless relay device 30 may be called an RIS, a repeater, a relay device, a reflect array, a transmit array, or the like.
 また、本発明の実施の形態において、無線中継装置30は、以下1)-5)に示される機能を有するものとして定義されてもよい。 Furthermore, in the embodiment of the present invention, the wireless relay device 30 may be defined as having the functions shown in 1) to 5) below.
1)基地局10から送信される信号の受信機能を有してもよい。当該信号は、DL信号である、SSB(SS/PBCH block)、PDCCH、PDSCH、DM-RS(Demodulation Reference Signal)、PT-RS(Phase Tracking Reference Signal)、CSI-RS(Channel Status Information Reference Signal)、RIS専用信号等であってもよい。メタマテリアル機能に係る情報を運ぶ信号の受信機能を有してもよい。なお、当該信号を端末20に送信する送信機能を有してもよい。 1) It may have a function of receiving signals transmitted from the base station 10. The signals are DL signals, SSB (SS/PBCH block), PDCCH, PDSCH, DM-RS (Demodulation Reference Signal), PT-RS (Phase Tracking Reference Signal), and CSI-RS (Channel Status Information Reference Signal). , RIS-dedicated signal, etc. may be used. It may also have a function of receiving a signal carrying information related to the metamaterial function. Note that it may also have a transmission function to transmit the signal to the terminal 20.
2)基地局10への信号の送信機能を有してもよい。当該信号は、UL信号である、PRACH、PUCCH、PUSCH、DM-RS、PT-RS、SRS、RIS専用信号等であってもよい。メタマテリアル機能に係る情報の送信機能を有してもよい。なお、当該信号を端末20から受信する受信機能を有してもよい。 2) It may have a function of transmitting signals to the base station 10. The signal may be a UL signal such as PRACH, PUCCH, PUSCH, DM-RS, PT-RS, SRS, or RIS-dedicated signal. It may also have a function of transmitting information related to the metamaterial function. Note that it may have a receiving function to receive the signal from the terminal 20.
3)基地局10とのフレーム同期機能を有してもよい。なお、端末20とのフレーム同期機能を有してもよい。 3) It may have a frame synchronization function with the base station 10. Note that it may also have a frame synchronization function with the terminal 20.
4)基地局10又は端末20から送信された信号の反射機能を有してもよい。例えば、当該反射機能は、位相変更に係る機能、ビーム制御に係る機能(例えば、TCI(Transmission Configuration Indication)-state、QCL(Quasi Co Location)の制御に係る機能、ビームの選択適用、空間フィルタ/プリコーディングウェイトの選択適用)であってもよい。
5)基地局10又は端末20から送信された信号の電力変更機能を有してもよい。例えば、当該電力変更機能は、電力増幅であってもよい。
4) It may have a function of reflecting signals transmitted from the base station 10 or the terminal 20. For example, the reflection function includes a function related to phase change, a function related to beam control (for example, a function related to control of TCI (Transmission Configuration Indication)-state, QCL (Quasi Co Location), beam selection application, spatial filter/ selective application of precoding weights).
5) It may have a function of changing the power of the signal transmitted from the base station 10 or the terminal 20. For example, the power change function may be power amplification.
 また、RIS又はスマートリピータ等の無線中継装置30における「受信して送信」や「中継」とは、以下の機能Aまで行われるが、以下の機能Bまでは行われずに送信されることを意味してもよい。
機能A:移相器を適用する。
機能B:補償回路(例えば、増幅、フィルタ)は介さない。
Furthermore, "receiving and transmitting" or "relaying" in the wireless relay device 30 such as RIS or smart repeater means that the following function A is performed, but the following function B is not performed and the transmission is performed. You may.
Function A: Apply phase shifter.
Function B: No compensation circuit (eg, amplification, filter) is involved.
 他の例として、
機能A:移相器及び補償回路を適用する。
機能B:周波数変換は介さない。
As another example,
Function A: Apply phase shifter and compensation circuit.
Function B: No frequency conversion involved.
 なお、RIS等の無線中継装置30において、位相が変化されるとき、振幅が増幅されてもよい。また、RIS等の無線中継装置30における「中継」とは、レイヤ2又はレイア3レベルの処理を行わずに、受信した信号をそのまま送信すること、物理層レベルで受信した信号をそのまま送信すること、あるいは、信号を解釈せずに受信した信号をそのまま送信することを意味してもよい(その際、位相の変化や振幅の増幅等が行われてもよい)。 Note that in the wireless relay device 30 such as RIS, when the phase is changed, the amplitude may be amplified. Furthermore, "relay" in the wireless relay device 30 such as RIS means to transmit a received signal as is without performing processing at the layer 2 or layer 3 level, or to transmit a signal received at the physical layer level as is. Alternatively, it may mean transmitting the received signal as it is without interpreting the signal (in this case, the phase may be changed, the amplitude may be amplified, etc.).
 (装置構成)
 次に、本発明の実施の形態における処理及び動作を実行する基地局10、端末20及び無線中継装置30の機能構成例を説明する。基地局10、端末20及び無線中継装置30は後述する実施例を実行する機能を含む。ただし、基地局10、端末20及び無線中継装置30はそれぞれ、実施例のうちのいずれかの機能のみを備えてもよい。
(Device configuration)
Next, an example of the functional configuration of the base station 10, terminal 20, and wireless relay device 30 that execute processing and operations in the embodiment of the present invention will be described. The base station 10, the terminal 20, and the wireless relay device 30 include a function to execute the embodiment described later. However, the base station 10, the terminal 20, and the wireless relay device 30 may each have only one of the functions of the embodiments.
 <基地局10>
 図2は、本発明の実施の形態に係る基地局の機能構成の一例を示す図である。図2に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図2に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
<Base station 10>
FIG. 2 is a diagram showing an example of the functional configuration of a base station according to an embodiment of the present invention. As shown in FIG. 2, base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140. The functional configuration shown in FIG. 2 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names. The transmitting section 110 and the receiving section 120 may also be called a communication section.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。また、送信部110は、実施例で説明する設定情報等を送信する。 The transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals. Further, the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL data, etc. to the terminal 20. Further, the transmitter 110 transmits setting information and the like that will be explained in the embodiment.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。制御部140は、例えば、リソース割り当て、基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。 The setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device, and reads them from the storage device as necessary. The control unit 140 performs, for example, resource allocation, overall control of the base station 10, and the like. Note that the functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and the functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. Further, the transmitter 110 and the receiver 120 may be called a transmitter and a receiver, respectively.
 <端末20>
 図3は、本発明の実施の形態に係る端末の機能構成の一例を示す図である。図3に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図3に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
<Terminal 20>
FIG. 3 is a diagram showing an example of a functional configuration of a terminal according to an embodiment of the present invention. As shown in FIG. 3, the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240. The functional configuration shown in FIG. 3 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names. The transmitting section 210 and the receiving section 220 may also be called a communication section.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、送信部210はHARQ-ACKを送信し、受信部220は、実施例で説明する設定情報等を受信する。 The transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the transmitter 210 transmits HARQ-ACK, and the receiver 220 receives configuration information and the like that will be explained in the embodiment.
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、端末20全体の制御等を行う。なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。 The setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in a storage device, and reads it from the storage device as necessary. The setting unit 230 also stores setting information that is set in advance. The control unit 240 controls the entire terminal 20 and the like. Note that a functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220. Further, the transmitter 210 and the receiver 220 may be called a transmitter and a receiver, respectively.
 <無線中継装置30>
 図4は、本発明の実施の形態に係る無線中継装置の機能構成の一例を示す図である。図4に示されるように、無線中継装置30は、送信部310、受信部320、制御部330、可変部340及びアンテナ部350を有する。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部310と受信部320とを通信部と呼んでもよい。
<Wireless relay device 30>
FIG. 4 is a diagram showing an example of the functional configuration of a wireless relay device according to an embodiment of the present invention. As shown in FIG. 4, the wireless relay device 30 includes a transmitting section 310, a receiving section 320, a control section 330, a variable section 340, and an antenna section 350. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names. The transmitting section 310 and the receiving section 320 may also be called a communication section.
 アンテナ部350には、可変部340に接続された少なくとも1つのアンテナが含まれる。例えば、アンテナ部350は、アレイアンテナとして配置されてもよい。本発明の実施の形態において、アンテナ部350を特に中継アンテナと呼ぶ場合がある。なお、可変部340及びアンテナ部350を中継部と呼んでもよい。 The antenna section 350 includes at least one antenna connected to the variable section 340. For example, the antenna section 350 may be arranged as an array antenna. In embodiments of the present invention, antenna section 350 may be particularly referred to as a relay antenna. Note that the variable section 340 and the antenna section 350 may also be referred to as a relay section.
 可変部340は、アンテナ部350に接続されており、位相、負荷、振幅等を変化させることができる。例えば、可変部340は、可変位相器、移相器、アンプ等であってもよい。例えば、電波発生源から中継アンテナに届いた電波の位相を変えることにより、電波の向き又はビーム等を変化させることができる。 The variable section 340 is connected to the antenna section 350 and can change the phase, load, amplitude, etc. For example, the variable section 340 may be a variable phase shifter, a phase shifter, an amplifier, or the like. For example, by changing the phase of radio waves that reach a relay antenna from a radio wave generation source, the direction or beam of the radio waves can be changed.
