WO2024079837A1 - Treatment device - Google Patents

Treatment device Download PDF

Info

Publication number
WO2024079837A1
WO2024079837A1 PCT/JP2022/038157 JP2022038157W WO2024079837A1 WO 2024079837 A1 WO2024079837 A1 WO 2024079837A1 JP 2022038157 W JP2022038157 W JP 2022038157W WO 2024079837 A1 WO2024079837 A1 WO 2024079837A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
liquid
sample
pump
processing
Prior art date
Application number
PCT/JP2022/038157
Other languages
French (fr)
Japanese (ja)
Inventor
由雄 池澤
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2022/038157 priority Critical patent/WO2024079837A1/en
Publication of WO2024079837A1 publication Critical patent/WO2024079837A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting

Definitions

  • the present disclosure relates to a processing device for processing a sample to recover a target substance.
  • Patent Document 1 discloses a purification device that introduces a decomposition liquid into a container that holds the sample to decompose impurities contained in the sample, and then introduces a heavy liquid into the container after the impurities have been decomposed to recover a target substance that has a lighter specific gravity than the heavy liquid.
  • the purification device disclosed in Patent Document 1 is configured to discharge the liquid contained in the sample from the container as waste liquid before introducing the decomposition liquid into the container containing the sample, but the amount of discharged liquid has not been fully considered. If the amount of liquid contained in the sample is unexpectedly large, the waste liquid cannot be completely discharged from the container, and there is a risk that unnecessary liquid will remain in the container. If the decomposition liquid is introduced in such a state where unnecessary liquid remains, the decomposition liquid will be diluted and its concentration will be lower than expected, making it difficult to sufficiently decompose the impurities. As a result, the target substance obtained by the decomposition process cannot be properly recovered, which may have an unintended effect on the analysis results of the target substance.
  • the liquid level in the container may exceed a specified height, causing the decomposition process of the impurities to occur at a higher position than it should, and there is a risk that the impurities that remain undecomposed may adhere to the walls of the container.
  • the target substance is collected in this manner with the impurities remaining, the user will not be able to analyze the target substance accurately, and therefore will not be able to obtain accurate analysis results. For this reason, there is a demand for technology in sample processing devices that can appropriately perform processes such as decomposition on impurities.
  • the present disclosure has been made to solve the problems described above, and its purpose is to provide a technique for appropriately processing impurities contained in a sample.
  • a processing device includes a container for holding a sample, piping for introducing a processing liquid for decomposing impurities contained in the sample into the container, a port for discharging the liquid contained in the sample from the container holding the sample as waste liquid, a pump connected to the port, and a control device for controlling the pump.
  • the control device controls the pump so that a predetermined amount or more of waste liquid can be discharged from the port.
  • a pump when liquid contained in a sample is discharged from a container as waste liquid, a pump is controlled so that at least a predetermined amount of waste liquid is discharged from a port, so that unnecessary liquid is prevented from remaining in the container containing the sample as much as possible, and impurities contained in the sample can be appropriately treated by a subsequent decomposition process.
  • FIG. 1 is a diagram illustrating a processing apparatus according to an embodiment.
  • FIG. 2 is a diagram for explaining a configuration of a refiner according to an embodiment.
  • FIG. 2 is a diagram for explaining a hardware configuration of a processing device according to an embodiment.
  • 4 is a flowchart of a refining process executed by a control device of the processing apparatus according to the embodiment.
  • 1 is a diagram for explaining the discharge of waste liquid performed by a processing apparatus according to an embodiment.
  • FIG. 1 is a schematic diagram of the processing device 1 according to an embodiment.
  • Fig. 2 is a diagram for explaining the configuration of a purifier 10 according to an embodiment.
  • the processing device 1 includes a purifier 10 for purifying a mixed sample, and a control device 500 for controlling the purifier 10.
  • the processing device 1 processes the mixed sample by controlling the purifier 10 by the control device 500.
  • the processing device 1 purifies the mixed sample by controlling the purifier 10 by the control device 500, and recovers a target substance contained in the mixed sample that is a recovery target.
  • “Purification” includes extracting a target substance from a mixture using a decomposition liquid, a heavy liquid, or the like.
  • the “mixed sample” refined by the processing device 1 may be in any form as long as it contains the target substance.
  • examples of the “mixed sample” include seawater and sand collected from the ocean or the coast, and processed products such as food or cosmetics.
  • an example of the “mixed sample” is seawater and sand collected from the ocean or the coast.
  • the “mixed sample” will also be referred to simply as the “sample”.
  • the "target substance" to be collected by the processing device 1 may be in any form as long as it is a component that can be collected by the processing device 1.
  • the "target substance” may be microplastics, which are minute plastic particles with a size of 5 mm or less.
  • the "target substance” may be, for example, microplastics contained in seawater and sand collected from the ocean or coast.
  • the purifier 10 includes a container 50 for holding the sample, pipes 11-22, pumps 31-33, solenoid valves 41-43, ports 61-64, a stirrer 71, a stirring bar 72, and an exhaust pipe 80.
  • the container 50 includes a processing section 51 for processing a sample and an overflow section 52 located above the processing section 51, and can be separated into the processing section 51 and the overflow section 52. Ports 61 to 64 are connected to the lower section of the processing section 51.
  • a flange section 53 is provided at the upper end of the processing section 51.
  • a flange section 54 is provided at the lower end of the overflow section 52.
  • the processing section 51 is configured as a cylinder with a circular bottom surface, but the bottom surface of the processing section 51 is not limited to a circle and may have other shapes, such as a polygon or an ellipse.
  • the purifier 10 further includes a strainer 300 that captures the target substance contained in the sample and holds it in the container 50.
  • the strainer 300 is roughly basket-shaped and has meshes large enough to capture the target substance, microplastics.
  • the strainer 300 is made of SUS (Steel Use Stainless) and has multiple openings formed therein that are large enough to capture the target substance, microplastics.
  • the mesh size of the strainer 300 needs to be large enough to block particles of 0.1 mm to 5.0 mm, with approximately 0.1 mm being preferable.
  • the strainer 300 is provided inside the processing section 51 located below the container 50, which can be separated into two. Specifically, the flange section 310 of the strainer 300 is supported by being sandwiched between a flange section 53 provided at the upper end of the processing section 51 and a flange section 54 provided at the lower end of the overflow section 52. The container 50 and the strainer 300 are then fixed together by clamping the flange sections of the container 50 and the strainer 300 with a fixing device 90 shown by the dashed lines in FIG. 2. When the strainer 300 is attached to the container 50 in this manner, the mesh portion of the strainer 300 provided below the flange section 310 is positioned inside the processing section 51.
  • the user opens the container 50 by removing the overflow section 52 from the processing section 51, and introduces a sample into the processing section 51 of the container 50.
  • the sample contained in the container 50 contains impurities, which are processed in the container 50 using a processing liquid such as a decomposition liquid.
  • impurities are foreign matter in the sample other than the target substance.
  • an example of “impurities” is organic impurities that have the properties of organic matter.
  • the container 50 has a transmittance that allows the status of the decomposition process of impurities contained in the sample stored in the container 50 to be visible from the outside.
  • the processing section 51 and overflow section 52 of the container 50 are formed of a transparent material (e.g., glass) so that the user can view the inside of the container 50 from the outside. Therefore, the user can check from the outside the status of the decomposition process of impurities using the decomposition liquid that is being performed inside the container 50.
  • pipe 11 connects the decomposition liquid reservoir 210 to the solenoid valve 41.
  • Pipe 12 connects the solenoid valve 41 to the pump 31.
  • Pipe 13 connects the pump 31 to a port 61 provided on the outer periphery of the container 50. In this way, the decomposition liquid reservoir 210 and the port 61 of the container 50 are connected by pipes 11, 12, and 13 via the solenoid valve 41 and the pump 31.
  • Pipe 14 connects the heavy liquid reservoir 220 to the solenoid valve 42.
  • Pipe 15 connects the solenoid valve 42 to the pump 32.
  • Pipe 16 connects the pump 32 to a port 62 provided on the outer periphery of the container 50. In this way, the heavy liquid reservoir 220 and the port 62 of the container 50 are connected by pipes 14, 15, and 16 via the solenoid valve 42 and the pump 32.
  • Pipe 17 connects the rinse liquid reservoir 230 and the solenoid valve 41. That is, the solenoid valve 41 is connected to the decomposition liquid reservoir 210 by pipe 11, and is also connected to the rinse liquid reservoir 230 by pipe 14. In this way, the rinse liquid reservoir 230 and the port 61 of the container 50 are connected by pipes 17, 12, and 13 via the solenoid valve 41 and the pump 31.
  • the pipe 18 connects the rinse liquid reservoir 230 and the solenoid valve 42. That is, the solenoid valve 42 is connected to the heavy liquid reservoir 220 by the pipe 14, and is also connected to the rinse liquid reservoir 230 by the pipe 18. In this way, the rinse liquid reservoir 230 and the port 62 of the container 50 are connected by the pipes 18, 15, and 16 via the solenoid valve 42 and the pump 32.
  • Pipe 19 connects the waste liquid reservoir 240 and the solenoid valve 43.
  • Pipe 20 connects the solenoid valve 43 and the pump 33.
  • Pipe 21 connects the pump 33 and a port 63 provided on the outer periphery of the container 50. In this way, the waste liquid reservoir 240 and the port 63 of the container 50 are connected by pipes 19, 20, and 21 via the solenoid valve 43 and the pump 33.
  • Pipe 22 connects pump 33 to port 64 provided on the outer periphery of container 50. That is, pump 33 is connected to port 63 of container 50 by pipe 21, and is also connected to port 64 of container 50 by pipe 22. In this way, waste liquid reservoir 240 and port 64 of container 50 are connected by pipes 19, 20, and 22 via solenoid valve 43 and pump 33.
  • Pipe 23 connects the waste liquid reservoir 250 and the solenoid valve 43. That is, the solenoid valve 43 is connected to the waste liquid reservoir 240 by pipe 19, and is also connected to the waste liquid reservoir 250 by pipe 23. In this way, the waste liquid reservoir 250 and the port 63 of the container 50 are connected by pipes 23, 20, and 21 via the solenoid valve 43 and the pump 33. In addition, the waste liquid reservoir 250 and the port 64 of the container 50 are connected by pipes 23, 20, and 22 via the solenoid valve 43 and the pump 33.
  • the decomposition liquid reservoir 210 stores a processing liquid for treating impurities.
  • the "processing liquid” may be in any form as long as it treats organic impurities.
  • the "processing liquid” is exemplified by a decomposition liquid for decomposing organic impurities.
  • the “decomposition liquid” is, for example, an oxidizing agent such as hydrogen peroxide (H2O2) or a mixture of hydrogen peroxide (H2O2) and iron (II) oxide (FeO).
  • the heavy liquid reservoir 220 stores a heavy liquid for separating samples by difference in specific gravity.
  • the “heavy liquid” may be in any form as long as it separates samples by difference in specific gravity.
  • the “heavy liquid” causes inorganic impurities having inorganic properties to settle by difference in specific gravity.
  • the “heavy liquid” is, for example, sodium chloride (NaCl), sodium iodide (NaI), zinc chloride (ZnCl2), etc.
  • the “inorganic impurities” are sand, glass, stones, etc.
  • the specific gravity of the "heavy liquid” is set to be greater than the specific gravity of the "target substance” to be recovered by the processing device 1 and less than the specific gravity of the "inorganic impurities".
  • the specific gravity of the "heavy liquid” is set to be greater than the specific gravity of microplastics and less than the specific gravity of sand, glass, stones, etc.
  • the specific gravity of the "heavy liquid” is set to approximately 1.5 to approximately 1.7.
  • the rinse liquid reservoir 230 stores rinse liquid, which is a cleaning liquid for cleaning the inside of the container 50.
  • the “rinse liquid” may be in any form as long as it is used to clean the inside of the container 50.
  • the “rinse liquid” is, for example, water.
  • the “rinse liquid” also has the role of diluting the decomposition liquid introduced into the container 50.
  • the waste liquid reservoirs 240, 250 store waste liquids such as heavy liquid, decomposition liquid, rinse liquid, and seawater contained in the sample discharged from the container 50.
  • the pump 31 introduces the decomposition liquid from the decomposition liquid reservoir 210 or the rinsing liquid from the rinsing liquid reservoir 230 into the container 50 via the port 61 under the control of the control device 500.
  • the pump 31 lowers the pressure on the suction side and raises the pressure on the discharge side to suck in the decomposition liquid or rinsing liquid via the pipe 12 and discharge the decomposition liquid or rinsing liquid to the port 61 via the pipe 13.
  • the control device 500 can adjust the output amount (suction amount, discharge amount) of the pump 31 by controlling the pump 31.
  • the pump 32 introduces the heavy liquid from the heavy liquid reservoir 220 or the rinsing liquid from the rinsing liquid reservoir 230 into the container 50 via the port 62 under the control of the control device 500.
  • the pump 32 lowers the pressure on the suction side and raises the pressure on the discharge side to suck in the heavy liquid or rinsing liquid via the pipe 15 and discharge the heavy liquid or rinsing liquid to the port 62 via the pipe 16.
  • the control device 500 can adjust the amount of the pump 32 delivered (the amount of suction, the amount of discharge).
  • Pump 33 under the control of control device 500, discharges unnecessary liquid in container 50 as waste liquid to waste liquid reservoir 240 or waste liquid reservoir 250 via port 63 or port 64.
  • pump 33 lowers the pressure on the suction side and raises the pressure on the discharge side to suck in waste liquid from container 50 via pipes 21 and 22 and discharge the waste liquid to waste liquid reservoirs 240 and 250 via pipe 20.
  • Control device 500 can adjust the amount of pump 33 delivered (suction amount, discharge amount) by controlling pump 33.
  • the solenoid valve 41 switches the path connected to the port 61 of the container 50 between the decomposition liquid reservoir 210 and the rinsing liquid reservoir 230 under the control of the control device 500.
  • the solenoid valve 42 switches the path connected to the port 62 of the container 50 between the heavy liquid reservoir 220 and the rinse liquid reservoir 230 under the control of the control device 500.
  • the solenoid valve 43 switches the paths connected to the ports 63, 64 of the container 50 between the waste liquid reservoir 240 and the waste liquid reservoir 250 under the control of the control device 500. For example, the waste liquid containing the heavy liquid is discharged to the waste liquid reservoir 240, and the waste liquid containing the decomposition liquid is discharged to the waste liquid reservoir 250.
  • Port 61 introduces into container 50 the decomposition liquid from decomposition liquid reservoir 210 or the rinse liquid from rinse liquid reservoir 230, which is delivered by pump 31.
  • Port 62 introduces into container 50 the heavy liquid from heavy liquid reservoir 220 or the rinse liquid from rinse liquid reservoir 230, which is delivered by pump 32.
  • Ports 63 and 64 discharge the waste liquid in container 50 to pump 33 when pump 33 is driven. The waste liquid delivered by pump 33 is discharged into waste liquid reservoir 240 or waste liquid reservoir 250.
  • the stirrer 71 is, for example, a thermostatic stirrer, and is disposed below the processing section 51 in the container 50.
  • the stirrer 71 stirs the sample in the container 50 by rotating an agitator 72 provided in the container 50 under the control of the control device 500. Furthermore, the stirrer 71 applies heat to the container 50 from below, thereby keeping the temperature of the sample in the container 50 constant.
  • the discharge pipe 80 is connected to a discharge port 55 provided at the top of the overflow section 52 of the container 50, and the supernatant liquid of the sample containing the target substance overflows from the container 50 to the outside and is discharged.
  • the filtration unit 110 recovers the target substance contained in the supernatant by filtering the supernatant of the sample discharged from the discharge pipe 80.
  • the supernatant that passes through the filtration unit 110 is recovered by the waste liquid reservoir 260.
  • the filtration unit 110 has meshes large enough to capture the target substance, microplastics.
  • the filtration unit 110 is a wire mesh made of SUS or a membrane filter made of PTFE (polytetrafluoroethylene) (Teflon (registered trademark)).
  • the mesh size of the filtration unit 110 needs to be large enough to block particles of 0.1 mm to 5.0 mm, and is preferably about 0.1 mm.
  • the control device 500 may be realized by a general-purpose computer, or may be realized by a dedicated computer for controlling the refiner 10.
  • the control device 500 may be an information terminal that executes predetermined information processing, such as a desktop personal computer (PC), a laptop PC, a smartphone, a smart watch, a wearable device, or a tablet PC.
  • the control device 500 controls the pumps 31-33, the solenoid valves 41-43, and the stirrer 71 in the refiner 10.
  • the control device 500 corresponds to one embodiment of the "computer" in this disclosure.
  • Fig. 3 is a diagram for explaining the hardware configuration of the processing device 1 according to the embodiment.
  • the control device 500 includes, as main hardware elements, a calculation device 501, a memory 502, a communication device 503, a display device 504, an input device 505, a data reading device 506, and a storage 510.
  • the arithmetic device 501 is a processor that reads out programs (e.g., a control program 511 and an OS (Operating System) 513) stored in the storage 510, and deploys the read out programs in the memory 502 for execution.
  • the arithmetic device 501 executes a process for controlling the refiner 10 (e.g., the process in FIG. 3 and FIG. 4 described below) by executing the control program 511.
  • a processor which is an example of the arithmetic device 501, is composed of, for example, a microcontroller, a CPU (central processing unit), or an MPU (micro-processing unit).
  • processor has the function of executing various processes by executing a program, but some or all of these functions may be implemented using dedicated hardware circuits such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the term "processor” is not limited to a processor in the narrow sense that executes processes using a stored program method, such as a CPU or an MPU, but may also include hardwired circuits such as an ASIC or an FPGA. For this reason, the processor may be interpreted as a processing circuit, the processing of which is defined in advance by computer-readable code and/or hardwired circuitry.
