WO2024078099A1 - 光波导组件及增强现实设备 - Google Patents

光波导组件及增强现实设备 Download PDF

Info

Publication number
WO2024078099A1
WO2024078099A1 PCT/CN2023/110229 CN2023110229W WO2024078099A1 WO 2024078099 A1 WO2024078099 A1 WO 2024078099A1 CN 2023110229 W CN2023110229 W CN 2023110229W WO 2024078099 A1 WO2024078099 A1 WO 2024078099A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
layer
protective layer
grating
light
Prior art date
Application number
PCT/CN2023/110229
Other languages
English (en)
French (fr)
Inventor
叶万俊
林奉铭
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024078099A1 publication Critical patent/WO2024078099A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings

Definitions

  • the present application relates to the field of electronics, and in particular to an optical waveguide component and an augmented reality device.
  • Augmented reality (AR) technology can combine virtuality with reality and is now being used more and more widely.
  • Optical waveguides are essential components of augmented reality devices.
  • Existing optical waveguides are mostly made of glass, which has a high density and a heavy load on the bridge of the nose, which is not user-friendly.
  • glass because glass is brittle, the mechanical reliability of glass substrate optical waveguides is poor, and they are very fragile when dropped. Moreover, glass breaks into sharp glass slag, which is dangerous.
  • resin optical waveguides In order to better improve the drop resistance of optical waveguides and reduce weight, resin optical waveguides have emerged.
  • a protective layer is set on the grating layer.
  • the protective layer is bonded to the optical waveguide through a rubber frame to form an optical waveguide assembly, so that the grating area of the optical waveguide is in a completely sealed state. Since the protective layer is attached at room temperature, when the optical waveguide assembly is in a low temperature environment, due to the thermal expansion and contraction effect of the gas, the gas volume in the sealed area where the grating on the optical waveguide is located decreases, and the air pressure drops sharply.
  • the protective layer is sapphire or tempered glass, it has good rigidity, so there will be no significant dents when the air pressure drops; for plastic-based optical waveguide components, since the protective layer is replaced by plastic instead of sapphire, the rigidity is greatly reduced compared to sapphire, so when the air pressure drops, the protective layer will be seriously dented, and even some areas will directly adhere to the surface of the grating layer.
  • the distance between the protective layer and the optical waveguide is too small or even fits, Newton rings and adhesion will occur between the protective layer and the optical waveguide, which will seriously affect the transmittance of the optical waveguide component and cause great interference to the user's use of AR devices.
  • optical waveguide assembly which includes:
  • optical waveguide comprising a light conducting layer and a grating layer, the light conducting layer being used to transmit an optical signal entering the light conducting layer; the grating layer being arranged on a surface of the light conducting layer;
  • a first protective layer, the first protective layer is spaced apart and arranged on a side of the grating layer away from the light transmission layer;
  • a first support member, the first support member is disposed between the optical waveguide and the first protective layer;
  • the first connecting member is disposed between the optical waveguide and the first protective layer and is respectively connected to the first protective layer and the optical waveguide.
  • the first connecting member is disposed around the periphery of the first supporting member and around the periphery of the grating layer.
  • the embodiment of the present application further provides an augmented reality device, characterized in that it includes:
  • a projection optical machine the projection optical machine is used to project a light signal, the light signal includes image information;
  • the optical waveguide component of the embodiment of the present application is used to transmit the optical signal.
  • FIG. 1 is a schematic top view of the structure of an optical waveguide assembly according to an embodiment of the present application.
  • FIG2 is a schematic cross-sectional view of the optical waveguide assembly according to an embodiment of the present application along the A-A direction in FIG1 .
  • FIG. 3 is a schematic top view of the structure of an optical waveguide assembly according to another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of the bonding of the first protective layer and the optical waveguide according to an embodiment of the present application.
  • FIG5 is a picture of Newton's rings generated in an optical waveguide.
  • FIG6 is a schematic cross-sectional view of an optical waveguide assembly according to another embodiment of the present application along the A-A direction in FIG1 .
  • FIG. 7 is an enlarged view of the dotted frame I in FIG. 6 .
  • FIG. 8 is a schematic cross-sectional view of an optical waveguide assembly according to another embodiment of the present application along the AA direction in FIG. 1 .
  • FIG. 9 is an enlarged view of the dotted-line frame II in FIG. 8 .
  • FIG. 10 is a schematic diagram of the structure of a first protective layer or a second protective layer according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the structure of a first protective layer or a second protective layer according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of the first protective layer or the second protective layer according to another embodiment of the present application.
  • FIG. 13 is a schematic diagram of the structure of the first protective layer or the second protective layer according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a first protective layer, a first support member, and a coating on the surface of the first support member, or a second protective layer, a second support member, and a coating on the surface of the second support member according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the top view of the structure of the silk-screen printing plate according to an embodiment of the present application.
  • FIG. 16 is a structural schematic diagram of a preparation process for preparing a first support member on a first protective layer according to an embodiment of the present application.
  • FIG. 17 is a partial top view of a region of an optical waveguide corresponding to an outcoupling grating according to an embodiment of the present application.
  • FIG18 is a cross-sectional view of the optical waveguide and the first support member along the B-B direction in FIG17 according to an embodiment of the present application.
  • FIG. 19 is a partial top view of a region of an optical waveguide corresponding to an outcoupling grating according to an embodiment of the present application.
  • FIG20 is a cross-sectional view of the optical waveguide and the first support member along the C-C direction in FIG19 according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of the structure of an augmented reality device according to an embodiment of the present application.
  • Figure 22 is a schematic diagram of the cross-sectional structure of the augmented reality device of one embodiment of the present application along the D-D direction in Figure 21.
  • FIG. 23 is a circuit block diagram of an augmented reality device according to an embodiment of the present application.
  • references numerals 100-optical waveguide component, 10-optical waveguide, 11-light transmission layer, 13-grating layer, 131-incoupling grating, 133-outcoupling grating, 1331-coupling sub-grating, 135-turning grating, 20-first protective layer, 21-protective substrate layer, 23-color-changing layer, 25-anti-reflection film, 27-anti-fingerprint film, 40-first supporting member, 60-first connecting member, 100a-silk screen printing plate, 101a-through hole, 70-second protective layer, 80-second supporting member, 90-second connecting member, 20'-protective layer, 500-augmented reality device, 510-projection optical machine, 511-display, 513-lens, 530-wearable member, 531-first wearable sub-member, 533-second wearable sub-member, 540-processor, 550-carrying member, 560-memory.
  • an optical waveguide component comprising:
  • optical waveguide comprising a light conducting layer and a grating layer, the light conducting layer being used to transmit an optical signal entering the light conducting layer; the grating layer being arranged on a surface of the light conducting layer;
  • a first protective layer, the first protective layer is spaced apart and arranged on a side of the grating layer away from the light transmission layer;
  • a first support member, the first support member is disposed between the optical waveguide and the first protective layer;
  • the first connecting member is disposed between the optical waveguide and the first protective layer and is respectively connected to the first protective layer and the optical waveguide.
  • the first connecting member is disposed around the periphery of the first supporting member and around the periphery of the grating layer.
  • the first supporting member is connected to a surface of the grating layer facing away from the light conducting layer or is connected to a surface of the first protective layer facing the light conducting layer.
  • the optical waveguide component further comprises:
  • a second protective layer is spaced apart and arranged on a side of the light-conducting layer away from the grating layer;
  • a second support member is disposed between the light-conducting layer and the second protective layer, the second support member being connected to a surface of the second protective layer facing the light-conducting layer;
  • the second connecting member is disposed between the optical waveguide and the second protective layer and is respectively connected to the second protective layer and the optical waveguide.
  • the second connecting member is disposed around the outer periphery of the second supporting member.
  • the first support member is connected to the surface of the first protective layer facing the light conductive layer, there are multiple first support members, and the multiple first support members are arranged in an array; there are multiple second support members, and the multiple second support members are arranged in an array.
  • a height h1 of the first support member is in a range of 0.01 mm ⁇ h1 ⁇ 0.2 mm; a height h2 of the second support member is in a range of 0.01 mm ⁇ h2 ⁇ 0.2 mm.
  • the distance d1 between the two farthest points on the area enclosed by the orthographic projection of the first protective layer facing the light conductive layer of the first supporting member is in the range of 0.01mm ⁇ d1 ⁇ 0.2mm; the distance d2 between the two farthest points on the area enclosed by the orthographic projection of the second supporting member facing the light conductive layer of the second protective layer is in the range of 0.01mm ⁇ d2 ⁇ 0.2mm.
  • the shortest distance s1 between any two adjacent first support members is in the range of 0.5 mm ⁇ s1 ⁇ 10 mm; the shortest distance s2 between any two adjacent second support members is in the range of 0.5 mm ⁇ s2 ⁇ 10 mm.
  • the grating layer includes a coupling-out grating
  • the coupling-out grating includes multiple coupling-out sub-gratings arranged at intervals; the first support member is connected to the surface of the coupling-out sub-grating facing away from the light-conducting layer, and some of the coupling-out sub-gratings are connected to one or more first support members.
  • a plurality of the first support members are randomly distributed, and each of the first support members is connected to a surface of the outcoupling sub-grating facing away from the light transmission layer.
  • the outcoupling grating is a two-dimensional grating
  • the multiple outcoupling sub-gratings are arranged in an array
  • some of the multiple outcoupling sub-gratings extend in a direction close to the first protective layer
  • the parts of the some outcoupling sub-gratings extending in a direction close to the first protective layer form the first supporting member.
  • the outcoupling grating is a one-dimensional grating, and parts of some outcoupling sub-gratings among the plurality of outcoupling sub-gratings extend in a direction close to the first protective layer, and the extended parts form the first supporting member.
  • a height h1' of the first support member is in the range of 10 ⁇ m ⁇ h1' ⁇ 50 ⁇ m.
  • the optical waveguide component has a geometric center and a support distribution area, the support distribution area is arranged close to the geometric center, and a plurality of the first support members are randomly distributed in the support distribution area.
  • the equivalent circle radius of the support distribution area ranges from 0.25 cm to 2 cm.
  • the average distribution density of the first support members is 10 to 100 per mm2.
  • a distance between any two adjacent first support members is more than 10 times the period of the outcoupling grating.
  • the refractive index of the grating layer is greater than the refractive index of the light transmission layer.
  • the birefringence phase difference of the light-conducting layer is less than or equal to 20 nm.
  • the light-conducting layer is a thermoplastic resin or a thermosetting resin
  • the thermoplastic resin includes polycarbonate
  • the thermosetting resin includes polyurethane
  • the light-conducting layer is prepared by an injection molding or casting molding process
  • the grating layer is prepared by a nanoimprinting process.
  • an augmented reality device comprising:
  • a projection optical machine the projection optical machine is used to project a light signal, the light signal includes image information;
  • the optical waveguide component described in the first aspect is used to transmit the optical signal.
  • Augmented reality is a technology that provides users with an enhanced sense of reality by superimposing computer-generated image input onto images of the real world and inputting them into the human eye. It is now being used more and more widely.
  • Waveguide is a medium device that guides the propagation of light waves in it, and is an indispensable component of augmented reality devices; optical waveguides include geometric optical waveguides and diffraction optical waveguides. Compared with geometric optical waveguides, the gratings of diffraction optical waveguides are more flexible in design and production, have higher mass manufacturability and yield, and are therefore more widely used.
  • the diffraction optical waveguide solution for AR glasses is a mainstream technical solution because its optical lenses are thin and light, and its appearance is closer to traditional glasses. At the same time, it is more convenient to implement and easier to mass produce.
  • Diffraction optical waveguides can be further divided into surface relief gratings and volume holographic gratings.
  • Diffraction optical waveguides such as surface relief optical waveguides
  • the density of the glass substrate is high, and the bridge of the nose bears a heavy load when used for augmented reality glasses, which is not user-friendly; and because glass is brittle, the mechanical reliability of glass optical waveguides is poor, and it is very fragile when dropped, and the glass breaks into sharp glass slag, which is dangerous.
  • Diffraction optical waveguides can also be prepared by injection molding or casting molding to prepare optical waveguides in which the light transmission layer and the grating are integrated and made of the same material.
  • the refractive index of the material is low, so the refractive index of the obtained coupling grating is also low, which will reduce the efficiency of the coupling grating to couple the optical signal and reduce the optical efficiency of the optical waveguide.
  • the embodiment of the first aspect of the present application provides an optical waveguide component 100.
  • the optical waveguide component 100 includes an optical waveguide 10, which is used to transmit the optical signal incident on the optical waveguide 10 and perform one-dimensional or two-dimensional pupil expansion on the image information in the optical signal.
  • the optical waveguide 10 includes an optical conductive layer 11 and a grating layer 13.
  • the optical conductive layer 11 is made of resin and is used to transmit the optical signal entering the optical conductive layer 11.
  • the grating layer 13 is arranged on one side of the optical conductive layer 11.
  • the grating layer 13 includes an in-coupling grating 131 and an out-coupling grating 133 arranged at intervals.
  • the in-coupling grating 131 is used to couple the optical signal into the optical conductive layer 11, and the out-coupling grating 133 is used to couple the optical signal transmitted through the optical conductive layer 11 out of the optical waveguide 10.
  • the optical waveguide 10 of the embodiment of the present application can be applied to near-eye display systems such as augmented reality glasses, augmented reality helmets, and augmented reality masks.
  • the coupling-in grating 131 and the coupling-out grating 133 are both made of resin.
  • the grating layer 13 and the light-transmitting layer 11 are made of different materials.
  • the grating layer 13 and the light-transmitting layer 11 may have different components; the grating layer 13 and the light-transmitting layer 11 may also be made of different resins.
  • the coupling-in grating 131 may be, but not limited to, one of a binary grating, a tilted grating, a blazed grating, a two-dimensional grating, etc.
  • the coupling-out grating 133 may be, but not limited to, one of a binary grating, a tilted grating, a blazed grating, a two-dimensional grating, etc.
  • the coupling-in grating 131 and the coupling-out grating 133 may be of the same type or different types.
  • the grating period of the coupling-in grating 131 ranges from 200nm to 800nm, and the grating depth is ⁇ 300nm.
  • the grating period of the coupling-out grating 133 ranges from 200nm to 800nm, and the grating depth is ⁇ 300nm.
  • the numerical value can be any numerical value between a and b, including the endpoint numerical value a, and including the endpoint numerical value b.
  • the grating layer 13 further includes a turning grating 135, and the turning grating 135 is used to expand the pupil of the image information in the optical signal.
  • the turning grating 135, the coupling-in grating 131 and the coupling-out grating 133 are respectively arranged at intervals on the same side of the optical transmission layer 11.
  • the optical signal coupled into the optical transmission layer 11 is firstly expanded by the turning grating 135, and then coupled out of the optical waveguide 10 by the coupling-out grating 133.
  • the turning grating 135 can be, but is not limited to, one of a binary grating, a tilted grating, a blazed grating, a two-dimensional grating, etc.
  • the types of the turning grating 135, the coupling-in grating 131 and the coupling-out grating 133 can be the same or different.
  • the grating period of the turning grating 135 ranges from 200nm to 800nm, and the grating depth is ⁇ 300nm.
  • the optical waveguide component 100 of the present embodiment includes an optical waveguide 10, and the optical waveguide 10 includes a light conductive layer 11 and a grating layer 13.
  • the light conductive layer 11 is made of resin. Compared with glass, resin has a lighter weight, so that the optical waveguide 10 can have a lighter weight. When applied to an augmented reality device, the weight of the augmented reality device can be reduced and the wearing comfort of the augmented reality device can be improved. Furthermore, the optical waveguide 10 made of resin is not easy to break when dropped, has better safety, and has lower cost.
  • the light-conducting layer 11 is a thermoplastic resin or a thermosetting resin, wherein the thermoplastic resin includes polycarbonate (PC) and the thermosetting resin includes polyurethane (PU).
  • the thermoplastic resin includes polycarbonate (PC) and the thermosetting resin includes polyurethane (PU).
  • PC polycarbonate
  • PU polyurethane
  • Polycarbonate and polyurethane have a high refractive index, which can make the manufactured optical waveguide 10 have a larger field of view (FOV) and better optical performance; in addition, polycarbonate and polyurethane have a high refractive index.
  • the internal transmittance of at least one of the three wavelength bands of blue light 420-500nm or green light 500nm-560nm or red light 560-780nm is greater than 99% at a thickness of 1mm, which has good light transmittance.
  • both polycarbonate and polyurethane have a high thermal deformation temperature (polycarbonate>120°C, polyurethane>110°C), which can better withstand the baking temperature of the embossing glue (e.g., 80°C to 120°C) and the coating temperature during high-temperature coating (e.g., 80°C to 120°C).
  • both polycarbonate and polyurethane have a low birefringence, which can better avoid the light (i.e., light signal) from being deflected during total reflection in the light-conducting layer 11, affecting the brightness and clarity of the actual image, so that the light waveguide 10 has a better display effect.
  • the refractive index of the grating layer 13 is greater than the refractive index of the light transmission layer 11.
  • the refractive index of the grating layer 13 is greater than the refractive index of the light transmission layer 11.
  • the grating layer 13 has a higher refractive index, so that the coupling efficiency of the coupling grating 131 to the optical signal can be improved, and the optical efficiency of the optical waveguide 10 can be improved.
  • the refractive index of the light transmission layer 11 is greater than or equal to 1.55. It can be understood that the refractive index of the polycarbonate and polyurethane in the embodiment of the present application is greater than or equal to 1.55.
  • the birefringence phase difference of the light-conducting layer 11 is less than or equal to 20nm.
  • the birefringence phase difference of the light-conducting layer 11 is less than or equal to 20nm.
  • the birefringence phase difference of the light-conducting layer 11 is less than or equal to 5nm.
  • the birefringence phase difference of the light-conducting layer 11 can be, but is not limited to, 20nm, 18nm, 16nm, 14nm, 12nm, 10nm, 8nm, 6nm, 5nm, 3nm, 1nm, etc.
  • the thickness of the light conductive layer 11 is 0.3 mm to 3 mm.
  • the thickness of the light conductive layer 11 may be, but is not limited to, 0.3 mm, 0.5 mm, 0.8 mm, 1.0 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, etc. If the thickness of the light conductive layer 11 is too thin, the structural strength of the light conductive layer 11 is too weak; if the thickness of the light conductive layer 11 is too thick, the manufactured optical waveguide component 100 is heavy and affects the user experience.
  • the optical waveguide made of glass has poor anti-drop ability and is easy to break when it falls.
  • a plastic frame to bond protective layers such as chemically strengthened glass or sapphire
  • the anti-drop ability is still poor, and the glass optical waveguide is heavy, resulting in a high weight of the whole device when used in augmented reality equipment, which is not conducive to long-term wear.
  • a resin optical waveguide can be used instead of a glass optical waveguide, and a resin protective layer can be used instead of a glass protective layer, which can not only greatly reduce the weight of the optical waveguide assembly (the weight can be reduced by more than 50%), but also solve the problem of the optical waveguide being easy to break when it falls.