 制御部330は、可変部340を制御する制御手段である。本発明の実施の形態において、制御部330は、基地局10又は端末20からの電波を信号解釈せず中継する際の中継状態を制御する制御部として機能する。ここで、制御部330は、基地局10又は端末20から通信部を介して受信した制御情報に基づいて中継状態を変化させてもよく、基地局10又は端末20からの電波の受信状態に基づいて、中継状態を変化させてもよい。例えば、制御部330は、SSB等の制御情報に基づいて、適切な受信ビームと送信ビーム(の向き)を選択し、可変部340を制御してもよい。同様に、制御部330は、受信状態から、受信品質あるいは受信電力が最も大きい等の基準に基づいて、適切な受信方向と送信方向の組み合わせを選択し、可変部340を制御してもよい。 The control section 330 is a control means that controls the variable section 340. In the embodiment of the present invention, the control unit 330 functions as a control unit that controls the relay state when radio waves from the base station 10 or the terminal 20 are relayed without signal interpretation. Here, the control unit 330 may change the relay state based on control information received from the base station 10 or the terminal 20 via the communication unit, and may change the relay state based on the reception state of radio waves from the base station 10 or the terminal 20. The relay state may also be changed. For example, the control unit 330 may select an appropriate reception beam and transmission beam (direction thereof) based on control information such as SSB, and control the variable unit 340. Similarly, the control section 330 may select an appropriate combination of reception direction and transmission direction from the reception state based on criteria such as reception quality or maximum reception power, and control the variable section 340.
 また、本発明の実施の形態において、制御部330は、例えば、端末20又は基地局10Aとアンテナ部350との間の伝搬路に関する情報(受信状態により推定した情報及び制御情報を含む。以下同様)に基づいて、可変部340を制御することができる。例えば、制御部330は、アクティブリピータ又はRIS等の公知手法を用いて、基地局10Aから受信した電波を、送信電力を用いずに、位相を変化させることによって、電波受信先(この場合は端末20)等の特定の方向へ中継することができる。具体的には、制御部330は、推定した伝搬路情報HPT及びHRPに基づいて、端末20又は基地局10Aに向けて中継するために無線信号の位相を制御する。すなわち、ビームフォーミング等と同様の原理で、アレーアンテナ等の位相を変化させることで、特定の方向へ電波を中継することができる。なお、無線中継装置30は、制御部330によって無線信号(電波)の位相のみを制御して(変化させて)おり、中継される無線信号の電力の増幅などを行うことなく、無給電で中継してもよい。 In the embodiment of the present invention, the control unit 330 also provides information regarding the propagation path between the terminal 20 or the base station 10A and the antenna unit 350 (including information estimated based on the reception state and control information; the same applies hereinafter). ), the variable section 340 can be controlled. For example, the control unit 330 uses a publicly known method such as an active repeater or RIS to change the phase of the radio waves received from the base station 10A without using transmission power, so that the control unit 330 changes the phase of the radio waves received from the base station 10A without using the transmission power. 20) etc. can be relayed in a specific direction. Specifically, the control unit 330 controls the phase of the radio signal for relaying toward the terminal 20 or the base station 10A based on the estimated propagation path information H PT and H RP . That is, by changing the phase of an array antenna or the like, radio waves can be relayed in a specific direction using the same principle as beamforming or the like. Note that the wireless relay device 30 controls (changes) only the phase of the wireless signal (radio wave) by the control unit 330, and relays without power supply without amplifying the power of the wireless signal to be relayed. You may.
 また、制御部330は、本発明の実施の形態において、受信状態により情報を取得してもよい。また、受信部320は、基地局10A又は端末20からの制御情報を取得してもよい。例えば、受信部320は、基地局10A又は端末20から送信された、SSB等の各種の信号(上述の機能で例示した各種の信号を含む)を制御情報として受信してもよい。 Furthermore, in the embodiment of the present invention, the control unit 330 may acquire information based on the reception state. Further, the receiving unit 320 may acquire control information from the base station 10A or the terminal 20. For example, the receiving unit 320 may receive various signals such as SSB (including the various signals exemplified in the above functions) transmitted from the base station 10A or the terminal 20 as the control information.
 また、制御部330は、可変部340の制御時の受信状態(例えば、受信電力の変化等)に基づいて、電波発生源(例えば、基地局10A又は端末20)とアンテナ部350間の伝搬路情報(HPT及びHRP)を推定してもよい。 Furthermore, the control unit 330 controls the propagation path between the radio wave generation source (for example, the base station 10A or the terminal 20) and the antenna unit 350 based on the reception state (for example, change in received power, etc.) during control of the variable unit 340. The information (H PT and H RP ) may be estimated.
 各伝搬路に関する伝搬路情報(伝搬チャネル情報)は、具体的には、振幅又は位相等の情報であり、本発明の実施の形態において、アンテナ部350に到来する電波の伝搬路に関して推定した情報である。一例として、制御部330は、I/Q(In-phase/Quadrature)検波と同様の原理で、アレー状のアンテナ部350の可変部340の位相を直交に切り替えたときの受信電力の変化に基づいて、アンテナ部350の伝搬路情報を推定してもよい。 Propagation path information (propagation channel information) regarding each propagation path is specifically information such as amplitude or phase, and in the embodiment of the present invention, information estimated regarding the propagation path of radio waves arriving at antenna section 350. It is. As an example, the control unit 330 uses a principle similar to I/Q (In-phase/Quadrature) detection, and is based on the change in received power when the phase of the variable unit 340 of the array-shaped antenna unit 350 is switched orthogonally. Then, the propagation path information of the antenna section 350 may be estimated.
 図5は、本発明の実施の形態に係る無線中継装置の動作例を示す図である。図5に示されるように、一例として、無線中継装置30は、基地局10A(他の基地局10等でもよい)と、端末20との間に介在し、基地局10Aと端末20との間において送受信される無線信号を中継(反射、透過、集約、回折等)する。 FIG. 5 is a diagram showing an example of the operation of the wireless relay device according to the embodiment of the present invention. As shown in FIG. 5, as an example, the wireless relay device 30 is interposed between the base station 10A (or another base station 10, etc.) and the terminal 20, and is interposed between the base station 10A and the terminal 20. Relays (reflects, transmits, aggregates, diffracts, etc.) wireless signals sent and received at
 具体例として、基地局10Aと端末20とは、無線品質が良好な場合には、無線中継装置30を経由せずに、直接、無線信号を送受信する。一方、基地局10Aと端末20との間に遮蔽物がある場合等、当該無線品質が劣化した場合、無線中継装置30は、基地局10Aと端末20との間において送受信される無線信号を中継する。 As a specific example, the base station 10A and the terminal 20 directly transmit and receive wireless signals without going through the wireless relay device 30 when the wireless quality is good. On the other hand, if the wireless quality deteriorates, such as when there is a shield between the base station 10A and the terminal 20, the wireless relay device 30 relays the wireless signals transmitted and received between the base station 10A and the terminal 20. do.
 具体的には、無線中継装置30は、可変位相器等の可変部340の制御時の受信電力の変化に基づいて、基地局10A又は端末20等の電波発生源と中継アンテナ間の伝搬路情報HPT、HRTを推定し、推定した伝搬路情報に基づいて、可変位相器などの可変部340を制御することにより端末20等の電波受信先に向けて無線信号を中継する。なお、伝搬路情報HPT、HRTを推定することに限られず、無線中継装置30は、基地局10A又は端末20から受信した制御情報に基づいて、可変位相器などの可変部340を制御することにより基地局10A又は端末20等の電波受信先に向けて無線信号を中継してもよい。 Specifically, the radio relay device 30 obtains propagation path information between a radio wave generation source such as the base station 10A or the terminal 20 and the relay antenna based on changes in received power during control of the variable unit 340 such as a variable phase shifter. By estimating H PT and H RT and controlling the variable unit 340 such as a variable phase shifter based on the estimated propagation path information, the wireless signal is relayed to the radio wave receiving destination such as the terminal 20 . Note that the wireless relay device 30 is not limited to estimating the propagation path information H PT and H RT , and controls the variable unit 340 such as a variable phase shifter based on the control information received from the base station 10A or the terminal 20. Accordingly, the wireless signal may be relayed to a radio wave reception destination such as the base station 10A or the terminal 20.
 ここで、伝搬路あるいは伝搬チャネルとは、無線通信の個々の通信路であり、ここでは、各送受信アンテナ(図中の基地局アンテナ及び端末アンテナ等)間の通信路である。 Here, the propagation path or propagation channel is an individual communication path for wireless communication, and here, it is a communication path between each transmitting and receiving antenna (base station antenna, terminal antenna, etc. in the figure).
 一例として、無線中継装置30は、マッシブMIMOに対応した小型多素子アンテナを有するアンテナ部350と、無線信号、実質的には、電波の位相を特定の位相に変化させる可変位相器あるいは移相器を有する可変部340を備え、可変部340を用いて、端末20又は基地局10Aに中継される電波の位相を制御する。 As an example, the wireless relay device 30 includes an antenna unit 350 having a small multi-element antenna compatible with massive MIMO, and a variable phase shifter or phase shifter that changes the phase of a wireless signal, essentially a radio wave, to a specific phase. The variable unit 340 is used to control the phase of radio waves relayed to the terminal 20 or the base station 10A.
