WO2024078087A1 - 磁悬浮主动式三自由度轴承、电机和压缩机 - Google Patents
磁悬浮主动式三自由度轴承、电机和压缩机 Download PDFInfo
- Publication number
- WO2024078087A1 WO2024078087A1 PCT/CN2023/108639 CN2023108639W WO2024078087A1 WO 2024078087 A1 WO2024078087 A1 WO 2024078087A1 CN 2023108639 W CN2023108639 W CN 2023108639W WO 2024078087 A1 WO2024078087 A1 WO 2024078087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radial
- axial
- stator
- bearing
- annular portion
- Prior art date
Links
- 238000005339 levitation Methods 0.000 title abstract 3
- 238000004804 winding Methods 0.000 claims abstract description 68
- 230000004907 flux Effects 0.000 claims abstract description 46
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 49
- 230000004323 axial length Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 abstract description 11
- 230000008569 process Effects 0.000 abstract description 7
- 239000000725 suspension Substances 0.000 description 14
- 238000006073 displacement reaction Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
Definitions
- the present disclosure relates to the field of magnetic suspension technology, and in particular to a magnetic suspension active three-degree-of-freedom bearing, a motor and a compressor.
- Magnetic bearings use the electromagnetic force on the rotor to suspend the shaft, and the shaft and stator remain in a non-contact state, so they have the advantages of no wear, high speed, high precision, and long life.
- Magnetic bearings can be divided into three categories according to their working principles: active magnetic bearings, passive magnetic bearings, and hybrid magnetic bearings.
- the active three-degree-of-freedom magnetic bearing in patent number CN110017330A has a complex structure and uses an E-shaped salient pole radial segmented stator to form a bias flux for the radial bearing. Its processing and manufacturing process is complex and difficult to assemble, and there is leakage of magnetic flux in the axial direction of the radial suspended winding.
- the magnetically levitated active three-degree-of-freedom bearing forms the bias magnetic flux of the radial bearing by setting an offset stator, it leads to technical problems such as complex structure, large volume, complex process, and difficult assembly. Therefore, the present invention studies and designs a magnetically levitated active three-degree-of-freedom bearing, motor and compressor.
- the technical problem to be solved by the present disclosure is to overcome the defects of a magnetically levitated active three-degree-of-freedom bearing, which forms a bias magnetic flux of a radial bearing by setting a bias stator, resulting in a complex structure and a large volume, thereby providing a magnetically levitated active three-degree-of-freedom bearing, a motor and a compressor.
- a magnetically suspended active three-degree-of-freedom bearing comprising:
- the axial magnetic bearing comprises a first axial stator and a second axial stator
- the radial magnetic bearing comprises a radial stator
- the bearing rotor is sleeved on the outer circumference of the rotating shaft and can rotate with the rotating shaft
- the radial stator is located on the outer circumference of the bearing rotor and can apply a radial electromagnetic force to the bearing rotor
- at least part of the structure of the first axial stator along the axial direction of the rotating shaft is located at one axial end of the bearing rotor
- at least part of the structure of the second axial stator is located at the other axial end of the bearing rotor
- the first axial stator and the second axial stator can apply an axial electromagnetic force to the bearing rotor
- the radial stator comprises
- the axial length of the radial core is smaller than the axial length of the bearing rotor, and the first axial end of the bearing rotor opposite to the first axial stator protrudes a first preset distance more than the third axial end of the radial core opposite to the first axial stator, so that the third axial end of the radial core retracts relative to the first axial end to form a first space, and at least a portion of the structure of the first axial stator extends into the first space to be radially opposite to a portion of the structure of the bearing rotor; the second axial end of the bearing rotor opposite to the second axial stator protrudes a second preset distance more than the fourth axial end of the radial core opposite to the second axial stator, so that the fourth axial end of the radial core retracts relative to the second axial end to form a second space, and at least a portion of the structure of the second axial stator extends into
- the first axial stator includes a first axial iron core and a first axial winding
- the first axial iron core is an annular structure
- the first axial iron core includes a first main body, a first annular portion and a second annular portion
- the first main body is a disc structure having a first center hole, the first center hole accommodates the rotating shaft passing therethrough
- the second annular portion is located radially outside the first annular portion
- one end of the first annular portion is connected to the first main body and the other end extends in the direction of the bearing rotor to be opposite to the bearing rotor
- one end of the second annular portion is connected to the first main body and the other end extends in the direction of the radial iron core to be opposite to the radial iron core and extend into the first space to form a first accommodating groove between the radial outer side of the first annular portion and the radial inner side of the second annular portion
- the first axial winding is arranged in the first accommodating groove and is wound around
- the first annular portion extends along the axial direction of the rotating shaft and is spaced from the bearing rotor by a third preset distance, forming a first axial working gap; the second annular portion also extends along the axial direction of the rotating shaft and is spaced from the radial iron core by a fourth preset distance, forming a second axial working gap; the axial length of the second annular portion is greater than the axial length of the first annular portion, and the end of the second annular portion opposite to the radial iron core is located radially outside the bearing rotor, so that the end of the second annular portion opposite to the radial iron core is opposite to part of the structure of the bearing rotor in the radial direction.
- the second axial stator includes a second axial core and a second axial winding
- the second axial core is an annular structure
- the second axial core includes a second main body, a third annular portion and a fourth annular portion
- the second main body is a disc structure with a second center hole
- the second center hole accommodates the rotating shaft passing therethrough
- one end of the third annular portion is connected to the second main body and the other end extends in the direction of the bearing rotor to be opposite to the bearing rotor
- one end of the fourth annular portion is connected to the second main body and the other end extends in the direction of the radial core to be opposite to the radial core
- the fourth annular portion is located radially outside the third annular portion to form a second accommodating groove between the radial outside of the third annular portion and the radial inside of the fourth annular portion
- the second axial winding is arranged in the second accommodating groove and wound around the outer circumference of the third annular portion.
- the third annular portion extends along the axial direction of the rotating shaft and is spaced apart from the bearing rotor by a fifth preset distance, forming a first axial working gap; the fourth annular portion also extends along the axial direction of the rotating shaft and is spaced apart from the radial core by a sixth preset distance, forming a second axial working gap; the axial length of the fourth annular portion is greater than the axial length of the third annular portion, and an end of the fourth annular portion opposite to the radial core is located radially outside the bearing rotor, so that the fourth annular portion is spaced apart from the radial core.
- One end of the pair is opposite to a partial structure of the bearing rotor in a radial direction.
- the first axial winding and the second axial winding are energized in opposite directions.
- the radial core includes a radial stator yoke and a radial stator pole
- the radial stator yoke is an annular structure
- the radial outer end of the radial stator pole is connected to the radial stator yoke
- the radial inner end protrudes toward the bearing rotor and has a radial working gap with the bearing rotor
- each radial stator pole is wound with a radial winding
- the radial stator includes a first quadrant part located at the upper right, a second quadrant part located at the upper left, a third quadrant part located at the lower left and a fourth quadrant part located at the lower right.
- the first quadrant part, the second quadrant part, the third quadrant part and the fourth quadrant part are connected in sequence counterclockwise, the first quadrant part forms a diagonal with the third quadrant part, and the second quadrant part forms a diagonal with the fourth quadrant part, and: the magnetic circuit formed by the radial stator pole and the yoke part in the second quadrant part is connected to the magnetic circuit formed by the radial stator pole and the yoke part in the fourth quadrant part to form a left radial control magnetic circuit, and the magnetic circuit formed by the radial stator pole and the yoke part in the first quadrant part is connected to the magnetic circuit formed by the radial stator pole and the yoke part in the third quadrant part to form a right radial control magnetic circuit.
- the number of radial stator poles is 4n, where n is a natural number.
- the radial stator pole includes a first pole and a second pole, in a radial cross section, the circumferential width of the first pole is greater than the circumferential width of the second pole, and at least one first pole and at least one second pole are distributed in each quadrant.
- the bias magnetic flux provided by the axial magnetic bearing for the radial magnetic bearing is along the radial direction toward the center of the rotating shaft to form an axial bias magnetic circuit; or, the bias magnetic flux provided by the axial magnetic bearing for the radial magnetic bearing is along the radial direction toward the direction away from the center of the rotating shaft to form an axial bias magnetic circuit; in the two quadrants forming a diagonal shape, the radial magnetic flux in one quadrant is along the radial direction toward the center of the rotating shaft, and the radial magnetic flux in the other quadrant is along the radial direction away from the center of the rotating shaft.
- the first axial stator when the first axial stator includes a first axial core and a first axial winding, the first axial core includes a first main body, a first annular portion and a second annular portion, the second axial stator includes a second axial core and a second axial winding, and the second axial core includes a second main body, a third annular portion and a fourth annular portion: the radial winding is located radially outside the second annular portion and the fourth annular portion at the same time, and the second annular portion and the fourth annular portion are both opposite to the radial stator pole.
- the present disclosure also provides a motor comprising the magnetically suspended active three-degree-of-freedom bearing of any of the preceding items.
- the present disclosure also provides a compressor, which includes the magnetically suspended active three-degree-of-freedom bearing of any of the preceding items.
- the present invention provides a magnetically suspended active three-degree-of-freedom bearing, a motor and a compressor, which have the following beneficial effects:
- the present disclosure arranges an axial magnetic bearing and a radial magnetic bearing so that a radial stator is located at the outer periphery of a bearing rotor and can apply a radial electromagnetic force to the bearing rotor. At least a portion of the structure of a first axial stator is located at one axial end of the bearing rotor, and at least a portion of the structure of a second axial stator is located at the other axial end of the bearing rotor.
- An axial electromagnetic force can be applied to the bearing rotor by the first axial stator and the second axial stator, so that the radial displacement of the rotating shaft can be adjusted by the radial electromagnetic force applied by the radial stator, and at the same time, the radial displacement of the rotating shaft can be adjusted by the axial electromagnetic force applied by the first and second axial stators.
- the axial offset of the rotating shaft ultimately achieves the purpose of radial and axial support for the rotating shaft, and at least part of the structure of the first axial stator is located radially outside the bearing rotor, and at least part of the structure of the second axial stator is located radially outside the bearing rotor, so that the bias flux of the radial magnetic bearing is provided by the axial magnetic bearing, so that compared with the existing active three-degree-of-freedom magnetic suspension bearings that need to provide a bias magnetic circuit for the radial bearing by setting structures such as bias stators, the present disclosure, through the setting of the above-mentioned structure, enables the first and second axial stators to provide a bias magnetic circuit for the radial stator, eliminating the original structures such as bias stators, and the structure is more compact and simple, the process difficulty is reduced, the volume is reduced, and the assembly is easy; the present disclosure combines the radial magnetic bearing with the axial magnetic bearing The bearings are combined together to form an integrated shaft and radial integrated
- the thrust bearing structure is omitted, so that the axial size of the rotor is reduced and shortened, and the radial bearing and the axial bearing are integrated without a thrust plate, the structure is compact, the bearing size is reduced, the rotor length is shortened, the critical speed of the rotor is increased, and the stability and applicability of the magnetic suspension system are improved;
- the present invention provides a bias magnetic circuit for the radial stator through the axial stator, which can omit the structure of the permanent magnet compared with the hybrid magnetic suspension bearing, has low cost, is easy to assemble, has a large load-bearing capacity, and can operate at high power;
- the present invention also arranges the radial winding on the radial outside of the first axial iron core and the second axial iron core, and the second annular portion and the fourth annular portion are opposite to the radial stator pole.
