WO2024080005A1 - 給電システム、給電装置、及び、給電方法 - Google Patents

給電システム、給電装置、及び、給電方法 Download PDF

Info

Publication number
WO2024080005A1
WO2024080005A1 PCT/JP2023/030601 JP2023030601W WO2024080005A1 WO 2024080005 A1 WO2024080005 A1 WO 2024080005A1 JP 2023030601 W JP2023030601 W JP 2023030601W WO 2024080005 A1 WO2024080005 A1 WO 2024080005A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
power
antennas
phase
antenna
Prior art date
Application number
PCT/JP2023/030601
Other languages
English (en)
French (fr)
Inventor
正明 藤井
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2024080005A1 publication Critical patent/WO2024080005A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • the present invention relates to a power supply system, a power supply device, and a power supply method.
  • a power supply device having a first detection means for detecting the direction of a power receiving device, a first emission for wirelessly emitting the power supply in the direction of the power receiving device detected by the first detection means, and a control means for controlling a radiation unit for emitting the power supply so as to perform a second emission for wirelessly emitting the power supply while changing the direction of the power supply within a specified range (see, for example, Patent Document 1).
  • conventional power supply devices radiate power to a power receiving device by performing a first radiation and a second radiation, but do not disclose how to quickly set a phase that can increase the received power of the power receiving device.
  • the objective is to provide a power supply system, power supply device, and power supply method that can quickly set a phase that can increase the received power of a power receiving device.
  • a power supply system is a power supply system including a power supply device and a power receiving device that receives a power transmission signal transmitted from the power supply device, the power supply device having an array antenna having a plurality of antennas capable of transmitting power, and a power transmission control unit that controls the phase of the power transmission signal transmitted from the plurality of antennas to the power receiving device and performs power transmission control, the power transmission control unit selecting one of a plurality of first antennas included in the plurality of antennas, and in a state in which a first power transmission signal is transmitted by fixing the transmission potential phase of a non-selected first antenna among the plurality of first antennas, a first power transmission process of transmitting a first power transmission signal of a predetermined phase from the selected first antenna, and a first power transmission signal of an inverted phase obtained by inverting the predetermined phase to the selected first antenna, A second power transmission process is performed by selecting the multiple first antennas one by one, and the power receiving device obtains a difference signal between a first composite
  • FIG. 1 is a diagram illustrating a power supply device 100 according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of a specific device 50A.
  • FIG. 2 is a diagram showing the configuration of a control device 140.
  • FIG. 2 is a diagram illustrating an example of a frame structure.
  • FIG. 11 is a diagram illustrating an example of an optimization process.
  • 11 is a diagram illustrating a receiving potential phase of a power transmission signal received by a specific device 50A.
  • FIG. 11 is a diagram illustrating a receiving potential phase of a power transmission signal received by a specific device 50A.
  • FIG. 11 is a diagram illustrating a receiving potential phase of a power transmission signal received by a specific device 50A.
  • FIG. 11 is a diagram illustrating a receiving potential phase of a power transmission signal received by a specific device 50A.
  • FIG. 11 is a diagram illustrating a receiving potential phase of a power transmission signal received by a specific device 50A.
  • FIG. 11 is a diagram illustrating a receiving potential phase of a power transmission signal received by a specific device 50A.
  • FIG. FIG. 11 is a diagram showing an example of a ranking result.
  • 11 is a flowchart showing an example of a process executed by a control device 140 and a specific device 50A of the power supply system 300.
  • FIG. 13 is a diagram for explaining an example of simulation conditions.
  • FIG. 13 is a diagram showing an example of a simulation result regarding received power when power is transmitted by random beamforming for comparison.
  • FIG. 13 is a diagram showing an example of a simulation result of the power supply system 300.
  • FIG. 10A and 10B are diagrams illustrating an example of an optimization process in a power supply system 300 according to a modified example of the embodiment.
  • 13 is a diagram illustrating a potential receiving phase of a power transmission signal received by a specific device 50A in a modified example of the embodiment.
  • FIG. 13 is a diagram illustrating a potential receiving phase of a power transmission signal received by a specific device 50A in a modified example of the embodiment.
  • FIG. 13 is a diagram illustrating a potential receiving phase of a power transmission signal received by a specific device 50A in a modified example of the embodiment.
  • FIG. 13 is a diagram illustrating a potential receiving phase of a power transmission signal received by a specific device 50A in a modified example of the embodiment.
  • FIG. 13 is a diagram illustrating a potential receiving phase of a power transmission signal received by a specific device 50A in a modified example of the embodiment.
  • FIG. 13 is a diagram illustrating a potential receiving phase of a power transmission signal received by a
  • FIG. 13 is a diagram illustrating a potential receiving phase of a power transmission signal received by a specific device 50A in a modified example of the embodiment.
  • FIG. FIG. 11 is a diagram illustrating an example of a simulation result of the power supply system 300 according to the modified example of the embodiment.
  • FIG. 1 is a diagram showing a power supply system 300 according to an embodiment.
  • the power supply system 300 includes a power supply apparatus 100 and a specific device 50A.
  • the specific device 50A is an example of a power receiving apparatus.
  • an XYZ coordinate system is used for explanation.
  • a planar view refers to an XY planar view.
  • the power supply system 300 may also include the power supply apparatus 100 and a plurality of devices 50.
  • the plurality of devices 50 includes a specific device 50A and a plurality of non-specific devices 50B other than the specific device 50A.
  • the power supply device 100 is placed in an area 10 of a large facility such as a smart factory, a large-scale plant, a logistics center, or a warehouse, for example.
  • the power supply device 100 includes an array antenna 110, a phase shifter 120, an IC chip 125, a microwave generating source 130, and a control device 140, and supplies power (microwave power) to a plurality of devices 50 present in the area 10 in a non-contact manner.
  • the power supply method of the embodiment is a power supply method realized by the power supply device 100, and is particularly realized by the processing executed by the control device 140.
  • the power supply device 100 When feeding power to an unspecified number of devices 50, the power supply device 100 causes the array antenna 110 to transmit power by beamforming.
  • the multiple antenna elements 111 of the array antenna 110 can transmit with a transmission potential phase specified by a power transmission control unit described later.
  • a standing wave is generated in the area 10 by the beam formed from the multiple antenna output signals, and almost no power is supplied to the device 50 located at the node position of the standing wave.
  • the power supply device 100 randomly shifts the phase of the multiple power transmission signals output from the multiple antenna elements 111 in a time series so that the node of the standing wave does not occur in a specific location for a long time.
  • the phase of the power transmission signal is shifted according to the time slot.
  • the power transmission signal is a signal transmitted (transmitted) from the antenna element 111, and is an RF (Radio Frequency) signal having a predetermined power.
  • the frequency of the transmission signal is, for example, 918 MHz.
  • This method of transmitting power using beams formed by randomly shifting the phases of multiple transmission signals output from multiple antenna elements 111 according to time slots is referred to as random beamforming below.
  • a device 50 that requires more receiving power to charge its internal battery 54 there may be a device 50 that requires more receiving power to charge its internal battery 54.
  • a specific device 50A Such a device 50 that requires more receiving power is referred to as a specific device 50A.
  • one device 50 at a certain point in time is shown as a specific device 50A.
  • the specific device 50A mainly receives power from a plurality of antenna elements 111 included in the antenna subset 110A among the plurality of antenna elements 111. This is because the battery 54 of the specific device 50A can be charged more quickly by transmitting power more intensively than with random beamforming.
  • the antenna element 111 included in the antenna subset 110A is an example of a first antenna.
  • the antenna element 111 not included in the antenna subset 110A is an example of a second antenna.
  • the power transmission signal transmitted by the antenna element 111 included in the antenna subset 110A is an example of a first power transmission signal
  • the power transmission signal transmitted by the antenna element 111 not included in the antenna subset 110A is an example of a second power transmission signal.
  • the phase of the power transmission from the multiple antenna elements 111 included in the antenna subset 110A to the specific device 50A is set for each frame.
  • the antenna subset 110A includes four antenna elements 111.
  • the antenna subset 110A and the phase shift of the power transmission signal to the specific device 50A will be described later.
  • non-specific devices 50B devices other than the specific device 50A are referred to as non-specific devices 50B. All devices 50 can become specific devices 50A depending on the situation. When the battery 54 is sufficiently charged, the specific device 50A no longer receives concentrated power supply from the antenna subset 110A, and becomes a non-specific device 50B. The non-specific device 50B receives power transmission by random beamforming from the antenna elements 111 that include the antenna subset 110A.
  • the specific device 50A may be mounted on a mobile body that can be remotely managed, such as an Automatic Guided Vehicle (AGV) or an Autonomous Mobile Robot (AMR), and may be mobile. All of the multiple devices 50 may be mounted on such a mobile body and may be capable of becoming a specific device 50A depending on the situation, or only some of the multiple devices 50 may be mounted on such a mobile body and may be capable of becoming a specific device 50A depending on the situation.
  • AGV Automatic Guided Vehicle
  • AMR Autonomous Mobile Robot
  • the power supply device 100 is a power supply device that can transmit power to the non-specific device 50B by random beamforming and transmit power from the antenna subset 110A to the specific device 50A.
  • the specific device 50A and the non-specific device 50B they will simply be referred to as device 50.
  • ⁇ Configuration of specific device 50A> 2 is a diagram showing an example of the configuration of a specific device 50A.
  • the specific device 50A has an antenna 51, a switch SW, a control unit 52, an RF/DC (Direct Current) conversion unit 53, a battery 54, a quadrature detection unit 55, a calculation unit 56, an angle conversion unit 57, and a communication unit 58.
  • the communication unit 58 has an antenna 58A.
  • the antenna 51 is an antenna for receiving power from one or more antenna elements 111.
  • the antenna 51 outputs the received power to the switch SW.
  • the switch SW is switched by the control unit 52 to switch the connection destination of the antenna 51 to either the RF/DC conversion unit 53 or the quadrature detection unit 55.
  • the control unit 52 switches the switch SW between the optimization period and the power supply period in each frame.
  • the control unit 52 switches the switch SW to connect to the quadrature detection unit 55 during the optimization period, and switches the switch SW to connect to the RF/DC conversion unit 53 during the power supply period.
  • control unit 52 causes the quadrature detection unit 55, the calculation unit 56, the angle conversion unit 57, and the communication unit 58 to transmit data representing the angle obtained from the differential signal to the control device 140 of the power supply device 100.
  • control unit 52 performs charging control to charge the battery 54 with the power received from the antenna element 111 via the antenna 51.
  • the battery 54 is, for example, a secondary battery or a capacitor, and is charged with power supplied from the antenna 51.
  • the power charged in the battery 54 is used when the switch SW, the control unit 52, the RF/DC conversion unit 53, the quadrature detection unit 55, the calculation unit 56, the angle conversion unit 57, and the communication unit 58 operate.
  • a load that consumes power may be connected to the battery 54.
  • the load may be a sensor that detects temperature, humidity, etc., in which case the device 50 can be treated as a sensor device.
  • the load may also be a power source such as a motor or actuator, and the device 50 may be a device that performs dynamic work.
  • the power charged by the battery 54 can be used as power to drive the motor or other power source of the vehicle as a load, or a control unit, etc.
  • the RF/DC conversion unit 53 is a converter (conversion circuit) that converts the transmission signal (RF signal) received by the antenna 51 into DC power and outputs it to the battery 54.
  • the quadrature detection unit 55 demodulates the transmission signal received by the antenna 51 to extract phase information, and outputs it to the calculation unit 56.
  • the phase information extracted by the quadrature detection unit 55 represents the phase of the transmission signal received by the antenna 51.
  • the calculation unit 56 performs subtraction processing to obtain a differential signal based on the phase represented by the phase information extracted by the quadrature detection unit 55.
  • the subtraction processing will be described later.
  • the angle conversion unit 57 converts the difference signal calculated by the calculation unit 56 into an angle in the IQ coordinate system, and outputs angle data representing the angle to the communication unit 58.
  • the communication unit 58 transmits the angle data output from the angle conversion unit 57 to the power supply device 100 from the antenna 58A.
  • a device 50 that does not become a specific device 50A and functions only as a non-specific device 50B does not need to have the switch SW, the quadrature detection unit 55, the calculation unit 56, the angle conversion unit 57, and the communication unit 58, and the control unit 52 only needs to control the charging of the battery 54.
  • the array antenna 110 is an example of a two-dimensional antenna grid, and includes antenna elements 111 arranged in a matrix, for example. For example, there are 256 antenna elements 111, with 16 in the X direction and 16 in the Y direction. The 256 antenna elements 111 are positioned on the XY plane.
  • Each antenna element 111 is connected to the microwave generating source 130 via a power transmission cable 130A, and is supplied with microwave power.
  • Four antenna elements 111 selected as antenna elements 111 constituting the antenna subset 110A out of the 256 antenna elements 111 by being controlled by the control device 140 transmit power with an optimized phase toward the specific device 50A, but also secondarily feed power to the non-specific device 50B located near the specific device 50A.
  • the antenna elements 111 not included in the antenna subset 110A transmit power to the non-specific device 50B by random beamforming, but are also secondarily fed power from the antenna elements 111 located relatively close to the specific device 50A.
  • the number of antenna elements 111 included in the antenna subset 110A may be any number as long as it is plural.
  • the antenna element 111 is a patch antenna having a rectangular shape in a plan view.
  • the antenna element 111 may have a ground plate on the -Z direction side that is held at ground potential.
  • the antenna elements 111 that make up the antenna subset 110A are reviewed for each frame, and the antenna elements 111 to be included in the antenna subset 110A are selected.
  • Each antenna element 111 is attached to a ceiling, a pillar, or the like of a large facility such as the smart factory described above.
  • the distance between each antenna element 111 corresponds, as an example, to several wavelengths at the communication frequency of the antenna element 111.
  • the communication frequency of the antenna element 111 is assumed to be, as an example, in the microwave band, and is, as an example, 918 MHz.
  • FIG. 1 shows a state in which a specific device 50A receives power from four antenna elements 111 out of the 256 antenna elements 111 included in the array antenna 110.
  • a collection of multiple antenna elements 111 selected by the control device 140 to transmit power to the specific device 50A is called an antenna subset 110A.
  • the antenna elements 111 not included in the antenna subset 110A transmit power by random beamforming while shifting the phase of the transmission signal according to the time slot, and the power transmitted by random beamforming is received by the non-specific device 50B but is also received secondarily by the specific device 50A.
  • the phase shifters 120 are connected to each antenna element 111 and inserted between each antenna element 111 and the power transmission cable 130A.
  • FIG. 1 shows an enlarged view of one antenna element 111, phase shifter 120, and IC chip 125.
  • the phase shifter 120 shifts the transmission phase of the power transmitted from the microwave generating source 130 via the power transmission cable 130A and outputs it to the antenna element 111.
  • the phase shifter 120 is an example of a phase adjustment unit.
  • the IC chip 125 includes a measurement unit that measures the RSSI (Received Signal Strength Indicator) of the received power and a BLE communication unit, and transmits a beacon signal that includes data representing the measured RSSI value to the control device 140.
  • the communication unit of the IC chip 125 has an antenna for BLE communication.
  • the microwave source 130 is connected to 256 phase shifters 120 and supplies microwaves of a specified power.
  • the microwave source 130 is an example of a radio wave source.
  • the microwave frequency is, for example, 918 MHz. Note that, although a configuration in which the power supply device 100 includes the microwave source 130 will be described here, it is not limited to microwaves and can be any radio wave of a specified frequency.
  • the control device 140 is an example of a control unit, and is a microcomputer having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and non-volatile memory, and as an example, a discrete wavelet multitone (DWMT) can be used.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • non-volatile memory and as an example, a discrete wavelet multitone (DWMT) can be used.
  • DWMT discrete wavelet multitone
  • the control device 140 has an antenna 140A and receives a beacon signal with angle data written to it from a specific device 50A.
  • the control device 140 performs selection control (ranking process) of the antenna elements 111 included in the antenna subset 110A, phase control in the 256 phase shifters 120, and power output control of the microwave generating source 130.
  • Phase control of the transmission signal of the antenna elements 111 included in the antenna subset 110A and phase control of the transmission signal by random beamforming of the antenna elements 111 not included in the antenna subset 110A are realized by controlling the phase in the phase shifters 120.
  • Control device 140> 3 is a diagram showing the configuration of the control device 140.
  • the control device 140 has a main control unit 141, a subset selection unit 142, a power transmission control unit 143, and a memory 144.
  • the main control unit 141, the subset selection unit 142, and the power transmission control unit 143 are functional blocks showing the functions of the programs executed by the control device 140.
  • the memory 144 is a functional representation of the memory of the control device 140.
  • the main control unit 141 is a processing unit that manages the processing of the control device 140, and performs processing other than the processing performed by the subset selection unit 142 and the power transmission control unit 143.
  • the subset selection unit 142 is an example of an antenna selection unit, which transmits a differential signal from a specific device 50A in each frame, acquires the RSSI values when the differential signal is received by all antenna elements 111, and selects multiple antenna elements 111 included in the antenna subset 110A based on the ranking of the RSSI values. Details of the selection method based on the ranking of the RSSI values will be described later with reference to FIG. 7.
  • the power transmission control unit 143 performs power transmission control to transmit power from all antenna elements 111.
  • the power transmission control unit 143 randomly sets the phase of the power transmission signal of all antenna elements 111, and performs power transmission control using random beamforming that randomly shifts the phase for each time slot (random mode). This makes it possible to prevent the position where the standing wave of the power transmission signal occurs in the area 10 (see Figure 1) from being fixed in time, and allows all devices 50 to receive power relatively evenly.
  • the power transmission control unit 143 performs optimization processing in the optimization period of each frame, and performs power supply processing in the power supply period of each frame.
  • the optimization processing in the optimization period and the power supply processing in the power supply period will be described later.
  • Memory 144 stores data, programs, etc. used by main control unit 141, subset selection unit 142, and power transmission control unit 143 when they execute processing. Data representing the phase of the power transmission signal in each time slot is also stored in memory 144.
  • ⁇ Frame structure> 4 is a diagram showing an example of a frame structure.
  • the frame period is, for example, 50 ms.
  • the frame includes an optimization period and a power supply period.
  • the power supply period is provided after the optimization period.
  • the optimization period is a period during which optimization processing is performed to optimize the phase (transmission potential phase) of the transmission signal transmitted by the multiple antenna elements 111 included in the antenna subset 110A.
  • Optimizing the phase of the transmission signal transmitted by the multiple antenna elements 111 means aligning the phase (received potential phase) when the transmission signal transmitted by the multiple antenna elements 111 is received by the antenna 51 of the specific device 50A. If the received potential phases of the multiple transmission signals are aligned, the received power of the specific device 50A can be maximized. Note that being aligned in phase does not only mean that the phases are completely identical, but also includes a state that is approximately equivalent to being completely identical. In the strict sense, it may not be easy to align the phases, and for example, if the phase shift is about ⁇ 5%, it is acceptable to consider the phases to be aligned.
  • the phase of the transmission signal transmitted by the multiple antenna elements 111 not included in the antenna subset 110A is set to a fixed value.
  • the transmission potential phase of the multiple antenna elements 111 not included in the antenna subset 110A is fixed to prevent any influence of the transmission signal transmitted from the multiple antenna elements 111 not included in the antenna subset 110A.
  • the power supply period is a period during which power supply processing is performed to transmit power transmission signals from the multiple antenna elements 111 in a state in which the phases of the power transmission signals transmitted by the multiple antenna elements 111 are optimized in the optimization processing during the optimization period.
