WO2024078065A1 - 透气缓震鞋、透气缓震鞋底以及鞋底的制备方法 - Google Patents

透气缓震鞋、透气缓震鞋底以及鞋底的制备方法 Download PDF

Info

Publication number
WO2024078065A1
WO2024078065A1 PCT/CN2023/106138 CN2023106138W WO2024078065A1 WO 2024078065 A1 WO2024078065 A1 WO 2024078065A1 CN 2023106138 W CN2023106138 W CN 2023106138W WO 2024078065 A1 WO2024078065 A1 WO 2024078065A1
Authority
WO
WIPO (PCT)
Prior art keywords
sole
gas
midsole
permeable
breathable
Prior art date
Application number
PCT/CN2023/106138
Other languages
English (en)
French (fr)
Inventor
郭亭鹤
郭万强
潘海文
吴金生
尹恒
姚昕晔
刘松松
Original Assignee
郭亭鹤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郭亭鹤 filed Critical 郭亭鹤
Publication of WO2024078065A1 publication Critical patent/WO2024078065A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/16Pieced soles
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/06Footwear with health or hygienic arrangements ventilated
    • A43B7/08Footwear with health or hygienic arrangements ventilated with air-holes, with or without closures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the invention relates to the field of footwear, and in particular to a method for preparing a breathable and shock-absorbing sole, a sole prepared by the method, and shoes using the sole.
  • the wearing comfort of shoes is affected by many factors, including shoe last design, upper design, midsole design, material selection and process design, which are specifically reflected in heel height, shoe size, weight, breathability, shock absorption and cushioning, and stability.
  • the soles of shoes generally have poor air permeability and are prone to sweating after long-term wearing.
  • a more reasonable technical solution is urgently needed, which can not only make the soles have high shock absorption comfort and meet the shock absorption needs of various groups of people, but also improve the air permeability of the sweat gland-rich area on the soles of the feet.
  • the present invention provides a breathable shock-absorbing shoe, a breathable shock-absorbing sole and a method for preparing the sole, so that the sole has high shock-absorbing comfort and can take into account the shock-absorbing functionality required by various groups of people, and can also improve the sweat resistance of the sole of the foot. Gland-rich areas are more breathable.
  • a method for preparing a breathable and shock-absorbing sole comprising the following steps:
  • the midsole is prepared by a foaming method, wherein a flange extending upward is formed on the midsole, and the area within the flange is formed as a receiving area; the receiving area includes a forefoot area and a heel area, and a support body extending upward is formed in the heel area of the midsole;
  • the permeable gas is prepared by an additive method, wherein the permeable gas has a plurality of interconnected permeable channels;
  • the permeable gas is placed in the forefoot area, and the permeable gas is connected to the midsole by tenon and mortise;
  • the Laban cloth base is arranged on the gas-permeable gas and the support body, so that the Laban cloth base is respectively bonded to the gas-permeable gas and the support body.
  • the additive method includes the following steps:
  • the 3D printer is driven according to the running track, and at the same time, the material is output on the base layer; the material is sintered to solidify the stacked layers into support ribs;
  • the material is thermoplastic polyurethane elastomer rubber powder, and the particle size of the powder is micron level.
  • the sintering temperature is 80°C to 180°C.
  • the foaming method includes the following steps:
  • the foaming machine ejects the foamed material to form a polymer embryo
  • the foamed special-shaped piece is placed in a forming mold for forming to obtain a midsole.
  • the blowing agent is CO 2 , N 2 or He.
  • the foaming material is at least one of supercritical foaming nylon, TPU, EVA or PEBA.
  • the thickness of the sole gradually increases in a direction from the forefoot to the heel.
  • a breathable shock-absorbing sole is prepared by using the above-mentioned sole preparation method.
  • a breathable shock-absorbing shoe comprises a sole prepared by the above-mentioned sole preparation method.
  • a grid with multiple interconnected grids that can be used for gas circulation can be prepared, which is beneficial to ventilation and perspiration on the one hand, and heat dissipation on the other hand, thereby keeping the forefoot refreshing and comfortable, and preventing sweat from accumulating on the soles of the feet to breed fungi or cause skin eczema.
  • the permeable gas can also have a certain shock-absorbing function, thereby reducing the impact on the forefoot when the forefoot lands, thereby helping the sole to land safely and smoothly.
  • the mortise and tenon connection between the support body, the gas permeable gas, the midsole and the outsole facilitates quick assembly.
  • the employees can find out and correct them immediately, thus preventing unqualified soles from flowing into the downstream process, thus playing a certain role in error correction.
  • FIG1 is a schematic diagram of the structure of the gas permeable gas in the sole
  • FIG2 is a schematic diagram of a partial structure of a gas-permeable sole
  • FIG3 is a schematic diagram of the structure of the sole. Based on the direction of the drawing, the area on the left side of boundary A is the toe area, the area between boundary A and boundary B is the sole area. It should be noted that due to different foot shapes, the toe area and the sole area may overlap partially. The area between boundary B and boundary C is the arch area, and the area on the right side of boundary C is the heel area. It should be noted that the position marks of boundary A, boundary B, boundary C, and boundary D are only for reference to understand this case.
  • FIG4 is a schematic diagram of the structure of the outsole of the shoe.
  • Figure 5 is a performance test diagram of TPU powder
  • FIG6 is a graph showing the sphericity of a material when a powder material is sintered using the method for preparing a shoe sole;
  • FIG. 7 is a material spectrum when processing by the prior art method
  • FIG8 is a graph showing the sphericity and particle distribution curve of a material when a gas permeable material is prepared using the method for preparing a shoe sole;
  • FIG9 is a tensile strength test data of the support ribs when the gas permeable material is prepared by the sole preparation method
  • FIG. 10 is a schematic diagram of the structure of the Labang cloth bottom.
  • a method for preparing a sole is provided, as shown in FIGS. 1 to 10 .
  • the preparation method of the breathable shock-absorbing sole can prepare a breathable shock-absorbing sole with certain shock-absorbing function and breathable function.
  • the sole improves the comfort of the sole when worn, meeting people's needs for use during long-term wear, high-intensity exercise or harsh environments.
  • the preparation method comprises the following steps:
  • the permeable body 4 is prepared by an additive method, wherein the permeable body 4 has a plurality of interconnected permeable channels;
  • the support base is prepared by a foaming method, and the support base is provided with a flange extending upward to form a groove; the rear palm area of the support base is formed with a support body extending upward;
  • a large bottom 1 is provided, and a supporting bottom is provided on the upper surface of the large bottom 1;
  • the permeable gas 4 is placed in the forefoot area, and the permeable gas 4 is connected to the support bottom by tenon and mortise joints;
  • the midsole 2 is arranged on the gas-permeable gas 4 and the support body, so that the midsole 2 is glued to the gas-permeable gas 4 and the support body respectively;
  • the air-permeable gas 4 is connected to the midsole 2 by mortise and tenon joints.
  • a grid having multiple interconnected areas and capable of gas circulation can be prepared, which is beneficial to ventilation and perspiration on the one hand, and heat dissipation on the other hand, thereby keeping the forefoot refreshing and comfortable, and preventing sweat from accumulating on the soles of the feet to breed fungi or cause skin eczema.
  • the permeable gas 4 can also have a certain shock-absorbing function, thereby reducing the impact on the forefoot when the forefoot lands, thereby helping the sole to land safely and smoothly.
  • the mortise and tenon connection between the support body, the gas permeable gas 4, the midsole 2 and the outsole 1 is conducive to rapid assembly.
  • the employees can find out and correct them in the first place, avoiding unqualified soles from flowing into the downstream process, thereby playing a certain role in error correction.
