WO2024079898A1 - Transmission device and transmission method - Google Patents

Transmission device and transmission method Download PDF

Info

Publication number
WO2024079898A1
WO2024079898A1 PCT/JP2022/038444 JP2022038444W WO2024079898A1 WO 2024079898 A1 WO2024079898 A1 WO 2024079898A1 JP 2022038444 W JP2022038444 W JP 2022038444W WO 2024079898 A1 WO2024079898 A1 WO 2024079898A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
oam
power
transmission
oam mode
Prior art date
Application number
PCT/JP2022/038444
Other languages
French (fr)
Japanese (ja)
Inventor
知哉 景山
淳 増野
斗煥 李
健 平賀
裕文 笹木
康徳 八木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/038444 priority Critical patent/WO2024079898A1/en
Publication of WO2024079898A1 publication Critical patent/WO2024079898A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a technology for spatially multiplexing wireless signals using the orbital angular momentum (OAM) of electromagnetic waves.
  • OFAM orbital angular momentum
  • Electromagnetic waves with OAM have equiphase surfaces distributed in a spiral shape along the propagation direction centered on the propagation axis. Electromagnetic waves with different OAM modes propagating in the same direction have orthogonal spatial phase distributions in the direction of the rotation axis, so signals can be multiplexed and transmitted by separating the signals of each OAM mode modulated with different signal sequences at the receiving device.
  • a uniform circular array antenna hereafter referred to as UCA (Uniform Circular Array)
  • UCA Uniform Circular Array
  • multiple antenna elements are arranged at equal intervals in a circle, to generate, synthesize and transmit multiple OAM modes, thereby achieving spatial multiplexing transmission of different signal sequences (for example, Non-Patent Document 2).
  • a Butler circuit Butler matrix circuit, for example, is used to generate and separate signals for multiple OAM modes.
  • Non-Patent Documents 3 and 4 disclose technology that uses processing such as precoding at the transmitting station to eliminate or reduce interference between users in order to realize PtMP transmission using general MIMO technology.
  • a transmitter using UCA and Butler circuits enables high-capacity communication, but in the future, support for multi-direction or mobility is desired.
  • conventional wireless transmission technology has problems with the computational load of precoder derivation to realize PtMP transmission using MIMO technology, and the large overhead due to feedback information from the receiver required for precoder derivation.
  • the disclosed technology aims to reduce the amount of feedback and the computational load required to achieve PtMP transmission.
  • a processing unit that selects two or more terminals to be subjected to power multiplexing;
  • a transmitting device comprising: a transmitting unit that transmits an OAM multiplexed signal through the trunk line and transmits a power multiplexed signal through the terminal line.
  • the amount of feedback and computational load required to achieve PtMP transmission can be reduced.
  • FIG. 13 is a diagram showing an example of phase setting of a UCA for generating an OAM mode signal.
  • 1A and 1B are diagrams illustrating an example of a phase distribution and a signal intensity distribution of an OAM multiplexed signal.
  • FIG. 1 is a configuration diagram of a communication system.
  • FIG. 2 is a diagram for explaining the positional relationship of each device.
  • FIG. 4 is a sequence diagram illustrating an example of a flow of a communication process according to the first embodiment.
  • FIG. 11 is a first diagram showing an example of reception power characteristics for each mode.
  • FIG. 11 is a second diagram showing an example of reception power characteristics for each mode.
  • FIG. 1 illustrates an example of power control.
  • FIG. 1 is a sequence diagram showing an example of a flow of a conventional communication process.
  • FIG. 11 is a diagram for explaining an overview of a second embodiment.
  • FIG. 1 is a diagram showing the relationship between distance and received power in conventional NoMA.
  • FIG. 1 is a diagram showing the relationship between distance and received power in NoMA using OAM.
  • FIG. 11 is a sequence diagram for explaining an operation example 1 of the second embodiment.
  • FIG. 11 is a sequence diagram for explaining an operation example 2 of the second embodiment.
  • FIG. 13 is a diagram for explaining an angle.
  • FIG. 11 is a diagram for explaining a specific example of the second embodiment.
  • FIG. 11 is a diagram for explaining a specific example of the second embodiment.
  • OAM multiplex transmission is used for some of the lines (for example, the backbone lines) for PtMP transmission.
  • Figure 1 shows an example of phase settings for a UCA to generate an OAM mode signal.
  • the UCA shown in Figure 1 is a UCA consisting of eight antenna elements.
  • signals of OAM modes 0, 1, 2, 3, ... on the transmitting side are generated by the phase difference of the signals supplied to each antenna element (indicated by ⁇ ) of the UCA.
  • signals of OAM mode n are generated by setting the phase of the signal supplied to each antenna element so that the phase rotates n times (n x 360 degrees).
  • OAM mode -n a signal with the phase rotation direction reversed to that of an OAM mode n signal.
  • the phase rotation direction of a positive OAM mode signal is counterclockwise
  • the phase rotation direction of a negative OAM mode signal is clockwise.
  • signals to be transmitted in each OAM mode can be generated and synthesized in advance, and the synthesized signal for each OAM mode can be transmitted using a single UCA, or multiple UCAs can be used to transmit signals for each OAM mode using different UCAs for each OAM mode.
  • the phase of each antenna element of the receiving UCA is set to be opposite to the phase of the antenna elements on the transmitting side.
  • interference between OAM modes means, for example, a signal transmitted from a transmitting device in OAM mode 1 being output as an OAM mode 2 signal on the receiving side.
  • FIG. 2 shows an example of the phase distribution and signal intensity distribution of an OAM multiplexed signal.
  • the arrows represent the phase distribution of OAM mode 1 and OAM mode 2 signals as viewed from the transmitting side at an end face (propagation orthogonal plane) perpendicular to the propagation direction.
  • the arrows start at 0 degrees, the phase changes linearly, and the arrows end at 360 degrees.
  • an OAM mode n signal propagates while its phase rotates n times (n x 360 degrees) on the propagation orthogonal plane.
  • the arrows of the phase distribution of OAM mode -1 and -2 signals point in opposite directions.
  • Each OAM mode signal has a different signal intensity distribution and a different position where the signal intensity is maximum.
  • the intensity distribution is the same for the same OAM mode with a different sign.
  • the higher the OAM mode the farther the position where the signal intensity is maximum is from the propagation axis (Non-Patent Document 2).
  • the OAM mode with a larger value is called a higher order mode.
  • a signal in OAM mode 3 is a higher order mode than signals in OAM mode 0, OAM mode 1, and OAM mode 2.
  • the system configuration and operation example of this embodiment will be described in detail below.
  • the first and second embodiments will be described below.
  • the basic system configuration and operation example of PtMP transmission using OAM multiplexing will be described.
  • the second embodiment a technology that enables multiple users to be accommodated per OAM mode in PtMP transmission using OAM multiplexing based on the technology of the first embodiment will be described.
  • FIG. 3 is a configuration diagram of a communication system according to the present embodiment.
  • This communication system includes a transmitting station 100, a receiving station 200, and a terminal 300.
  • the configuration diagram shown in Fig. 3 is an example, and other configurations are also possible.
  • the number of terminals 300 may be one or more.
  • the transmitting station 100 is an example of a transmitting device that transmits OAM multiplexed radio waves in PtMP transmission.
  • the transmitting station 100 may use OAM multiplex transmission for the backbone line for transmitting to the receiving station 200, and use MIMO multiplex transmission for the terminal line for transmitting to the terminal 300.
  • the transmitting station 100 includes an antenna 110, a transmitting unit 120, a processing unit 130, and a location information acquiring unit 140. Note that in the first embodiment, the location information acquiring unit 140 may not be included.
  • the antenna 110 is, for example, a UCA.
  • the transmitting unit 120 generates an OAM multiplexed signal from the transmission data and transmits the signal via the antenna 110.
  • the transmitting unit 120 may generate the OAM signal using a Butler circuit, or may generate the OAM signal using digital processing.
  • the processing unit 130 performs OAM mode selection, power allocation, power control, etc. For example, depending on the location of the terminal 300, the processing unit 130 may assign a signal addressed to the terminal 300 to one (or more) OAM modes with a high received SINR, and assign a signal addressed to the receiving station 200 to the other OAM modes. Note that if there are multiple terminals 300, the processing unit 130 may assign OAM modes to all terminals 300 and then assign the other OAM modes to the receiving station 200.
  • the processing unit 130 may be called a signal processing unit, a control unit, etc. Furthermore, the processing unit 130 may be realized by one or more computers (computers having a CPU and memory) and software, by a dedicated circuit, or by a computer, software, and a dedicated circuit.
  • the receiving station 200 is an example of a receiving device that receives signals from a backbone line.
  • the receiving station 200 is installed opposite the transmitting station 100.
  • the receiving station 200 includes an antenna 210, a receiving unit 220, and a processing unit 230.
  • the antenna 210 is, for example, a UCA.
  • the receiving unit 220 receives the OAM multiplexed signal via the antenna 210.
  • the processing unit 230 separates the received OAM multiplexed signal into each OAM mode.
  • Terminal 300 is an example of a terminal that receives a signal on a terminal line.
  • Terminal 300 includes antenna 310, receiving unit 320, and processing unit 330.
  • Antenna 310 is, for example, a general antenna for wireless communication.
  • Receiving unit 320 receives one (or multiple) OAM mode signals assigned to terminal 300.
  • the processing unit 330 separates one (or more) OAM mode signals assigned to the terminal 300 by MIMO equalization processing. As described later, in the second embodiment, the processing unit 330 can perform interference removal processing such as SIC.
  • FIG. 4 is a diagram for explaining the positional relationship of each device according to this embodiment.
  • the radio waves transmitted from the transmitting station 100 are signals generated so that the OAM modes are orthogonal toward the receiving station 200 at the opposing position, but due to the characteristics of OAM waves, they become non-orthogonal outside the opposing position within the transmission range.
  • FIG. 5 is a sequence diagram showing an example of the flow of communication processing according to the first embodiment.
  • the transmitting station 100 transmits a preamble that is orthogonal between all OAM modes to the receiving station 200 (step S101), and also transmits it to the terminal 300 (step S102).
  • the receiving station 200 receives the preamble and estimates the received SINR for each OAM mode (step S103).
  • the receiving station 200 transmits feedback information of the estimated SINR to the transmitting station 100 (step S104).
  • the terminal 300 receives the preamble and estimates the received SINR for each OAM mode (step S105).
  • the terminal 300 transmits feedback information of the estimated SINR to the transmitting station 100 (step S106).
  • the transmitting station 100 receives feedback information from each device.
  • the processing unit 130 of the transmitting station 100 calculates the OAM mode allocation and the allocated power based on the received feedback information (step S107). Details of the OAM mode allocation and the calculation of the allocated power will be described later.
  • the processing unit 130 controls the transmission power to each device (step S108).
  • the transmitting unit 120 then transmits data addressed to the receiving station 200 to the receiving station 200 using the OAM mode signal assigned to the receiving station 200 (step S109), and transmits data addressed to the terminal 300 to the terminal 300 using the OAM mode signal assigned to the terminal 300 (step S110).
  • the receiving unit 220 of the receiving station 200 receives a signal including data addressed to the receiving station 200.
  • the processing unit 230 demodulates the received signal by OAM separation processing (step S111).
  • the receiving unit 320 of the terminal 300 receives a signal including data addressed to the terminal 300.
  • the processing unit 330 demodulates the received signal by MIMO equalization processing (step S112).
  • the processing unit 130 may select an OAM mode for a terminal line so as to maximize the communication capacity of the terminal line within a range in which the communication capacity of the backbone line is guaranteed.
  • FIG. 6 is a first diagram showing an example of reception power characteristics for each mode according to this embodiment.
  • Graph 901 shows the reception power characteristics for OAM mode 0.
  • Graph 902 shows the reception power characteristics for OAM modes ⁇ 1.
  • Graph 902 shows the reception power characteristics for OAM modes ⁇ 2.
  • the processing unit 130 selects the OAM mode that maximizes the received SINR according to the position of the terminal 300.
  • graph 904 shows the theoretical value of the received power characteristics when the OAM mode is selected to maintain the maximum received SINR according to the horizontal distance from the orthogonal axis of OAM multiplexed transmission (the straight line in the transmission direction connecting the center of the UCA of the transmitting station 100 and the UCA of the receiving station 200).
  • the processing unit 130 selects the OAM mode in which to superimpose the signal for the terminal 300 according to the acquired received SINR.
  • FIG. 7 is a second diagram showing an example of the reception power characteristics for each mode according to the present embodiment.
  • the processing unit 130 may calculate the reception power characteristics for each OAM mode as shown in FIG. 7.
  • the processing unit 130 may select an OAM mode with a high reception SINR for the terminal 300 (for example, [+1, -1] in the situation of FIG. 7).
  • the processing unit 130 also assigns a signal addressed to the receiving station 200 to an OAM mode that has not been assigned to the terminal 300 (for example, [0, +2, -2, +3, -3] in the situation of FIG. 7).
  • the processing unit 130 may assign the same OAM mode to the receiving station 200 and the terminal 300.
  • the processing unit 130 allocates power to maximize the communication capacity of the terminal line within the range where the communication capacity of the trunk line is guaranteed. For example, the processing unit 130 may distribute surplus power to the terminal line while guaranteeing the communication capacity of the trunk line. This makes it possible to effectively utilize the surplus power of the trunk line, and reduces the power of the trunk line signals that interfere with the terminal line, thereby increasing the SINR of the desired signal of the terminal 300.
  • FIG. 8 is a diagram showing an example of power allocation according to this embodiment.
  • FIG. 8 shows an example of power allocation when, for example, the trunk line is 100 Gbps or more.
  • the processing unit 130 may uniformly lower the power of the OAM mode used by the trunk line by ⁇ dB, and uniformly raise the power of the OAM mode used by the terminal line by ⁇ dB.
  • the processing unit 130 determines ⁇ and ⁇ so that the total transmission power does not change before and after the control. Note that the total transmission power here is constant.
  • FIG. 9 is a sequence diagram showing an example of the flow of conventional communication processing.
  • FIG. 9 shows an example of MU-MIMO communication from a transmitter 1000 to a first receiver 2000 and a second receiver 3000.
  • the transmitter 1000 transmits the preamble to the first receiver 2000 (step S201) and also to the second receiver 3000 (step S202).
  • the first receiver 2000 receives the preamble and estimates the channel (step S203).
  • the first receiver 2000 transmits feedback information of the estimated channel to the transmitter 1000 (step S204).
  • the second receiver 3000 receives the preamble and estimates the channel (step S205).
  • the second receiver 3000 transmits feedback information of the estimated channel to the transmitter 1000 (step S206).
  • the transmitter 1000 receives feedback information from each device.
  • the transmitter 1000 performs precoder calculations based on the received feedback information (step S207).
  • the transmitter 1000 precodes the signal to each device (step S208).
  • the transmitter 1000 then transmits data addressed to the first receiver 2000 to the first receiver 2000 (step S209), and transmits data addressed to the second receiver 3000 to the second receiver 3000 (step S210).
  • the first receiver 2000 receives a signal including data addressed to the first receiver 2000, and demodulates the received signal using MIMO equalization processing (step S211).
  • the second receiver 3000 receives a signal including data addressed to the second receiver 3000, and demodulates the received signal using MIMO equalization processing (step S212).
  • precoding processing is required, and channel feedback information is also required to derive the precoder.
  • the communication system according to this embodiment does not require precoding processing, so the computational load required to achieve PtMP transmission can be reduced. Also, instead of feedback information on the channel for deriving the precoder, feedback information is only on the received SINR (or received power), so overhead can be reduced.
  • multiple terminals 300 are assigned to the same OAM mode, and signals are transmitted to the multiple terminals 300 in the same OAM mode using NoMA (Non-Orthogonal Multiple Access) multiplexing.
  • NoMA multiplexing may also be called power multiplexing.
  • two or more terminals 300 having a difference in reception power are selected as targets for power multiplexing, and multi-user transmission by NoMA is performed for the two or more selected terminals 300 using the same OAM mode.
  • the number of terminals 300 accommodated in one OAM mode using NoMA is set to two as an example, but the number of terminals 300 accommodated in one OAM mode using NoMA may be three or more. In other words, the number of terminals targeted for power multiplexing may be three or more.
  • Figure 10 shows an image of communication in the second embodiment.
  • transmission is performed by OAM multiplexing on the backbone line between the transmitting station 100 and the receiving station 200.
  • transmission is performed by NoMA multiplexing on the terminal lines.
  • the pair of terminal 1 and terminal 2, and the pair of terminal 3 and terminal 4 are each NoMA pairs, and one OAM mode is assigned to each pair.
  • OAM mode 1 is assigned to the pair of terminal 1 and terminal 2
  • OAM mode 2 is assigned to the pair of terminal 3 and terminal 4.
  • the technology in the second embodiment makes it possible to increase the number of users multiplexed on terminal lines while ensuring the capacity of the trunk line.
  • NoMA it is necessary to pair two terminals with different reception power. In other words, it is necessary to pair a terminal with high reception power with a terminal with low reception power.
  • the reception power of a signal transmitted from a transmitting station gradually decreases as the distance increases, as shown in Figure 11. Also, the degree of decrease decreases as the distance increases.
  • NoMA terminal pairs two stars in Figure 11 are limited to a nearby terminal close to the transmitting station and a distant terminal far from the transmitting station.
  • Figure 12 is a graph showing the relationship between distance from a transmitting station and received power when the OAM mode is 1 or -1.
  • OAM due to the characteristics of OAM waves, the distance at which the power drops and the distance at which it reaches a maximum appear repeatedly multiple times, making it possible to pair two terminals with a difference in received power at various positions of the two terminals, regardless of the distance from the transmitting station.
  • the configuration of the communication system in the second embodiment is basically the same as that of the communication system in the first embodiment, as described with reference to Fig. 3. However, in the second embodiment, it is assumed that the number of terminals 300 is more than one.
  • Each unit of each device in the communication system has a function required to realize NoMA multiplex transmission for each OAM mode in addition to the function in the first embodiment.
  • mode assignment and the like are performed using the received SINR, but in the second embodiment, mode assignment and the like are performed using the received power. Note that in the first embodiment, mode assignment and the like may be performed using the received power instead of the received SINR.
  • an operation example 1 of the communication system in the second embodiment will be described.
  • the operation example 1 there is a transmitting station 100, a receiving station 200, a terminal 300-1, and a terminal 300-2.
  • the transmitting station 100 transmits a preamble that is orthogonal between all OAM modes to the receiving station 200 (step S301), and also transmits it to the terminals 300-1 and 300-2 (steps S302 and S303).
  • the receiving station 200 receives the preamble and estimates the reception power of each OAM mode based on the preamble of each OAM mode (step S304).
  • the receiving station 200 transmits feedback information of the estimated reception power to the transmitting station 100 (step S305).
  • the terminal 300-1 receives the preambles and estimates the reception power for each OAM mode based on each preamble (step S306).
  • the terminal 300-1 transmits feedback information of the estimated reception power to the transmitting station 100 (step S307).
  • the terminal 300-2 also transmits feedback information of the reception power to the transmitting station 100 (steps S308, S309).
  • the transmitting station 100 receives feedback information from each device.
  • the processing unit 130 of the transmitting station 100 calculates the OAM mode allocation and the allocated power based on the received feedback information (step S310).
  • the method of allocating OAM modes to each terminal is basically the same as the "mode selection" method described in the first embodiment.
  • “received power” is used instead of the “received SINR” in the first embodiment.
  • “received SINR” may be used instead of “received power”.
  • the calculation of the power allocation is also basically the same as the "power allocation" method described in the first embodiment.
  • the processing unit 130 allocates power to maximize the communication capacity of the terminal lines within a range that ensures the communication capacity of the trunk line. For example, the processing unit 130 allocates power to the trunk line so as to ensure the communication capacity of the trunk line, and distributes surplus power to the terminal lines.
  • NoMA multiplexing is performed for two or more terminals 300 that use the same OAM mode, so the processing unit 130 further determines the power allocation between two or more terminals that use the same OAM mode.
  • the processing unit 130 assigns high transmission power to the terminal 300 with low reception power, and assigns low transmission power to the terminal 300 with high reception power. Note that if there is no reception power difference between two terminals 300 assigned the same OAM mode (for example, if there is no reception power difference equal to or greater than a threshold value), the two terminals 300 may not be subject to power multiplexing.
  • the received power of terminal 300-2 is lower, so a higher transmission power is assigned to terminal 300-2 than the transmission power assigned to terminal 300-1.
  • controlling the transmission power means, for example, notifying the transmitting unit 120 of the transmission power for each destination.
  • the transmitting unit 120 transmits the OAM mode signal assigned to the receiving station 200 to the receiving station 200 at the assigned transmission power (step S312).
  • the transmission signal contains data.
  • terminals 300-1 and 300-2 are a NoMA pair.
  • the transmitter 120 transmits signals of the same OAM mode assigned to terminals 300-1 and 300-2 (a multiplexed signal in which a signal addressed to terminal 300-1 and a signal addressed to terminal 300-2 are multiplexed) to terminals 300-1 and 300-2.
  • the signal addressed to terminal 300-1 contains data addressed to terminal 300-1
  • the signal addressed to terminal 300-2 contains data addressed to terminal 300-2.
  • a higher transmission power is assigned to the signal addressed to terminal 300-2, which has low received power, than the transmission power assigned to the signal addressed to terminal 300-1, which has high received power.
  • the receiving unit 220 of the receiving station 200 receives a signal including data addressed to the receiving station 200.
  • the processing unit 230 demodulates the received signal by OAM separation processing (step S314).
  • the receiver 320-1 of the terminal 300-1 receives the multiplexed signal.
  • the processor 330-1 which is the processing unit of the terminal 300-1, demodulates the signal addressed to the terminal 300-2 from the received signal (multiplexed signal), and subtracts the demodulated signal from the received signal to separate the signal addressed to itself (terminal 300-1) (S315), and demodulates the separated signal (S316).
  • This type of interference subtraction process is called successive interference cancellation (SIC).
  • SIC successive interference cancellation
  • the signal subtracted from the received signal may be called a replica.
  • the receiver 320-2 of the terminal 300-2 with the low reception power receives the multiplexed signal.
  • the processor 330-2 regards the signal addressed to the terminal 300-1 as interference, and directly demodulates the received signal. Because low transmission power is assigned to the signal addressed to the interfering terminal 300-1, the processor 330-2 is able to demodulate the signal addressed to the processor 330-2 without applying the above-mentioned SIC, etc.
  • the location information acquisition unit 140 of the transmitting station 100 acquires the location information of each terminal 300.
  • the location information of the receiving station 200 is assumed to be known. Any method may be used to acquire the location information of the terminal 300.
  • the processing unit 130 estimates the reception power for each OAM mode for each terminal 300 based on the position information of each terminal 300. For example, the processing unit 130 calculates the spatial reception power distribution for each OAM mode (or reads the calculated reception power distribution from a storage unit such as a memory) and estimates the reception power for each OAM mode for each terminal 300 from the reception power distribution and the position information. Similarly, the processing unit 130 estimates the reception power for each OAM mode at the receiving station 200. The processing after estimating the reception power is the same as the processing from S310 onwards in operation example 1.
  • the processing unit 130 uses the position information of each terminal 300 to select two terminals 300 that are located at the same angle as seen from the transmitting station 100 as two terminals 300 to which the same OAM mode is to be assigned (i.e., targets for power multiplexing).
  • FIG. 15 is a diagram of the transmitting station 100 and the receiving station 200 as viewed from above. As shown in FIG. 15, the angle ⁇ as seen from the transmitting station 100 with respect to the axis connecting the transmitting station 100 and the receiving station 200 (the axis of the backbone line) corresponds to the above angle.
  • two terminals 300 that are located in a direction of the same angle ⁇ 1 as seen from the transmitting station 100 are selected as two terminals 300 to which the same OAM mode is assigned.
  • two terminals 300 that are located in a direction of the same angle ⁇ 2 as seen from the transmitting station 100 are selected as two terminals 300 to which the same OAM mode is assigned.
  • OAM mode radio waves also have the property of attenuating as the distance from the transmitting station 100 increases, so the processing unit 130 can consider that, of two terminals 300 that exist in the same angular direction as seen from the transmitting station 100, the terminal 300 closer to the transmitting station 100 (nearby terminal) has a higher received power than the terminal 300 farther from the transmitting station 100 (far terminal). Therefore, the processing unit 130 assigns low transmission power to the near terminal and high transmission power to the far terminal.
  • OAM mode 1 is assigned to two terminals 300 located in a direction of angle ⁇ 1
  • OAM mode 2 is assigned to two terminals 300 located in a direction of angle ⁇ 2.
  • Fig. 16 is a diagram showing the transmitting station 100, the receiving station 200, and the terminals 1 to 3 as viewed from above. It is assumed that the received power of each terminal in each OAM mode is obtained by the above-mentioned operation example 1 or operation example 2 as shown in Fig. 17. Fig. 17 also shows the angles of each terminal in the situation of Fig. 16 (the angles explained in Fig. 15, where the clockwise direction is positive).
  • the shaded/shaded areas in Figure 16 show an image of the areas where the received power is strong in each OAM mode (received power distribution).
  • the processing unit 130 assigns OAM mode 2 to terminal 1 and terminal 2, and OAM mode 0 to terminal 3, based on the reception power of each OAM mode of each terminal shown in FIG. 17. In addition, the processing unit 130 assigns OAM modes 1, -1, and -2 to the receiving station 200. Note that this assignment method is one example.
  • the transmitter 120 allocates a lower transmission power to the signal from terminal 1 than to the signal from terminal 2, power-multiplexes the signals for terminal 1 and terminal 2, and transmits them in OAM mode 2.
  • the transmitter 120 also transmits the signal for terminal 3 in OAM mode 0, and multiplexes the signal for the receiving station 200 in OAM modes 1, -1, and -2.
  • the receiving station 200 demodulates signals in OAM modes 1, -1, and -2.
  • Terminal 1 demodulates the signal addressed to terminal 2 from the received signal, subtracts the demodulated signal from the received signal, and demodulates the signal addressed to terminal 1 from the received signal after subtraction.
  • Terminals 2 and 3 each demodulate the received signal as a signal addressed to themselves.
  • the technology according to the second embodiment has the effect of increasing the number of multiplexed terminal lines while ensuring (ensuring) line capacity. Also, compared to conventional NoMA, the constraints on the combination of terminals that perform power multiplexing can be relaxed.
  • a processing unit that selects two or more terminals that are targets for power multiplexing in order to perform PtMP transmission using OAM multiplexing transmission for a trunk line and power multiplexing transmission for a terminal line; a transmission unit that transmits an OAM multiplexed signal through the trunk line and a power multiplexed signal through the terminal line, Transmitting device.
  • the processing unit selects a nearby terminal and a distant terminal that are in the same angular direction as seen from the transmitting device as targets for power multiplexing, and assigns the same OAM mode to the nearby terminal and the distant terminal.
  • Additional Note 3 3.
  • the transmitting device selects two or more terminals having a difference in reception power as targets for power multiplexing, and assigns the same OAM mode to the two or more terminals.
  • the processing unit selects the two or more terminals based on an estimated value of received power for each OAM mode received from each terminal.
  • the processing unit selects the two or more terminals based on location information of each terminal and a reception power distribution for each OAM mode.
  • the transmission device according to claim 3, wherein the processing unit assigns an OAM mode that provides maximum reception power to each terminal, and selects two or more terminals to which the same OAM mode is assigned as targets for power multiplexing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