  • the power supply period for the multiple antenna elements 111 included in the antenna subset 110A, random beamforming is performed in a state in which the relationship between the multiple transmission potential phases determined in the optimization processing in the optimization section within the same frame is maintained.
  • random beamforming is performed without any particular relationship between the transmission potential phases of the multiple antenna elements 111.
  • the four antenna elements 111 included in the antenna subset 110A are distinguished as antenna elements m 1 to m 4 , and optimization of the transmitting phase of antenna element m 1 will be described.
  • the signal received by the specific device 50A is a signal obtained by combining the power transmission signals from all antenna elements 111 at the antenna 51 of the specific device 50A.
  • the power transmission signal r(k) converted to a baseband signal by a regenerated carrier wave through signal conversion from radio frequency to baseband (quadrature detection) (demodulated by the quadrature detection unit 55) is expressed by the following equation (1) when the contribution from antenna element m1 is extracted and described in time slot k.
  • is the entire antenna set
  • S is the antenna subset
  • ⁇ m1 (k) in the first term is the transmitting potential phase set for antenna element m1
  • PR m1 is the receiving power
  • ⁇ m1 is the phase displacement between antenna element m1 and antenna 51, which is the remainder (fraction) when the distance between antenna element m1 and antenna 51 is divided by the wavelength.
  • the second term is the signal component received from antenna elements m2 to m4 other than antenna element m1 in antenna subset 110A.
  • the third term is the signal component received from antenna element 111 not included in antenna subset 110A.
  • the transmitting potential phase is shifted by 180 degrees ( ⁇ ) from antenna element m1 , i.e., the phase is inverted, and power is transmitted together with the other antenna elements m2 to m4 included in antenna subset 110A and antenna element 111 not included in antenna subset 110A.
  • the transmitting potential phase ⁇ m1 (k+1) of antenna element m1 in time slot k+1 is expressed by the following equation (2).
  • the sending potential phase ⁇ m1 (k+1) exceeds 360 degrees, it is degenerated to the range of 1 to 360 degrees by modulo arithmetic. Since the sending potential phases of the other antenna elements m 2 to m 4 included in the antenna subset 110A and the antenna element 111 not included in the antenna subset 110A are not changed, only the sending potential phase of the antenna element m 1 is changed (inverted).
  • the signal is converted to a baseband signal by signal conversion (quadrature detection) from a radio frequency to a baseband.
  • the power transmission signal r(k+1) received in the time slot k+1 is a signal obtained by combining the power transmission signals transmitted from all the antenna elements 111 at the antenna 51, as in the time slot k.
  • the power transmission signal r(k+1) is expressed by the following formula (3) when the contribution from the antenna element m1 is extracted and described.
  • the power transmission signal received in time slot k+1 is subtracted from the power transmission signal received in time slot k. Since power is transmitted from antenna elements 111 other than antenna element m1 in the same power transmission potential phase over two consecutive time slots k and k+1, the subtraction results in cancellation, and the difference signal is expressed by the following equation (4), with only the signal component from antenna element m1 remaining.
  • the transmission potential phase ( ⁇ m 1 + ⁇ m 1 (k)) of the power transmission signal transmitted from the antenna element m 1 is detected as in the following equation (5), and the value is transmitted to the control device 140 .
  • the control device 140 controls the potential transmission phase for the antenna element m1 so as to cancel the received potential transmission phase or to have a specific phase.
  • the transmission phase determined by this phase control is reflected in the power supply period from time slot k+5 onwards.
  • the receiving potential phase ⁇ m1 (k+5) when the transmission signal transmitted from antenna element m1 is received by antenna 51 of specific device 50A will be oriented in the in-phase axis direction, and will be zero, for example, in the following equation (7).
  • FIG. 5 is a diagram for explaining an example of the optimization process.
  • FIG. 5 shows an optimization period, a power supply period, and time slots in one frame.
  • the antenna subset 110A includes four antenna elements 111.
  • the optimization process includes a number of time slots equal to the number of antenna elements 111 included in the antenna subset 110A plus one.
  • the optimization period has five time slots (k to k+4).
  • the power supply period starts from time slot k+5 and is longer than the optimization period, but is shown here in a simplified form.
  • the four antenna elements 111 included in the antenna subset 110A are distinguished as antenna elements m 1 to m 4. Furthermore, the multiple antenna elements 111 not included in the antenna subset 110A (an example of an unselected first antenna) are antennas n 1 , . . .
  • the potential transmitting phase of antenna element m1 is set to ⁇ m1
  • the potential transmitting phases of antenna elements m2 to m4 are set to ⁇ m2 to ⁇ m4 .
  • a power transmitting signal is transmitted from antenna elements m1 to m4 .
  • ⁇ m1 to ⁇ m4 are arbitrary potential transmitting phases.
  • the sending potential phase of antenna element m1 is changed to ⁇ m1 + ⁇ , and the sending potential phases of antenna elements m2 to m4 are set to ⁇ m2 to ⁇ m4 .
  • a transmission signal is transmitted from antenna elements m1 to m4 .
  • the sending potential phase ⁇ m1 + ⁇ of antenna element m1 changed in time slot k+1 is an inverted phase of the sending potential phase ⁇ m1 in time slot k.
  • the sending potential phases of antenna elements m2 to m4 are fixed to ⁇ m2 to ⁇ m4 .
  • the sending potential phase of antenna element m1 is set to ⁇ m1 + ⁇
  • the sending potential phase of antenna element m2 is changed to ⁇ m2 + ⁇
  • the sending potential phases of antenna elements m3 to m4 are set to ⁇ m3 to ⁇ m4 .
  • a transmission signal is transmitted from antenna elements m1 to m4 .
  • the sending potential phase ⁇ m2 + ⁇ of antenna element m2 changed in time slot k+2 is an inverted phase of the sending potential phase ⁇ m2 in time slots k to k+1.
  • the sending potential phase of antenna element m1 is fixed to ⁇ m1 + ⁇ .
  • the sending potential phases of antenna elements m3 to m4 are fixed to ⁇ m3 to ⁇ m4 .
  • the sending potential phase of antenna element m1 is set to ⁇ m1 + ⁇
  • the sending potential phase of antenna element m2 is set to ⁇ m2 + ⁇
  • the sending potential phase of antenna element m3 is changed to ⁇ m3 + ⁇
  • the sending potential phase of antenna element m4 is set to ⁇ m4 .
  • a power transmission signal is transmitted from antenna elements m1 to m4 .
  • the sending potential phase ⁇ m3 + ⁇ of antenna element m3 changed in time slot k+3 is an inverted phase of the sending potential phase ⁇ m3 in time slots k to k+2.
  • the sending potential phase of antenna element m1 is fixed to ⁇ m1 + ⁇
  • the sending potential phase of antenna element m2 is fixed to ⁇ m2 + ⁇
  • the sending potential phase of antenna element m4 is fixed to ⁇ m4 .
  • the sending potential phase of antenna element m1 is set to ⁇ m1 + ⁇
  • the sending potential phase of antenna element m2 is set to ⁇ m2 + ⁇
  • the sending potential phase of antenna element m3 is set to ⁇ m3 + ⁇
  • the sending potential phase of antenna element m4 is changed to ⁇ m4 + ⁇ .
  • a power transmission signal is transmitted from antenna elements m1 to m4 .
  • the sending potential phase ⁇ m4 + ⁇ of antenna element m4 changed in time slot k+4 is an inverted phase of the sending potential phase ⁇ m4 in time slots k to k+3.
  • the sending potential phase of antenna element m1 is fixed to ⁇ m1 + ⁇
  • the sending potential phase of antenna element m2 is fixed to ⁇ m2 + ⁇
  • the sending phase of antenna element m3 is fixed to ⁇ m3 + ⁇ .
  • optimization processing is performed on the transmitting potential phase of antenna element m1 in time slots k and k+1, and the transmitting potential phase of antenna element m1 is fixed to ⁇ m1 + ⁇ in time slots k+ 1 and onward.
  • the optimization processing in time slot k in which the transmitting potential phase of antenna element m1 is set to ⁇ m1 and a power transmission signal is transmitted is an example of a first power transmission processing for antenna element m1
  • the optimization processing in time slot k+1 in which the transmitting potential phase of antenna element m1 is set to ⁇ m1 + ⁇ and a power transmission signal is transmitted is an example of a second power transmission processing for antenna element m1 .
  • the optimization periods in which the first power transmission processing and the second power transmission processing are performed are examples of preparation periods.
  • optimization processing is performed on the transmitting potential phase of antenna element m2 in time slots k+1 and k+2.
  • the transmitting potential phase of antenna element m2 is fixed to ⁇ m2
  • the transmitting potential phase of antenna element m2 is fixed to ⁇ m2 + ⁇ .
  • the optimization processing in time slot k+ 1 in which the transmitting potential phase of antenna element m2 is set to ⁇ m2 to transmit a transmission signal is an example of a first power transmission processing for antenna element m2
  • the optimization processing in time slot k+2 in which the transmitting potential phase of antenna element m2 is set to ⁇ m2 + ⁇ to transmit a transmission signal is an example of a second power transmission processing for antenna element m2 .
  • optimization processing is performed on the transmitting potential phase of antenna element m3 in time slots k+2 and k+3.
  • the transmitting potential phase of antenna element m3 is fixed to ⁇ m3
  • time slots k+3 and after, the transmitting potential phase of antenna element m3 is fixed to ⁇ m3 + ⁇ .
  • the optimization processing in time slot k+ 2 in which the transmitting potential phase of antenna element m3 is set to ⁇ m3 and a power transmission signal is transmitted is an example of a first power transmission processing for antenna element m3, and the optimization processing in time slot k+3 in which the transmitting potential phase of antenna element m3 is set to ⁇ m3 + ⁇ and a power transmission signal is transmitted is an example of a second power transmission processing for antenna element m3 .
  • optimization processing is performed on the transmitting potential phase of antenna element m4 in time slots k+3 and k+4.
  • the transmitting potential phase of antenna element m4 is fixed to ⁇ m4
  • the transmitting potential phase of antenna element m4 is changed to ⁇ m4 + ⁇ .
  • the optimization processing in time slot k+3 in which the transmitting potential phase of antenna element m4 is set to ⁇ m4 and a power transmission signal is transmitted is an example of a first power transmission processing for antenna element m4
  • the optimization processing in time slot k+4 in which the transmitting potential phase of antenna element m4 is set to ⁇ m4 + ⁇ and a power transmission signal is transmitted is an example of a second power transmission processing for antenna element m4 .
  • the potential transmitting phases of the antenna elements m1 to m4 are set to the optimized potential transmitting phases, and random beamforming is performed while maintaining the relationship between the four optimized potential transmitting phases.
  • the phases of the antenna elements 111 (an example of an unselected first antenna) that are not included in the antenna subset 110A are fixed to arbitrary phases.
  • the phases of the antenna elements 111 that are not included in the antenna subset 110A are fixed to arbitrary phases, and random beamforming is performed for each of the antenna elements 111 without any particular relationship between the potential transmitting phases of the antenna elements 111.
  • the power feeding period is an example of a power transmission period.
  • ⁇ Receiving potential phase of power transmission signal of specific device 50A> 6A to 6E are diagrams for explaining the receiving potential phase of the power transmission signal received by the specific device 50A.
  • the I axis is the real axis
  • the Q axis is the imaginary axis.
  • the four vectors (1) to (4) are vector representations of the power transmission signal received by the specific device 50A from the antenna elements m1 to m4 .
  • the transmitting phases of antenna elements m 1 to m 4 are ⁇ m 1 to ⁇ m 4 , respectively, and the remainders (fractions) when the distances between antenna elements m 1 to m 4 and antenna 51 are divided by the wavelength are ⁇ m 1 to ⁇ m 4 , respectively.
  • the receiving potential phases of the power transmission signal that the specific device 50A receives from the antenna elements m1 to m4 in time slot k are ⁇ m1 + ⁇ m1 , ⁇ m2 + ⁇ m2 , ⁇ m3 + ⁇ m3 , and ⁇ m4 + ⁇ m4 , respectively.
  • the four vectors (1) to (4) are as shown in Fig. 6A.
  • the specific device 50A receives the transmission signal from antenna elements m 1 to m 4 with phases of receiving potential, respectively, ⁇ m 1 + ⁇ m 1 + ⁇ , ⁇ m 2 + ⁇ m 2 , ⁇ m 3 + ⁇ m 3 , and ⁇ m 4 + ⁇ m 4.
  • the four vectors (1) to (4) are as shown in Fig. 6A, and the vector (1) is in the opposite direction compared to time slot k.
  • the signal representing vector (1A) is a difference signal, and is determined by calculation unit 56 through subtraction processing.
  • the angle of vector (1A) with respect to the I axis is defined as ⁇ 1.
  • Angle ⁇ 1 is determined by angle conversion unit 57. Note that the four vectors (1) to (4) in time slot k are an example of a first composite signal, and the four vectors (1) to (4) in time slot k+1 are an example of a second composite signal.
  • the receiving potential phases of the power transmission signal that the specific device 50A receives from the antenna elements m 1 to m 4 in the time slot k+1 are ⁇ m 1 + ⁇ m 1 + ⁇ , ⁇ m 2 + ⁇ m 2 , ⁇ m 3 + ⁇ m 3 , and ⁇ m 4 + ⁇ m 4 , respectively.
  • the four vectors (1) to (4) are as shown in Fig. 6B.
  • the specific device 50A receives the transmission signal from antenna elements m 1 to m 4 with phases of receiving potential, respectively, being ⁇ m 1 + ⁇ m 1 + ⁇ , ⁇ m 2 + ⁇ m 2 + ⁇ , ⁇ m 3 + ⁇ m 3 , and ⁇ m 4 + ⁇ m 4.
  • the four vectors (1) to (4) are as shown in FIG. 6B, and the vector (2) is in the opposite direction compared to time slot k+1.
  • the signal representing vector (2A) is a difference signal, and is determined by the calculation unit 56 through subtraction processing.
  • the angle of vector (2A) with respect to the I axis is defined as ⁇ 2.
  • the angle ⁇ 2 is determined by the angle conversion unit 57. Note that the four vectors (1) to (4) in time slot k+1 are an example of a first composite signal, and the four vectors (1) to (4) in time slot k+2 are an example of a second composite signal.
  • the receiving potential phases of the power transmission signal that the specific device 50A receives from the antenna elements m 1 to m 4 in time slot k+2 are ⁇ m 1 + ⁇ m 1 + ⁇ , ⁇ m 2 + ⁇ m 2 + ⁇ , ⁇ m 3 + ⁇ m 3 , and ⁇ m 4 + ⁇ m 4 , respectively.
  • the four vectors (1) to (4) are as shown in Fig. 6C.
  • the specific device 50A receives the transmission signal from antenna elements m 1 to m 4 with phases of receiving potential, respectively, ⁇ m 1 + ⁇ m 1 + ⁇ , ⁇ m 2 + ⁇ m 2 + ⁇ , ⁇ m 3 + ⁇ m 3 + ⁇ , and ⁇ m 4 + ⁇ m 4.
  • the four vectors (1) to (4) are as shown in Fig. 6C, and the vector (3) is in the opposite direction compared to time slot k+2.
  • vectors (1) to (4) in time slot k+3 are subtracted from the four vectors (1) to (4) in time slot k+2, vectors (1), (2), and (4) disappear, and only vector (3A), which is twice the length of vector (3), remains as the difference.
  • the signal representing vector (3A) is a difference signal, and is determined by the calculation unit 56 through subtraction processing.
  • the angle of vector (3A) with respect to the I axis is assumed to be ⁇ 3.
  • the angle ⁇ 3 is determined by the angle conversion unit 57. Note that the four vectors (1) to (4) in time slot k+2 are an example of a first composite signal, and the four vectors (1) to (4) in time slot k+3 are an example of a second composite signal.
  • the receiving potential phases of the transmission signal that the specific device 50A receives from the antenna elements m 1 to m 4 in time slot k+3 are ⁇ m 1 + ⁇ m 1 + ⁇ , ⁇ m 2 + ⁇ m 2 + ⁇ , ⁇ m 3 + ⁇ m 3 + ⁇ , and ⁇ m 4 + ⁇ m 4 , respectively.
  • the four vectors (1) to (4) are as shown in Fig. 6D.
  • the specific device 50A receives the transmission signal from antenna elements m1 to m4 with phases of receiving potential of ⁇ m1 + ⁇ m1 + ⁇ , ⁇ m2 + ⁇ m2 + ⁇ , ⁇ m3 + ⁇ m3 + ⁇ , and ⁇ m4 + ⁇ m4 + ⁇ .
  • the four vectors (1) to (4) are as shown in Fig. 6D, and the vector (4) is in the opposite direction compared to time slot k+3.
  • vectors (1) to (4) in time slot k+4 are subtracted from the four vectors (1) to (4) in time slot k+3, vectors (1) to (3) disappear, and only vector (4A), which is twice the length of vector (4), remains as the difference.
  • the signal representing vector (4A) is a difference signal, and is determined by calculation unit 56 through subtraction processing.
  • the angle of vector (4A) with respect to the I axis is assumed to be ⁇ 4.
  • Angle ⁇ 4 is determined by angle conversion unit 57. Note that the four vectors (1) to (4) in time slot k+3 are an example of a first composite signal, and the four vectors (1) to (4) in time slot k+4 are an example of a second composite signal.
  • the communication unit 58 transmits angle data representing angles ⁇ 1 to ⁇ 4 to the power supply device 100 at the last timing of time slot k+4.
  • the power transmission control unit 143 adjusts the phases of vectors (1) to (4) in time slot k+5 to adjust each of angles ⁇ 1 to ⁇ 4.
  • the directions of vectors (1) to (4) can be aligned as shown in FIG. 6E.
  • the directions of vectors (1) to (4) are shown as being along the I axis as an example, but they may also have an angle of greater than 0 degrees with respect to the I axis.
  • angles of vectors (1) to (4) can be aligned. In other words, the power received by the specific device 50A can be maximized.
  • random beamforming is performed while maintaining the relationship between the four potential transmission phases of antenna elements m1 to m4 so that the angles of vectors (1) to (4) are aligned.
  • random beamforming is performed without any particular relationship between the potential transmission phases of the multiple antenna elements 111.
  • the power supply device 100 receives signals including angle data at all antenna elements 111, and the IC chip 125 measures the RSSI of the received power.
  • the subset selection unit 142 selects antenna elements 111 included in the antenna subset 110A by performing ranking based on the RSSI of the signals including angle data received by all antenna elements 111.
  • Figure 7 shows an example of the ranking result.
  • Figure 7 shows the ranking (highest RSSI), RSSI (dBm), and antenna index. As an example, let us select antenna elements 111 up to -15 dB below the antenna element 111 with the highest RSSI.
  • the RSSI of the antenna element 111 with antenna index 5 is the highest at -50.0 dBm, and the four antenna elements 111 ranked up to 4th place within 15 dB below -50.0 dBm (up to -50.0-15 dB) are selected as the antenna elements 111 to be included in the antenna subset 110A.
  • the number of antenna elements 111 included in the antenna subset 110A in each frame is determined by the number of antenna elements 111 within 15 dB below the highest RSSI value, so it may be more than four or it may be less than four.
  • Fig. 8 is a flowchart showing an example of processing executed by the control device 140 and the specific device 50A of the power supply system 300.
  • the control device 140 and the specific device 50A perform processing separately, but here, the processing will be described as a series of processing in the power supply system 300.
  • the processing shown in Fig. 8 is processing performed within one frame, and is performed in the same manner in each frame.
  • the power transmission control unit 143 selects the antenna elements 111 included in the antenna subset 110A one by one, and sequentially transmits a power transmission signal and a power transmission signal with an inverted phase (step S1). For example, processing is performed for time slots k to k+4 shown in FIG. 5.
  • the specific device 50A obtains angle data from the differential signal (step S2).
  • the specific device 50A transmits a beacon signal storing the angle data to the power supply device 100 (step S3).
  • the process of step S3 is performed, for example, at the end of time slot k+4 shown in FIG. 5.
  • steps S4A and S5A are performed in parallel with steps S4B and S5B.
  • the power transmission control unit 143 transmits power to the antenna elements 111 included in the antenna subset 110A by random beamforming while maintaining the optimized relationship between the transmission potential phases, and transmits power to the antenna elements 111 not included in the antenna subset 110A by random beamforming (step S4A). For example, power transmission in step S4A is performed during the power supply period after time slot k+5 in FIG. 5.
  • the specific device 50A receives the power transmission signal transmitted in step S4A (step S5A). For example, since power transmission in step S4A is performed during the power supply period from time slot k+5 onward in FIG. 5, the specific device 50A receives the power transmission signal during the power supply period.
  • steps S4A and S5A is repeated until the frame ends.
  • each antenna element 111 measures the RSSI of the beacon signal and transfers it to the control device 140 (step S4B).
  • the subset selection unit 142 of the control device 140 selects antenna elements 111 to be included in the antenna subset 110A based on the ranking results of the RSSI (step S5B).
  • the antenna elements 111 selected based on the ranking results are used as the antenna elements 111 to be included in the antenna subset 110A in the next frame.
  • step S6 When the processing of steps S4A and S5A and the processing of steps S4B and S5B are completed, the frame ends (step S6). When the processing within one frame is completed in step S6, the flow returns to step S1.
  • ⁇ Simulation> 9 is a diagram for explaining an example of the simulation conditions.
  • a simulation was performed in which 36 antenna elements 111 (6 ⁇ 6) were arranged in an array to feed power to a specific device 50A.
  • the specific device 50A moves on the orbit of a dotted circle at a speed of 2.0 m/sec.
  • multiple antenna elements 111 included in the antenna subset 110A were selected based on the ranking results of the RSSI, and power was transmitted to the multiple antenna elements 111 included in the antenna subset 110A using random beamforming while maintaining an optimized potential transmission phase relationship, and power was transmitted to the antenna elements 111 not included in the antenna subset 110A using random beamforming, and a simulation was performed on the amount of power received by a specific device 50A.
  • Figure 10 shows an example of the simulation results for the received power when transmitting power using random beamforming for comparison.
  • the horizontal axis represents time
  • the vertical axis represents the received power (dBm).
  • the received power When transmitting power using random beamforming from all (36) antenna elements 111, the received power repeatedly fluctuated above and below 0 (dBm), with large fluctuations over time.
  • Figure 11 is a diagram showing an example of the simulation results of the power supply system 300.
  • the upper part of Figure 11 shows the change over time in the number of antenna elements 111 included in antenna subset 110A.
  • the horizontal axis represents time
  • the vertical axis represents the number of antenna elements 111 included in antenna subset 110A.
  • the horizontal axis represents time
  • the vertical axis represents received power (dBm).
  • the received power is higher than the received power shown in Figure 10, with many periods of 5 dBm to 6 dBm.
  • the frame period is 50 ms, and the period at the beginning of each frame where the received power is low is thought to be the optimization period. In the power supply period after the optimization period ends, a received power of 5 dBm to 6 dBm is obtained.
  • the number of antenna elements 111 included in antenna subset 110A is between 4 and 6. Comparing the upper and lower graphs in Figure 11, it can be seen that the received power is greater during periods when the number of antenna elements 111 included in antenna subset 110A is greater.