  • different areas of the sole can have different decompression effects while ensuring the support strength, so as to adapt to the foot shape and meet the user's ventilation/shock absorption needs in different sports scenes or different sports states. It can effectively meet the personalized needs of different wearers, so it has good flexibility and applicability.
  • customized designs can be made according to their foot shapes; or, when patients are undergoing rehabilitation, flexibility can be configured according to the different stages of their movements; and, for athletes or people who stand (or walk) for a long time, the support and resilience of the soles can be designed so that the shoes can better serve people. In this way, the discomfort caused by wearing shoes can be effectively reduced, allowing people to move in a comfortable and natural posture.
  • the additive method comprises the following steps:
  • the 3D printer is driven according to the running track, and at the same time, the material is output on the base layer; the material is sintered to be laminated and solidified into support ribs 400;
  • the material is thermoplastic polyurethane elastomer rubber powder
  • the particle size of the powder is micrometer level
  • the sintering temperature is 80°C to 180°C.
  • profiling design (3D minimal surface structure sample or 3D digital modeling of shoe midsole) using computer 3D design software to obtain a digital model; importing the profiling design into a 3D printer;
  • 3D printing of 3D minimal surface structure samples or shoe midsoles uses SLS selective laser sintering technology.
  • the printing material is TPU powder (nylon powder can also be used in other methods).
  • the laser is used to scan and irradiate the powder layer by layer under the control of a computer to achieve sintering and bonding of the TPU powder, and layer-by-layer stacking is used to achieve molding;
  • the TPU powder used in the 3D printed shoe midsole 2 is a powder with a particle size of micrometers.
  • the molding temperature is 80°C-180°C.
  • the surface structure wall thickness of the supporting rib 400 of the gas-permeable body 4 is 0.3 mm to 4 mm, and the side length of the unit structure is 3 mm to 20 mm.
  • the deformation range of the 3D printed minimal surface structure sample for the midsole module of the shoe can be from 10% to 80%, and the resilience can be from 20% to 80%.
  • the hardness (Shore A hardness, according to ASTMD2240 standard) of the material used in this example can be from 60A to 95A, the tensile strength can be from 5 to 30Mpa, the elongation at break can be from 300 to 800%, and the tensile modulus can be from 10 to 200Mpa.
  • the performance of materials with different hardness is also different.
  • the TPU material SLS laser sintering process is preferred.
  • the TPU material is laser sintered by a specially made multi-point laser SLS printing process, which has performance advantages in product consistency, Z-axis tensile strength, and material bending life.
  • the sintering methods include but are not limited to: fused filament fabrication (FFF), electron beam freeform fabrication (EBF), direct metal laser sintering (DMLS), electron beam melting (EMB), selective laser melting (SLM), selective hot sintering (SHS), selective laser sintering (SLS), plaster 3D printing (PP), layered object manufacturing (LOM), stereolithography (SLA), digital light processing (DLP) and various other types of 3D printing or additive manufacturing technologies known in the art.
  • FFF fused filament fabrication
  • EMF electron beam freeform fabrication
  • DMLS direct metal laser sintering
  • EMB electron beam melting
  • SLM selective laser melting
  • SHS selective hot sintering
  • SLS selective laser sintering
  • PP layered object manufacturing
  • LOM stereolithography
  • DLP digital light processing
  • the gas-permeable material 4 prepared by the additive method is obtained by using a photocurable resin material, thermoplastic rubber (TPR), thermoplastic elastomer, polyurethane elastomer (TPU), nylon elastomer (TPAE), polyester elastomer (TPEE), EVA elastomer and silicone elastomer through a 3D printing method including filament melt extrusion, material droplet injection, powder flat melting, adhesive injection or photosensitive resin lamination curing.
  • TPR thermoplastic rubber
  • TPU thermoplastic elastomer
  • TPU polyurethane elastomer
  • TPAE nylon elastomer
  • TPEE polyester elastomer
  • EVA elastomer and silicone elastomer through a 3D printing method including filament melt extrusion, material droplet injection, powder flat melting, adhesive injection or photosensitive resin lamination curing.
  • the 3D printed gas-permeable gas 4 is formed into a three-dimensional lattice structure, on which flow channels for gas circulation are formed in the form of one or more combinations of, for example, polyhedrons, planar bodies, cones, rhombuses, stellates, and spheres.
  • the density of the breathable cushioning module can be adjusted by changing the structure, material, and rod diameter of the flow channel, and the airflow exchange and cushioning functions can be achieved through structural compression deformation.
  • 3D printing equipment is used to melt and sinter powder particles, which can increase the sphericity of the material, thereby improving the consistency of product performance and surface quality.
  • the tensile fracture rate of the support rib 400 is 755%
  • the tensile strength is 10 MPa
  • the bending resistance is 900,000 times
  • the energy return rate of the midsole 2 exceeds 40%.
  • top and bottom surfaces of the 3D printed breathable shock-absorbing module have mortise and tenon structures, and are respectively connected to the midsole 2 and the outsole 1 by mortise and tenon connection and adhesive connection.
  • the SLS (Selective Laser Sintering) process is optionally used, and its energy radiation device is composed of a 3D printing device (including a laser emitter, a flat-field focusing lens and a galvanometer system).
  • the laser emitter and the galvanometer system are controlled to adjust the energy of the output laser beam.
  • the laser emitter is controlled to emit a laser beam of preset power and stop emitting the laser beam; for another example, the laser emitter is controlled to increase the power of the laser beam and reduce the power of the laser beam.
  • the flat-field focusing lens is used to adjust the focus position of the laser beam
  • the galvanometer system is used to control the laser beam to scan the two-dimensional space of the printing reference surface in the container, and the light-curing material scanned by the light beam is cured into a corresponding patterned cured layer.
  • the component platform of the SLS equipment is set in the powder bed or sintering molding chamber containing the material to be solidified, and is used to attach and accumulate the pattern solidified layer that has been solidified by irradiation.
  • the powder material to be solidified is heated to a temperature just below the sintering point of the powder by the constant temperature facility in the printing equipment, and the laser tracking of the energy radiation device prints the three-dimensional model slice of the component, and the slice is copied on the powder bed with the corresponding image, so that the powder material is heated to above the melting point under laser irradiation to achieve sintering, and solidified at the corresponding layer height of the slice.
  • the powder bed drops accordingly, and the corresponding next slice pattern is built on the existing solidified layer, and the above process is repeated until the printing is completed.
  • the tensile fracture rate of TPU is 755%
  • the tensile strength is 10Mpa
  • the bending resistance is 900,000 times.
  • the foaming method comprises the following steps:
  • the foaming machine ejects the foamed material to form a polymer embryo
  • the foamed special-shaped parts are placed in a secondary shaping mold for molding.
  • the foaming agent is CO 2 , N 2 or He.
  • the foaming material is ethylene-vinyl acetate copolymer EVA, thermoplastic polyester elastomer TPEE, POE plastic or nylon elastomer.
  • the overall foaming type rapid pressure reduction foaming method
  • the supercritical foaming process of nylon elastomer is used as an example.
  • the process flow of the foaming method is as follows:
  • the raw material is injection molded into a polymer embryo, which is placed in a high-pressure reactor and preheated at a set saturation temperature.
  • a certain amount of foaming agent such as CO 2 or N 2 is injected, and after the gas diffusion equilibrium is reached, the pressure is quickly released for foaming to obtain a semi-finished product of the outsole 1; finally, the semi-finished product is placed in a secondary shaping mold for molding.