In order to perform PtMP transmission using OAM multiplexing transmission on a backbone line and using power multiplexing transmission on a terminal line, this transmission device comprises: a processing unit that selects two or more terminals to be subjected to power multiplexing; and a transmission unit that transmits an OAM multiplexing signal through the backbone line and that transmits a power multiplexing signal through the terminal line.

Description

送信装置、及び送信方法Transmitting device and transmitting method
 本発明は、電磁波の軌道角運動量(Orbital Angular Momentum:OAM)を用いて無線信号を空間多重伝送する技術に関連するものである。 The present invention relates to a technology for spatially multiplexing wireless signals using the orbital angular momentum (OAM) of electromagnetic waves.
 近年、伝送容量向上のため、OAMを用いた無線信号の空間多重伝送技術の検討が進められている(例えば、非特許文献1)。OAMを持つ電磁波は、伝搬軸を中心に伝搬方向にそって等位相面がらせん状に分布する。異なるOAMモードを持ち、同一方向に伝搬する電磁波は、回転軸方向において空間位相分布が直交するため、異なる信号系列で変調された各OAMモードの信号を受信装置において分離することにより、信号を多重伝送することが可能である。 In recent years, in order to improve transmission capacity, spatial multiplexing transmission technology for wireless signals using OAM has been studied (for example, Non-Patent Document 1). Electromagnetic waves with OAM have equiphase surfaces distributed in a spiral shape along the propagation direction centered on the propagation axis. Electromagnetic waves with different OAM modes propagating in the same direction have orthogonal spatial phase distributions in the direction of the rotation axis, so signals can be multiplexed and transmitted by separating the signals of each OAM mode modulated with different signal sequences at the receiving device.
 このOAM多重技術を用いた無線通信システムでは、複数のアンテナ素子を等間隔に円形配置した等間隔円形アレーアンテナ(以下、UCA(Uniform Circular Array)と称する。)を用い、複数のOAMモードを生成・合成して送信することにより、異なる信号系列の空間多重伝送を実現できる(例えば、非特許文献2)。複数のOAMモードの信号生成及び信号分離には、例えば、バトラー回路(バトラーマトリクス回路)が使用される。 In a wireless communication system using this OAM multiplexing technology, a uniform circular array antenna (hereafter referred to as UCA (Uniform Circular Array)) is used, in which multiple antenna elements are arranged at equal intervals in a circle, to generate, synthesize and transmit multiple OAM modes, thereby achieving spatial multiplexing transmission of different signal sequences (for example, Non-Patent Document 2). A Butler circuit (Butler matrix circuit), for example, is used to generate and separate signals for multiple OAM modes.
 また、将来的な無線通信におけるPtMP(Point-to-MultiPoint)伝送の一形態として、FPU(Field Pickup Unit)またはIAB(Integrated access and backhaul)等の、大容量の通信を行う主回線(基幹回線)と、ベストエフォート型の副回線(端末回線)を同時収容する技術が提案されている。例えば、非特許文献3、非特許文献4等には、一般的なMIMO技術を用いてPtMP伝送を実現するため、送信局におけるプリコーディング等の処理を用いてユーザ間の干渉を除去あるいは低減する技術が開示されている。 Furthermore, as a form of PtMP (Point-to-Multipoint) transmission in future wireless communications, a technology has been proposed that simultaneously accommodates a main line (backbone line) that performs large-capacity communications, such as an FPU (Field Pickup Unit) or IAB (Integrated access and backhaul), and a best-effort type secondary line (terminal line). For example, Non-Patent Documents 3 and 4 disclose technology that uses processing such as precoding at the transmitting station to eliminate or reduce interference between users in order to realize PtMP transmission using general MIMO technology.
 上記のように、UCAとバトラー回路を用いた送信装置により、大容量の通信が可能になるが、今後は、多方向またはモビリティへの対応が望まれている。しかし、従来の無線伝送技術では、MIMO技術を用いてPtMP伝送を実現させるためのプリコーダ導出の演算の負荷および、プリコーダ導出に必要な受信器からのフィードバック情報によるオーバーヘッドが大きいという問題がある。 As described above, a transmitter using UCA and Butler circuits enables high-capacity communication, but in the future, support for multi-direction or mobility is desired. However, conventional wireless transmission technology has problems with the computational load of precoder derivation to realize PtMP transmission using MIMO technology, and the large overhead due to feedback information from the receiver required for precoder derivation.
 開示の技術は、PtMP伝送を実現させるためのフィードバック量および演算の負荷を軽減させることを目的とする。 The disclosed technology aims to reduce the amount of feedback and the computational load required to achieve PtMP transmission.
 開示の技術によれば、基幹回線にOAM多重伝送を用い、端末回線に電力多重伝送を用いるPtMP伝送を行うために、電力多重を行う対象となる2以上の端末を選択する処理部と、
 前記基幹回線でOAM多重信号を送信し、前記端末回線で電力多重信号を送信する送信部と、を備える送信装置が提供される。
According to the disclosed technology, in order to perform PtMP transmission using OAM multiplexing transmission for a backbone line and power multiplexing transmission for a terminal line, a processing unit that selects two or more terminals to be subjected to power multiplexing;
A transmitting device is provided, comprising: a transmitting unit that transmits an OAM multiplexed signal through the trunk line and transmits a power multiplexed signal through the terminal line.
 PtMP伝送を実現させるためのフィードバック量および演算の負荷を軽減させることができる。 The amount of feedback and computational load required to achieve PtMP transmission can be reduced.
OAMモードの信号を生成するためのUCAの位相設定例を示す図である。FIG. 13 is a diagram showing an example of phase setting of a UCA for generating an OAM mode signal. OAM多重信号の位相分布と信号強度分布の例を示す図である。1A and 1B are diagrams illustrating an example of a phase distribution and a signal intensity distribution of an OAM multiplexed signal. 通信システムの構成図である。FIG. 1 is a configuration diagram of a communication system. 各装置の位置関係について説明するための図である。FIG. 2 is a diagram for explaining the positional relationship of each device. 第1実施形態の通信処理の流れの一例を示すシーケンス図である。FIG. 4 is a sequence diagram illustrating an example of a flow of a communication process according to the first embodiment. モード毎の受信電力特性の一例を示す第一の図である。FIG. 11 is a first diagram showing an example of reception power characteristics for each mode. モード毎の受信電力特性の一例を示す第二の図である。FIG. 11 is a second diagram showing an example of reception power characteristics for each mode. 電力制御の一例を示す図である。FIG. 1 illustrates an example of power control. 従来の通信処理の流れの一例を示すシーケンス図である。FIG. 1 is a sequence diagram showing an example of a flow of a conventional communication process. 第2実施形態の概要を説明するための図である。FIG. 11 is a diagram for explaining an overview of a second embodiment. 従来のNoMAにおける距離と受信電力との関係を示す図である。FIG. 1 is a diagram showing the relationship between distance and received power in conventional NoMA. OAMを用いるNoMAにおける距離と受信電力との関係を示す図である。FIG. 1 is a diagram showing the relationship between distance and received power in NoMA using OAM. 第2実施形態の動作例1を説明するためのシーケンス図である。FIG. 11 is a sequence diagram for explaining an operation example 1 of the second embodiment. 第2実施形態の動作例2を説明するためのシーケンス図である。FIG. 11 is a sequence diagram for explaining an operation example 2 of the second embodiment. 角度を説明するための図である。FIG. 13 is a diagram for explaining an angle. 第2実施形態の具体例を説明するための図である。FIG. 11 is a diagram for explaining a specific example of the second embodiment. 第2実施形態の具体例を説明するための図である。FIG. 11 is a diagram for explaining a specific example of the second embodiment.
 以下、図面を参照して本発明の実施の形態(本実施の形態)について説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。 Below, an embodiment of the present invention (present embodiment) will be described with reference to the drawings. The embodiment described below is merely an example, and the embodiment to which the present invention is applicable is not limited to the embodiment described below.
 (本実施の形態の概要)
 本実施の形態では、PtMP伝送の一部の回線(例えば基幹回線)に、OAM多重伝送を用いる。
(Outline of the present embodiment)
In this embodiment, OAM multiplex transmission is used for some of the lines (for example, the backbone lines) for PtMP transmission.
 (基本的な動作例)
 まず、本実施の形態における各装置において使用されるUCAに係る基本的な設定・動作例について説明する。
(Basic operation example)
First, a basic setting and operation example relating to the UCA used in each device in this embodiment will be described.
 図1は、OAMモードの信号を生成するためのUCAの位相設定例を示す図である。図1に示すUCAは、8つのアンテナ素子からなるUCAである。 Figure 1 shows an example of phase settings for a UCA to generate an OAM mode signal. The UCA shown in Figure 1 is a UCA consisting of eight antenna elements.
 図1において、送信側におけるOAMモード0,1,2,3,…の信号は、UCAの各アンテナ素子(●で示す)に供給される信号の位相差により生成される。すなわち、OAMモードnの信号は、位相がn回転(n×360度)になるように各アンテナ素子に供給する信号の位相を設定して生成する。例えば、図1に示すようにUCAがm=8個のアンテナ素子で構成される場合で、OAMモードn=2の信号を生成する場合は、図1(3)に示すように、位相が2回転するように、各アンテナ素子に反時計回りに360n/m=90度の位相差(0度,90度,180度,270度,0度,90度,180度,270度)を設定する。 In Figure 1, signals of OAM modes 0, 1, 2, 3, ... on the transmitting side are generated by the phase difference of the signals supplied to each antenna element (indicated by ●) of the UCA. In other words, signals of OAM mode n are generated by setting the phase of the signal supplied to each antenna element so that the phase rotates n times (n x 360 degrees). For example, when the UCA is composed of m = 8 antenna elements as shown in Figure 1, when a signal of OAM mode n = 2 is generated, a phase difference of 360n/m = 90 degrees counterclockwise is set for each antenna element so that the phase rotates two times, as shown in Figure 1 (3).
 なお、OAMモードnの信号に対して位相の回転方向を逆にした信号をOAMモード-nとする。例えば、正のOAMモードの信号の位相の回転方向を反時計回りとし、負のOAMモードの信号の位相の回転方向を時計回りとする。 Note that a signal with the phase rotation direction reversed to that of an OAM mode n signal is called OAM mode -n. For example, the phase rotation direction of a positive OAM mode signal is counterclockwise, and the phase rotation direction of a negative OAM mode signal is clockwise.
 異なる信号系列を異なるOAMモードの信号として生成し、生成した信号を同時に送信することで、空間多重による無線通信を行うことができる。送信側では、各OAMモードで伝送する信号を予め生成・合成し、単一UCAで各OAMモードの合成信号を送信してもよいし、複数のUCAを用いて、OAMモード毎に異なるUCAで各OAMモードの信号を送信してもよい。 By generating different signal sequences as signals in different OAM modes and transmitting the generated signals simultaneously, wireless communication using spatial multiplexing can be performed. On the transmitting side, signals to be transmitted in each OAM mode can be generated and synthesized in advance, and the synthesized signal for each OAM mode can be transmitted using a single UCA, or multiple UCAs can be used to transmit signals for each OAM mode using different UCAs for each OAM mode.
 受信側でOAM多重信号を分離するためには、受信側のUCAの各アンテナ素子の位相を、送信側のアンテナ素子の位相と逆方向になるように設定すればよい。 To separate the OAM multiplexed signal on the receiving side, the phase of each antenna element of the receiving UCA is set to be opposite to the phase of the antenna elements on the transmitting side.
 ただし、送信アンテナと受信アンテナとの間の軸ずれ等により、OAMモード間で干渉が生じた場合、チャネル等化処理や逐次干渉除去処理等のデジタル信号処理により、干渉で混ざったOAMモード間の信号を分離することが必要になる。なお、OAMモード間の干渉とは、例えば、送信装置からOAMモード1で送信した信号が、受信側でOAMモード2の信号として出力されるといったことである。 However, if interference occurs between OAM modes due to an axial misalignment between the transmitting and receiving antennas, it becomes necessary to separate the OAM mode signals mixed due to interference using digital signal processing such as channel equalization and successive interference cancellation. Note that interference between OAM modes means, for example, a signal transmitted from a transmitting device in OAM mode 1 being output as an OAM mode 2 signal on the receiving side.
 図2は、OAM多重信号の位相分布と信号強度分布の例を示す図である。図2(1),(2)において、送信側から伝搬方向に直交する端面(伝搬直交平面)で見た、OAMモード1とOAMモード2の信号の位相分布を矢印で表す。矢印の始めは0度であり、位相が線形に変化して矢印の終わりは360度である。すなわち、OAMモードnの信号は、伝搬直交平面において、位相がn回転(n×360度)しながら伝搬する。なお、OAMモード-1,-2の信号の位相分布の矢印は逆向きになる。 Figure 2 shows an example of the phase distribution and signal intensity distribution of an OAM multiplexed signal. In Figures 2 (1) and (2), the arrows represent the phase distribution of OAM mode 1 and OAM mode 2 signals as viewed from the transmitting side at an end face (propagation orthogonal plane) perpendicular to the propagation direction. The arrows start at 0 degrees, the phase changes linearly, and the arrows end at 360 degrees. In other words, an OAM mode n signal propagates while its phase rotates n times (n x 360 degrees) on the propagation orthogonal plane. Note that the arrows of the phase distribution of OAM mode -1 and -2 signals point in opposite directions.