  • the power supply system 300 includes a power supply device 100 and a specific device 50A that receives a power transmission signal transmitted from the power supply device 100.
  • the power supply device 100 includes an array antenna 110 having a plurality of antenna elements 111 capable of transmitting power, and a power transmission control unit 143 that controls the phase of a power transmission signal transmitted from the plurality of antenna elements 111 to the specific device 50A and performs power transmission control.
  • the power transmission control unit 143 selects one of a plurality of first antennas included in the plurality of antenna elements 111, and transmits a first power transmission signal with a predetermined phase to the selected first antenna (the antenna element 111 not selected as a target for optimization processing among the antenna elements 111 included in the antenna subset 110A) in a state where the first power transmission signal is transmitted with a transmission potential phase of a non-selected first antenna (the antenna element 111 not selected as a target for optimization processing among the antenna elements 111 included in the antenna subset 110A) fixed.
  • the specific device 50A performs a first power transmission process of transmitting power from an antenna element 111 selected as a target of the optimization process among the antenna elements 111 included in the power receiving device 100 and a second power transmission process of transmitting a first power transmission signal of an inverted phase obtained by inverting a predetermined phase from the selected first antenna, while selecting the first antennas one by one.
  • the specific device 50A obtains a first composite signal of the first power transmission signal of the predetermined phase received from the first antennas in the first power transmission process and the first power transmission signal with a fixed transmission potential phase, and a second composite signal of the first power transmission signal of the inverted phase received from the first antennas in the second power transmission process and the first power transmission signal with a fixed transmission potential phase, and transmits the result to the power transmission control unit 143.
  • the power transmission control unit 143 controls the phases of the first power transmission signals transmitted by the first antennas based on the multiple differential signals obtained by selecting each of the multiple first antennas. This makes it possible to quickly set a phase that can increase the receiving power of the power receiving device.
  • the power transmission control unit 143 sets the transmission potential phase to an inverted phase for the first antenna already selected in the first power transmission process (antenna elements 111 included in antenna subset 110A that have already been selected as targets for the optimization process), so that a power supply system 300 can be provided that can more quickly set a phase that can increase the received power of the power receiving device.
  • the power transmission control unit 143 fixes the transmission potential phase of one or more second antennas (antenna elements 111 not included in antenna subset 110A) other than the multiple first antennas (antenna elements 111 included in antenna subset 110A) among the multiple antenna elements 111.
  • a power supply system 300 that can supply power to a specific power receiving device (specific device 50A) that requires a large amount of power, and can also supply power to power receiving devices other than the specific power receiving device.
  • the power supply device 100 further includes a subset selection unit 142 that selects, from among the multiple antenna elements 111, multiple antenna elements 111 whose reception strength of a signal transmitted from the power receiving device is equal to or greater than a predetermined strength as multiple first antennas (antenna elements 111 included in antenna subset 110A), and selects one or more antenna elements 111 whose reception strength is less than the predetermined strength as one or more second antennas (antenna elements 111 not included in antenna subset 110A).
  • a subset selection unit 142 that selects, from among the multiple antenna elements 111, multiple antenna elements 111 whose reception strength of a signal transmitted from the power receiving device is equal to or greater than a predetermined strength as multiple first antennas (antenna elements 111 included in antenna subset 110A), and selects one or more antenna elements 111 whose reception strength is less than the predetermined strength as one or more second antennas (antenna elements 111 not included in antenna subset 110A).
  • multiple antenna elements 111 with a reception strength equal to or greater than a predetermined strength can be selected as antenna elements 111 to be included in antenna subset 110A, and power can be efficiently supplied to specific device 50A by antenna subset 110A composed of multiple antenna elements 111 close to specific device 50A.
  • the signal transmitted from the power receiving device is a signal representing a differential signal
  • the transmission of angle data and the measurement of the RSSI for ranking can be performed simultaneously using a signal including angle data representing the differential signal, and a power supply system 300 can be provided that can quickly and efficiently set a phase that can increase the received power of the power receiving device.
  • the power transmission control unit 143 also repeatedly performs frame processing including a preparation period (optimization period) for performing the first power transmission process and the second power transmission process, and a power transmission period (power supply period) for transmitting power from the multiple first antennas to the specific device 50A by controlling the phases of the multiple first power transmission signals transmitted by the multiple first antennas (antenna elements 111 included in the antenna subset 110A) based on the multiple differential signals, and uses the multiple first antennas selected from the multiple antenna elements 111 by the subset selection unit 142 based on the reception strength (RSSI) of the signal representing the differential signal (beacon signal storing angle data) as the multiple first antennas in the frame following the current frame.
  • RSSI reception strength
  • the antenna elements 111 included in the antenna subset 110A can be selected based on the reception strength (RSSI) of the signal representing the differential signal (beacon signal storing angle data).
  • RSSI reception strength
  • the specific device 50A is movable, so even if the specific device 50A moves and the phase changes when it receives the transmission signal, it is possible to provide a power supply system 300 that can quickly set a phase that can increase the received power of the specific device 50A.
  • the power transmission control unit 143 also controls the potential transmission phases of the multiple first power transmission signals transmitted by the multiple first antennas based on the multiple differential signals so that the potential reception phases of the multiple first power transmission signals received by the specific device 50A from the multiple first antennas are aligned. This makes it possible to control the potential transmission phase of the first power transmission signals so that the received power of the specific device 50A is maximized, and the received power of the specific device 50A can be reliably increased.
  • the power supply device 100 is a power supply device 100 that transmits a power transmission signal to a specific device 50A, and includes an array antenna 110 having a plurality of antenna elements 111 capable of transmitting power, and a power transmission control unit 143 that controls the phase of the power transmission signal transmitted from the plurality of antenna elements 111 to the specific device 50A and controls the power transmission, and the power transmission control unit 143 selects one of a plurality of first antennas included in the plurality of antenna elements 111, and transmits a first power transmission signal by fixing the transmission potential phase of a non-selected first antenna among the plurality of first antennas (antenna elements 111 among the antenna elements 111 included in the antenna subset 110A that have not been selected as a target for optimization processing), and transmits a first power transmission signal of a predetermined phase to the selected first antenna (antenna element 111 included in the antenna subset 110A).
  • a first power transmission process is performed by selecting the first antennas one by one to transmit power from the antenna element 111 selected as a target for optimization processing among the first antennas 111, and a second power transmission process is performed by transmitting a first power transmission signal having an inverted phase obtained by inverting a predetermined phase from the selected first antenna.
  • the phases of the first power transmission signals transmitted by the first antennas are controlled based on a plurality of difference signals obtained by selecting each of the first antennas.
  • the difference signal is a difference signal between a first composite signal of the first power transmission signal having a predetermined phase and the first power transmission signal having a fixed potential phase received by the specific device 50A from the first antennas in the first power transmission process, and a second composite signal of the first power transmission signal having an inverted phase and the first power transmission signal having a fixed potential phase received by the first antennas in the second power transmission process.
  • the power supply method is a power supply method in a power supply system 300 including a power supply device 100 and a specific device 50A that receives a power transmission signal transmitted from the power supply device 100, in which the power supply device 100 has an array antenna 110 having a plurality of antenna elements 111 capable of transmitting power, and a power transmission control unit 143 that controls the phase of the power transmission signal transmitted from the plurality of antenna elements 111 to the specific device 50A and controls the power transmission, and the power transmission control unit 143 selects one of a plurality of first antennas included in the plurality of antenna elements 111, fixes the transmission potential phase of a non-selected first antenna among the plurality of first antennas (an antenna element 111 among the antenna elements 111 included in the antenna subset 110A that has not been selected as a target for optimization processing) and transmits a first power transmission signal, and selects a first transmission signal having a predetermined phase from the selected first antenna (antenna subset 110A).
  • a first power transmission process is performed by transmitting power from the antenna element 111 selected as a target of the optimization process among the antenna elements 111 included in A, and a second power transmission process is performed by transmitting a first power transmission signal of an inverted phase obtained by inverting a predetermined phase from the selected first antenna, while selecting the first antennas one by one.
  • the specific device 50A obtains a first composite signal of the first power transmission signal of a predetermined phase received from the first antennas in the first power transmission process and the first power transmission signal with a fixed transmission potential phase, and a second composite signal of the first power transmission signal of an inverted phase received from the first antennas in the second power transmission process and the first power transmission signal with a fixed transmission potential phase, and transmits the result to the power transmission control unit 143.
  • the power transmission control unit 143 controls the phases of the first power transmission signals transmitted by the first antennas based on the multiple differential signals obtained by selecting each of the multiple first antennas. This makes it possible to quickly set a phase that can increase the receiving power of the
  • FIG. 12 is a diagram for explaining an example of optimization processing in the power supply system 300 of the modified embodiment.
  • FIG. 12 shows an optimization period, a power supply period, and time slots in one frame, similar to FIG. 5.
  • the optimization processing includes time slots twice the number of antenna elements 111 included in the antenna subset 110A.
  • the optimization period has eight time slots (k to k+7).
  • the power supply period starts from time slot k+8 and is longer than the optimization period, but is shown here in a simplified form.
  • the power transmission control unit 143 sets the transmission potential phase of the unselected first antenna (the antenna element 111 among the antenna elements 111 included in the antenna subset 110A that is not selected as a target for the optimization process) to the same value in the first power transmission process and the second power transmission process.
  • an optimization process for setting the transmission potential phase of antenna element m1 to ⁇ m1 + ⁇ and transmitting a transmission signal (an example of a second power transmission process for antenna element m1 ) and an optimization process for setting the transmission potential phase of antenna element m2 to ⁇ m2 and transmitting a transmission signal (an example of a first power transmission process for antenna element m2 ) are performed in separate time slots k+1 and k+2.
  • an optimization process for setting the transmission potential phase of antenna element m2 to ⁇ m2 + ⁇ and transmitting a transmission signal (an example of a second power transmission process for antenna element m2 ) and an optimization process for setting the transmission potential phase of antenna element m3 to ⁇ m3 and transmitting a transmission signal (an example of a first power transmission process for antenna element m3 ) are performed in separate time slots k+3 and k+4.
  • an optimization process for setting the transmission potential phase of antenna element m3 to ⁇ m3 + ⁇ and transmitting a transmission signal (an example of a second power transmission process for antenna element m3 ) and an optimization process for setting the transmission potential phase of antenna element m4 to ⁇ m4 and transmitting a transmission signal (an example of a first power transmission process for antenna element m4 ) are performed in separate time slots k+5 and k+6.
  • an optimization process (an example of a second power transmission process for antenna element m4 ) is performed in time slot k+7 to set the power transmission phase of antenna element m4 to ⁇ m4 + ⁇ and transmit a power transmission signal.
  • the potential sending phases of the antenna elements m1 to m4 are fixed to the optimized potential sending phases and are fixed in the same manner during the power feeding period, but when the power feeding period begins, random beamforming may be performed while maintaining the relationship between the optimized potential sending phases.
  • the optimized potential sending phases of the antenna elements m1 to m4 are an example of a phase based on a differential signal.
  • 13A to 13E are diagrams for explaining the receiving potential phase of the power transmission signal received by the specific device 50A in the modified embodiment.
  • the I axis is the real axis
  • the Q axis is the imaginary axis.
  • the four vectors (1) to (4) are vector representations of the power transmission signal received by the specific device 50A from the antenna elements m 1 to m 4 .
  • the transmitting phases of antenna elements m 1 to m 4 are ⁇ m 1 to ⁇ m 4 , respectively, and the remainders (fractions) when the distances between antenna elements m 1 to m 4 and antenna 51 are divided by the wavelength are ⁇ m 1 to ⁇ m 4 , respectively.
  • the receiving potential phases of the power transmission signal that the specific device 50A receives from the antenna elements m 1 to m 4 in time slot k are ⁇ m 1 + ⁇ m 1 , ⁇ m 2 + ⁇ m 2 , ⁇ m 3 + ⁇ m 3 , and ⁇ m 4 + ⁇ m 4.
  • the four vectors (1) to (4) are as shown in FIG. 13A.
  • the specific device 50A receives the transmission signal from antenna elements m 1 to m 4 with phases of receiving potential, respectively, ⁇ m 1 + ⁇ m 1 + ⁇ , ⁇ m 2 + ⁇ m 2 , ⁇ m 3 + ⁇ m 3 , and ⁇ m 4 + ⁇ m 4.
  • the four vectors (1) to (4) are as shown in Fig. 13A, and the vector (1) is in the opposite direction compared to time slot k.
  • the signal representing vector (1A) is a difference signal, and is calculated by the calculation unit 56 through a subtraction process.
  • the angle of vector (1A) with respect to the I axis is assumed to be ⁇ 1.
  • the angle ⁇ 1 is calculated by the angle conversion unit 57.
  • a beacon signal storing angle ⁇ 1 is transmitted to the power supply device 100 via the communication unit 58.
  • the four vectors (1) to (4) in time slot k are an example of a first composite signal
  • the four vectors (1) to (4) in time slot k+1 are an example of a second composite signal.
  • the receiving potential phase of the power transmission signal received by the specific device 50A from the antenna element m1 in the time slot k+2 is 0 degrees
  • the receiving potential phases of the power transmission signals received from the antenna elements m2 to m4 are m2 + ⁇ m2 , ⁇ m3 + ⁇ m3 , and ⁇ m4 + ⁇ m4 , respectively.
  • the four vectors (1) to (4) are as shown in Fig. 13B.
  • the receiving potential phase of the power transmission signal received by the specific device 50A from the antenna element m1 in the time slot k+2 is ⁇ 1 degrees.
  • the specific device 50A receives a power transmission signal from antenna element m1 with a potential phase of 0 degrees, and receives power transmission signals from antenna elements m2 to m4 with potential phases of ⁇ m2 + ⁇ m2 + ⁇ , ⁇ m3 + ⁇ m3 , and ⁇ m4 + ⁇ m4 , respectively.
  • the four vectors (1) to (4) are as shown in Fig. 13B, and the vector (2) is in the opposite direction compared to time slot k+2.
  • the signal representing vector (2A) is a difference signal, and is determined by the calculation unit 56 through subtraction processing.
  • the angle of vector (2A) with respect to the I axis is defined as ⁇ 2.
  • the angle ⁇ 2 is determined by the angle conversion unit 57. Note that the four vectors (1) to (4) in time slot k+2 are an example of a first composite signal, and the four vectors (1) to (4) in time slot k+3 are an example of a second composite signal.
  • the receiving potential phase of the power transmission signal received by the specific device 50A from the antenna elements m1 and m2 in the time slot k+4 is 0 degrees
  • the receiving potential phases of the power transmission signal received from the antenna elements m3 to m4 are ⁇ m3 + ⁇ m3 and ⁇ m4 + ⁇ m4 , respectively.
  • the four vectors (1) to (4) are as shown in Fig. 13C.
  • the beacon signals storing the angles ⁇ 1 and ⁇ 2 are not transmitted to the power supply device 100 via the communication unit 58 in the time slots k+1 and k+3, the receiving potential phases of the power transmission signal received by the specific device 50A from the antenna elements m1 and m2 in the time slot k+4 are ⁇ 1 degrees and ⁇ 2 degrees.
  • the specific device 50A receives a transmission signal from antenna elements m1 and m2 with a receiving potential phase of 0 degrees, and receives transmission signals from antenna elements m3 to m4 with receiving potential phases of ⁇ m3 + ⁇ m3 + ⁇ and ⁇ m4 + ⁇ m4 , respectively.
  • the four vectors (1) to (4) are as shown in Fig. 13C, and the vector (3) is in the opposite direction compared to time slot k+4.
  • vectors (1) to (4) in time slot k+5 are subtracted from the four vectors (1) to (4) in time slot k+4, vectors (1), (2), and (4) disappear, and only vector (3A), which is twice the length of vector (3), remains as the difference.
  • the signal representing vector (3A) is a difference signal, and is determined by the calculation unit 56 through subtraction processing.
  • the angle of vector (3A) with respect to the I axis is assumed to be ⁇ 3.
  • the angle ⁇ 3 is determined by the angle conversion unit 57. Note that the four vectors (1) to (4) in time slot k+4 are an example of a first composite signal, and the four vectors (1) to (4) in time slot k+5 are an example of a second composite signal.
  • the potential receiving phase of the power transmission signal received by the specific device 50A from the antenna elements m 1 to m 3 in time slot k+6 is 0 degrees
  • the potential receiving phase of the power transmission signal received from the antenna element m 4 is ⁇ m 4 + ⁇ m 4.
  • the four vectors (1) to (4) are as shown in Fig. 13D. Note that, if the beacon signal storing the angles ⁇ 1 to ⁇ 3 is not transmitted to the power supply device 100 via the communication unit 58 in time slots k+1, k+3, and k+5, the potential receiving phase of the power transmission signal received by the specific device 50A from the antenna elements m 1 to m 3 in time slot k+6 will be ⁇ 1 degrees to ⁇ 3 degrees, respectively.
  • the specific device 50A receives a transmission signal from antenna elements m1 to m3 with a potential phase of 0 degrees, and receives a transmission signal from antenna element m4 with a potential phase of ⁇ m4 + ⁇ m4 + ⁇ .
  • the four vectors (1) to (4) are as shown in Fig. 13D, and the vector (4) is in the opposite direction compared to time slot k+6.
  • the signal representing vector (4A) is a difference signal, and is determined by the calculation unit 56 through subtraction processing. Note that the four vectors (1) to (4) in time slot k+6 are an example of a first composite signal, and the four vectors (1) to (4) in time slot k+7 are an example of a second composite signal.
  • the angle of the vector (4A) with respect to the I axis is defined as ⁇ 4.
  • the angle ⁇ 4 is determined by the angle conversion unit 57.
  • the communication unit 58 transmits a beacon signal that stores the angle ⁇ 4 to the power supply device 100.
  • the communication unit 58 can transmit angle data representing the angles ⁇ 1 to ⁇ 4 to the power supply device 100 at the end of time slot k+7.
  • the measurement of the RSSI for ranking can be performed when the power supply device 100 receives any of the beacon signals.
  • the power transmission control unit 143 adjusts the phases of vectors (1) to (4) in time slot k+8 to adjust the angles ⁇ 1 to ⁇ 4.
  • the directions of vectors (1) to (4) can be aligned as shown in FIG. 13E.
  • the directions of vectors (1) to (4) are shown as being along the I axis as an example, but they may also have an angle of greater than 0 degrees with respect to the I axis.
  • angles of vectors (1) to (4) can be aligned. In other words, the power received by the specific device 50A can be maximized.
  • power may be transmitted while maintaining the four optimized potential transmission phases of antenna elements m 1 to m 4 as shown in Fig. 13E.
  • random beamforming may be performed while maintaining the relationship between the four potential transmission phases of antenna elements m 1 to m 4 so that the angles of vectors (1) to (4) are aligned.
  • random beamforming is performed without any particular relationship between the potential transmission phases of the multiple antenna elements 111.
  • Fig. 14 is a diagram showing an example of a simulation result of the power supply system 300 of the modified example of the embodiment.
  • the upper part of Fig. 14 shows a time change in the number of antenna elements 111 included in the antenna subset 110A.
  • the horizontal axis represents time
  • the vertical axis represents the number of antenna elements 111 included in the antenna subset 110A.
  • the horizontal axis represents time
  • the vertical axis represents received power (dBm).
  • the received power is higher than the received power shown in Figure 10, with many periods of 5 dBm to 6 dBm.
  • the frame period is 50 ms, and the period at the beginning of each frame where the received power is low is thought to be the optimization period. In the power supply period after the optimization period ends, a received power of 5 dBm to 6 dBm is obtained.
  • the number of antenna elements 111 included in antenna subset 110A is between 4 and 6. Comparing the upper and lower graphs in Figure 14, it can be seen that the received power is greater during periods when the number of antenna elements 111 included in antenna subset 110A is greater.
  • the phase capable of increasing the received power of the power receiving device can be quickly set. Therefore, it is possible to provide a power supply system 300 according to the modified embodiment that can quickly set the phase capable of increasing the received power of the power receiving device.
  • a power supply system 300 that is a modified embodiment that can supply power to a specific power receiving device (specific device 50A) that requires a large amount of power, and also supply power to power receiving devices other than the specific power receiving device.