  • the optical waveguide 10 and the protective layer 20' are bonded by a rubber frame, there is a gap between the optical waveguide 10 and the protective sheet, and the grating area of the optical waveguide 10 is in a completely sealed state for dust and water resistance. Since the protective layer 20' of the optical waveguide assembly 100 is bonded at room temperature, when the optical waveguide assembly 100 is in a low temperature environment, due to the thermal expansion and contraction effect of the gas, the volume of the gas in the sealed area where the grating on the optical waveguide 10 is located is reduced, and the gas pressure drops sharply.
  • the rigidity is very good, so when the air pressure decreases, there will be no significant depression; while for the plastic-based optical waveguide component 100, since the protective layer 20' is replaced by plastic instead of sapphire, the rigidity is greatly reduced compared with sapphire. Therefore, when the air pressure decreases, the protective layer 20' (the protective layer 20' facing away from the human eye when in use, or the protective layer 20' arranged on the side of the optical waveguide 10 with the grating layer 13) will be seriously depressed, and even part of the area will directly fit with the surface of the grating layer 13.
  • Newton rings and adhesion phenomena will occur between the protective layer 20' and the optical waveguide 10, as shown in Figure 5.
  • Newton rings are a series of colored rings of different colors, which will seriously affect the transmittance of the optical waveguide component 100 and cause great interference to the user's use of AR devices.
  • the optical waveguide component 100 when there is dirt on the surface of the optical waveguide component 100, when the surface of the optical waveguide component 100 is wiped, the optical waveguide component 100 will bend due to the force during wiping, causing the protective layer 20' to be concave. There is also a high possibility that the protective layer 20' and the optical waveguide 10 are close together, thereby generating Newton rings and adhesion.
  • the optical waveguide assembly 100 of the first embodiment of the present application further includes a first protective layer 20 , a first support member 40 and a first connecting member 60 , and the first protective layer 20 is spaced apart and disposed on a side of the grating layer 13 away from the light transmission layer 11 ;
  • the first support member 40 is disposed between the optical waveguide 10 and the first protective layer 20;
  • the first connecting member 60 is disposed between the optical waveguide 10 and the first protective layer 20, and the first connecting member 60 is disposed around the periphery of the first support member 40 and around the periphery of the grating layer 13, and the first connecting member 60 is respectively connected to the first protective layer 20 and the optical waveguide 10.
  • first support member 40 is connected to the surface of the grating layer 13 away from the light transmission layer 11 or connected to the surface of the first protective layer 20 facing the light transmission layer 11. It can be understood that the first support member 40 is arranged on the grating layer 13 and supported on the grating layer 13, or the first support member 40 is arranged on the side of the first protective layer 20 facing the light transmission part and supported on the first protective layer 20.
  • the first support member 40 when the first support member 40 is connected to the surface of the grating layer 13 away from the light transmission layer 11, the first support member 40 extends from the surface of the grating layer 13 away from the light transmission layer 11 to the direction close to the first protective layer 20; when the first support member 40 is connected to the surface of the first protective layer 20 facing the light transmission layer 11, the first support member 40 extends from the surface of the first protective layer 20 facing the light transmission layer 11 to the direction close to the light transmission layer 11.
  • the first connector 60 is a rubber frame, i.e., a hollow annular adhesive layer. It can be understood that the first connector 60, the first protective layer 20 and the optical waveguide 10 enclose a closed space (not shown), and the first support member 40 and the grating layer 13 are contained in the closed space.
  • the first connector 60 is used to fit the first protective layer 20 and the optical waveguide 10, and to keep a certain gap between the first protective layer 20 and the optical waveguide 10 to avoid the first protective layer 20 fitting the optical waveguide 10 and affecting the transmission of the optical signal in the optical waveguide 10.
  • the material of the first protective layer 20 can be, but is not limited to, polymethyl methacrylate, polycarbonate, etc.
  • the first protective layer 20 When the first protective layer 20 is recessed and attached to the optical waveguide 10, a circle of nanometer-scale air film will be generated around the attached area of the first protective layer 20 and the optical waveguide 10.
  • part of the light When ambient light is incident, part of the light will be directly reflected by the surface of the first protective layer 20, and part of the light will pass through the first protective layer 20 to illuminate the optical waveguide 10 and be reflected by the surface of the optical waveguide 10; because light has wave properties, when the thickness of the air film is 1/4 of the wavelength of light, the light reflected by the surface of the optical waveguide 10 and the light reflected by the surface of the first protective layer 20 have a phase difference of 1/2 wavelength, and because the two beams of light are the same incident light and are mutually coherent, when the phase difference of the two beams of light is 1/2 wavelength, they will cancel each other out.
  • the incident ambient light is mixed light
  • different colors of light have different wavelengths.
  • the thickness of the air film is 1/4 of the wavelength of green light
  • the green light parts of the two beams of light in this area cancel each other out, leaving only the mixed light of the remaining visible light, which appears as a colored halo
  • the thickness of the air film is 1/4 of the wavelength of other colors of light
  • other colors will be displayed; in summary, Newton rings of different colors will appear around the fitting area.
  • the optical waveguide component 100 of the embodiment of the present application includes a first support member 40, which is arranged between the optical waveguide 10 and the first protective layer 20.
  • the first support member 40 is connected to the surface of the grating layer 13 away from the light conductive layer 11 or connected to the surface of the first protective layer 20 facing the light conductive layer 11; when the optical waveguide component 100 is in a low temperature environment, the air pressure in the closed space enclosed by the first connecting member 60, the first protective layer 20 and the optical waveguide 10 is reduced.
  • the atmospheric pressure or the wiping optical waveguide component 100 When the atmospheric pressure or the wiping optical waveguide component 100 generates a force toward the optical waveguide 10 on the first protective layer 20, due to the supporting effect of the first support member 40, the first protective layer 20 will not fit with the optical waveguide 10, and will not even be sunken, so that Newton rings or adhesion phenomena will not be generated, thereby avoiding affecting the light transmittance of the optical waveguide component 100 under low temperature or external force conditions, and the introduction of the first support member 40 will not affect the display effect of the optical waveguide component 100.
  • the first support member 40 is connected to the surface of the grating layer 13 facing away from the light transmission layer 11 or to the surface of the first protective layer 20 facing the light transmission layer 11. This can better simplify the preparation process of the optical waveguide component 100 and avoid the influence of the introduction of the first support member 40 on light transmission.
  • the number of the first support members 40 is multiple, and the multiple first support members 40 are arranged in an array. It can be understood that when the number of the first support members 40 is multiple, the multiple first support members 40 are arranged in an array on the surface of the first protective layer 20 facing the light conductive layer 11, and each first support member 40 extends from the surface of the first protective layer 20 facing the light conductive layer 11 toward the direction close to the light conductive layer 11.
  • the first support members 40 arranged in an array have a more uniform distribution of the supporting force on the first protective layer 20, and when the first protective layer 20 is subjected to external forces such as external atmospheric pressure or wiping the optical waveguide component 100, the first protective layer 20 can be better prevented from being sunken and the generation of Newton's rings can be better prevented.
  • the plurality of first support members 40 can be distributed periodically, that is, the plurality of first support members 40 can be distributed periodically.
  • the support members 40 are periodically distributed lattice support structures.
  • the plurality of first support members 40 are at least arranged in an array near the geometric center of the first protective layer 20; in other embodiments, the plurality of first support members 40 may also be distributed on the entire surface of the first protective layer 20 facing the optical waveguide 10.
  • the shape of the first support member 40 may be, but is not limited to, a regular shape such as a hemispherical shape, a conical shape, a cylindrical shape, etc. In other embodiments, it may also be an irregular shape.
  • the hemispherical shape of the first support member 40 is used as an example for illustration, which should not be understood as a limitation on the first support member 40.
  • the height h1 of the first support member 40 is in the range of 0.01 mm ⁇ h1 ⁇ 0.2 mm.
  • the height h1 of the first support member 40 is in the range of 10 ⁇ m ⁇ h1 ⁇ 200 ⁇ m.
  • the height h1 of the first support member 40 may be, but is not limited to, 10 ⁇ m, 30 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 140 ⁇ m, 160 ⁇ m, 180 ⁇ m, 200 ⁇ m, etc. When the height of the first support member 40 is too small, it will not produce sufficient support effect.
  • the thickness of the air film between the first protective layer 20 and the optical waveguide 10 is small, and there is still a risk of producing Newton rings visible to the naked eye.
  • the height of the first support member 40 is too large, the microstructure of the first support member 40 is too obvious and visible to the naked eye, affecting the wearing visual experience.
  • the wavelength of visible light is 380nm to 750nm.
  • the height of the first support member 40 is greater than 10 ⁇ m, the air film between the first protective layer 20 and the optical waveguide 10 is also greater than 10 ⁇ m.
  • the phase difference between the two beams of light exceeds 10 times the wavelength, and the energy of the interfering light is weak. At this time, it is difficult to observe Newton's rings with the naked eye. Therefore, this solution can basically solve the problem of Newton's rings.
  • the height h1 of the first support member 40 is equal to the thickness of the first connecting member 60, so that one end of the first support member 40 can be connected to the first protective layer 20, and the other end can abut against the optical waveguide 10, thereby better preventing the first protective layer 20 from being dented at low temperature or under external force to produce Newton rings, thereby affecting the transmittance of the optical waveguide component 100.
  • the distance d1 between the two farthest points of the first support member 40 on the area surrounded by the orthographic projection of the first protective layer 20 facing the surface of the light-conducting layer 11 is in the range of 0.01mm ⁇ d1 ⁇ 0.2mm.
  • the distance d1 between the two farthest points of the first support member 40 on the area surrounded by the orthographic projection of the first protective layer 20 facing the surface of the light-conducting layer 11 is in the range of 10 ⁇ m ⁇ d1 ⁇ 200 ⁇ m; specifically, the distance d1 between the two farthest points of the first support member 40 on the area surrounded by the orthographic projection of the first protective layer 20 facing the surface of the first support member 40 can be, but is not limited to, 10 ⁇ m, 30 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 140 ⁇ m, 160 ⁇ m, 180 ⁇ m, 200 ⁇ m, etc. When the size of the first support member 40 is too small, it cannot produce sufficient supporting effect.
  • the thickness of the air film between the first protective layer 20 and the optical waveguide 10 is small, and there is still a risk of producing Newton rings visible to the naked eye.
  • the size of the first support member 40 is too large, the microstructure of the first support member 40 is too obvious and visible to the naked eye, affecting the wearing visual experience.
  • the first support member 40 is hemispherical, and the distance d1 between the two farthest points of the first support member 40 on the area enclosed by the orthographic projection of the first protective layer 20 facing the surface of the first support member 40 is the diameter of the first support member 40, and the diameter d1 of the first support member 40 ranges from 0.01 mm to 0.2 mm.
  • the range of the shortest distance s1 between any two adjacent first support members 40 is 0.5mm ⁇ s1 ⁇ 10mm.
  • the shortest distance s1 between any two adjacent first support members 40 can be, but is not limited to, 0.5mm, 0.8mm, 1mm, 2mm, 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, etc.
  • the multiple first support members 40 have the same shape, the height and lateral dimensions (such as width, length, diameter, etc.) of each first support member 40 are equal, and the spacing between any two adjacent first support members 40 is equal (that is, the distance between two adjacent first support members 40 in the horizontal and longitudinal directions is equal).
  • the multiple first support members 40 have the same shape and h1, d1, and s1 are all equal. In this way, the supporting force of the first support members 40 on the first protective layer 20 can be more balanced, which can better prevent the first protective layer 20 from being dented.
  • the optical waveguide assembly 100 of this embodiment further includes a second protective layer 70, a second support member 80 and a Second connecting member 90.
  • the second protective layer 70 is arranged at intervals on the side of the light-conducting layer 11 away from the grating layer 13;
  • the second supporting member 80 is arranged between the light-conducting layer 11 and the second protective layer 70, and the second supporting member 80 is connected to the surface of the second protective layer 70 facing the light-conducting layer 11;
  • the second connecting member 90 is arranged between the optical waveguide 10 and the second protective layer 70, and the second connecting member 90 is arranged around the outer periphery of the second supporting member 80, and the second connecting member 90 is respectively connected to the second protective layer 70 and the optical waveguide 10.
  • the second protective layer 70 can be prevented from being sunken under low temperature or external force, so that the generation of Newton rings can be better prevented, so that the optical waveguide component 100 has a better display effect.
  • the second support member 80 is connected to the surface of the second protective layer 70 facing the light conductive layer 11. It can be understood that the second support member 80 is disposed on the side of the second protective layer 70 facing the light conductive portion and is supported by the second protective layer 70. When the second support member 80 is connected to the surface of the second protective layer 70 facing the light conductive layer 11, the second support member 80 extends from the surface of the second protective layer 70 facing the light conductive layer 11 toward the direction close to the light conductive layer 11.
  • the second connector 90 is a rubber frame, i.e., a hollow annular adhesive layer. It can be understood that the second connector 90, the second protective layer 70 and the optical waveguide 10 enclose a closed space (not shown), and the second support member 80 is accommodated in the closed space.
  • the second connector 90 is used to fit the second protective layer 70 and the optical waveguide 10, and to leave a certain gap between the second protective layer 70 and the optical waveguide 10 to avoid the second protective layer 70 fitting the optical waveguide 10 and affecting the transmission of the optical signal in the optical waveguide 10.
  • the material of the second protective layer 70 can be, but is not limited to, polymethyl methacrylate, polycarbonate, etc.
  • the multiple second support members 80 there are multiple second support members 80, and the multiple second support members 80 are arranged in an array. It can be understood that when there are multiple second support members 80, the multiple second support members 80 are arranged in an array on the surface of the second protective layer 70 facing the light conductive layer 11, and each second support member 80 extends from the surface of the second protective layer 70 facing the light conductive layer 11 toward the direction close to the light conductive layer 11.
  • the second support members 80 arranged in an array have a more uniform distribution of the supporting force on the second protective layer 70, and when the second protective layer 70 is subjected to external forces such as external atmospheric pressure or wiping the optical waveguide component 100, the second protective layer 70 can be better prevented from being sunken, and the generation of Newton rings can be better prevented.
  • the plurality of second support members 80 can be distributed periodically, that is, the plurality of second support members 80 are periodically distributed lattice support structures.
  • the plurality of second support members 80 are at least arrayed in the second protective layer 70 near the geometric center of the second protective layer 70; in other embodiments, the plurality of second support members 80 can also be distributed on the surface of the entire second protective layer 70 facing the optical waveguide 10.
  • the shape of the second support member 80 can be, but not limited to, a regular shape such as a hemispherical, conical, cylindrical, etc., and can also be an irregular shape in other embodiments. In the drawings of the present application, the second support member 80 is illustrated as a hemispherical shape, which should not be understood as a limitation on the second support member 80.
  • the height h2 of the second support member 80 is in the range of 0.01 mm ⁇ h2 ⁇ 0.2 mm.
  • the height h2 of the second support member 80 is in the range of 10 ⁇ m ⁇ h2 ⁇ 200 ⁇ m.
  • the height h2 of the second support member 80 may be, but is not limited to, 10 ⁇ m, 30 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 140 ⁇ m, 160 ⁇ m, 180 ⁇ m, 200 ⁇ m, etc.
  • the height of the second support member 80 When the height of the second support member 80 is too small, it will not produce sufficient support effect. When the second protective layer 70 is concave, the thickness of the air film between the second protective layer 70 and the optical waveguide 10 is small, and there is still a risk of producing Newton rings visible to the naked eye. When the height of the second support member 80 is too large, the microstructure of the second support member 80 is too obvious and visible to the naked eye, affecting the wearing visual experience. The wavelength of visible light is 380nm to 750nm. When the height of the second support member 80 is greater than 10 ⁇ m, the air film between the second protective layer 70 and the optical waveguide 10 is also greater than 10 ⁇ m. The phase difference between the two beams of light exceeds 10 times the wavelength, and the energy of the interfering light is weak. At this time, it is difficult to observe Newton's rings with the naked eye. Therefore, this solution can basically solve the problem of Newton's rings.
  • the height h2 of the second support member 80 is equal to the thickness of the first connecting member 60, so that one end of the second support member 80 can be connected to the second protective layer 70, and the other end can abut against the optical waveguide 10, thereby better preventing the second protective layer 70 from being dented at low temperature or under external force, thereby generating Newton rings and affecting the transmittance of the optical waveguide component 100.
  • the second support member 80 is located in an area surrounded by the orthographic projection of the second protective layer 70 facing the surface of the second support member 80.
  • the distance d2 between the two points farthest apart on the second support member 80 is in the range of 0.01mm ⁇ d2 ⁇ 0.2mm.
  • the distance d2 between the two points farthest apart on the second support member 80 in the area surrounded by the orthographic projection of the second protective layer 70 facing the surface of the second support member 80 is in the range of 10 ⁇ m ⁇ d2 ⁇ 200 ⁇ m; specifically, the distance d2 between the two points farthest apart on the second support member 80 in the area surrounded by the orthographic projection of the second protective layer 70 facing the surface of the second support member 80 can be, but is not limited to, 10 ⁇ m, 30 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 140 ⁇ m, 160 ⁇ m, 180 ⁇ m, 200 ⁇ m, etc. When the size of the second support member 80 is too small, it cannot produce sufficient supporting effect.
  • the thickness of the air film between the second protective layer 70 and the optical waveguide 10 is small, and there is still a risk of producing Newton rings visible to the naked eye.
  • the size of the second support member 80 is too large, the microstructure of the second support member 80 is too obvious and visible to the naked eye, affecting the wearing visual experience.
  • the second support member 80 is hemispherical, and the distance d2 between the two farthest points of the second support member 80 in the area enclosed by the orthographic projection of the second protective layer 70 facing the surface of the second support member 80 is the diameter of the second support member 80, and the diameter d2 of the second support member 80 ranges from 0.01 mm to 0.2 mm.
  • the range of the shortest distance s2 between any two adjacent second support members 80 is 0.5mm ⁇ s2 ⁇ 10mm.
  • the shortest distance s2 between any two adjacent second support members 80 can be, but is not limited to, 0.5mm, 0.8mm, 1mm, 2mm, 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, etc.
  • the multiple second support members 80 have the same shape, and the height and transverse dimensions (such as width, length, diameter, etc.) of each second support member 80 are equal, and the spacing between any two adjacent second support members 80 is equal (that is, the distance between two second support members 80 adjacent in the transverse and longitudinal directions is equal).
  • the multiple second support members 80 have the same shape and h2, d2, and s2 are all equal. In this way, the supporting force of the second support members 80 on the second protective layer 70 can be more balanced, and the second protective layer 70 can be better prevented from being dented.