 各OAMモードの信号は、OAMモード毎に信号強度分布と信号強度が最大になる位置が異なる。ただし、符号が異なる同じOAMモードの強度分布は同じである。具体的には、OAMモードが高次になるほど、信号強度が最大になる位置が伝搬軸から遠くなる(非特許文献2)。ここで、OAMモードの値が大きい方を高次モードと称する。例えば、OAMモード3の信号は、OAMモード0、OAMモード1、OAMモード2の信号より、高次モードである。 Each OAM mode signal has a different signal intensity distribution and a different position where the signal intensity is maximum. However, the intensity distribution is the same for the same OAM mode with a different sign. Specifically, the higher the OAM mode, the farther the position where the signal intensity is maximum is from the propagation axis (Non-Patent Document 2). Here, the OAM mode with a larger value is called a higher order mode. For example, a signal in OAM mode 3 is a higher order mode than signals in OAM mode 0, OAM mode 1, and OAM mode 2.
 図2(3)は、OAMモードごとに信号強度が最大になる位置を円環で示すが、OAMモードが高次になるほど信号強度が最大になる位置が中心軸から遠くなり、かつ伝搬距離に応じてOAMモード多重信号のビーム径が広がり、OAMモードごとに信号強度が最大になる位置を示す円環が大きくなる。 In Figure 2 (3), the position where the signal strength is maximum for each OAM mode is shown as a circle; however, the higher the OAM mode, the farther the position where the signal strength is maximum is from the central axis, and the beam diameter of the OAM mode multiplexed signal expands depending on the propagation distance, so that the circle showing the position where the signal strength is maximum for each OAM mode becomes larger.
 以下、本実施の形態におけるシステム構成と動作例について詳細に説明する。以下では、第1実施形態と第2実施形態について説明する。第1実施形態では、OAM多重を用いたPtMP伝送の基本的なシステム構成と動作例について説明する。第2実施形態では、第1実施形態の技術をベースとするOAM多重を用いたPtMP伝送において、1つのOAMモード当たりに複数ユーザを収容可能とする技術について説明する。 The system configuration and operation example of this embodiment will be described in detail below. The first and second embodiments will be described below. In the first embodiment, the basic system configuration and operation example of PtMP transmission using OAM multiplexing will be described. In the second embodiment, a technology that enables multiple users to be accommodated per OAM mode in PtMP transmission using OAM multiplexing based on the technology of the first embodiment will be described.
 [第1実施形態] [First embodiment]
 (通信システムのシステム構成)
 図3は、本実施の形態に係る通信システムの構成図である。本通信システムは、送信局100と、受信局200と、端末300とを備える。なお、図3に示す構成図は一例であって、他でもよい。例えば、端末300は、1つでも複数でもよい。
(System configuration of communication system)
Fig. 3 is a configuration diagram of a communication system according to the present embodiment. This communication system includes a transmitting station 100, a receiving station 200, and a terminal 300. Note that the configuration diagram shown in Fig. 3 is an example, and other configurations are also possible. For example, the number of terminals 300 may be one or more.
 送信局100は、PtMP伝送において、OAM多重された電波を送信する送信装置の一例である。例えば、送信局100は、受信局200に送信する基幹回線にOAM多重伝送を用い、端末300に送信する端末回線にMIMO多重伝送を用いてもよい。 The transmitting station 100 is an example of a transmitting device that transmits OAM multiplexed radio waves in PtMP transmission. For example, the transmitting station 100 may use OAM multiplex transmission for the backbone line for transmitting to the receiving station 200, and use MIMO multiplex transmission for the terminal line for transmitting to the terminal 300.
 送信局100は、アンテナ110と、送信部120と、処理部130と、位置情報取得部140を備える。なお、第1実施形態においては位置情報取得部140を備えないこととしてもよい。 The transmitting station 100 includes an antenna 110, a transmitting unit 120, a processing unit 130, and a location information acquiring unit 140. Note that in the first embodiment, the location information acquiring unit 140 may not be included.
 アンテナ110は、例えばUCAである。送信部120は、送信データからOAM多重された信号を生成し、当該信号を、アンテナ110を介して送信する。送信部120は、バトラー回路でOAM信号を生成してもよいし、デジタル処理でOAM信号を生成してもよい。 The antenna 110 is, for example, a UCA. The transmitting unit 120 generates an OAM multiplexed signal from the transmission data and transmits the signal via the antenna 110. The transmitting unit 120 may generate the OAM signal using a Butler circuit, or may generate the OAM signal using digital processing.
 処理部130は、OAMモードの選択、電力割当、電力制御等を実行する。例えば、処理部130は、端末300の位置に応じて、受信SINRの高い1つ(または複数)のOAMモードに端末300宛ての信号を割当て、その他のOAMモードに受信局200宛ての信号を割り当ててもよい。なお、端末300が複数存在する場合、処理部130は、すべての端末300にOAMモードを割り当てた後、その他のOAMモードを受信局200に割り当ててもよい。 The processing unit 130 performs OAM mode selection, power allocation, power control, etc. For example, depending on the location of the terminal 300, the processing unit 130 may assign a signal addressed to the terminal 300 to one (or more) OAM modes with a high received SINR, and assign a signal addressed to the receiving station 200 to the other OAM modes. Note that if there are multiple terminals 300, the processing unit 130 may assign OAM modes to all terminals 300 and then assign the other OAM modes to the receiving station 200.
 処理部130を、信号処理部、制御部等と呼んでもよい。また、処理部130は、1つ以上のコンピュータ(CPUとメモリを備えるコンピュータ)とソフトウェアにより実現してもよいし、専用回路により実現してもよいし、コンピュータ及びソフトウェアと専用回路とで実現してもよい。 The processing unit 130 may be called a signal processing unit, a control unit, etc. Furthermore, the processing unit 130 may be realized by one or more computers (computers having a CPU and memory) and software, by a dedicated circuit, or by a computer, software, and a dedicated circuit.
 受信局200は、基幹回線の信号を受信する受信装置の一例である。受信局200は、送信局100と対向した位置に設置される。 The receiving station 200 is an example of a receiving device that receives signals from a backbone line. The receiving station 200 is installed opposite the transmitting station 100.
 受信局200は、アンテナ210と、受信部220と、処理部230とを備える。アンテナ210は、例えばUCAである。受信部220は、OAM多重された信号を、アンテナ210を介して受信する。処理部230は、受信されたOAM多重信号を各OAMモードに分離する。 The receiving station 200 includes an antenna 210, a receiving unit 220, and a processing unit 230. The antenna 210 is, for example, a UCA. The receiving unit 220 receives the OAM multiplexed signal via the antenna 210. The processing unit 230 separates the received OAM multiplexed signal into each OAM mode.
 端末300は、端末回線の信号を受信する端末の一例である。端末300は、アンテナ310と、受信部320と、処理部330とを備える。アンテナ310は、例えば、無線通信用の一般的なアンテナである。受信部320は、端末300宛てに割り当てられた1つ(または複数)のOAMモードの信号を受信する。 Terminal 300 is an example of a terminal that receives a signal on a terminal line. Terminal 300 includes antenna 310, receiving unit 320, and processing unit 330. Antenna 310 is, for example, a general antenna for wireless communication. Receiving unit 320 receives one (or multiple) OAM mode signals assigned to terminal 300.
 処理部330は、端末300宛てに割り当てられた1つ(または複数)のOAMモードの信号を、MIMO等化処理によって分離する。なお、後述するように、第2実施形態では、処理部330は、SIC等の干渉除去処理を行うことができる。 The processing unit 330 separates one (or more) OAM mode signals assigned to the terminal 300 by MIMO equalization processing. As described later, in the second embodiment, the processing unit 330 can perform interference removal processing such as SIC.
 (各装置の位置関係)
 次に、通信システムに含まれる各装置の位置関係について説明する。
(Positional relationship of each device)
Next, the positional relationship of each device included in the communication system will be described.
 図4は、本実施の形態に係る各装置の位置関係について説明するための図である。送信局100から送信される送信電波は、対向する位置の受信局200に向けて各OAMモードが直交するように生成された信号であるが、OAM波の特性上、送信範囲内の対向位置以外では非直交となる。 FIG. 4 is a diagram for explaining the positional relationship of each device according to this embodiment. The radio waves transmitted from the transmitting station 100 are signals generated so that the OAM modes are orthogonal toward the receiving station 200 at the opposing position, but due to the characteristics of OAM waves, they become non-orthogonal outside the opposing position within the transmission range.
 (通信システムの動作)
 次に、第1実施形態における通信システムの動作について説明する。
(Operation of the communication system)
Next, the operation of the communication system in the first embodiment will be described.
 図5は、第1実施形態に係る通信処理の流れの一例を示すシーケンス図である。送信局100は、全てのOAMモード間で直交しているプリアンブルを、受信局200に送信し(ステップS101)、端末300にも送信する(ステップS102)。 FIG. 5 is a sequence diagram showing an example of the flow of communication processing according to the first embodiment. The transmitting station 100 transmits a preamble that is orthogonal between all OAM modes to the receiving station 200 (step S101), and also transmits it to the terminal 300 (step S102).
 受信局200は、プリアンブルを受信して、各OAMモードの受信SINRを推定する(ステップS103)。受信局200は、推定されたSINRのフィードバック情報を送信局100に送信する(ステップS104)。 The receiving station 200 receives the preamble and estimates the received SINR for each OAM mode (step S103). The receiving station 200 transmits feedback information of the estimated SINR to the transmitting station 100 (step S104).
 端末300は、プリアンブルを受信して、各OAMモードの受信SINRを推定する(ステップS105)。端末300は、推定されたSINRのフィードバック情報を送信局100に送信する(ステップS106)。 The terminal 300 receives the preamble and estimates the received SINR for each OAM mode (step S105). The terminal 300 transmits feedback information of the estimated SINR to the transmitting station 100 (step S106).
 送信局100は、各装置からフィードバック情報を受信する。送信局100の処理部130は、受信されたフィードバック情報に基づいて、OAMモードの割当および割当電力の計算を行う(ステップS107)。OAMモードの割当および割当電力の計算の詳細については後述する。 The transmitting station 100 receives feedback information from each device. The processing unit 130 of the transmitting station 100 calculates the OAM mode allocation and the allocated power based on the received feedback information (step S107). Details of the OAM mode allocation and the calculation of the allocated power will be described later.
 次に、処理部130は、各装置への送信電力を制御する(ステップS108)。そして、送信部120は、受信局200に割り当てられたOAMモードの信号によって、受信局200宛のデータを受信局200に送信し(ステップS109)、端末300に割り当てられたOAMモードの信号によって、端末300宛のデータを端末300に送信する(ステップS110)。 Then, the processing unit 130 controls the transmission power to each device (step S108). The transmitting unit 120 then transmits data addressed to the receiving station 200 to the receiving station 200 using the OAM mode signal assigned to the receiving station 200 (step S109), and transmits data addressed to the terminal 300 to the terminal 300 using the OAM mode signal assigned to the terminal 300 (step S110).
 受信局200の受信部220は、受信局200宛のデータを含む信号を受信する。処理部230は、OAM分離処理によって、受信した信号を復調する(ステップS111)。 The receiving unit 220 of the receiving station 200 receives a signal including data addressed to the receiving station 200. The processing unit 230 demodulates the received signal by OAM separation processing (step S111).
 端末300の受信部320は、端末300宛のデータを含む信号を受信する。処理部330は、MIMO等化処理によって、受信した信号を復調する(ステップS112)。 The receiving unit 320 of the terminal 300 receives a signal including data addressed to the terminal 300. The processing unit 330 demodulates the received signal by MIMO equalization processing (step S112).
 (モード選択)
 次に、図5のステップS107における処理部130によるOAMモードの選択方法について説明する。処理部130は、基幹回線の通信容量が担保される範囲で端末回線の通信容量を最大化させるように、端末回線のOAMモードを選択してもよい。
(Mode Selection)
Next, a method for selecting an OAM mode by the processing unit 130 in step S107 of Fig. 5 will be described. The processing unit 130 may select an OAM mode for a terminal line so as to maximize the communication capacity of the terminal line within a range in which the communication capacity of the backbone line is guaranteed.
 図6は、本実施の形態に係るモード毎の受信電力特性の一例を示す第一の図である。グラフ901は、OAMモード0の受信電力特性を示す。グラフ902は、OAMモード±1の受信電力特性を示す。グラフ902は、OAMモード±2の受信電力特性を示す。 FIG. 6 is a first diagram showing an example of reception power characteristics for each mode according to this embodiment. Graph 901 shows the reception power characteristics for OAM mode 0. Graph 902 shows the reception power characteristics for OAM modes ±1. Graph 902 shows the reception power characteristics for OAM modes ±2.