  • the computing device 501 may be composed of one chip or multiple chips.
  • the processor and associated processing circuitry may be composed of multiple computers interconnected in a wired or wireless manner, such as via a local area network or a wireless network.
  • the processor and associated processing circuitry may be composed of a cloud computer that performs calculations remotely based on input data and outputs the results of the calculations to another device in a remote location.
  • Memory 502 provides a storage area for temporarily storing program code or work memory, etc., when the computing device 501 executes any program.
  • Memory 502 may be one or more non-transitory computer readable mediums.
  • Memory 502 is composed of volatile memory such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory), or non-volatile memory such as ROM (Read Only Memory) or flash memory.
  • the communication device 503 includes an interface for outputting control signals for controlling the pumps 31-33, solenoid valves 41-43, or stirrer 71 of the purifier 10.
  • the communication device 503 may also include an interface for transmitting and receiving data to and from other devices via a network (not shown).
  • the communication device 503 is compatible with any communication method, such as Ethernet (registered trademark), wireless LAN (Local Area Network), or Bluetooth (registered trademark).
  • the display device 504 is composed of, for example, an LCD (Liquid Crystal Display) and displays a design screen for a program related to the control of the refiner 10, a setting screen related to the control of the refiner 10, or an alert screen in the event of an abnormality, etc.
  • LCD Liquid Crystal Display
  • the input device 505 is composed of, for example, a keyboard or a mouse, and is operated by the user.
  • the input device 505 may be a touch panel provided on the screen of the display device 504.
  • an input signal corresponding to the operation is input to the arithmetic device 501.
  • the arithmetic device 501 receives an input signal from the input device 505, it outputs a control signal based on the user's input to the pumps 31-33, solenoid valves 41-43, stirrer 71, or the like of the purifier 10.
  • the pumps 31-33, solenoid valves 41-43, or stirrer 71 operate in accordance with the control signal from the arithmetic device 501.
  • the data reading device 506 reads data stored in the recording medium 507.
  • the recording medium 507 may be a non-transitory and tangible computer readable storage medium.
  • the recording medium 507 may be in any form capable of recording various types of data, such as a CD (Compact Disc), a DVD (Digital Versatile Disc), or a USB (Universal Serial Bus) memory.
  • Storage 510 provides a memory area for storing various data required for refining processes, etc.
  • Storage 510 may be one or more computer readable storage media.
  • Storage 510 is configured, for example, by a non-volatile memory device such as a hard disk drive (HDD) or a solid state drive (SSD).
  • Storage 510 stores a control program 511, control data 512, and an OS 513.
  • the control program 511 is a program that describes the contents of the purification process for purifying a sample, and is executed by the computing device 501.
  • the control program 511 may be designed by a user using the input device 505, may be read from the recording medium 507 by the data reading device 506, or may be obtained via a network from another device such as a server by the communication device 503.
  • the control data 512 is data used by the computing device 501 when executing the control program 511.
  • the control data 512 includes data such as settings for controlling the pumps 31-33, the solenoid valves 41-43, and the stirrer 71.
  • the control data 512 may be input by a user using the input device 505, may be read from the recording medium 507 by the data reading device 506, or may be obtained by the communication device 503 from another device such as a server via a network.
  • the OS 513 provides basic functions for the arithmetic unit 501 to execute various processes.
  • Fig. 4 is a flow chart of the purification process executed by the control device 500 of the processing device 1 according to the embodiment. Each step shown in Fig. 4 is realized by the arithmetic device 501 of the control device 500 executing the OS 513 and the control program 511.
  • the user opens the container 50 by removing the processing section 51 from the overflow section 52, and introduces the sample into the processing section 51 in the container 50. After that, the user performs a start operation using the input device 505 of the control device 500, thereby starting control of the purifier 10 by the control device 500.
  • control device 500 When the control device 500 starts to control the purifier 10, the control device 500 controls the discharge pump 33 and solenoid valve 43 to discharge the liquid contained in the sample stored in the container 50 as waste liquid through the pipes 20-23 and ports 63, 64 to the waste liquid reservoir 250 (S1). Note that substances other than the liquid, such as microplastics, are captured by the strainer 300 provided inside the container 50 and are retained within the container 50.
  • the control device 500 executes a decomposition process using the decomposition liquid to decompose organic impurities contained in the sample stored in the container 50 (S2). Specifically, the control device 500 stops the discharge pump 33 while controlling the inlet pump 31 and solenoid valve 41 to introduce the decomposition liquid in the decomposition liquid reservoir 210 into the container 50 via the pipes 11-13 and port 61.
  • the control device 500 introduces the amount of decomposition liquid preset by the user into the container 50 by controlling the output amount of the pump 31.
  • the decomposition of impurities using the decomposition liquid needs to be carried out inside the processing section 51 in which the strainer 300 is provided so that the strainer 300 can capture microplastics.
  • the amount of decomposition liquid introduced in S1 is set to be equal to or less than the capacity of the processing section 51, for example, 150 ml or less.
  • the control device 500 controls the stirrer 71 to rotate the stirrer 72 provided in the container 50 while applying a constant heat to the container 50, thereby stirring the sample (S3).
  • the temperature inside the container 50, the rotation speed of the stirrer 72, and the rotation time are preset by the user. In this way, the control device 500 can promote the decomposition of organic impurities using the decomposition liquid by stirring the sample while applying heat. Note that while heating is not necessarily required when stirring the sample, the decomposition of organic impurities is promoted by maintaining a constant sample temperature through heating.
  • control device 500 controls the discharge pump 33 and solenoid valve 43 to discharge the waste liquid in the container 50, which is contained in the sample after the decomposition process of the organic impurities, into the waste liquid reservoir 250 via the pipes 20-23 and ports 63, 64 (S4).
  • the target substance, microplastics, is captured by the strainer 300 installed inside the container 50 and is retained in the container 50.
  • the control device 500 stops the discharge pump 33, while controlling the introduction pump 31 and solenoid valve 41 to introduce the rinse liquid in the rinse liquid reservoir 230 into the container 50 via the pipes 17, 12, 13 and port 61, thereby cleaning the inside of the container 50 (S5). At this time, the control device 500 controls the discharge rate of the pump 31 to introduce an amount of rinse liquid preset by the user into the container 50.
  • the amount of rinse liquid introduced in S5 is set to be equal to or less than the capacity of the processing unit 51, for example, 150 ml or less.
  • the control device 500 stops the inlet pump 31 while controlling the outlet pump 33 and solenoid valve 43 to discharge the waste liquid after cleaning with the rinse liquid through the pipes 20-23 and ports 63, 64 to the waste liquid reservoir 250 (S6). This cleans the inside of the container 50 with the rinse liquid.
  • the target substance, microplastics is captured by the strainer 300 provided inside the container 50 and is retained within the container 50.
  • the control device 500 may then dry the sample by leaving it as it is for a predetermined period of time (for example, one day).
  • the control device 500 stops the discharge pump 33 while controlling the inlet pump 32 and solenoid valve 42 to introduce the heavy liquid from the heavy liquid reservoir 220 into the container 50 via the pipes 14-16 and port 62 (S7). At this time, the control device 500 controls the output rate of the pump 32 to introduce the amount of heavy liquid preset by the user into the container 50.
  • the control device 500 stops the inlet pump 32 and leaves the sample as it is for a predetermined period of time (for example, one day) (S8).
  • a predetermined period of time for example, one day
  • the control device 500 again controls the pump 32 and the solenoid valve 42 to introduce the heavy liquid from the heavy liquid reservoir 220 back into the container 50 via the pipes 14-16 and the port 62 (S9). At this time, the control device 500 controls the output rate of the pump 32 to introduce an amount of heavy liquid preset by the user into the container 50.
  • the control device 500 controls the output rate of the pump 32 to introduce an amount of heavy liquid preset by the user into the container 50.
  • the discharged liquid discharged through the discharge pipe 80 is filtered by the filtration section 110, and only the waste liquid that passes through the filtration section 110 is collected by the waste liquid reservoir 260.
  • Microplastics which are components with a lower specific gravity than the heavy liquid, remain in the filtration section 110.
  • the control device 500 cleans the inside of the container 50 as a post-processing step. Specifically, the control device 500 controls the pump 33 and solenoid valve 43 on the discharge side to discharge the waste liquid from the container 50 after the microplastics have been recovered into the waste liquid reservoir 240 via the pipes 19-22 and ports 63, 64 (S10).
  • the control device 500 stops the discharge pump 33, while controlling the inlet pump 32 and solenoid valve 42 to introduce the rinse liquid in the rinse liquid reservoir 230 into the container 50 via the pipes 18, 15, 16 and port 62, thereby cleaning the inside of the container 50 (S11). At this time, the control device 500 controls the amount of rinse liquid discharged by the pump 32 to introduce the amount of rinse liquid preset by the user into the container 50.
  • the control device 500 stops the pump 32 on the introduction side, while controlling the pump 33 and solenoid valve 43 on the discharge side to discharge the waste liquid in the container 50 after the rinsing liquid has been introduced into the waste liquid reservoir 240 via the pipes 19-22 and ports 63, 64 (S12). This allows the inside of the container 50 to be cleaned with the rinsing liquid. The control device 500 then ends the processing related to this flow.
  • the control device 500 automatically introduces the decomposition liquid and heavy liquid to the sample contained in the container 50 at an appropriate timing and for an appropriate period of time, and also discharges the waste liquid from the container 50. Therefore, the user does not need to introduce the decomposition liquid and heavy liquid into the container 50 or discharge the waste liquid from the container 50 by himself. Furthermore, according to the processing device 1 of the embodiment, the control device 500 automatically cleans the used container 50 after collecting the microplastics. This allows the user to stably collect microplastics without relying on his or her own skill, and allows the sample to be purified with high accuracy.
  • the processing device 1 is configured to remove unnecessary liquids such as seawater from the container 50 by discharging waste liquid contained in the sample in S1 in the purification process, and then decompose impurities contained in the sample using a decomposition liquid in the decomposition process in S2.
  • the amount of liquid contained in the sample is unexpectedly large, the waste liquid cannot be completely discharged from the container 50 in S1, and unnecessary liquid may remain in the container 50.
  • the decomposition liquid is introduced in such a state where unnecessary liquid remains, the decomposition liquid is diluted and the concentration of the decomposition liquid becomes lower than expected, making it difficult to sufficiently decompose the impurities.
  • the target substance obtained by the decomposition process cannot be properly recovered, which may have an unintended effect on the analysis results of the target substance.
  • the liquid level in the container 50 may exceed a specified height, and the decomposition process of the impurities may be performed at a higher position than the place where it should be performed.
  • the decomposition process needs to be performed inside the processing section 51 where the strainer 300 is provided. More specifically, the decomposition process should be performed in the processing section 51 without exceeding the height of the flange section 53 provided at the upper end of the processing section 51 shown in FIG. 2. If the decomposition process is performed in the overflow section 52 located above the flange section 53, there is a risk that the impurities that remain undecomposed will adhere to the wall surface of the overflow section 52.
  • the inside of the container 50 is washed with the rinse liquid, but if the amount of the rinse liquid introduced is less than the capacity of the processing section 51, the impurities that adhere to the wall surface of the overflow section 52 will not be washed away. Then, when the liquid level of the gravity-separated sample gradually rises inside the container 50 due to the introduction of heavy liquid in S7 and S9, the impurities adhering to the wall surface inside the overflow section 52 are also discharged to the outside as a discharge liquid through the discharge port 55 and the discharge pipe 80. Even if microplastics are collected in this manner with the impurities remaining, the user cannot perform accurate component analysis of the microplastics, and therefore cannot obtain accurate analysis results. Furthermore, the presence of impurities in the collected material may affect weight or size measurements.
  • the processing device 1 is configured to control the pump 33 so that at least a predetermined amount of waste liquid can be discharged from the ports 63, 64 when discharging the waste liquid contained in the sample in S1.
  • the control device 500 can adjust the amount of waste liquid that can be discharged from the ports 63, 64 by controlling the pump 33 to adjust the pressure on the suction side and the pressure on the discharge side of the pump 33.
  • FIG. 5 is a diagram for explaining the discharge of waste liquid performed by the processing device 1 according to the embodiment.
  • FIG. 5(A) shows the state in which waste liquid is discharged from inside the container 50 by dehydration using the pump 33
  • FIG. 5(B) shows the state after the waste liquid has been discharged from inside the container 50.
  • the control device 500 controls the pump 33 to adjust the pressure on the suction side and the pressure on the discharge side of the pump 33, thereby dehydrating the inside of the container 50.
  • the control device 500 controls the pump 33 so as to discharge at least a predetermined amount of waste liquid from the container 50.
  • the control device 500 controls the pump 33 so as to discharge at least 150 ml of waste liquid, which is the capacity of the processing section 51, from the container 50.
  • the control device 500 controls the pump 33 so as to discharge at least an amount of waste liquid, for example 200 ml, from the container 50, which is sufficiently larger than the capacity of the processing section 51, which is 150 ml.
  • the processing device 1 by over-dehydrating so that the pump 33 can discharge waste liquid exceeding the capacity of the processing section 51 under the control of the control device 500, can leave only the non-liquid sample in the processing section 51, while leaving as little unnecessary liquid as possible in the processing section 51 containing the sample.
  • the processing device 1 can appropriately decompose impurities contained in the sample using the decomposition liquid within the scope of the processing section 51.
  • a processing device includes a container for accommodating a sample, a port for discharging a liquid contained in the sample from the container as waste liquid, a pump connected to the port, and a control device for controlling the pump.
  • the control device controls the pump so that a predetermined amount or more of the waste liquid can be discharged from the port.
  • the pump when the liquid contained in the sample is discharged from the container as waste liquid, the pump is controlled so that at least a predetermined amount of waste liquid can be discharged from the port, so that unnecessary liquid is prevented from remaining in the container containing the sample as much as possible, and the impurities contained in the sample can be appropriately treated by the subsequent decomposition process.
  • the container includes a processing section for processing the sample.
  • the port is provided in the processing section, and the predetermined amount is the same as the capacity of the processing section.
  • the processing device described in paragraph 2 can discharge waste liquid from the port in an amount greater than the capacity of the processing section, making it possible to prevent unnecessary liquid from remaining in the processing section of the container containing the sample to the maximum extent possible.
  • the processing device described in 2 further includes a strainer that captures the target substance contained in the sample and holds it in the container.
  • the strainer is disposed in the processing unit.
  • the processing device described in paragraph 3 allows the strainer to discharge waste liquid from the port in an amount greater than the capacity of the processing section that can capture the target substance, so even if processing liquid is introduced into the processing section by a subsequent decomposition process, impurities contained in the sample can be appropriately processed within the range of the processing section where the strainer is installed.
  • control device introduces a processing liquid into the container that is equal to or less than the capacity of the processing section in order to process impurities contained in the sample.
  • the processing device described in paragraph 4 can discharge waste liquid from the port in an amount greater than the capacity of the processing section, so that the subsequent decomposition process introduces processing liquid in an amount less than the capacity of the processing section, allowing the impurities contained in the sample to be appropriately processed within the range of the processing section.
  • the target substance is microplastics.
  • the processing device described in paragraph 5 can properly process impurities contained in a sample and recover microplastics.
  • 1 Processing device 10 Purifier, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 Piping, 31, 32, 33 Pump, 41, 42, 43 Solenoid valve, 50 Container, 51 Processing device, 52 Overflow section, 53, 54, 310 Flange section, 55 Discharge outlet, 61, 62, 63, 64 Port, 71 Stirrer, 72 Stirring bar, 80 Discharge pipe, 90 Fixing device, 1 10 Filtration section, 210 Decomposition liquid reservoir, 220 Heavy liquid reservoir, 230 Rinse liquid reservoir, 240, 250, 260 Waste liquid reservoir, 300 Strainer, 500 Control device, 501 Arithmetic unit, 502 Memory, 503 Communication device, 504 Display device, 505 Input device, 506 Data reading device, 507 Recording medium, 510 Storage, 511 Control program, 512 Control data.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A treatment device (1) is provided with: a vessel (50) for containing a sample; pipes (11-13) for introducing, into the vessel, a treatment liquid for decomposing an impurity contained in the sample; a port (64) that discharges, from the vessel containing the sample, a liquid contained in the sample as waste liquid; a pump (33) connected to the port; and a control device (500) for controlling the pump. The control device controls the pump so as to enable a predetermined amount or more of the waste liquid to be discharged from the port.