  • the shape, height, lateral size, etc. of the first support member 40 and the second support member 80 may be the same or different, and the present application does not make any specific limitation thereto.
  • the first protective layer 20 and the second protective layer 70 both include a protective substrate layer 21 and a color-changing layer 23, wherein the color-changing layer 23 is disposed on the surface of the protective substrate layer 21 and is used to change the color of the protective substrate layer 21 to improve the color effect of the first protective layer 20.
  • the color-changing layer 23 can be disposed on one surface of the protective substrate layer 21 (as shown in FIG. 10 ) or two opposite surfaces (not shown).
  • the first protective layer 20 and the second protective layer 70 also include an anti-reflection film 25 (AR coating).
  • the anti-reflection film 25 is arranged on the surface of the protective substrate layer 21, or the color-changing layer 23 is away from the surface of the protective substrate layer 21.
  • the anti-reflection film 25 may be provided on at least one of the surface of the color-changing layer 23 facing away from the protective substrate layer 21 and the surface of the protective substrate layer 21 facing away from the color-changing layer 23.
  • the color-changing layers 23 are provided on both opposite surfaces of the first protective layer 20, the surfaces of the two color-changing layers 23 facing away from the protective substrate layer 21 are both provided with the anti-reflection film 25.
  • the first support member 40 and the second support member 80 may be provided on the surface of the protective substrate layer 21, or the surface of the color-changing layer 23 facing away from the protective substrate layer 21, or the surface of the anti-reflection film 25 facing away from the protective substrate layer 21.
  • the surfaces of the first support member 40 and the second support member 80 facing away from the first protective layer 20 may be provided with an anti-reflection film 25 and an anti-fingerprint film 27 (AF coating) in sequence.
  • the first support member 40 may be prepared by the following method. The following description and illustration is made by taking the first support member 40 as a hemispherical shape and a plurality of first support members 40 arranged in an array at equal intervals, which should not be understood as a limitation on the first support member 40 of the present application.
  • the first protective layer 20 with the first support member 40 of the present application can be formed by the following steps: Steps to prepare:
  • the screen printing plate 100a has a plurality of through holes 101a arranged in an array; attaching or overlapping the first protective layer 20 and the screen printing plate 100a;
  • the screen printing plate 100a may be, but is not limited to, a nickel plate.
  • the diameter d of the through hole 101a and the diameter d1 of the first support member 40 satisfy 1.1d ⁇ d1 ⁇ 1.8d.
  • d1 may be, but is not limited to, 1.1d, 1.2d, 1.3d, 1.4d, 1.5d, 1.6d, 1.7d, 1.8d, etc.
  • the relationship between d1 and d is related to the viscosity of the glue (i.e., glue) used to form the first support member 40, and can be specifically designed according to actual needs, and this application does not make specific limitations.
  • the thickness h of the screen printing plate 100a i.e., the depth of the through hole 101a
  • the height h1 of the first support member 40 satisfy 1.1h1 ⁇ h ⁇ 1.8h1; specifically, h may be, but is not limited to, 1.1h1, 1.2h1, 1.3h1, 1.4h1, 1.5h1, 1.6h1, 1.7h1, 1.8h1, etc.
  • d h.
  • the glue may be UV glue, for example, a glue of an acrylic system (such as polymethyl methacrylate, PMMA).
  • a glue of an acrylic system such as polymethyl methacrylate, PMMA.
  • Polymethyl methacrylate has a greater hardness, a stronger supporting capacity, and is not easily deformed.
  • UV light curing can be performed using a light source that can emit ultraviolet light, such as a mercury lamp or an LED lamp.
  • a large piece of the first protection layer 20 with the first support member 40 may be firstly manufactured by silk-screen printing, and then cut into the shape and size required by the optical waveguide component 100, thereby reducing the risk of alignment accuracy.
  • the preparation process of the second support member 80 on the second protective layer 70 is the same as the preparation process of the first support member 40 on the first protective layer 20 , which will not be described in detail herein.
  • the outcoupling grating 133 includes multiple outcoupling sub-gratings 1331 arranged at intervals on the surface of the light transmission layer 11 facing the first protective layer 20; each first support member 40 is arranged on the surface of a outcoupling sub-grating 1331 facing away from the light transmission layer 11, and part of the outcoupling sub-gratings 1331 are connected to one or more first support members 40. It can be understood that the first support member 40 is arranged on the surface of a part of the outcoupling sub-gratings 1331 facing away from the light transmission layer 11.
  • first support member 40 By arranging the first support member 40 on the surface of the part of the outcoupling sub-gratings 1331 facing away from the light transmission layer 11, it is possible to prevent the first protective layer 20 from being dented by external force, and the first protective layer 20 is completely attached to the optical waveguide 10, thereby generating the Newton ring phenomenon.
  • Multiple means greater than or equal to two.
  • the plurality of first support members 40 are randomly distributed. In other words, the plurality of first support members 40 are randomly distributed.
  • the plurality of first support members 40 are periodically arranged, an additional period is introduced into the outcoupling grating 133, and the light will generate additional diffraction orders, thereby generating ghost images. Therefore, when the first support members 40 are randomly distributed, the generation of ghost images can be avoided, so that the optical waveguide 10 has a better display effect.
  • the outcoupling grating 133 is a two-dimensional grating (i.e., a lattice grating), and a plurality of outcoupling sub-gratings 1331 are arranged in an array, some of the outcoupling sub-gratings 1331 extend toward the direction close to the first protective layer 20, and the portion of the outcoupling sub-gratings 1331 extending toward the direction close to the first protective layer 20 forms the first support member 40.
  • the height of a portion of the outcoupling sub-gratings 1331 is increased, and the raised portion of the outcoupling sub-gratings 1331 serves as the first support member 40, which is used to support the first protective layer 20 when the first protective layer 20 is depressed by an external force, so as to prevent the first protective layer 20 from being attached to the optical waveguide 10 and generating Newton rings.
  • the height of a portion of the out-coupling sub-grating 1331 is increased to serve as the first support member 40, so that the first support member 40 can be prepared during the preparation of the out-coupling grating 133 (that is, the first support member 40 and the out-coupling grating 133 are prepared in the same process), and there is no need to add an additional preparation step for the first support member 40, thereby simplifying the preparation process of the optical waveguide 10.
  • the length of the first support member 40 is the same as the length of the outcoupling sub-grating 1331; the width of the first support member 40 is the same as the width of the outcoupling sub-grating 1331.
  • the length of the out-coupled sub-grating 1331 ranges from 50 nm to 200 nm, and the width of the out-coupled sub-grating 1331 ranges from 50 nm to 200 nm.
  • the outcoupling grating 133 is a one-dimensional grating (e.g., a straight tooth grating)
  • a portion of the outcoupling sub-gratings 1331 in the plurality of outcoupling sub-gratings 1331 extends partially toward the direction close to the first protective layer 20, and the extended portion forms the first support member 40.
  • a portion of the outcoupling sub-gratings 1331 protrudes partially toward the direction close to the first protective layer 20 (i.e., the protruding portion forms a protruding column), and the protruding portion serves as the first support member 40, which is used to support the first protective layer 20 when the first protective layer 20 is depressed by an external force, so as to prevent the first protective layer 20 from being attached to the optical waveguide 10 and generating Newton rings.
  • the first support member 40 can be prepared during the preparation of the outcoupling grating 133 (i.e., the first support member 40 and the outcoupling grating 133 are prepared in the same process), and there is no need to add an additional preparation process of the first support member 40, thereby simplifying the preparation process of the optical waveguide 10.
  • the outcoupling grating 133 is a one-dimensional grating
  • the length of the outcoupling sub-grating 1331 ranges from 5 mm to 20 mm
  • the width of the outcoupling sub-grating 1331 ranges from 100 nm to 1000 nm
  • the period of the grating is from 390 nm to 780 nm.
  • the height h1' of the first support member 40 is in the range of 10 ⁇ m ⁇ h1' ⁇ 50 ⁇ m.
  • the height h1' of the first support member 40 can be, but not limited to, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, etc.
  • the height of the first support member 40 i.e., the raised column
  • the air film between the first protective layer 20 and the optical waveguide 10 is also greater than 10 ⁇ m
  • the wavelength of visible light is 380nm to 750nm
  • the phase difference between the two beams of light exceeds 10 times the wavelength of visible light
  • the energy of the light that interferes is weak, and it is difficult to observe the Newton rings with the naked eye.
  • the height of the first support member 40 is too small, the probability of generating Newton rings increases.
  • the thickness of the optical waveguide component 100 is increased, which is not conducive to ultra-thinning of the optical waveguide component 100.
  • the optical waveguide component 100 has a geometric center (not shown) and a support distribution area 101, the support distribution area 101 is arranged close to the geometric center, and a plurality of first support members 40 are randomly distributed within the range covered by the support distribution area 101, and the equivalent circle radius of the support distribution area 101 ranges from 0.25 cm to 2 cm.
  • the equivalent circle radius of the support distribution area 101 can be, but is not limited to, 0.25 m, 0.5 cm, 0.75 m, 1 cm, 1.25 m, 1.5 cm, 1.75 m, 2 cm, etc.
  • the first support members 40 may not provide sufficient support for the first protective layer 20, and the first protective layer 20 may still be dented and generate Newton rings under low temperature or external force. If the support distribution area 101 is too large, the weight of the optical waveguide component 100 is increased, and it may exceed the size range of the optical waveguide component 100. Therefore, when the equivalent circle radius of the support distribution area 101 is in the range of 0.25 cm to 2 cm, the first support member 40 can have a better supporting effect on the first protective layer 20.
  • the "equivalent circle radius” refers to the radius of a circle with the same area as a geometric figure.
  • the support distribution area 101 takes the geometric center as the central axis, that is, the center of the support distribution area 101 coincides with the geometric center, and the plurality of first support members 40 are randomly distributed around the geometric center.
  • the first protective layer 20 is subjected to the smallest support force and is most likely to be dented. Therefore, the plurality of first support members 40 are randomly distributed near the geometric center, so that the first support members 40 can have a better supporting effect on the first protective layer 20.
  • the average distribution density of the first support member 40 ranges from 10/ mm2 to 100/ mm2 .
  • the average distribution density of the first support member 40 may be, but is not limited to, 10/ mm2 , 20/ mm2 , 30/ mm2 , 40/mm2, 50/ mm2 , 60/ mm2 , 70/ mm2 , 80/ mm2 , 90/ mm2 , 100/ mm2 , etc. If the average distribution density of the first support member 40 is too small, the first support member 40 will not provide sufficient support. When the first protective layer 20 is subjected to external force, the first protective layer 20 may still be attached to the optical waveguide 10, increasing the risk of generating Newton rings. If the average distribution density of the first support member 40 is too large, the transmittance of the optical waveguide assembly 100 is too low, affecting the wearing visual experience.
  • the spacing between any two adjacent first support members 40 is more than 10 times the period of the outcoupling grating 133, for example, between 10 times and 1000 times; specifically, it can be, but not limited to, 10 times, 20 times, 50 times, 100 times, etc. In this way, the introduction of a new period can be avoided as much as possible to prevent the generation of ghost images.
  • the second embodiment of the present application further provides an optical waveguide component 100, which includes an optical waveguide 10, a first protective layer 20, a first support member 40 and a first connecting member 60;
  • the optical waveguide 10 includes a light conductive layer 11 and a grating layer 13, the light conductive layer 11 is used to transmit the optical signal entering the light conductive layer 11;
  • the grating layer 13 is arranged on the surface of the light conductive layer 11;
  • the first protective layer 20 is arranged at intervals on the side of the grating layer 13 away from the light conductive layer 11;
  • the first support member 40 is arranged between the optical waveguide 10 and the first protective layer 20, the first support member 40 is connected to the surface of the grating layer 13 away from the light conductive layer 11 or connected to the surface of the first protective layer 20 facing the light conductive layer 11;
  • the first connecting member 60 is arranged between the optical waveguide 10 and the first protective layer 20, the first connecting member 60 is arranged around the outer periphery of the first support member 40 and around the outer
  • the optical waveguide 10 For the detailed description of the optical waveguide 10, the first protective layer 20, the first supporting member 40 and the first connecting member 60, please refer to the description of the corresponding part of the embodiment of the first aspect, which will not be repeated here.
  • the optical waveguide component 100 of the second embodiment of the present application includes a first support member 40, which is arranged between the optical waveguide 10 and the first protective layer 20.
  • the first support member 40 is connected to the surface of the grating layer 13 away from the light conductive layer 11 or connected to the surface of the first protective layer 20 facing the light conductive layer 11; when the optical waveguide component 100 is in a low temperature environment, the air pressure in the closed space enclosed by the first connecting member 60, the first protective layer 20 and the optical waveguide 10 is reduced.
  • the first protective layer 20 Under the action of the external atmospheric pressure, when the atmospheric pressure or wiping the optical waveguide component 100 generates a force toward the optical waveguide 10 on the first protective layer 20, due to the supporting effect of the first support member 40, the first protective layer 20 will not fit with the optical waveguide 10, and will not even be sunken, so that Newton rings or adhesion phenomena will not be generated, thereby avoiding affecting the light transmittance of the optical waveguide component 100 under low temperature or external force conditions, and the introduction of the first support member 40 will not affect the display effect of the optical waveguide component 100.
  • the third embodiment of the present application further provides an augmented reality device 500, which includes: a projection optical machine 510 and an optical waveguide component 100 of the first embodiment or the second embodiment of the present application.
  • the projection optical machine 510 is used to project an optical signal, and the optical signal includes image information; the optical waveguide component 100 is arranged on the exit surface of the projection optical machine 510, and is used to transmit the optical signal.
  • the projection optical machine 510 includes a display 511 and a lens 513.
  • the display 511 is used to emit a light signal
  • the lens 513 is arranged on the display surface side of the display 511, and is used to modulate the light signal, so that the light (light signal) of different viewing angles emitted from the same pixel point on the display 511 is modulated by the lens 513 and emitted in the form of parallel light, so that the image information in the light signal is at an infinite position so that it can be seen by the naked eye.
  • the optical waveguide component 100 is arranged on the side of the lens 513 away from the display 511, and is used to transmit the light signal modulated by the lens 513.
  • the grating layer 13 of the optical waveguide 10 is disposed away from the projection optical engine 510. In another embodiment, the grating layer 13 of the optical waveguide 10 is disposed facing the projection optical engine 510.
  • the display 511 may be a micro display.
  • the display 511 includes a light-emitting unit, which may include but is not limited to at least one of a micro light-emitting diode (Micro Light Emitting Diode, Micro LED) chip, a micro organic light-emitting diode (Micro OLED) chip or a micro liquid crystal display (Micro LCD).
  • a micro light-emitting diode Micro Light Emitting Diode, Micro LED
  • Micro OLED micro organic light-emitting diode
  • Micro LCD micro liquid crystal display
  • the display 511 is a Micro LED display
  • the image outputted by it has higher brightness.
  • the Micro LED display is a self-luminous light source, and has better contrast and smaller display delay when applied to the augmented reality device 500.
  • the area on the display surface that can emit light signals is called an effective light-emitting area
  • the diagonal size of the effective light-emitting area of the display 511 ranges from 0.11 inches to 0.15 inches, and the aspect ratio of the effective light-emitting area is 4: 3.
  • the diagonal size of the effective light-emitting area of the display 511 ranges from 0.17 inches to 0.21 inches, and the aspect ratio of the effective light-emitting area is 16:9.
  • the color of the light emitted by the display 511 may be, but is not limited to, at least one of red light, green light, blue light, etc.
  • the display 511 is a Micro LED that emits green light. In other embodiments, it may also be other monochromatic Micro LEDs or polychromatic Micro LEDs.
  • the optical waveguide component 100 The image information in the light signal emitted by the lens 513 can also be dilated in one dimension or two dimensions to increase the range of the eye orbit, thereby adapting to more people.
  • the augmented reality device 500 of the present application further includes a carrier 550, and the carrier 550 is used to carry the optical waveguide assembly 100.
  • the carrier 550 may be, but is not limited to, a frame of augmented reality glasses, a helmet body of an augmented reality helmet, a mask body of an augmented reality mask, etc.
  • the optical waveguide assembly 100 may be disposed on the carrier 550 by an adhesive or a fastening portion, etc.
  • the augmented reality device 500 of the present application may be, but is not limited to, a near-eye display device such as augmented reality glasses (AR glasses), an augmented reality helmet, an augmented reality mask, etc. It can be understood that the augmented reality device 500 in this embodiment is only one form of the augmented reality device 500 applied by the optical waveguide component 100, and should not be understood as a limitation on the augmented reality device 500 provided in the present application.
  • a near-eye display device such as augmented reality glasses (AR glasses), an augmented reality helmet, an augmented reality mask, etc.
  • the augmented reality device 500 when the augmented reality device 500 is an augmented reality glasses, the augmented reality device 500 of the embodiment of the present application further includes a wearing member 530.
  • the wearing member 530 is rotatably connected to the bearing member 550, and the wearing member 530 is used to clamp the wearer (such as a human head, or a head prosthesis, etc.).
  • the wearing component 530 includes a first wearing sub-component 531 and a second wearing sub-component 533, wherein the first wearing sub-component 531 is rotatably connected to one end of the supporting component 550, and the second wearing sub-component 533 is rotatably connected to the other end of the supporting component 550 away from the first wearing sub-component 531.
  • the first wearing sub-component 531 cooperates with the second wearing sub-component 533 to clamp the augmented reality device 500 to the wearer.
  • the first wearing sub-component 531 and the second wearing sub-component 533 are also used to set a projection light machine.
  • the first wearing sub-component 531 and the second wearing sub-component 533 can be, but are not limited to, the temples of the augmented reality device 500 (AR glasses).
  • the augmented reality device 500 of the embodiment of the present application further includes a processor 540 and a memory 560.
  • the processor 540 is electrically connected to the display 511, and is used to control the display 511 to emit a light signal having image information, etc.
  • the memory 560 is electrically connected to the processor 540, and is used to store program codes required for the processor 540 to run, program codes required for controlling the display 511, image information emitted by the display 511, etc.
  • processor 540 includes one or more general-purpose processors, where a general-purpose processor can be any type of device capable of processing electronic instructions, including a central processing unit (CPU), a microprocessor, a microcontroller, a main processor, a controller, and an ASIC, etc.
  • processor 540 is used to execute various types of digital storage instructions, such as software or firmware programs stored in memory 560, which enables the computing device to provide a wide variety of services.
  • the memory 560 may include a volatile memory (Volatile Memory), such as a random access memory (Random Access Memory, RAM); the memory 560 may also include a non-volatile memory (NVM), such as a read-only memory (Read-Only Memory, ROM), a flash memory (Flash Memory, FM), a hard disk (Hard Disk Drive, HDD) or a solid-state drive (SSD).
  • volatile memory such as a random access memory (Random Access Memory, RAM)
  • NVM non-volatile memory
  • ROM read-only memory
  • flash memory Flash Memory
  • HDD Hard Disk Drive
  • SSD solid-state drive
  • the memory 560 may also include a combination of the above-mentioned types of memory.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光波导组件(100)及增强现实设备(500)。光波导组件(100)包括:光波导(10),光波导(10)包括光传导层(11)及光栅层(13),光传导层(11)用于传输进入光传导层(11)的光信号;光栅层(13)设置于光传导层(11)的表面;第一保护层(20),第一保护层(20)间隔设置于光栅层(13)背离光传导层(11)的一侧;第一支撑件(40),第一支撑件(40)设置于光波导(10)与所述第一保护层(20)之间;以及第一连接件(60),设置于光波导(10)与第一保护层(20)之间且分别连接第一保护层(20)及所述光波导(10),第一连接件(60)环绕第一支撑件(40)的外周且环绕光栅层(13)的外周设置。本申请的光波导组件(100)可以更好地解决在低温或外力作用下,第一保护层(20)凹陷产生牛顿环而影响光波导组件(10)透光率的问题。