Abstract

受電装置の受電電力を増大可能な位相を迅速に設定可能な給電システム、給電装置、及び、給電方法を提供する。 給電装置は、電力を送電可能な複数のアンテナのうち、第1受電装置の周囲に位置する複数の第1アンテナの送電信号の位相を制御する第1送電制御部と、前記複数のアンテナのうち、前記複数の第1アンテナ以外の1又は複数の第2アンテナの送電信号の位相を制御する第2送電制御部とを含み、前記第1送電制御部は、前記複数の第1アンテナから前記第1受電装置が受電する信号の位相が揃うように前記複数の第1アンテナの送電信号の位相関係を保持しながら前記複数の第1アンテナの送電信号の位相を時系列的に変化させ、前記第2送電制御部は、前記1又は複数の第2アンテナが1又は複数の第2受電装置に送電する送電信号の位相を時系列に変化させる。

Description

給電システム、給電装置、及び、給電方法
 本発明は、給電システム、給電装置、及び、給電方法に関する。
 従来より、受電装置の方向を検出する第1の検出手段と、第1の検出手段によって検出された受電装置の方向に無線で給電電力を放射する第1の放射、及び、給電電力を放射する方向を定められた範囲で変更しながら無線で給電電力を放射する第2の放射を行うよう、給電電力を放射する放射部を制御する制御手段とを有する給電機器がある(例えば、特許文献1参照)。
特開2019-083648号公報
 ところで、従来の給電機器は、第1の放射及び第2の放射を行うことで受電装置に給電電力を放射しているが、受電装置の受電電力を増大可能な位相を迅速に設定することは開示していない。
 そこで、受電装置の受電電力を増大可能な位相を迅速に設定可能な給電システム、給電装置、及び、給電方法を提供することを目的とする。
 本発明の実施形態の給電システムは、給電装置と、前記給電装置から送電される送電信号を受電する受電装置とを含む給電システムであって、前記給電装置は、電力を送電可能な複数のアンテナを有するアレイアンテナと、前記複数のアンテナから前記受電装置に送電する送電信号の位相の制御と送電制御とを行う送電制御部とを有し、前記送電制御部は、前記複数のアンテナに含まれる複数の第1アンテナのうちの1つを選択し、前記複数の第1アンテナのうちの非選択の第1アンテナの送電位相を固定して第1送電信号を送電させた状態において、所定位相の第1送電信号を前記選択した第1アンテナから送電する第1送電処理と、前記所定位相を反転させた反転位相の第1送電信号を前記選択した第1アンテナから送電する第2送電処理とを、前記複数の第1アンテナを1つずつ選択しながら行い、前記受電装置は、前記第1送電処理において前記複数の第1アンテナから受電した、前記所定位相の第1送電信号と、前記送電位相が固定された第1送電信号との第1合成信号と、前記第2送電処理において前記複数の第1アンテナから受電した、前記反転位相の第1送電信号と、前記送電位相が固定された第1送電信号との第2合成信号との差分信号を求めて前記送電制御部に送信し、前記送電制御部は、前記複数の第1アンテナの各々を選択したことによって得られる複数の前記差分信号に基づいて、前記複数の第1アンテナが送電する前記複数の第1送電信号の位相を制御する。
 受電装置の受電電力を増大可能な位相を迅速に設定可能な給電システム、給電装置、及び、給電方法を提供することができる。
実施形態の給電装置100を示す図である。 特定デバイス50Aの構成の一例を示す図である。 制御装置140の構成を示す図である。 フレーム構造の一例を示す図である。 最適化処理の一例を説明する図である。 特定デバイス50Aが受電する送電信号の受電位相を説明する図である。 特定デバイス50Aが受電する送電信号の受電位相を説明する図である。 特定デバイス50Aが受電する送電信号の受電位相を説明する図である。 特定デバイス50Aが受電する送電信号の受電位相を説明する図である。 特定デバイス50Aが受電する送電信号の受電位相を説明する図である。 ランキング結果の一例を示す図である。 給電システム300の制御装置140及び特定デバイス50Aが実行する処理の一例を表すフローチャートである。 シミュレーションの条件の一例を説明する図である。 比較用のランダムビームフォーミングで送電した場合の受電電力についてのシミュレーション結果の一例を示す図である。 給電システム300のシミュレーション結果の一例を示す図である。 実施形態の変形例の給電システム300における最適化処理の一例を説明する図である。 実施形態の変形例における特定デバイス50Aが受電する送電信号の受電位相を説明する図である。 実施形態の変形例における特定デバイス50Aが受電する送電信号の受電位相を説明する図である。 実施形態の変形例における特定デバイス50Aが受電する送電信号の受電位相を説明する図である。 実施形態の変形例における特定デバイス50Aが受電する送電信号の受電位相を説明する図である。 実施形態の変形例における特定デバイス50Aが受電する送電信号の受電位相を説明する図である。 実施形態の変形例の給電システム300のシミュレーション結果の一例を示す図である。
 以下、本発明の給電システム、給電装置、及び、給電方法を適用した実施形態について説明する。
 <実施形態>
 <給電システム300>
 図1は、実施形態の給電システム300を示す図である。給電システム300は、給電装置100と特定デバイス50Aとを含む。特定デバイス50Aは、受電装置の一例である。以下では、XYZ座標系を用いて説明する。平面視とはXY平面視のことである。また、給電システム300は、給電装置100と複数のデバイス50とを含んでもよい。複数のデバイス50には、特定デバイス50Aと、特定デバイス50A以外の複数の非特定デバイス50Bとが含まれる。
 給電装置100は、一例として、スマート工場、大規模プラント、物流センタ、倉庫等の大規模な施設の領域10に配置される。給電装置100は、アレイアンテナ110、フェーズシフタ120、ICチップ125、マイクロ波発生源130、及び制御装置140を含み、領域10内に存在する複数のデバイス50に非接触で給電(マイクロ波給電)を行う。実施形態の給電方法は、給電装置100によって実現される給電方法であり、特に制御装置140が実行する処理によって実現される。
 給電装置100は、不特定多数のデバイス50に給電を行う際に、アレイアンテナ110にビームフォーミングでの送電を行わせる。アレイアンテナ110の複数のアンテナ素子111は、後述する送電制御部が指定した送電位相で送信可能である。複数のアンテナ素子111が出力する送電信号の位相を固定すると、複数のアンテナ出力信号から形成されるビームによって領域10内に定在波が生じ、定在波の節の位置に存在するデバイス50には電力が殆ど供給されなくなる。このような事態を避けるために、給電装置100は、複数のアンテナ素子111から出力される複数の送電信号の位相を時系列的にランダムにシフトさせて、定在波の節が特定の場所に長時間にわたり生じないようにしている。換言すれば、定在波の節が領域10内で移動するようにしている。送電信号の位相は、タイムスロットに従ってシフトされる。なお、送電信号とは、アンテナ素子111から送電(送信)される信号であり、所定の電力を有するRF(Radio Frequency)信号である。送電信号の周波数は、一例として、918MHzである。
 このように複数のアンテナ素子111から出力される複数の送電信号の位相をタイムスロットに従ってランダムにシフトさせて形成するビームでの送電を行うことを以下ではランダムビームフォーミングと称す。
 また、複数のデバイス50の中には、内部のバッテリ54を充電するためにより多くの受電電力を必要とするデバイス50が存在しうる。例えば、他のデバイス50よりも多くの電力を消費して内部のバッテリ54の残量が少なくなっているデバイス50である。このようにより多くの受電電力を必要とするデバイス50を特定デバイス50Aと称す。図1には、ある時点における1つのデバイス50を特定デバイス50Aとして示す。
 特定デバイス50Aは、複数のアンテナ素子111のうちのアンテナサブセット110Aに含まれる複数のアンテナ素子111から主に受電する。ランダムビームフォーミングよりも、より集中的に送電を行うことにより、特定デバイス50Aのバッテリ54を早期に充電するためである。
 アンテナサブセット110Aに含まれるアンテナ素子111は、第1アンテナの一例である。アンテナサブセット110Aに含まれないアンテナ素子111は、第2アンテナの一例である。また、アンテナサブセット110Aに含まれるアンテナ素子111が送電する送電信号は、第1送電信号の一例であり、アンテナサブセット110Aに含まれないアンテナ素子111が送電する送電信号は、第2送電信号の一例である。
 アンテナサブセット110Aに含まれる複数のアンテナ素子111から特定デバイス50Aへの送電は、フレーム毎に位相が設定される。図1では、アンテナサブセット110Aに4つのアンテナ素子111が含まれている。アンテナサブセット110A、及び、特定デバイス50Aへの送電信号の位相シフトについては後述する。
 複数のデバイス50のうち、特定デバイス50A以外を非特定デバイス50Bと称す。すべてのデバイス50は、状況に応じて特定デバイス50Aになり得る。特定デバイス50Aは、バッテリ54の充電量が十分な量になれば、アンテナサブセット110Aからの集中的な電力供給が行われなくなり、非特定デバイス50Bになる。非特定デバイス50Bは、アンテナサブセット110Aを含むアンテナ素子111からランダムビームフォーミングによる送電を受ける。
 また、特定デバイス50Aは、Automatic Guided Vehicle(AGV)、又は、Autonomous Mobile Robot(AMR)等のような遠隔管理可能な移動体に搭載されていて、移動可能であってもよい。すべての複数のデバイス50が、このような移動体に搭載されていて、状況によって特定デバイス50Aになることができる構成であってもよいし、すべての複数のデバイス50のうちの一部のデバイス50のみが、このような移動体に搭載されていて、状況によって特定デバイス50Aになることができる構成であってもよい。以下では、一例として特定デバイス50Aが移動体に搭載されていて移動可能である形態について説明する。
 給電装置100は、非特定デバイス50Bへのランダムビームフォーミングによる送電と、特定デバイス50Aへのアンテナサブセット110Aからの送電とを両立する給電装置である。なお、以下では、特定デバイス50Aと非特定デバイス50Bとを特に区別しない場合には、単にデバイス50と称す。
 <特定デバイス50Aの構成>
 図2は、特定デバイス50Aの構成の一例を示す図である。特定デバイス50Aは、アンテナ51、スイッチSW、制御部52、RF/DC(Direct Current)変換部53、バッテリ54、直交検波部55、算出部56、角度変換部57、及び通信部58を有する。通信部58は、アンテナ58Aを有する。
 アンテナ51は、1又は複数のアンテナ素子111から電力を受電するためのアンテナである。アンテナ51は、受電した電力をスイッチSWに出力する。スイッチSWは、制御部52によって切り替えられ、アンテナ51の接続先をRF/DC変換部53と直交検波部55のいずれかに切り替える。
 制御部52は、各フレームにおける最適化期間と給電期間とでスイッチSWを切り替える。制御部52は、最適化期間ではスイッチSWを直交検波部55に接続するように切り替え、給電期間ではスイッチSWをRF/DC変換部53に接続するように切り替える。
 制御部52は、最適化期間では、直交検波部55、算出部56、角度変換部57、及び通信部58に、差分信号から得られる角度を表すデータを給電装置100の制御装置140に送信させる処理を行わせる。
 また、制御部52は、給電期間では、アンテナ51を介してアンテナ素子111から受電する受電電力をバッテリ54に充電する充電制御を行う。
 バッテリ54は、一例として二次電池又はキャパシタであり、アンテナ51から供給される電力を充電する。バッテリ54に充電される電力は、スイッチSW、制御部52、RF/DC変換部53、直交検波部55、算出部56、角度変換部57、及び通信部58が動作する際に利用される。
 バッテリ54には、電力を消費する負荷が接続されていてもよい。例えば、負荷は、温度や湿度等を検出するセンサであってもよく、この場合にはデバイス50をセンサデバイスとして取り扱うことができる。また、負荷は、モータやアクチュエータ等の動力源であってもよく、デバイス50は動的な作業を行うデバイスであってもよい。
 また、デバイス50が移動可能な移動体に取り付けられている場合には、バッテリ54が充電する電力は、負荷としての移動体のモータ等の動力源や制御部等を駆動するための電力として利用することができる。
 RF/DC変換部53は、アンテナ51で受電(受信)した送電信号(RF信号)を直流電力に変換してバッテリ54に出力するコンバータ(変換回路)である。
 直交検波部55は、アンテナ51で受電した送電信号を復調して位相情報を取り出し、算出部56に出力する。直交検波部55が取り出す位相情報は、アンテナ51で受電される送信信号の位相を表す。
 算出部56は、直交検波部55によって取り出された位相情報が表す位相に基づいて、差分信号を求める減算処理を行う。減算処理については後述する。
 角度変換部57は、算出部56によって算出される差分信号をIQ座標における角度に変換し、角度を表す角度データを通信部58に出力する。
 通信部58は、角度変換部57から出力される角度データをアンテナ58Aから給電装置100に送信する。
 なお、図2を用いて特定デバイス50Aの構成について説明したが、複数のデバイス50のうち、特定デバイス50Aになることがなく、非特定デバイス50Bとしてのみ機能するデバイス50は、スイッチSW、直交検波部55、算出部56、角度変換部57、及び通信部58を有していなくてよく、制御部52は、バッテリ54の充電制御を行えばよい。
 <アレイアンテナ110>
 アレイアンテナ110は、2次元アンテナグリッドの一例であり、一例としてマトリクス状に配置されるアンテナ素子111を含む。アンテナ素子111は、一例として、X方向に16個、Y方向に16個で256個ある。256個のアンテナ素子111は、XY平面上に位置する。
 各アンテナ素子111は、送電ケーブル130Aを介してマイクロ波発生源130に接続されており、マイクロ波帯の電力が供給される。制御装置140によって制御されることにより、256個のアンテナ素子111のうちのアンテナサブセット110Aを構成するアンテナ素子111として選択された4つのアンテナ素子111は、特定デバイス50Aに向けて最適化された位相で送電を行うが特定デバイス50Aの近傍に位置する非特定デバイス50Bにも副次的に給電がなされる。アンテナサブセット110Aに含まれないアンテナ素子111は、ランダムビームフォーミングによって非特定デバイス50Bに送電を行うが特定デバイス50Aの比較的近傍に位置するアンテナ素子111からも副次的に給電がなされる。なお、アンテナサブセット110Aに含まれるアンテナ素子111の数は複数であれば幾つであってもよい。アンテナ素子111は、平面視で矩形状のパッチアンテナである。アンテナ素子111は、-Z方向側にグランド電位に保持されるグランド板を有していてもよい。
 また、特定デバイス50Aの移動に伴い、フレーム毎にアンテナサブセット110Aを構成するアンテナ素子111の見直しが行われ、アンテナサブセット110Aに含まれるアンテナ素子111の選択が行われる。
 各アンテナ素子111は、上述したスマート工場等の大規模な施設の天井や柱等に取り付けられている。各アンテナ素子111の間の間隔は、一例として、アンテナ素子111の通信周波数における波長の数波長に相当する。アンテナ素子111の通信周波数は、一例としてマイクロ波帯を想定しており、一例として918MHzである。
 また、図1には、一例として、特定デバイス50Aがアレイアンテナ110に含まれる256個のアンテナ素子111のうちの4個のアンテナ素子111から電力を受電している状態を示す。このように、特定デバイス50Aに送電するために制御装置140によって選択された複数のアンテナ素子111の集合をアンテナサブセット110Aと称す。アンテナサブセット110Aに含まれないアンテナ素子111は、タイムスロットに従って送信信号の位相をシフトさせながらランダムビームフォーミングによって送電を行い、ランダムビームフォーミングによって送電される電力は、非特定デバイス50Bによって受電されるが特定デバイス50Aにも副次的に受電される。
 フェーズシフタ120は、各アンテナ素子111に1個ずつ接続されており、各アンテナ素子111と送電ケーブル130Aとの間に挿入されている。図1では、説明の便宜上、1個のアンテナ素子111、フェーズシフタ120、及びICチップ125を拡大して示す。
 フェーズシフタ120は、マイクロ波発生源130から送電ケーブル130Aを介して伝送される電力の送信位相をシフトしてアンテナ素子111に出力する。フェーズシフタ120は、位相調節部の一例である。ICチップ125は、受電電力のRSSI(Received Signal Strength Indicator)を測定する測定部と、BLEの通信部とを含み、測定したRSSI値を表すデータを含むビーコン信号を制御装置140に送信する。ICチップ125の通信部は、BLE通信用のアンテナを有する。
 マイクロ波発生源130は、256個のフェーズシフタ120に接続されており、所定の電力のマイクロ波を供給する。マイクロ波発生源130は、電波発生源の一例である。マイクロ波の周波数は、一例として918MHzである。なお、ここでは給電装置100がマイクロ波発生源130を含む形態について説明するが、マイクロ波に限られるものではなく、所定の周波数の電波であればよい。
 制御装置140は、制御部の一例であり、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び不揮発性メモリ等を有するマイクロコンピュータであり、一例として、離散型ウェーブレット・マルチトーン(DWMT)を用いることができる。