Description

処理装置Processing Equipment
 本開示は、試料を処理して対象物質を回収するための処理装置に関する。 The present disclosure relates to a processing device for processing a sample to recover a target substance.
 従来、試料を処理することによって回収対象である対象物質を回収することが可能な処理装置が公知である。たとえば、特許文献1は、試料が収容された容器に分解液を導入することによって試料に含まれる夾雑物を分解し、夾雑物が分解された後の容器に重液を導入することによって重液よりも比重の軽い対象物質を回収する精製装置を開示する。  Traditionally, there are known processing devices capable of recovering a target substance by processing a sample. For example, Patent Document 1 discloses a purification device that introduces a decomposition liquid into a container that holds the sample to decompose impurities contained in the sample, and then introduces a heavy liquid into the container after the impurities have been decomposed to recover a target substance that has a lighter specific gravity than the heavy liquid.
国際公開第2022/003995号International Publication No. 2022/003995
 特許文献1に開示された精製装置においては、試料が収容された容器に分解液を導入する前に、容器から試料に含まれる液体を廃液として排出するように構成されているが、排出量については十分に検討されていない。試料に含まれる液体の量が想定外に大きい場合など、容器から廃液を完全に排出できなくなり、容器に不要な液体が残ってしまうおそれがある。このように不要な液体が残った状態で分解液を導入した場合、分解液が希釈されて分解液の濃度が想定よりも低くなってしまい、夾雑物を十分に分解させることが難しい。その結果、分解処理によって得られる対象物質を適切に回収することができず、対象物質の分析結果に意図せぬ影響を与えてしまう可能性がある。 The purification device disclosed in Patent Document 1 is configured to discharge the liquid contained in the sample from the container as waste liquid before introducing the decomposition liquid into the container containing the sample, but the amount of discharged liquid has not been fully considered. If the amount of liquid contained in the sample is unexpectedly large, the waste liquid cannot be completely discharged from the container, and there is a risk that unnecessary liquid will remain in the container. If the decomposition liquid is introduced in such a state where unnecessary liquid remains, the decomposition liquid will be diluted and its concentration will be lower than expected, making it difficult to sufficiently decompose the impurities. As a result, the target substance obtained by the decomposition process cannot be properly recovered, which may have an unintended effect on the analysis results of the target substance.
 さらに、不要な液体が残った状態で分解液を導入することによって、容器内の液面が規定の高さを超えてしまい、本来行われるべき箇所よりも高い位置において夾雑物の分解処理が行われ、容器内の壁面に分解されずに残った夾雑物が付着するおそれがある。このように夾雑物が残った状態で対象物質を回収したとしても、ユーザは、対象物質の分析を精度よく行うことができないため、正確な分析結果を得ることができない。このため、試料を処理する処理装置においては、夾雑物に対して分解などの処理を適切に行う技術が求められている。 Furthermore, by introducing the decomposition liquid when unnecessary liquid remains, the liquid level in the container may exceed a specified height, causing the decomposition process of the impurities to occur at a higher position than it should, and there is a risk that the impurities that remain undecomposed may adhere to the walls of the container. Even if the target substance is collected in this manner with the impurities remaining, the user will not be able to analyze the target substance accurately, and therefore will not be able to obtain accurate analysis results. For this reason, there is a demand for technology in sample processing devices that can appropriately perform processes such as decomposition on impurities.
 本開示は、上記のような課題を解決するためになされたものであって、その目的は、試料に含まれる夾雑物を適切に処理する技術を提供することである。 The present disclosure has been made to solve the problems described above, and its purpose is to provide a technique for appropriately processing impurities contained in a sample.
 本開示のある局面に従う処理装置は、試料を収容する容器と、試料に含まれる夾雑物を分解するための処理液を容器に導入する配管と、試料が収容された容器から試料に含まれる液体を廃液として排出するポートと、ポートに接続されたポンプと、ポンプを制御する制御装置とを備える。制御装置は、所定量以上の廃液をポートから排出可能にポンプを制御する。 A processing device according to one aspect of the present disclosure includes a container for holding a sample, piping for introducing a processing liquid for decomposing impurities contained in the sample into the container, a port for discharging the liquid contained in the sample from the container holding the sample as waste liquid, a pump connected to the port, and a control device for controlling the pump. The control device controls the pump so that a predetermined amount or more of waste liquid can be discharged from the port.
 本開示によれば、容器から試料に含まれる液体を廃液として排出する際に、所定量以上の廃液をポートから排出可能にポンプを制御するため、試料が収容された容器に不要な液体を極力残さないようにすることができ、その後の分解処理によって試料に含まれる夾雑物を適切に処理することができる。 According to the present disclosure, when liquid contained in a sample is discharged from a container as waste liquid, a pump is controlled so that at least a predetermined amount of waste liquid is discharged from a port, so that unnecessary liquid is prevented from remaining in the container containing the sample as much as possible, and impurities contained in the sample can be appropriately treated by a subsequent decomposition process.
実施の形態に係る処理装置を模式的に示す図である。FIG. 1 is a diagram illustrating a processing apparatus according to an embodiment. 実施の形態に係る精製器の構成を説明するための図である。FIG. 2 is a diagram for explaining a configuration of a refiner according to an embodiment. 実施の形態に係る処理装置のハードウェア構成を説明するための図である。FIG. 2 is a diagram for explaining a hardware configuration of a processing device according to an embodiment. 実施の形態に係る処理装置の制御装置が実行する精製処理のフローチャートである。4 is a flowchart of a refining process executed by a control device of the processing apparatus according to the embodiment. 実施の形態に係る処理装置が実行する廃液の排出について説明するための図である。1 is a diagram for explaining the discharge of waste liquid performed by a processing apparatus according to an embodiment. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Below, the embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the same or corresponding parts in the drawings will be given the same reference numerals and their description will not be repeated.
 [処理装置の構成]
 図1および図2を参照しながら、実施の形態に係る処理装置1の主な構成を説明する。図1は、実施の形態に係る処理装置1を模式的に示す図である。図2は、実施の形態に係る精製器10の構成を説明するための図である。図1に示すように、処理装置1は、混合試料を精製するための精製器10と、精製器10を制御する制御装置500とを備える。処理装置1は、制御装置500によって精製器10を制御することによって、混合試料を処理する。具体的には、処理装置1は、制御装置500によって精製器10を制御することによって、混合試料を精製し、混合試料に含まれる回収対象である対象物質を回収する。「精製」とは、分解液および重液などを用いて混合物から対象物質を取り出すことを含む。
[Configuration of Processing Device]
A main configuration of a processing device 1 according to an embodiment will be described with reference to Figs. 1 and 2. Fig. 1 is a schematic diagram of the processing device 1 according to an embodiment. Fig. 2 is a diagram for explaining the configuration of a purifier 10 according to an embodiment. As shown in Fig. 1, the processing device 1 includes a purifier 10 for purifying a mixed sample, and a control device 500 for controlling the purifier 10. The processing device 1 processes the mixed sample by controlling the purifier 10 by the control device 500. Specifically, the processing device 1 purifies the mixed sample by controlling the purifier 10 by the control device 500, and recovers a target substance contained in the mixed sample that is a recovery target. "Purification" includes extracting a target substance from a mixture using a decomposition liquid, a heavy liquid, or the like.
 処理装置1によって精製される「混合試料」は、対象物質を含むものであればどのような形態であってもよい。たとえば、「混合試料」としては、海中または海岸から収集される海水および砂、食品または化粧品などの加工品が挙げられる。実施の形態においては、「混合試料」として、海中または海岸から収集される海水および砂が例示される。なお、以下では、「混合試料」を単に「試料」とも称する。 The "mixed sample" refined by the processing device 1 may be in any form as long as it contains the target substance. For example, examples of the "mixed sample" include seawater and sand collected from the ocean or the coast, and processed products such as food or cosmetics. In the embodiment, an example of the "mixed sample" is seawater and sand collected from the ocean or the coast. In the following, the "mixed sample" will also be referred to simply as the "sample".
 処理装置1の回収対象である「対象物質」は、処理装置1によって回収される成分であればどのような形態であってもよい。たとえば、「対象物質」としては、5mm以下の大きさを有する微細なプラスチック粒子であるマイクロプラスチックが挙げられる。実施の形態においては、「対象物質」として、海中または海岸から収集される海水および砂に含まれるマイクロプラスチックが例示される。 The "target substance" to be collected by the processing device 1 may be in any form as long as it is a component that can be collected by the processing device 1. For example, the "target substance" may be microplastics, which are minute plastic particles with a size of 5 mm or less. In the embodiment, the "target substance" may be, for example, microplastics contained in seawater and sand collected from the ocean or coast.
 精製器10は、試料を収容する容器50と、配管11~22と、ポンプ31~33と、電磁弁41~43と、ポート61~64と、スターラ71と、撹拌子72と、排出管80とを備える。 The purifier 10 includes a container 50 for holding the sample, pipes 11-22, pumps 31-33, solenoid valves 41-43, ports 61-64, a stirrer 71, a stirring bar 72, and an exhaust pipe 80.
 図2に示すように、容器50は、試料を処理するための処理部51と処理部51の上方に位置するオーバーフロー部52とを含み、処理部51とオーバーフロー部52とに分離可能である。処理部51の下部には、ポート61~64が接続されている。処理部51の上端部には、フランジ部53が設けられている。オーバーフロー部52の下端部には、フランジ部54が設けられている。実施の形態においては、処理部51が円形の底面を有する円柱状で構成されているが、処理部51の底面は、円形に限らず、多角形または楕円など、その他の形状を有していてもよい。 As shown in FIG. 2, the container 50 includes a processing section 51 for processing a sample and an overflow section 52 located above the processing section 51, and can be separated into the processing section 51 and the overflow section 52. Ports 61 to 64 are connected to the lower section of the processing section 51. A flange section 53 is provided at the upper end of the processing section 51. A flange section 54 is provided at the lower end of the overflow section 52. In the embodiment, the processing section 51 is configured as a cylinder with a circular bottom surface, but the bottom surface of the processing section 51 is not limited to a circle and may have other shapes, such as a polygon or an ellipse.
 精製器10は、試料に含まれる対象物質を補足して容器50内に保持するストレーナ300をさらに備える。ストレーナ300は、概略的には籠形状を有しており、対象物質であるマイクロプラスチックを捕捉可能な大きさの網目を有する。たとえば、ストレーナ300は、SUS(Steel Use Stainless)製であり、対象物質であるマイクロプラスチックを捕捉可能なサイズの複数の開口が形成されている。対象物質がマイクロプラスチックである場合、ストレーナ300の網目の大きさは、0.1mm~5.0mmの粒子を通過さない大きさが必要であり、約0.1mmが好ましい。 The purifier 10 further includes a strainer 300 that captures the target substance contained in the sample and holds it in the container 50. The strainer 300 is roughly basket-shaped and has meshes large enough to capture the target substance, microplastics. For example, the strainer 300 is made of SUS (Steel Use Stainless) and has multiple openings formed therein that are large enough to capture the target substance, microplastics. When the target substance is microplastics, the mesh size of the strainer 300 needs to be large enough to block particles of 0.1 mm to 5.0 mm, with approximately 0.1 mm being preferable.
 ストレーナ300は、2分割可能な容器50の下側に位置する処理部51の内部に設けられる。具体的には、ストレーナ300のフランジ部310は、処理部51の上端部に設けられたフランジ部53と、オーバーフロー部52の下端部に設けられたフランジ部54とによって挟み込まれるように支持される。そして、容器50およびストレーナ300のフランジ部を、図2の破線で示されている固定器具90でクランプすることによって、容器50とストレーナ300とが固定される。このようにしてストレーナ300が容器50に装着されると、フランジ部310よりも下方に設けられたストレーナ300の網目部分は、処理部51の内部に配置される。 The strainer 300 is provided inside the processing section 51 located below the container 50, which can be separated into two. Specifically, the flange section 310 of the strainer 300 is supported by being sandwiched between a flange section 53 provided at the upper end of the processing section 51 and a flange section 54 provided at the lower end of the overflow section 52. The container 50 and the strainer 300 are then fixed together by clamping the flange sections of the container 50 and the strainer 300 with a fixing device 90 shown by the dashed lines in FIG. 2. When the strainer 300 is attached to the container 50 in this manner, the mesh portion of the strainer 300 provided below the flange section 310 is positioned inside the processing section 51.
 ユーザは、上述のように構成された容器50において、処理部51からオーバーフロー部52を取り外すことによって容器50を開放し、容器50における処理部51内に試料を導入する。 In the container 50 configured as described above, the user opens the container 50 by removing the overflow section 52 from the processing section 51, and introduces a sample into the processing section 51 of the container 50.
 容器50に収容される試料には、夾雑部が含まれており、容器50内において分解液などの処理液を用いて夾雑物が処理される。「夾雑物」は、試料のうち、対象物質以外の異物である。実施形態においては、「夾雑物」として、有機物の性質を有する有機夾雑物が例示される。 The sample contained in the container 50 contains impurities, which are processed in the container 50 using a processing liquid such as a decomposition liquid. "Impurities" are foreign matter in the sample other than the target substance. In the embodiment, an example of "impurities" is organic impurities that have the properties of organic matter.