- the existing solution in which the upper magnetic pole of the axial stator is located next to the radial stator yoke that is, the existing upper magnetic pole of the axial stator is located on the axial side of the radial stator yoke
- it can reduce the leakage magnetic field of the radial magnetic circuit in the axial direction and improve the uneven axial output in the circumferential direction; the present invention can also provide a 2-way power amplifier through the diagonally connected radial magnetic circuit.
- the present invention can reduce material costs and current losses, and the above-mentioned magnetic circuit controls the radial movement of the shaft in a wide range of directions, has a good control effect, high precision, and a simple control method.
- FIG1 is a longitudinal cross-sectional structural diagram of a magnetically suspended active three-degree-of-freedom bearing disclosed in the present invention (axial cross-section, axial magnetic circuit of the three-degree-of-freedom bearing);
- FIG2 is a diagram showing the matching structure of the axial stator, radial stator and bearing rotor in the upper half of FIG1 ;
- FIG 3 is a cross-sectional structural diagram of the magnetically suspended active three-degree-of-freedom bearing disclosed in the present invention (radial cross section, radial magnetic circuit of the three-degree-of-freedom bearing).
- 100 axial magnetic bearing; 300, first axial stator; 1, first axial core; 1a, first main body; 1b, first annular portion; 1c, second annular portion; 1d, first receiving groove; 3, first axial winding; 400, second axial stator; 2, second axial core; 2a, second main body; 2b, third annular portion; 2c, fourth annular portion; 2d, second receiving groove; 4, second axial winding; 200, radial magnetic bearing; 500, radial stator; 5, radial winding; 6, radial core; 61, The third axial end; 62, the fourth axial end; 7, the bearing rotor; 71, the first axial end; 72, the second axial end; 8, the rotating shaft; 9, the upper magnetic pole on the left axis; 10, the upper magnetic pole on the right axis; 11, the radial stator yoke; 12, the radial stator pole; 13, the lower magnetic pole on the left axis; 14, the lower magnetic pole on the right axis; 15,
- the present disclosure provides a magnetically suspended active three-degree-of-freedom bearing, which includes:
- the axial magnetic bearing 100, the radial magnetic bearing 200 and the bearing rotor 7 are all sleeved on the outer periphery of the rotating shaft 8.
- the axial magnetic bearing 100 includes a first axial stator 300 and a second axial stator 400.
- the radial magnetic bearing 200 includes a radial stator 500.
- the bearing rotor 7 is sleeved on the outer periphery of the rotating shaft 8 and can rotate with the rotating shaft 8.
- the radial stator 500 is located on the outer periphery of the bearing rotor 7 and can apply radial electromagnetic force to the bearing rotor 7.
- the first axial stator 300 and the second axial stator 400 can apply axial electromagnetic force to the bearing rotor 7.
- the radial stator 500 includes a radial iron core 6 and a radial winding 5.
- the radial iron core 6 is an annular structure and is sleeved on the radial outer side of the bearing rotor 7 and located on the radial inner side of the radial winding 5.
- At least part of the structure of the first axial stator 300 is located on the radial outer side of the bearing rotor 7 and on the radial inner side of the radial winding 5. At least part of the structure of the second axial stator 400 is located on the radial outer side of the bearing rotor 7, so that the bias flux of the radial magnetic bearing 200 is provided by the axial magnetic bearing 100.
- the present invention arranges an axial magnetic bearing and a radial magnetic bearing so that the radial stator is located at the outer periphery of the bearing rotor and can apply radial electromagnetic force to the bearing rotor. At least part of the structure of the first axial stator is located at one axial end of the bearing rotor, and at least part of the structure of the second axial stator is located at the other axial end of the bearing rotor.
- the first axial stator and the second axial stator can apply axial electromagnetic force to the bearing rotor, so that the radial displacement of the rotating shaft can be adjusted by the radial electromagnetic force applied by the radial stator to the bearing rotor.
- the axial displacement of the rotating shaft can be adjusted by the axial electromagnetic force applied by the first and second axial stators to the bearing rotor, ultimately achieving the purpose of radial and axial support for the rotating shaft.
- At least part of the structure of the first axial stator is located at the radial outer side of the bearing rotor, and the second axial stator is located at the radial outer side of the bearing rotor.
- At least part of the structure of the rotor is located radially outside the bearing rotor, so that the bias magnetic flux of the radial magnetic bearing is provided by the axial magnetic bearing.
- the present invention Compared with the existing active three-degree-of-freedom magnetic suspension bearing that needs to provide a bias magnetic circuit for the radial bearing by setting structures such as a bias stator, the present invention enables the first and second axial stators to provide a bias magnetic circuit for the radial stator through the setting of the above structure, eliminating the original structures such as the bias stator, and the structure is more compact and simple, with reduced process difficulty, reduced volume, and easy assembly.
- the present invention combines the radial magnetic bearing with the axial magnetic bearing to form an integrated shaft and radial integrated magnetic bearing structure. Compared with the separate axial magnetic bearing and radial magnetic bearing, it is necessary to separately set a thrust bearing for the axial magnetic bearing to provide an axis for the rotating shaft.
- the radial magnetic bearing rotor needs to be provided with a radial magnetic bearing, thereby eliminating the structure of the thrust bearing, reducing and shortening the axial size of the rotor, integrating the radial bearing and the axial bearing, without a thrust plate, having a compact structure, reducing the bearing size, shortening the rotor length, increasing the critical speed of the rotor, and improving the stability and applicability of the magnetic suspension system.
- the present invention provides a bias magnetic circuit for the radial stator through the axial stator, which can eliminate the structure of the permanent magnet compared to the hybrid magnetic suspension bearing, has low cost, is easy to assemble, has a large load-bearing capacity, and can operate at high power.
- the active three-degree-of-freedom magnetic bearing proposed in the present invention adopts a single-coil mode for the axial winding, which is installed in the left and right axial stators and connected with the radial stator poles to provide an axial magnetic circuit to control the axial movement of the bearing rotor.
- the radial bearing has 4n magnetic poles (n is 1, 2, 3, 4...), the upper magnetic pole of the radial stator is the N pole, and the lower magnetic pole of the radial top is the S pole (or the upper end is the S pole and the lower end is the N pole).
- the bias magnetic circuit provided by the axial magnetic circuit in the radial direction enhances or weakens the radial air gap magnetic field, controls the radial movement of the rotating shaft, and simultaneously realizes the movement of the rotating shaft in the radial and axial directions in three degrees of freedom, thereby reducing the volume of the bearing stator, shortening the length of the rotating shaft, and improving the operating stability of the rotor.
- the thrust plate is removed and replaced by a bearing rotor, so that the radial bearing and the axial bearing are integrated.
- a thrust plate Compared with conventional active magnetic bearings, there is no need to install a thrust plate, the structure is compact, and the process is simple; compared with the usual hybrid three-degree-of-freedom magnetic bearings, there is no permanent magnet, and the bias magnetic field and the control magnetic field are provided by electromagnetic force, with large bearing capacity, high rigidity, and flexible control.
- This three-degree-of-freedom magnetic bearing can operate at high power and high critical speed, improving the stability and applicability of the magnetic suspension system.
- the present invention integrates radial bearings and axial bearings, has no thrust plate, has a compact structure, reduces bearing size, shortens rotor length, increases rotor critical speed, and improves the stability and applicability of the magnetic suspension system.
- the present invention reduces the magnetic leakage of the radial magnetic circuit in the axial direction and improves the circumferential unevenness of the axial output.
- the radial-axial bearing stator disclosed in the present invention has a simple manufacturing process and is convenient for controlling the axial and radial magnetic circuits.
- the present invention has high radial and axial integration, no thrust plate, reduced cost, compact structure, simple process, high critical speed, and stable performance; no permanent magnet, low cost, easy assembly, large bearing capacity, and can operate at high power.
- the axial length of the radial core 6 is less than the axial length of the bearing rotor 7.
- the radial stator of the present disclosure includes a radial core and a radial winding
- the present disclosure enables at least part of the structure of the first axial stator to extend into the part of the space where the radial core is shorter than the bearing rotor by making the axial length of the radial core shorter than the axial length of the bearing rotor, so that the magnetic circuit of the first axial stator can enter the radial stator, and then enter the bearing rotor, and provide a bias magnetic circuit for the radial stator without adding bias stators, permanent magnets and other structures; similarly, the present disclosure enables at least part of the structure of the second axial stator to extend into the part of the space where the radial core is shorter than the bearing rotor by making the magnetic circuit of the second axial stator enter the radi
- a first axial end 71 of the bearing rotor 7 opposite to the first axial stator 300 protrudes a first preset distance more than a third axial end 61 of the radial core 6 opposite to the first axial stator 300, so that the third axial end 61 of the radial core 6 retracts relative to the first axial end 71 to form a first space, and at least a portion of the structure of the first axial stator 300 extends into the first space to be radially opposite to a portion of the structure of the bearing rotor 7; a second axial end 72 of the bearing rotor 7 opposite to the second axial stator 400 protrudes a second preset distance more than a fourth axial end 62 of the radial core 6 opposite to the second axial stator 400, so that the fourth axial end 62 of the radial core 6 retracts relative to the second axial end 72 to form a second space, and at least a portion of the structure of the second axial stator 400 extends into
- the first space formed by retracting the third axial end of the radial iron core inwardly by a first preset distance relative to the first axial end of the bearing rotor can accommodate at least part of the structure of the first axial stator extending into the first space, so that the magnetic flux generated by the first axial stator can enter the radial stator, and then enter the bearing rotor, providing a bias magnetic circuit for the radial stator, without adding bias stators, permanent magnets and other structures, the structure is more compact, and the volume is reduced;
- the second space formed by retracting the fourth axial end of the radial iron core inwardly by a second preset distance relative to the second axial end of the bearing rotor can accommodate at least part of the structure of the second axial stator extending into the second space, so that the magnetic flux generated by the second axial stator can enter the radial stator
- the first axial stator 300 includes a first axial core 1 and a first axial winding 3.
- the first axial core 1 is an annular structure.
- the first axial core 1 includes a first main body portion 1a, a first annular portion 1b (i.e., the left-axis lower magnetic pole 13 in FIG. 1 ) and a second annular portion 1c (i.e., the left-axis upper magnetic pole 9 in FIG. 1 ).
- the first main body portion 1a is a disc structure having a first center hole. The first center hole accommodates the shaft 8 passing therethrough.
- the second annular portion 1c is located radially outside the first annular portion 1b.
- first annular portion 1b It is connected to the first main body portion 1a (optional radial inner end) and the other end extends in the direction of the bearing rotor 7 to be opposite to the bearing rotor 7.