Description

光波导组件及增强现实设备 技术领域
本申请涉及电子领域,具体涉及一种光波导组件及增强现实设备。
背景技术
增强现实(augmented reality,AR)技术可以将虚拟与现实结合,目前得到了越来越广泛的应用。光波导是增强现实设备必不可少的元件,现有的光波导多为玻璃材质,玻璃密度较大,佩戴鼻梁承重较重,用户体验不友好;并且由于玻璃较脆,玻璃基板光波导的机械可靠性较差,跌落时非常易碎,而且玻璃碎裂为尖锐玻璃渣具有危险性。为了更好地提高光波导的抗跌落能力,减轻重量,于是出现了树脂材质的光波导,为了更好的保护光波导的光栅,进行防水、防尘,在光栅层会设置保护层,保护层通过胶框粘合于光波导,以形成光波导组件,使光波导的光栅区域处于完全密封的状态。由于保护层是在常温状态下贴合,因此当光波导组件处于低温环境时,由于气体的热胀冷缩效应,光波导上的光栅所在的密封区域内的气体体积减小,气压急剧下降。对于玻璃基光波导组件,由于保护层为蓝宝石或者强化玻璃,刚度很好,因此在气压降低时不会出现极大的凹陷;而对于塑料基光波导组件,由于保护层由蓝宝石替换为塑料,刚度相对于蓝宝石大幅度下降,因此当气压下降时,保护层会严重凹陷,甚至部分区域直接与光栅层表面贴合。当保护层与光波导间距过小甚至贴合时,保护层与光波导之间会产生牛顿环和粘连现象,会严重影响光波导组件的透过率,对用户使用AR设备造成了极大的干扰。
发明内容
本申请实施例提供了一种光波导组件,其包括:
光波导,所述光波导包括光传导层及光栅层,所述光传导层用于传输进入所述光传导层的光信号;所述光栅层设置于所述光传导层的表面;
第一保护层,所述第一保护层间隔设置于所述光栅层背离所述光传导层的一侧;
第一支撑件,所述第一支撑件设置于所述光波导与所述第一保护层之间;以及
第一连接件,设置于所述光波导与所述第一保护层之间且分别连接所述第一保护层及所述光波导,所述第一连接件环绕所述第一支撑件的外周且环绕所述光栅层的外周设置。
本申请实施例还提供了一种增强现实设备,其特征在于,包括:
投影光机,所述投影光机用于投射光信号,所述光信号包括图像信息;以及
本申请实施例的光波导组件,所述光波导组件用于传输所述光信号。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例的光波导组件的俯视结构示意图。
图2是本申请一实施例的光波导组件沿图1中A-A方向的剖视结构示意图。
图3是本申请又一实施例的光波导组件的俯视结构示意图。
图4是本申请一实施例第一保护层与光波导贴合的结构示意图。
图5是光波导中产生牛顿环的图片。
图6是本申请又一实施例的光波导组件沿图1中A-A方向的剖视结构示意图。
图7是图6中虚线框I的放大图。
图8是本申请又一实施例的光波导组件沿图1中A-A方向的剖视结构示意图。
图9是图8中虚线框II的放大图。
图10是本申请一实施例的第一保护层或第二保护层的结构示意图。
图11是本申请一实施例的第一保护层或第二保护层的结构示意图。
图12是本申请又一实施例的第一保护层或第二保护层的结构示意图。
图13是本申请又一实施例的第一保护层或第二保护层的结构示意图。
图14是本申请一实施例的第一保护层、第一支撑件及第一支撑件表面镀膜,或者第二保护层、第二支撑件及第二支撑件表面镀膜的结构示意图。
图15是本申请一实施例的丝印版的俯视结构示意图。
图16是本申请一实施例在第一保护层上制备第一支撑件的制备流程的结构示意图。
图17是本申请一实施例的光波导对应耦出光栅区域的局部俯视图。
图18是本申请一实施例的光波导及第一支撑件沿图17中B-B方向的剖视图。
图19是本申请一实施例的光波导对应耦出光栅区域的局部俯视图。
图20是本申请一实施例的光波导及第一支撑件沿图19中C-C方向的剖视图。
图21是本申请一实施例的增强现实设备的结构示意图。
图22是本申请一实施例的增强现实设备沿图21中D-D方向的剖视结构示意图。
图23是本申请一实施例的增强现实设备的电路框图。
附图标记说明:
100-光波导组件,10-光波导,11-光传导层,13-光栅层,131-耦入光栅,133-耦出光栅,
1331-耦出子光栅,135-转折光栅,20-第一保护层,21-保护基材层,23-变色层,25-减反膜,27-防指纹膜,40-第一支撑件,60-第一连接件,100a-丝印版,101a-通孔,70-第二保护层,80-第二支撑件,90-第二连接件,20’-保护层,500-增强现实设备,510-投影光机,511-显示器,513-镜头,530-佩戴件,531-第一佩戴子件,533-第二佩戴子件,540-处理器,550-承载件,560-存储器。
具体实施方式
第一方面,本申请提供一种光波导组件,其包括:
光波导,所述光波导包括光传导层及光栅层,所述光传导层用于传输进入所述光传导层的光信号;所述光栅层设置于所述光传导层的表面;
第一保护层,所述第一保护层间隔设置于所述光栅层背离所述光传导层的一侧;
第一支撑件,所述第一支撑件设置于所述光波导与所述第一保护层之间;以及
第一连接件,设置于所述光波导与所述第一保护层之间且分别连接所述第一保护层及所述光波导,所述第一连接件环绕所述第一支撑件的外周且环绕所述光栅层的外周设置。
可选地,所述第一支撑件连接所述光栅层背离所述光传导层的表面或连接所述第一保护层面向所述光传导层的表面。
可选地,所述光波导组件还包括:
第二保护层,间隔设置于所述光传导层背离所述光栅层的一侧;
第二支撑件,设置于所述光传导层与所述第二保护层之间,所述第二支撑件连接所述第二保护层面向所述光传导层的表面;以及
第二连接件,设置于所述光波导与所述第二保护层之间且分别连接所述第二保护层及所述光波导,所述第二连接件环绕所述第二支撑件的外周设置。
可选地,所述第一支撑件连接所述第一保护层面向所述光传导层的表面,所述第一支撑件的数量为多个,所述多个第一支撑件阵列排布;所述第二支撑件的数量为多个,所述多个第二支撑件阵列排布。
可选地,沿所述光波导与所述第一保护层的层叠方向上,所述第一支撑件的高度h1的范围为0.01mm≤h1≤0.2mm;所述第二支撑件的高度h2的范围为0.01mm≤h2≤0.2mm。
可选地,所述第一支撑件在所述第一保护层面向所述光传导层的正投影所围区域上相距最远的两点之间的距离d1的范围为0.01mm≤d1≤0.2mm;所述第二支撑件在所述第二保护层面向所述光传导层的正投影所围区域上相距最远的两点之间的距离d2的范围为0.01mm≤d2≤0.2mm。
可选地,任意相邻的两个所述第一支撑件之间的最短距离s1的范围为0.5mm≤s1≤10mm;任意相邻的两个所述第二支撑件之间的最短距离s2的范围为0.5mm≤s2≤10mm。
可选地,所述第一支撑件的数量为多个,所述光栅层包括耦出光栅,所述耦出光栅包括间隔设置的多个耦出子光栅;所述第一支撑件连接所述耦出子光栅背离所述光传导层的表面,部分所述耦出子光栅连接一个或多个第一支撑件。
可选地,多个所述第一支撑件随机分布,且每个所述第一支撑件连接于一个所述耦出子光栅背离所述光传导层的表面。
可选地,所述耦出光栅为二维光栅,所述多个耦出子光栅阵列排布,所述多个耦出子光栅中的部分耦出子光栅朝向靠近所述第一保护层的方向延伸,所述部分耦出子光栅朝向靠近所述第一保护层的方向延伸的部分形成所述第一支撑件。
可选地,所述耦出光栅为一维光栅,所述多个耦出子光栅中的部分耦出子光栅上的局部朝向靠近所述第一保护层的方向延伸,所述延伸的部分形成所述第一支撑件。
可选地,沿所述光波导与所述第一保护层的层叠方向上,所述第一支撑件的高度h1’的范围为10μm≤h1’≤50μm。
可选地,所述光波导组件具有几何中心及支撑分布区,所述支撑分布区靠近所述几何中心设置,多个所述第一支撑件随机分布在所述支撑分布区内。
可选地,所述支撑分布区的等效圆半径的范围为0.25cm至2cm。
可选地,所述第一支撑件的平均分布密度为10个/mm2至100个/mm2。
可选地,任意相邻两个所述第一支撑件之间的间距为所述耦出光栅周期的10倍以上。
可选地,所述光栅层的折射率大于所述光传导层的折射率。
可选地,所述光传导层的双折射位相差小于或等于20nm。
可选地,所述光传导层为热塑性树脂或热固性树脂,所述热塑性树脂包括聚碳酸酯,所述热固性树脂包括聚氨酯;所述光传导层通过注塑成型或浇注成型工艺制备,所述光栅层通过纳米压印工艺制备。
第二方面,本申请提供一种增强现实设备,其包括:
投影光机,所述投影光机用于投射光信号,所述光信号包括图像信息;以及
第一方面所述的光波导组件,所述光波导组件用于传输所述光信号。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
下面将结合附图,对本申请实施例中的技术方案进行描述。需要说明的是,为便于说明,在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。
增强现实是一种通过将计算机生成的图像输入叠加到现实世界的图像中输入人眼,以为用户提供增强的现实感知的技术,目前得到了越来越广泛的应用。光波导(optical  waveguide)是引导光波在其中传播的介质装置,是增强现实设备必不可少的元件;光波导包括几何光波导及衍射光波导,相较于几何光波导,衍射光波导的光栅在设计和生产上的灵活性更高,可量产性和良率更高,因此应用更为广泛。例如,AR眼镜的衍射光波导方案由于其光学镜片轻薄,外观形态更接近传统的眼镜,同时实现方式更为便捷,比较容易量产,因此是一种主流的技术方案。衍射光波导又可以细分为表面浮雕光栅和体全息光栅。
衍射光波导,例如表面浮雕光波导,可以在玻璃基材上通过纳米压印工艺在玻璃基材上制备光栅结构,从而得到光波导。玻璃基材的密度大,用于增强现实眼镜时佩戴鼻梁承重较重,用户体验不友好;并且由于玻璃较脆,玻璃材质的光波导的机械可靠性较差,跌落时非常易碎,而且玻璃碎裂为尖锐玻璃渣具有危险性。衍射光波导还可以采用注塑成型工艺或浇注成型工艺制备光传导层与光栅一体化且材料相同的光波导,但是受限于注塑成型工艺及浇注成型工艺材料的限制,材料的折射率较低,因此制得的耦入光栅的折射率也较低,这会降低耦入光栅对光信号耦入的效率,降低光波导的光效。
请参见图1和图2,本申请第一方面的实施例提供一种光波导组件100,光波导组件100包括光波导10,用于对射入光波导10的光信号进行传输,并对光信号中的图像信息进行一维扩瞳或二维扩瞳。光波导10包括光传导层11及光栅层13,光传导层11为树脂材质,光传导层11用于对进入光传导层11的光信号进行传输;光栅层13设置于光传导层11的一侧,光栅层13包括间隔设置的耦入光栅131及耦出光栅133,耦入光栅131用于将光信号耦合入光传导层11,耦出光栅133用于将经光传导层11传输的光信号耦合出光波导10。本申请实施例的光波导10可以应用于增强现实眼镜、增强现实头盔、增强现实面罩等近眼显示系统。
可选地,耦入光栅131及耦出光栅133均为树脂材质。可选地,光栅层13与光传导层11的材质不同。例如,光栅层13与光传导层11可以具有不同的组分;光栅层13与光传导层11还可以为不同的树脂。
可选地,耦入光栅131可以为但不限于为二元光栅、倾斜光栅、闪耀光栅、二维光栅等中的一种。耦出光栅133可以为但不限于为二元光栅、倾斜光栅、闪耀光栅、二维光栅等中的一种。耦入光栅131与耦出光栅133的类型可以相同,也可以不同。
可选地,耦入光栅131的光栅周期的范围为200nm至800nm,光栅深度≤300nm。耦出光栅133的光栅周期的范围为200nm至800nm,光栅深度≤300nm。本申请实施例中,当涉及到数值范围a至b时,如未特别指明,表示该数值可以为a至b之间的任意数值,且包括端点数值a,且包括端点数值b。
请参见图3,可选地,光栅层13还包括转折光栅135,转折光栅135用于对光信号中的图像信息进行扩瞳。转折光栅135、耦入光栅131及耦出光栅133分别间隔设置于光传导层11的同一侧。当光栅层13还包括转折光栅135时,耦入光传导层11的光信号,先经转折光栅135进行扩瞳之后,再经耦出光栅133耦出光波导10。可选地,转折光栅135可以为但不限于为二元光栅、倾斜光栅、闪耀光栅、二维光栅等中的一种。转折光栅135、耦入光栅131与耦出光栅133的类型可以相同,也可以不同。可选地,转折光栅135的光栅周期的范围为200nm至800nm,光栅深度≤300nm。
本实施例的光波导组件100包括光波导10,光波导10包括光传导层11及光栅层13,光传导层11为树脂材质,相较于玻璃材质,树脂具有更轻的重量,从而可以使得光波导10具有更轻的重量,应用于增强现实设备时,可以降低增强现实设备的重量,提高增强现实设备的佩戴的舒适感;再者,树脂材质的光波导10跌落时不易碎,安全性更好,且成本更低。
可选地,光传导层11为热塑性树脂或热固性树脂,热塑性树脂包括聚碳酸酯(PC),热固性树脂包括聚氨酯(PU)。聚碳酸酯与聚氨酯具有较高的折射率,可以使得制得的光波导10具有更大的视场角(FOV),具有更好的光学表现;此外,聚碳酸酯与聚聚氨酯 蓝光420-500nm或绿光500nm-560nm或红光560-780nm三个波段中的至少某个波段1mm厚度的内透过率>99%,具有良好的透光率,光传导层11的透光率太低,吸收太强,光波导10传播过程中会逐渐衰减导致亮度显著降低。再者,聚碳酸酯与聚氨酯均具有较高的热变形温度(聚碳酸酯>120℃,聚氨酯>110℃),可以更好承受压印胶的烘烤温度(例如80℃至120℃)以及高温镀膜时的镀膜温度(例如80℃至120℃)。再者,聚碳酸酯与聚氨酯均具有较低的双折射,可以更好的避免光线(即光信号)在光传导层11内全反射时发生偏折,影响现实图像的亮度及清晰度,使得光波导10具有更好的显示效果。
可选地,光栅层13的折射率大于光传导层11的折射率。光栅层13的折射率大于光传导层11的折射率,光栅层13具有较高的折射率,从而可以提高耦入光栅131对光信号的耦入效率,提高光波导10的光效。可选地,光传导层11的折射率大于或等于1.55。可以理解地,本申请实施例的聚碳酸酯及聚氨酯的折射率均大于或等于1.55。
可选地,光传导层11的双折射位相差小于或等于20nm。当光传导层11为聚碳酸酯时,光传导层11的双折射的位相差小于或等于20nm。当光传导层11为聚氨酯时,光传导层11的双折射的位相差小于或等于5nm。具体地,光传导层11的双折射的位相差可以为但不限于为20nm、18nm、16nm、14nm、12nm、10nm、8nm、6nm、5nm、3nm、1nm等。光传导层11的双折射的相位差越小越好,光传导层11的双折射相位差过大,双折射会导致光传导层11内部光线全反射时发生偏折,表现在AR显示上,不仅亮度降低,图像也会清晰度变差。
可选地,光传导层11的厚度为0.3mm至3mm。具体地,光传导层11的厚度可以为但不限于为0.3mm、0.5mm、0.8mm、1.0mm、1.5mm、2mm、2.5mm、3mm等。光传导层11厚度太薄,光传导层11的结构强度太弱,光传导层11厚度太厚,制得的光波导组件100厚重影响用户体验。
玻璃材质制备的光波导的抗跌落能力较差,跌落时,容易摔碎,虽然采用胶框在玻璃材质的光波导的相背两个表面各贴合保护层(例如化学强化后的玻璃或蓝宝石),可以一定程度上提高对光波导的保护,但是抗跌落能力仍然较差,且玻璃材质的光波导重量较大,导致应用于增强现实设备时,整机重量居高不下,不利于长时间佩戴。为了改善上述问题,可以采用树脂材质的光波导代替玻璃材质的光波导,并用树脂材质的保护层代替玻璃材质的保护层,既可以大幅度降低光波导组件的重量(这样重量可以降低50%以上),又可以解决光波导跌落易碎的问题。