 処理部130は、端末300の位置に応じた、その受信SINRが最大となるOAMモードを選択する。例えば、グラフ904は、OAM多重伝送の直交軸(送信局100のUCAの中心と受信局200のUCAとを結ぶ送信方向の直線)から水平方向への距離に応じて、最大の受信SINRを維持するようにOAMモードを選択した際の受信電力特性の理論値を示す。このように、処理部130は、取得した受信SINRに応じて、端末300向けの信号を重畳するOAMモードを選択する。 The processing unit 130 selects the OAM mode that maximizes the received SINR according to the position of the terminal 300. For example, graph 904 shows the theoretical value of the received power characteristics when the OAM mode is selected to maintain the maximum received SINR according to the horizontal distance from the orthogonal axis of OAM multiplexed transmission (the straight line in the transmission direction connecting the center of the UCA of the transmitting station 100 and the UCA of the receiving station 200). In this way, the processing unit 130 selects the OAM mode in which to superimpose the signal for the terminal 300 according to the acquired received SINR.
 図7は、本実施の形態に係るモード毎の受信電力特性の一例を示す第二の図である。処理部130は、端末300の位置を把握すると、OAMモード毎の受信電力特性について、図7に示すように算出してもよい。 FIG. 7 is a second diagram showing an example of the reception power characteristics for each mode according to the present embodiment. When the processing unit 130 determines the position of the terminal 300, the processing unit 130 may calculate the reception power characteristics for each OAM mode as shown in FIG. 7.
 そして、処理部130は、端末300の受信SINRが高いOAMモード(例えば、図7の状況においては[+1,-1]等)を選択してもよい。また、処理部130は、端末300に割り当てなかったOAMモード(例えば、図7の状況においては[0,+2,-2,+3,-3]等)に、受信局200宛ての信号を割り当てる。 Then, the processing unit 130 may select an OAM mode with a high reception SINR for the terminal 300 (for example, [+1, -1] in the situation of FIG. 7). The processing unit 130 also assigns a signal addressed to the receiving station 200 to an OAM mode that has not been assigned to the terminal 300 (for example, [0, +2, -2, +3, -3] in the situation of FIG. 7).
 なお、処理部130は、端末300と受信局200とに同じデータを送信する場合には、受信局200と端末300に同一のOAMモードを割り当ててもよい。 When transmitting the same data to the terminal 300 and the receiving station 200, the processing unit 130 may assign the same OAM mode to the receiving station 200 and the terminal 300.
 (電力割当)
 次に、図5のステップS107における処理部130による電力割当方法について説明する。
(Power Allocation)
Next, a power allocation method performed by the processing unit 130 in step S107 of FIG. 5 will be described.
 処理部130は、基幹回線の通信容量が担保される範囲で端末回線の通信容量を最大化させるように、電力割当を行う。例えば、処理部130は、基幹回線の通信容量を担保しながら余剰の電力を端末回線へと分配してもよい。これによって、基幹回線の余剰電力の有効活用が可能となるとともに、端末回線に干渉する基幹回線の信号の電力を低減させ、端末300の所望の信号のSINRを増加させることができる。 The processing unit 130 allocates power to maximize the communication capacity of the terminal line within the range where the communication capacity of the trunk line is guaranteed. For example, the processing unit 130 may distribute surplus power to the terminal line while guaranteeing the communication capacity of the trunk line. This makes it possible to effectively utilize the surplus power of the trunk line, and reduces the power of the trunk line signals that interfere with the terminal line, thereby increasing the SINR of the desired signal of the terminal 300.
 図8は、本実施の形態に係る電力割当の一例を示す図である。図8は、例えば基幹回線が100Gbps以上の場合の電力割当の例である。処理部130は、基幹回線が使用するOAMモードの電力を均一にαdB下げ、端末回線が使用するOAMモードの電力を均一にβdB上げるようにしてもよい。ここで、処理部130は、制御前と制御後で総送信電力が変わらないように、αとβを決定する。なお、ここで総送信電力は一定である。 FIG. 8 is a diagram showing an example of power allocation according to this embodiment. FIG. 8 shows an example of power allocation when, for example, the trunk line is 100 Gbps or more. The processing unit 130 may uniformly lower the power of the OAM mode used by the trunk line by α dB, and uniformly raise the power of the OAM mode used by the terminal line by β dB. Here, the processing unit 130 determines α and β so that the total transmission power does not change before and after the control. Note that the total transmission power here is constant.
 (第1実施形態の効果)
 本実施の形態との比較のため、従来の一般的なMU(Multi-User)-MIMO通信を用いたPtMP伝送の処理について説明する。
(Effects of the First Embodiment)
For comparison with this embodiment, a process of PtMP transmission using conventional general MU (Multi-User)-MIMO communication will be described.
 図9は、従来の通信処理の流れの一例を示すシーケンス図である。図9は、送信機1000から第一受信機2000および第二受信機3000にMU-MIMO通信を行う例を示している。 FIG. 9 is a sequence diagram showing an example of the flow of conventional communication processing. FIG. 9 shows an example of MU-MIMO communication from a transmitter 1000 to a first receiver 2000 and a second receiver 3000.
 送信機1000は、プリアンブルを第一受信機2000に送信し(ステップS201)、第二受信機3000にも送信する(ステップS202)。 The transmitter 1000 transmits the preamble to the first receiver 2000 (step S201) and also to the second receiver 3000 (step S202).
 第一受信機2000は、プリアンブルを受信して、チャネルを推定する(ステップS203)。第一受信機2000は、推定されたチャネルのフィードバック情報を送信機1000に送信する(ステップS204)。 The first receiver 2000 receives the preamble and estimates the channel (step S203). The first receiver 2000 transmits feedback information of the estimated channel to the transmitter 1000 (step S204).
 第二受信機3000は、プリアンブルを受信して、チャネルを推定する(ステップS205)。第二受信機3000は、推定されたチャネルのフィードバック情報を送信機1000に送信する(ステップS206)。 The second receiver 3000 receives the preamble and estimates the channel (step S205). The second receiver 3000 transmits feedback information of the estimated channel to the transmitter 1000 (step S206).
 送信機1000は、各装置からフィードバック情報を受信する。送信機1000は、受信されたフィードバック情報に基づいて、プリコーダ計算を行う(ステップS207)。 The transmitter 1000 receives feedback information from each device. The transmitter 1000 performs precoder calculations based on the received feedback information (step S207).
 次に、送信機1000は、各装置への信号にプリコーディングする(ステップS208)。そして、送信機1000は、第一受信機2000宛のデータを第一受信機2000に送信し(ステップS209)、第二受信機3000宛のデータを第二受信機3000に送信する(ステップS210)。 Next, the transmitter 1000 precodes the signal to each device (step S208). The transmitter 1000 then transmits data addressed to the first receiver 2000 to the first receiver 2000 (step S209), and transmits data addressed to the second receiver 3000 to the second receiver 3000 (step S210).
 第一受信機2000は、第一受信機2000宛のデータを含む信号を受信し、MIMO等化処理によって、受信した信号を復調する(ステップS211)。 The first receiver 2000 receives a signal including data addressed to the first receiver 2000, and demodulates the received signal using MIMO equalization processing (step S211).
 第二受信機3000は、第二受信機3000宛のデータを含む信号を受信し、MIMO等化処理によって、受信した信号を復調する(ステップS212)。 The second receiver 3000 receives a signal including data addressed to the second receiver 3000, and demodulates the received signal using MIMO equalization processing (step S212).
 このように、従来の一般的なMU-MIMO通信処理では、プリコーディング処理が必要であり、さらにプリコーダ導出のためのチャネルのフィードバック情報が必要である。 As such, in conventional MU-MIMO communication processing, precoding processing is required, and channel feedback information is also required to derive the precoder.
 これに対して、本実施の形態に係る通信システムは、プリコーディング処理が不要となるため、PtMP伝送を実現させるための演算の負荷を軽減させることができる。また、プリコーダ導出のためのチャネルのフィードバック情報に代えて、受信SINR(又は受信電力)のみのフィードバック情報となるため、オーバーヘッドを削減させることができる。 In contrast, the communication system according to this embodiment does not require precoding processing, so the computational load required to achieve PtMP transmission can be reduced. Also, instead of feedback information on the channel for deriving the precoder, feedback information is only on the received SINR (or received power), so overhead can be reduced.
 [第2実施形態]
 続いて、第2実施形態を説明する。上述した第1実施形態の技術により、演算の負荷を軽減させたPtMP伝送を実現できる。しかし、第1実施形態の技術では、ユーザ数(端末数)はOAMモード数以下に制限される。また、収容させるユーザ数を増加させる場合、受信局200向けのOAMモードに割り当てる電力を減少させる必要があるため、基幹回線の容量が低下する。
[Second embodiment]
Next, a second embodiment will be described. The technology of the first embodiment described above can realize PtMP transmission with reduced computation load. However, in the technology of the first embodiment, the number of users (number of terminals) is limited to the number of OAM modes or less. In addition, when the number of users to be accommodated is increased, it is necessary to reduce the power allocated to the OAM mode for the receiving station 200, which reduces the capacity of the trunk line.
 そこで、第2実施形態では、端末回線において、同一OAMモードに複数の端末300を割り当て、当該同一OAMモードの複数の端末300に対し、NoMA(Non-Orthogonal Multiple Access、非直交多元接続)多重を利用して信号を送信することとしている。NoMA多重を電力多重と呼んでもよい。 In the second embodiment, therefore, in a terminal line, multiple terminals 300 are assigned to the same OAM mode, and signals are transmitted to the multiple terminals 300 in the same OAM mode using NoMA (Non-Orthogonal Multiple Access) multiplexing. NoMA multiplexing may also be called power multiplexing.
 すなわち、第2実施形態では、受信電力差を有する2以上の端末300を電力多重を行う対象として選択し、選択した2以上の端末300に対して同一OAMモードを用いてNoMAによるマルチユーザ伝送を行う。 In other words, in the second embodiment, two or more terminals 300 having a difference in reception power are selected as targets for power multiplexing, and multi-user transmission by NoMA is performed for the two or more selected terminals 300 using the same OAM mode.
 なお、以下の説明では、例として、1つのOAMモードにNoMAを用いて収容する端末300の数を2としているが、1つのOAMモードにNoMAを用いて収容する端末300の数は3以上であってもよい。つまり、電力多重を行う対象の端末数が3以上であってもよい。 In the following description, the number of terminals 300 accommodated in one OAM mode using NoMA is set to two as an example, but the number of terminals 300 accommodated in one OAM mode using NoMA may be three or more. In other words, the number of terminals targeted for power multiplexing may be three or more.
 図10に、第2実施形態において通信が行われる際のイメージを示す。図10に示すように、送信局100と受信局200との間の基幹回線ではOAM多重による伝送が行われる。一方、端末回線では、NoMA多重による伝送が行われる。図10の例では、端末1と端末2のペア、及び、端末3と端末4のペアがそれぞれNoMAのペアであり、それぞれのペアに1つのOAMモードが割り当てられている。例えば、端末1と端末2のペアにOAMモード1が割り当てられ、端末3と端末4のペアにOAMモード2が割り当てられる。 Figure 10 shows an image of communication in the second embodiment. As shown in Figure 10, transmission is performed by OAM multiplexing on the backbone line between the transmitting station 100 and the receiving station 200. On the other hand, transmission is performed by NoMA multiplexing on the terminal lines. In the example of Figure 10, the pair of terminal 1 and terminal 2, and the pair of terminal 3 and terminal 4 are each NoMA pairs, and one OAM mode is assigned to each pair. For example, OAM mode 1 is assigned to the pair of terminal 1 and terminal 2, and OAM mode 2 is assigned to the pair of terminal 3 and terminal 4.
 第2実施形態に係る技術により、基幹回線の容量を担保しつつ、端末回線のユーザ多重数を増やすことができる。 The technology in the second embodiment makes it possible to increase the number of users multiplexed on terminal lines while ensuring the capacity of the trunk line.
 また、OAM伝送を使用することから、従来のNoMAと比較して電力多重を行う端末の組み合わせに関する制約を緩和できる。この点について、図11と図12を参照して説明する。 In addition, because OAM transmission is used, restrictions on the combination of terminals that perform power multiplexing can be relaxed compared to conventional NoMA. This point will be explained with reference to Figures 11 and 12.
 NoMAでは、受信電力に差のある2端末をペアリングする必要がある。つまり、受信電力の高い端末と受信電力の低い端末とをペアリングする必要がある。OAMモードを持たない一般的な送信電波を使用する場合、送信局から送信された信号の受信電力は、図11に示すように距離が大きくなるにつれて徐々に減少する。また、距離が大きくなるほど、減少の度合いが低下する。すなわち、NoMAの端末ペア(図11の2つの星印)は、送信局から近い近傍端末と送信局から遠い遠方端末とに限定される。 In NoMA, it is necessary to pair two terminals with different reception power. In other words, it is necessary to pair a terminal with high reception power with a terminal with low reception power. When using general transmission radio waves without OAM mode, the reception power of a signal transmitted from a transmitting station gradually decreases as the distance increases, as shown in Figure 11. Also, the degree of decrease decreases as the distance increases. In other words, NoMA terminal pairs (two stars in Figure 11) are limited to a nearby terminal close to the transmitting station and a distant terminal far from the transmitting station.