  • the external support structure produced under this process has no grainy appearance, is more expensive, and is easier to design and shape.
  • the bead foaming method the bead foaming technology is generally divided into two parts: bead pre-foaming and bead molding.
  • Bead pre-foaming stage using anhydrous spouted bed foaming technology, a very small polymer raw material is placed in an autoclave, and by controlling variables such as CO2 flow rate, saturation temperature, saturation pressure, and pressure relief rate, foam beads with high foaming ratio and uniform pores are obtained.
  • CO2 flow rate is about 0.012m/s
  • the saturation temperature is 155°C
  • the saturation pressure is 11Mpa
  • the pressure relief rate is 1.5Mpa.
  • Bead molding stage the obtained foamed beads are sintered in a mold into a foamed material with a complex shape or special structure. This process has low cost, high efficiency, and a distinct granular feel in appearance.
  • the thickness of the sole gradually increases along the direction from the forefoot to the heel.
  • the "rolling effect" during walking and exercise can be strengthened, the heel cushioning ability can be enhanced, the stability of the forefoot during the push-off period can be improved, the plantar flexion moment, eversion moment and external rotation moment of the ankle joint can be reduced, the ankle joint can be protected, thereby reducing the probability of knee joint injury, and the range of motion of the lower limb muscles can be reduced, and the muscle tension can be alleviated. fatigue.
  • a breathable and shock-absorbing sole is provided.
  • the sole can be prepared using the sole preparation method of the first aspect of the present disclosure, and therefore has the same technical effect as the preparation method, and will not be described herein in detail to avoid repetition.
  • the sole is configured as a specific structure.
  • the breathable and shock-absorbing sole comprises an outsole 1 and a midsole 2, wherein the outsole 1 is attached to the bottom surface of the midsole 2; the midsole 2 has a receiving area, and the edge of the midsole 2 is provided with an upwardly extending flange, and the flange of the midsole 2 can completely wrap the receiving area; the receiving area comprises a forefoot area and a heel area; the forefoot area is provided with a permeable gas 4 made by an additive manufacturing method; the heel area of the midsole 2 is formed with a support body that protrudes upward and is used to support the heel; the permeable gas 4 is configured as a three-dimensional lattice structure formed by combining a plurality of support ribs 400, and different support ribs 400 are cross-arranged to form a flow channel for gas circulation, wherein a plurality of flow channels penetrate each other.
  • the three-dimensional lattice structure has a plurality of interconnected grids through which gas can flow, which is beneficial to ventilation and perspiration on the one hand, and heat dissipation on the other hand, thereby keeping the forefoot refreshing and comfortable, and preventing sweat from accumulating on the sole of the foot to breed fungi or cause skin eczema.
  • the permeable gas 4 can also have a certain shock-absorbing function, thereby reducing the impact on the forefoot when the forefoot lands, thereby helping the sole of the foot to land safely and smoothly.
  • the sole Based on the structural design of the permeable gas, the support body and the midsole, different areas of the sole can have different decompression effects while ensuring the support strength, so as to adapt to the foot shape and meet the user's ventilation/shock absorption needs in different sports scenes or different sports states. As a result, the sole can effectively meet the personalized needs of different wearers, and thus has good flexibility and applicability.
  • the diameter of the support rib 400 is 0.3 mm to 0.5 mm. In this way, the strength of the support rib 400 can be ensured while the support rib 400 has a certain shock-absorbing effect, and the space of the flow channel is as large as possible, thereby ensuring the heat dissipation effect.
  • Three-dimensional lattice structure (including polyhedron, face, cone, rhombus, star, sphere One or more combinations thereof) form an air flow channel and have a certain elasticity, and realize air flow exchange and shock absorbing functions through structural compression deformation.
  • the density of the breathable shock absorbing module can be adjusted by changing the three-dimensional lattice structure, the type of material selected, the thickness of the support rib 400, etc.
  • the material of the gas-permeable material 4 is any one of light-curable resin material, thermoplastic rubber, thermoplastic elastomer, polyurethane elastomer, nylon elastomer, polyester elastomer, EVA elastomer and silicone elastomer.
  • thermoplastic rubber thermoplastic elastomer
  • polyurethane elastomer polyurethane elastomer
  • nylon elastomer polyurethane elastomer
  • polyester elastomer polyester elastomer
  • EVA elastomer EVA elastomer
  • silicone elastomer silicone elastomer
  • the sole further includes a protective frame, which is formed with a first support portion adapted to the gas-permeable gas 4, a second support portion adapted to the support body, and a third support portion arranged between the gas-permeable gas 4 and the support body.
  • a protective frame which is formed with a first support portion adapted to the gas-permeable gas 4, a second support portion adapted to the support body, and a third support portion arranged between the gas-permeable gas 4 and the support body.
  • the gas permeable gas 4 is connected to the midsole 2 and the support bottom through a mortise and tenon structure, and both end surfaces of the gas permeable gas 4 are respectively glued to the support bottom and the midsole 2; the support body is glued to the midsole 2.
  • these parts can be quickly assembled, and the connection strength can be ensured by gluing to prevent slipping.
  • At least two sizes of ventilation holes are provided on the midsole 2 to help perspiration and heat dissipation.
  • the surface of the midsole 2 is provided with a waterproof coating to play a certain waterproof role.
  • different combinations of ventilation holes and breathable waterproof coatings can be provided according to the wearer, thereby achieving the waterproof and breathable functions of the midsole 2.
  • the side of the outsole 1 that contacts the ground is a contact surface, wherein the contact surface is provided with multiple rows of gripping spikes 5, and the gripping spikes 5 are distributed throughout the contact surface, thereby providing a stable grip and significantly reducing the weight of the outsole 1.
  • the gripping spikes 5 are triangular in shape.
  • the specially designed triangular spike-shaped resin particles can not only ensure effective drainage on wet and slippery roads, but also significantly improve the friction performance on wet and slippery roads.
  • each row of grasping nails 5 includes a ⁇ -shaped segment and a ⁇ -shaped segment connected to the ⁇ -shaped segment, wherein the ⁇ -shaped segment extends toward the outer side of the foot and is in a ⁇ -shape, and the ⁇ -shaped segment extends toward the inner side of the foot and is in a ⁇ -shape; in the heel area, each row of grasping nails 5 is inclined, wherein the direction from the forefoot to the heel is the height direction, and in each row of grasping nails 5, the position of the grasping nails 5 close to the outer side of the foot is lower than the position of the grasping nails 5 close to the inner side of the foot.
  • the specially arranged gripping spikes 5 can ensure effective drainage on a wet road surface and significantly improve the friction performance on a wet road surface.
  • the outsole 1 is made of a double-layer material of polyester resin fibers and resin particles, and a method of adhering the base cloth to the shoe pattern is adopted.
  • At least two avoidance grooves are provided on the flange of the support base, and the avoidance grooves are provided at the outer side of the sole of the foot. This arrangement is beneficial to ensure the wrapping and stability of the sole of the foot while allowing the foot to move comfortably.
  • a shoe is provided.
  • the shoe comprises the sole as described in the second aspect. Therefore, the shoe has the same technical effect as the sole.
  • the shoe also includes a sole prepared by the sole preparation method of the first aspect of the present disclosure, and therefore has the same technical effect as the preparation method. To avoid repetition, it will not be described here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