 容器50は、容器50に収容された試料に含まれる夾雑物の分解処理の状況を外部から視認可能な透過率を有する。たとえば、容器50の処理部51およびオーバーフロー部52は、ユーザが外部から容器50の内部を視認可能なように透明な材料(たとえば、ガラス)で形成されている。このため、ユーザは、容器50内で行われる分解液を用いた夾雑物の分解処理の状況を外部から確認することができる。 The container 50 has a transmittance that allows the status of the decomposition process of impurities contained in the sample stored in the container 50 to be visible from the outside. For example, the processing section 51 and overflow section 52 of the container 50 are formed of a transparent material (e.g., glass) so that the user can view the inside of the container 50 from the outside. Therefore, the user can check from the outside the status of the decomposition process of impurities using the decomposition liquid that is being performed inside the container 50.
 図1に戻り、配管11は、分解液リザーバ210と電磁弁41とを接続する。配管12は、電磁弁41とポンプ31とを接続する。配管13は、ポンプ31と容器50の外周部分に設けられたポート61とを接続する。このように、分解液リザーバ210と容器50のポート61とは、電磁弁41およびポンプ31を介して、配管11,12,13によって接続されている。 Returning to FIG. 1, pipe 11 connects the decomposition liquid reservoir 210 to the solenoid valve 41. Pipe 12 connects the solenoid valve 41 to the pump 31. Pipe 13 connects the pump 31 to a port 61 provided on the outer periphery of the container 50. In this way, the decomposition liquid reservoir 210 and the port 61 of the container 50 are connected by pipes 11, 12, and 13 via the solenoid valve 41 and the pump 31.
 配管14は、重液リザーバ220と電磁弁42とを接続する。配管15は、電磁弁42とポンプ32とを接続する。配管16は、ポンプ32と容器50の外周部分に設けられたポート62とを接続する。このように、重液リザーバ220と容器50のポート62とは、電磁弁42およびポンプ32を介して、配管14,15,16によって接続されている。 Pipe 14 connects the heavy liquid reservoir 220 to the solenoid valve 42. Pipe 15 connects the solenoid valve 42 to the pump 32. Pipe 16 connects the pump 32 to a port 62 provided on the outer periphery of the container 50. In this way, the heavy liquid reservoir 220 and the port 62 of the container 50 are connected by pipes 14, 15, and 16 via the solenoid valve 42 and the pump 32.
 配管17は、リンス液リザーバ230と電磁弁41とを接続する。すなわち、電磁弁41は、配管11によって分解液リザーバ210に接続されている一方で、配管14によってリンス液リザーバ230にも接続されている。このように、リンス液リザーバ230と容器50のポート61とは、電磁弁41およびポンプ31を介して、配管17,12,13によって接続されている。 Pipe 17 connects the rinse liquid reservoir 230 and the solenoid valve 41. That is, the solenoid valve 41 is connected to the decomposition liquid reservoir 210 by pipe 11, and is also connected to the rinse liquid reservoir 230 by pipe 14. In this way, the rinse liquid reservoir 230 and the port 61 of the container 50 are connected by pipes 17, 12, and 13 via the solenoid valve 41 and the pump 31.
 配管18は、リンス液リザーバ230と電磁弁42とを接続する。すなわち、電磁弁42は、配管14によって重液リザーバ220に接続されている一方で、配管18によってリンス液リザーバ230にも接続されている。このように、リンス液リザーバ230と容器50のポート62とは、電磁弁42およびポンプ32を介して、配管18,15,16によって接続されている。 The pipe 18 connects the rinse liquid reservoir 230 and the solenoid valve 42. That is, the solenoid valve 42 is connected to the heavy liquid reservoir 220 by the pipe 14, and is also connected to the rinse liquid reservoir 230 by the pipe 18. In this way, the rinse liquid reservoir 230 and the port 62 of the container 50 are connected by the pipes 18, 15, and 16 via the solenoid valve 42 and the pump 32.
 配管19は、廃液リザーバ240と電磁弁43とを接続する。配管20は、電磁弁43とポンプ33とを接続する。配管21は、ポンプ33と容器50の外周部分に設けられたポート63とを接続する。このように、廃液リザーバ240と容器50のポート63とは、電磁弁43およびポンプ33を介して、配管19,20,21によって接続されている。 Pipe 19 connects the waste liquid reservoir 240 and the solenoid valve 43. Pipe 20 connects the solenoid valve 43 and the pump 33. Pipe 21 connects the pump 33 and a port 63 provided on the outer periphery of the container 50. In this way, the waste liquid reservoir 240 and the port 63 of the container 50 are connected by pipes 19, 20, and 21 via the solenoid valve 43 and the pump 33.
 配管22は、ポンプ33と容器50の外周部分に設けられたポート64とを接続する。すなわち、ポンプ33は、配管21によって容器50のポート63に接続されている一方で、配管22によって容器50のポート64にも接続されている。このように、廃液リザーバ240と容器50のポート64とは、電磁弁43およびポンプ33を介して、配管19,20,22によって接続されている。 Pipe 22 connects pump 33 to port 64 provided on the outer periphery of container 50. That is, pump 33 is connected to port 63 of container 50 by pipe 21, and is also connected to port 64 of container 50 by pipe 22. In this way, waste liquid reservoir 240 and port 64 of container 50 are connected by pipes 19, 20, and 22 via solenoid valve 43 and pump 33.
 配管23は、廃液リザーバ250と電磁弁43とを接続する。すなわち、電磁弁43は、配管19によって廃液リザーバ240に接続されている一方で、配管23によって廃液リザーバ250にも接続されている。このように、廃液リザーバ250と容器50のポート63とは、電磁弁43およびポンプ33を介して、配管23,20,21によって接続されている。また、廃液リザーバ250と容器50のポート64とは、電磁弁43およびポンプ33を介して、配管23,20,22によって接続されている。 Pipe 23 connects the waste liquid reservoir 250 and the solenoid valve 43. That is, the solenoid valve 43 is connected to the waste liquid reservoir 240 by pipe 19, and is also connected to the waste liquid reservoir 250 by pipe 23. In this way, the waste liquid reservoir 250 and the port 63 of the container 50 are connected by pipes 23, 20, and 21 via the solenoid valve 43 and the pump 33. In addition, the waste liquid reservoir 250 and the port 64 of the container 50 are connected by pipes 23, 20, and 22 via the solenoid valve 43 and the pump 33.
 分解液リザーバ210は、夾雑物を処理するための処理液を貯留する。「処理液」は、有機夾雑物を処理するものであればどのような形態であってもよい。実施の形態においては、「処理液」として、有機夾雑物を分解するための分解液が例示される。「分解液」は、たとえば、過酸化水素水(H2O2)、過酸化水素水(H2O2)と酸化鉄(II)(FeO)との混合物などの酸化剤である。「試料」が海水および砂である場合、「有機夾雑物」は、たとえば、海水または砂に混じった木くずおよびプランクトンなどである。 The decomposition liquid reservoir 210 stores a processing liquid for treating impurities. The "processing liquid" may be in any form as long as it treats organic impurities. In the embodiment, the "processing liquid" is exemplified by a decomposition liquid for decomposing organic impurities. The "decomposition liquid" is, for example, an oxidizing agent such as hydrogen peroxide (H2O2) or a mixture of hydrogen peroxide (H2O2) and iron (II) oxide (FeO). When the "sample" is seawater and sand, the "organic impurities" are, for example, wood chips and plankton mixed in the seawater or sand.
 重液リザーバ220は、比重差により試料を分離させるための重液を貯留する。「重液」は、比重差により試料を分離させるものであればどのような形態であってもよい。実施形態においては、「重液」は、無機物の性質を有する無機夾雑物を比重差で沈降させる。「重液」は、たとえば、塩化ナトリウム(NaCl)、ヨウ化ナトリウム(NaI)、塩化亜鉛(ZnCl2)などである。「試料」が海水および砂である場合、「無機夾雑物」は、砂、ガラス、または石などである。「重液」の比重は、処理装置1の回収対象となる「対象物質」の比重よりも大きく、かつ、「無機夾雑物」の比重よりも小さく設定されている。たとえば、処理装置1の回収対象となる「対象物質」がマイクロプラスチックであり、「無機夾雑物」が砂、ガラス、または石などの場合、「重液」の比重は、マイクロプラスチックの比重よりも大きく、かつ、砂、ガラス、および石などの比重よりも小さく設定される。具体的には、「重液」の比重は、約1.5~約1.7に設定されている。 The heavy liquid reservoir 220 stores a heavy liquid for separating samples by difference in specific gravity. The "heavy liquid" may be in any form as long as it separates samples by difference in specific gravity. In the embodiment, the "heavy liquid" causes inorganic impurities having inorganic properties to settle by difference in specific gravity. The "heavy liquid" is, for example, sodium chloride (NaCl), sodium iodide (NaI), zinc chloride (ZnCl2), etc. When the "sample" is seawater and sand, the "inorganic impurities" are sand, glass, stones, etc. The specific gravity of the "heavy liquid" is set to be greater than the specific gravity of the "target substance" to be recovered by the processing device 1 and less than the specific gravity of the "inorganic impurities". For example, when the "target substance" to be recovered by the processing device 1 is microplastics and the "inorganic impurities" are sand, glass, stones, etc., the specific gravity of the "heavy liquid" is set to be greater than the specific gravity of microplastics and less than the specific gravity of sand, glass, stones, etc. Specifically, the specific gravity of the "heavy liquid" is set to approximately 1.5 to approximately 1.7.
 リンス液リザーバ230は、容器50内を洗浄するための洗浄液であるリンス液を貯留する。「リンス液」は、容器50内を洗浄するためのものであればどのような形態であってもよい。「リンス液」は、たとえば、水などである。なお、「リンス液」は、容器50内を洗浄する役割の他、容器50に導入される分解液を薄める役割を有する。 The rinse liquid reservoir 230 stores rinse liquid, which is a cleaning liquid for cleaning the inside of the container 50. The "rinse liquid" may be in any form as long as it is used to clean the inside of the container 50. The "rinse liquid" is, for example, water. In addition to cleaning the inside of the container 50, the "rinse liquid" also has the role of diluting the decomposition liquid introduced into the container 50.
 廃液リザーバ240,250は、容器50から排出された重液、分解液、リンス液、および試料に含まれる海水などの廃液を貯留する。 The waste liquid reservoirs 240, 250 store waste liquids such as heavy liquid, decomposition liquid, rinse liquid, and seawater contained in the sample discharged from the container 50.
 ポンプ31は、制御装置500の制御に従って、分解液リザーバ210の分解液またはリンス液リザーバ230のリンス液を、ポート61を介して容器50に導入する。たとえば、ポンプ31は、制御装置500の制御に従って、吸入側の圧力を下げるとともに吐出側の圧力を上げることによって、配管12を介して分解液またはリンス液を吸い込むとともに、配管13を介して分解液またはリンス液をポート61へ吐出する。制御装置500は、ポンプ31を制御することによって、ポンプ31の送出量(吸入量,排出量)を調整することができる。 The pump 31 introduces the decomposition liquid from the decomposition liquid reservoir 210 or the rinsing liquid from the rinsing liquid reservoir 230 into the container 50 via the port 61 under the control of the control device 500. For example, under the control of the control device 500, the pump 31 lowers the pressure on the suction side and raises the pressure on the discharge side to suck in the decomposition liquid or rinsing liquid via the pipe 12 and discharge the decomposition liquid or rinsing liquid to the port 61 via the pipe 13. The control device 500 can adjust the output amount (suction amount, discharge amount) of the pump 31 by controlling the pump 31.
 ポンプ32は、制御装置500の制御に従って、重液リザーバ220の重液またはリンス液リザーバ230のリンス液を、ポート62を介して容器50に導入する。たとえば、ポンプ32は、制御装置500の制御に従って、吸入側の圧力を下げるとともに吐出側の圧力を上げることによって、配管15を介して重液またはリンス液を吸い込むとともに、配管16を介して重液またはリンス液をポート62へ吐出する。制御装置500は、ポンプ32を制御することによって、ポンプ32の送出量(吸入量,排出量)を調整することができる。 The pump 32 introduces the heavy liquid from the heavy liquid reservoir 220 or the rinsing liquid from the rinsing liquid reservoir 230 into the container 50 via the port 62 under the control of the control device 500. For example, under the control of the control device 500, the pump 32 lowers the pressure on the suction side and raises the pressure on the discharge side to suck in the heavy liquid or rinsing liquid via the pipe 15 and discharge the heavy liquid or rinsing liquid to the port 62 via the pipe 16. The control device 500 can adjust the amount of the pump 32 delivered (the amount of suction, the amount of discharge).
 ポンプ33は、制御装置500の制御に従って、ポート63またはポート64を介して、容器50内の不要な液体を廃液として、廃液リザーバ240または廃液リザーバ250へ排出する。たとえば、ポンプ33は、制御装置500の制御に従って、吸入側の圧力を下げるとともに吐出側の圧力を上げることによって、配管21,22を介して容器50内の廃液を吸い込むとともに、配管20を介して廃液を廃液リザーバ240,250へ吐出する。制御装置500は、ポンプ33を制御することによって、ポンプ33の送出量(吸入量,排出量)を調整することができる。 Pump 33, under the control of control device 500, discharges unnecessary liquid in container 50 as waste liquid to waste liquid reservoir 240 or waste liquid reservoir 250 via port 63 or port 64. For example, under the control of control device 500, pump 33 lowers the pressure on the suction side and raises the pressure on the discharge side to suck in waste liquid from container 50 via pipes 21 and 22 and discharge the waste liquid to waste liquid reservoirs 240 and 250 via pipe 20. Control device 500 can adjust the amount of pump 33 delivered (suction amount, discharge amount) by controlling pump 33.
 電磁弁41は、制御装置500の制御に従って、容器50のポート61に接続される経路を、分解液リザーバ210とリンス液リザーバ230との間で切り替える。 The solenoid valve 41 switches the path connected to the port 61 of the container 50 between the decomposition liquid reservoir 210 and the rinsing liquid reservoir 230 under the control of the control device 500.
 電磁弁42は、制御装置500の制御に従って、容器50のポート62に接続される経路を、重液リザーバ220とリンス液リザーバ230との間で切り替える。 The solenoid valve 42 switches the path connected to the port 62 of the container 50 between the heavy liquid reservoir 220 and the rinse liquid reservoir 230 under the control of the control device 500.
 電磁弁43は、制御装置500の制御に従って、容器50のポート63,64に接続される経路を、廃液リザーバ240と廃液リザーバ250との間で切り替える。たとえば、重液を含む廃液は廃液リザーバ240に排出され、分解液を含む廃液は廃液リザーバ250に排出される。 The solenoid valve 43 switches the paths connected to the ports 63, 64 of the container 50 between the waste liquid reservoir 240 and the waste liquid reservoir 250 under the control of the control device 500. For example, the waste liquid containing the heavy liquid is discharged to the waste liquid reservoir 240, and the waste liquid containing the decomposition liquid is discharged to the waste liquid reservoir 250.
 ポート61は、ポンプ31によって送出された分解液リザーバ210からの分解液またはリンス液リザーバ230からのリンス液を容器50内に導入する。ポート62は、ポンプ32によって送出された重液リザーバ220からの重液またはリンス液リザーバ230からのリンス液を容器50内に導入する。ポート63,64は、ポンプ33の駆動によって、容器50内の廃液をポンプ33に排出する。ポンプ33によって送出された廃液は、廃液リザーバ240または廃液リザーバ250に排出される。 Port 61 introduces into container 50 the decomposition liquid from decomposition liquid reservoir 210 or the rinse liquid from rinse liquid reservoir 230, which is delivered by pump 31. Port 62 introduces into container 50 the heavy liquid from heavy liquid reservoir 220 or the rinse liquid from rinse liquid reservoir 230, which is delivered by pump 32. Ports 63 and 64 discharge the waste liquid in container 50 to pump 33 when pump 33 is driven. The waste liquid delivered by pump 33 is discharged into waste liquid reservoir 240 or waste liquid reservoir 250.