 OAMを用いるNoMAについて図12を参照して説明する。図12は、OAMモードが1又は-1である場合における、送信局からの距離と受信電力との関係を表すグラフである。OAMを用いる場合、OAM波の特徴から、電力の落ち込む距離と極大をとる距離が繰り返し複数回現れることで、送信局からの距離によらず、様々な2端末の位置において、受信電力差のある2端末をペアリングすることが可能である。 NoMA using OAM will be described with reference to Figure 12. Figure 12 is a graph showing the relationship between distance from a transmitting station and received power when the OAM mode is 1 or -1. When using OAM, due to the characteristics of OAM waves, the distance at which the power drops and the distance at which it reaches a maximum appear repeatedly multiple times, making it possible to pair two terminals with a difference in received power at various positions of the two terminals, regardless of the distance from the transmitting station.
 (通信システムのシステム構成)
 第2実施形態における通信システムの構成は第1実施形態における通信システムの構成と基本的に同じであり、図3を参照して説明したとおりである。ただし、第2実施形態では、端末300の数は複数であることを想定する。通信システムにおける各装置の各部は、第1実施形態での機能に加えて、OAMモード毎のNoMA多重伝送を実現するために必要な機能を備える。
(System configuration of communication system)
The configuration of the communication system in the second embodiment is basically the same as that of the communication system in the first embodiment, as described with reference to Fig. 3. However, in the second embodiment, it is assumed that the number of terminals 300 is more than one. Each unit of each device in the communication system has a function required to realize NoMA multiplex transmission for each OAM mode in addition to the function in the first embodiment.
 (通信システムの動作)
 次に、第2実施形態における通信システムの動作について説明する。ここでは、2つの例を動作例1及び動作例2として説明する。第1実施形態では、受信SINRを用いてモード割当等を行っていたが、第2実施形態では受信電力を用いてモード割当等を行う。なお、第1実施形態において、受信SINRに代えて、受信電力を用いてモード割当等を行ってもよい。
(Operation of the communication system)
Next, the operation of the communication system in the second embodiment will be described. Two examples will be described here as operation example 1 and operation example 2. In the first embodiment, mode assignment and the like are performed using the received SINR, but in the second embodiment, mode assignment and the like are performed using the received power. Note that in the first embodiment, mode assignment and the like may be performed using the received power instead of the received SINR.
  <動作例1> <Example 1>
 図13を参照して、第2実施形態における通信システムの動作例1を説明する。動作例1では、送信局100、受信局200、端末300-1、端末300-2が存在する。 With reference to FIG. 13, an operation example 1 of the communication system in the second embodiment will be described. In the operation example 1, there is a transmitting station 100, a receiving station 200, a terminal 300-1, and a terminal 300-2.
 送信局100は、全てのOAMモード間で直交しているプリアンブルを、受信局200に送信し(ステップS301)、端末300-1、及び端末300-2にも送信する(ステップS302、S303)。 The transmitting station 100 transmits a preamble that is orthogonal between all OAM modes to the receiving station 200 (step S301), and also transmits it to the terminals 300-1 and 300-2 (steps S302 and S303).
 受信局200は、プリアンブルを受信して、各OAMモードのプリアンブルに基づき、各OAMモードの受信電力を推定する(ステップS304)。受信局200は、推定された受信電力のフィードバック情報を送信局100に送信する(ステップS305)。 The receiving station 200 receives the preamble and estimates the reception power of each OAM mode based on the preamble of each OAM mode (step S304). The receiving station 200 transmits feedback information of the estimated reception power to the transmitting station 100 (step S305).
 端末300-1は、プリアンブルを受信して、各プリアンブルに基づき、各OAMモードの受信電力を推定する(ステップS306)。端末300‐1は、推定された受信電力のフィードバック情報を送信局100に送信する(ステップS307)。同様にして、端末300-2も受信電力のフィードバック情報を送信局100に送信する(ステップS308、S309)。 The terminal 300-1 receives the preambles and estimates the reception power for each OAM mode based on each preamble (step S306). The terminal 300-1 transmits feedback information of the estimated reception power to the transmitting station 100 (step S307). Similarly, the terminal 300-2 also transmits feedback information of the reception power to the transmitting station 100 (steps S308, S309).
 送信局100は、各装置からフィードバック情報を受信する。送信局100の処理部130は、受信されたフィードバック情報に基づいて、OAMモードの割当および割当電力の計算を行う(ステップS310)。 The transmitting station 100 receives feedback information from each device. The processing unit 130 of the transmitting station 100 calculates the OAM mode allocation and the allocated power based on the received feedback information (step S310).
 各端末に対するOAMモードの割当方法は、第1実施形態で説明した「モード選択」の方法と基本的には同じである。ただし、第2実施形態では、第1実施形態の「受信SINR」に代えて「受信電力」を用いる。なお、第2実施形態において、「受信電力」に代えて、「受信SINR」を使用してもよい。 The method of allocating OAM modes to each terminal is basically the same as the "mode selection" method described in the first embodiment. However, in the second embodiment, "received power" is used instead of the "received SINR" in the first embodiment. Note that in the second embodiment, "received SINR" may be used instead of "received power".
 第2実施形態では、処理部130は、端末300毎に、複数のOAMモードのうち、受信電力が最大となるOAMモードを割り当てる。例えば、全OAMモード=1、2、3とした場合に、端末300-1の受信電力が、「OAMモード1=-50dbm、OAMモード2=-60dbm、OAMモード3=-70dbm」であり、端末300-2の受信電力が、「OAMモード1=-60dbm、OAMモード2=-70dbm、OAMモード3=-70dbm」であるとすると、端末300-1にはOAMモード1を割り当て、端末300-2にもOAMモード1を割り当てる。 In the second embodiment, the processing unit 130 assigns, for each terminal 300, the OAM mode with the highest reception power among multiple OAM modes. For example, if all OAM modes are 1, 2, 3, and the reception power of terminal 300-1 is "OAM mode 1 = -50 dbm, OAM mode 2 = -60 dbm, OAM mode 3 = -70 dbm," and the reception power of terminal 300-2 is "OAM mode 1 = -60 dbm, OAM mode 2 = -70 dbm, OAM mode 3 = -70 dbm," OAM mode 1 is assigned to terminal 300-1, and OAM mode 1 is also assigned to terminal 300-2.
 なお、このように最大受信電力を使用することは例であり、例えば、全OAMモードのうち、受信電力の大きさが上位N番目以内の任意のOAMモードを割り当てることとしてもよい。 Note that using the maximum received power in this manner is merely an example, and any OAM mode that has the highest received power within the top N of all OAM modes may be assigned.
 割当電力計算についても、第1実施形態で説明した「電力割当」の方法と基本的には同じである。 The calculation of the power allocation is also basically the same as the "power allocation" method described in the first embodiment.
 すなわち、処理部130は、例えば、基幹回線の通信容量が担保される範囲で端末回線の通信容量を最大化させるように、電力割当を行う。例えば、処理部130は、基幹回線の通信容量を担保するように基幹回線に電力を割り当て、余剰の電力を端末回線へと分配する。 In other words, the processing unit 130 allocates power to maximize the communication capacity of the terminal lines within a range that ensures the communication capacity of the trunk line. For example, the processing unit 130 allocates power to the trunk line so as to ensure the communication capacity of the trunk line, and distributes surplus power to the terminal lines.
 第2実施形態では、同一OAMモードを用いる2以上の端末300に対して、NoMA多重を実施するので、処理部130は更に、同一OAMモードを用いる2以上の端末間での割当電力を決定する。 In the second embodiment, NoMA multiplexing is performed for two or more terminals 300 that use the same OAM mode, so the processing unit 130 further determines the power allocation between two or more terminals that use the same OAM mode.
 ここでは、2つの端末300に同一OAMモードが割り当てられたとする。処理部130は、受信電力の低い端末300には高い送信電力を割り当て、受信電力の高い端末300には低い送信電力を割り当てる。なお、同一OAMモードが割り当てられた2つの端末300間に受信電力差がない場合(例えば、閾値以上の受信電力差がない場合)、当該2つの端末300については電力多重を行う対象としないこととしてもよい。 Here, it is assumed that the same OAM mode is assigned to two terminals 300. The processing unit 130 assigns high transmission power to the terminal 300 with low reception power, and assigns low transmission power to the terminal 300 with high reception power. Note that if there is no reception power difference between two terminals 300 assigned the same OAM mode (for example, if there is no reception power difference equal to or greater than a threshold value), the two terminals 300 may not be subject to power multiplexing.
 上述した端末300-1と端末300-2の例では、端末300-2の受信電力のほうが低いので、端末300-1に割り当てる送信電力よりも高い送信電力を端末300-2に割り当てる。 In the above example of terminals 300-1 and 300-2, the received power of terminal 300-2 is lower, so a higher transmission power is assigned to terminal 300-2 than the transmission power assigned to terminal 300-1.
 次に、処理部130は、各装置への送信電力を制御する(ステップS311)。ここでの送信電力の制御とは、例えば、送信部120に、送信先毎の送信電力を通知することである。そして、送信部120は、受信局200に割り当てられたOAMモードの信号を、割り当てられた送信電力で、受信局200に送信する(ステップS312)。送信信号にはデータが含まれている。 Next, the processing unit 130 controls the transmission power to each device (step S311). Here, controlling the transmission power means, for example, notifying the transmitting unit 120 of the transmission power for each destination. Then, the transmitting unit 120 transmits the OAM mode signal assigned to the receiving station 200 to the receiving station 200 at the assigned transmission power (step S312). The transmission signal contains data.
 端末300-1と端末300-2とがNoMAのペアになっているとする。S313において、送信部120は、端末300-1と端末300-2に割り当てられている同一OAMモードの信号(端末300-1宛の信号と端末300-2宛の信号を多重した多重信号)を、端末300-1と端末300-2に送信する。端末300-1宛の信号には端末300-1宛のデータが含まれ、端末300-2宛の信号には端末300-2宛のデータが含まれる。 Suppose that terminals 300-1 and 300-2 are a NoMA pair. In S313, the transmitter 120 transmits signals of the same OAM mode assigned to terminals 300-1 and 300-2 (a multiplexed signal in which a signal addressed to terminal 300-1 and a signal addressed to terminal 300-2 are multiplexed) to terminals 300-1 and 300-2. The signal addressed to terminal 300-1 contains data addressed to terminal 300-1, and the signal addressed to terminal 300-2 contains data addressed to terminal 300-2.
 受信電力の低い端末300-2宛の信号に対しては、受信電力の高い端末300-1宛の信号に割り当てられた送信電力よりも高い送信電力が割り当てられている。 A higher transmission power is assigned to the signal addressed to terminal 300-2, which has low received power, than the transmission power assigned to the signal addressed to terminal 300-1, which has high received power.
 受信局200の受信部220は、受信局200宛のデータを含む信号を受信する。処理部230は、OAM分離処理によって、受信した信号を復調する(ステップS314)。 The receiving unit 220 of the receiving station 200 receives a signal including data addressed to the receiving station 200. The processing unit 230 demodulates the received signal by OAM separation processing (step S314).
 受信電力の高い端末300-1の受信部320-1は、多重信号を受信する。端末300-1の処理部である処理部330-1が、受信信号(多重信号)から、端末300-2宛の信号を復調し、復調した信号を受信信号から減算することで、自身(端末300-1)宛の信号を分離し(S315)、分離した信号を復調する(S316)。このような干渉減算処理は、逐次干渉キャンセル(SIC)と呼ばれる。なお、受信信号から減算する信号をレプリカと呼んでもよい。 The receiver 320-1 of the terminal 300-1, which has high reception power, receives the multiplexed signal. The processor 330-1, which is the processing unit of the terminal 300-1, demodulates the signal addressed to the terminal 300-2 from the received signal (multiplexed signal), and subtracts the demodulated signal from the received signal to separate the signal addressed to itself (terminal 300-1) (S315), and demodulates the separated signal (S316). This type of interference subtraction process is called successive interference cancellation (SIC). The signal subtracted from the received signal may be called a replica.
 S317において、受信電力の低い端末300-2の受信部320-2は、多重信号を受信する。処理部330-2は、端末300-1宛の信号を干渉とみなし、受信信号に対して直接復調を行う。干渉にあたる端末300-1宛の信号には、低い送信電力が割り当てられているため、処理部330-2は、上記のSIC等を適用せずに処理部330-2宛の信号を復調することが可能である。 In S317, the receiver 320-2 of the terminal 300-2 with the low reception power receives the multiplexed signal. The processor 330-2 regards the signal addressed to the terminal 300-1 as interference, and directly demodulates the received signal. Because low transmission power is assigned to the signal addressed to the interfering terminal 300-1, the processor 330-2 is able to demodulate the signal addressed to the processor 330-2 without applying the above-mentioned SIC, etc.
  <動作例2>
 図14を参照して、第2実施形態における通信システムの動作例2を説明する。動作例2においても、送信局100、受信局200、端末300-1、端末300-2が存在する。
<Operation example 2>
An operation example 2 of the communication system in the second embodiment will be described with reference to Fig. 14. In the operation example 2, there are also a transmitting station 100, a receiving station 200, a terminal 300-1, and a terminal 300-2.