 図6は、高周波数帯域における通信の例を示す図である。図6に示されるように、数GHz-数十GHz以上の高周波数帯域を用いる場合において、電波の強い直進性によって、不感地帯が発生しやすい。基地局10Aと端末20との間が見通せる場合、当該高周波数帯域を用いる場合でも、基地局10Aと端末20間の無線通信に影響はない。一方、例えば、建造物又は樹木など、遮蔽物によって、基地局10Aと端末20との間の見通しが遮蔽されると、無線品質が大幅に劣化する。すなわち、端末20が遮蔽物によって遮蔽される不感地帯に移動すると、通信が途絶えることになり得る。 FIG. 6 is a diagram showing an example of communication in a high frequency band. As shown in FIG. 6, when using a high frequency band of several GHz to several tens of GHz or more, a dead zone is likely to occur due to the strong straightness of radio waves. When the distance between the base station 10A and the terminal 20 is visible, even when using the high frequency band, there is no effect on the wireless communication between the base station 10A and the terminal 20. On the other hand, if the line of sight between the base station 10A and the terminal 20 is blocked by a shielding object such as a building or a tree, the wireless quality will be significantly degraded. That is, if the terminal 20 moves to a blind zone where it is blocked by a shielding object, communication may be interrupted.
 高速大容量、かつ低遅延特性を活かしたアプリケーション(遠隔操作等)の存在を考慮すると、不感地帯を解消し、無線通信システム内での通信が途絶えることなく、基地局と端末とが接続を確保することが重要である。 Considering the existence of applications (such as remote control) that take advantage of high-speed, large-capacity, and low-latency characteristics, it is possible to eliminate dead zones and ensure connectivity between base stations and terminals without interruption of communication within the wireless communication system. It is important to.
 そこで、RIS又はスマートリピータ等の電波伝搬制御装置のように、基地局10Aと端末20との間の電波を中継することができる技術が開発されている。このように、基地局信号の伝搬特性を制御することで通信特性を改善させることができ、信号源不要でカバレッジ拡大、基地局の増設による設置及び運用コストの減少を図ることができる。 Therefore, technologies have been developed that can relay radio waves between the base station 10A and the terminal 20, such as radio wave propagation control devices such as RIS or smart repeaters. In this way, communication characteristics can be improved by controlling the propagation characteristics of base station signals, coverage can be expanded without the need for a signal source, and installation and operating costs can be reduced by adding more base stations.
 従来の電波伝搬制御装置では、パッシブ型とアクティブ型がある。パッシブ型は、制御情報が不要であるというメリットがあるものの、移動体又は環境変動等に追従することができない。一方、アクティブ型は、制御情報が必要でオーバーヘッドが増加するデメリットがあるものの、制御アンテナの負荷(位相)状態を変化させて、電波の伝搬特性を可変的に制御可能であり、移動体及び環境変動等にも追従することができる。 There are two types of conventional radio wave propagation control devices: passive type and active type. Although the passive type has the advantage of not requiring control information, it cannot follow moving objects or environmental changes. On the other hand, although the active type has the disadvantage of requiring control information and increasing overhead, it is possible to variably control the radio wave propagation characteristics by changing the load (phase) state of the control antenna, and it is possible to control the propagation characteristics of the radio waves and the environment. It is also possible to follow fluctuations, etc.
 アクティブ型の電波伝搬制御装置と制御手法には、フィードバック(FB)規範と伝搬路情報規範の2つのタイプがある。FB規範では、可変型の電波伝搬制御装置が、負荷(位相)状態をランダムに変化させたときの通信状態を、端末20等にフィードバックしてもらい、最適条件を探索する。一方、伝搬路情報規範では、基地局と電波伝搬制御装置との間の伝搬路情報に基づいて負荷状態を決定し、最適な電波伝搬制御が可能となる。本発明の実施の形態においては、いずれのタイプであっても適用可能である。 There are two types of active radio wave propagation control devices and control methods: feedback (FB) standards and propagation path information standards. In the FB standard, a variable radio wave propagation control device searches for optimal conditions by having the terminal 20 or the like feed back the communication state when the load (phase) state is randomly changed. On the other hand, in the propagation path information norm, the load state is determined based on the propagation path information between the base station and the radio wave propagation control device, and optimal radio wave propagation control is possible. In the embodiment of the present invention, any type can be applied.
 また、中継方法としては、反射、透過、回折、集約等のタイプがあるが、本実施の形態において、一例として、以下に、反射型と透過型の構成例について説明する(回折型と集約型は非特許文献2等参照)。 In addition, there are various types of relay methods such as reflection, transmission, diffraction, and aggregation. (see Non-Patent Document 2, etc.).
 図7は、本発明の実施の形態に係る反射型の無線中継装置の例を示す図である。反射型の無線中継装置30のシステム構成の一例について、図7を用いて説明する。図7は、基地局10A等の送信アンテナTxと、透過型の無線中継装置30の中継アンテナSxと、端末20等の受信アンテナRxの関係を示した図である。図7に示すように、本発明の実施の形態においては、MIMOを一例としており、Tx-Sx間の複数の伝搬路と、Sx-Rx間の複数の伝搬路が存在しており、無線中継装置30は、中継アンテナSxの可変位相器等を有する可変部340を制御して電波を中継する。 FIG. 7 is a diagram showing an example of a reflective wireless relay device according to an embodiment of the present invention. An example of the system configuration of the reflective wireless relay device 30 will be described using FIG. 7. FIG. 7 is a diagram showing the relationship among the transmitting antenna Tx of the base station 10A, etc., the relay antenna Sx of the transparent wireless relay device 30, and the receiving antenna Rx of the terminal 20, etc. As shown in FIG. 7, in the embodiment of the present invention, MIMO is taken as an example, and there are multiple propagation paths between Tx and Sx and multiple propagation paths between Sx and Rx. The device 30 controls a variable section 340 having a variable phase shifter and the like of the relay antenna Sx to relay radio waves.
 図7に示されるように、反射型の場合、アレー状の中継アンテナは、同じ方向に向けられて配置されている。これにより、中継アンテナの位相条件を複数変化させた際に観測される受信状態に基づいて、中継アンテナの伝搬路を推定することができる。 As shown in FIG. 7, in the case of the reflective type, the array-shaped relay antennas are arranged facing in the same direction. Thereby, the propagation path of the relay antenna can be estimated based on the reception state observed when changing the phase condition of the relay antenna in multiple ways.
 図8は、本発明の実施の形態に係る透過型の無線中継装置の例を示す図である。透過型の無線中継装置30のシステム構成の一例について、図8を用いて説明する。図8は、基地局10A等の送信アンテナTxと、透過型の無線中継装置30の中継アンテナSxと、端末20等の受信アンテナRxの関係を示した図である。図8に示されるように、本発明の実施の形態においては、MIMOを一例としており、Tx-Sx間の複数の伝搬路と、Sx-Rx間の複数の伝搬路が存在しており、無線中継装置30は、図示の如く、中継アンテナSxの可変位相器等の可変部340を介して、一方の側から到来した電波を他方の側へ中継する。このように、透過型の場合、図左側の基準アンテナと図右側中継アンテナは、一方の側から到来した電波を他方の側へ中継することができるように、それぞれ一対で反対方向に向けられて配置されている。透過型、反射型のいずれであっても、電力検出器等により、中継アンテナに届いた電力を検出できるように構成して、受信状態を計測してもよい。また、中継アンテナの位相条件を複数変化させた際に観測される受信信号に基づいて、中継アンテナの伝搬路を推定することができる。 FIG. 8 is a diagram showing an example of a transparent wireless relay device according to an embodiment of the present invention. An example of the system configuration of the transparent wireless relay device 30 will be described using FIG. 8. FIG. 8 is a diagram showing the relationship among the transmitting antenna Tx of the base station 10A, etc., the relay antenna Sx of the transparent wireless relay device 30, and the receiving antenna Rx of the terminal 20, etc. As shown in FIG. 8, in the embodiment of the present invention, MIMO is taken as an example, and there are multiple propagation paths between Tx and Sx and multiple propagation paths between Sx and Rx. As shown in the figure, the relay device 30 relays the radio waves arriving from one side to the other side via a variable part 340 such as a variable phase shifter of the relay antenna Sx. In this way, in the case of the transmission type, the reference antenna on the left side of the figure and the relay antenna on the right side of the figure are paired and oriented in opposite directions so that radio waves arriving from one side can be relayed to the other side. It is located. Regardless of whether it is a transmission type or a reflection type, the receiving state may be measured by configuring the relay antenna to be able to detect the power reaching the relay antenna using a power detector or the like. Furthermore, the propagation path of the relay antenna can be estimated based on the received signal observed when the phase conditions of the relay antenna are changed in multiple ways.
 例えば6G等の将来のネットワークでは、5Gと比較してさらに高い品質が要求される。例えば、テラbpsオーダの超高速、光通信レベルの高信頼低遅延等が求められる。当該品質の実現に向けて、非常に高い周波数、例えばテラHz波の利用が想定される。例えば、テラHz波のような非常に高い周波数を利用する場合、超広帯域利用による高速化、シンボル長の短さによる低遅延化が利点として想定される一方、減衰率の大きさによるカバレッジの狭さ、直進性の高さによる信頼性の低下等の欠点も想定される。6G通信が必要とされる各地点に対して、どのように冗長性を確保するか、すなわちどのように通信の送信ポイントを増加させるかを検討することが要求される。 For example, future networks such as 6G will require even higher quality than 5G. For example, ultra-high speed on the order of tera bps, high reliability and low delay on the level of optical communication, etc. are required. To achieve this quality, it is envisaged that very high frequencies, for example terahertz waves, will be used. For example, when using very high frequencies such as terahertz waves, the advantages are expected to be higher speeds due to ultra-wideband use and lower delays due to short symbol lengths, but the advantages are that the coverage is narrower due to the large attenuation factor. However, disadvantages such as a decrease in reliability due to high straightness are also expected. It is necessary to consider how to ensure redundancy for each location where 6G communication is required, that is, how to increase the number of communication transmission points.