- One end of the second annular portion 1c is connected to the first main body portion 1a (optional radial outer end) and the other end extends in the direction of the radial iron core 6 to be opposite to the radial iron core 6 and extends into the first space to form a first accommodating groove 1d between the radial outer side of the first annular portion 1b and the radial inner side of the second annular portion 1c.
- the first axial winding 3 is arranged in the first accommodating groove 1d and is wound around the outer periphery of the first annular portion 1b.
- a first accommodating groove for accommodating a first axial winding can be formed by the first annular portion and the second annular portion, and the first annular portion is opposite to the bearing rotor to accommodate the passage of a magnetic circuit, and the second annular portion is opposite to the radial iron core, and the end of the second annular portion opposite to the radial iron core extends into the first space.
- Improvements can be made to the radial iron core and the second annular portion so that the second annular portion, the radial iron core, the bearing rotor, the first annular portion and the first main body form a closed-loop magnetic path, and such a structure enables the first axial stator to provide a radial bias magnetic flux for the radial stator, so that the first axial stator and the radial stator are integrated into an integrated structure, eliminating structures such as a thrust plate, a permanent magnet, and a bias stator, and the structure is compact and the volume is reduced.
- the first annular portion 1b extends in the axial direction of the rotating shaft 8 and is spaced a third distance from the bearing rotor 7.
- a preset distance is set to form a first axial working gap 16;
- the second annular portion 1c also extends along the axial direction of the rotating shaft 8 and is spaced from the radial core 6 by a fourth preset distance to form a second axial working gap 19;
- the axial length of the second annular portion 1c is greater than the axial length of the first annular portion 1b, and the end of the second annular portion 1c opposite to the radial core 6 is located on the radial outside of the bearing rotor 7, so that the end of the second annular portion 1c opposite to the radial core 6 is opposite to part of the structure of the bearing rotor 7 in the radial direction.
- first annular portion and the second annular portion disclosed in the present invention, that is, the first annular portion extends axially and forms a first axial working gap with the bearing rotor, so that a magnetic flux can pass between the first annular portion and the bearing rotor, and the first annular portion does not rotate with the bearing rotor, and the second annular portion is separated from the radial iron core by a second axial working gap, so that a magnetic flux can pass between the second annular portion and the radial iron core, and the second annular portion does not form friction or leakage with the radial stator;
- the axial length of the second annular portion is greater than the axial length of the first annular portion, so that the end of the second annular portion opposite to the radial iron core can extend into the first space, and is opposite to part of the structure of the bearing rotor in the radial direction, and can transfer the magnetic circuit in the first axial stator to the radial iron core and the bearing rotor,
- the second axial stator 400 includes a second axial core 2 and a second axial winding 4, the second axial core 2 is an annular structure, the second axial core 2 includes a second main body portion 2a, a third annular portion 2b and a fourth annular portion 2c, the second main body portion 2a is a disc structure with a second center hole, the second center hole accommodates the rotating shaft 8 passing therethrough, one end of the third annular portion 2b is connected to the second main body portion 2a (optionally the radial inner end) and the other end extends toward the direction of the bearing rotor 7 to be opposite to the bearing rotor 7, one end of the fourth annular portion 2c is connected to the second main body portion 2a (optionally the radial outer end) and the other end extends toward the direction of the radial core 6 to be opposite to the radial core 6, and the fourth annular portion 2c is located radially outside the third annular portion 2b to form a second accommodating groove 2d between the radial
- a second accommodating groove for accommodating the second axial winding can be formed by the third annular portion and the fourth annular portion, and the third annular portion is opposite to the bearing rotor to accommodate the passage of the magnetic circuit, and the fourth annular portion is opposite to the radial iron core, and the end of the fourth annular portion opposite to the radial iron core extends into the second space.
- the radial iron core and the fourth annular portion can be improved so that the fourth annular portion, the radial iron core, the bearing rotor, the third annular portion and the second main body form a closed-loop magnetic path, and such a structure can enable the second axial stator to provide a radial bias magnetic flux for the radial stator, so that the second axial stator and the radial stator are integrated into an integrated structure, eliminating structures such as the thrust plate, the permanent magnet, and the bias stator, and the structure is compact and the volume is reduced.
- the third annular portion 2b extends in the axial direction of the rotating shaft 8 and is spaced apart from the bearing rotor 7 by a fifth preset distance, forming a first axial working gap 16; the fourth annular portion 2c also extends in the axial direction of the rotating shaft 8 and is spaced apart from the radial core 6 by a sixth preset distance, forming a second axial working gap 19; the axial length of the fourth annular portion 2c is greater than the axial length of the third annular portion 2b, and the end of the fourth annular portion 2c opposite to the radial core 6 is located radially outside the bearing rotor 7, so that the end of the fourth annular portion 2c opposite to the radial core 6 is radially spaced apart from a part of the structure of the bearing rotor 7. Towards relative.
- the third annular portion and the fourth annular portion extends axially and forms a first axial working gap with the bearing rotor, so that a magnetic flux can pass between the third annular portion and the bearing rotor, and the third annular portion does not rotate with the bearing rotor;
- the fourth annular portion and the radial core are separated by a second axial working gap, so that a magnetic flux can pass between the fourth annular portion and the radial core, and no friction or leakage is formed between the fourth annular portion and the radial stator;
- the axial length of the fourth annular portion is greater than the axial length of the third annular portion, so that the end of the fourth annular portion opposite to the radial core can extend into the second space, and in the radial direction is opposite to part of the structure of the bearing rotor, and can transfer the magnetic circuit in the second axial stator to the radial core and the bearing rotor, forming a more
- the first axial winding 3 and the second axial winding 4 are energized in opposite directions.
- the two axial windings disclosed in the present invention are energized in opposite directions, so that the bias magnetic flux generated by the two axial stators on the radial stator is directed radially inward, and a larger bias magnetic circuit can be provided for the radial core, thereby reducing the radial magnetic flux of the radial winding, reducing the power of the radial winding, and improving the utilization rate of the axial magnetic bearing;
- the radial winding is wound in the axial direction to generate a magnetic flux in the radial direction, which can point to the radial inside or the radial outside, thereby providing a control magnetic path for the radial output of the magnetic suspension bearing.
- the active three-degree-of-freedom magnetic bearing structure disclosed in the present invention is shown in Figure 1.
- the thrust plate is removed and replaced by a bearing rotor.
- the axial stator is located at both ends of the radial stator, and the radial bearing and the axial bearing are integrated.
- the structure is mainly composed of a left axial stator (including a first axial core 1 and a first axial winding 3), a right axial stator (including a second axial core 2 and a second axial winding 4), a radial winding 5, a radial stator (including a radial core 6 and a radial winding 5), a bearing rotor 7, a rotating shaft (8) and other parts.
- FIG1 shows an axial magnetic circuit of an active three-degree-of-freedom axial bearing.
- the axial stator structure is shown in the figure.
- the upper magnetic pole of the axial stator is located at the lower end of the radial winding 5 and is connected to the radial stator pole 12.
- the lower axial magnetic pole is located at both ends of the bearing rotor 7.
- the axial bias magnetic circuit 001 generated by the axial winding includes a left axial magnetic circuit and a right axial magnetic circuit, which are used to control the axial movement of the bearing rotor.
- the left axial magnetic circuit passes through the left axial upper magnetic pole 9-radial stator pole 12-radial working gap 15-bearing rotor 7-first axial working gap 16-left axial lower magnetic pole 13 and returns to the left axial stator (i.e., the first main The body 1a) is closed, and the right axial magnetic circuit returns to the right axial stator (i.e., the second main body 2a) through the right axial upper magnetic pole 10-radial stator pole 12-radial working gap 15-bearing rotor 7-first axial working gap 16-right axial lower magnetic pole 14 to close.
- the bearing rotor When the bearing rotor needs to be controlled to move to the left, the left axial winding current is increased, and the bearing rotor is subjected to a large force to the left. Conversely, when the bearing rotor needs to be controlled to move to the right, the right axial winding current is increased, and the bearing rotor is subjected to a large force to the right. Therefore, the axial movement of the bearing rotor is controlled by controlling the magnitude of the left and right axial winding currents.
- the radial core 6 includes a radial stator yoke 11 and a radial stator pole 12.
- the radial stator yoke 11 is an annular structure.
- the radial outer end of the radial stator pole is connected to the radial stator yoke 11, and the radial inner end protrudes toward the bearing rotor 7 and has a radial working gap 15 between the bearing rotor 7.
- Each radial stator pole is wound with a radial winding.
- the radial stator 500 includes a first quadrant part located at the upper right, a second quadrant part located at the upper left, a third quadrant part located at the lower left and a fourth quadrant part located at the lower right, the first quadrant part, the second quadrant part, the third quadrant part and the fourth quadrant part are connected in sequence counterclockwise, the first quadrant part forms a diagonal with the third quadrant part, the second quadrant part forms a diagonal with the fourth quadrant part, and: the magnetic circuit formed by the radial stator pole and the yoke part in the second quadrant part is connected to the magnetic circuit formed by the radial stator pole and the yoke part in the fourth quadrant part, forming a left radial control magnetic circuit 002, and the magnetic circuit formed by the radial stator pole and the yoke part in the first quadrant part is connected to the magnetic circuit formed by the radial stator pole and the yoke part in the third quadrant part
- the present invention can also provide a two-way power amplifier by configuring the radial magnetic circuit to be diagonally connected. Compared with the existing structure using a four-way power amplifier, the present invention can reduce material costs and current loss.
- the magnetic circuit controls the radial movement of the shaft to a wide range, has a good control effect, high precision, and a simple control method.
- FIG3 shows the radial magnetic circuit of the active three-degree-of-freedom radial bearing disclosed in the present invention.
- the radial stator structure is as shown in the figure. There are 4n magnetic poles (n is 1, 2, 3, 4, ).
- the upper magnetic pole of the radial stator is the N pole, and the lower magnetic pole of the radial top is the S pole (or the upper end is the S pole and the lower end is the N pole).
- the radial magnetic circuit is shown in FIG3 .
- the upper left coil and the lower right coil of the radial stator are connected in series to generate a left radial control magnetic circuit 002, and the upper right coil and the lower left coil of the radial stator are connected in series to generate a right radial control magnetic circuit 003.
- the bearing rotor If the bearing rotor is allowed to move in the upper left direction, a positive current is passed through the coil, and the left radial control magnetic circuit 002 returns to the upper left radial stator pole (first pole 17)-radial working gap 15-bearing rotor 7-radial working gap 15-lower right radial stator pole (first pole 17)-radial stator yoke 11 to close.
- the axial bias magnetic circuit 001 provided axially is shown as the dotted line in Figure 3, all pointing to the center of the circle (or to the circumference), the magnetic field of the upper left magnetic pole of the radial stator is enhanced, and the magnetic field of the lower right magnetic pole is weakened, so that the bearing rotor is subjected to a force to the upper left.
- the bearing rotor is allowed to move to the upper right direction, the magnetic field of the upper right magnetic pole of the radial stator is enhanced, and the magnetic field of the lower left magnetic pole is weakened.
- the above magnetic circuit controls the radial movement of the shaft in a wide range of directions and the control method is simple.