一种透气缓震鞋、透气缓震鞋底以及鞋底的制备方法,制备方法包括以下步骤:设置大底(1);采用发泡法制备中底(2),中底(2)上形成有向上延伸的凸缘,凸缘以内的区域形成为容纳区域;容纳区域包括前掌区和后跟区,中底(2)的后跟区形成有向上延伸的支撑体;采用增材法制备透气体(4),透气体(4)具有多个连通的透气通道;将透气体(4)置于前掌区,并使透气体(4)榫卯连接于中底(2);在支撑体的上表面以及透气体(4)的外周分别涂抹胶水;将拉邦布底(3)设置于透气体(4)和支撑体上,以使拉邦布底(3)分别胶接于透气体(4)和支撑体。鞋底具有高缓震舒适度及可兼顾各类人群缓震需求功能性,可以提高足底部汗腺丰富区域透气性。

Description

透气缓震鞋、透气缓震鞋底以及鞋底的制备方法 技术领域
本发明涉及鞋具领域,具体涉及一种透气缓震鞋底的制备方法、使用该方法制备的鞋底以及使用该鞋底的鞋。
背景技术
鞋的穿着舒适度受很多因素的影响,包括鞋楦设计、鞋帮设计、中底设计、材料的选用及工艺设计等因素,具体表现在鞋跟高度、鞋大小、重量、透气性、减震和缓冲性及稳定性等方面。
因此,评价一双鞋是否舒适,需要综合考虑多方面的客观因素。目前,市面上的鞋产品在大小、重量、缓震等方面已经有非常成熟的实施方案,而在鞋透气性上,尤其是鞋底面的透气性上,受限于目前材料技术的局限,很难做到鞋底面的透气。
而足底部前掌、后跟区域均分布有大量的汗腺,是人体主要排汗的区域,而目前的鞋类产品足底部并不具备较好的透气性,长期穿着容易捂汗,引发足部疾病(如:足癣、湿疹、真菌感染)。这些情况长期困扰着作训的军人、跑步运动员、医护人员、疫情防控工作者、矿工等劳动强度高的群体。另外,从地区分布及季节来看,这一因素在湿热地区和高温季节尤为明显,同时,在冬季穿着足底部无法透气的保温鞋子也面临着无法排汗的问题。
因此,鞋底普遍存在着透气性不佳,长时间穿着极易闷汗的问题。为了改善人们穿鞋的舒适度,亟需一种更为合理的技术方案,不仅可以使鞋底具有高缓震舒适度及可兼顾各类人群缓震需求功能性,还可以提高足底部汗腺丰富区域透气性。
发明内容
本发明提供一种透气缓震鞋、透气缓震鞋底以及鞋底的制备方法,以使鞋底具有高缓震舒适度及可兼顾各类人群缓震需求功能性,还可以提高足底部汗 腺丰富区域透气性。
为了实现上述效果,本发明采用技术方案为:
一种透气缓震鞋底的制备方法,所述制备方法包括以下步骤:
设置大底;
采用发泡法制备中底,所述中底上形成有向上延伸的凸缘,所述凸缘以内的区域形成为容纳区域;所述容纳区域包括前掌区和后跟区,所述中底的后掌区形成有向上延伸的支撑体;
采用增材法制备透气体,所述透气体具有多个连通的透气通道;
将所述透气体置于前掌区,并使所述透气体榫卯连接于所述中底;
在所述支撑体的上表面以及所述透气体的外周分别涂抹胶水;
将拉邦布底设置于所述透气体和所述支撑体上,以使所述拉邦布底分别胶接于所述透气体和所述支撑体。
在一种可能的设计中,所述增材法包括以下步骤:
对透气体进行仿形设计,得到数字模型,根据该数字模型设计运行轨迹;
使3D打印机根据该运行轨迹行驶,并与此同时在基底层上输出物料;烧结该物料,以叠层固化成支撑筋;
重复上述动作,以使支撑筋逐层叠层固化,形成透气体。
在一种可能的设计中,所述物料为热塑性聚氨酯弹性体橡胶粉末,该粉末的粒径为微米级。
在一种可能的设计中,所述烧结温度为80℃~180℃。
在一种可能的设计中,所述发泡法包括以下步骤:
发泡机射出发泡料,形成聚合物子胚;
将该聚合物子胚放入高压反应釜中;
预热,并注入发泡剂,待气体扩散平衡后,迅速泄压进行发泡;
将发泡后的异形件放入成型模具内成型,得到中底。
在一种可能的设计中,所述发泡剂为CO2、N2或He。
在一种可能的设计中,所述发泡料为超临界发泡尼龙、TPU、EVA或PEBA中的至少一者。
在一种可能的设计中,沿前掌指向后跟的方向,所述鞋底的厚度逐渐增大。
一种透气缓震鞋底,采用上述所述的鞋底的制备方法制备。
一种透气缓震鞋,该鞋包括采用上述所述的鞋底的制备方法制备的鞋底。
通过上述技术方案,可以制备出具有多个连通的且能够供气体流通的网格,一方面有益于透气排汗,另一方面,有益于散热,从而保持前脚掌的清爽舒适,避免脚掌汗液聚集为滋生真菌或者引起皮肤湿疹。同时,基于这种晶格的结构设计,还可以使透气体具有一定的缓震功能,从而在前掌着地时,减少对前脚掌的冲击,进而帮助脚掌安全平稳地着地。
再者,基于支撑体、透气体、中底和大底之间的榫卯连接关系,有益于进行快速装配。同时,基于榫卯连接的特点,一旦出现支撑体、透气体、中底和大底这几者规格不匹配的情况,能够使员工在第一时间发觉并进行校正,避免不合格的鞋底流入下游工序,进而起到一定的纠错作用。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1是鞋底中透气体的结构示意图;
图2是鞋底中透气体的部分结构示意图;
图3是鞋底的结构示意图,以图面方向为准,界线A左侧的区域为脚趾区,界线A与界线B之间的区域为脚掌区,需要说明的是,由于脚型不同,脚趾区和脚掌区可能存在部分重叠,界线B与界线C之间的区域为足弓区,界线C右侧的区域为脚跟区,需要说明的是,界线A、界线B、界线C、界线D的位置标记仅供参考理解本案;
图4是鞋底中大底的结构示意图;
图5是TPU粉体的性能测试图;
图6是采用鞋底的制备方法对粉末材料进行烧结时材料的球形度图谱;
图7是采用现有技术的方法进行加工时材料图谱;
图8是采用鞋底的制备方法制备透气体时材料的球形度及颗粒曲线分布图;
图9是采用鞋底的制备方法制备透气体时支撑筋的拉伸强度测试数据;
图10是拉邦布底的结构示意图。
上述附图中,各标号的含义为:
1-大底,2-中底,3-拉邦布底,4-透气体,400-支撑筋,5-抓钉。
具体实施方式
下面结合附图及具体实施例对本发明做进一步阐释。
根据本公开的第一方面,提供了一种鞋底的制备方法,具体参阅图1至图10所示。
该透气缓震鞋底的制备方法可以制备出具备一定缓震功能和透气功能的 鞋底,提高鞋底在穿着时的舒适性,满足人们在长时间穿着或者高强度运动或者恶劣环境下的使用需求。
具体地,在本公开中,所述制备方法包括以下步骤:
采用增材法制备透气体4,所述透气体4具有多个连通的透气通道;
采用发泡法制备支撑底,所述支撑底设有向上延伸的凸缘,以形成凹槽;所述支撑底的后掌区形成有向上延伸的支撑体;
设置大底1,将支撑底设置于所述大底1的上表面;
将所述透气体4置于前掌区,且使所述透气体4榫卯连接于所述支撑底;