 上述のように、無線中継装置30は、基地局10又は端末20から送信されるビームを所定の方向に反射又は透過し、端末20又は基地局10に届ける。無線中継装置30は、例えば、パッシブ型RIS、アクティブ型RIS等であってもよい。パッシブ型RISは、移動局の位置に応じて反射角度又はビーム幅等の制御を変更しない装置であって、制御情報が不必要である一方、精密なビーム制御が困難である。アクティブ型RISは、移動局の位置に応じて反射角度及びビーム幅等の制御を変更する装置であって、精密なビーム制御が可能である一方、制御情報が必要なためオーバーヘッドは増大する。無線中継装置30により、通信の送信ポイントを増加させることができる。 As described above, the wireless relay device 30 reflects or transmits the beam transmitted from the base station 10 or the terminal 20 in a predetermined direction, and delivers it to the terminal 20 or the base station 10. The wireless relay device 30 may be, for example, a passive RIS, an active RIS, or the like. A passive RIS is a device that does not change control of the reflection angle or beam width depending on the position of the mobile station, and while control information is unnecessary, precise beam control is difficult. An active RIS is a device that changes control of the reflection angle, beam width, etc. according to the position of the mobile station, and while it allows precise beam control, it requires control information, which increases overhead. The wireless relay device 30 can increase the number of communication transmission points.
 無線中継装置30は、所定の機能を有する装置であればよく、当該所定の機能は例えば以下に示される1)及び2)の少なくとも一つの機能であってもよい。 The wireless relay device 30 may be any device that has a predetermined function, and the predetermined function may be, for example, at least one of functions 1) and 2) shown below.
1)端末機能
 無線中継装置30は、基地局10から送信される信号の受信機能(例えば、DL信号、SSB、PDCCH、PDSCH、DM-RS、PT-RS、CSI-RS、RIS専用信号)を有してもよい。無線中継装置30は、当該受信機能により、下記2)メタマテリアル機能に係る情報を受信してもよい。
1) Terminal Function The radio relay device 30 has a function of receiving signals transmitted from the base station 10 (for example, DL signal, SSB, PDCCH, PDSCH, DM-RS, PT-RS, CSI-RS, RIS dedicated signal). May have. The wireless relay device 30 may receive information related to the following 2) metamaterial function using the reception function.
 また、無線中継装置30は、基地局10への信号の送信機能(例えば、UL信号、PRACH、PUCCH、PUSCH、DM-RS、PT-RS、SRS、RIS専用信号)を有してもよい。無線中継装置30は、当該送信機能により、下記2)メタマテリアル機能に係る情報を送信してもよい。また、無線中継装置30は、基地局10とのフレーム同期機能を有してもよい。 Additionally, the radio relay device 30 may have a function of transmitting signals to the base station 10 (eg, UL signal, PRACH, PUCCH, PUSCH, DM-RS, PT-RS, SRS, RIS-dedicated signal). The wireless relay device 30 may transmit information related to the following 2) metamaterial function using the transmission function. Furthermore, the wireless relay device 30 may have a frame synchronization function with the base station 10.
2)メタマテリアル機能
 無線中継装置30は、基地局10又は端末20から送信された信号の反射機能(例えば、位相変更)を有してもよい。無線中継装置30は、無線中継装置30が有する複数の反射素子ごとに位相を変更して信号の反射を行ってもよいし、複数の反射素子で共通の位相変更を行って信号の反射を行ってもよい。
2) Metamaterial Function The wireless relay device 30 may have a reflection function (for example, phase change) of a signal transmitted from the base station 10 or the terminal 20. The wireless relay device 30 may reflect the signal by changing the phase of each of the plurality of reflection elements included in the wireless relay device 30, or may reflect the signal by changing the phase common to the plurality of reflection elements. It's okay.
 また、無線中継装置30は、ビーム制御に係る機能(例えば、TCI-state、QCLの制御に係る機能、ビームの選択適用、空間フィルタ/プリコーディングウェイトの選択適用)を有してもよい。無線中継装置30は、基地局10又は端末20から送信された信号の電力変更機能(例えば、電力増幅)を有しても良い。無線中継装置30は、無線中継装置30が有する反射素子ごとに異なる電力変更を行ってもよいし、複数の反射素子で共通の電力変更を行ってもよい。 Additionally, the radio relay device 30 may have functions related to beam control (for example, functions related to TCI-state and QCL control, selective application of beams, and selective application of spatial filters/precoding weights). The wireless relay device 30 may have a function of changing the power of the signal transmitted from the base station 10 or the terminal 20 (for example, power amplification). The wireless relay device 30 may perform different power changes for each reflective element included in the wireless relay device 30, or may perform a common power change for a plurality of reflective elements.
 無線中継装置30における「受信して送信」は、電波/信号を反射することを意味してもよい。以降では「基地局」、「端末」の用語を使用するが、これらに限定されず、通信装置に置換されてもよい。 "Receiving and transmitting" in the wireless relay device 30 may mean reflecting radio waves/signals. Although the terms "base station" and "terminal" will be used hereinafter, the term "base station" and "terminal" are not limited to these, and may be replaced with communication device.
 なお、本実施の形態に係る無線中継装置30は、以下の想定であってもよい。
・BWオペレータが無線中継装置30を設置する。
・無線中継装置30は、固定されていて動かない。
・無線中継装置30は、一つの基地局のみから送信された信号を中継する。
・無線中継装置30は、制御信号の受信及び送信が可能である。
・無線中継装置30は、Half-duplexで動作する。
・無線中継装置30は、Single-RIS環境で動作する。
Note that the wireless relay device 30 according to the present embodiment may be based on the following assumptions.
- A BW operator installs the wireless relay device 30.
- The wireless relay device 30 is fixed and does not move.
- The wireless relay device 30 relays signals transmitted from only one base station.
- The wireless relay device 30 is capable of receiving and transmitting control signals.
- The wireless relay device 30 operates in half-duplex.
- The wireless relay device 30 operates in a Single-RIS environment.
 (従来の問題点)
 NRリリース18では、ネットワーク制御の無線中継装置に関する研究がなされている。従来の増幅転送リピータとは異なり、ネットワーク制御の無線中継装置は、ビーム/タイミング/DL-UL/ON-OFF/電力の制御が可能である。
(Conventional problems)
In NR Release 18, research is being conducted on network-controlled wireless relay devices. Unlike conventional amplify-forward repeaters, network-controlled wireless repeaters are capable of beam/timing/DL-UL/ON-OFF/power control.
 図9は、無線中継装置が有する機能について説明するための図である。無線中継装置30は、サイドコントロール情報をデコードするための「端末機能」と、増幅して転送するための「中継機能」とを有する。 FIG. 9 is a diagram for explaining the functions that the wireless relay device has. The wireless relay device 30 has a "terminal function" for decoding the side control information and a "relay function" for amplifying and transmitting the side control information.
 無線中継装置30が、「端末機能」と「中継機能(基地局向け)」の同時動作機能を備えていれば、「端末機能」と「中継機能」の時間および周波数リソースを共有でき、端末20の設定も無線中継装置30と共有できる。 If the wireless relay device 30 has the function of simultaneously operating the "terminal function" and "relay function (for base station)", the time and frequency resources of the "terminal function" and "relay function" can be shared, and the terminal 20 The settings can also be shared with the wireless relay device 30.
 また、無線中継装置30が同時動作機能を有しない場合(無線中継装置30の回路/コンポーネント構成など)、「端末機能」と「中継機能(基地局向け)」の時間/周波数リソースを分離する必要がある。 In addition, if the wireless relay device 30 does not have a simultaneous operation function (such as the circuit/component configuration of the wireless relay device 30), it is necessary to separate the time/frequency resources for “terminal function” and “relay function (for base station)”. There is.
 ところで、従来、無線中継装置が基地局との時刻同期、送受信などのタイミング等に関する時間の制御が規定されていないため、無線中継装置による適切な時間の制御が実現できないという問題がある。 By the way, conventionally, there is a problem in that appropriate time control by the wireless relay device cannot be realized because there is no regulation regarding time synchronization of the wireless relay device with the base station, timing of transmission/reception, etc.
 (本実施の形態の概要)
 本実施の形態では、無線中継装置30による時間に関する制御方法について説明する。無線中継装置30の送信タイプは、以下の3つに分類される。
1)アップリンク送信(基地局への端末機能)
2)アップリンク送信(基地局への中継機能)
3)ダウンリンク送信(端末への中継機能)
(Summary of this embodiment)
In this embodiment, a time-related control method by the wireless relay device 30 will be described. The transmission types of the wireless relay device 30 are classified into the following three types.
1) Uplink transmission (terminal function to base station)
2) Uplink transmission (relay function to base station)
3) Downlink transmission (relay function to terminal)
 図10は、本実施の形態に係る時間の制御方法について説明するための図である。具体的には、以下のタイミング関連点を考慮する必要がある。
1)アップリンク受信からアップリンク送信、またはダウンリンク受信からダウンリンク送信間のタイミングギャップ(図10の枠線901参照)
2)基地局10との時刻同期
3)DLとULの境界間の不整合(図10の枠線902参照)
4)DL/UL切り替えタイミング
5)中継機能のアップリンク送信タイミング(基地局10へ)
6)端末20と中継機能間のタイミング調整
FIG. 10 is a diagram for explaining the time control method according to this embodiment. Specifically, the following timing-related points need to be considered.