 スターラ71は、たとえば、恒温スターラであり、容器50における処理部51の下方に配置されている。スターラ71は、制御装置500の制御に従って、容器50内に設けられた撹拌子72を回転させることによって、容器50内の試料を撹拌する。さらに、スターラ71は、容器50の下方から容器50に熱を加えることによって、容器50内の試料の温度を一定に保つ。 The stirrer 71 is, for example, a thermostatic stirrer, and is disposed below the processing section 51 in the container 50. The stirrer 71 stirs the sample in the container 50 by rotating an agitator 72 provided in the container 50 under the control of the control device 500. Furthermore, the stirrer 71 applies heat to the container 50 from below, thereby keeping the temperature of the sample in the container 50 constant.
 排出管80は、容器50におけるオーバーフロー部52の最上部に設けられた排出口55に接続されており、対象物質を含む試料の上澄み液を容器50から外部にオーバーフローして排出する。 The discharge pipe 80 is connected to a discharge port 55 provided at the top of the overflow section 52 of the container 50, and the supernatant liquid of the sample containing the target substance overflows from the container 50 to the outside and is discharged.
 濾過部110は、排出管80から排出された試料の上澄み液を濾過することによって、上澄み液に含まれる対象物質を回収する。濾過部110を通過した上澄み液は、廃液リザーバ260によって回収される。濾過部110は、対象物質であるマイクロプラスチックを捕捉可能な大きさの網目を有する。たとえば、濾過部110は、SUS製の金網またはPTFE(polytetrafluoroethylene)(テフロン(登録商標))製のメンブレンフィルタである。対象物質がマイクロプラスチックである場合、濾過部110の網目の大きさは、0.1mm~5.0mmの粒子を通さない大きさが必要であり、約0.1mmが好ましい。 The filtration unit 110 recovers the target substance contained in the supernatant by filtering the supernatant of the sample discharged from the discharge pipe 80. The supernatant that passes through the filtration unit 110 is recovered by the waste liquid reservoir 260. The filtration unit 110 has meshes large enough to capture the target substance, microplastics. For example, the filtration unit 110 is a wire mesh made of SUS or a membrane filter made of PTFE (polytetrafluoroethylene) (Teflon (registered trademark)). When the target substance is microplastics, the mesh size of the filtration unit 110 needs to be large enough to block particles of 0.1 mm to 5.0 mm, and is preferably about 0.1 mm.
 制御装置500は、汎用コンピュータで実現されてもよいし、精製器10を制御するための専用コンピュータで実現されてもよい。たとえば、制御装置500は、デスクトップ型のPC(personal computer)、ラップトップ型のPC、スマートフォン、スマートウォッチ、ウェアラブルデバイス、およびタブレットPCなど、所定の情報処理を実行する情報端末であってもよい。制御装置500は、精製器10における、ポンプ31~33、電磁弁41~43、およびスターラ71を制御する。制御装置500は、本開示における「コンピュータ」の一実施例に相当する。 The control device 500 may be realized by a general-purpose computer, or may be realized by a dedicated computer for controlling the refiner 10. For example, the control device 500 may be an information terminal that executes predetermined information processing, such as a desktop personal computer (PC), a laptop PC, a smartphone, a smart watch, a wearable device, or a tablet PC. The control device 500 controls the pumps 31-33, the solenoid valves 41-43, and the stirrer 71 in the refiner 10. The control device 500 corresponds to one embodiment of the "computer" in this disclosure.
 [ハードウェア構成]
 図3を参照しながら、処理装置1のハードウェア構成を説明する。図3は、実施の形態に係る処理装置1のハードウェア構成を説明するための図である。図3に示すように、制御装置500は、主なハードウェア要素として、演算装置501と、メモリ502と、通信装置503と、表示装置504と、入力装置505と、データ読取装置506と、ストレージ510とを備える。
[Hardware configuration]
The hardware configuration of the processing device 1 will be described with reference to Fig. 3. Fig. 3 is a diagram for explaining the hardware configuration of the processing device 1 according to the embodiment. As shown in Fig. 3, the control device 500 includes, as main hardware elements, a calculation device 501, a memory 502, a communication device 503, a display device 504, an input device 505, a data reading device 506, and a storage 510.
 演算装置501は、ストレージ510に記憶されたプログラム(たとえば、制御プログラム511およびOS(Operating System)513)を読み出し、読み出したプログラムをメモリ502に展開して実行するプロセッサである。たとえば、演算装置501は、制御プログラム511を実行することによって、精製器10を制御するための処理(たとえば、後述の図3および図4の処理)を実行する。演算装置501の一例であるプロセッサは、たとえば、マイクロコントローラ(microcontroller)、CPU(central processing unit)、またはMPU(Micro-processing unit)などで構成される。なお、プロセッサは、プログラムを実行することによって各種の処理を実行する機能を有するが、これらの機能の一部または全部を、ASIC(Application Specific Integrated Circuit)またはFPGA(Field-Programmable Gate Array)などの専用のハードウェア回路を用いて実装してもよい。「プロセッサ」は、CPUまたはMPUのようにストアードプログラム方式で処理を実行する狭義のプロセッサに限らず、ASICまたはFPGAなどのハードワイヤード回路を含み得る。このため、プロセッサは、コンピュータ読み取り可能なコードおよび/またはハードワイヤード回路によって予め処理が定義されている、処理回路(processing circuitry)と読み替えることもできる。なお、演算装置501は、1つのチップで構成されてもよいし、複数のチップで構成されてもよい。さらに、プロセッサおよび関連する処理回路は、ローカルエリアネットワークまたは無線ネットワークなどを介して、有線または無線で相互接続された複数のコンピュータで構成されてもよい。プロセッサおよび関連する処理回路は、入力データに基づきリモートで演算し、その演算結果を離れた位置にある他のデバイスへと出力するような、クラウドコンピュータで構成されてもよい。 The arithmetic device 501 is a processor that reads out programs (e.g., a control program 511 and an OS (Operating System) 513) stored in the storage 510, and deploys the read out programs in the memory 502 for execution. For example, the arithmetic device 501 executes a process for controlling the refiner 10 (e.g., the process in FIG. 3 and FIG. 4 described below) by executing the control program 511. A processor, which is an example of the arithmetic device 501, is composed of, for example, a microcontroller, a CPU (central processing unit), or an MPU (micro-processing unit). Note that the processor has the function of executing various processes by executing a program, but some or all of these functions may be implemented using dedicated hardware circuits such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array). The term "processor" is not limited to a processor in the narrow sense that executes processes using a stored program method, such as a CPU or an MPU, but may also include hardwired circuits such as an ASIC or an FPGA. For this reason, the processor may be interpreted as a processing circuit, the processing of which is defined in advance by computer-readable code and/or hardwired circuitry. The computing device 501 may be composed of one chip or multiple chips. Furthermore, the processor and associated processing circuitry may be composed of multiple computers interconnected in a wired or wireless manner, such as via a local area network or a wireless network. The processor and associated processing circuitry may be composed of a cloud computer that performs calculations remotely based on input data and outputs the results of the calculations to another device in a remote location.
 メモリ502は、演算装置501が任意のプログラムを実行するにあたって、プログラムコードまたはワークメモリなどを一時的に格納する記憶領域を提供する。メモリ502は、1または複数の非一時的コンピュータ可読媒体(non-transitory computer readable medium)であってもよい。メモリ502は、DRAM(Dynamic Random Access Memory)またはSRAM(Static Random Access Memory)などの揮発性メモリ、あるいは、ROM(Read Only Memory)またはフラッシュメモリなどの不揮発性メモリで構成される。 Memory 502 provides a storage area for temporarily storing program code or work memory, etc., when the computing device 501 executes any program. Memory 502 may be one or more non-transitory computer readable mediums. Memory 502 is composed of volatile memory such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory), or non-volatile memory such as ROM (Read Only Memory) or flash memory.
 通信装置503は、精製器10のポンプ31~33、電磁弁41~43、またはスターラ71などを制御する制御信号を出力するためのインターフェースを含む。また、通信装置503は、ネットワーク(図示せず)を介して、他の装置との間でデータを送受信するインターフェースを含んでいてもよい。この場合、通信装置503は、たとえば、イーサネット(登録商標)、無線LAN(Local Area Network)、Bluetooth(登録商標)などの任意の通信方式に対応する。 The communication device 503 includes an interface for outputting control signals for controlling the pumps 31-33, solenoid valves 41-43, or stirrer 71 of the purifier 10. The communication device 503 may also include an interface for transmitting and receiving data to and from other devices via a network (not shown). In this case, the communication device 503 is compatible with any communication method, such as Ethernet (registered trademark), wireless LAN (Local Area Network), or Bluetooth (registered trademark).
 表示装置504は、たとえば、LCD(Liquid Crystal Display)などで構成され、精製器10の制御に関するプログラムの設計画面、精製器10の制御に関する設定画面、または異常時のアラート画面などを表示する。 The display device 504 is composed of, for example, an LCD (Liquid Crystal Display) and displays a design screen for a program related to the control of the refiner 10, a setting screen related to the control of the refiner 10, or an alert screen in the event of an abnormality, etc.
 入力装置505は、たとえば、キーボードまたはマウスなどで構成され、ユーザによって操作される。なお、入力装置505は、表示装置504の画面上に設けられたタッチパネルであってもよい。ユーザが入力装置505を操作することにより、当該操作に対応する入力信号が演算装置501に入力される。演算装置501は、入力装置505からの入力信号を受信すると、ユーザによる入力に基づく制御信号を、精製器10のポンプ31~33、電磁弁41~43、またはスターラ71などに出力する。ポンプ31~33、電磁弁41~43、またはスターラ71は、演算装置501からの制御信号従って動作する。 The input device 505 is composed of, for example, a keyboard or a mouse, and is operated by the user. The input device 505 may be a touch panel provided on the screen of the display device 504. When the user operates the input device 505, an input signal corresponding to the operation is input to the arithmetic device 501. When the arithmetic device 501 receives an input signal from the input device 505, it outputs a control signal based on the user's input to the pumps 31-33, solenoid valves 41-43, stirrer 71, or the like of the purifier 10. The pumps 31-33, solenoid valves 41-43, or stirrer 71 operate in accordance with the control signal from the arithmetic device 501.
 データ読取装置506は、記録媒体507に格納されているデータを読み出す。記録媒体507は、非一過性かつ有形のコンピュータ可読記憶媒体(non-transitory and tangible computer readable storage medium)であってもよい。記録媒体507は、CD(Compact Disc)、DVD(Digital Versatile Disc)、またはUSB(Universal Serial Bus)メモリなど、各種のデータを記録することができるものであればどのような形態であってもよい。 The data reading device 506 reads data stored in the recording medium 507. The recording medium 507 may be a non-transitory and tangible computer readable storage medium. The recording medium 507 may be in any form capable of recording various types of data, such as a CD (Compact Disc), a DVD (Digital Versatile Disc), or a USB (Universal Serial Bus) memory.
 ストレージ510は、精製処理などに必要な各種のデータを格納する記憶領域を提供する。ストレージ510は、1または複数のコンピュータ読み取り可能な記憶媒体(computer readable storage medium)であってもよい。ストレージ510は、たとえば、HDD(Hard Disk Drive)またはSSD(Solid State Drive)などの不揮発性メモリデバイスで構成される。ストレージ510は、制御プログラム511と、制御用データ512と、OS513とを格納する。 Storage 510 provides a memory area for storing various data required for refining processes, etc. Storage 510 may be one or more computer readable storage media. Storage 510 is configured, for example, by a non-volatile memory device such as a hard disk drive (HDD) or a solid state drive (SSD). Storage 510 stores a control program 511, control data 512, and an OS 513.
 制御プログラム511は、試料を精製するための精製処理の内容が記述されたプログラムであり、演算装置501によって実行される。制御プログラム511は、入力装置505を用いてユーザによって設計されてもよいし、データ読取装置506によって記録媒体507から読み取られてもよいし、通信装置503によってサーバなどの他の装置からネットワークを介して取得されてもよい。 The control program 511 is a program that describes the contents of the purification process for purifying a sample, and is executed by the computing device 501. The control program 511 may be designed by a user using the input device 505, may be read from the recording medium 507 by the data reading device 506, or may be obtained via a network from another device such as a server by the communication device 503.
 制御用データ512は、演算装置501が制御プログラム511を実行する際に用いるデータである。たとえば、制御用データ512は、ポンプ31~33、電磁弁41~43、およびスターラ71を制御するための設定値などのデータを含む。制御用データ512は、入力装置505を用いてユーザによって入力されてもよいし、データ読取装置506によって記録媒体507から読み取られてもよいし、通信装置503によってサーバなどの他の装置からネットワークを介して取得されてもよい。 The control data 512 is data used by the computing device 501 when executing the control program 511. For example, the control data 512 includes data such as settings for controlling the pumps 31-33, the solenoid valves 41-43, and the stirrer 71. The control data 512 may be input by a user using the input device 505, may be read from the recording medium 507 by the data reading device 506, or may be obtained by the communication device 503 from another device such as a server via a network.
 OS513は、演算装置501によって各種の処理を実行するための基本的な機能を提供する。 The OS 513 provides basic functions for the arithmetic unit 501 to execute various processes.
 [精製処理]
 図4を参照しながら、処理装置1が実行する試料の精製処理を説明する。図4は、実施の形態に係る処理装置1の制御装置500が実行する精製処理のフローチャートである。図4に示す各ステップは、制御装置500の演算装置501が、OS513および制御プログラム511を実行することによって実現される。
[Refining process]
The sample purification process executed by the processing device 1 will be described with reference to Fig. 4. Fig. 4 is a flow chart of the purification process executed by the control device 500 of the processing device 1 according to the embodiment. Each step shown in Fig. 4 is realized by the arithmetic device 501 of the control device 500 executing the OS 513 and the control program 511.