- This three-degree-of-freedom magnetic bearing structure integrates the radial bearing and the axial bearing, has no thrust plate, a compact structure, and a simple process. It ensures that under the same output, the bearing volume is reduced, the critical speed of the rotor is increased, and the system operation stability is improved.
- the radial stator pole 12 includes a first pole 17 and a second pole 18.
- the circumferential width of the first pole 17 is greater than the circumferential width of the second pole 18, and at least one first pole 17 and at least one second pole 18 are distributed in each quadrant; the number of radial stator poles is 4n, where n is a natural number.
- a first pole 17 and two second poles 18 are provided, and in the circumferential direction, one second pole 18 is provided on one circumferential side of the first pole 17, and another second pole 18 is provided on the other circumferential side, so that the first pole 17 is located in the middle of the two second poles 18.
- a further optional pole distribution form is that the pole with larger magnetic flux is located in the middle, and the two poles with smaller magnetic flux are located on both sides. It can be arranged according to the actual spatial structure to increase the magnetic flux, and the setting of the large pole can also avoid magnetic flux saturation.
- the bias magnetic flux provided by the axial magnetic bearing 100 to the radial magnetic bearing 200 is along the radial direction toward the center of the rotating shaft 8 to form an axial bias magnetic circuit 001; or, the bias magnetic flux provided by the axial magnetic bearing 100 to the radial magnetic bearing 200 is along the radial direction toward the direction away from the center of the rotating shaft 8 to form an axial bias magnetic circuit 001; in the two quadrants forming a diagonal shape, the radial magnetic flux in one quadrant is along the radial direction toward the center of the rotating shaft 8, and the radial magnetic flux in the other quadrant is along the radial direction away from the center of the rotating shaft 8.
- the bias magnetic flux provided by the axial magnetic bearing of the present invention is all radially toward the center of the rotating shaft, thereby forming a relatively unchanged bias magnetic circuit, and the bias magnetic flux generated by the two axial stators is all radially toward the inside or the outside, which can increase the magnetic flux, thereby reducing the radial magnetic flux of the radial winding, reducing the power of the radial winding, and improving the utilization rate of the axial magnetic bearing; in the two diagonal quadrant parts, the magnetic flux of one is radially inward, and the magnetic flux of the other quadrant is radially outward, which can enter the bearing rotor through the magnetic flux on the radial inside, and lead the magnetic circuit to the stator yoke through the magnetic flux in the other quadrant, thereby forming a closed loop, and such control means can greatly enhance the control ability.
- the present invention increases the winding current of the second quadrant and the fourth quadrant, and can simultaneously drive the second quadrant to move toward the upper left, and drive the fourth quadrant to move toward the upper left, thus increasing the control ability and control efficiency of the rotating shaft compared with the existing magnetic suspension bearings.
- the first axial stator 300 when the first axial stator 300 includes a first axial core 1 and a first axial winding 3, the first axial core 1 includes a first main body portion 1a, a first annular portion 1b and a second annular portion 1c, the second axial stator 400 includes a second axial core 2 and a second axial winding 4, and the second axial core 2 includes a second main body portion 2a, a third annular portion 2b and a fourth annular portion 2c: the radial winding 5 is located radially outside the second annular portion 1c and the fourth annular portion 2c at the same time, and the second annular portion 1c and the fourth annular portion 2c are both opposite to the radial stator poles.
- the present invention also arranges the radial winding on the radial outside of the first axial iron core and the second axial iron core, and the second annular portion and the fourth annular portion are opposite to the radial stator pole.
- the existing solution in which the upper magnetic pole of the axial stator is located next to the radial stator yoke that is, the existing upper magnetic pole of the axial stator is located on the axial side of the radial stator yoke
- it can reduce the leakage magnetic field of the radial magnetic circuit in the axial direction and improve the uneven axial output in the circumferential direction.
- the present disclosure also provides a motor, which includes the above magnetically suspended active three-degree-of-freedom bearing.
- the present disclosure also provides a compressor, which includes the above magnetically suspended active three-degree-of-freedom bearing.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