1) Timing gap between uplink reception and uplink transmission, or between downlink reception and downlink transmission (see box 901 in Figure 10)
2) Time synchronization with the base station 10 3) Mismatch between the DL and UL boundaries (see frame line 902 in FIG. 10)
4) DL/UL switching timing 5) Uplink transmission timing of relay function (to base station 10)
6) Timing adjustment between terminal 20 and relay function
 以下、具体的な実施例として実施例1から実施例7までについて説明する。 Hereinafter, Examples 1 to 7 will be described as specific examples.
 (実施例1)
 本実施例では、無線中継装置30がアップリンク受信からアップリンク送信、またはダウンリンク受信からダウンリンク送信までの間のタイミングギャップを報告する例について説明する。
(Example 1)
In this embodiment, an example will be described in which the wireless relay device 30 reports a timing gap between uplink reception and uplink transmission, or between downlink reception and downlink transmission.
 無線中継装置30は、アップリンク受信からアップリンク送信、またはダウンリンク受信からダウンリンク送信までの間のタイミングギャップを報告してもよい。 The wireless relay device 30 may report a timing gap between uplink reception and uplink transmission, or between downlink reception and downlink transmission.
 図11は、本実施の形態の実施例1に係るタイミングギャップについて説明するための図である。矢印903は、アップリンクのためのタイミングギャップを示す。矢印904は、ダウンリンクのためのタイミングギャップを示す。 FIG. 11 is a diagram for explaining the timing gap according to Example 1 of this embodiment. Arrow 903 indicates the timing gap for the uplink. Arrow 904 indicates the timing gap for the downlink.
 処理時間のため、中継機能のアップリンク受信からアップリンク送信、またはダウンリンク受信からダウンリンク送信の間のタイミングギャップが予想される。 Due to processing time, a timing gap between uplink reception and uplink transmission or downlink reception and downlink transmission of the relay function is expected.
 <オプション0>
 無線中継装置30は、アナログ回路(デコード/エンコード用のデジタル回路なし)しか備えていないため、タイミングギャップを考慮しなくてもよい。したがって、無線中継装置30がアナログ回路の処理時間を考慮する必要はない。
<Option 0>
Since the wireless relay device 30 includes only analog circuits (no digital circuits for decoding/encoding), there is no need to consider timing gaps. Therefore, there is no need for the wireless relay device 30 to consider the processing time of the analog circuit.
 <オプション0-0>
 特にダウンリンクとアップリンクのタイミングギャップが同じ場合、タイミングギャップを伝播遅延に含めることができる。
<Option 0-0>
The timing gap can be included in the propagation delay, especially if the downlink and uplink timing gaps are the same.
 <オプション0-1>
 タイミングギャップは、実装またはOAMによって処理される。
<Option 0-1>
Timing gaps are handled by the implementation or OAM.
 <オプション1>
 タイミングギャップが無線中継装置30によって報告される。例えば、無線中継装置30は、ダウンリンク/アップリンクの一般的なタイミングギャップ、ダウンリンク/アップリンクの分離されたタイミングギャップ、またはダウンリンク/アップリンク間のタイミングギャップの違いを基地局10に報告する。
<Option 1>
Timing gaps are reported by the wireless relay device 30. For example, the wireless relay device 30 reports to the base station 10 a general downlink/uplink timing gap, a downlink/uplink separated timing gap, or a difference in timing gap between downlink/uplink. do.
 無線中継装置30は、タイミングギャップを、UCI/MAC-CE/RRCを介して、または中継機能として報告してもよい。基地局10は、受信した情報を、例えば基地局10/端末20の送信タイミングの調整の目的で使用してもよい。 The wireless relay device 30 may report the timing gap via UCI/MAC-CE/RRC or as a relay function. The base station 10 may use the received information, for example, for the purpose of adjusting the transmission timing of the base station 10/terminal 20.
 本実施例によれば、無線中継装置30は、アップリンク受信からアップリンク送信、またはダウンリンク受信からダウンリンク送信までの間のタイミングギャップを報告することができる。 According to this embodiment, the wireless relay device 30 can report the timing gap between uplink reception and uplink transmission, or between downlink reception and downlink transmission.
 (実施例2)
 本実施例では、無線中継装置30が基地局10との時刻同期を実行する例について説明する。
(Example 2)
In this embodiment, an example will be described in which the wireless relay device 30 performs time synchronization with the base station 10.
 無線中継装置30は、次のオプションを使用して基地局10との時刻同期を実行してもよい。なお、端末機能は、従来の端末手順を使用して、またはOAMによって、または独自のタイムソースによって、基地局10と時刻同期されることを前提としてもよい。 The wireless relay device 30 may perform time synchronization with the base station 10 using the following options. It should be noted that the terminal functionality may be assumed to be time synchronized with the base station 10 using conventional terminal procedures, or by OAM, or by a proprietary time source.
 ダウンリンクとアップリンクの動作を切り替えるために中継機能がダウンリンク/アップリンク境界を導出するには時刻同期が必要である。 Time synchronization is required for the relay function to derive the downlink/uplink boundary in order to switch between downlink and uplink operations.
 <オプション1>
 無線中継装置30は、中継機能を端末機能の時刻同期に従わせるようにしてもよい。特に、端末機能と中継機能でタイムソースを共有する場合は、オプション1が検討され得る。この場合、無線中継装置30は、追加のシグナリングが無いことを想定してもよい。
<Option 1>
The wireless relay device 30 may have the relay function follow the time synchronization of the terminal function. In particular, when the terminal function and the relay function share a time source, option 1 may be considered. In this case, the wireless relay device 30 may assume that there is no additional signaling.
 <オプション2>
 無線中継装置30は、中継機能の時刻同期情報を指示してもよい。例えば、追加の情報は、サイドコントロール情報を介して提供される。無線中継装置30は、基地局10と無線中継装置30との間の伝播遅延を知る必要がある。これにより、無線中継装置30は、伝播遅延自体または伝播遅延の導出情報(T_deltaなど)を呼び出すか、または伝播遅延を導出する(TAおよびT_deltaを使用する)ために、IAB仕様を再利用してもよい。
<Option 2>
The wireless relay device 30 may instruct time synchronization information of the relay function. For example, additional information is provided via side control information. The wireless relay device 30 needs to know the propagation delay between the base station 10 and the wireless relay device 30. This allows the wireless relay device 30 to reuse the IAB specifications in order to call the propagation delay itself or propagation delay derivation information (such as T_delta), or to derive the propagation delay (using TA and T_delta). Good too.
 無線中継装置30は、アップリンク/ダウンリンク境界を導出するために、基地局10の送信時点を知る必要がある。無線中継装置30は、基地局10の送信時点を、端末機能でのダウンリンク受信タイミングと伝播遅延、または独自のタイムソースであるGNSS(Global Navigation Satellite System)(オプション3と同様)によって導出してもよい。または、無線中継装置30は、中継機能の時刻同期のための新しい特定の信号/チャネルが導入されることを想定してもよい。 The radio relay device 30 needs to know the transmission time point of the base station 10 in order to derive the uplink/downlink boundary. The wireless relay device 30 derives the transmission time point of the base station 10 from the downlink reception timing and propagation delay in the terminal function or from its own time source GNSS (Global Navigation Satellite System) (similar to option 3). Good too. Alternatively, the wireless relay device 30 may assume that a new specific signal/channel for time synchronization of the relay function is introduced.
 <オプション3>
 時刻同期は、無線中継装置30の実装次第であってもよい。例えば、無線中継装置30は、独自のタイムソース、GNSS等を使用してもよい。本オプションでは、基地局10と無線中継装置30との間の伝播遅延に関する情報が必要になる場合があり、無線中継装置30は、導出にオプション2を採用してもよい。
<Option 3>
Time synchronization may depend on the implementation of the wireless relay device 30. For example, the wireless relay device 30 may use its own time source, GNSS, etc. This option may require information regarding the propagation delay between the base station 10 and the wireless relay device 30, and the wireless relay device 30 may adopt option 2 for derivation.
 本実施例によれば、無線中継装置30が基地局10との適切な時刻同期を実行することができる。 According to this embodiment, the wireless relay device 30 can perform appropriate time synchronization with the base station 10.
 (実施例3)
 本実施例では、ダウンリンクとアップリンクの境界間の不整合を処理する例について説明する。
(Example 3)
In this embodiment, an example will be described in which mismatch between downlink and uplink boundaries is processed.
 図12は、本実施の形態の実施例3のダウンリンクにおける不整合について説明するための図である。線分905は、アップリンクからダウンリンクへの切り替えのタイミングを示す。線分906は、ダウンリンクからアップリンクへの切り替えのタイミングを示す。 FIG. 12 is a diagram for explaining inconsistency in the downlink in Example 3 of the present embodiment. Line segment 905 indicates the timing of switching from uplink to downlink. Line segment 906 indicates the timing of the downlink to uplink switch.
 無線中継装置30の中継機能において、線分906で示されるダウンリンクからアップリンクへの切り替えのタイミングにおいて、ダウンリンク送信の不整合が発生する可能性がある。 In the relay function of the wireless relay device 30, there is a possibility that inconsistency in downlink transmission may occur at the timing of switching from downlink to uplink indicated by line segment 906.
 図13は、本実施の形態の実施例3のアップリンクにおける不整合について説明するための図である。 FIG. 13 is a diagram for explaining inconsistency in uplink in Example 3 of this embodiment.
 無線中継装置30の中継機能において、線分905で示されるアップリンクからダウンリンクへの切り替えのタイミングにおいて、アップリンク送信の不整合が発生する可能性がある。 In the relay function of the wireless relay device 30, there is a possibility that an inconsistency in uplink transmission may occur at the timing of switching from uplink to downlink indicated by line segment 905.
