WO2024078057A1 - 光通信网络中的注册方法、装置、通信设备以及系统 - Google Patents

光通信网络中的注册方法、装置、通信设备以及系统 Download PDF

Info

Publication number
WO2024078057A1
WO2024078057A1 PCT/CN2023/105207 CN2023105207W WO2024078057A1 WO 2024078057 A1 WO2024078057 A1 WO 2024078057A1 CN 2023105207 W CN2023105207 W CN 2023105207W WO 2024078057 A1 WO2024078057 A1 WO 2024078057A1
Authority
WO
WIPO (PCT)
Prior art keywords
registration
order
network device
frft
sequence
Prior art date
Application number
PCT/CN2023/105207
Other languages
English (en)
French (fr)
Inventor
李博睿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024078057A1 publication Critical patent/WO2024078057A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the present application relates to the field of optical communication technology, and in particular to a registration method, device, communication equipment and system in an optical communication network.
  • Passive Optical Network is an access network based on optical fiber link transmission. There is no electronic device that uses power between the Optical Line Terminal (OLT) and the Optical Network Unit (ONU) in the PON.
  • OLT Optical Line Terminal
  • ONU Optical Network Unit
  • the downstream transmission from OLT to ONU is broadcast, and the upstream transmission from ONU to OLT is time division multiple access (TDMA). Therefore, during the upstream transmission from ONU to OLT, the time slots occupied by different ONUs cannot overlap, and the information transmitted by the overlapping time slots cannot be correctly received by the OLT. Therefore, it is necessary to determine the time slot allocated by the ONU during normal service authorization through ranging in the registration phase of the ONU.
  • TDMA time division multiple access
  • the OLT will open a silent window and complete the registration of the newly added ONU in the time slot corresponding to the silent window, including the discovery and ranging of the ONU.
  • the online ONU connected to the OLT in the PON cannot communicate with the OLT for normal business, which increases the service delay of the online ONU in the PON and increases the jitter of the delay, thereby affecting the business experience.
  • the ONU will lower the transmission power of the optical signal to transmit the registration message, and the OLT can only determine the registration information through multiple accumulated low-power registration messages.
  • the registration efficiency is low and it is easy to cause conflicts in the registration messages of multiple ONUs to be registered. Therefore, how to provide a more effective registration method in an optical communication network has become a problem that needs to be solved urgently.
  • the present application provides a registration method, apparatus, communication equipment and system in an optical communication network, which can realize zero-window registration of OLT to ONU, thereby reducing the delay and time jitter of ONU services.
  • a registration method in an optical communication network which can be applied to the optical communication network, and the registration method includes: a first network device receives a registration authorization instruction from a second network device, and determines at least one order corresponding to a fractional Fourier transform (FrFT) sequence used to indicate registration information; and the first network device responds to the registration authorization instruction and sends a registration message to the second network device according to the at least one order.
  • the registration message is used to instruct the second network device to register the first network device to the optical communication network, and the registration message carries the registration information indicated by the aforementioned at least one order.
  • the first network device uses the order to indicate the registration information.
  • the FrFT sequence used for each binary bit in the registration information has an energy maximum after the (1-order) FrFT transformation, thereby determining the value of the binary bit indicated by the order, which can improve the signal-to-noise ratio of each binary bit in the registration message, and is conducive to the second network device parsing the registration information of the first network device according to the order.
  • different ONUs to be registered can use different orders, which avoids the collision of multiple ONUs to be registered at the same time without opening windows, and further improves the registration efficiency.
  • the second network device obtains the registration information by parsing the order, and the parsing process may include but is not limited to: fractional Fourier transform of (1-order), etc.; then, the second network device registers the first network device according to the registration information (such as going online and measuring the distance), thereby realizing zero-window registration of the first network device in the optical communication network, avoiding the business messages of other devices connected to the second network device from being affected, reducing the business delay and time jitter of the network device, and improving the business experience of the optical communication network.
  • the registration information such as going online and measuring the distance
  • the aforementioned registration information includes: a serial number (Serial Number, SN) of the first network device, or a registration identifier of the first network device.
  • SN Serial Number
  • the registration information refers to the SN of the first network device
  • the registration message sent by the first network device refers to a discovery response message
  • the first network device is in an online stage (or discovery stage).
  • the registration information refers to a registration identifier (registration ID) of the first network device