在所述支撑体的上表面以及所述透气体4的外周分别涂抹胶水;
将中底2设置于所述透气体4和所述支撑体上,以使所述中底2分别胶接于所述透气体4和所述支撑体;
将所述透气体4榫卯连接于所述中底2。
通过上述技术方案,可以制备出具有多个连通的且能够供气体流通的网格,一方面有益于透气排汗,另一方面,有益于散热,从而保持前脚掌的清爽舒适,避免脚掌汗液聚集为滋生真菌或者引起皮肤湿疹。同时,基于这种晶格的结构设计,还可以使透气体4具有一定的缓震功能,从而在前掌着地时,减少对前脚掌的冲击,进而帮助脚掌安全平稳地着地。
再者,基于支撑体、透气体4、中底2和大底1之间的榫卯连接关系,有益于进行快速装配。同时,基于榫卯连接的特点,一旦出现支撑体、透气体4、中底2和大底1这几者规格不匹配的情况,能够使员工在第一时间发觉并进行校正,避免不合格的鞋底流入下游工序,进而起到一定的纠错作用。
另外,基于透气体、支撑体和中底的结构设计,有益于使鞋底的不同区域在保证支撑强度的同时,具备不同的减压效果,从而适应脚型,并满足用户在不同运动场景或者不同运动状态下的透气/缓震需求。由此,使得该鞋底能够 有效地满足不同穿着对象的个性化需求,因此具有具有较好的灵活性和适用性。
例如,对于脚部畸形的用户而言,可以根据其脚型进行定制化设计;或者,患者在进行复健时,根据不同阶段的运动状态进行灵活性配设;再者,对于运动员或者长时间站立(或步行)的人员而言,则可以对鞋底的支撑性和回弹性进行设计,从而使鞋可以更好地服务于人。由此,可以有效减少穿鞋所带来的存在,进而使人能够以舒适自然的姿态进行活动。
在本公开提供的一种具体实施方式中,所述增材法包括以下步骤:
对透气体4进行仿形设计,得到数字模型,根据该数字模型设计运行轨迹;
使3D打印机根据该运行轨迹行驶,并与此同时在基底层上输出物料;烧结该物料,以叠层固化成支撑筋400;
重复上述动作,以使支撑筋400逐层叠层固化,形成透气体4。
具体地,所述物料为热塑性聚氨酯弹性体橡胶粉末,该粉末的粒径为微米级。所述烧结温度为80℃~180℃。
整个增材法的操作流程如下:
(1)利用计算机3D设计软件进行仿形设计(3D极小曲面结构样块或鞋中底3D数字建模),得到数字模型;将仿形设计导入3D打印机;
(2)使用SLS选择性激光烧结的3D打印机,制造3D极小曲面结构样块;
(3)3D极小曲面结构样块或鞋中底3D打印利用SLS选择性激光烧结技术,打印原料采用TPU粉末(在其他方式中也可以采用尼龙粉末),利用激光器在计算机的操控下,对粉末进行逐层扫描照射,实现TPU粉末的烧结粘合,层层堆积实现成型;
(4)3D打印鞋中底2所采用的TPU粉末是微米级粒径的粉末,其烧结 成型的温度为80℃-180℃。
透气体4的支撑筋400的面结构壁厚为0.3mm~4mm,单元结构的边长为3mm~20mm。
用于鞋中底模块的3D打印极小曲面结构样块的形变变化范围可以从10%~80%,回弹性可以从20%~80%,该示例所用的材料其硬度(邵A硬度,根据ASTMD2240标准)可以从60A~95A,抗拉强度可以从5~30Mpa,断裂延伸率可以从300~800%,拉伸模量可以从10~200Mpa,不同硬度的材料其性能也不一样。在本实施案例中,优先选用TPU材料SLS激光烧结工艺,通过特别制作的多点激光SLS打印工艺对TPU材料进行激光烧结,在产品一致性、Z向拉伸强度、材料弯折寿命上具有性能优势。
而在其它实施例中,烧结方式包括但不限于:熔丝制造(FFF)、电子束自由成型制造(EBF)、直接金属激光烧结(DMLS)、电子束熔炼(EMB)、选择性激光熔化(SLM)、选择性热烧结(SHS)、选择性激光烧结(SLS)、石膏3D印刷(PP)、分层实体制造(LOM)、立体光固化成型(SLA)、数字光处理(DLP)以及本领域已知的各种其他种类的3D打印或增材制造技术。
该增材法制备的透气体4是通过使用光固化树脂材料、热塑性橡胶(TPR)、热塑性弹性体、聚氨酯弹性体(TPU)、尼龙弹性体(TPAE)、聚酯弹性体(TPEE)、EVA弹性体及有机硅弹性体通过丝材熔挤出、材料微滴喷射、粉材平铺融化、粘合剂喷射或光敏树脂叠层固化中的一种3D打印方式获得的。
该3D打印的透气体4形成为立体晶格结构,其上形成有例如多面体、面状体、锥形体、菱形体、星状体、球状体中的一种或多种组合的用于气体流通的流动通道。
在实际应用中,可通过改变流动通道的结构、材料、杆径粗细调整透气缓震模块密度,通过结构压缩变形来实现气流交换和缓震功能。
在本公开中,采用3D打印设备对粉末颗粒进行融化烧结,可以使材料球形度变高,从而提高产品性能的一致性和表面质量。
在第一方面提供的制备方法下,所制得的支撑筋400拉伸断裂率为:755%,拉伸强度为:10Mpa。耐弯折次数为:90万次。进行中底2回弹性能测试时,中底2能量回归率超过40%。
该3D打印透气缓震模块顶面、底面具有榫卯结构,通过榫卯连接和胶接的方式分别连接于中底2以及大底1。
在本实施方案中,可选的采用SLS(Selective Laser Sintering,选择性激光烧结)工艺,其能量辐射装置由3D打印设备(包括激光发射器、平场聚焦透镜与振镜系统),所述激光发射器与振镜系统受控的调整输出激光束的能量,例如,激光发射器受控的发射预设功率的激光束以及停止发射该激光束;又如,激光发射器受控的提高激光束的功率以及降低激光束的功率。所述平场聚焦透镜用以调整激光束的聚焦位置,所述振镜系统用以受控的将激光束在所述容器内打印基准面的二维空间内扫描,经所述光束扫描的光固化材料被固化成对应的图案固化层。
所述SLS设备的构件平台设置于盛放待固化材料的粉末床或烧结成型室之中,用于附着并积累经照射固化的图案固化层。在完成粉末床铺粉后,通过打印设备里的恒温设施将待固化粉末材料加热至恰好低于该粉末烧结点的某一温度,由能量辐射装置的激光跟踪打印构件的三维模型切片,将切片以对应图像复制于粉末床上,使粉末材料在激光照射下升温至熔点之上实现烧结,并于切片对应层高实现固化,在构建完成一层后粉末床随之下降,并在现有的固化层之上开始构建对应的下一切片图形,重复上述过程至打印完成。
相较于其他材料,采用SLS工艺对TPU材料进行打印的性能优势如下:
(1)该工艺具有良好的球形度;
(2)该工艺下TPU拉伸断裂率为:755%,拉伸强度为:10Mpa。耐弯折次数为:90万次。
(3)该工艺下,中底2能量回归率超过40%,性能超过其他TPU中底2材料。
在本公开中,所述发泡法包括以下步骤:
发泡机射出发泡料,形成聚合物子胚;