 無線中継装置30は、ダウンリンクとアップリンクの境界間の不整合を、次の案のいずれかで処理してもよい。特にタイミングギャップが大きい場合、不整合が発生する場合がある。 The wireless relay device 30 may process the mismatch between the downlink and uplink boundaries using one of the following methods. Misalignment may occur, especially if the timing gap is large.
 無線中継装置30は、ダウンリンク/アップリンクフレーム/サブフレーム/スロット/シンボルがアップリンク/ダウンリンクフレーム/サブフレーム/スロット/シンボルとオーバーラップする場合、ダウンリンクとアップリンク境界の間の潜在的な不整合を考慮して、以下の案のいずれかの動作をしてもよい。 When a downlink/uplink frame/subframe/slot/symbol overlaps an uplink/downlink frame/subframe/slot/symbol, the radio relay device 30 determines the potential between the downlink and uplink boundary. Considering the inconsistency, one of the following options may be used.
 <案1>
 無線中継装置30は、オーバーラップ時にダウンリンク動作を行ってもよい。
<Plan 1>
The wireless relay device 30 may perform a downlink operation during overlap.
 <案2>
 無線中継装置30は、オーバーラップ時にアップリンク動作を行ってもよい。
<Plan 2>
The wireless relay device 30 may perform an uplink operation during overlap.
 <案3>
 無線中継装置30は、オーバーラップ時にダウンリンク動作もアップリンク動作も実行しなくてもよい。
<Plan 3>
The wireless relay device 30 does not need to perform either a downlink operation or an uplink operation at the time of overlap.
 <案4>
 無線中継装置30の実装次第であってもよい。無線中継装置30は、タイミングギャップを考慮してスイッチングしてもよい。
<Plan 4>
It may depend on the implementation of the wireless relay device 30. The wireless relay device 30 may perform switching in consideration of timing gaps.
 <案5>
 無線中継装置30は、オーバーラップが無いことを想定してもよい。たとえば、無線中継装置30は、ダウンリンクからアップリンクへの切り替え時、またはアップリンクからダウンリンクへの切り替え時に、ダウンリンクとアップリンクの間にガードシンボルを挿入してもよい。ガードシンボルでは、無線中継装置30はダウンリンク動作もアップリンク動作も実行しない。
<Plan 5>
The wireless relay device 30 may assume that there is no overlap. For example, the radio relay device 30 may insert a guard symbol between the downlink and the uplink when switching from the downlink to the uplink or from the uplink to the downlink. In guard symbols, the wireless relay device 30 performs neither downlink nor uplink operations.
 本実施例によれば、無線中継装置30がDLとULの境界間の不整合を適切に処理することができる。 According to this embodiment, the wireless relay device 30 can appropriately process the mismatch between the DL and UL boundaries.
 (実施例4)
 本実施例では、無線中継装置30がDLとULの動作を切り替える例について説明する。
(Example 4)
In this embodiment, an example will be described in which the wireless relay device 30 switches between DL and UL operations.
 無線中継装置30は以下の情報に基づいてダウンリンクとアップリンクの動作を切り替える。前提として、無線中継装置30はダウンリンク動作とアップリンク動作を同時に動作させることができないため、動作を切り替える必要がある。また、端末機能は、ダウンリンク/アップリンクのTDD構成を示す情報を有していてもよい。 The wireless relay device 30 switches between downlink and uplink operations based on the following information. As a premise, since the wireless relay device 30 cannot perform downlink operation and uplink operation at the same time, it is necessary to switch the operation. Further, the terminal function may have information indicating the downlink/uplink TDD configuration.
 <オプション1>
 中継機能は、中継機能のTDD構成の情報を使用してもよい。または、無線中継装置30は、中継機能と端末機能との間でTDD構成の情報を共有させるようにしてもよい。
<Option 1>
The relay function may use information about the TDD configuration of the relay function. Alternatively, the wireless relay device 30 may share TDD configuration information between the relay function and the terminal function.
 例えば、TDD構成の情報は、DCIフォーマット2_0における"TDD-config-common"、"TDD-config-dedicated"などであってもよい。 For example, the TDD configuration information may be "TDD-config-common", "TDD-config-dedicated", etc. in DCI format 2_0.
 本オプションの場合、無線中継装置30は、追加のシグナリングが無いことを想定してもよい。 In the case of this option, the wireless relay device 30 may assume that there is no additional signaling.
 <オプション2>
 無線中継装置30は、中継機能用の新しい個別のTDD構成が追加されることを想定してもよい。
<Option 2>
The wireless relay device 30 may assume that a new separate TDD configuration for the relay function is added.
 無線中継装置30は、追加情報がサイドコントロール情報を介して提供されることを想定してもよい。中継機能のTDD構成は、端末機能のTDD構成と同じであってもよい。例えば、IAB-MTの場合、IAB固有のTDD構成(tdd-UL-DL-ConfigurationDedicated-IAB-MT)をIAB-MTに指示することができるため、当該設定(またはTDD-config-common、TDD-config-dedicated、およびtdd-UL-DL-ConfigurationDedicated-IAB-MTによって導出される特別なTDDパターン)が無線中継装置30に指示されてもよい。 The wireless relay device 30 may assume that additional information is provided via side control information. The TDD configuration of the relay function may be the same as the TDD configuration of the terminal function. For example, in the case of IAB-MT, it is possible to instruct IAB-MT to specify the IAB-specific TDD configuration (tdd-UL-DL-ConfigurationDedicated-IAB-MT). config-dedicated, and a special TDD pattern derived by tdd-UL-DL-ConfigurationDedicated-IAB-MT) may be instructed to the wireless relay device 30.
 <オプション3>
 ダウンリンク/アップリンクスイッチングタイミングが表示されてもよい。無線中継装置30は、ダウンリンク/アップリンクスイッチング時間が直接指示されることを想定してもよい。例えば、無線中継装置30は、10002(0:切り替えなし、1:アップリンクからUD、2:UDからアップリンク)のように指示される。そして、無線中継装置30は、指示された時間リソース(スロット/シンボル/サブフレーム/フレーム)の開始/終了時に動作を切り替えてもよい。
<Option 3>
Downlink/uplink switching timing may be displayed. The wireless relay device 30 may assume that the downlink/uplink switching time is directly instructed. For example, the wireless relay device 30 is instructed as 10002 (0: no switching, 1: uplink to UD, 2: UD to uplink). Then, the wireless relay device 30 may switch the operation at the start/end of the instructed time resource (slot/symbol/subframe/frame).
 本実施例によれば、無線中継装置30がDLとULの動作を適切に切り替えることができる。 According to this embodiment, the wireless relay device 30 can appropriately switch between DL and UL operations.
 (実施例5)
 本実施例では、無線中継装置30がアップリンク送信タイミングを決定する例について説明する。
(Example 5)
In this embodiment, an example will be described in which the wireless relay device 30 determines uplink transmission timing.
 無線中継装置30のアップリンク送信タイミングは、次のオプションによって導き出される。なお、無線中継装置30が機能にアナログデバイスのみを使用しているため、無線中継装置30が中継機能のアップリンクおよびダウンリンク送信タイミングを制御するのは難しい場合がある。したがって、本実施例は、無線中継装置30が中継機能のアップリンクタイミングを制御できる場合に有用である。 The uplink transmission timing of the wireless relay device 30 is derived by the following option. Note that since the wireless relay device 30 uses only analog devices for its functions, it may be difficult for the wireless relay device 30 to control uplink and downlink transmission timing of the relay function. Therefore, this embodiment is useful when the wireless relay device 30 can control the uplink timing of the relay function.
 無線中継装置30は、端末機能のアップリンク送信タイミングが従来のTA(Timing Advance)で制御されることを想定してもよい。 The wireless relay device 30 may assume that the uplink transmission timing of the terminal function is controlled by conventional TA (Timing Advance).
 <オプション1>
 中継機能は、端末機能のアップリンク送信タイミングに従ってもよい。単一のTAループが無線中継装置30(または無線中継装置30の端末機能)に使用される。無線中継装置30は、端末機能と中継機能が指示に従うことを想定してもよい。この場合、無線中継装置30は、端末機能と中継機能の送信タイミングが一致していることを想定してもよい。なお、この場合、無線中継装置30は、追加のシグナリングが無いことを想定してもよい。
<Option 1>
The relay function may follow the uplink transmission timing of the terminal function. A single TA loop is used for the wireless relay device 30 (or the terminal function of the wireless relay device 30). The wireless relay device 30 may assume that the terminal function and relay function follow the instructions. In this case, the wireless relay device 30 may assume that the transmission timings of the terminal function and the relay function match. Note that in this case, the wireless relay device 30 may assume that there is no additional signaling.
 <オプション2>
 無線中継装置30は、端末機能の送信タイミング情報に加えて、中継機能の送信タイミング情報が指示されることを想定してもよい。無線中継装置30は、端末機能と中継機能に複数のTAループを想定してもよい。無線中継装置30が端末機能と中継機能の送信タイミングを調整する必要がある場合、端末機能は、端末機能のアップリンク送信タイミングに従ってもよい。
<Option 2>
The wireless relay device 30 may assume that in addition to the transmission timing information of the terminal function, transmission timing information of the relay function is instructed. The wireless relay device 30 may assume a plurality of TA loops for the terminal function and the relay function. If the wireless relay device 30 needs to coordinate the transmission timing of the terminal function and the relay function, the terminal function may follow the uplink transmission timing of the terminal function.
 本実施例によれば、無線中継装置30がアップリンク送信タイミングを適切に決定することができる。 According to this embodiment, the wireless relay device 30 can appropriately determine the uplink transmission timing.