 制御装置140は、アンテナ140Aを有し、特定デバイス50Aから角度データが書き込まれたビーコン信号を受信する。
 制御装置140は、アンテナサブセット110Aに含まれるアンテナ素子111の選択制御(ランキング処理)、256個のフェーズシフタ120における位相の制御、及び、マイクロ波発生源130の電力の出力制御を行う。アンテナサブセット110Aに含まれるアンテナ素子111の送電信号の位相制御と、アンテナサブセット110Aに含まれないアンテナ素子111のランダムビームフォーミングによる送電信号の位相制御とは、フェーズシフタ120における位相の制御によって実現される。
 <制御装置140>
 図3は、制御装置140の構成を示す図である。制御装置140は、主制御部141、サブセット選択部142、送電制御部143、及びメモリ144を有する。主制御部141、サブセット選択部142、及び送電制御部143は、制御装置140が実行するプログラムの機能を機能ブロックとして示したものである。また、メモリ144は、制御装置140のメモリを機能的に表したものである。
 主制御部141は、制御装置140の処理を統括する処理部であり、サブセット選択部142及び送電制御部143が実行する処理以外の処理を実行する。
 サブセット選択部142は、アンテナ選択部の一例であり、各フレームにおいて特定デバイス50Aから差分信号が送信され、すべてのアンテナ素子111で差分信号を受信した際のRSSI値を取得すると、RSSI値のランキングに基づいてアンテナサブセット110Aに含まれる複数のアンテナ素子111を選択する。RSSI値のランキングに基づく選択方法の詳細については、図7を用いて後述する。
 送電制御部143は、すべてのアンテナ素子111から送電を行う送電制御を行う。送電制御部143は、すべてのアンテナ素子111から送電を行う際には、すべてのアンテナ素子111の送電信号の位相をランダムに設定し、かつ、タイムスロット毎に位相をランダムにシフトさせるランダムビームフォーミングによる送電制御を行う(ランダムモード)。これにより、領域10(図1参照)で送電信号の定在波が生じる位置が時間的に固定されないようにすることができ、すべてのデバイス50が比較的均等に受電することができる。
 また、送電制御部143は、サブセット選択部142によってアンテナサブセット110Aが構築されると、各フレームにおける最適化期間で最適化処理を行い、各フレームの給電期間で給電処理を行う。最適化期間における最適化処理、及び、給電期間における給電処理については後述する。
 メモリ144は、主制御部141、サブセット選択部142、及び送電制御部143が処理を実行する際に用いるデータやプログラム等を格納する。各タイムスロットにおける送電信号の位相を表すデータもメモリ144に格納される。
 <フレーム構造>
 図4は、フレーム構造の一例を示す図である。フレーム期間は、一例として50msである。フレームは、最適化期間及び給電期間を含む。給電期間は、最適化期間の後に設けられている。
 最適化期間は、アンテナサブセット110Aに含まれる複数のアンテナ素子111で送電する送電信号の位相(送電位相)を最適化する最適化処理を行う期間である。複数のアンテナ素子111で送電する送電信号の位相を最適化するとは、複数のアンテナ素子111で送電した送電信号が特定デバイス50Aのアンテナ51で受電される際の位相(受電位相)を揃えることである。複数の送電信号の受電位相が揃えば、特定デバイス50Aの受電電力を最大化できるからである。なお、位相が揃っていることは、位相が完全に同一である場合に限らず、完全に同一である状態に略等しい状態も含む。厳密な意味で位相を揃えるのは容易ではない場合もあり、例えば位相のずれが±5%程度であれば、位相が揃っていると考えて問題ないからである。
 最適化期間では、アンテナサブセット110Aに含まれない複数のアンテナ素子111で送電する送電信号の位相は固定値に設定される。アンテナサブセット110Aに含まれるアンテナ素子111の送電位相を最適化する際に、アンテナサブセット110Aに含まれない複数のアンテナ素子111の送電位相を固定することで、アンテナサブセット110Aに含まれない複数のアンテナ素子111から送電される送電信号の影響が生じないようにするためである。
 給電期間は、最適化期間における最適化処理で複数のアンテナ素子111で送電する送電信号の位相を最適化した状態で、複数のアンテナ素子111から送電信号を送電する給電処理を行う期間である。給電期間では、アンテナサブセット110Aに含まれる複数のアンテナ素子111については、同じフレーム内の最適化区間における最適化処理で求められた複数の送電位相の関係を保持した状態で、ランダムビームフォーミングを行う。また、アンテナサブセット110Aに含まれない複数のアンテナ素子111については、複数のアンテナ素子111の送電位相同士に特に関係を持たせずに、ランダムビームフォーミングを行う。
 <送電位相の最適化>
 アンテナサブセット110Aに含まれる4つのアンテナ素子111をアンテナ素子m~mとして区別し、アンテナ素子mの送電位相の最適化について説明する。
 最適化の際に、その時にアンテナ素子mに設定されている位相、又は、特定の位相(例えば0度)で、アンテナ素子m~mとともに送電を行う。特定デバイス50Aが受電する信号は、すべてのアンテナ素子111からの送電信号が特定デバイス50Aのアンテナ51において合成させた信号になる。無線周波数からベースバンドへの信号変換(直交検波)により再生搬送波でベースバンド信号に変換された(直交検波部55で復調された)送電信号r(k)は、タイムスロットkにおいて、アンテナ素子mからの寄与を抜き出して記述すると次式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Λはアンテナ集合全体、Sはアンテナサブセット、第1項のφm1(k)はアンテナ素子mに設定されている送電位相、PRm1は受電電力、ξm1はアンテナ素子mとアンテナ51との間での位相変位であり、アンテナ素子mとアンテナ51との間の距離を波長で除算した場合の余り(端数)である。第2項はアンテナサブセット110A内のアンテナ素子m以外のアンテナ素子m~mから受電した信号成分である。第3項はアンテナサブセット110A内に含まれないアンテナ素子111から受電した信号成分である。最適化処理中はアンテナ素子111とアンテナ51との間の位相の時間変動は無視できるほど小さいものとしている。
 次のタイムスロットk+1では、アンテナ素子mから送電位相を180度(π)ずらして、すなわち、位相を反転させて、アンテナサブセット110Aに含まれる他のアンテナ素子m~m、及び、アンテナサブセット110Aに含まれないアンテナ素子111とともに送電を行う。タイムスロットk+1におけるアンテナ素子mの送電位相φm1(k+1)は、次式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、送電位相φm1(k+1)が360度を超える場合にはモジュロ演算により1から360度の範囲に縮退させる。アンテナサブセット110Aに含まれる他のアンテナ素子m~m、及び、アンテナサブセット110Aに含まれないアンテナ素子111の送電位相は変化させないため、アンテナ素子m1の送電位相のみが変化(反転)することとなる。
 受電側となる特定デバイス50Aでは、同様に、無線周波数からベースバンドへの信号変換(直交検波)によりベースバンド信号に変換する。タイムスロットk+1において受電する送電信号r(k+1)は、タイムスロットkのときと同様に、すべてのアンテナ素子111から送電される送電信号がアンテナ51において合成された信号となる。送電信号r(k+1)はアンテナ素子m1からの寄与を抜き出して記述すると次式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 タイムスロットkで受信した送電信号からタイムスロットk+1で受信した送電信号を減算する。アンテナ素子m1以外のアンテナ素子111からは2つの連続するタイムスロットk及びk+1にわたって同じ送電位相で送電されているため、減算を行うとキャンセルされ、差分信号は、次式(4)で表され、アンテナ素子m1からの信号成分のみが残る。
Figure JPOXMLDOC01-appb-M000004
 アンテナ素子m1から送電された送電信号の送電位相(ξm+φm(k))を次式(5)のように検出し、その値を制御装置140に送信する。
Figure JPOXMLDOC01-appb-M000005
 制御装置140では、アンテナ素子m1に関して、受信した送電位相をキャンセルするように、あるいは、特定の位相となるように、送電位相を制御する。この位相制御により決定された送信位相は、タイムスロットk+5以降の給電期間において反映される。
Figure JPOXMLDOC01-appb-M000006
 アンテナ素子m1からタイムスロットk+5以降にφm1(k+5)の送電位相で送電すると、アンテナ素子m1から送電された送電信号が特定デバイス50Aのアンテナ51で受電される際の受電位相φm1(k+5)は同相軸方向に向くこととなり、例えば次式(7)ではゼロになる。
Figure JPOXMLDOC01-appb-M000007
 <最適化処理>
 図5は、最適化処理の一例を説明する図である。図5には、1フレームにおける最適化期間及び給電期間とタイムスロットを示す。ここでは、一例として、アンテナサブセット110Aに4つのアンテナ素子111が含まれていることとする。最適化処理は、アンテナサブセット110Aに含まれるアンテナ素子111の数に1を加えた数のタイムスロットを含む。図5では、アンテナサブセット110Aに4つのアンテナ素子111が含まれるため、最適化期間のタイムスロットは5個(k~k+4)である。また、給電期間は、タイムスロットk+5から始まり、最適化期間よりも長いが、ここでは簡略化して示す。
 アンテナサブセット110Aに含まれる4つのアンテナ素子111をアンテナ素子m~mとして区別する。また、アンテナサブセット110Aに含まれない複数のアンテナ素子111(非選択の第1アンテナの一例)をアンテナn、・・・とする。
 タイムスロットkでは、アンテナ素子mの送電位相をφmに設定し、アンテナ素子m~mの送電位相をφm~φmに設定する。この状態でアンテナ素子m~mから送電信号を送電する。なお、φm~φmは、任意の送電位相である。
 タイムスロットk+1では、アンテナ素子mの送電位相がφm+πに変更され、アンテナ素子m~mの送電位相をφm~φmに設定する。この状態でアンテナ素子m~mから送電信号を送電する。タイムスロットk+1で変更されたアンテナ素子mの送電位相φm+πは、タイムスロットkでの送電位相φmを反転させた反転位相である。タイムスロットk~k+1では、アンテナ素子m~mの送電位相はφm~φmに固定される。
 タイムスロットk+2では、アンテナ素子mの送電位相をφm+πに設定し、アンテナ素子mの送電位相がφm+πに変更され、アンテナ素子m~mの送電位相をφm~φmに設定する。この状態でアンテナ素子m~mから送電信号を送電する。タイムスロットk+2で変更されたアンテナ素子mの送電位相φm+πは、タイムスロットk~k+1での送電位相φmを反転させた反転位相である。タイムスロットk+1~k+2では、アンテナ素子mの送電位相はφm+πに固定される。タイムスロットk~k+2では、アンテナ素子m~mの送電位相はφm~φmに固定される。
 タイムスロットk+3では、アンテナ素子mの送電位相をφm+πに設定し、アンテナ素子mの送電位相をφm+πに設定し、アンテナ素子mの送電位相がφm+πに変更され、アンテナ素子mの送電位相をφmに設定する。この状態でアンテナ素子m~mから送電信号を送電する。タイムスロットk+3で変更されたアンテナ素子mの送電位相φm+πは、タイムスロットk~k+2での送電位相φmを反転させた反転位相である。タイムスロットk+1~k+3では、アンテナ素子mの送電位相はφm+πに固定され、タイムスロットk+2~k+3では、アンテナ素子mの送電位相はφm+πに固定される。タイムスロットk~k+3では、アンテナ素子mの送電位相はφmに固定される。
 タイムスロットk+4では、アンテナ素子mの送電位相をφm+πに設定し、アンテナ素子mの送電位相をφm+πに設定し、アンテナ素子mの送電位相をφm+πに設定し、アンテナ素子mの送電位相がφm+πに変更される。この状態でアンテナ素子m~mから送電信号を送電する。タイムスロットk+4で変更されたアンテナ素子mの送電位相φm+πは、タイムスロットk~k+3での送電位相φmを反転させた反転位相である。タイムスロットk+1~k+4では、アンテナ素子mの送電位相はφm+πに固定され、タイムスロットk+2~k+4では、アンテナ素子mの送電位相はφm+πに固定される。タイムスロットk+3~k+4では、アンテナ素子mの送電位相はφm+πに固定される。
 上述のように、タイムスロットk~k+4の最適化期間では、タイムスロットk及びk+1でアンテナ素子mの送電位相について最適化処理を行い、タイムスロットk+1以降では、アンテナ素子mの送電位相をφm+πに固定する。アンテナ素子mの送電位相をφmに設定して送電信号を送電するタイムスロットkでの最適化処理は、アンテナ素子mについての第1送電処理の一例であり、アンテナ素子mの送電位相をφm+πに設定して送電信号を送電するタイムスロットk+1での最適化処理は、アンテナ素子mについての第2送電処理の一例である。第1送電処理及び第2送電処理を行う最適化期間は、準備期間の一例である。
 また、タイムスロットk~k+4の最適化期間では、タイムスロットk+1及びk+2でアンテナ素子mの送電位相について最適化処理を行う。タイムスロットk~k1では、アンテナ素子mの送電位相をφmに固定し、タイムスロットk+2以降では、アンテナ素子mの送電位相をφm+πに固定する。アンテナ素子mの送電位相をφmに設定して送電信号を送電するタイムスロットk+1での最適化処理は、アンテナ素子mについての第1送電処理の一例であり、アンテナ素子mの送電位相をφm+πに設定して送電信号を送電するタイムスロットk+2での最適化処理は、アンテナ素子mについての第2送電処理の一例である。
 また、タイムスロットk~k+4の最適化期間では、タイムスロットk+2及びk+3でアンテナ素子mの送電位相について最適化処理を行う。タイムスロットk~k2では、アンテナ素子mの送電位相をφmに固定し、タイムスロットk+3以降では、アンテナ素子mの送電位相をφm+πに固定する。アンテナ素子mの送電位相をφmに設定して送電信号を送電するタイムスロットk+2での最適化処理は、アンテナ素子mについての第1送電処理の一例であり、アンテナ素子mの送電位相をφm+πに設定して送電信号を送電するタイムスロットk+3での最適化処理は、アンテナ素子mについての第2送電処理の一例である。
 また、タイムスロットk~k+4の最適化期間では、タイムスロットk+3及びk+4でアンテナ素子mの送電位相について最適化処理を行う。タイムスロットk~k3では、アンテナ素子mの送電位相をφmに固定し、タイムスロットk+4において、アンテナ素子mの送電位相をφm+πに変更する。アンテナ素子mの送電位相をφmに設定して送電信号を送電するタイムスロットk+3での最適化処理は、アンテナ素子mについての第1送電処理の一例であり、アンテナ素子mの送電位相をφm+πに設定して送電信号を送電するタイムスロットk+4での最適化処理は、アンテナ素子mについての第2送電処理の一例である。
 なお、給電期間では、アンテナ素子m~mの送電位相を最適化された送電位相に設定し、4つの最適化された送電位相の関係を保持しながら、ランダムビームフォーミングを行う。また、最適化期間では、アンテナサブセット110Aに含まれない複数のアンテナ素子111(非選択の第1アンテナの一例)については、複数のアンテナ素子111の各々について任意の位相に固定される。また、給電期間では、アンテナサブセット110Aに含まれない複数のアンテナ素子111については、複数のアンテナ素子111の各々については、複数のアンテナ素子111の送電位相同士に特に関係を持たせずに、ランダムビームフォーミングを行う。給電期間は、送電期間の一例である。
 <特定デバイス50Aの送電信号の受電位相>
 図6A乃至図6Eは、特定デバイス50Aが受電する送電信号の受電位相を説明する図である。I軸は実軸、Q軸は虚軸である。(1)~(4)の4つのベクトルは、アンテナ素子m~mから特定デバイス50Aが受電する送電信号をベクトルで表したものである。
 アンテナ素子m~mの送電位相がそれぞれφm~φmであり、アンテナ素子m~mと、アンテナ51との間の距離を波長で除算した場合の余り(端数)がそれぞれξm~ξmであることとする。
 図6Aに示すように、タイムスロットkにおいて特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm、ξm+φm、ξm+φm、ξm+φmである。(1)~(4)の4つのベクトルは、図6Aに示す通りである。
 タイムスロットk+1において特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm+π、ξm+φm、ξm+φm、ξm+φmである。4つのベクトル(1)~(4)は、図6Aに示す通りであり、タイムスロットkに比べてベクトル(1)は逆向きになる。
 タイムスロットkにおける4つのベクトル(1)~(4)からタイムスロットk+1における4つのベクトル(1)~(4)を減算すると、ベクトル(2)~(4)が無くなり、ベクトル(1)の長さが2倍になったベクトル(1A)のみが差分として残る。ベクトル(1A)を表す信号は、差分信号であり、算出部56が減算処理によって求める。ベクトル(1A)のI軸に対する角度をα1とする。角度α1は、角度変換部57が求める。なお、タイムスロットkにおける4つのベクトル(1)~(4)は第1合成信号の一例であり、タイムスロットk+1における4つのベクトル(1)~(4)は第2合成信号の一例である。