 まず、精製処理の準備として、ユーザは、オーバーフロー部52から処理部51を取り外すことによって容器50を開放し、容器50における処理部51の内部に試料を導入する。その後、ユーザは、制御装置500の入力装置505を用いて開始操作を行うことによって、制御装置500による精製器10の制御を開始する。 First, in preparation for the purification process, the user opens the container 50 by removing the processing section 51 from the overflow section 52, and introduces the sample into the processing section 51 in the container 50. After that, the user performs a start operation using the input device 505 of the control device 500, thereby starting control of the purifier 10 by the control device 500.
 制御装置500による精製器10の制御が開始されると、制御装置500は、排出側のポンプ33および電磁弁43を制御することによって、配管20~23およびポート63,64を介して、容器50に収容された試料に含まれる液体を廃液として廃液リザーバ250に排出する(S1)。なお、マイクロプラスチックなどの液体以外の物質は、容器50の内部に設けられたストレーナ300によって捕捉され、容器50内に保持される。 When the control device 500 starts to control the purifier 10, the control device 500 controls the discharge pump 33 and solenoid valve 43 to discharge the liquid contained in the sample stored in the container 50 as waste liquid through the pipes 20-23 and ports 63, 64 to the waste liquid reservoir 250 (S1). Note that substances other than the liquid, such as microplastics, are captured by the strainer 300 provided inside the container 50 and are retained within the container 50.
 制御装置500は、分解液を用いて容器50に収容された試料に含まれる有機夾雑物を分解するための分解処理を実行する(S2)。具体的には、制御装置500は、排出側のポンプ33を停止する一方で、導入側のポンプ31および電磁弁41を制御することによって、配管11~13およびポート61を介して、分解液リザーバ210内の分解液を容器50に導入する。 The control device 500 executes a decomposition process using the decomposition liquid to decompose organic impurities contained in the sample stored in the container 50 (S2). Specifically, the control device 500 stops the discharge pump 33 while controlling the inlet pump 31 and solenoid valve 41 to introduce the decomposition liquid in the decomposition liquid reservoir 210 into the container 50 via the pipes 11-13 and port 61.
 このとき、制御装置500は、ポンプ31の送出量を制御することによって、ユーザによって予め設定された量の分解液を容器50に導入する。たとえば、分解液を用いた夾雑物の分解は、ストレーナ300によってマイクロプラスチックを捕捉可能とするために、ストレーナ300が設けられた処理部51の内部で行われることが必要である。このため、S1における分解液の導入量は、処理部51の容量以下とされ、たとえば150ml以下である。 At this time, the control device 500 introduces the amount of decomposition liquid preset by the user into the container 50 by controlling the output amount of the pump 31. For example, the decomposition of impurities using the decomposition liquid needs to be carried out inside the processing section 51 in which the strainer 300 is provided so that the strainer 300 can capture microplastics. For this reason, the amount of decomposition liquid introduced in S1 is set to be equal to or less than the capacity of the processing section 51, for example, 150 ml or less.
 分解液を導入した後、制御装置500は、スターラ71を制御することによって、容器50に一定の熱を加えながら容器50内に設けられた撹拌子72を回転させて試料を撹拌する(S3)。容器50内の温度、撹拌子72の回転速度、および回転時間は、ユーザによって予め設定されている。このように、制御装置500は、熱を加えながら試料を撹拌することによって、分解液を用いた有機夾雑物の分解を促進することができる。なお、試料の撹拌時においては、必ずしも加熱は必要ないが、加熱によって試料の温度を一定温度に保つことによって有機夾雑物の分解が促進される。 After introducing the decomposition liquid, the control device 500 controls the stirrer 71 to rotate the stirrer 72 provided in the container 50 while applying a constant heat to the container 50, thereby stirring the sample (S3). The temperature inside the container 50, the rotation speed of the stirrer 72, and the rotation time are preset by the user. In this way, the control device 500 can promote the decomposition of organic impurities using the decomposition liquid by stirring the sample while applying heat. Note that while heating is not necessarily required when stirring the sample, the decomposition of organic impurities is promoted by maintaining a constant sample temperature through heating.
 制御装置500は、分解処理の後、排出側のポンプ33および電磁弁43を制御することによって、配管20~23およびポート63,64を介して、有機夾雑物の分解処理後の試料に含まれる容器50内の廃液を廃液リザーバ250に排出する(S4)。なお、対象物質のマイクロプラスチックは、容器50の内部に設けられたストレーナ300によって捕捉され、容器50内に保持される。 After the decomposition process, the control device 500 controls the discharge pump 33 and solenoid valve 43 to discharge the waste liquid in the container 50, which is contained in the sample after the decomposition process of the organic impurities, into the waste liquid reservoir 250 via the pipes 20-23 and ports 63, 64 (S4). The target substance, microplastics, is captured by the strainer 300 installed inside the container 50 and is retained in the container 50.
 制御装置500は、排出側のポンプ33を停止する一方で、導入側のポンプ31および電磁弁41を制御することによって、配管17,12,13およびポート61を介して、リンス液リザーバ230内のリンス液を容器50に導入し、容器50内を洗浄する(S5)。このとき、制御装置500は、ポンプ31の送出量を制御することによって、ユーザによって予め設定された量のリンス液を容器50に導入する。S5におけるリンス液の導入量は、処理部51の容量以下とされ、たとえば150ml以下である。 The control device 500 stops the discharge pump 33, while controlling the introduction pump 31 and solenoid valve 41 to introduce the rinse liquid in the rinse liquid reservoir 230 into the container 50 via the pipes 17, 12, 13 and port 61, thereby cleaning the inside of the container 50 (S5). At this time, the control device 500 controls the discharge rate of the pump 31 to introduce an amount of rinse liquid preset by the user into the container 50. The amount of rinse liquid introduced in S5 is set to be equal to or less than the capacity of the processing unit 51, for example, 150 ml or less.
 制御装置500は、導入側のポンプ31を停止する一方で、排出側のポンプ33および電磁弁43を制御することによって、配管20~23およびポート63,64を介して、リンス液による洗浄後の廃液を廃液リザーバ250に排出する(S6)。これにより、リンス液によって容器50内が洗浄される。なお、対象物質のマイクロプラスチックは、容器50の内部に設けられたストレーナ300によって捕捉され、容器50内に保持される。その後、制御装置500は、所定期間(たとえば、1日間)に亘って試料をそのまま放置することによって試料を乾燥させてもよい。 The control device 500 stops the inlet pump 31 while controlling the outlet pump 33 and solenoid valve 43 to discharge the waste liquid after cleaning with the rinse liquid through the pipes 20-23 and ports 63, 64 to the waste liquid reservoir 250 (S6). This cleans the inside of the container 50 with the rinse liquid. The target substance, microplastics, is captured by the strainer 300 provided inside the container 50 and is retained within the container 50. The control device 500 may then dry the sample by leaving it as it is for a predetermined period of time (for example, one day).
 制御装置500は、排出側のポンプ33を停止する一方で、導入側のポンプ32および電磁弁42を制御することによって、配管14~16およびポート62を介して、重液リザーバ220の重液を容器50に導入する(S7)。このとき、制御装置500は、ポンプ32の送出量を制御することによって、ユーザによって予め設定された量の重液を容器50に導入する。 The control device 500 stops the discharge pump 33 while controlling the inlet pump 32 and solenoid valve 42 to introduce the heavy liquid from the heavy liquid reservoir 220 into the container 50 via the pipes 14-16 and port 62 (S7). At this time, the control device 500 controls the output rate of the pump 32 to introduce the amount of heavy liquid preset by the user into the container 50.
 制御装置500は、導入側のポンプ32を停止した状態で、所定期間(たとえば、1日間)に亘って試料をそのまま放置する(S8)。このようにして重液が容器50内の試料に導入されて放置されると、試料に含まれる無機夾雑物が比重差によって容器50の底付近に沈降する。一方、重液よりも比重の軽い対象物質のマイクロプラスチックは、重液の液面上に浮上する。 The control device 500 stops the inlet pump 32 and leaves the sample as it is for a predetermined period of time (for example, one day) (S8). When the heavy liquid is introduced into the sample in the container 50 in this manner and left as it is, inorganic impurities contained in the sample will settle near the bottom of the container 50 due to the difference in specific gravity. Meanwhile, the target substance, microplastics, which have a lower specific gravity than the heavy liquid, will rise to the surface of the heavy liquid.
 制御装置500は、再びポンプ32および電磁弁42を制御することによって、配管14~16およびポート62を介して、重液リザーバ220の重液を容器50に再び導入する(S9)。このとき、制御装置500は、ポンプ32の送出量を制御することによって、ユーザによって予め設定された量の重液を容器50に導入する。このようにして重液が容器50内の試料に再び導入されると、比重分離された試料の液面が容器50内を徐々に上昇し、やがて試料の上澄み液が容器50の排出口55に到達する。そして、試料の上澄み液は、排出口55および排出管80を通って排出液として外部に排出される。 The control device 500 again controls the pump 32 and the solenoid valve 42 to introduce the heavy liquid from the heavy liquid reservoir 220 back into the container 50 via the pipes 14-16 and the port 62 (S9). At this time, the control device 500 controls the output rate of the pump 32 to introduce an amount of heavy liquid preset by the user into the container 50. When the heavy liquid is introduced back into the sample in the container 50 in this way, the liquid level of the gravity-separated sample gradually rises inside the container 50, and the supernatant liquid of the sample eventually reaches the discharge port 55 of the container 50. The supernatant liquid of the sample is then discharged to the outside as a discharge liquid through the discharge port 55 and the discharge pipe 80.
 排出管80を通って排出された排出液は、濾過部110によって濾過され、濾過部110を通過した廃液のみが廃液リザーバ260によって回収される。濾過部110には、重液よりも比重の軽い成分であるマイクロプラスチックが残留する。 The discharged liquid discharged through the discharge pipe 80 is filtered by the filtration section 110, and only the waste liquid that passes through the filtration section 110 is collected by the waste liquid reservoir 260. Microplastics, which are components with a lower specific gravity than the heavy liquid, remain in the filtration section 110.
 試料の精製によってマイクロプラスチックが回収された後、制御装置500は、後処理として容器50内を洗浄する。具体的には、制御装置500は、排出側のポンプ33および電磁弁43を制御することによって、配管19~22およびポート63,64を介して、マイクロプラスチックが回収された後の容器50内の廃液を廃液リザーバ240に排出する(S10)。 After the microplastics have been recovered by refining the sample, the control device 500 cleans the inside of the container 50 as a post-processing step. Specifically, the control device 500 controls the pump 33 and solenoid valve 43 on the discharge side to discharge the waste liquid from the container 50 after the microplastics have been recovered into the waste liquid reservoir 240 via the pipes 19-22 and ports 63, 64 (S10).
 制御装置500は、排出側のポンプ33を停止する一方で、導入側のポンプ32および電磁弁42を制御することによって、配管18,15,16およびポート62を介して、リンス液リザーバ230内のリンス液を容器50に導入し、容器50内を洗浄する(S11)。このとき、制御装置500は、ポンプ32の送出量を制御することによって、ユーザによって予め設定された量のリンス液を容器50に導入する。 The control device 500 stops the discharge pump 33, while controlling the inlet pump 32 and solenoid valve 42 to introduce the rinse liquid in the rinse liquid reservoir 230 into the container 50 via the pipes 18, 15, 16 and port 62, thereby cleaning the inside of the container 50 (S11). At this time, the control device 500 controls the amount of rinse liquid discharged by the pump 32 to introduce the amount of rinse liquid preset by the user into the container 50.
 制御装置500は、導入側のポンプ32を停止する一方で、排出側のポンプ33および電磁弁43を制御することによって、配管19~22およびポート63,64を介して、リンス液が導入された後の容器50内の廃液を廃液リザーバ240に排出する(S12)。これにより、リンス液によって容器50内が洗浄される。その後、制御装置500は、本フローに係る処理を終了する。 The control device 500 stops the pump 32 on the introduction side, while controlling the pump 33 and solenoid valve 43 on the discharge side to discharge the waste liquid in the container 50 after the rinsing liquid has been introduced into the waste liquid reservoir 240 via the pipes 19-22 and ports 63, 64 (S12). This allows the inside of the container 50 to be cleaned with the rinsing liquid. The control device 500 then ends the processing related to this flow.
 以上のように、実施の形態に係る処理装置1によれば、制御装置500は、適切なタイミングおよび適切な時間に亘って自動的に、容器50に収容された試料に対して分解液および重液を導入し、また、容器50から廃液を排出する。このため、ユーザは、自ら、容器50に分解液および重液を導入し、また、容器50から廃液を排出する必要がない。さらに、実施の形態に係る処理装置1によれば、制御装置500は、マイクロプラスチックを回収した後、使用した容器50を自動的に洗浄する。これにより、ユーザは、自身の技量に依存することなく、マイクロプラスチックを安定的に回収することが可能となり、精度よく試料を精製することができる。 As described above, according to the processing device 1 of the embodiment, the control device 500 automatically introduces the decomposition liquid and heavy liquid to the sample contained in the container 50 at an appropriate timing and for an appropriate period of time, and also discharges the waste liquid from the container 50. Therefore, the user does not need to introduce the decomposition liquid and heavy liquid into the container 50 or discharge the waste liquid from the container 50 by himself. Furthermore, according to the processing device 1 of the embodiment, the control device 500 automatically cleans the used container 50 after collecting the microplastics. This allows the user to stably collect microplastics without relying on his or her own skill, and allows the sample to be purified with high accuracy.
 [廃液の排出]
 上述したように、処理装置1は、精製処理におけるS1において試料に含まれる廃液を排出することによって海水などの不要な液体を容器50内から取り除いた後に、S2の分解処理によって、分解液を用いて試料に含まれる夾雑物を分解するように構成されている。ここで、試料に含まれる液体の量が想定外に大きい場合など、S1において容器50から廃液を完全に排出できなくなり、容器50に不要な液体が残ってしまうおそれがある。このように不要な液体が残った状態で分解液を導入した場合、分解液が希釈されて分解液の濃度が想定よりも低くなってしまい、夾雑物を十分に分解させることが難しい。その結果、分解処理によって得られる対象物質を適切に回収することができず、対象物質の分析結果に意図せぬ影響を与えてしまう可能性がある。
[Discharge of waste liquid]