 (実施例6)
 本実施例では、無線中継装置30が中継機能と端末機能のアップリンク送信タイミングを合わせる例について説明する。
(Example 6)
In this embodiment, an example will be described in which the wireless relay device 30 synchronizes the uplink transmission timing of the relay function and the terminal function.
 無線中継装置30は、中継機能と端末機能のアップリンク送信タイミングを以下のオプションのいずれかのように整合させるようにしてもよい。中継機能のアップリンク送信タイミングは、中継機能のアップリンク受信タイミング次第であってもよい。すなわち、ネクストホップUEのアップリンク送信タイミングに依存する。中継機能と端末機能のアップリンク送信タイミングを合わせるには、ネクストホップUEのアップリンク送信タイミングが重要である。 The wireless relay device 30 may match the uplink transmission timing of the relay function and the terminal function as in any of the following options. The relay function's uplink transmission timing may depend on the relay function's uplink reception timing. That is, it depends on the uplink transmission timing of the next hop UE. In order to match the uplink transmission timings of the relay function and the terminal function, the uplink transmission timing of the next hop UE is important.
 図14は、本実施の形態の実施例6のタイミングの整合について説明するための図である。 FIG. 14 is a diagram for explaining timing alignment in Example 6 of this embodiment.
 <オプション0>
 無線中継装置30の端末機能とネクストホップUEとは、従来のTAメカニズムに従ってもよい。基地局10は、無線中継装置30の端末機能とネクストホップUEの送信タイミングを制御して、同じタイミングで信号を受信してもよい。
<Option 0>
The terminal function of the radio relay device 30 and the next hop UE may follow a conventional TA mechanism. The base station 10 may control the terminal function of the radio relay device 30 and the transmission timing of the next hop UE, and receive the signals at the same timing.
 基地局10と無線中継装置30(端末機能と中継機能の両方)との間の伝播遅延は一定である可能性があるため、端末機能と中継機能の送信タイミングを調整してもよい。 Since the propagation delay between the base station 10 and the wireless relay device 30 (both the terminal function and the relay function) may be constant, the transmission timing of the terminal function and the relay function may be adjusted.
 <オプション1>
 基地局10は、追加情報を使用してネクストホップUEへの送信タイミングを指示してもよい。例えば、基地局10は、無線中継装置30のアップリンク送信時間(従来のTAメカニズムに基づいて制御)と無線中継装置30と端末20との間の伝播遅延に基づいて、ネクストホップUEのアップリンク送信タイミングを制御してもよい。
<Option 1>
Base station 10 may use the additional information to indicate transmission timing to the next hop UE. For example, the base station 10 determines the uplink transmission time of the next hop UE based on the uplink transmission time of the wireless relay device 30 (controlled based on a conventional TA mechanism) and the propagation delay between the wireless relay device 30 and the terminal 20. The transmission timing may also be controlled.
 ネクストホップUEの(1/2)TAは、伝播遅延(基地局10-無線中継装置30間)と伝播遅延(無線中継装置30-端末20間)の合計を表してもよい。伝播遅延(無線中継装置30-端末20間)は、基地局10への無線中継装置30/端末20および無線中継装置30/端末20レポートによって導出されてもよい。 The (1/2) TA of the next hop UE may represent the sum of the propagation delay (between the base station 10 and the radio relay device 30) and the propagation delay (between the radio relay device 30 and the terminal 20). The propagation delay (between the wireless relay device 30 and the terminal 20) may be derived from the wireless relay device 30/terminal 20 and wireless relay device 30/terminal 20 reports to the base station 10.
 <オプション2>
 (無線中継装置30の送信タイミングを制御できる場合)実施例4が採用され得る。
<Option 2>
(If the transmission timing of the wireless relay device 30 can be controlled) Embodiment 4 may be adopted.
 本実施例によれば、無線中継装置30が中継機能と端末機能のアップリンク送信タイミングを合わせることができる。 According to this embodiment, the wireless relay device 30 can synchronize the uplink transmission timing of the relay function and the terminal function.
 (実施例7)
 本実施例では、無線中継装置30がタイミング関連情報の機能を報告する例について説明する。
(Example 7)
In this embodiment, an example will be described in which the wireless relay device 30 reports the function of timing-related information.
 無線中継装置30は、例えば次に示すようなタイミング関連情報の能力情報を、基地局10などに報告してもよい。
・タイミング関連パラメータのサイドコントロール情報の機能
・アップリンク送信タイミングを制御する機能
The radio relay device 30 may report, for example, the following timing-related information capability information to the base station 10 or the like.
- Function of side control information for timing-related parameters - Function to control uplink transmission timing
 無線中継装置30は、例えば次に示すようなサポートする周波数帯域を示す能力情報を、基地局10などに報告してもよい。
・すべての周波数帯に単一の機能(無線中継装置30としての機能)
・周波数帯域ごとの機能
・周波数範囲ごとの機能(例えばFR1/FR2)
The radio relay device 30 may report capability information indicating supported frequency bands as shown below to the base station 10, for example.
・Single function for all frequency bands (function as wireless relay device 30)
・Functions for each frequency band ・Functions for each frequency range (e.g. FR1/FR2)
 無線中継装置30は、例えば次に示すようなサポートする複信方式を示す能力情報を、基地局10などに報告してもよい。
・すべての複信方式のための単一の機能(無線中継装置30としての機能)
・複信方式ごとの機能(例えばTDD/FDD)
The radio relay device 30 may report capability information indicating supported duplex methods as shown below to the base station 10, for example.
- Single function for all duplex methods (function as wireless relay device 30)
・Functions for each duplex method (e.g. TDD/FDD)
 本実施例によれば、無線中継装置30がタイミング関連情報の機能を報告することができる。 According to this embodiment, the wireless relay device 30 can report the function of timing-related information.
 本実施の形態の無線中継装置および基地局は、下記の各項に示す無線中継装置および基地局として構成されてもよい。また、下記の無線中継方法が実施されてもよい。 The wireless relay device and base station of this embodiment may be configured as the wireless relay device and base station shown in each section below. Additionally, the following wireless relay method may be implemented.
 <本実施の形態に関する構成>
(第1項)
 下り無線信号または上り無線信号を中継する通信部と、
 前記下り無線信号または前記上り無線信号の受信から送信におけるタイミングギャップを基地局に報告する送信部と、を備える、
 無線中継装置。
(第2項)
 中継機能における前記基地局との時刻同期を実行する制御部をさらに備える、
 第1項に記載の無線中継装置。
(第3項)
 前記制御部は、ダウンリンクとアップリンクの境界間の不整合を処理する、
 第2項に記載の無線中継装置。
(第4項)
 前記制御部は、時分割複信の構成を示す情報に基づいて、ダウンリンクとアップリンクの動作を切り替える、
 第2項または第3項に記載の無線中継装置。
(第5項)
 下り無線信号を無線中継装置に送信する通信部と、
 前記下り無線信号または前記上り無線信号の受信から送信におけるタイミングギャップを示す情報を前記無線中継装置から受信する受信部と、
 前記タイミングギャップに示す情報に基づいて、前記無線中継装置が中継機能における時刻同期を実行することを想定する制御部と、を備える、
 基地局。
(第6項)
 下り無線信号または上り無線信号を中継するステップと、
 前記下り無線信号または前記上り無線信号の受信から送信におけるタイミングギャップを基地局に報告するステップと、を備える、
 無線中継装置が実行する無線中継方法。
<Configuration related to this embodiment>
(Section 1)
a communication unit that relays downlink radio signals or uplink radio signals;
a transmitter that reports to a base station a timing gap between reception and transmission of the downlink radio signal or the uplink radio signal;
Wireless relay device.
(Section 2)
further comprising a control unit that executes time synchronization with the base station in a relay function;
The wireless relay device according to item 1.
(Section 3)
The control unit processes inconsistencies between downlink and uplink boundaries;
The wireless relay device according to item 2.
(Section 4)
The control unit switches between downlink and uplink operations based on information indicating a time division duplex configuration.
The wireless relay device according to item 2 or 3.
(Section 5)
a communication unit that transmits a downlink wireless signal to a wireless relay device;
a receiving unit that receives information indicating a timing gap between reception and transmission of the downlink radio signal or the uplink radio signal from the radio relay device;
a control unit that assumes that the wireless relay device executes time synchronization in a relay function based on information indicated in the timing gap;
base station.
(Section 6)
Relaying the downstream wireless signal or the upstream wireless signal;
reporting a timing gap between reception and transmission of the downlink radio signal or the uplink radio signal to a base station;
A wireless relay method performed by a wireless relay device.