将该聚合物子胚放入高压反应釜中;
预热,并注入发泡剂,待气体扩散平衡后,迅速泄压进行发泡;
将发泡后的异形件放入二次定型模具内成型。
具体地,所述发泡剂为CO2、N2或He。所述发泡料为乙烯-醋酸乙烯共聚物EVA、热塑性聚酯弹性体TPEE、POE塑料或尼龙弹性体。
由于大底1结构较为复杂,故而选用整体发泡型(快速降压发泡法)制得。本实施方案中以尼龙弹性体超临界发泡工艺为例。该发泡法的工艺流程如下:
首先,将原料射出成型成聚合物子胚,将子胚放入高压反应釜中,在设定饱和温度中预热,通过注入一定量CO2或N2等发泡剂,待气体扩散平衡后,迅速泄压进行发泡,得到大底1的半成品;最后将半成品放入二次定型模具内成型。此种工艺下制作的外部支撑结构外观没有颗粒感,成本较高,更易设计和造型。
在其它实施例中,还可以采用另一种发泡法制备大底1。即,珠粒发泡法:珠粒发泡技术通常分为珠粒预发泡和珠粒模塑成型两部分。珠粒预发泡阶段:采用无水喷动床发泡技术,将尺寸很小的聚合物原料放置于高压釜中,通过控制CO2流速、饱和温度、饱和压力、泄压速率等变量,制得发泡倍率高、泡孔均匀的发泡珠。通过测试得出最佳CO2流速约为0.012m/s,饱和温度为155℃,饱和压力为11Mpa,泄压速率为1.5Mpa。粒珠粒模塑成型阶段:将所得发泡珠粒在模具中熔结成具有复杂外形或特殊结构的发泡材料。此工艺成本低,效率高,外观有明显的颗粒感。
在本公开提供的一种实施例中,沿前掌指向后跟的方向,所述鞋底的厚度逐渐增大。这样一来,可以加强行走和运动时的“滚动效应”,增强后跟缓震能力,提高前掌蹬离期稳定性,降低踝关节跖屈力矩、外翻力矩和外旋力矩,保护踝关节,从而降低膝关节损伤几率,并降低下肢肌肉运动幅度,减轻肌肉 疲劳。
根据本公开的第二方面,提供了一种透气缓震的鞋底。
该鞋底可以采用本公开第一方面的鞋底的制备方法制备,因此具备与制备方法相同的技术效果,为避免重复,在此不做赘述。
需要说明的是,在本公开第二方面提供的鞋底中,该鞋底配设为特定的结构。
具体参阅图1至图4所示,该透气缓震的鞋底包括大底1和中底2,所述大底1贴设于所述中底2的底面;所述中底2具有容纳区域,且所述中底2的边缘设有向上延伸的凸缘,所述中底2的凸缘能够完全包裹所述容纳区域;所述容纳区域包括前掌区和后跟区;所述前掌区设有采用增材制造方法制得的透气体4;所述中底2的后跟区形成有向上凸起的且用于支撑脚跟的支撑体;所述透气体4配设为由多根支撑筋400结合形成的立体晶格结构,不同支撑筋400交叉设置以形成供气体流通的流动通道,其中,多个流动通道相互贯穿。
参阅图1和图2所示,该立体晶格结构具有多个连通的且能够供气体流通的网格,一方面有益于透气排汗,另一方面,有益于散热,从而保持前脚掌的清爽舒适,避免脚掌汗液聚集为滋生真菌或者引起皮肤湿疹。同时,基于这种晶格的结构设计,还可以使透气体4具有一定的缓震功能,从而在前掌着地时,减少对前脚掌的冲击,进而帮助脚掌安全平稳地着地。
基于透气体、支撑体和中底的结构设计,有益于使鞋底的不同区域在保证支撑强度的同时,具备不同的减压效果,从而适应脚型,并满足用户在不同运动场景或者不同运动状态下的透气/缓震需求。由此,使得该鞋底能够有效地满足不同穿着对象的个性化需求,因此具有具有较好的灵活性和适用性。
在本公开中,所述支撑筋400的直径为0.3mm~0.5mm,这样一来,可以保证支撑筋400强度的同时,使得支撑筋400具有一定的减震效果,并且使得流动通道的空间尽量多和足够大,从而保证散热效果。
立体晶格结构(包括多面体、面状体、锥形体、菱形体、星状体、球状体 中的一种或多种组合)形成有气流通道,并且具有一定的弹性,通过结构压缩变形来实现气流交换和缓震功能。在实际应用时,可通过改变立体晶格结构、选用的材料类型、支撑筋400的粗细等来调整透气缓震模块密度。
作为一种选择,所述透气体4的材质为光固化树脂材料、热塑性橡胶、热塑性弹性体、聚氨酯弹性体、尼龙弹性体、聚酯弹性体、EVA弹性体及有机硅弹性体中的任一者。对此,本领域技术人员可以根据实际需求灵活组配。
在本公开中,所述鞋底还包括保护架,所述保护架形成有与所述透气体4相适配的第一支撑部、与所述支撑体相适配的第二支撑部以及设置于透气体4与支撑体之间的第三支撑部。这样一来,不仅可以提高鞋底的支撑效果,还可以对支撑体和透气体4起到一定的安全防护作用。
在本公开提供的一种实施例中,所述透气体4通过榫卯结构连接于所述中底2和所述支撑底,并且所述透气体4的两端面分别胶合连接于所述支撑底和所述中底2;所述支撑体胶合连接于所述中底2。由此使得这几者能够快速组装,并且通过胶接可以保证连接强度,防止打滑。
在本公开中,所述中底2上设有至少两种规格的透气孔,从而帮助排汗和散热。所述中底2的表面设有防水涂层,起到一定的防水作用。另外,还可以可根据穿着对象来设置不同的透气孔组合以及透气防水涂层组合,由此实现中底2的防水、透气功能。
在本公开提供的一种实施例中,所述大底1接触于地面的一面为接触面,其中,所述接触面设有多排抓钉5,且所述抓钉5遍布整个接触面。由此可以在提供稳定的抓地力同时,可大幅降低大底1重量。
参阅图4所示,所述抓钉5呈三角形。通过特殊设计的三角钉状树脂颗粒,不仅可保证在湿滑路面上的有效排水,还显著地提高湿滑地面摩擦性能。
进一步地,每排抓钉5包括丿形段和与所述丿形段相接的乀形段,其中,所述丿形段朝向脚外侧延伸且呈丿字形,所述乀形段朝向脚内侧延伸且呈乀字形;在所述后跟区,每排抓钉5倾斜设置,其中,前掌指向后跟的方向为高度方向,每排抓钉5中,靠于脚外侧的抓钉5位置低于靠近脚内侧的抓钉5位置。 通过特殊排列的抓钉5,可保证在湿滑路面上的有效排水,还显著地提高湿滑地面摩擦性能。
在本公开中,该大底1采用了聚酯树脂纤维与树脂颗粒复合的双层材料,采用基布黏着鞋纹方法,
在本公开中,所述支撑底的凸缘上设有至少两个避让槽,所述避让槽设于脚掌的外侧位置。这样设置,有益于在保证对脚掌的包裹性和稳定性的同时,使脚部能够舒适地活动。
根据本公开的第三方面,提供了一种鞋。
具体地,该鞋包括如第二方面所述的鞋底。因此,该鞋子具有与鞋底相同的技术效果。
需要说明的是,该鞋还包括采用本公开第一方面的鞋底的制备方法所制备的鞋底,因此具备与制备方法相同的技术效果,为避免重复,在此不做赘述。
以上即为本发明列举的实施方式,但本发明不局限于上述可选的实施方式,本领域技术人员可根据上述方式相互任意组合得到其他多种实施方式,任何人在本发明的启示下都可得出其他各种形式的实施方式。