As described above, the processing device 1 is configured to remove unnecessary liquids such as seawater from the container 50 by discharging waste liquid contained in the sample in S1 in the purification process, and then decompose impurities contained in the sample using a decomposition liquid in the decomposition process in S2. Here, if the amount of liquid contained in the sample is unexpectedly large, the waste liquid cannot be completely discharged from the container 50 in S1, and unnecessary liquid may remain in the container 50. If the decomposition liquid is introduced in such a state where unnecessary liquid remains, the decomposition liquid is diluted and the concentration of the decomposition liquid becomes lower than expected, making it difficult to sufficiently decompose the impurities. As a result, the target substance obtained by the decomposition process cannot be properly recovered, which may have an unintended effect on the analysis results of the target substance.
 さらに、不要な液体が残った状態で分解液を導入することによって、容器50内の液面が規定の高さを超えてしまい、本来行われるべき箇所よりも高い位置において夾雑物の分解処理が行われるおそれがある。たとえば、分解処理は、ストレーナ300が設けられた処理部51の内部で行われることが必要である。より具体的には、図2に示す処理部51の上端部に設けられたフランジ部53の高さを超えることなく、処理部51内で分解処理が行われるべきである。仮に、フランジ部53よりも上方に位置するオーバーフロー部52内で分解処理が行われた場合、オーバーフロー部52内の壁面に分解されずに残った夾雑物が付着するおそれがある。その後、S5においてリンス液を用いて容器50内が洗浄されるが、リンス液の導入量が処理部51の容量以下である場合、オーバーフロー部52内の壁面に付着した夾雑物は洗い流されることもない。そして、S7およびS9において重液が導入されることによって比重分離された試料の液面が容器50内を徐々に上昇する際にオーバーフロー部52内の壁面に付着した夾雑物も排出口55および排出管80を通って排出液として外部に排出される。このように夾雑物が残った状態でマイクロプラスチックを回収したとしても、ユーザは、マイクロプラスチックの成分分析などを精度よく行うことができないため、正確な分析結果を得ることができない。また、回収物に夾雑物が混ざることで、重量計測またはサイズ計測に影響を与えてしまうおそれもある。 Furthermore, by introducing the decomposition liquid while unnecessary liquid remains, the liquid level in the container 50 may exceed a specified height, and the decomposition process of the impurities may be performed at a higher position than the place where it should be performed. For example, the decomposition process needs to be performed inside the processing section 51 where the strainer 300 is provided. More specifically, the decomposition process should be performed in the processing section 51 without exceeding the height of the flange section 53 provided at the upper end of the processing section 51 shown in FIG. 2. If the decomposition process is performed in the overflow section 52 located above the flange section 53, there is a risk that the impurities that remain undecomposed will adhere to the wall surface of the overflow section 52. After that, in S5, the inside of the container 50 is washed with the rinse liquid, but if the amount of the rinse liquid introduced is less than the capacity of the processing section 51, the impurities that adhere to the wall surface of the overflow section 52 will not be washed away. Then, when the liquid level of the gravity-separated sample gradually rises inside the container 50 due to the introduction of heavy liquid in S7 and S9, the impurities adhering to the wall surface inside the overflow section 52 are also discharged to the outside as a discharge liquid through the discharge port 55 and the discharge pipe 80. Even if microplastics are collected in this manner with the impurities remaining, the user cannot perform accurate component analysis of the microplastics, and therefore cannot obtain accurate analysis results. Furthermore, the presence of impurities in the collected material may affect weight or size measurements.
 そこで、実施の形態に係る処理装置1は、S1において試料に含まれる廃液を排出する際、所定量以上の廃液をポート63,64から排出可能にポンプ33を制御するように構成されている。制御装置500は、ポンプ33を制御してポンプ33における吸入側の圧力および吐出側の圧力を調整することによって、ポート63,64から排出可能な廃液の量を調整することができる。 The processing device 1 according to the embodiment is configured to control the pump 33 so that at least a predetermined amount of waste liquid can be discharged from the ports 63, 64 when discharging the waste liquid contained in the sample in S1. The control device 500 can adjust the amount of waste liquid that can be discharged from the ports 63, 64 by controlling the pump 33 to adjust the pressure on the suction side and the pressure on the discharge side of the pump 33.
 図5は、実施の形態に係る処理装置1が実行する廃液の排出について説明するための図である。図5(A)は、ポンプ33を用いた脱水によって容器50内から廃液を排出する様子を示し、図5(B)は、容器50内から廃液が排出された後の様子を示している。 FIG. 5 is a diagram for explaining the discharge of waste liquid performed by the processing device 1 according to the embodiment. FIG. 5(A) shows the state in which waste liquid is discharged from inside the container 50 by dehydration using the pump 33, and FIG. 5(B) shows the state after the waste liquid has been discharged from inside the container 50.
 図5(A)に示すように、制御装置500は、処理部51に試料が収容された後、ポンプ33を制御してポンプ33における吸入側の圧力および吐出側の圧力を調整することによって、容器50内を脱水する。このとき、制御装置500は、所定量以上の廃液を容器50から排出するようにポンプ33を制御する。具体的には、制御装置500は、処理部51の容量である150ml以上の廃液を容器50から排出可能にポンプ33を制御する。より好ましくは、制御装置500は、処理部51の容量である150mlよりも十分多い量、たとえば、200mlの廃液を容器50から排出可能にポンプ33を制御する。 As shown in FIG. 5(A), after the sample is contained in the processing section 51, the control device 500 controls the pump 33 to adjust the pressure on the suction side and the pressure on the discharge side of the pump 33, thereby dehydrating the inside of the container 50. At this time, the control device 500 controls the pump 33 so as to discharge at least a predetermined amount of waste liquid from the container 50. Specifically, the control device 500 controls the pump 33 so as to discharge at least 150 ml of waste liquid, which is the capacity of the processing section 51, from the container 50. More preferably, the control device 500 controls the pump 33 so as to discharge at least an amount of waste liquid, for example 200 ml, from the container 50, which is sufficiently larger than the capacity of the processing section 51, which is 150 ml.
 図5(B)に示すように、ポンプ33を用いた脱水が完了すると、容器50内には不要な液体が残らず、液体以外の対象物質を含む試料のみが容器50内に残留する。 As shown in FIG. 5(B), when dehydration using pump 33 is completed, no unnecessary liquid remains in container 50, and only the sample containing the target substance other than the liquid remains in container 50.
 このように、処理装置1は、制御装置500の制御に従ってポンプ33が処理部51の容量以上の廃液を排出可能に過剰脱水することによって、試料が収容された処理部51に不要な液体を極力残さずに、液体以外の試料のみを処理部51に残すことができる。これにより、その後の分解処理によって分解液が容器50に導入された場合でも、分解液が希釈されることがなく、容器50内の液面がフランジ部53の高さを超えることもない。したがって、処理装置1は、処理部51の範囲内で試料に含まれる夾雑物を分解液によって適切に分解処理することができる。 In this way, the processing device 1, by over-dehydrating so that the pump 33 can discharge waste liquid exceeding the capacity of the processing section 51 under the control of the control device 500, can leave only the non-liquid sample in the processing section 51, while leaving as little unnecessary liquid as possible in the processing section 51 containing the sample. As a result, even if a decomposition liquid is introduced into the container 50 by a subsequent decomposition process, the decomposition liquid will not be diluted, and the liquid level in the container 50 will not exceed the height of the flange portion 53. Therefore, the processing device 1 can appropriately decompose impurities contained in the sample using the decomposition liquid within the scope of the processing section 51.
 (態様)
 (第1項)一態様に係る処理装置は、試料を収容する容器と、試料が収容された容器から試料に含まれる液体を廃液として排出するポートと、ポートに接続されたポンプと、ポンプを制御する制御装置とを備える。制御装置は、所定量以上の廃液をポートから排出可能にポンプを制御する。
(Aspects)
(Item 1) A processing device according to one aspect includes a container for accommodating a sample, a port for discharging a liquid contained in the sample from the container as waste liquid, a pump connected to the port, and a control device for controlling the pump. The control device controls the pump so that a predetermined amount or more of the waste liquid can be discharged from the port.
 第1項に記載の処理装置によれば、容器から試料に含まれる液体を廃液として排出する際に、所定量以上の廃液をポートから排出可能にポンプを制御するため、試料が収容された容器に不要な液体を極力残さないようにすることができ、その後の分解処理によって試料に含まれる夾雑物を適切に処理することができる。  According to the processing device described in paragraph 1, when the liquid contained in the sample is discharged from the container as waste liquid, the pump is controlled so that at least a predetermined amount of waste liquid can be discharged from the port, so that unnecessary liquid is prevented from remaining in the container containing the sample as much as possible, and the impurities contained in the sample can be appropriately treated by the subsequent decomposition process.
 (第2項)第1項に記載の処理装置において、容器は、試料を処理するための処理部を含む。ポートは、処理部に設けられ、所定量は、処理部の容量と同じである。 (2) In the processing device described in 1, the container includes a processing section for processing the sample. The port is provided in the processing section, and the predetermined amount is the same as the capacity of the processing section.
 第2項に記載の処理装置によれば、処理部の容量以上の廃液をポートから排出可能であるため、試料が収容された容器の処理部に不要な液体を限界まで残さないようにすることができる。 The processing device described in paragraph 2 can discharge waste liquid from the port in an amount greater than the capacity of the processing section, making it possible to prevent unnecessary liquid from remaining in the processing section of the container containing the sample to the maximum extent possible.
 (第3項)第2項に記載の処理装置において、試料に含まれる対象物質を補足して容器内に保持するストレーナをさらに備える。ストレーナは、処理部に配置される。 (3) The processing device described in 2 further includes a strainer that captures the target substance contained in the sample and holds it in the container. The strainer is disposed in the processing unit.
 第3項に記載の処理装置によれば、ストレーナによって対象物質を補足可能な処理部の容量以上の廃液をポートから排出可能であるため、その後の分解処理によって処理部内に処理液が導入された場合でも、ストレーナが設けられた処理部の範囲内で試料に含まれる夾雑物を適切に処理することができる。 The processing device described in paragraph 3 allows the strainer to discharge waste liquid from the port in an amount greater than the capacity of the processing section that can capture the target substance, so even if processing liquid is introduced into the processing section by a subsequent decomposition process, impurities contained in the sample can be appropriately processed within the range of the processing section where the strainer is installed.
 (第4項)第2項または請求項3に記載の処理装置において、制御装置は、廃液が排出された後、試料に含まれる夾雑物を処理するために処理部の容量以下の処理液を容器に導入する。 (4) In the processing device described in 2 or 3, after the waste liquid is discharged, the control device introduces a processing liquid into the container that is equal to or less than the capacity of the processing section in order to process impurities contained in the sample.
 第4項に記載の処理装置によれば、処理部の容量以上の廃液をポートから排出可能であるため、その後の分解処理によって処理部の容量以下の処理液が導入されることによって、処理部の範囲内で試料に含まれる夾雑物を適切に処理することができる。 The processing device described in paragraph 4 can discharge waste liquid from the port in an amount greater than the capacity of the processing section, so that the subsequent decomposition process introduces processing liquid in an amount less than the capacity of the processing section, allowing the impurities contained in the sample to be appropriately processed within the range of the processing section.
 (第5項)第1項~第4項のいずれか1項に記載の処理装置において、対象物質は、マイクロプラスチックである。 (5) In the processing device described in any one of paragraphs 1 to 4, the target substance is microplastics.
 第5項に記載の処理装置によれば、試料に含まれる夾雑物を適切に処理してマイクロプラスチックを回収することができる。 The processing device described in paragraph 5 can properly process impurities contained in a sample and recover microplastics.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. The scope of the present invention is indicated by the claims, not by the description of the embodiments above, and is intended to include all modifications within the meaning and scope of the claims.
 1 処理装置、10 精製器、11,12,13,14,15,16,17,18,19,20,21,22,23 配管、31,32,33 ポンプ、41,42,43 電磁弁、50 容器、51 処理部、52 オーバーフロー部、53,54,310 フランジ部、55 排出口、61,62,63,64 ポート、71 スターラ、72 撹拌子、80 排出管、90 固定器具、110 濾過部、210 分解液リザーバ、220 重液リザーバ、230 リンス液リザーバ、240,250,260 廃液リザーバ、300 ストレーナ、500 制御装置、501 演算装置、502 メモリ、503 通信装置、504 表示装置、505 入力装置、506 データ読取装置、507 記録媒体、510 ストレージ、511 制御プログラム、512 制御用データ。 1 Processing device, 10 Purifier, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 Piping, 31, 32, 33 Pump, 41, 42, 43 Solenoid valve, 50 Container, 51 Processing device, 52 Overflow section, 53, 54, 310 Flange section, 55 Discharge outlet, 61, 62, 63, 64 Port, 71 Stirrer, 72 Stirring bar, 80 Discharge pipe, 90 Fixing device, 1 10 Filtration section, 210 Decomposition liquid reservoir, 220 Heavy liquid reservoir, 230 Rinse liquid reservoir, 240, 250, 260 Waste liquid reservoir, 300 Strainer, 500 Control device, 501 Arithmetic unit, 502 Memory, 503 Communication device, 504 Display device, 505 Input device, 506 Data reading device, 507 Recording medium, 510 Storage, 511 Control program, 512 Control data.