 上記構成のいずれによっても、無線中継装置による適切な時間の制御を実現させることを可能とする技術が提供される。第1項によれば、下り無線信号または上り無線信号の受信から送信におけるタイミングギャップを基地局に報告することができる。第2項に中継機能における基地局との時刻同期を実行することができる。第3項によれば、ダウンリンクとアップリンクの境界間の不整合を処理することができる。第4項によれば、時分割複信の構成を示す情報に基づいて、ダウンリンクとアップリンクの動作を切り替えることができる。 Any of the above configurations provides a technique that allows the wireless relay device to implement appropriate time control. According to the first clause, a timing gap between reception and transmission of a downlink radio signal or an uplink radio signal can be reported to the base station. In the second term, time synchronization with the base station can be performed in the relay function. According to the third term, mismatches between downlink and uplink boundaries can be handled. According to the fourth item, downlink and uplink operations can be switched based on the information indicating the time division duplex configuration.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図2、図3及び図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 2, 3, and 4) used to explain the above embodiments show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20及び無線中継装置30等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、本開示の一実施の形態に係る基地局10、端末20及び無線中継装置30のハードウェア構成の一例を示す図である。上述の基地局10、端末20及び無線中継装置30は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, terminal 20, wireless relay device 30, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 15 is a diagram illustrating an example of the hardware configuration of the base station 10, terminal 20, and wireless relay device 30 according to an embodiment of the present disclosure. The base station 10, terminal 20, and wireless relay device 30 described above are physically computers that include a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. It may be configured as a device.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 基地局10、端末20及び無線中継装置30における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10, terminal 20, and wireless relay device 30 is performed by the processor 1001 and the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. This is realized by controlling communication by the storage device 1002 and at least one of data writing in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, the above-described control unit 140, control unit 240, etc. may be implemented by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図2に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図3に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 140 of the base station 10 shown in FIG. 2 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Further, for example, the control unit 240 of the terminal 20 shown in FIG. 3 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Although the various processes described above have been described as being executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured. The storage device 1002 may be called a register, cache, main memory, or the like. The storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. The above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of. For example, a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission line interface, etc. may be realized by the communication device 1004. The transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 さらに、無線中継装置30は、可変部340及びアンテナ部350を構成するハードウェアとして、可変位相器、移相器、アンプ、アンテナ、アレイアンテナ等を必要に応じて有してもよい。 Further, the radio relay device 30 may include a variable phase shifter, a phase shifter, an amplifier, an antenna, an array antenna, etc. as hardware that constitutes the variable section 340 and the antenna section 350, as necessary.
 図16に車両2001の構成例を示す。図16に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 FIG. 16 shows an example of the configuration of the vehicle 2001. As shown in FIG. 16, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013. Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカー、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
 情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021-2029からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021-2029、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 2013 receives signals from the various sensors 2021 to 2029 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 2010, various sensors 2021-2029, information service unit 2012, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001. The information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
 また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 also stores various information received from external devices into a memory 2032 that can be used by the microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary information on the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, etc. Probably. Although the invention has been explained using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, these numerical values are merely examples, and any appropriate values may be used. The classification of items in the above explanation is not essential to the present invention, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another item. may be applied to the matters described in (unless inconsistent). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical components. The operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components. Regarding the processing procedures described in the embodiments, the order of processing may be changed as long as there is no contradiction. Although the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of process description, such devices may be implemented in hardware, software, or a combination thereof. Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these. The present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this specification, specific operations performed by the base station 10 may be performed by its upper node in some cases. In a network consisting of one or more network nodes including a base station 10, various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to). Although the case where there is one network node other than the base station 10 is illustrated above, the other network node may be a combination of multiple other network nodes (for example, MME and S-GW). .
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements may be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)," "wireless base station," "base station," "fixed station," "NodeB," "eNodeB (eNB)," and "gNodeB ( gNB)”, “access point”, “transmission point”, “reception point”, “transmission/reception point”, “cell”, “sector”, Terms such as "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In the present disclosure, the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft. , including, but not limited to, airplanes, rockets, artificial satellites, drones (registered trademarks), multicopters, quadcopters, balloons, and objects mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good. Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 20 may have the functions that the base station 10 described above has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station may have the functions that the user terminal described above has.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (e.g., accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" refer to resolving, selecting, choosing, establishing, comparing, etc. as "judgment" and "decision". may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, refer to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. It's okay. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on newerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP) (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured for the terminal 20 within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、特許請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
 本特許出願は2022年5月12日に出願した日本国特許出願第2022-079108号に基づきその優先権を主張するものであり、日本国特許出願第2022-079108号の全内容を本願に援用する。 This patent application claims priority based on Japanese Patent Application No. 2022-079108 filed on May 12, 2022, and the entire content of Japanese Patent Application No. 2022-079108 is incorporated into this application. do.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)
10 Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port (IO port)

Claims (6)

  1.  下り無線信号または上り無線信号を中継する通信部と、
     前記下り無線信号または前記上り無線信号の受信から送信におけるタイミングギャップを基地局に報告する送信部と、を備える、
     無線中継装置。
    a communication unit that relays downlink radio signals or uplink radio signals;
    a transmitter that reports to a base station a timing gap between reception and transmission of the downlink radio signal or the uplink radio signal;
    Wireless relay device.
  2.  中継機能における前記基地局との時刻同期を実行する制御部をさらに備える、
     請求項1に記載の無線中継装置。
    further comprising a control unit that executes time synchronization with the base station in a relay function;
    The wireless relay device according to claim 1.
  3.  前記制御部は、ダウンリンクとアップリンクの境界間の不整合を処理する、
     請求項2に記載の無線中継装置。
    The control unit processes inconsistencies between downlink and uplink boundaries;
    The wireless relay device according to claim 2.
  4.  前記制御部は、時分割複信の構成を示す情報に基づいて、ダウンリンクとアップリンクの動作を切り替える、
     請求項2に記載の無線中継装置。
    The control unit switches between downlink and uplink operations based on information indicating a time division duplex configuration.
    The wireless relay device according to claim 2.
  5.  下り無線信号を無線中継装置に送信する通信部と、
     前記下り無線信号または前記上り無線信号の受信から送信におけるタイミングギャップを示す情報を前記無線中継装置から受信する受信部と、
     前記タイミングギャップに示す情報に基づいて、前記無線中継装置が中継機能における時刻同期を実行することを想定する制御部と、を備える、
     基地局。
    a communication unit that transmits a downlink wireless signal to a wireless relay device;
    a receiving unit that receives information indicating a timing gap between reception and transmission of the downlink radio signal or the uplink radio signal from the radio relay device;
    a control unit that assumes that the wireless relay device executes time synchronization in a relay function based on information indicated in the timing gap;
    base station.
  6.  下り無線信号または上り無線信号を中継するステップと、
     前記下り無線信号または前記上り無線信号の受信から送信におけるタイミングギャップを基地局に報告するステップと、を備える、
     無線中継装置が実行する無線中継方法。
    Relaying the downstream wireless signal or the upstream wireless signal;
    reporting a timing gap between reception and transmission of the downlink radio signal or the uplink radio signal to a base station;
    A wireless relay method performed by a wireless relay device.
PCT/JP2023/015365 2022-05-12 2023-04-17 Wireless repeater, base station, and wireless repeating method WO2023218866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022079108 2022-05-12
JP2022-079108 2022-05-12

Publications (1)

Publication Number Publication Date
WO2023218866A1 true WO2023218866A1 (en) 2023-11-16

Family

ID=88730216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015365 WO2023218866A1 (en) 2022-05-12 2023-04-17 Wireless repeater, base station, and wireless repeating method

Country Status (1)

Country Link
WO (1) WO2023218866A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009410A (en) * 2012-08-22 2013-01-10 Fujitsu Ltd Wireless relay communication method, wireless base station, and wireless relay station
JP2019071690A (en) * 2019-02-08 2019-05-09 株式会社東芝 Communication relay system, master station device, slave station device, control method, and program
WO2021003112A1 (en) * 2019-06-30 2021-01-07 Mixcomm, Inc. Repeater methods and apparatus
WO2021053816A1 (en) * 2019-09-20 2021-03-25 ソフトバンク株式会社 Relay device, relay method, and relay system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009410A (en) * 2012-08-22 2013-01-10 Fujitsu Ltd Wireless relay communication method, wireless base station, and wireless relay station
JP2019071690A (en) * 2019-02-08 2019-05-09 株式会社東芝 Communication relay system, master station device, slave station device, control method, and program
WO2021003112A1 (en) * 2019-06-30 2021-01-07 Mixcomm, Inc. Repeater methods and apparatus
WO2021053816A1 (en) * 2019-09-20 2021-03-25 ソフトバンク株式会社 Relay device, relay method, and relay system

Similar Documents

Publication Publication Date Title
WO2023105802A1 (en) Wireless relay device, base station, and wireless relay method
WO2023218866A1 (en) Wireless repeater, base station, and wireless repeating method
WO2023209922A1 (en) Wireless relay device, base station, and wireless relay method
WO2023209924A1 (en) Wireless relay device, base station, and wireless relay method
WO2023209923A1 (en) Wireless relay device, base station, and wireless relay method
WO2023209905A1 (en) Radio relay device and communication method
WO2023209921A1 (en) Wireless relay device, base station, and wireless relay method
WO2024038597A1 (en) Radio relay device and radio relay method
WO2024038596A1 (en) Wireless relay device and wireless relay method
WO2024018610A1 (en) Wireless relay device and communication method
WO2023181378A1 (en) Radio relaying device and communication method
WO2023181377A1 (en) Radio relay device and communication method
WO2024080018A1 (en) Wireless relay device and wireless relay method
WO2023067818A1 (en) Radio relay device and communication method
WO2023073963A1 (en) Base station and communication method
WO2023119533A1 (en) Wireless relay device, communication device, and wireless relay method
WO2023145031A1 (en) Radio relay device and communication method
WO2023105803A1 (en) Communication device, base station, and communication method
WO2023119534A1 (en) Radio relay device, communication device, and radio relay method
WO2023175940A1 (en) Wireless relay device, base station, and wireless relay method
WO2023145029A1 (en) Wireless relay device and communication method
WO2023145030A1 (en) Radio relay device and communication method
WO2023127063A1 (en) Wireless relay device, communication device, and wireless relay method
WO2023105804A1 (en) Wireless relay device, base station, and wireless relay method
WO2023112106A1 (en) Wireless relay device and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803348

Country of ref document: EP

Kind code of ref document: A1