如图4所示,当光波导10与保护层20’采用胶框贴合设置,光波导10与保护片之间具有间隙,为了防尘和防水,光波导10的光栅区域处于完全密封的状态。由于光波导组件100的保护层20’是在常温状态下贴合,因此,当光波导组件100处于低温环境时,由于气体的热胀冷缩效应,光波导10上的光栅所在的密封区域内的气体体积减小,气压急剧下降。对于玻璃基光波导组件100,由于保护层20’为蓝宝石或者强化玻璃,刚度很好,因此在气压降低时,不会出现极大的凹陷;而对于塑料基光波导组件100,由于保护层20’由蓝宝石替换为塑料,刚度相对于蓝宝石大幅度下降,因此当气压下降时,保护层20’(使用时背离人眼的保护层20’,或者设置于光波导10具有光栅层13的一侧的保护层20’)会严重凹陷,甚至部分区域直接与光栅层13表面贴合。当保护层20’与光波导10间距过小甚至贴合时,保护层20’与光波导10之间会产生牛顿环和粘连现象,如图5所示。由图5可以看出,牛顿环为一系列不同颜色的彩色圆环,会严重影响光波导组件100的透过率,对用户使用AR设备造成了极大的干扰。另外,当光波导组件100的表面存在脏污,擦拭光波导组件100的表面时,由于擦拭时光波导组件100会受力弯曲,使得保护层20’凹陷,同样存在较大的可能性造成保护层20’与光波导10靠近在一起,进而产生牛顿环和粘连。
请参见图6,本申请第一方面实施例的光波导组件100还包括第一保护层20、第一支撑件40及第一连接件60,第一保护层20间隔设置于光栅层13背离光传导层11的一侧; 第一支撑件40设置于光波导10与第一保护层20之间;第一连接件60设置于光波导10与第一保护层20之间,第一连接件60环绕第一支撑件40的外周且环绕光栅层13的外周设置,第一连接件60分别连接第一保护层20及光波导10。
需要说明的是,第一支撑件40连接光栅层13背离光传导层11的表面或连接第一保护层20面向光传导层11的表面,可以理解地,第一支撑件40设置于光栅层13并承载于光栅层13上,或者,第一支撑件40设置于第一保护层20面向光传导部的一侧且承载于第一保护层20。可以理解地,当第一支撑件40连接光栅层13背离光传导层11的表面时,第一支撑件40自光栅层13背离光传导层11的表面,朝向靠近第一保护层20的方向延伸;当第一支撑件40连接第一保护层20面向光传导层11的表面时,第一支撑件40自第一保护层20朝向光传导层11的表面朝向靠近光传导层11的方向延伸。
可选地,第一连接件60为胶框,即中空的环形粘合层。可以理解地,第一连接件60、第一保护层20及光波导10围合成封闭空间(图未示),第一支撑件40与光栅层13收容于封闭空间内。第一连接件60用于将第一保护层20与光波导10贴合设置,且使得第一保护层20与光波导10保留一定间隙,以避免第一保护层20贴合光波导10,影响光波导10中光信号的传输。可选地,第一保护层20的材质可以为但不限于为聚甲基丙烯酸甲酯、聚碳酸酯等。
当第一保护层20凹陷,并且与光波导10贴合时,在第一保护层20与光波导10的贴合区域周围会产生一圈纳米尺度的空气薄膜。当环境光线入射时,部分光线会通过第一保护层20表面直接反射,还有一部分光学会透过第一保护层20照射在光波导10,并且通过光波导10的表面进行反射;由于光具有波动性,因此当空气膜的厚度是1/4光的波长时,此时通过光波导10表面反射的光与通过第一保护层20表面反射的光具有1/2波长的相位差,又由于这两束光是同一入射光,互为相干光,所以当这两束光的相位差为1/2波长时,会相互抵消。此外,由于入射的环境光为混合光,不同颜色的光具有不同的波长,例如当空气膜的厚度为绿光波长的1/4时,此时该区域的两束光中的绿光部分相互抵消,只剩下其余可见光的混和光,显示为彩色光环;同理,当空气膜的厚度为其他颜色光的1/4波长时,又会显示其他的彩色;综上,在贴合区域的周围会出现各自彩色的牛顿环。
本申请实施例的光波导组件100包括第一支撑件40,第一支撑件40设置于光波导10与第一保护层20之间,第一支撑件40连接光栅层13背离光传导层11的表面或连接第一保护层20面向光传导层11的表面;当光波导组件100处于低温环境时,第一连接件60、第一保护层20及光波导10围合的封闭空间内的气压降低,在外界大气压的作用下,大气压或擦拭光波导组件100对第一保护层20产生朝向光波导10的力时,由于第一支撑件40的支撑作用,第一保护层20不会与光波导10贴合,甚至不会发生凹陷,从而不会产生牛顿环或粘连现象,避免了低温或受外力情况下,影响光波导组件100的透光率,且第一支撑件40的引入不会影响光波导组件100的显示效果。
可选地,第一支撑件40连接光栅层13背离光传导层11的表面或连接第一保护层20面向光传导层11的表面。这样可以更好的简化光波导组件100的制备工艺,避免第一支撑件40的引入对光传导的影响。
在一些实施例中,当第一支撑件40连接第一保护层20面向光传导层11的表面时,第一支撑件40的数量为多个,多个第一支撑件40阵列排布。可以理解地,当第一支撑件40的数量为多个时,多个第一支撑件40阵列排布于第一保护层20面向光传导层11的表面,每个第一支撑件40自第一保护层20面向光传导层11的表面朝向靠近光传导层11的方向延伸。阵列排布的第一支撑件40对第一保护层20的支撑力分布更为均匀,在第一保护层20受到外界大气压或擦拭光波导组件100等外力作用时,可以更好的防止第一保护层20的凹陷,更好的防止牛顿环的产生。
可以理解地,在本实施例中,多个第一支撑件40可以呈周期性分布,即多个第一支 撑件40为周期分布的点阵支撑结构。可选地,多个第一支撑件40至少阵列排布于第一保护层20靠近其几何中心的位置;在其他实施例中,多个第一支撑件40也可以分布于整个第一保护层20面向光波导10的表面。
可选地,第一支撑件40的形状可以为但不限于为半球形、圆锥形、圆柱形等规则形状,在其他实施例中,也可以为不规则形状。在本申请的附图中以第一支撑件40为半球形为例进行示意,不应理解为对第一支撑件40的限制。
请参见图7,可选地,沿光波导10与第一保护层20的层叠方向上,第一支撑件40的高度h1的范围为0.01mm≤h1≤0.2mm;换言之,第一支撑件40的高度h1的范围为10μm≤h1≤200μm;具体地,第一支撑件40的高度h1可以为但不限于为10μm、30μm、50μm、80μm、100μm、120μm、140μm、160μm、180μm、200μm等。当第一支撑件40的高度太小时,产生不了足够的支撑效果,当第一保护层20凹陷时,第一保护层20与光波导10之间的空气膜的厚度较小,依然有产生肉眼可见牛顿环的风险;当第一支撑件40的高度太大时,第一支撑件40的微结构过于明显,肉眼可见,影响佩戴视觉体验。可见光的波长是380nm至750nm,当第一支撑件40的高度大于10μm时,第一保护层20与光波导10之间的空气膜同样大于10μm,两束光的相位差超过了10倍波长,发生干涉的光能量较弱,此时肉眼很难观察到牛顿环,因此采用此方案能够基本解决牛顿环的问题。
可选地,沿光波导10与第一保护层20的层叠方向上,第一支撑件40的高度h1与第一连接件60的厚度相等,这样可以使得第一支撑件40的一端连接第一保护层20,另一端抵持光波导10,从而可以更好的防止第一保护层20在低温或受外力下发生凹陷而产生牛顿环,影响光波导组件100透光率的现象。
可选地,第一支撑件40在第一保护层20面向光传导层11表面的正投影所围区域上相距最远的两点之间的距离d1的范围为0.01mm≤d1≤0.2mm。换言之,第一支撑件40在第一保护层20面向光传导层11表面的正投影所围区域上相距最远的两点之间的距离d1的范围为10μm≤d1≤200μm;具体地,第一支撑件40在第一保护层20面向第一支撑件40表面的正投影所围区域上相距最远的两点之间的距离d1可以为但不限于为10μm、30μm、50μm、80μm、100μm、120μm、140μm、160μm、180μm、200μm等。当第一支撑件40的尺寸太小时,产生不了足够的支撑效果,当第一保护层20凹陷时,第一保护层20与光波导10之间的空气膜的厚度较小,依然有产生肉眼可见牛顿环的风险;当第一支撑件40的尺寸太大时,第一支撑件40的微结构过于明显,肉眼可见,影响佩戴视觉体验。
在一具体实施例中,第一支撑件40为半球形,则第一支撑件40在第一保护层20面向第一支撑件40表面的正投影所围区域上相距最远的两点之间的距离d1为第一支撑件40的直径,第一支撑件40的直径d1的范围0.01mm至0.2mm。
可选地,任意相邻的两个第一支撑件40之间的最短距离s1的范围为0.5mm≤s1≤10mm。具体地,任意相邻的两个第一支撑件40之间的最短距离s1可以为但不限于为0.5mm、0.8mm、1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm、10mm等。当任意相邻的两个第一支撑件40之间的最短距离过小时,则第一支撑件40的密度过大,光波导组件100透过率过低,影响佩戴视觉体验;当任意相邻的两个第一支撑件40之间的最短距离过大时,则第一支撑件40的密度过小,支撑力不足,相邻的第一支撑件40与第一支撑件40之间的区域依然有产生牛顿环的风险。
在一具体实施例中,多个第一支撑件40的形状相同,每个第一支撑件40的高度、横向尺寸(如宽度、长度、直径等)均相等,且任意相邻的两个第一支撑件40之间的间距相等(即横向及纵向相邻的两个第一支撑件40的距离相等),换言之,多个第一支撑件40形状相同且h1、d1、s1均相等。这样可以使得第一支撑件40对于第一保护层20的支撑作用力更为均衡,可以更好的防止第一保护层20凹陷。
请参见图8,本实施例的光波导组件100还包括第二保护层70、第二支撑件80及第 二连接件90。所述第二保护层70间隔设置于光传导层11背离光栅层13的一侧;第二支撑件80设置于光传导层11与第二保护层70之间,第二支撑件80连接第二保护层70面向光传导层11的表面;以及第二连接件90设置于光波导10与第二保护层70之间,第二连接件90环绕第二支撑件80的外周设置,第二连接件90分别连接第二保护层70及光波导10。当第二保护层70与光波导10之间设置第二支撑件80时,可以防止低温或外力作用下,第二保护层70凹陷,从而可以更好的防止牛顿环的产生,使得光波导组件100具有更好的显示效果。
需要说明的是,第二支撑件80连接第二保护层70面向光传导层11的表面,可以理解地,第二支撑件80设置于第二保护层70面向光传导部的一侧且承载于第二保护层70。当第二支撑件80连接第二保护层70面向光传导层11的表面时,第二支撑件80自第二保护层70朝向光传导层11的表面朝向靠近光传导层11的方向延伸。
可选地,第二连接件90为胶框,即中空的环形粘合层。可以理解地,第二连接件90、第二保护层70及光波导10围合成封闭空间(图未示),第二支撑件80收容于封闭空间内。第二连接件90用于将第二保护层70与光波导10贴合设置,且使得第二保护层70与光波导10保留一定的间隙,以避免第二保护层70贴合光波导10,影响光波导10中光信号的传输。可选地,第二保护层70的材质可以为但不限于为聚甲基丙烯酸甲酯、聚碳酸酯等。
可选地,第二支撑件80的数量为多个,多个第二支撑件80阵列排布。可以理解地,当第二支撑件80的数量为多个时,多个第二支撑件80阵列排布于第二保护层70面向光传导层11的表面,每个第二支撑件80自第二保护层70面向光传导层11的表面朝向靠近光传导层11的方向延伸。阵列排布的第二支撑件80对第二保护层70的支撑力分布更为均匀,在第二保护层70受到外界大气压或擦拭光波导组件100等外力作用时,可以更好的防止第二保护层70的凹陷,更好的防止牛顿环的产生。
可以理解地,在本实施例中,多个第二支撑件80可以呈周期性分布,即多个第二支撑件80为周期分布的点阵支撑结构。可选地,多个第二支撑件80至少阵列排布于第二保护层70靠近第二保护层70的几何中心的位置;在其他实施例中,多个第二支撑件80也可以分布于整个第二保护层70面向光波导10的表面。可选地,第二支撑件80的形状可以为但不限于为半球形、圆锥形、圆柱形等规则形状,在其他实施例中也可以为不规则形状。在本申请的附图中以第二支撑件80为半球形为例进行示意,不应理解为对第二支撑件80的限制。
请参见图9,可选地,沿光波导10与第二保护层70的层叠方向上,第二支撑件80的高度h2的范围为0.01mm≤h2≤0.2mm;换言之,第二支撑件80的高度h2的范围为10μm≤h2≤200μm;具体地,第二支撑件80的高度h2可以为但不限于为10μm、30μm、50μm、80μm、100μm、120μm、140μm、160μm、180μm、200μm等。当第二支撑件80的高度太小时,产生不了足够的支撑效果,当第二保护层70凹陷时,第二保护层70与光波导10之间的空气膜的厚度较小,依然有产生肉眼可见牛顿环的风险;当第二支撑件80的高度太大时,第二支撑件80的微结构过于明显,肉眼可见,影响佩戴视觉体验。可见光的波长是380nm至750nm,当第二支撑件80的高度大于10μm时,第二保护层70与光波导10之间的空气膜同样大于10μm,两束光的相位差超过了10倍波长,发生干涉的光能量较弱,此时肉眼很难观察到牛顿环,因此采用此方案能够基本解决牛顿环的问题。
可选地,沿光波导10与第二保护层70的层叠方向上,第二支撑件80的高度h2与第一连接件60的厚度相等,这样可以使得第二支撑件80的一端连接第二保护层70,另一端抵持光波导10,从而可以更好的防止第二保护层70在低温或受外力下,发生凹陷,从而产生牛顿环,影响光波导组件100透光率的现象。
可选地,第二支撑件80在第二保护层70面向第二支撑件80表面的正投影所围区域 上相距最远的两点之间的距离d2的范围为0.01mm≤d2≤0.2mm。换言之,第二支撑件80在第二保护层70面向第二支撑件80表面的正投影所围区域上相距最远的两点之间的距离d2的范围为10μm≤d2≤200μm;具体地,第二支撑件80在第二保护层70面向第二支撑件80表面的正投影所围区域上相距最远的两点之间的距离d2可以为但不限于为10μm、30μm、50μm、80μm、100μm、120μm、140μm、160μm、180μm、200μm等。当第二支撑件80的尺寸太小时,产生不了足够的支撑效果,当第二保护层70凹陷时,第二保护层70与光波导10之间的空气膜的厚度较小,依然有产生肉眼可见牛顿环的风险;当第二支撑件80的尺寸太大时,第二支撑件80的微结构过于明显,肉眼可见,影响佩戴视觉体验。
在一具体实施例中,第二支撑件80为半球形,则第二支撑件80在第二保护层70面向第二支撑件80表面的正投影所围区域上相距最远的两点之间的距离d2为第二支撑件80的直径,第二支撑件80的直径d2的范围0.01mm至0.2mm。
可选地,任意相邻的两个第二支撑件80之间的最短距离s2的范围为0.5mm≤s2≤10mm。具体地,任意相邻的两个第二支撑件80之间的最短距离s2可以为但不限于为0.5mm、0.8mm、1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm、10mm等。当任意相邻的两个第二支撑件80之间的最短距离过小时,则第二支撑件80的密度过大,光波导组件100透过率过低,影响佩戴视觉体验;当任意相邻的两个第二支撑件80之间的最短距离过大时,则第二支撑件80的密度过小,支撑力不足,相邻的第二支撑件80与第二支撑件80之间的区域依然有产生牛顿环的风险。
在一具体实施例中,多个第二支撑件80的形状相同,每个第二支撑件80的高度、横向尺寸(如宽度、长度、直径等)均相等,且任意相邻的两个第二支撑件80之间的间距相等(即横向及纵向相邻的两个第二支撑件80的距离相等),换言之,多个第二支撑件80形状相同且h2、d2、s2均相等。这样可以使得第二支撑件80对于第二保护层70的支撑作用力更为均衡,可以更好的防止第二保护层70凹陷。
可选地,第一支撑件40与第二支撑件80的形状、高度、横向尺寸等可以相同,也可以不同,本申请不作具体限定。
请参见图10,在一些实施例中,第一保护层20及第二保护层70均包括保护基材层21及变色层23,变色层23设置于保护基材层21的表面,用于改变保护基材层21的颜色,以提高第一保护层20的颜色效果。可选地,变色层23可以设置于保护基材层21的一个表面(如图10所示)或相背的两个表面(图未示)。
请参见图11至图13,在另一些实施例中,第一保护层20及第二保护层70还均包括减反膜25(AR涂层),减反膜25设置于保护基材层21的表面,或者变色层23背离保护基材层21的表面。
可选地,当保护基材层21的一个表面设有变色层23时,减反膜25可以设置在变色层23背离保护基材层21的表面和保护基材层21背离变色层23的表面中的至少一个上。当第一保护层20的相背两个表面均设有变色层23时,两个变色层23背离保护基材层21的表面均设有减反膜25。可选地,第一支撑件40及第二支撑件80可以设置在保护基材层21的表面,或者变色层23背离保护基材层21的表面,或者减反膜25背离保护基材层21的表面。