一种磁悬浮主动式三自由度轴承、电机和压缩机,包括:轴向磁轴承(100)、径向磁轴承(200)和轴承转子(7),轴向磁轴承(100)包括第一轴向定子(300)和第二轴向定子(400),径向磁轴承(200)包括径向定子(500),径向定子(500)位于轴承转子(7)的外周且能对轴承转子(7)施加径向电磁力,第一轴向定子(300)和第二轴向定子(400)能对轴承转子(7)施加轴向电磁力,第一轴向定子(300)的至少部分结构位于轴承转子(7)的径向外侧且位于径向绕组(5)的径向内侧,第二轴向定子(400)的至少部分结构位于轴承转子(7)的径向外侧且位于径向绕组(5)的径向内侧,使得径向磁轴承(200)的偏置磁通由轴向磁轴承(100)提供。第一轴向定子(300)和第二轴向定子(400)为径向定子提供偏置磁路,省去了原有的比如偏置定子等结构,结构更为紧凑、简单,工艺难度降低,体积减小,装配容易。
Description
相关申请的交叉引用
本公开要求2022年10月14日申请的,申请号为202211259874.X,名称为“一种磁悬浮主动式三自由度轴承、电机和压缩机”的中国专利申请的优先权,在此将其全文引入作为参考。
本公开涉及磁悬浮技术领域,具体涉及一种磁悬浮主动式三自由度轴承、电机和压缩机。
磁悬浮轴承利用对转子的电磁力将转轴悬浮起来,转轴与定子保持非接触的状态,因此具有无磨损、高转速、高精度、长寿命等优点。磁轴承按工作原理可分为三类:主动式磁轴承、被动式磁轴承和混合式磁轴承。
专利号CN110017330A“一种轴向径向电磁型磁轴承”中的主动式三自由度磁轴承结构复杂,采用E形凸极径向分块定子,来形成对径向轴承的偏置磁通,其加工制作工艺复杂,装配困难,存在径向悬浮绕组在轴向方向上漏磁。
由于磁悬浮主动式三自由度轴承通过设置偏置定子来形成径向轴承的偏置磁通,导致结构复杂,体积较大,工艺复杂,装配困难等技术问题,因此本公开研究设计出一种磁悬浮主动式三自由度轴承、电机和压缩机。
发明内容
因此,本公开要解决的技术问题在于克服磁悬浮主动式三自由度轴承通过设置偏置定子来形成径向轴承的偏置磁通,导致结构复杂,体积较大的缺陷,从而提供一种磁悬浮主动式三自由度轴承、电机和压缩机。
为了解决上述问题中的至少一个,本公开提供一种磁悬浮主动式三自由度轴承,包括:
轴向磁轴承、径向磁轴承和轴承转子,轴向磁轴承和径向磁轴承均套设在转轴的外周,轴向磁轴承包括第一轴向定子和第二轴向定子,径向磁轴承包括径向定子,轴承转子套设在转轴的外周且能随着转轴一起转动,径向定子位于轴承转子的外周且能对轴承转子施加径向电磁力,沿转轴的轴向方向第一轴向定子的至少部分结构位于轴承转子的轴向一端,第二轴向定子的至少部分结构位于轴承转子的轴向另一端,第一轴向定子和第二轴向定子能对轴承转子施加轴向电磁力,径向定子包括径向铁芯和径向绕组,径向铁芯为环状结构
且套设于轴承转子的径向外侧;第一轴向定子的至少部分结构位于轴承转子的径向外侧且位于径向绕组的径向内侧,第二轴向定子的至少部分结构位于轴承转子的径向外侧且位于径向绕组的径向内侧,使得径向磁轴承的偏置磁通由轴向磁轴承提供。
在一些实施例中,在轴向方向,径向铁芯的轴向长度小于轴承转子的轴向长度,轴承转子与第一轴向定子相对的第一轴向端比径向铁芯与第一轴向定子相对的第三轴向端凸出第一预设距离,使得径向铁芯的第三轴向端相对于第一轴向端缩回形成第一空间,第一轴向定子的至少部分结构伸入至第一空间中以与轴承转子的部分结构在径向上相对;轴承转子与第二轴向定子相对的第二轴向端比径向铁芯与第二轴向定子相对的第四轴向端凸出第二预设距离,使得径向铁芯的第四轴向端相对于第二轴向端缩回形成第二空间,第二轴向定子的至少部分结构伸入至第二空间中以与轴承转子的部分结构在径向上相对。
在一些实施例中,第一轴向定子包括第一轴向铁芯和第一轴向绕组,第一轴向铁芯为环形结构,第一轴向铁芯包括第一主体部、第一环形部和第二环形部,第一主体部为具有第一中心孔的圆盘结构,第一中心孔容纳转轴从中穿过,第二环形部位于第一环形部的径向外侧,第一环形部的一端与第一主体部相接且另一端朝轴承转子的方向延伸至与轴承转子相对,第二环形部的一端与第一主体部相接且另一端朝径向铁芯的方向延伸至与径向铁芯相对并伸入第一空间中,以在第一环形部的径向外侧与第二环形部的径向内侧之间形成第一容纳槽,第一轴向绕组设置于第一容纳槽中并缠绕在第一环形部的外周。
在一些实施例中,第一环形部沿转轴的轴向方向延伸且与轴承转子间隔第三预设距离,形成第一轴向工作间隙;第二环形部也沿转轴的轴向方向延伸且与径向铁芯间隔第四预设距离,形成第二轴向工作间隙;第二环形部的轴向长度大于第一环形部的轴向长度,且第二环形部与径向铁芯相对的一端位于轴承转子的径向外侧,使得第二环形部与径向铁芯相对的一端与轴承转子的部分结构在径向方向相对。
在一些实施例中,第二轴向定子包括第二轴向铁芯和第二轴向绕组,第二轴向铁芯为环形结构,第二轴向铁芯包括第二主体部、第三环形部和第四环形部,第二主体部为具有第二中心孔的圆盘结构,第二中心孔容纳转轴从中穿过,第三环形部的一端与第二主体部相接且另一端朝轴承转子的方向延伸至与轴承转子相对,第四环形部的一端与第二主体部相接且另一端朝径向铁芯的方向延伸至与径向铁芯相对,且第四环形部位于第三环形部的径向外侧,以在第三环形部的径向外侧与第四环形部的径向内侧之间形成第二容纳槽,第二轴向绕组设置于第二容纳槽中并缠绕在第三环形部的外周。
在一些实施例中,第三环形部沿转轴的轴向方向延伸且与轴承转子间隔第五预设距离,形成第一轴向工作间隙;第四环形部也沿转轴的轴向方向延伸且与径向铁芯间隔第六预设距离,形成第二轴向工作间隙;第四环形部的轴向长度大于第三环形部的轴向长度,且第四环形部与径向铁芯相对的一端位于轴承转子的径向外侧,使得第四环形部与径向铁芯相
对的一端与轴承转子的部分结构在径向方向相对。
在一些实施例中,第一轴向绕组与第二轴向绕组的通电方向相反。
在一些实施例中,径向铁芯包括径向定子磁轭和径向定子极柱,径向定子磁轭为环形结构,径向定子极柱的径向外端与径向定子磁轭连接、径向内端朝轴承转子凸出并与轴承转子之间具有径向工作间隙,每个径向定子极柱上均绕设有径向绕组;
并且在径向截面内,径向定子包括位于右上方的第一象限部分、位于左上方的第二象限部分、位于左下方的第三象限部分和位于右下方的第四象限部分,第一象限部分、第二象限部分、第三象限部分和第四象限部分沿逆时针依次相接,第一象限部分与第三象限部分形成对角,第二象限部分与第四象限部分形成对角,并有:第二象限部分内的径向定子极柱和磁轭部分形成的磁路与第四象限部分内的径向定子极柱和磁轭部分形成的磁路连通,形成左径向控制磁路,第一象限部分内的径向定子极柱和磁轭部分形成的磁路与第三象限部分内的径向定子极柱和磁轭部分形成的磁路连通,形成右径向控制磁路。
在一些实施例中,径向定子极柱的数量为4n个,其中n为自然数。
在一些实施例中,径向定子极柱包括第一极柱和第二极柱,在径向截面内,第一极柱的周向宽度大于第二极柱的周向宽度,并且在每个象限部分中均分布至少一个第一极柱和至少一个第二极柱。
在一些实施例中,轴向磁轴承为径向磁轴承提供的偏置磁通均沿径向方向朝向转轴的圆心的方向形成轴向偏置磁路;或者,轴向磁轴承为径向磁轴承提供的偏置磁通均沿径向方向朝着背离转轴的圆心的方向形成轴向偏置磁路;在形成对角的两个象限部分中,其中一个象限部分中的径向磁通沿径向方向朝向转轴的圆心,另外一个象限部分中的径向磁通沿径向方向背离转轴的圆心。
在一些实施例中,当第一轴向定子包括第一轴向铁芯和第一轴向绕组,第一轴向铁芯包括第一主体部、第一环形部和第二环形部,第二轴向定子包括第二轴向铁芯和第二轴向绕组,第二轴向铁芯包括第二主体部、第三环形部和第四环形部时:径向绕组同时位于第二环形部和第四环形部的径向外侧,且第二环形部和第四环形部均与径向定子极柱相对。
本公开还提供一种电机,其包括前任一项的磁悬浮主动式三自由度轴承。
本公开还提供一种压缩机,其包括前任一项的磁悬浮主动式三自由度轴承。
本公开提供的一种磁悬浮主动式三自由度轴承、电机和压缩机具有如下有益效果:
1.本公开通过轴向磁轴承和径向磁轴承的布置,使得径向定子位于轴承转子的外周且能对轴承转子施加径向电磁力,第一轴向定子的至少部分结构位于轴承转子的轴向一端,第二轴向定子的至少部分结构位于轴承转子的轴向另一端,能够通过第一轴向定子和第二轴向定子对轴承转子施加轴向电磁力,从而使得轴承转子能够被径向定子施加径向电磁力而调节转轴的径向偏移,同时轴承转子能够被第一和第二轴向定子施加轴向电磁力而调节
转轴的轴向偏移,最终达到对转轴实现径向和轴向支撑的目的,并且第一轴向定子的至少部分结构位于轴承转子的径向外侧,第二轴向定子的至少部分结构位于轴承转子的径向外侧,使得径向磁轴承的偏置磁通由轴向磁轴承提供,使得相对于现有的主动式三自由度磁悬浮轴承需要通过设置比如偏置定子等结构来为径向轴承提供偏置磁路的方案而言,本公开通过上述结构的设置使得第一和第二轴向定子能够为径向定子提供偏置磁路,省去了原有的比如偏置定子等结构,结构更为紧凑、简单,工艺难度降低,体积减小,装配容易;本公开将径向磁轴承与轴向磁轴承结合到一起,形成一体的轴、径向一体的磁轴承结构,相对于分开式轴向磁轴承和径向磁轴承需要单独对轴向磁轴承设置止推轴承来对转轴提供轴向力,同时需要对径向磁轴承设置径向磁轴承转子而言,省去了止推轴承的结构,使得转子的轴向尺寸得到减小和缩短,将径向轴承和轴向轴承集成化,无推力盘,结构紧凑,减小轴承尺寸,缩短转子长度,提高转子临界转速,提高磁悬浮系统的稳定性和应用性;本公开通过轴向定子为径向定子提供偏置磁路,能够相对于混合式磁悬浮轴承而言省去永磁体的结构,成本低,装配方便,承载力大,可大功率运行;
2.本公开还通过将径向绕组设置于第一轴向铁芯和第二轴向铁芯的径向外侧,以及第二环形部和第四环形部均与径向定子极柱相对,能相对于现有的轴向定子的上磁极位于径向定子磁轭旁的方案而言(即现有的轴向定子上磁极位于径向定子磁轭的轴向一侧),能够减小径向磁路在轴向方向的漏磁,改善轴向出力在周向上不均匀的情况;本公开还通过径向磁路成对角连通的设置形式能够提供2路功放,相对于现有的采用4路功放的结构而言,本公开能够减少物料成本,并且减小电流损耗,并且上述磁路控制转轴径向方向移动方位广,控制效果好,精度高,控制方法简单。
图1是本公开的磁悬浮主动式三自由度轴承的纵截面结构图(轴向截面,三自由度轴承轴向磁路);
图2是图1中上半部分的轴向定子、径向定子和轴承转子的配合结构图;
图3是本公开的磁悬浮主动式三自由度轴承的横截面结构图(径向截面,三自由度轴承径向磁路)。
附图标记表示为:
100、轴向磁轴承;300、第一轴向定子;1、第一轴向铁芯;1a、第一主体部;1b、第一环形部;1c、第二环形部;1d、第一容纳槽;3、第一轴向绕组;400、第二轴向定子;2、第二轴向铁芯;2a、第二主体部;2b、第三环形部;2c、第四环形部;2d、第二容纳槽;4、第二轴向绕组;200、径向磁轴承;500、径向定子;5、径向绕组;6、径向铁芯;61、
第三轴向端;62、第四轴向端;7、轴承转子;71、第一轴向端;72、第二轴向端;8、转轴;9、左轴向上磁极;10、右轴向上磁极;11、径向定子磁轭;12、径向定子极柱;13、左轴向下磁极;14、右轴向下磁极;15、径向工作间隙;16、第一轴向工作间隙;001、轴向偏置磁路;002、左径向控制磁路;003、右径向控制磁路;17、第一极柱;18、第二极柱;19、第二轴向工作间隙。
如图1-3所示,本公开提供一种磁悬浮主动式三自由度轴承,其包括:
轴向磁轴承100、径向磁轴承200和轴承转子7,轴向磁轴承100和径向磁轴承200均套设在转轴8的外周,轴向磁轴承100包括第一轴向定子300和第二轴向定子400,径向磁轴承200包括径向定子500,轴承转子7套设在转轴8的外周且能随着转轴8一起转动,径向定子500位于轴承转子7的外周且能对轴承转子7施加径向电磁力,沿转轴8的轴向方向第一轴向定子300的至少部分结构位于轴承转子7的轴向一端,第二轴向定子400的至少部分结构位于轴承转子7的轴向另一端,第一轴向定子300和第二轴向定子400能对轴承转子7施加轴向电磁力,径向定子500包括径向铁芯6和径向绕组5,径向铁芯6为环状结构且套设于轴承转子7的径向外侧且位于径向绕组5的径向内侧,第一轴向定子300的至少部分结构位于轴承转子7的径向外侧且位于径向绕组5的径向内侧,第二轴向定子400的至少部分结构位于轴承转子7的径向外侧,使得径向磁轴承200的偏置磁通由轴向磁轴承100提供。