 図6Bに示すように、タイムスロットk+1において特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm+π、ξm+φm、ξm+φm、ξm+φmである。(1)~(4)の4つのベクトルは、図6Bに示す通りである。
 タイムスロットk+2において特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm+π、ξm+φm+π、ξm+φm、ξm+φmである。4つのベクトル(1)~(4)は、図6Bに示す通りであり、タイムスロットk+1に比べてベクトル(2)は逆向きになる。
 タイムスロットk+1における4つのベクトル(1)~(4)からタイムスロットk+2における4つのベクトル(1)~(4)を減算すると、ベクトル(1)、(3)、及び(4)が無くなり、ベクトル(2)の長さが2倍になったベクトル(2A)のみが差分として残る。ベクトル(2A)を表す信号は、差分信号であり、算出部56が減算処理によって求める。ベクトル(2A)のI軸に対する角度をα2とする。角度α2は、角度変換部57が求める。なお、タイムスロットk+1における4つのベクトル(1)~(4)は第1合成信号の一例であり、タイムスロットk+2における4つのベクトル(1)~(4)は第2合成信号の一例である。
 図6Cに示すように、タイムスロットk+2において特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm+π、ξm+φm+π、ξm+φm、ξm+φmである。(1)~(4)の4つのベクトルは、図6Cに示す通りである。
 タイムスロットk+3において特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm+π、ξm+φm+π、ξm+φm+π、ξm+φmである。4つのベクトル(1)~(4)は、図6Cに示す通りであり、タイムスロットk+2に比べてベクトル(3)は逆向きになる。
 タイムスロットk+2における4つのベクトル(1)~(4)からタイムスロットk+3における4つのベクトル(1)~(4)を減算すると、ベクトル(1)、(2)、及び(4)が無くなり、ベクトル(3)の長さが2倍になったベクトル(3A)のみが差分として残る。ベクトル(3A)を表す信号は、差分信号であり、算出部56が減算処理によって求める。ベクトル(3A)のI軸に対する角度をα3とする。角度α3は、角度変換部57が求める。なお、タイムスロットk+2における4つのベクトル(1)~(4)は第1合成信号の一例であり、タイムスロットk+3における4つのベクトル(1)~(4)は第2合成信号の一例である。
 図6Dに示すように、タイムスロットk+3において特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm+π、ξm+φm+π、ξm+φm+π、ξm+φmである。(1)~(4)の4つのベクトルは、図6Dに示す通りである。
 タイムスロットk+4において特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm+π、ξm+φm+π、ξm+φm+π、ξm+φm+πである。4つのベクトル(1)~(4)は、図6Dに示す通りであり、タイムスロットk+3に比べてベクトル(4)は逆向きになる。
 タイムスロットk+3における4つのベクトル(1)~(4)からタイムスロットk+4における4つのベクトル(1)~(4)を減算すると、ベクトル(1)~(3)が無くなり、ベクトル(4)の長さが2倍になったベクトル(4A)のみが差分として残る。ベクトル(4A)を表す信号は、差分信号であり、算出部56が減算処理によって求める。ベクトル(4A)のI軸に対する角度をα4とする。角度α4は、角度変換部57が求める。なお、タイムスロットk+3における4つのベクトル(1)~(4)は第1合成信号の一例であり、タイムスロットk+4における4つのベクトル(1)~(4)は第2合成信号の一例である。
 以上のように角度変換部57がベクトル(1)~(4)の角度α1~α4を求めると、通信部58は、タイムスロットk+4の最後のタイミングで、角度α1~α4を表す角度データを給電装置100に送信する。
 送電制御部143は、タイムスロットk+5において、角度α1~α4の各々を調整するためにベクトル(1)~(4)の位相を調整する。この結果、図6Eに示すように、ベクトル(1)~(4)の方向に揃えることができる。図6Eでは、ベクトル(1)~(4)の方向は、一例としてI軸に沿った方向になっているが、I軸に対して0度よりも大きい角度を有していてもよい。
 このようにして、ベクトル(1)~(4)の角度を揃えることができる。すなわち、特定デバイス50Aの受電電力を最大化することができる。
 タイムスロットk+5以降の給電期間では、ベクトル(1)~(4)の角度が揃うように、アンテナ素子m~mの4つの送電位相の関係を保持した状態で、ランダムビームフォーミングを行う。また、アンテナサブセット110Aに含まれない複数のアンテナ素子111については、複数のアンテナ素子111の送電位相同士に特に関係を持たせずに、ランダムビームフォーミングを行う。
 <アンテナサブセット110Aのアンテナ素子111を選択するランキング>
 給電装置100は、角度データを含む信号をすべてのアンテナ素子111で受信し、ICチップ125は、受電電力のRSSIを測定する。サブセット選択部142は、すべてのアンテナ素子111で受信した角度データを含む信号のRSSIに基づいてランキングを行うことで、アンテナサブセット110Aに含まれるアンテナ素子111を選択する。
 図7は、ランキング結果の一例を示す図である。図7には、ランキング(RSSIが高い順)、RSSI(dBm)、及びアンテナインデックスを示す。一例として、RSSIが最も高いアンテナ素子111に対して-15dBまでアンテナ素子111を選択することとする。
 図7では、一例として、アンテナインデックスが5番のアンテナ素子111のRSSIが最も高くて-50.0dBmであり、-50.0dBmに対して15dB落ちまで(-50.0-15dBまで)のランキング4位までの4つのアンテナ素子111がアンテナサブセット110Aに含まれるアンテナ素子111として選択される。なお、ここでは、アンテナサブセット110Aが4つのアンテナ素子111を含む状態について説明するが、各フレームにおけるアンテナサブセット110Aに含まれるアンテナ素子111の数は、RSSIの最高値から15dB落ちまでのアンテナ素子111の数によって決まるため、4つよりも多い場合も有り得るし、少ない場合も有り得る。
 <フローチャート>
 図8は、給電システム300の制御装置140及び特定デバイス50Aが実行する処理の一例を表すフローチャートである。制御装置140及び特定デバイス50Aは別々に処理を行うが、ここでは、給電システム300内における一連の処理として説明する。図8に示す処理は、1つのフレーム内で行われる処理であり、各フレームで同様に行われる。
 送電制御部143は、アンテナサブセット110Aに含まれるアンテナ素子111を1つずつ選択し、送電信号と、反転位相の送電信号とを順次送電する(ステップS1)。例えば、図5に示すタイムスロットk~k+4の処理が行われる。
 特定デバイス50Aは、差分信号から角度データを求める(ステップS2)。
 特定デバイス50Aは、角度データを格納したビーコン信号を給電装置100に送信する(ステップS3)。ステップS3の処理は、例えば、図5に示すタイムスロットk+4の最後に行われる。
 ステップS3の後は、ステップS4A及びS5Aの処理と、ステップS4B及びS5Bの処理とが並列に行われる。
 送電制御部143は、アンテナサブセット110Aに含まれる複数のアンテナ素子111には、最適化された送電位相の関係を保持しながらランダムビームフォーミングで送電させ、アンテナサブセット110Aに含まれないアンテナ素子111には、ランダムビームフォーミングで送電させる(ステップS4A)。例えば、図5におけるタイムスロットk+5以降の給電期間において、ステップS4Aにおける送電が行われる。
 特定デバイス50Aは、ステップS4Aで送電される送電信号を受電する(ステップS5A)。例えば、図5におけるタイムスロットk+5以降の給電期間においてステップS4Aにおける送電が行われるため、特定デバイス50Aは、給電期間において送電信号を受電する。
 ステップS4A及びS5Aの処理は、フレームが終了するまで行われる。
 また、各アンテナ素子111のICチップ125は、ビーコン信号のRSSIを測定し、制御装置140に転送する(ステップS4B)。
 制御装置140のサブセット選択部142は、RSSIのランキング結果に基づいて、アンテナサブセット110Aに含まれるアンテナ素子111を選択する(ステップS5B)。ランキング結果に基づいて選択されたアンテナ素子111は、次のフレームにおいて、アンテナサブセット110Aに含まれるアンテナ素子111として利用される。
 ステップS4A及びS5Aの処理と、ステップS4B及びS5Bの処理とが終了すると、フレームの終了となる(ステップS6)。ステップS6において1つのフレーム内での処理が完了すると、フローはステップS1にリターンする。
 <シミュレーション>
 図9は、シミュレーションの条件の一例を説明する図である。一例として、6×6の36個のアンテナ素子111をアレイ状に配列した状態で、特定デバイス50Aに給電するシミュレーションを行った。特定デバイス50Aは点線の円の軌道上を2.0m/secの速度で移動する。
 給電システム300のシミュレーションでは、RSSIのランキング結果でアンテナサブセット110Aに含まれる複数のアンテナ素子111を選択し、アンテナサブセット110Aに含まれる複数のアンテナ素子111には、最適化された送電位相の関係を保持しながらランダムビームフォーミングで送電させ、アンテナサブセット110Aに含まれないアンテナ素子111には、ランダムビームフォーミングで送電させて、特定デバイス50Aが受電する電力量についてシミュレーションを行った。
 また、比較用に、アンテナサブセット110Aを設定せずに、すべての(36個)のアンテナ素子111からランダムビームフォーミングで送電した場合に、特定デバイス50Aが受電する電力量についてもシミュレーションを行った。
 図10は、比較用のランダムビームフォーミングで送電した場合の受電電力についてのシミュレーション結果の一例を示す図である。図10において、横軸は時間を表し、縦軸は、受電電力(dBm)を表す。すべての(36個)のアンテナ素子111からランダムビームフォーミングで送電した場合には、受電電力は0(dBm)を中心に上下を繰り返しており、時間変化に伴う変動が大きかった。
 図11は、給電システム300のシミュレーション結果の一例を示す図である。図11の上側には、アンテナサブセット110Aに含まれるアンテナ素子111の数の時間変化の様子を示す。図11の上側のグラフにおいて、横軸は時間を表し、縦軸は、アンテナサブセット110Aに含まれるアンテナ素子111の数を表す。また、図11の下側のグラフにおいて、横軸は時間を表し、縦軸は、受電電力(dBm)を表す。
 図11の下側のグラフに示すように、受電電力は、図10に示す受電電力よりも高く、5dBm~6dBmの期間が多い。フレーム期間は50msであり、各フレームの最初に受電電力が低い期間があるのは、最適化期間であるものと考えられる。最適化期間が終了した後の給電期間において、5dBm~6dBmの受電電力が得られている。
 また、図11の上側のグラフを見ると、アンテナサブセット110Aに含まれるアンテナ素子111の数は、4個~6個である。図11の上下のグラフを見比べると、アンテナサブセット110Aに含まれるアンテナ素子111の数が多い期間の方が、受電電力が大きくなっていることを確認できる。
 <効果>
 給電システム300は、給電装置100と、給電装置100から送電される送電信号を受電する特定デバイス50Aとを含む給電システム300であって、給電装置100は、電力を送電可能な複数のアンテナ素子111を有するアレイアンテナ110と、複数のアンテナ素子111から特定デバイス50Aに送電する送電信号の位相の制御と送電制御とを行う送電制御部143とを有し、送電制御部143は、複数のアンテナ素子111に含まれる複数の第1アンテナのうちの1つを選択し、複数の第1アンテナのうちの非選択の第1アンテナ(アンテナサブセット110Aに含まれるアンテナ素子111のうち、最適化処理の対象として選択されていないアンテナ素子111)の送電位相を固定して第1送電信号を送電させた状態において、所定位相の第1送電信号を選択した第1アンテナ(アンテナサブセット110Aに含まれるアンテナ素子111のうち、最適化処理の対象として選択されているアンテナ素子111)から送電する第1送電処理と、所定位相を反転させた反転位相の第1送電信号を選択した第1アンテナから送電する第2送電処理とを、複数の第1アンテナを1つずつ選択しながら行い、特定デバイス50Aは、第1送電処理において複数の第1アンテナから受電した、所定位相の第1送電信号と、送電位相が固定された第1送電信号との第1合成信号と、第2送電処理において複数の第1アンテナから受電した、反転位相の第1送電信号と、送電位相が固定された第1送電信号との第2合成信号との差分信号を求めて送電制御部143に送信し、送電制御部143は、複数の第1アンテナの各々を選択したことによって得られる複数の差分信号に基づいて、複数の第1アンテナが送電する複数の第1送電信号の位相を制御する。このため、受電装置の受電電力を増大可能な位相を迅速に設定できる。
 したがって、受電装置の受電電力を増大可能な位相を迅速に設定可能な給電システム300を提供することができる。
 また、送電制御部143は、第2送電処理において、第1送電処理において既に選択された第1アンテナ(アンテナサブセット110Aに含まれるアンテナ素子111のうち、最適化処理の対象として既に選択されたアンテナ素子111)については、送電位相を反転位相に設定するので、受電装置の受電電力を増大可能な位相をより迅速に設定可能な給電システム300を提供することができる。アンテナサブセット110Aに含まれるアンテナ素子111のうち、最適化処理の対象として既に選択されたアンテナ素子111については、反転位相に固定することで、余計な処理が発生せず、受電装置の受電電力を増大可能な位相をより迅速に設定できる。
 送電制御部143は、第1送電処理及び第2送電処理において、複数のアンテナ素子111のうちの複数の第1アンテナ(アンテナサブセット110Aに含まれるアンテナ素子111)以外の1又は複数の第2アンテナ(アンテナサブセット110Aに含まれないアンテナ素子111)の送電位相を固定する。
 このため、1又は複数の第2アンテナ(アンテナサブセット110Aに含まれないアンテナ素子111)の送電信号の影響を抑制した状態で、複数の差分信号を求めることができ、受電装置の受電電力を増大可能な位相を、より高精度に設定可能で、かつ、迅速に設定可能な給電システム300を提供することができる。
 また、多くの受電量が必要な特定の受電装置(特定デバイス50A)への給電と、特定の受電装置以外の受電装置への給電とを両立可能な給電システム300を提供することができる。
 給電装置100は、複数のアンテナ素子111のうち、受電装置から送信される信号の受信強度が所定強度以上の複数のアンテナ素子111を複数の第1アンテナ(アンテナサブセット110Aに含まれるアンテナ素子111)として選択し、受信強度が所定強度未満の1又は複数のアンテナ素子111を1又は複数の第2アンテナ(アンテナサブセット110Aに含まれないアンテナ素子111)として選択する、サブセット選択部142をさらに有する。
 このため、受信強度が所定強度以上(ランキングが所定順位以上)の複数のアンテナ素子111をアンテナサブセット110Aに含まれるアンテナ素子111として選択でき、特定デバイス50Aに近い複数のアンテナ素子111で構成されるアンテナサブセット110Aで、特定デバイス50Aに効率的に給電できる。
 また、受電装置から送信される信号は、差分信号を表す信号であるため、差分信号を表す角度データを含む信号を用いて、角度データの送信と、ランキング用のRSSIの測定とを同時に行うことができ、受電装置の受電電力を増大可能な位相を迅速かつ効率的に設定可能な給電システム300を提供することができる。
 また、送電制御部143は、第1送電処理及び第2送電処理を行う準備期間(最適化期間)と、複数の差分信号に基づいて複数の第1アンテナ(アンテナサブセット110Aに含まれるアンテナ素子111)が送電する複数の第1送電信号の位相を制御して、複数の第1アンテナから特定デバイス50Aに送電する送電期間(給電期間)とを含むフレーム処理を繰り返し行い、複数のアンテナ素子111のうち、サブセット選択部142によって差分信号を表す信号(角度データを格納したビーコン信号)の受信強度(RSSI)に基づいて選択された複数の第1アンテナを、当該フレームの次のフレームにおける複数の第1アンテナとして利用する。
 このため、次のフレームにおいてアンテナサブセット110Aに含まれるアンテナ素子111を差分信号を表す信号(角度データを格納したビーコン信号)の受信強度(RSSI)に基づいて選択できる。
 特定デバイス50Aは、移動可能であるので、特定デバイス50Aが移動して送電信号を受電する際の位相が変化しても、特定デバイス50Aの受電電力を増大可能な位相を迅速に設定可能な給電システム300を提供することができる。
 また、送電制御部143は、複数の差分信号に基づいて、特定デバイス50Aが複数の第1アンテナから受電する複数の第1送電信号の受電位相が揃うように、複数の第1アンテナが送電する複数の第1送電信号の送電位相を制御する。このため、特定デバイス50Aの受電電力が最大になるように第1送電信号の送電位相を制御でき、特定デバイス50Aの受電電力を確実に増大させることができる。