请参见图14,可选地,第一支撑件40及第二支撑件80背离第一保护层20的表面还可以依次设置减反膜25及防指纹膜27(AF涂层)。当第一支撑件40设置于第一保护层20面向光传导层11的表面时,第一支撑件40可以通过以下方法进行制备。以下以第一支撑件40为半球形,多个第一支撑件40等间距呈阵列排布为例进行说明和示意,不应理解为对本申请的第一支撑件40的限制。
请参见图15及图16,本申请的带有第一支撑件40的第一保护层20可以通过以下步 骤进行制备:
S1,提供第一保护层20及丝印版100a;如图15所示,丝印版100a具有阵列排布的多个通孔101a;将第一保护层20与丝印版100a贴合或重叠;
可选地,丝印版100a可以为但不限于为镍板。可选地,通孔101a的直径d与第一支撑件40的直径d1满足,1.1d≤d1≤1.8d。具体地,d1可以为但不限于为1.1d、1.2d、1.3d、1.4d、1.5d、1.6d、1.7d、1.8d等。d1与d的关系与用于形成第一支撑件40的胶液(即胶水)的粘度有关,具体可以根据实际需要进行设计,本申请不作具体限定。
可选地,丝印版100a的厚度h(即通孔101a的深度)与第一支撑件40的高度h1满足,1.1h1≤h≤1.8h1;具体地,h可以为但不限于为1.1h1、1.2h1、1.3h1、1.4h1、1.5h1、1.6h1、1.7h1、1.8h1等。可选地,d=h。
S2,在丝印版100a背离第一保护层20的表面滴胶液;
可选地,胶液可以为UV胶,例如可以为亚克力体系的胶液(如聚甲基丙烯酸甲酯,PMMA),聚甲基丙烯酸甲酯的硬度更大,支撑能力更强,不易变形。
S3,用刮板使胶液完全填充丝印版100a上的多个通孔101a;
S4,将丝印版100a与第一保护层20分离,以使第一保护层20上形成阵列排布的多个胶液滴;以及
S5,进行热固化或光固化例如UV光固化,以使胶液滴形成第一支撑件40。
可选地,UV光固化可以采用汞灯或LED灯等可以出射紫外光的光源进行光固化。
可选地,可以先通过丝印的方式制作大片的具有第一支撑件40的第一保护层20,再裁切成光波导组件100所需要的外形和尺寸,从而降低对位精度的风险。
第二保护层70上的第二支撑件80的制备流程与第一保护层20上的第一支撑件40的制备方式相同,在此不再赘述。
请参见图17及图18,当第一支撑件40连接光栅层13背离光传导层11的表面时,第一支撑件40的数量为多个,耦出光栅133包括间隔设置于光传导层11面向第一保护层20的表面的多个耦出子光栅1331;每个第一支撑件40设置于一个耦出子光栅1331背离光传导层11的表面,部分耦出子光栅1331连接一个或多个第一支撑件40。可以理解地,在一部分耦出子光栅1331背离光传导层11的表面设置第一支撑件40。通过在部分耦出子光栅1331背离光传导层11的表面设置第一支撑件40,从而可以防止第一保护层20受外力发生凹陷时,第一保护层20与光波导10完全贴合,从而产生牛顿环的现象。“多个”指大于或等于两个。
可选地,多个第一支撑件40随机分布。换言之,多个第一支撑件40是无序分布的。当多个第一支撑件40周期排布时,会给耦出光栅133引入额外的周期,光线会产生额外的衍射级次,进而产生鬼像,因此,第一支撑件40随机分布时,可以避免鬼像的产生,使光波导10具有更好的显示效果。
在一些实施例中,当耦出光栅133为二维光栅(即点阵的光栅),多个耦出子光栅1331阵列排布时,多个耦出子光栅1331中的部分耦出子光栅1331朝向靠近第一保护层20的方向延伸,部分耦出子光栅1331朝向靠近第一保护层20的方向延伸的部分形成第一支撑件40。可以理解地,将一部分耦出子光栅1331的高度做高,耦出子光栅1331上高出的那部分作为第一支撑件40,用于在第一保护层20受到外力凹陷时,支撑第一保护层20,以防止第一保护层20与光波导10贴合,产生牛顿环。将部分耦出子光栅1331的高度做高作为第一支撑件40,这样第一支撑件40可以在耦出光栅133制备的过程中制备(即第一支撑件40与耦出光栅133在同一制程中制备),不需要额外增加第一支撑件40的制备工序,简化了光波导10的制备工艺。
在本实施例中,当耦出光栅133为二维光栅时,第一支撑件40的长度与耦出子光栅1331的长度相同;第一支撑件40的宽度与耦出子光栅1331的宽度相同。可选地,对于二 维光栅来说,耦出子光栅1331的长度的范围为50nm至200nm,耦出子光栅1331的宽度范围为50nm至200nm。
请参见图19及图20,在另一些实施例中,当耦出光栅133为一维光栅(例如直齿光栅)时,多个耦出子光栅1331中的部分耦出子光栅1331上的局部朝向靠近第一保护层20的方向延伸,延伸的部分形成第一支撑件40。换言之,部分耦出子光栅1331上局部朝向靠近第一保护层20的方向凸出(即凸出部分形成凸起柱),凸出的部分作为第一支撑件40,用于在第一保护层20受到外力凹陷时,支撑第一保护层20,以防止第一保护层20与光波导10贴合,产生牛顿环。这样第一支撑件40可以在耦出光栅133制备的过程中制备(即第一支撑件40与耦出光栅133在同一制程中制备),不需要额外增加第一支撑件40的制备工序,简化了光波导10的制备工艺。
可选地,当耦出光栅133为一维光栅时,耦出子光栅1331的长度的范围为5mm至20mm,耦出子光栅1331的宽度的范围为100nm至1000nm,光栅的周期为390nm至780nm。
可选地,当第一支撑件40连接光栅层13背离光传导层的表面时,沿光波导10与第一保护层20的层叠方向上,第一支撑件40的高度h1’的范围为10μm≤h1’≤50μm。具体地,沿光波导10与第一保护层20的层叠方向上,第一支撑件40的高度h1’可以为但不限于为10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm等。当第一支撑件40(即凸起柱)的高度大于10μm时,第一保护层20与光波导10之间的空气膜同样大于10μm,可见光波长为380nm至750nm,两束光的相位差超过了10倍可见光波长,发生干涉的光能量较弱,此时肉眼很难观察到牛顿环。第一支撑件40的高度太小时,产生牛顿环的概率增加,第一支撑件40的高度太高时,则增加了光波导组件100的厚度,不利于光波导组件100的超薄化。
可选地,光波导组件100具有几何中心(图未示)及支撑分布区101,所述支撑分布区101靠近所述几何中心设置,多个第一支撑件40随机分布在所述支撑分布区101覆盖的范围内,所述支撑分布区101的等效圆半径的范围为0.25cm至2cm。具体地,所述支撑分布区101的等效圆半径可以为但不限于为0.25m、0.5cm、0.75m、1cm、1.25m、1.5cm、1.75m、2cm等。支撑分布区101太小,第一支撑件40的数量过少,则第一支撑件40对第一保护层20的支撑可能不够,第一保护层20在低温或受外力情况下,还是有发生凹陷,产生牛顿环的风险,支撑分布区101太大,增加光波导组件100的重量,且可能超出光波导组件100的尺寸范围。因此,所述支撑分布区101的等效圆半径的范围为0.25cm至2cm时,可以使得第一支撑件40对第一保护层20具有更好的支撑作用。“等效圆半径”指一几何图形与其面积相等的圆的半径。
在一具体实施例中,支撑分布区101以所述几何中心为中轴,即支撑分布区101的中心与几何中心重合,多个第一支撑件40环绕几何中心随机分布。靠近几何中心的位置,第一保护层20受到的支撑力最小,最容易凹陷,因此,多个第一支撑件40随机分布在几何中心的附近,可以使得第一支撑件40对第一保护层20具有更好的支撑作用。
可选地,第一支撑件40的平均分布密度的范围为10个/mm2至100个/mm2。具体地,第一支撑件40的平均分布密度可以为但不限于为10个/mm2、20个/mm2、30个/mm2、40个/mm2、50个/mm2、60个/mm2、70个/mm2、80个/mm2、90个/mm2、100个/mm2等。第一支撑件40的平均分布密度太小,则第一支撑件40起不到足够的支撑作用,当第一保护层20受到外力时,还是有可能会使第一保护层20与光波导10贴合,增加产生牛顿环的风险,第一支撑件40的平均分布密度太大,则光波导组件100透过率过低,影响佩戴视觉体验。
可选地,在本实施例中,任意相邻两个第一支撑件40之间的间距为耦出光栅133周期的10倍以上,例如10倍至1000倍之间;具体地,可以为但不限于为10倍、20倍、50倍、100倍等。这样可以尽量避免引入新的周期,防止鬼像的产生。
请再次参见图6,本申请第二方面实施例还提供了一种光波导组件100,其包括光波导10、第一保护层20、第一支撑件40及第一连接件60;光波导10包括光传导层11及光栅层13,光传导层11用于对进入光传导层11的光信号进行传输;光栅层13设置于光传导层11的表面;第一保护层20间隔设置于光栅层13背离光传导层11的一侧;第一支撑件40设置于光波导10与第一保护层20之间,第一支撑件40连接光栅层13背离光传导层11的表面或连接第一保护层20面向光传导层11的表面;第一连接件60设置于光波导10与第一保护层20之间,第一连接件60环绕第一支撑件40的外周且环绕光栅层13的外周设置,第一连接件60分别连接第一保护层20及光波导10。
关于光波导10、第一保护层20、第一支撑件40及第一连接件60细节部分的描述,请参见第一方面实施例对应部分的描述,在此不再赘述。
本申请第二方面实施例的光波导组件100包括第一支撑件40,第一支撑件40设置于光波导10与第一保护层20之间,第一支撑件40连接光栅层13背离光传导层11的表面或连接第一保护层20面向光传导层11的表面;当光波导组件100处于低温环境时,第一连接件60、第一保护层20及光波导10围合的封闭空间内的气压降低,在外界大气压的作用下,大气压或擦拭光波导组件100对第一保护层20产生朝向光波导10的力时,由于第一支撑件40的支撑作用,第一保护层20不会与光波导10贴合,甚至不会发生凹陷,从而不会产生牛顿环或粘连现象,避免了低温或受外力情况下,影响光波导组件100的透光率,且第一支撑件40的引入不会影响光波导组件100的显示效果。
请参见图21和图22,本申请第三方面实施例还提供一种增强现实设备500,其包括:投影光机510及本申请第一方面实施例或第二方面实施例的光波导组件100。投影光机510用于投射光信号,光信号包括图像信息;光波导组件100设置于投影光机510的出射面,用于将光信号进行传输。
可选地,投影光机510包括显示器511及镜头513。显示器511用于出射光信号,镜头513设置于显示器511的显示面侧,用于对光信号进行调制,以使得显示器511上同一个像素点出射的不同视场角的光线(光信号),经过镜头513调制后,以平行光的形式出射,以将光信号中的图像信息在无穷远的位置,以便肉眼可以观看到。光波导组件100设置于镜头513背离显示器511的一侧,用于将经镜头513调制后的光信号进行传输。
可选地,在一实施例,光波导10的光栅层13背离投影光机510设置。在另一实施例中,光波导10的光栅层13面向投影光机510设置。
可选地,显示器511可以为微显示器。显示器511包括发光单元,发光单元可以包括但不限于包括微型发光二极管(Micro Light Emitting Diode,Micro LED)芯片、微有机发光二极管(Micro Organic Light-Emitting Diode,Micro OLED)芯片或微型液晶显示屏(Micro liquid crystal display,Micro LCD)中的至少一种。在相同的工作功率条件下,Micro OLED的亮度通常小于5000nits,LCD的亮度通常小于15000nits,而Micro LED的亮度可达2000000nits,远高于前两者。因此,相较于Micro OLED显示器及Micro LCD显示器,当显示器511为Micro LED显示器时,其输出的图像具有更高的亮度。相较于Micro LCD显示器,Micro LED显示器是自发光光源,应用于增强现实设备500时具有更好的对比度及更小的显示延迟。
在一些实施例中,显示面上能够出射光信号的区域成为有效发光区域,显示器511的有效发光区域对角线尺寸的范围为0.11inch至0.15inch,有效发光区域长宽比为4:3。在另一些实施例中,显示器511的有效发光区域对角线尺寸的范围为0.17inch至0.21inch,有效发光区域长宽比为16:9。
可选地,显示器511出射的光线的颜色可以为但不限于为红光、绿光、蓝光等中的至少一种。在一具体实施例中,显示器511为出射绿光的Micro LED,在另一些实施例中,也可以为其它单色光Micro LED或复色光Micro LED。在一些实施例中,光波导组件100 还可以对镜头513出射的光信号中的图像信息在一维或二维上进行扩瞳,以增大动眼眶的范围,从而适应更多的人群。
在一些实施例中,本申请的增强现实设备500还包括承载件550,承载件550用于承载光波导组件100。可选地,承载件550可以为但不限于为增强现实眼镜的镜框、增强现实头盔的头盔本体、增强现实面罩的面罩本体等。可选地,光波导组件100可以通过粘合剂或紧固部分等设置于承载件550上。
本申请的增强现实设备500可以为但不限于为增强现实眼镜(AR眼镜)、增强现实头盔、增强现实面罩等近眼显示设备。可以理解地,本实施方式中的增强现实设备500仅仅为光波导组件100所应用的增强现实设备500的一种形态,不应当理解为对本申请提供的增强现实设备500的限定。
在一些实施例中,当增强现实设备500为增强现实眼镜时,本申请实施例的增强现实设备500还包括佩戴件530。佩戴件530与承载件550可转动连接,佩戴件530用于夹持佩戴者(如人体头部、或者头部假体等)。
可选地,佩戴件530包括第一佩戴子件531及第二佩戴子件533,第一佩戴子件531可转动连接于承载件550的一端,第二佩戴子件533可转动连接于承载件550远离第一佩戴子件531的另一端。第一佩戴子件531与第二佩戴子件533配合,用于将增强现实设备500夹持于佩戴者。可选地,第一佩戴子件531及第二佩戴子件533还用于设置投影光机。可选地,第一佩戴子件531与第二佩戴子件533均可以为但不限于为增强现实设备500(AR眼镜)的镜腿。
请参见图23,本申请实施例的增强现实设备500还包括处理器540及存储器560。处理器540与显示器511电连接,用于控制显示器511出射具有图像信息的光信号等。存储器560与处理器540电连接,用于存储处理器540运行所需的程序代码,控制显示器511所需的程序代码、显示器511出射的图像信息等。
可选地,处理器540包括一个或者多个通用处理器,其中,通用处理器可以是能够处理电子指令的任何类型的设备,包括中央处理器(Central Processing Unit,CPU)、微处理器、微控制器、主处理器、控制器以及ASIC等等。处理器540用于执行各种类型的数字存储指令,例如存储在存储器560中的软件或者固件程序,它能使计算设备提供较宽的多种服务。
可选地,存储器560可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器560也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory,FM)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD)。存储器560还可以包括上述种类的存储器的组合。
在本申请中提及“实施例”“实施方式”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。此外,还应该理解的是,本申请各实施例所描述的特征、结构或特性,在相互之间不存在矛盾的情况下,可以任意组合,形成又一未脱离本申请技术方案的精神和范围的实施例。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (20)