 S401において、送信局100の位置情報取得部140は、各端末300の位置情報を取得する。なお、受信局200の位置情報は既知であるとする。端末300の位置情報の取得にはどのような方法を用いてもよい。 In S401, the location information acquisition unit 140 of the transmitting station 100 acquires the location information of each terminal 300. Note that the location information of the receiving station 200 is assumed to be known. Any method may be used to acquire the location information of the terminal 300.
 S402において、処理部130は、各端末300の位置情報に基づいて、各端末300についてのOAMモード毎の受信電力を推定する。例えば、処理部130は、OAMモード毎の空間的な受信電力分布を算出し(又は、算出済みの受信電力分布をメモリ等の記憶部から読み出して)、当該受信電力分布と位置情報とから、各端末300についてのOAMモード毎の受信電力を推定する。同様に、処理部130は、受信局200におけるOAMモード毎の受信電力を推定する。受信電力を推定した後の処理は、動作例1におけるS310以降の処理と同じである。 In S402, the processing unit 130 estimates the reception power for each OAM mode for each terminal 300 based on the position information of each terminal 300. For example, the processing unit 130 calculates the spatial reception power distribution for each OAM mode (or reads the calculated reception power distribution from a storage unit such as a memory) and estimates the reception power for each OAM mode for each terminal 300 from the reception power distribution and the position information. Similarly, the processing unit 130 estimates the reception power for each OAM mode at the receiving station 200. The processing after estimating the reception power is the same as the processing from S310 onwards in operation example 1.
 <受信電力を使用しないOAMモードの割当、送信電力の割当例>
 動作例2において、位置情報を利用することで、各端末300の受信電力の推定値を用いることなく、OAMモードの割当、及び送信電力の割当を行うこととしてもよい。
<Example of OAM mode allocation without using reception power and transmission power allocation>
In the second operation example, by utilizing location information, it is also possible to perform allocation of OAM modes and allocation of transmission power without using an estimated value of the received power of each terminal 300 .
 例えば、処理部130は、各端末300の位置情報を使用することで、送信局100から見て同一角度の方向に存在する2つの端末300を、同一OAMモードを割り当てる2つの端末300(つまり、電力多重を行う対象)として選択する。 For example, the processing unit 130 uses the position information of each terminal 300 to select two terminals 300 that are located at the same angle as seen from the transmitting station 100 as two terminals 300 to which the same OAM mode is to be assigned (i.e., targets for power multiplexing).
 上記の「角度」について、図15を用いて説明する。図15は、送信局100と受信局200とを上から見た図である。図15に示すように、送信局100と受信局200とを結ぶ軸(基幹回線の軸)に対する、送信局100から見た角度θが上記の角度に相当する。 The above "angle" will be explained using FIG. 15. FIG. 15 is a diagram of the transmitting station 100 and the receiving station 200 as viewed from above. As shown in FIG. 15, the angle θ as seen from the transmitting station 100 with respect to the axis connecting the transmitting station 100 and the receiving station 200 (the axis of the backbone line) corresponds to the above angle.
 図15の例において、例えば、送信局100から見て同一角度θ1の方向に存在する2つの端末300を、同一OAMモードを割り当てる2つの端末300として選択する。また、送信局100から見て同一角度θ2の方向に存在する2つの端末300を、同一OAMモードを割り当てる2つの端末300として選択する。 In the example of FIG. 15, for example, two terminals 300 that are located in a direction of the same angle θ1 as seen from the transmitting station 100 are selected as two terminals 300 to which the same OAM mode is assigned. Also, two terminals 300 that are located in a direction of the same angle θ2 as seen from the transmitting station 100 are selected as two terminals 300 to which the same OAM mode is assigned.
 OAMモードの電波についても、送信局100からの距離が大きくなるにつれて電波が減衰するという性質は有しているので、処理部130は、送信局100から見て同一角度の方向に存在する2つの端末300のうち、送信局100に近いほうの端末300(近傍端末)の受信電力のほうが、送信局100から遠いほうの端末300(遠方端末)の受信電力よりも高いと見なすことができる。よって、処理部130は、近傍端末に低い送信電力を割り当て、遠方端末に高い送信電力を割り当てる。 OAM mode radio waves also have the property of attenuating as the distance from the transmitting station 100 increases, so the processing unit 130 can consider that, of two terminals 300 that exist in the same angular direction as seen from the transmitting station 100, the terminal 300 closer to the transmitting station 100 (nearby terminal) has a higher received power than the terminal 300 farther from the transmitting station 100 (far terminal). Therefore, the processing unit 130 assigns low transmission power to the near terminal and high transmission power to the far terminal.
 どのOAMモードをどの端末ペアに割り当てるかに関して、図2において説明したとおり、OAM波はモード次数が高くなるほど、角度方向にエネルギーが広がるので、上記の角度θが小さい2つの端末300には小さい次数のOAMモードを割り当て、上記の角度θが大きい2つの端末300には大きい次数のOAMモードを割り当てる。 Regarding which OAM mode is assigned to which terminal pair, as explained in FIG. 2, the higher the mode order of the OAM wave, the more energy spreads in the angular direction, so a lower order OAM mode is assigned to the two terminals 300 with a small angle θ, and a higher order OAM mode is assigned to the two terminals 300 with a large angle θ.
 例えば、図15の例において、角度θ1の方向に存在する2つの端末300に対してOAMモード1を割り当て、度θ2の方向に存在する2つの端末300に対してOAMモード2を割り当てる。 For example, in the example of FIG. 15, OAM mode 1 is assigned to two terminals 300 located in a direction of angle θ1, and OAM mode 2 is assigned to two terminals 300 located in a direction of angle θ2.
 (具体例)
 図16は、送信局100、受信局200、端末1~3を上から見た図である。上述した動作例1又は動作例2により、各端末の各OAMモードの受信電力が図17に示すとおりに得られたものとする。また、図17には、図16の状況における各端末の角度(図15で説明した角度、ただし、時計回りを正としている)が示されている。
(Concrete example)
Fig. 16 is a diagram showing the transmitting station 100, the receiving station 200, and the terminals 1 to 3 as viewed from above. It is assumed that the received power of each terminal in each OAM mode is obtained by the above-mentioned operation example 1 or operation example 2 as shown in Fig. 17. Fig. 17 also shows the angles of each terminal in the situation of Fig. 16 (the angles explained in Fig. 15, where the clockwise direction is positive).
 図16における網掛/斜線で区別している領域は、各OAMモードでの受信電力が強くなる領域(受信電力分布)のイメージを示している。 The shaded/shaded areas in Figure 16 show an image of the areas where the received power is strong in each OAM mode (received power distribution).
 処理部130は、図17に示す各端末の各OAMモードの受信電力に基づいて、端末1と端末2にOAMモード2を割り当て、端末3にOAMモード0を割り当てる。また、受信局200には、OAMモード1、-1、-2を割り当てる。なお、このような割り当て方法は一例である。 The processing unit 130 assigns OAM mode 2 to terminal 1 and terminal 2, and OAM mode 0 to terminal 3, based on the reception power of each OAM mode of each terminal shown in FIG. 17. In addition, the processing unit 130 assigns OAM modes 1, -1, and -2 to the receiving station 200. Note that this assignment method is one example.
 送信部120は、端末1の信号に対して割り当てる送信電力を、端末2の信号に割り当てる送信電力よりも低くし、端末1向けの信号と端末2向けの信号を電力多重して、OAMモード2で送信する。また、送信部120は、端末3向けの信号をOAMモード0で送信し、受信局200向けの信号をOAMモード1、-1、-2を多重して送信する。 The transmitter 120 allocates a lower transmission power to the signal from terminal 1 than to the signal from terminal 2, power-multiplexes the signals for terminal 1 and terminal 2, and transmits them in OAM mode 2. The transmitter 120 also transmits the signal for terminal 3 in OAM mode 0, and multiplexes the signal for the receiving station 200 in OAM modes 1, -1, and -2.
 受信局200は、OAMモード1、-1、-2の信号を復調する。端末1は、受信信号から端末2宛の信号を復調し、当該復調した信号を受信信号より減算し、減算後の受信信号から端末1宛の信号を復調する。端末2、3はそれぞれ、受信信号を自端末宛の信号として復調する。 The receiving station 200 demodulates signals in OAM modes 1, -1, and -2. Terminal 1 demodulates the signal addressed to terminal 2 from the received signal, subtracts the demodulated signal from the received signal, and demodulates the signal addressed to terminal 1 from the received signal after subtraction. Terminals 2 and 3 each demodulate the received signal as a signal addressed to themselves.
 (第2実施形態の効果)
 第2実施形態に係る技術により、第1実施形態の効果に加えて、回線の容量を担保(確保)しつつ、端末回線の多重数を増やすことができるという効果がある。また、従来のNoMAと比較して電力多重を行う端末の組み合わせに関する制約を緩和できる。
(Effects of the Second Embodiment)
In addition to the effects of the first embodiment, the technology according to the second embodiment has the effect of increasing the number of multiplexed terminal lines while ensuring (ensuring) line capacity. Also, compared to conventional NoMA, the constraints on the combination of terminals that perform power multiplexing can be relaxed.
 (付記)
 本明細書には、少なくとも下記の各項に記載した送信装置及び送信方法が記載されている。
(付記項1)
 基幹回線にOAM多重伝送を用い、端末回線に電力多重伝送を用いるPtMP伝送を行うために、電力多重を行う対象となる2以上の端末を選択する処理部と、
 前記基幹回線でOAM多重信号を送信し、前記端末回線で電力多重信号を送信する送信部と、を備える、
 送信装置。
(付記項2)
 前記処理部は、前記送信装置から見て、同一角度方向に存在する近傍端末と遠方端末とを、電力多重を行う対象として選択し、前記近傍端末と前記遠方端末とに同一OAMモードを割り当てる
 付記項1に記載の送信装置。
(付記項3)
 前記処理部は、受信電力差を有する2以上の端末を、電力多重を行う対象として選択し、前記2以上の端末に同一OAMモードを割り当てる
 付記項1又は2に記載の送信装置。
(付記項4)
 前記処理部は、各端末から受信した、受信電力のOAMモード毎の推定値に基づいて、前記2以上の端末を選択する
 付記項3に記載の送信装置。
(付記項5)
 前記処理部は、各端末の位置情報と、OAMモード毎の受信電力分布に基づいて、前記2以上の端末を選択する
 付記項3に記載の送信装置。
(付記項6)
 前記処理部は、各端末に対して最大受信電力となるOAMモードを割り当て、同一OAMモードが割り当てられた2以上の端末を、電力多重を行う対象として選択する
 付記項3に記載の送信装置。
(付記項7)
 基幹回線にOAM多重伝送を用い、端末回線に電力多重伝送を用いるPtMP伝送を行うために、電力多重を行う対象となる2以上の端末を選択するステップと、
 前記基幹回線でOAM多重信号を送信し、前記端末回線で電力多重信号を送信するステップと、を備える、
 送信方法。
(Additional Note)
This specification describes at least the transmission device and transmission method described in the following items.
(Additional Note 1)
A processing unit that selects two or more terminals that are targets for power multiplexing in order to perform PtMP transmission using OAM multiplexing transmission for a trunk line and power multiplexing transmission for a terminal line;
a transmission unit that transmits an OAM multiplexed signal through the trunk line and a power multiplexed signal through the terminal line,
Transmitting device.
(Additional Note 2)
The processing unit selects a nearby terminal and a distant terminal that are in the same angular direction as seen from the transmitting device as targets for power multiplexing, and assigns the same OAM mode to the nearby terminal and the distant terminal.
(Additional Note 3)
3. The transmitting device according to claim 1, wherein the processing unit selects two or more terminals having a difference in reception power as targets for power multiplexing, and assigns the same OAM mode to the two or more terminals.
(Additional Note 4)
The transmitting device according to supplementary claim 3, wherein the processing unit selects the two or more terminals based on an estimated value of received power for each OAM mode received from each terminal.
(Additional Note 5)
The transmitting device according to claim 3, wherein the processing unit selects the two or more terminals based on location information of each terminal and a reception power distribution for each OAM mode.
(Additional Note 6)
The transmission device according to claim 3, wherein the processing unit assigns an OAM mode that provides maximum reception power to each terminal, and selects two or more terminals to which the same OAM mode is assigned as targets for power multiplexing.
(Additional Note 7)
A step of selecting two or more terminals to be subjected to power multiplexing in order to perform PtMP transmission using OAM multiplexing transmission for the trunk line and power multiplexing transmission for the terminal lines;
transmitting an OAM multiplexed signal through the trunk line and a power multiplexed signal through the terminal line;
Transmission method.
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The present embodiment has been described above, but the present invention is not limited to this specific embodiment, and various modifications and variations are possible within the scope of the gist of the present invention as described in the claims.
100 送信局
110 アンテナ
120 送信部
130 処理部
140 位置情報取得部
200 受信局
210 アンテナ
220 受信部
230 処理部
300 端末
310 アンテナ
320 受信部
330 処理部
100 Transmitting station 110 Antenna 120 Transmitting unit 130 Processing unit 140 Location information acquiring unit 200 Receiving station 210 Antenna 220 Receiving unit 230 Processing unit 300 Terminal 310 Antenna 320 Receiving unit 330 Processing unit