Claims (5)

  1.  試料を処理して対象物質を回収するための処理装置であって、
     前記試料を収容する容器と、
     前記試料に含まれる夾雑物を分解するための処理液を前記容器に導入する配管と、
     前記試料が収容された前記容器から前記試料に含まれる液体を廃液として排出するポートと、
     前記ポートに接続されたポンプと、
     前記ポンプを制御する制御装置とを備え、
     前記制御装置は、所定量以上の前記廃液を前記ポートから排出可能に前記ポンプを制御する、処理装置。
    A processing device for processing a sample to recover a target substance, comprising:
    A container for containing the sample;
    A pipe for introducing a treatment liquid for decomposing impurities contained in the sample into the container;
    a port for discharging a liquid contained in the sample from the container in which the sample is accommodated as a waste liquid;
    A pump connected to the port;
    A control device for controlling the pump,
    The control device controls the pump so that a predetermined amount or more of the waste liquid can be discharged from the port.
  2.  前記容器は、前記試料を処理するための処理部を含み、
     前記ポートは、前記処理部に設けられ、
     前記制御装置は、前記処理部の容量以上の前記廃液を前記ポートから排出可能に前記ポンプを制御する、請求項1に記載の処理装置。
    the vessel includes a processing section for processing the sample;
    The port is provided in the processing section,
    The processing apparatus according to claim 1 , wherein the control device controls the pump so that the waste liquid is discharged from the port in an amount equal to or greater than the capacity of the processing section.
  3.  前記試料に含まれる対象物質を補足して前記容器内に保持するストレーナをさらに備え、
     前記ストレーナは、前記処理部に配置される、請求項2に記載の処理装置。
    A strainer is further provided to capture a target substance contained in the sample and hold it in the container,
    The processing apparatus of claim 2 , wherein the strainer is disposed in the processing section.
  4.  前記制御装置は、前記廃液が排出された後、前記試料に含まれる夾雑物を処理するために前記処理部の容量以下の処理液を前記容器に導入する、請求項2または請求項3に記載の処理装置。 The processing device according to claim 2 or 3, wherein the control device introduces a processing liquid into the container in an amount equal to or less than the capacity of the processing section to process impurities contained in the sample after the waste liquid is discharged.
  5.  前記対象物質は、マイクロプラスチックである、請求項1~請求項3のいずれか1項に記載の処理装置。 The processing device according to any one of claims 1 to 3, wherein the target substance is microplastics.
PCT/JP2022/038157 2022-10-13 2022-10-13 Treatment device WO2024079837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038157 WO2024079837A1 (en) 2022-10-13 2022-10-13 Treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038157 WO2024079837A1 (en) 2022-10-13 2022-10-13 Treatment device

Publications (1)

Publication Number Publication Date
WO2024079837A1 true WO2024079837A1 (en) 2024-04-18

Family

ID=90669230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038157 WO2024079837A1 (en) 2022-10-13 2022-10-13 Treatment device

Country Status (1)

Country Link
WO (1) WO2024079837A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093272A (en) * 2002-08-30 2004-03-25 Taisei Kiso Sekkei Kk Analytical measuring method of heavy metal components contained in liquid, and shape analysis method for heavy metals
JP2008128991A (en) * 2006-11-24 2008-06-05 Sumitomo Electric Ind Ltd Method and apparatus for high temperature filtration and container for filtration
WO2022004062A1 (en) * 2020-06-29 2022-01-06 株式会社島津製作所 Sample purification device and analytical system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093272A (en) * 2002-08-30 2004-03-25 Taisei Kiso Sekkei Kk Analytical measuring method of heavy metal components contained in liquid, and shape analysis method for heavy metals
JP2008128991A (en) * 2006-11-24 2008-06-05 Sumitomo Electric Ind Ltd Method and apparatus for high temperature filtration and container for filtration
WO2022004062A1 (en) * 2020-06-29 2022-01-06 株式会社島津製作所 Sample purification device and analytical system

Similar Documents

Publication Publication Date Title
Vidal A palynological preparation method
JP7548310B2 (en) Sample purification device, analysis system, sample purification method, and control program
JP6158118B2 (en) Coagulant injection rate setting support system, coagulant injection rate setting support method, coagulant injection rate setting support device, and coagulant injection rate setting support program
WO2024079837A1 (en) Treatment device
WO2024079836A1 (en) Processing device, processing method, and control program
WO2022004062A1 (en) Sample purification device and analytical system
WO2024079835A1 (en) Recovery implement and recovery system
Elbana et al. New mathematical model for computing head loss across sand media filter for microirrigation systems
TWI613004B (en) Coolant regeneration device and coolant regeneration method
WO2023127258A1 (en) Purifier and purifier control method
WO2023127259A1 (en) Refining device and control method for refining device
WO2023127254A1 (en) Container and purification apparatus
WO2023119844A1 (en) Purification apparatus
WO2023127274A1 (en) Purifier
WO2023127276A1 (en) Purification apparatus
CN204485360U (en) A kind of device extracting solable matter from solid material
EP4454759A1 (en) Purification apparatus
Kinnarinen et al. Experimental Study on the influence of selected process variables on the separation of a fine particle suspension with a pilot scale decanter centrifuge
US10889514B2 (en) Water treatment method and water treatment apparatus
WO2023090069A1 (en) Refiner and control method
CN206549309U (en) A kind of new take-off pond
JP6319622B2 (en) Fly ash cleaning device and fly ash cleaning method
Sparks et al. Solid–Liquid Filtration–Examples of Processes
CN211078694U (en) On-site separation and recovery device for oil field fracturing waste liquid
JP2001133450A (en) Normal hexane extraction substance autoanalyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962057

Country of ref document: EP

Kind code of ref document: A1