  1. 一种光波导组件,其特征在于,包括:
    光波导,所述光波导包括光传导层及光栅层,所述光传导层用于传输进入所述光传导层的光信号;所述光栅层设置于所述光传导层的表面;
    第一保护层,所述第一保护层间隔设置于所述光栅层背离所述光传导层的一侧;
    第一支撑件,所述第一支撑件设置于所述光波导与所述第一保护层之间;以及
    第一连接件,设置于所述光波导与所述第一保护层之间且分别连接所述第一保护层及所述光波导,所述第一连接件环绕所述第一支撑件的外周且环绕所述光栅层的外周设置。
  2. 根据权利要求1所述的光波导组件,其特征在于,所述第一支撑件连接所述光栅层背离所述光传导层的表面或连接所述第一保护层面向所述光传导层的表面。
  3. 根据权利要求1或2所述的光波导组件,其特征在于,所述光波导组件还包括:
    第二保护层,间隔设置于所述光传导层背离所述光栅层的一侧;
    第二支撑件,设置于所述光传导层与所述第二保护层之间,所述第二支撑件连接所述第二保护层面向所述光传导层的表面;以及
    第二连接件,设置于所述光波导与所述第二保护层之间且分别连接所述第二保护层及所述光波导,所述第二连接件环绕所述第二支撑件的外周设置。
  4. 根据权利要求3所述的光波导组件,其特征在于,所述第一支撑件连接所述第一保护层面向所述光传导层的表面,所述第一支撑件的数量为多个,所述多个第一支撑件阵列排布;所述第二支撑件的数量为多个,所述多个第二支撑件阵列排布。
  5. 根据权利要求4所述的光波导组件,其特征在于,沿所述光波导与所述第一保护层的层叠方向上,所述第一支撑件的高度h1的范围为0.01mm≤h1≤0.2mm;所述第二支撑件的高度h2的范围为0.01mm≤h2≤0.2mm。
  6. 根据权利要求4所述的光波导组件,其特征在于,所述第一支撑件在所述第一保护层面向所述光传导层的正投影所围区域上相距最远的两点之间的距离d1的范围为0.01mm≤d1≤0.2mm;所述第二支撑件在所述第二保护层面向所述光传导层的正投影所围区域上相距最远的两点之间的距离d2的范围为0.01mm≤d2≤0.2mm。
  7. 根据权利要求4所述的光波导组件,其特征在于,任意相邻的两个所述第一支撑件之间的最短距离s1的范围为0.5mm≤s1≤10mm;任意相邻的两个所述第二支撑件之间的最短距离s2的范围为0.5mm≤s2≤10mm。
  8. 根据权利要求1或2所述的光波导组件,其特征在于,所述第一支撑件的数量为多个,所述光栅层包括耦出光栅,所述耦出光栅包括间隔设置的多个耦出子光栅;所述第一支撑件连接所述耦出子光栅背离所述光传导层的表面,部分所述耦出子光栅连接一个或多个第一支撑件。
  9. 根据权利要求8所述的光波导组件,其特征在于,多个所述第一支撑件随机分布,且每个所述第一支撑件连接于一个所述耦出子光栅背离所述光传导层的表面。
  10. 根据权利要求8所述的光波导组件,其特征在于,所述耦出光栅为二维光栅,所述多个耦出子光栅阵列排布,所述多个耦出子光栅中的部分耦出子光栅朝向靠近所述第一保护层的方向延伸,所述部分耦出子光栅朝向靠近所述第一保护层的方向延伸的部分形成所述第一支撑件。
  11. 根据权利要求8所述的光波导组件,其特征在于,所述耦出光栅为一维光栅,所述多个耦出子光栅中的部分耦出子光栅上的局部朝向靠近所述第一保护层的方向延伸,所述延伸的部分形成所述第一支撑件。
  12. 根据权利要求8所述的光波导组件,其特征在于,沿所述光波导与所述第一保护层的层叠方向上,所述第一支撑件的高度h1’的范围为10μm≤h1’≤50μm。
  13. 根据权利要求8-12任一项所述的光波导组件,其特征在于,所述光波导组件具有几何中心及支撑分布区,所述支撑分布区靠近所述几何中心设置,多个所述第一支撑件随机分布在所述支撑分布区内。
  14. 根据权利要求13所述的光波导组件,其特征在于,所述支撑分布区的等效圆半径的范围为0.25cm至2cm。
  15. 根据权利要求13所述的光波导组件,其特征在于,所述第一支撑件的平均分布密度为10个/mm2至100个/mm2
  16. 根据权利要求13所述的光波导组件,其特征在于,任意相邻两个所述第一支撑件之间的间距为所述耦出光栅周期的10倍以上。
  17. 根据权利要求1-16任一项所述的光波导组件,其特征在于,所述光栅层的折射率大于所述光传导层的折射率。
  18. 根据权利要求1-16任一项所述的光波导组件,其特征在于,所述光传导层的双折射位相差小于或等于20nm。
  19. 根据权利要求1-18任一项所述的光波导组件,其特征在于,所述光传导层为热塑性树脂或热固性树脂,所述热塑性树脂包括聚碳酸酯,所述热固性树脂包括聚氨酯;所述光传导层通过注塑成型或浇注成型工艺制备,所述光栅层通过纳米压印工艺制备。
  20. 一种增强现实设备,其特征在于,包括:
    投影光机,所述投影光机用于投射光信号,所述光信号包括图像信息;以及
    权利要求1-19任一项所述的光波导组件,所述光波导组件用于传输所述光信号。
PCT/CN2023/110229 2022-10-14 2023-07-31 光波导组件及增强现实设备 WO2024078099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211263426.7 2022-10-14
CN202211263426.7A CN117930418A (zh) 2022-10-14 2022-10-14 光波导组件及增强现实设备