Claims (10)

  1. 一种透气缓震鞋底的制备方法,其特征在于,所述制备方法包括以下步骤:
    设置大底(1);
    采用发泡法制备中底(2),所述中底(2)上形成有向上延伸的凸缘,所述凸缘以内的区域形成为容纳区域;所述容纳区域包括前掌区和后跟区,所述中底(2)的后掌区形成有向上延伸的支撑体;
    采用增材法制备透气体(4),所述透气体(4)具有多个连通的透气通道;
    将所述透气体(4)置于前掌区,并使所述透气体(4)榫卯连接于所述中底(2);
    在所述支撑体的上表面以及所述透气体(4)的外周分别涂抹胶水;
    将拉邦布底(3)设置于所述透气体(4)和所述支撑体上,以使所述拉邦布底(3)分别胶接于所述透气体(4)和所述支撑体。
  2. 根据权利要求1所述的鞋底的制备方法,其特征在于,所述增材法包括以下步骤:
    对透气体(4)进行仿形设计,得到数字模型,根据该数字模型设计运行轨迹;
    使3D打印机根据该运行轨迹行驶,并与此同时在基底层上输出物料;烧结该物料,以叠层固化成支撑筋(400);
    重复上述动作,以使支撑筋(400)逐层叠层固化,形成透气体(4)。
  3. 根据权利要求2所述的鞋底的制备方法,其特征在于,所述物料为热塑性聚氨酯弹性体橡胶粉末,该粉末的粒径为微米级。
  4. 根据权利要求2所述的鞋底的制备方法,其特征在于,所述烧结温度为80℃~180℃。
  5. 根据权利要求1所述的鞋底的制备方法,其特征在于,所述发泡法包括以下步骤:
    发泡机射出发泡料,形成聚合物子胚;
    将该聚合物子胚放入高压反应釜中;
    预热,并注入发泡剂,待气体扩散平衡后,迅速泄压进行发泡;
    将发泡后的异形件放入成型模具内成型,得到中底(2)。
  6. 根据权利要求5所述的鞋底的制备方法,其特征在于,所述发泡剂为CO2、N2或He。
  7. 根据权利要求5所述的鞋底的制备方法,其特征在于,所述发泡料为超临界发泡尼龙、TPU、EVA或PEBA中的至少一者。
  8. 根据权利要求1所述的鞋底的制备方法,其特征在于,沿前掌指向后跟的方向,所述鞋底整体的厚度逐渐增大。
  9. 一种透气缓震鞋底,其特征在于,采用如权利要求1~8中任一项所述的鞋底的制备方法制备。
  10. 一种透气缓震鞋,其特征在于,该鞋还包括采用权利要求1~8中任一项所述的鞋底的制备方法制备的鞋底。
PCT/CN2023/106138 2022-10-14 2023-07-06 透气缓震鞋、透气缓震鞋底以及鞋底的制备方法 WO2024078065A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211284265.XA CN116019283A (zh) 2022-10-14 2022-10-14 透气缓震鞋、透气缓震鞋底以及鞋底的制备方法
CN202211284265.X 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024078065A1 true WO2024078065A1 (zh) 2024-04-18