 給電装置100は、特定デバイス50Aに送電信号を送電する給電装置100であって、電力を送電可能な複数のアンテナ素子111を有するアレイアンテナ110と、複数のアンテナ素子111から特定デバイス50Aに送電する送電信号の位相の制御と送電制御とを行う送電制御部143とを含み、送電制御部143は、複数のアンテナ素子111に含まれる複数の第1アンテナのうちの1つを選択し、複数の第1アンテナのうちの非選択の第1アンテナ(アンテナサブセット110Aに含まれるアンテナ素子111のうち、最適化処理の対象として選択されていないアンテナ素子111)の送電位相を固定して第1送電信号を送電させた状態において、所定位相の第1送電信号を選択した第1アンテナ(アンテナサブセット110Aに含まれるアンテナ素子111のうち、最適化処理の対象として選択されているアンテナ素子111)から送電する第1送電処理と、所定位相を反転させた反転位相の第1送電信号を選択した第1アンテナから送電する第2送電処理とを、複数の第1アンテナを1つずつ選択しながら行い、複数の第1アンテナの各々を選択したことによって得られる複数の差分信号に基づいて、複数の第1アンテナが送電する複数の第1送電信号の位相を制御し、差分信号は、特定デバイス50Aが、第1送電処理において複数の第1アンテナから受電した、所定位相の第1送電信号と、送電位相が固定された第1送電信号との第1合成信号と、第2送電処理において複数の第1アンテナから受電した、反転位相の第1送電信号と、送電位相が固定された第1送電信号との第2合成信号との差分信号である。このため、受電装置の受電電力を増大可能な位相を迅速に設定できる。
 したがって、受電装置の受電電力を増大可能な位相を迅速に設定可能な給電装置100を提供することができる。
 給電方法は、給電装置100と、給電装置100から送電される送電信号を受電する特定デバイス50Aとを含む給電システム300における給電方法であって、給電装置100は、電力を送電可能な複数のアンテナ素子111を有するアレイアンテナ110と、複数のアンテナ素子111から特定デバイス50Aに送電する送電信号の位相の制御と送電制御とを行う送電制御部143とを有し、送電制御部143が、複数のアンテナ素子111に含まれる複数の第1アンテナのうちの1つを選択し、複数の第1アンテナのうちの非選択の第1アンテナ(アンテナサブセット110Aに含まれるアンテナ素子111のうち、最適化処理の対象として選択されていないアンテナ素子111)の送電位相を固定して第1送電信号を送電させた状態において、所定位相の第1送電信号を選択した第1アンテナ(アンテナサブセット110Aに含まれるアンテナ素子111のうち、最適化処理の対象として選択されているアンテナ素子111)から送電する第1送電処理と、所定位相を反転させた反転位相の第1送電信号を選択した第1アンテナから送電する第2送電処理とを、複数の第1アンテナを1つずつ選択しながら行い、特定デバイス50Aが、第1送電処理において複数の第1アンテナから受電した、所定位相の第1送電信号と、送電位相が固定された第1送電信号との第1合成信号と、第2送電処理において複数の第1アンテナから受電した、反転位相の第1送電信号と、送電位相が固定された第1送電信号との第2合成信号との差分信号を求めて送電制御部143に送信し、送電制御部143が、複数の第1アンテナの各々を選択したことによって得られる複数の差分信号に基づいて、複数の第1アンテナが送電する複数の第1送電信号の位相を制御する。このため、受電装置の受電電力を増大可能な位相を迅速に設定できる。
 したがって、受電装置の受電電力を増大可能な位相を迅速に設定可能な給電方法を提供することができる。
 <変形例>
 図12は、実施形態の変形例の給電システム300における最適化処理の一例を説明する図である。図12には、図5と同様に、1フレームにおける最適化期間及び給電期間とタイムスロットを示す。ここでは、一例として、アンテナサブセット110Aに4つのアンテナ素子111が含まれていることとする。最適化処理は、アンテナサブセット110Aに含まれるアンテナ素子111の数の2倍の数のタイムスロットを含む。図12では、アンテナサブセット110Aに4つのアンテナ素子111が含まれるため、最適化期間のタイムスロットは8個(k~k+7)である。また、給電期間は、タイムスロットk+8から始まり、最適化期間よりも長いが、ここでは簡略化して示す。
 変形例の最適化処理では、送電制御部143は、第1送電処理及び第2送電処理において、非選択の第1アンテナ(アンテナサブセット110Aに含まれるアンテナ素子111のうち、最適化処理の対象として選択されていないアンテナ素子111)の送電位相を同一値に設定する。
 より具体的には、アンテナ素子mの送電位相をφm+πに設定して送電信号を送電する最適化処理(アンテナ素子mについての第2送電処理の一例)と、アンテナ素子mの送電位相をφmに設定して送電信号を送電する最適化処理(アンテナ素子mについての第1送電処理の一例)とを別々のタイムスロットk+1及びk+2で行う。
 また、変形例の最適化処理では、アンテナ素子mの送電位相をφm+πに設定して送電信号を送電する最適化処理(アンテナ素子mについての第2送電処理の一例)と、アンテナ素子mの送電位相をφmに設定して送電信号を送電する最適化処理(アンテナ素子mについての第1送電処理の一例)とを別々のタイムスロットk+3及びk+4で行う。
 また、変形例の最適化処理では、アンテナ素子mの送電位相をφm+πに設定して送電信号を送電する最適化処理(アンテナ素子mについての第2送電処理の一例)と、アンテナ素子mの送電位相をφmに設定して送電信号を送電する最適化処理(アンテナ素子mについての第1送電処理の一例)とを別々のタイムスロットk+5及びk+6で行う。
 そして、アンテナ素子mの送電位相をφm+πに設定して送電信号を送電する最適化処理(アンテナ素子mについての第2送電処理の一例)をタイムスロットk+7で行う。
 このため、変形例の最適化処理は、図5に示す最適化処理よりも所要時間が少しだけ長い。
 アンテナ素子m~mの送電位相は、図12に示すように、最適化された後は、最適化された送電位相に固定され、そのまま給電期間においても固定されるが、給電期間に入ったときに、互いの最適化された送電位相の関係を保持しながらランダムビームフォーミングを行ってもよい。最適化されたアンテナ素子m~mの送電位相は、差分信号に基づく位相の一例である。
 <実施形態の変形例における特定デバイス50Aの送電信号の受電位相>
 図13A乃至図13Eは、実施形態の変形例における特定デバイス50Aが受電する送電信号の受電位相を説明する図である。I軸は実軸、Q軸は虚軸である。(1)~(4)の4つのベクトルは、アンテナ素子m~mから特定デバイス50Aが受電する送電信号をベクトルで表したものである。
 アンテナ素子m~mの送電位相がそれぞれφm~φmであり、アンテナ素子m~mと、アンテナ51との間の距離を波長で除算した場合の余り(端数)がそれぞれξm~ξmであることとする。
 図13Aに示すように、タイムスロットkにおいて特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm、ξm+φm、ξm+φm、ξm+φmである。(1)~(4)の4つのベクトルは、図13Aに示す通りである。
 タイムスロットk+1において特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm+π、ξm+φm、ξm+φm、ξm+φmである。4つのベクトル(1)~(4)は、図13Aに示す通りであり、タイムスロットkに比べてベクトル(1)は逆向きになる。
 タイムスロットkにおける4つのベクトル(1)~(4)からタイムスロットk+1における4つのベクトル(1)~(4)を減算すると、ベクトル(2)~(4)が無くなり、ベクトル(1)の長さが2倍になったベクトル(1A)のみが差分として残る。ベクトル(1A)を表す信号は、差分信号であり、算出部56が減算処理によって求める。ベクトル(1A)のI軸に対する角度をα1とする。角度α1は、角度変換部57が求める。この時点で通信部58を介して角度α1を格納したビーコン信号が給電装置100に送信される。なお、タイムスロットkにおける4つのベクトル(1)~(4)は第1合成信号の一例であり、タイムスロットk+1における4つのベクトル(1)~(4)は第2合成信号の一例である。
 図13Bに示すように、タイムスロットk+2において特定デバイス50Aがアンテナ素子mから受電する送電信号の受電位相は0度であり、アンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、m+φm、ξm+φm、ξm+φmである。(1)~(4)の4つのベクトルは、図13Bに示す通りである。なお、タイムスロットk+1において通信部58を介して角度α1を格納したビーコン信号を給電装置100に送信しない場合には、タイムスロットk+2において特定デバイス50Aがアンテナ素子mから受電する送電信号の受電位相はα1度になる。
 タイムスロットk+3において特定デバイス50Aがアンテナ素子mから受電する送電信号の受電位相は0度であり、アンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm+π、ξm+φm、ξm+φmである。4つのベクトル(1)~(4)は、図13Bに示す通りであり、タイムスロットk+2に比べてベクトル(2)は逆向きになる。
 タイムスロットk+2における4つのベクトル(1)~(4)からタイムスロットk+3における4つのベクトル(1)~(4)を減算すると、ベクトル(1)、(3)、及び(4)が無くなり、ベクトル(2)の長さが2倍になったベクトル(2A)のみが差分として残る。ベクトル(2A)を表す信号は、差分信号であり、算出部56が減算処理によって求める。ベクトル(2A)のI軸に対する角度をα2とする。角度α2は、角度変換部57が求める。なお、タイムスロットk+2における4つのベクトル(1)~(4)は第1合成信号の一例であり、タイムスロットk+3における4つのベクトル(1)~(4)は第2合成信号の一例である。
 図13Cに示すように、タイムスロットk+4において特定デバイス50Aがアンテナ素子m及びmから受電する送電信号の受電位相は0度であり、アンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm、ξm+φmである。(1)~(4)の4つのベクトルは、図13Cに示す通りである。なお、タイムスロットk+1及びk+3において通信部58を介して角度α1及びα2を格納したビーコン信号を給電装置100に送信しない場合には、タイムスロットk+4において特定デバイス50Aがアンテナ素子m及びmから受電する送電信号の受電位相はα1度及びα2度になる。
 タイムスロットk+5において特定デバイス50Aがアンテナ素子m及びmから受電する送電信号の受電位相は0度であり、アンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、ξm+φm+π、ξm+φmである。4つのベクトル(1)~(4)は、図13Cに示す通りであり、タイムスロットk+4に比べてベクトル(3)は逆向きになる。
 タイムスロットk+4における4つのベクトル(1)~(4)からタイムスロットk+5における4つのベクトル(1)~(4)を減算すると、ベクトル(1)、(2)、及び(4)が無くなり、ベクトル(3)の長さが2倍になったベクトル(3A)のみが差分として残る。ベクトル(3A)を表す信号は、差分信号であり、算出部56が減算処理によって求める。ベクトル(3A)のI軸に対する角度をα3とする。角度α3は、角度変換部57が求める。なお、タイムスロットk+4における4つのベクトル(1)~(4)は第1合成信号の一例であり、タイムスロットk+5における4つのベクトル(1)~(4)は第2合成信号の一例である。
 図13Dに示すように、タイムスロットk+6において特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は0度であり、アンテナ素子mから受電する送電信号の受電位相は、ξm+φmである。(1)~(4)の4つのベクトルは、図13Dに示す通りである。なお、タイムスロットk+1、k+3、及びk+5において通信部58を介して角度α1~α3を格納したビーコン信号を給電装置100に送信しない場合には、タイムスロットk+6において特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は、それぞれ、α1度~α3度になる。
 タイムスロットk+7において特定デバイス50Aがアンテナ素子m~mから受電する送電信号の受電位相は0度であり、アンテナ素子mから受電する送電信号の受電位相は、ξm+φm+πである。4つのベクトル(1)~(4)は、図13Dに示す通りであり、タイムスロットk+6に比べてベクトル(4)は逆向きになる。
 タイムスロットk+6における4つのベクトル(1)~(4)からタイムスロットk+7における4つのベクトル(1)~(4)を減算すると、ベクトル(1)~(3)が無くなり、ベクトル(4)の長さが2倍になったベクトル(4A)のみが差分として残る。ベクトル(4A)を表す信号は、差分信号であり、算出部56が減算処理によって求める。なお、タイムスロットk+6における4つのベクトル(1)~(4)は第1合成信号の一例であり、タイムスロットk+7における4つのベクトル(1)~(4)は第2合成信号の一例である。
 ベクトル(4A)のI軸に対する角度をα4とする。角度α4は、角度変換部57が求める。通信部58は、角度α4を格納したビーコン信号を給電装置100に送信する。
 なお、タイムスロットk+1、k+3、及びk+5において通信部58を介して角度α1~α3を格納したビーコン信号を給電装置100に送信しない場合には、タイムスロットk+7の最後に、通信部58が、角度α1~α4を表す角度データを給電装置100に送信すればよい。ランキングを行うためのRSSIの測定は、いずれかのビーコン信号を給電装置100が受信したときに行えばよい。
 送電制御部143は、タイムスロットk+8において、角度α1~α4の各々を調整するためにベクトル(1)~(4)の位相を調整する。この結果、図13Eに示すように、ベクトル(1)~(4)の方向に揃えることができる。図13Eでは、ベクトル(1)~(4)の方向は、一例としてI軸に沿った方向になっているが、I軸に対して0度よりも大きい角度を有していてもよい。
 このようにして、ベクトル(1)~(4)の角度を揃えることができる。すなわち、特定デバイス50Aの受電電力を最大化することができる。
 タイムスロットk+8以降の給電期間では、図13Eに示すように最適化されたアンテナ素子m~mの4つの送電位相を保持した状態で送電を行えばよい。また、給電期間では、ベクトル(1)~(4)の角度が揃うように、アンテナ素子m~mの4つの送電位相の関係を保持した状態で、ランダムビームフォーミングを行ってもよい。また、アンテナサブセット110Aに含まれない複数のアンテナ素子111については、複数のアンテナ素子111の送電位相同士に特に関係を持たせずに、ランダムビームフォーミングを行う。
 <シミュレーション結果>
 図14は、実施形態の変形例の給電システム300のシミュレーション結果の一例を示す図である。図14の上側には、アンテナサブセット110Aに含まれるアンテナ素子111の数の時間変化の様子を示す。図14の上側のグラフにおいて、横軸は時間を表し、縦軸は、アンテナサブセット110Aに含まれるアンテナ素子111の数を表す。また、図14の下側のグラフにおいて、横軸は時間を表し、縦軸は、受電電力(dBm)を表す。
 図14の下側のグラフに示すように、受電電力は、図10に示す受電電力よりも高く、5dBm~6dBmの期間が多い。フレーム期間は50msであり、各フレームの最初に受電電力が低い期間があるのは、最適化期間であるものと考えられる。最適化期間が終了した後の給電期間において、5dBm~6dBmの受電電力が得られている。
 また、図14の上側のグラフを見ると、アンテナサブセット110Aに含まれるアンテナ素子111の数は、4個~6個である。図14の上下のグラフを見比べると、アンテナサブセット110Aに含まれるアンテナ素子111の数が多い期間の方が、受電電力が大きくなっていることを確認できる。
 実施形態の変形例においても、受電装置の受電電力を増大可能な位相を迅速に設定できる。したがって、受電装置の受電電力を増大可能な位相を迅速に設定可能な実施形態の変形例の給電システム300を提供することができる。
 また、多くの受電量が必要な特定の受電装置(特定デバイス50A)への給電と、特定の受電装置以外の受電装置への給電とを両立可能な実施形態の変形例の給電システム300を提供することができる。
 以上、本発明の例示的な実施形態の給電システム、給電装置、及び、給電方法について説明したが、本発明は、具体的に開示された実施形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 なお、本国際出願は、2022年10月11日に出願した日本国特許出願2022-163333に基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。
 10 領域
 50 デバイス
 50A 特定デバイス
 50B 非特定デバイス
 51 アンテナ
 SW スイッチ
 52 制御部
 53 RF/DC変換部
 54 バッテリ
 55 直交検波部
 56 算出部
 57 角度変換部
 58 通信部
 100 給電装置
 110 アレイアンテナ
 110A アンテナサブセット
 111 アンテナ素子
 120 フェーズシフタ
 125 ICチップ
 130 マイクロ波発生源
 140 制御装置
 141 主制御部
 142 サブセット選択部
 143 送電制御部
 144 メモリ