Claims (7)

  1.  基幹回線にOAM多重伝送を用い、端末回線に電力多重伝送を用いるPtMP伝送を行うために、電力多重を行う対象となる2以上の端末を選択する処理部と、
     前記基幹回線でOAM多重信号を送信し、前記端末回線で電力多重信号を送信する送信部と、を備える、
     送信装置。
    A processing unit that selects two or more terminals that are targets for power multiplexing in order to perform PtMP transmission using OAM multiplexing transmission for a trunk line and power multiplexing transmission for a terminal line;
    a transmission unit that transmits an OAM multiplexed signal through the trunk line and a power multiplexed signal through the terminal line,
    Transmitting device.
  2.  前記処理部は、前記送信装置から見て、同一角度方向に存在する近傍端末と遠方端末とを、電力多重を行う対象として選択し、前記近傍端末と前記遠方端末とに同一OAMモードを割り当てる
     請求項1に記載の送信装置。
    The transmitting device according to claim 1 , wherein the processing unit selects a nearby terminal and a distant terminal that are present in the same angular direction as seen from the transmitting device as targets for power multiplexing, and assigns the same OAM mode to the nearby terminal and the distant terminal.
  3.  前記処理部は、受信電力差を有する2以上の端末を、電力多重を行う対象として選択し、前記2以上の端末に同一OAMモードを割り当てる
     請求項1又は2に記載の送信装置。
    The transmitting device according to claim 1 , wherein the processing unit selects two or more terminals having a difference in reception power as targets for power multiplexing, and assigns the same OAM mode to the two or more terminals.
  4.  前記処理部は、各端末から受信した、受信電力のOAMモード毎の推定値に基づいて、前記2以上の端末を選択する
     請求項3に記載の送信装置。
    The transmitting device according to claim 3 , wherein the processing unit selects the two or more terminals based on an estimated value of received power for each OAM mode received from each terminal.
  5.  前記処理部は、各端末の位置情報と、OAMモード毎の受信電力分布に基づいて、前記2以上の端末を選択する
     請求項3に記載の送信装置。
    The transmitting device according to claim 3 , wherein the processing unit selects the two or more terminals based on location information of each terminal and a reception power distribution for each OAM mode.
  6.  前記処理部は、各端末に対して最大受信電力となるOAMモードを割り当て、同一OAMモードが割り当てられた2以上の端末を、電力多重を行う対象として選択する
     請求項3に記載の送信装置。
    The transmitting device according to claim 3 , wherein the processing unit assigns an OAM mode that provides a maximum reception power to each terminal, and selects two or more terminals to which the same OAM mode is assigned as targets for power multiplexing.
  7.  基幹回線にOAM多重伝送を用い、端末回線に電力多重伝送を用いるPtMP伝送を行うために、電力多重を行う対象となる2以上の端末を選択するステップと、
     前記基幹回線でOAM多重信号を送信し、前記端末回線で電力多重信号を送信するステップと、を備える、
     送信方法。
    A step of selecting two or more terminals to be subjected to power multiplexing in order to perform PtMP transmission using OAM multiplexing transmission for the trunk line and power multiplexing transmission for the terminal lines;
    transmitting an OAM multiplexed signal through the trunk line and a power multiplexed signal through the terminal line;
    Transmission method.
PCT/JP2022/038444 2022-10-14 2022-10-14 Transmission device and transmission method WO2024079898A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038444 WO2024079898A1 (en) 2022-10-14 2022-10-14 Transmission device and transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038444 WO2024079898A1 (en) 2022-10-14 2022-10-14 Transmission device and transmission method