本公开通过轴向磁轴承和径向磁轴承的布置,使得径向定子位于轴承转子的外周且能对轴承转子施加径向电磁力,第一轴向定子的至少部分结构位于轴承转子的轴向一端,第二轴向定子的至少部分结构位于轴承转子的轴向另一端,能够通过第一轴向定子和第二轴向定子对轴承转子施加轴向电磁力,从而使得轴承转子能够被径向定子施加径向电磁力而调节转轴的径向偏移,同时轴承转子能够被第一和第二轴向定子施加轴向电磁力而调节转轴的轴向偏移,最终达到对转轴实现径向和轴向支撑的目的,并且第一轴向定子的至少部分结构位于轴承转子的径向外侧,第二轴向定子的至少部分结构位于轴承转子的径向外侧,使得径向磁轴承的偏置磁通由轴向磁轴承提供,使得相对于现有的主动式三自由度磁悬浮轴承需要通过设置比如偏置定子等结构来为径向轴承提供偏置磁路的方案而言,本公开通过上述结构的设置使得第一和第二轴向定子能够为径向定子提供偏置磁路,省去了原有的比如偏置定子等结构,结构更为紧凑、简单,工艺难度降低,体积减小,装配容易;本公开将径向磁轴承与轴向磁轴承结合到一起,形成一体的轴、径向一体的磁轴承结构,相对于分开式轴向磁轴承和径向磁轴承需要单独对轴向磁轴承设置止推轴承来对转轴提供轴
向力,同时需要对径向磁轴承设置径向磁轴承转子而言,省去了止推轴承的结构,使得转子的轴向尺寸得到减小和缩短,将径向轴承和轴向轴承集成化,无推力盘,结构紧凑,减小轴承尺寸,缩短转子长度,提高转子临界转速,提高磁悬浮系统的稳定性和应用性;本公开通过轴向定子为径向定子提供偏置磁路,能够相对于混合式磁悬浮轴承而言省去永磁体的结构,成本低,装配方便,承载力大,可大功率运行。
本公开提出的主动式三自由度磁轴承,轴向绕组采用单线圈模式,安装在左右轴向定子中,与径向定子极柱衔接,提供轴向磁路,控制轴承转子的轴向移动,径向轴承有4n个磁极(n为1、2、3、4……),径向定子上端磁极为N极,径向顶端下端磁极为S极(或者上端为S极,下端为N极),轴向磁路在径向方向上提供的偏置磁路增强或削弱径向气隙磁场,控制转轴径向方向的移动,同时实现对转轴径向和轴向三个自由度上的移动,减小轴承定子体积,缩短转轴长度,提高转子运行稳定性。
本公开去掉了推力盘,由轴承转子代替,使得径向轴承和轴向轴承一体化。与常规的主动式磁轴承相比,无需安装推力盘,结构紧凑,工艺简单;与通常的混合式三自由度磁轴承相比,没有永磁体,由电磁力提供偏置磁场和控制磁场,承载力大、刚度高、控制灵活,此三自由度磁轴承可大功率运行、临界转速高,提高磁悬浮系统的稳定性和应用性。
解决的技术问题:
1.本公开将径向轴承和轴向轴承集成化,无推力盘,结构紧凑,减小轴承尺寸,缩短转子长度,提高转子临界转速,提高磁悬浮系统的稳定性和应用性。
2.本公开与轴向上磁极位于径向定子磁轭旁相比,减小径向磁路在轴向方向的漏磁,改善轴向出力周向不均匀情况。
1.本公开的径轴向轴承定子,加工制作工艺简单,轴径向磁路控制方便。
2.本公开径轴向集成化高,无推力盘,降低成本,结构紧凑,工艺简单,临界转速高,性能稳定;无永磁体,成本低,装配方便,承载力大,可大功率运行。
在一些实施例中,在轴向方向,径向铁芯6的轴向长度小于轴承转子7的轴向长度。这是本公开的径向定子的可选结构形式,即包括径向铁芯和径向绕组,并且本公开通过径向铁芯的轴向长度小于轴承转子的轴向长度,能够使得第一轴向定子的至少部分结构能够伸入径向铁芯比轴承转子短出来的部分空间中,从而使得第一轴向定子的磁路能够进入径向定子,进而进入轴承转子中,而为径向定子提供偏置磁路,而不用增设偏置定子、永磁体等结构;同样的,本公开通过上述结构能够使得第二轴向定子的至少部分结构能够伸入径向铁芯比轴承转子短出来的部分空间中,从而使得第二轴向定子的磁路能够进入径向定子,进而进入轴承转子中,而为径向定子提供偏置磁路,而不用增设偏置定子、永磁体等结构,结构更为紧凑,体积缩小,形成集成为一体的主动式三自由度磁悬浮轴承。
在一些实施例中,轴承转子7与第一轴向定子300相对的第一轴向端71比径向铁芯6与第一轴向定子300相对的第三轴向端61凸出第一预设距离,使得径向铁芯6的第三轴向端61相对于第一轴向端71缩回形成第一空间,第一轴向定子300的至少部分结构伸入至第一空间中以与轴承转子7的部分结构在径向上相对;轴承转子7与第二轴向定子400相对的第二轴向端72比径向铁芯6与第二轴向定子400相对的第四轴向端62凸出第二预设距离,使得径向铁芯6的第四轴向端62相对于第二轴向端72缩回形成第二空间,第二轴向定子400的至少部分结构伸入至第二空间中以与轴承转子7的部分结构在径向上相对。
这是本公开的径向铁芯与第一轴向定子以及第二轴向定子之间可选的配合结构形式,即通过径向铁芯的第三轴向端相对于轴承转子的第一轴向端向内缩回第一预设距离而形成的第一空间,能够容纳第一轴向定子的至少部分结构伸入第一空间中,从而使得第一轴向定子产生的磁通能够进入径向定子,进而进入轴承转子中,为径向定子提供偏置磁路,不用增设偏置定子、永磁体等结构,结构更为紧凑,体积缩小;通过径向铁芯的第四轴向端相对于轴承转子的第二轴向端向内缩回第二预设距离而形成的第二空间,能够容纳第二轴向定子的至少部分结构伸入第二空间中,从而使得第二轴向定子产生的磁通能够进入径向定子,进而进入轴承转子中,为径向定子提供偏置磁路,不用增设偏置定子、永磁体等结构,结构更为紧凑,体积缩小。
在一些实施例中,第一轴向定子300包括第一轴向铁芯1和第一轴向绕组3,第一轴向铁芯1为环形结构,第一轴向铁芯1包括第一主体部1a、第一环形部1b(即图1中的左轴下磁极13)和第二环形部1c(即图1中的左轴上磁极9),第一主体部1a为具有第一中心孔的圆盘结构,第一中心孔容纳转轴8从中穿过,第二环形部1c位于第一环形部1b的径向外侧,第一环形部1b的一端与第一主体部1a(可选径向内端)相接且另一端朝轴承转子7的方向延伸至与轴承转子7相对,第二环形部1c的一端与第一主体部1a(可选径向外端)相接且另一端朝径向铁芯6的方向延伸至与径向铁芯6相对并伸入第一空间中,以在第一环形部1b的径向外侧与第二环形部1c的径向内侧之间形成第一容纳槽1d,第一轴向绕组3设置于第一容纳槽1d中并缠绕在第一环形部1b的外周。
这是本公开的第一轴向定子的可选结构形式,通过第一环形部和第二环形部能够形成容纳第一轴向绕组设置的第一容纳槽,并且第一环形部与轴承转子相对以容纳磁路通过,第二环形部与径向铁芯相对且第二环形部的与径向铁芯相对的端部伸入第一空间中,能够对径向铁芯和第二环形部做出改进,使得第二环形部、径向铁芯、轴承转子、第一环形部和第一主体部形成闭环的磁通路,并且这样的结构能够使得第一轴向定子为径向定子提供径向的偏置磁通,使得第一轴向定子与径向定子集成为一体结构,省去了推力盘、永磁体、偏置定子等结构,结构紧凑,体积得到的减小。
在一些实施例中,第一环形部1b沿转轴8的轴向方向延伸且与轴承转子7间隔第三
预设距离,形成第一轴向工作间隙16;第二环形部1c也沿转轴8的轴向方向延伸且与径向铁芯6间隔第四预设距离,形成第二轴向工作间隙19;第二环形部1c的轴向长度大于第一环形部1b的轴向长度,且第二环形部1c与径向铁芯6相对的一端位于轴承转子7的径向外侧,使得第二环形部1c与径向铁芯6相对的一端与轴承转子7的部分结构在径向方向相对。
这是本公开的第一环形部和第二环形部的可选结构形式,即第一环形部沿轴向延伸,并与轴承转子之间形成第一轴向工作间隙,使得第一环形部与轴承转子之间能够形成磁通通过,并且第一环形部不随轴承转子转动,第二环形部与径向铁芯间隔第二轴向工作间隙,使得第二环形部与径向铁芯之间能够形成磁通通过,并且第二环形部不与径向定子之间形成摩擦或漏磁;第二环形部的轴向长度大于第一环形部的轴向长度,使得第二环形部与径向铁芯相对的端部能够伸入第一空间中,并且在径向方向与轴承转子的部分结构相对,能够将第一轴向定子中的磁路传递到径向铁芯和轴承转子中,形成结构更为紧凑的一体化轴承定子和径向定子的结构,省去推力盘、偏置定子、永磁体等结构,减小体积。
在一些实施例中,第二轴向定子400包括第二轴向铁芯2和第二轴向绕组4,第二轴向铁芯2为环形结构,第二轴向铁芯2包括第二主体部2a、第三环形部2b和第四环形部2c,第二主体部2a为具有第二中心孔的圆盘结构,第二中心孔容纳转轴8从中穿过,第三环形部2b的一端与第二主体部2a(可选径向内端)相接且另一端朝轴承转子7的方向延伸至与轴承转子7相对,第四环形部2c的一端与第二主体部2a(可选径向外端)相接且另一端朝径向铁芯6的方向延伸至与径向铁芯6相对,且第四环形部2c位于第三环形部2b的径向外侧,以在第三环形部2b的径向外侧与第四环形部2c的径向内侧之间形成第二容纳槽2d,第二轴向绕组4设置于第二容纳槽2d中并缠绕在第三环形部2b的外周。
这是本公开的第二轴向定子的可选结构形式,通过第三环形部和第四环形部能够形成容纳第二轴向绕组设置的第二容纳槽,并且第三环形部与轴承转子相对以容纳磁路通过,第四环形部与径向铁芯相对且第四环形部的与径向铁芯相对的端部伸入第二空间中,能够对径向铁芯和第四环形部做出改进,使得第四环形部、径向铁芯、轴承转子、第三环形部和第二主体部形成闭环的磁通路,并且这样的结构能够使得第二轴向定子为径向定子提供径向的偏置磁通,使得第二轴向定子与径向定子集成为一体结构,省去了推力盘、永磁体、偏置定子等结构,结构紧凑,体积得到的减小。
在一些实施例中,第三环形部2b沿转轴8的轴向方向延伸且与轴承转子7间隔第五预设距离,形成第一轴向工作间隙16;第四环形部2c也沿转轴8的轴向方向延伸且与径向铁芯6间隔第六预设距离,形成第二轴向工作间隙19;第四环形部2c的轴向长度大于第三环形部2b的轴向长度,且第四环形部2c与径向铁芯6相对的一端位于轴承转子7的径向外侧,使得第四环形部2c与径向铁芯6相对的一端与轴承转子7的部分结构在径向方
向相对。
这是本公开的第三环形部和第四环形部的可选结构形式,即第三环形部沿轴向延伸,并与轴承转子之间形成第一轴向工作间隙,使得第三环形部与轴承转子之间能够形成磁通通过,并且第三环形部不随轴承转子转动,第四环形部与径向铁芯间隔第二轴向工作间隙,使得第四环形部与径向铁芯之间能够形成磁通通过,并且第四环形部不与径向定子之间形成摩擦或漏磁;第四环形部的轴向长度大于第三环形部的轴向长度,使得第四环形部与径向铁芯相对的端部能够伸入第二空间中,并且在径向方向与轴承转子的部分结构相对,能够将第二轴向定子中的磁路传递到径向铁芯和轴承转子中,形成结构更为紧凑的一体化轴承定子和径向定子的结构,省去推力盘、偏置定子、永磁体等结构,减小体积。
在一些实施例中,第一轴向绕组3与第二轴向绕组4的通电方向相反。本公开两个轴向绕组的通电方向相反,能够使得两个轴向定子在径向定子上产生的偏置磁通均朝向径向内侧,能够对径向铁芯提供较大的偏置磁路,因此能够减小径向绕组的径向磁通,减小径向绕组的功率,提高轴向磁轴承的利用率;径向绕组沿轴向方向缠绕能够产生沿径向方向的磁通,可以指向径向内侧也可以指向径向外侧,从而为磁悬浮轴承的径向方向的出力提供控制磁通路。
本公开的主动式三自由度磁轴承结构如图1所示,与传统的主动式磁轴承结构相比,去掉推力盘,由轴承转子代替,轴向定子位于径向定子两端,径向轴承和轴向轴承集成化,该结构主要由左轴向定子(包括第一轴向铁芯1和第一轴向绕组3),右轴向定子(包括第二轴向铁芯2和第二轴向绕组4),径向绕组5,径向定子(包括径向铁芯6和径向绕组5),轴承转子7,转轴(8)等零件组成。