Claims (12)

  1.  給電装置と、
     前記給電装置から送電される送電信号を受電する受電装置と
     を含む給電システムであって、
     前記給電装置は、
     電力を送電可能な複数のアンテナを有するアレイアンテナと、
     前記複数のアンテナから前記受電装置に送電する送電信号の位相の制御と送電制御とを行う送電制御部と
     を有し、
     前記送電制御部は、前記複数のアンテナに含まれる複数の第1アンテナのうちの1つを選択し、前記複数の第1アンテナのうちの非選択の第1アンテナの送電位相を固定して第1送電信号を送電させた状態において、所定位相の第1送電信号を前記選択した第1アンテナから送電する第1送電処理と、前記所定位相を反転させた反転位相の第1送電信号を前記選択した第1アンテナから送電する第2送電処理とを、前記複数の第1アンテナを1つずつ選択しながら行い、
     前記受電装置は、前記第1送電処理において前記複数の第1アンテナから受電した、前記所定位相の第1送電信号と、前記送電位相が固定された第1送電信号との第1合成信号と、前記第2送電処理において前記複数の第1アンテナから受電した、前記反転位相の第1送電信号と、前記送電位相が固定された第1送電信号との第2合成信号との差分信号を求めて前記送電制御部に送信し、
     前記送電制御部は、前記複数の第1アンテナの各々を選択したことによって得られる複数の前記差分信号に基づいて、前記複数の第1アンテナが送電する前記複数の第1送電信号の位相を制御する、給電システム。
  2.  前記送電制御部は、前記第1送電処理及び前記第2送電処理において、前記非選択の第1アンテナの送電位相を同一値に設定する、請求項1に記載の給電システム。
  3.  前記送電制御部は、前記第2送電処理において、前記第1送電処理において既に選択された前記第1アンテナについては、送電位相を前記反転位相に設定する、請求項1又は2に記載の給電システム。
  4.  前記送電制御部は、前記第2送電処理において、前記第1送電処理において既に選択された前記第1アンテナについては、送電位相を前記差分信号に基づく位相に設定する、請求項1又は2に記載の給電システム。
  5.  前記送電制御部は、前記第1送電処理及び前記第2送電処理において、前記複数のアンテナのうちの前記複数の第1アンテナ以外の1又は複数の第2アンテナの送電位相を固定する、請求項1乃至4のいずれか1項に記載の給電システム。
  6.  前記給電装置は、前記複数のアンテナのうち、前記受電装置から送信される信号の受信強度が所定強度以上の複数のアンテナを前記複数の第1アンテナとして選択し、前記受信強度が前記所定強度未満の1又は複数のアンテナを前記1又は複数の第2アンテナとして選択する、アンテナ選択部をさらに有する、請求項5に記載の給電システム。
  7.  前記受電装置から送信される信号は、前記差分信号を表す信号である、請求項6に記載の給電システム。
  8.  前記送電制御部は、
     前記第1送電処理及び前記第2送電処理を行う準備期間と、前記複数の前記差分信号に基づいて前記複数の第1アンテナが送電する前記複数の第1送電信号の位相を制御して、前記複数の第1アンテナから前記受電装置に送電する送電期間とを含むフレーム処理を繰り返し行い、
     前記複数のアンテナのうち、前記アンテナ選択部によって前記差分信号を表す信号の受信強度に基づいて選択された前記複数の第1アンテナを、当該フレームの次のフレームにおける前記複数の第1アンテナとして利用する、請求項7に記載の給電システム。
  9.  前記受電装置は、移動可能である、請求項1乃至8のいずれか1項に記載の給電システム。
  10.  前記送電制御部は、前記複数の前記差分信号に基づいて、前記受電装置が前記複数の第1アンテナから受電する前記複数の第1送電信号の受電位相が揃うように、前記複数の第1アンテナが送電する前記複数の第1送電信号の送電位相を制御する、請求項1乃至9のいずれか1項に記載の給電システム。
  11.  受電装置に送電信号を送電する給電装置であって、
     電力を送電可能な複数のアンテナを有するアレイアンテナと、
     前記複数のアンテナから前記受電装置に送電する送電信号の位相の制御と送電制御とを行う送電制御部と
     を含み、
     前記送電制御部は、
     前記複数のアンテナに含まれる複数の第1アンテナのうちの1つを選択し、前記複数の第1アンテナのうちの非選択の第1アンテナの送電位相を固定して第1送電信号を送電させた状態において、所定位相の第1送電信号を前記選択した第1アンテナから送電する第1送電処理と、前記所定位相を反転させた反転位相の第1送電信号を前記選択した第1アンテナから送電する第2送電処理とを、前記複数の第1アンテナを1つずつ選択しながら行い、
     前記複数の第1アンテナの各々を選択したことによって得られる複数の差分信号に基づいて、前記複数の第1アンテナが送電する前記複数の第1送電信号の位相を制御し、
     前記差分信号は、前記受電装置が、前記第1送電処理において前記複数の第1アンテナから受電した、前記所定位相の第1送電信号と、前記送電位相が固定された第1送電信号との第1合成信号と、前記第2送電処理において前記複数の第1アンテナから受電した、前記反転位相の第1送電信号と、前記送電位相が固定された第1送電信号との第2合成信号との差分信号である、給電装置。
  12.  給電装置と、
     前記給電装置から送電される送電信号を受電する受電装置と
     を含む給電システムにおける給電方法であって、
     前記給電装置は、
     電力を送電可能な複数のアンテナを有するアレイアンテナと、
     前記複数のアンテナから前記受電装置に送電する送電信号の位相の制御と送電制御とを行う送電制御部と
     を有し、
     前記送電制御部が、前記複数のアンテナに含まれる複数の第1アンテナのうちの1つを選択し、前記複数の第1アンテナのうちの非選択の第1アンテナの送電位相を固定して第1送電信号を送電させた状態において、所定位相の第1送電信号を前記選択した第1アンテナから送電する第1送電処理と、前記所定位相を反転させた反転位相の第1送電信号を前記選択した第1アンテナから送電する第2送電処理とを、前記複数の第1アンテナを1つずつ選択しながら行い、
     前記受電装置が、前記第1送電処理において前記複数の第1アンテナから受電した、前記所定位相の第1送電信号と、前記送電位相が固定された第1送電信号との第1合成信号と、前記第2送電処理において前記複数の第1アンテナから受電した、前記反転位相の第1送電信号と、前記送電位相が固定された第1送電信号との第2合成信号との差分信号を求めて前記送電制御部に送信し、
     前記送電制御部が、前記複数の第1アンテナの各々を選択したことによって得られる複数の前記差分信号に基づいて、前記複数の第1アンテナが送電する前記複数の第1送電信号の位相を制御する、給電方法。
PCT/JP2023/030601 2022-10-11 2023-08-24 給電システム、給電装置、及び、給電方法 WO2024080005A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-163333 2022-10-11
JP2022163333A JP2024056454A (ja) 2022-10-11 2022-10-11 給電システム、給電装置、及び、給電方法

Publications (1)

Publication Number Publication Date
WO2024080005A1 true WO2024080005A1 (ja) 2024-04-18

Family

ID=90669399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030601 WO2024080005A1 (ja) 2022-10-11 2023-08-24 給電システム、給電装置、及び、給電方法

Country Status (2)

Country Link
JP (1) JP2024056454A (ja)
WO (1) WO2024080005A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536372A (ja) * 2015-10-15 2018-12-06 オシア,インク. マルチパスワイヤレス給電環境におけるパルス化送信の集中方法
JP2019083648A (ja) * 2017-10-31 2019-05-30 キヤノン株式会社 給電機器、給電機器の制御方法、及び、プログラム
JP2022046025A (ja) * 2020-09-10 2022-03-23 ミネベアミツミ株式会社 アンテナ装置、給電装置、及び給電方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536372A (ja) * 2015-10-15 2018-12-06 オシア,インク. マルチパスワイヤレス給電環境におけるパルス化送信の集中方法
JP2019083648A (ja) * 2017-10-31 2019-05-30 キヤノン株式会社 給電機器、給電機器の制御方法、及び、プログラム
JP2022046025A (ja) * 2020-09-10 2022-03-23 ミネベアミツミ株式会社 アンテナ装置、給電装置、及び給電方法

Also Published As

Publication number Publication date
JP2024056454A (ja) 2024-04-23

Similar Documents

Publication Publication Date Title
RU2658332C1 (ru) Система беспроводной передачи мощности для среды с многолучевым распространением
US6989787B2 (en) Antenna system for satellite communication and method for tracking satellite signal using the same
US10312751B2 (en) Wireless power supply control system and method for producing directivity information
CN106712866B (zh) 一种动中通端站系统及系统的跟踪方法
US9793758B2 (en) Enhanced transmitter using frequency control for wireless power transmission
US10797532B2 (en) Intelligent wireless power transmitter, charging system using intelligent wireless power and intelligent wireless power-providing method
CN110168809B (zh) 聚焦微波场的微波无线充电器
US10069339B2 (en) Wireless power feeding method and wireless power feeding device
US10097256B2 (en) Communication apparatus, communication method, and computer-readable storage medium
US11843434B2 (en) Millimeter wave coarse beamforming using outband sub-6GHz reconfigurable antennas
WO2024080005A1 (ja) 給電システム、給電装置、及び、給電方法
Yang et al. Auto-tracking wireless power transfer system with focused-beam phased array
US20230261376A1 (en) Method and device for transmitting and receiving based on wireless communication using reconfigurable intelligent reflecting surfaces
JP7236959B2 (ja) 給電装置、及び、給電方法
US20230170610A1 (en) Controlled-radiation antenna system
US20190245388A1 (en) Wireless power transmission device and wireless power transmission system
WO2024101273A1 (ja) 給電システム、及び、給電方法
US11362714B2 (en) Method and apparatus for performing beamforming in wireless communication system
US9991752B1 (en) Wireless power feeding method
JP7461818B2 (ja) 給電装置、及び、給電方法
KR20230040568A (ko) 전송효율 달성을 위한 수신전력 기반 빔 스캐닝 알고리즘을 갖는 무선 전력 전송 시스템 및 방법
JP2022024926A (ja) 給電装置、及び、給電方法
Tran et al. Beam Scanning Methods for Multi-Antenna Wireless Power Transfer with Reconfigurable Intelligent Surface
JP7059935B2 (ja) 無線通信機、制御方法及びプログラム
WO2022244517A1 (ja) 給電装置、及び、給電方法