Family

ID=86078396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106138 WO2024078065A1 (zh) 2022-10-14 2023-07-06 透气缓震鞋、透气缓震鞋底以及鞋底的制备方法

Country Status (2)

Country Link
CN (1) CN116019283A (zh)
WO (1) WO2024078065A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116019283A (zh) * 2022-10-14 2023-04-28 郭亭鹤 透气缓震鞋、透气缓震鞋底以及鞋底的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050075A1 (en) * 2000-10-31 2002-05-02 Nottington Holding B.V. Breathable and waterproof sole for shoes
CN101347277A (zh) * 2007-07-16 2009-01-21 陈启贤 一种缓震透气鞋
CN102389180A (zh) * 2011-11-03 2012-03-28 北京探路者户外用品股份有限公司 一种用于鞋的防水透气装置
CN106108236A (zh) * 2016-06-27 2016-11-16 李宁(中国)体育用品有限公司 一种多用途户外运动鞋
CN108477752A (zh) * 2018-06-04 2018-09-04 福建泉州匹克体育用品有限公司 3d打印缓震结构以及应用该结构的鞋底
CN109463845A (zh) * 2018-12-17 2019-03-15 安踏(中国)有限公司 一种减震回弹的鞋底及其制备方法和应用
CN113693336A (zh) * 2021-09-27 2021-11-26 福建鸿星尔克体育用品有限公司 一种低阻力镂空透气鞋底及制备工艺
CN216123918U (zh) * 2021-02-02 2022-03-25 厦门乔丹科技有限公司 一种能够提高减震性能的运动鞋及运动鞋底
CN216875236U (zh) * 2022-03-09 2022-07-05 重庆永昌鞋业有限公司 底部带有气腔结构的运动鞋
CN218551510U (zh) * 2022-10-14 2023-03-03 郭亭鹤 透气缓震鞋及其鞋底
CN116019283A (zh) * 2022-10-14 2023-04-28 郭亭鹤 透气缓震鞋、透气缓震鞋底以及鞋底的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050075A1 (en) * 2000-10-31 2002-05-02 Nottington Holding B.V. Breathable and waterproof sole for shoes
CN101347277A (zh) * 2007-07-16 2009-01-21 陈启贤 一种缓震透气鞋
CN102389180A (zh) * 2011-11-03 2012-03-28 北京探路者户外用品股份有限公司 一种用于鞋的防水透气装置
CN106108236A (zh) * 2016-06-27 2016-11-16 李宁(中国)体育用品有限公司 一种多用途户外运动鞋
CN108477752A (zh) * 2018-06-04 2018-09-04 福建泉州匹克体育用品有限公司 3d打印缓震结构以及应用该结构的鞋底
CN109463845A (zh) * 2018-12-17 2019-03-15 安踏(中国)有限公司 一种减震回弹的鞋底及其制备方法和应用
CN216123918U (zh) * 2021-02-02 2022-03-25 厦门乔丹科技有限公司 一种能够提高减震性能的运动鞋及运动鞋底
CN113693336A (zh) * 2021-09-27 2021-11-26 福建鸿星尔克体育用品有限公司 一种低阻力镂空透气鞋底及制备工艺
CN216875236U (zh) * 2022-03-09 2022-07-05 重庆永昌鞋业有限公司 底部带有气腔结构的运动鞋
CN218551510U (zh) * 2022-10-14 2023-03-03 郭亭鹤 透气缓震鞋及其鞋底
CN116019283A (zh) * 2022-10-14 2023-04-28 郭亭鹤 透气缓震鞋、透气缓震鞋底以及鞋底的制备方法

Also Published As

Publication number Publication date
CN116019283A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US11612209B2 (en) Footwear with traction elements
US11224265B2 (en) Articles and methods of manufacture of articles
JP7213773B2 (ja) 靴用のソール
US20210076771A1 (en) Shoe with lattice structure
CN108741393B (zh) 定制鞋类以及用于设计且制造其的方法
WO2024078065A1 (zh) 透气缓震鞋、透气缓震鞋底以及鞋底的制备方法
US4187621A (en) Shoe innersole
KR20170101896A (ko) 깔창 구성
US20050116380A1 (en) Method to capture and support a 3-D contour
US8414811B1 (en) Moldable thermoplastic inserts
US11129438B2 (en) Item of footwear
US20120311887A1 (en) Therapeutic Shoe Sole and Methods of Manufacturing the Same
US10881167B2 (en) Shoe midsole structure and method for manufacturing same
US11786008B2 (en) Footwear with 3-D printed midsole
CN218551510U (zh) 透气缓震鞋及其鞋底
CN106880129B (zh) 能真空塑形的矫正鞋垫及其制备方法
US11602195B2 (en) Flexible ventilated insoles
US20210177628A1 (en) Prosthetic Foot Cover System Using Pressure Chambers
DE202024101594U1 (de) Atmungsaktiver Dämpfungsschuh und atmungsaktive und dämpfende Schuhsohle
CN108819090B (zh) 透气缓冲鞋垫的制作方法
TWM603694U (zh) 超彈力足弓氣墊鞋墊
KR200451617Y1 (ko) 보법 교정용 깔창
CN110652069A (zh) 一种极小曲面结构及其制作方法
TWM323216U (en) Shoe pad composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876273

Country of ref document: EP

Kind code of ref document: A1