图1所示为主动式三自由度轴向轴承轴向磁路,轴向定子结构如图,轴向定子上磁极位于径向绕组5的下端,与径向定子极柱12相衔接,轴向下磁级位于轴承转子7两端,轴向绕组产生的轴向偏置磁路001包含左轴向磁路和右轴向磁路,用来控制轴承转子轴向移动,左轴向磁路经左轴向上磁极9-径向定子极柱12-径向工作间隙15-轴承转子7-第一轴向工作间隙16-左轴向下磁极13回到左轴向定子(即第一主体部1a)闭合,右轴向磁路经右轴向上磁极10-径向定子极柱12-径向工作间隙15-轴承转子7-第一轴向工作间隙16-右轴向下磁极14回到右轴向定子(即第二主体部2a)闭合,需控制轴承转子向左移动时,增大左轴向绕组电流,轴承转子受到向左的力大,反之,需控制轴承转子向右移动时,增大右轴向绕组电流,轴承转子受到向右的力大,从而通过控制左右轴向绕组电流大小,来控制轴承转子的轴向移动。
在一些实施例中,径向铁芯6包括径向定子磁轭11和径向定子极柱12,径向定子磁轭11为环形结构,径向定子极柱的径向外端与径向定子磁轭11连接、径向内端朝轴承转子7凸出并与轴承转子7之间具有径向工作间隙15,每个径向定子极柱上均绕设有径向绕
组5;并且在径向截面内,径向定子500包括位于右上方的第一象限部分、位于左上方的第二象限部分、位于左下方的第三象限部分和位于右下方的第四象限部分,第一象限部分、第二象限部分、第三象限部分和第四象限部分沿逆时针依次相接,第一象限部分与第三象限部分形成对角,第二象限部分与第四象限部分形成对角,并有:第二象限部分内的径向定子极柱和磁轭部分形成的磁路与第四象限部分内的径向定子极柱和磁轭部分形成的磁路连通,形成左径向控制磁路002,第一象限部分内的径向定子极柱和磁轭部分形成的磁路与第三象限部分内的径向定子极柱和磁轭部分形成的磁路连通,形成右径向控制磁路003。
本公开还通过径向磁路成对角连通的设置形式,能够提供2路功放,相对于现有的采用4路功放的结构而言,本公开能够减少物料成本,并且减小电流损耗,并且上述磁路控制转轴径向方向移动方位广,控制效果好,精度高,控制方法简单。
图3所示为本公开的主动式三自由度径向轴承径向磁路,径向定子结构如图,有4n个磁极(n为1、2、3、4……),径向定子上端磁极为N极,径向顶端下端磁极为S极(或者上端为S极,下端为N极),径向磁路如图3所示。径向定子的左上线圈与右下线圈相串联,产生左径向控制磁路002,径向定子的右上线圈与左下线圈相串联,产生右径向控制磁路003,如让轴承转子向左上方向移动,线圈通入正电流,左径向控制磁路002经左上径向定子极柱(第一极柱17)-径向工作间隙15-轴承转子7-径向工作间隙15-右下径向定子极柱(第一极柱17)-径向定子磁轭11回到左上径向定子极柱(第一极柱17)闭合,轴向提供的轴向偏置磁路001如图3虚线所示,全部指向圆心(或指向圆周),径向定子左上磁极磁场增强,右下磁极磁场削弱,使轴承转子受到向左上方的力,同理如让轴承转子向右上方向则径向定子右上磁极磁场增强,左下磁极磁场削弱。通过调节径向电流的的大小和正负来控制轴承转子径向方向的移动,实现径向稳定悬浮,上述磁路控制转轴径向方向移动方位广,控制方法简单。此三自由度磁轴承结构将径向轴承与轴向轴承集成化,无推力盘,结构紧凑,工艺简单,保证同等出力情况下,减小轴承体积,提高转子临界转速,提高系统运行稳定性。
在一些实施例中,径向定子极柱12包括第一极柱17和第二极柱18,在径向截面内,第一极柱17的周向宽度大于第二极柱18的周向宽度,并且在每个象限部分中均分布至少一个第一极柱17和至少一个第二极柱18;径向定子极柱的数量为4n个,其中n为自然数。这是本公开的径向定子极柱的可选结构形式,即包括两个周向宽度不同的极柱,能够形成磁通量不同,能够根据需要进行控制。
在一些实施例中,在每个象限部分中,均设置一个第一极柱17和2个第二极柱18,且在周向方向上,第一极柱17的周向一侧设置一个第二极柱18,周向另一侧设置另一个第二极柱18,使得第一极柱17位于2个第二极柱18的中间。这是本公开的每个象限部分
中的进一步可选极柱分布形式,即磁通量较大的极柱位于中间,磁通量较小的两个极柱位于两侧,能够根据实际空间结构进行布置,增大磁通量,并且通过大极柱的设置还能够避免磁通饱和。
在一些实施例中,轴向磁轴承100为径向磁轴承200提供的偏置磁通均沿径向方向朝向转轴8的圆心的方向形成轴向偏置磁路001;或者,轴向磁轴承100为径向磁轴承200提供的偏置磁通均沿径向方向朝着背离转轴8的圆心的方向形成轴向偏置磁路001;在形成对角的两个象限部分中,其中一个象限部分中的径向磁通沿径向方向朝向转轴8的圆心,另外一个象限部分中的径向磁通沿径向方向背离转轴8的圆心。
本公开通过轴向磁轴承提供的偏置磁通均沿径向朝向转轴的圆心,从而形成相对不变的偏置磁路,并且两个轴向定子产生的偏置磁通均朝向径向内侧或均朝向径向外侧能够增大磁通量,从而能够减小径向绕组的径向磁通,减小径向绕组的功率,提高轴向磁轴承的利用率;对角的两个象限部分中,其中一个的磁通朝径向内侧,另一个象限的磁通朝径向外侧,能够通过径向内侧的磁通进入轴承转子中,并通过另一个象限中的磁通将磁路引出至定子轭部,从而形成闭环回路,并且这样的控制手段能够大大地增强了控制能力,比如若需要将转轴朝左上方向驱动运动,则本公开增大第二象限和第四象限的绕组电流,能够同时驱动第二象限朝左上运动,以及驱动第四象限朝左上运动,这样相对于现有的磁悬浮轴承而言增大了对转轴的控制能力以及控制效率。
在一些实施例中,当第一轴向定子300包括第一轴向铁芯1和第一轴向绕组3,第一轴向铁芯1包括第一主体部1a、第一环形部1b和第二环形部1c,第二轴向定子400包括第二轴向铁芯2和第二轴向绕组4,第二轴向铁芯2包括第二主体部2a、第三环形部2b和第四环形部2c时:径向绕组5同时位于第二环形部1c和第四环形部2c的径向外侧,且第二环形部1c和第四环形部2c均与径向定子极柱相对。
本公开还通过将径向绕组设置于第一轴向铁芯和第二轴向铁芯的径向外侧,以及第二环形部和第四环形部均与径向定子极柱相对,能相对于现有的轴向定子的上磁极位于径向定子磁轭旁的方案而言(即现有的轴向定子上磁极位于径向定子磁轭的轴向一侧),能够减小径向磁路在轴向方向的漏磁,改善轴向出力在周向上不均匀的情况。
本公开还提供一种电机,其包括以上的磁悬浮主动式三自由度轴承。
本公开还提供一种压缩机,其包括以上的磁悬浮主动式三自由度轴承。
以上仅为本公开的可选实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。以上仅是本公开的可选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本公开的保护范围。
Claims (14)
- 一种磁悬浮主动式三自由度轴承,包括:轴向磁轴承(100)、径向磁轴承(200)和轴承转子(7),所述轴向磁轴承(100)和所述径向磁轴承(200)均套设在转轴(8)的外周,所述轴向磁轴承(100)包括第一轴向定子(300)和第二轴向定子(400),所述径向磁轴承(200)包括径向定子(500),所述轴承转子(7)套设在所述转轴(8)的外周且能随着所述转轴(8)一起转动,所述径向定子(500)位于所述轴承转子(7)的外周且能对所述轴承转子(7)施加径向电磁力,沿所述转轴(8)的轴向方向所述第一轴向定子(300)的至少部分结构位于所述轴承转子(7)的轴向一端,所述第二轴向定子(400)的至少部分结构位于所述轴承转子(7)的轴向另一端,所述第一轴向定子(300)和所述第二轴向定子(400)能对所述轴承转子(7)施加轴向电磁力;所述径向定子(500)包括径向铁芯(6)和径向绕组(5),所述径向铁芯(6)为环状结构且套设于所述轴承转子(7)的径向外侧;所述第一轴向定子(300)的至少部分结构位于所述轴承转子(7)的径向外侧且位于所述径向绕组(5)的径向内侧,所述第二轴向定子(400)的至少部分结构位于所述轴承转子(7)的径向外侧且位于所述径向绕组(5)的径向内侧,使得所述径向磁轴承(200)的偏置磁通由所述轴向磁轴承(100)提供。
- 根据权利要求1所述的磁悬浮主动式三自由度轴承,其中,在轴向方向,所述径向铁芯(6)的轴向长度小于所述轴承转子(7)的轴向长度,所述轴承转子(7)与所述第一轴向定子(300)相对的第一轴向端(71)比所述径向铁芯(6)与所述第一轴向定子(300)相对的第三轴向端(61)凸出第一预设距离,使得所述径向铁芯(6)的所述第三轴向端(61)相对于所述第一轴向端(71)缩回形成第一空间,所述第一轴向定子(300)的至少部分结构伸入至所述第一空间中以与所述轴承转子(7)的部分结构在径向上相对;所述轴承转子(7)与所述第二轴向定子(400)相对的第二轴向端(72)比所述径向铁芯(6)与所述第二轴向定子(400)相对的第四轴向端(62)凸出第二预设距离,使得所述径向铁芯(6)的所述第四轴向端(62)相对于所述第二轴向端(72)缩回形成第二空间,所述第二轴向定子(400)的至少部分结构伸入至所述第二空间中以与所述轴承转子(7)的部分结构在径向上相对。
- 根据权利要求1或2所述的磁悬浮主动式三自由度轴承,其中,所述第一轴向定子(300)包括第一轴向铁芯(1)和第一轴向绕组(3),所述第一轴向铁芯(1)为环形结构,所述第一轴向铁芯(1)包括第一主体部(1a)、第一环形部 (1b)和第二环形部(1c),所述第一主体部(1a)为具有第一中心孔的圆盘结构,所述第一中心孔容纳所述转轴(8)从中穿过,所述第二环形部(1c)位于所述第一环形部(1b)的径向外侧,所述第一环形部(1b)的一端与所述第一主体部(1a)相接且另一端朝所述轴承转子(7)的方向延伸至与所述轴承转子(7)相对,所述第二环形部(1c)的一端与所述第一主体部(1a)相接且另一端朝所述径向铁芯(6)的方向延伸至与所述径向铁芯(6)相对并伸入所述第一空间中,以在所述第一环形部(1b)的径向外侧与所述第二环形部(1c)的径向内侧之间形成第一容纳槽(1d),所述第一轴向绕组(3)设置于所述第一容纳槽(1d)中并缠绕在所述第一环形部(1b)的外周。
- 根据权利要求3所述的磁悬浮主动式三自由度轴承,其中,所述第一环形部(1b)沿所述转轴(8)的轴向方向延伸且与所述轴承转子(7)间隔第三预设距离,形成第一轴向工作间隙(16);所述第二环形部(1c)也沿所述转轴(8)的轴向方向延伸且与所述径向铁芯(6)间隔第四预设距离,形成第二轴向工作间隙(19);所述第二环形部(1c)的轴向长度大于所述第一环形部(1b)的轴向长度,且所述第二环形部(1c)与所述径向铁芯(6)相对的一端位于所述轴承转子(7)的径向外侧,使得所述第二环形部(1c)与所述径向铁芯(6)相对的一端与所述轴承转子(7)的部分结构在径向方向相对。
- 根据权利要求1-3中任一所述的磁悬浮主动式三自由度轴承,其中,所述第二轴向定子(400)包括第二轴向铁芯(2)和第二轴向绕组(4),所述第二轴向铁芯(2)为环形结构,所述第二轴向铁芯(2)包括第二主体部(2a)、第三环形部(2b)和第四环形部(2c),所述第二主体部(2a)为具有第二中心孔的圆盘结构,所述第二中心孔容纳所述转轴(8)从中穿过,所述第三环形部(2b)的一端与所述第二主体部(2a)相接且另一端朝所述轴承转子(7)的方向延伸至与所述轴承转子(7)相对,所述第四环形部(2c)的一端与所述第二主体部(2a)相接且另一端朝所述径向铁芯(6)的方向延伸至与所述径向铁芯(6)相对,且所述第四环形部(2c)位于所述第三环形部(2b)的径向外侧,以在所述第三环形部(2b)的径向外侧与所述第四环形部(2c)的径向内侧之间形成第二容纳槽(2d),所述第二轴向绕组(4)设置于所述第二容纳槽(2d)中并缠绕在所述第三环形部(2b)的外周。
- 根据权利要求5所述的磁悬浮主动式三自由度轴承,其中,所述第三环形部(2b)沿所述转轴(8)的轴向方向延伸且与所述轴承转子(7)间隔第五预设距离,形成第一轴向工作间隙(16);所述第四环形部(2c)也沿所述转轴(8)的轴向方向延伸且与所述径向铁芯(6)间隔第六预设距离,形成第二轴向工作间隙(19);所述第四环形部(2c)的轴向长度大于所述第三环形部(2b)的轴向长度,且所述第四环形部(2c)与所述径向铁芯(6)相对的一端位于所述轴承转子(7)的径向外侧,使 得所述第四环形部(2c)与所述径向铁芯(6)相对的一端与所述轴承转子(7)的部分结构在径向方向相对。