Publications (1)

Publication Number Publication Date
WO2024078099A1 true WO2024078099A1 (zh) 2024-04-18

Family

ID=90668694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110229 WO2024078099A1 (zh) 2022-10-14 2023-07-31 光波导组件及增强现实设备

Country Status (2)

Country Link
CN (1) CN117930418A (zh)
WO (1) WO2024078099A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201440175U (zh) * 2009-06-09 2010-04-21 洋华光电股份有限公司 透明叠层板的抗牛顿环与抗亮点结构
CN215932334U (zh) * 2021-07-29 2022-03-01 Oppo广东移动通信有限公司 一种镜片组件以及眼镜
US20220197026A1 (en) * 2020-12-21 2022-06-23 Digilens Inc. Eye Glow Suppression in Waveguide Based Displays
CN114924413A (zh) * 2022-04-28 2022-08-19 歌尔光学科技有限公司 光波导结构、光波导结构的制备方法及头戴显示设备
WO2022206638A1 (zh) * 2021-03-31 2022-10-06 华为技术有限公司 增强现实设备及其显示方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201440175U (zh) * 2009-06-09 2010-04-21 洋华光电股份有限公司 透明叠层板的抗牛顿环与抗亮点结构
US20220197026A1 (en) * 2020-12-21 2022-06-23 Digilens Inc. Eye Glow Suppression in Waveguide Based Displays
WO2022206638A1 (zh) * 2021-03-31 2022-10-06 华为技术有限公司 增强现实设备及其显示方法
CN215932334U (zh) * 2021-07-29 2022-03-01 Oppo广东移动通信有限公司 一种镜片组件以及眼镜
CN114924413A (zh) * 2022-04-28 2022-08-19 歌尔光学科技有限公司 光波导结构、光波导结构的制备方法及头戴显示设备

Also Published As

Publication number Publication date
CN117930418A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
JP7386786B2 (ja) 光学デバイス
JP7182674B2 (ja) ディスプレイシステム及びライトガイド
EP3458898B1 (en) Head-mounted imaging device
US10126482B2 (en) Lightguide device with outcoupling structures
JP6225657B2 (ja) 光学素子および画像表示装置並びにこれらの製造方法
US7826113B2 (en) Joined optical member, image display apparatus, and head-mounted display
JP6688807B2 (ja) 光学系
WO2016076153A1 (ja) 導光板および虚像表示装置
US10365489B2 (en) Semi-transmissive reflection sheet, light guide plate and display device
JP2002323612A (ja) コーナーキューブアレイなどの光学素子及びそれを備える反射型表示装置
WO2017077934A1 (ja) ライトガイドおよび虚像表示装置
KR20010098838A (ko) 면광원소자 및 이를 사용한 표시장치
TW201250298A (en) Optical sheet and method for manufacturing the same and liquid crystal display device using the same
EP3551931B1 (en) Waveguides with peripheral side geometries to recycle light
JPWO2007015328A1 (ja) 面光源装置及びプリズムシート
JP5493312B2 (ja) 面発光装置及び画像表示装置
JP2013080039A (ja) 虚像表示装置及びその製造方法
JP6660008B2 (ja) 表示装置
WO2024103978A1 (zh) 光学传输结构及其制作方法、显示装置
WO2024078099A1 (zh) 光波导组件及增强现实设备
CN112987165A (zh) 波导片、波导片的加工方法和头戴显示设备
CN112987179A (zh) 波导制备方法、波导及增强现实显示装置
JP4491609B2 (ja) 光学デバイス、映像表示装置およびヘッドマウントディスプレイ
TWI483011B (zh) 雙面具有微結構之光學膜
JP2001312915A (ja) 面光源素子およびそれを用いた表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876305

Country of ref document: EP

Kind code of ref document: A1