Publications (1)

Publication Number Publication Date
WO2024079898A1 true WO2024079898A1 (en) 2024-04-18

Family

ID=90669320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038444 WO2024079898A1 (en) 2022-10-14 2022-10-14 Transmission device and transmission method

Country Status (1)

Country Link
WO (1) WO2024079898A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216700A (en) * 2017-07-06 2017-12-07 株式会社Nttドコモ User terminal, radio base station, and radio communication method
WO2022145008A1 (en) * 2020-12-28 2022-07-07 日本電信電話株式会社 Transmission device, wireless communication system, and communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216700A (en) * 2017-07-06 2017-12-07 株式会社Nttドコモ User terminal, radio base station, and radio communication method
WO2022145008A1 (en) * 2020-12-28 2022-07-07 日本電信電話株式会社 Transmission device, wireless communication system, and communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMIN AHMED AL; SHIN SOO YOUNG: "Channel Capacity Analysis of Non-Orthogonal Multiple Access With OAM-MIMO System", IEEE WIRELESS COMMUNICATIONS LETTERS, IEEE, PISCATAWAY, NJ, USA, vol. 9, no. 9, 12 May 2020 (2020-05-12), Piscataway, NJ, USA , pages 1481 - 1485, XP011807811, ISSN: 2162-2337, DOI: 10.1109/LWC.2020.2994355 *

Similar Documents

Publication Publication Date Title
EP2745426B1 (en) Apparatus and method for supporting multi-antenna transmission in beamformed wireless communication system
US7949360B2 (en) Method and apparatus for adaptively allocating transmission power for beam-forming combined with OSTBCs in a distributed wireless communication system
JP4077084B2 (en) Transmitting apparatus and transmitting method
EP1386421B1 (en) Radio communication system
US20130308717A1 (en) Millimeter-wave transceiver with coarse and fine beamforming with interference suppression and method
CN108781102B (en) Method for operating wireless communication system, communication device and wireless communication system
AU4595296A (en) Spectrally efficient high capacity wireless communication systems
KR20090035799A (en) Relay communication method of next generation cellular communication system
JP2011526106A (en) System and method for supporting multi-user antenna beamforming in a cellular network
WO2024079898A1 (en) Transmission device and transmission method
Najmeddin et al. Energy-efficient resource allocation in multi-UAV networks with NOMA
Jian et al. Improving multiple-user capacity through downlink noma in oam systems
WO2023162008A1 (en) Transmission device and transmission method
Cho et al. Smart antenna systems actualizing SDMA for future wireless communications
CN114759955A (en) Millimeter wave communication-oriented resource optimal allocation method based on adjustable beams
WO2023286163A1 (en) Radio communication system, transmission device, and reception device
Ghaedi et al. Side Lobe Canceller Structure-Based Spatial Interference Cancellation and performance enhancement of the MIMO wireless systems
JP7518215B2 (en) Base station and antenna control method
KR20190080092A (en) Method for signal transmission with massive antennas in distributed antenna-structured wireless communication system
KR102379367B1 (en) Non-orthogonal Multiple Access with OAM-MIMO System And Non-orthogonal Multiple Access system using the same
WO2023011182A1 (en) Communication apparatus
JP4584346B2 (en) Transmitting apparatus and receiving apparatus
Kageyama et al. Backhaul prioritized point-to-multi-point wireless transmission using orbital angular momentum multiplexing
JP5340428B2 (en) Transmitting apparatus and transmitting method
JP4810625B2 (en) Receiving apparatus and receiving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962115

Country of ref document: EP

Kind code of ref document: A1