- 根据权利要求5所述的磁悬浮主动式三自由度轴承,其中,所述第一轴向绕组(3)与所述第二轴向绕组(4)的通电方向相反。
- 根据权利要求1-7中任一项所述的磁悬浮主动式三自由度轴承,其中,所述径向铁芯(6)包括径向定子磁轭(11)和径向定子极柱(12),所述径向定子磁轭(11)为环形结构,所述径向定子极柱的径向外端与所述径向定子磁轭(11)连接、径向内端朝所述轴承转子(7)凸出并与所述轴承转子(7)之间具有径向工作间隙(15),每个径向定子极柱上均绕设有所述径向绕组(5);并且在径向截面内,所述径向定子(500)包括位于右上方的第一象限部分、位于左上方的第二象限部分、位于左下方的第三象限部分和位于右下方的第四象限部分,所述第一象限部分、所述第二象限部分、所述第三象限部分和第四象限部分沿逆时针依次相接,所述第一象限部分与所述第三象限部分形成对角,所述第二象限部分与所述第四象限部分形成对角,并有:所述第二象限部分内的径向定子极柱和磁轭部分形成的磁路与所述第四象限部分内的径向定子极柱和磁轭部分形成的磁路连通,形成左径向控制磁路(002),所述第一象限部分内的径向定子极柱和磁轭部分形成的磁路与所述第三象限部分内的径向定子极柱和磁轭部分形成的磁路连通,形成右径向控制磁路(003)。
- 根据权利要求8所述的磁悬浮主动式三自由度轴承,其中,所述径向定子极柱的数量为4n个,其中n为自然数。
- 根据权利要求8或9所述的磁悬浮主动式三自由度轴承,其中,所述径向定子极柱(12)包括第一极柱(17)和第二极柱(18),在径向截面内,所述第一极柱(17)的周向宽度大于所述第二极柱(18)的周向宽度,并且在每个象限部分中均分布至少一个所述第一极柱(17)和至少一个所述第二极柱(18)。
- 根据权利要求8-10中任一项所述的磁悬浮主动式三自由度轴承,其中,所述轴向磁轴承(100)为所述径向磁轴承(200)提供的偏置磁通均沿径向方向朝向所述转轴(8)的圆心的方向形成轴向偏置磁路(001);或者,所述轴向磁轴承(100)为所述径向磁轴承(200)提供的偏置磁通均沿径向方向朝着背离所述转轴(8)的圆心的方向形成轴向偏置磁路(001);在形成对角的两个象限部分中,其中一个象限部分中的径向磁通沿径向方向朝向所述转轴(8)的圆心,另外一个象限部分中的径向磁通沿径向方向背离所述转轴(8)的圆心。
- 根据权利要求8-11中任一项所述的磁悬浮主动式三自由度轴承,其中,当所述第一轴向定子(300)包括第一轴向铁芯(1)和第一轴向绕组(3),所述第一轴向铁芯(1)包括第一主体部(1a)、第一环形部(1b)和第二环形部(1c),所述第 二轴向定子(400)包括第二轴向铁芯(2)和第二轴向绕组(4),所述第二轴向铁芯(2)包括第二主体部(2a)、第三环形部(2b)和第四环形部(2c)时:所述径向绕组(5)同时位于所述第二环形部(1c)和所述第四环形部(2c)的径向外侧,且所述第二环形部(1c)和所述第四环形部(2c)均与所述径向定子极柱相对。
- 一种电机,包括权利要求1-12中任一项所述的磁悬浮主动式三自由度轴承。
- 一种压缩机,包括权利要求1-12中任一项所述的磁悬浮主动式三自由度轴承。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211259874.XA CN115654008A (zh) | 2022-10-14 | 2022-10-14 | 一种磁悬浮主动式三自由度轴承、电机和压缩机 |
CN202211259874.X | 2022-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024078087A1 true WO2024078087A1 (zh) | 2024-04-18 |
Family
ID=84987390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/108639 WO2024078087A1 (zh) | 2022-10-14 | 2023-07-21 | 磁悬浮主动式三自由度轴承、电机和压缩机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115654008A (zh) |
WO (1) | WO2024078087A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115654008A (zh) * | 2022-10-14 | 2023-01-31 | 珠海格力电器股份有限公司 | 一种磁悬浮主动式三自由度轴承、电机和压缩机 |
CN117588493B (zh) * | 2024-01-19 | 2024-04-16 | 山东天瑞重工有限公司 | 一种径轴向一体式磁悬浮轴承和空压机用磁悬浮电机 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011085223A (ja) * | 2009-10-16 | 2011-04-28 | Hokkaido Univ | 3軸能動制御型磁気軸受及びこれを用いた回転機 |
CN104265761A (zh) * | 2014-09-11 | 2015-01-07 | 江苏大学 | 一种新型轴-径向三自由度混合磁轴承 |
CN108825655A (zh) * | 2018-06-30 | 2018-11-16 | 淮阴工学院 | 一种带隔磁环的径向轴向三自由度磁轴承 |
CN110017330A (zh) * | 2019-04-22 | 2019-07-16 | 南京埃克锐特机电科技有限公司 | 一种轴向径向电磁型磁轴承 |
US20200235635A1 (en) * | 2017-12-21 | 2020-07-23 | Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai | Magnetic levitation bearing, magnetic levitation rotor support assembly, and compressor |
CN115654008A (zh) * | 2022-10-14 | 2023-01-31 | 珠海格力电器股份有限公司 | 一种磁悬浮主动式三自由度轴承、电机和压缩机 |
CN218913477U (zh) * | 2022-10-14 | 2023-04-25 | 珠海格力电器股份有限公司 | 一种磁悬浮主动式三自由度轴承、电机和压缩机 |
-
2022
- 2022-10-14 CN CN202211259874.XA patent/CN115654008A/zh active Pending
-
2023
- 2023-07-21 WO PCT/CN2023/108639 patent/WO2024078087A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011085223A (ja) * | 2009-10-16 | 2011-04-28 | Hokkaido Univ | 3軸能動制御型磁気軸受及びこれを用いた回転機 |
CN104265761A (zh) * | 2014-09-11 | 2015-01-07 | 江苏大学 | 一种新型轴-径向三自由度混合磁轴承 |
US20200235635A1 (en) * | 2017-12-21 | 2020-07-23 | Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai | Magnetic levitation bearing, magnetic levitation rotor support assembly, and compressor |
CN108825655A (zh) * | 2018-06-30 | 2018-11-16 | 淮阴工学院 | 一种带隔磁环的径向轴向三自由度磁轴承 |
CN110017330A (zh) * | 2019-04-22 | 2019-07-16 | 南京埃克锐特机电科技有限公司 | 一种轴向径向电磁型磁轴承 |
CN115654008A (zh) * | 2022-10-14 | 2023-01-31 | 珠海格力电器股份有限公司 | 一种磁悬浮主动式三自由度轴承、电机和压缩机 |
CN218913477U (zh) * | 2022-10-14 | 2023-04-25 | 珠海格力电器股份有限公司 | 一种磁悬浮主动式三自由度轴承、电机和压缩机 |
Also Published As
Publication number | Publication date |
---|---|
CN115654008A (zh) | 2023-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024078087A1 (zh) | 磁悬浮主动式三自由度轴承、电机和压缩机 | |
US6703735B1 (en) | Active magnetic thrust bearing | |
US20030155829A1 (en) | Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack | |
CN106015331B (zh) | 一种低功耗永磁偏置五自由度集成化磁轴承 | |
CN105864292A (zh) | 一种永磁偏置三自由度磁轴承 | |
CN106050918A (zh) | 一种永磁偏置五自由度集成化磁悬浮支撑系统 | |
WO2020001294A1 (zh) | 一种五自由度无轴承开关磁阻电机 | |
CN108757731A (zh) | 一种永磁体轴向磁化的径向轴向三自由度磁轴承 | |
CN108050156A (zh) | 一种六极混合磁轴承 | |
CN106763184A (zh) | 一种六极径向‑轴向混合磁轴承 | |
CN105864293A (zh) | 一种集成化的五自由度磁悬浮电主轴 | |
WO2024078084A1 (zh) | 磁悬浮主动式三自由度轴承、电机和压缩机 | |
CN108374837A (zh) | 一种三磁路洛伦兹力磁轴承 | |
CN115654011A (zh) | 磁悬浮主动式三自由度轴承、电机和压缩机 | |
CN108869545B (zh) | 一种逆变器驱动式轴向-径向六极混合磁轴承 | |
CN218913477U (zh) | 一种磁悬浮主动式三自由度轴承、电机和压缩机 | |
CN218913478U (zh) | 一种磁悬浮主动式三自由度轴承、电机和压缩机 | |
CN106059256A (zh) | 一种一体化结构的五自由度磁悬浮电机 | |
CN110131313A (zh) | 一种磁轴承 | |
CN113839516A (zh) | 轴向悬浮用定子组件、磁悬浮电机及直线式电磁执行机构 | |
CN112065856B (zh) | 四极内外双转子混合磁轴承 | |
CN205663757U (zh) | 一种永磁偏置五自由度集成化磁悬浮支撑系统 | |
CN205663761U (zh) | 一种低功耗永磁偏置五自由度集成化磁轴承 | |
CN108895085B (zh) | 一种逆变器驱动式外转子轴向-径向六极混合磁轴承 | |
CN115654009B (zh) | 主动式三自由度磁悬浮轴承及其控制方法、电机和压缩机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23876293 Country of ref document: EP Kind code of ref document: A1 |