  • the registration message sent by the first network device refers to a ranging response message, and the first network device is in a ranging phase.
  • the first network device determines at least one order, including: the first network device obtains registration configuration information, and determines at least one order according to the registration configuration information.
  • the registration configuration information includes: the preamble order of the preamble in the registration message, the first sequence length and the first repetition number of the preamble, the order seed of the registration message, the second sequence length of the FrFT sequence, and the second repetition number of the FrFT sequence corresponding to the registration information.
  • the preamble is represented by an FrFT sequence using a preamble order
  • the length of the FrFT sequence corresponding to the preamble order in the preamble is a first sequence length
  • the number of repetitions of the FrFT sequence of the first sequence length is a first number of repetitions.
  • the registration information is represented by at least one order determined by the order seed
  • the length of the FrFT sequence corresponding to the aforementioned at least one order used by each binary bit in the registration information is a second sequence length
  • the number of repetitions of the FrFT sequence of the second sequence length is a second number of repetitions.
  • the aforementioned registration information includes multiple binary bits, and one binary bit corresponds to one FrFT sequence or a group of FrFT sequences consisting of the FrFT sequence repeated a certain number of times. Since the FrFT sequence used by each binary bit in the registration information has an energy maximum after the (1-order) FrFT transformation, the second network device can obtain the value of each binary bit in the registration information according to the order determined by the energy maximum, and is not interfered by the service message (corresponding to the order of 0) that has not undergone fractional Fourier transformation, thereby improving the signal-to-noise ratio of each binary bit in the registration message, which is conducive to improving the accuracy and efficiency of the second network device in parsing the registration message.
  • the aforementioned at least one order includes: a first order and a second order, the first order is used to indicate a binary bit whose value is 0 in the registration information, and the second order is used to indicate a binary bit whose value is 1 in the registration information.
  • different orders are used to indicate different binary bits in the registration information.
  • the second network device can also identify the registration information included in the registration message according to the binary bits indicated by the order, thereby completing the registration and avoiding the problem of opening the registration message. Transmission delay and time jitter caused by the silent window.
  • the aforementioned at least one order includes: the first order, the binary bit with a value of 0 in the registration information is determined by the first order and the first modulation information of bit 0, and the binary bit with a value of 1 in the registration information is determined by the first order and the second modulation information of bit 1.
  • the first network device does not need to generate FrFT sequences corresponding to multiple types of orders. Even when the second network device receives service messages from other network devices while receiving the registration message, the second network device can identify the registration information included in the registration message according to the value of the binary bit indicated by the order, thereby completing the registration, avoiding the transmission delay and time jitter caused by opening the silent window, and improving the service experience of the optical communication network.
  • the second network device sends a registration configuration message to the first network device, and the registration configuration message carries the aforementioned registration configuration information.
  • the first network device inquires from the communication protocol between the first network device and the second network device to determine the aforementioned registration configuration information.
  • the registration method provided in this embodiment also includes: the first network device sends the serial number of the first network device to the second network device, and the serial number is represented by at least one order determined by the registration configuration information. And, the first network device receives the registration information determined by the second network device according to the serial number. It should be understood that after the second network device sends a registration authorization instruction to multiple network devices, if the second network device receives service messages from other network devices in addition to the registration information of the first network device, the second network device can determine that the first network device is in the ranging stage according to the serial number, and register the first network device according to the serial number, so as to avoid the transmission delay caused by the second network device opening the silent window.
  • the aforementioned registration message is generated by a media access control (MAC) electrical chip or a physical layer (PHY) electrical chip included in the first network device.
  • MAC media access control
  • PHY physical layer
  • the MAC included in the first network device is an ONU MAC
  • the PHY electrical chip included in the first network device is an ONU signal processing chip or a laser driver chip (or: ONU PHY chip).
  • the ONU MAC controls the laser in the ONU to output the registration message at a lower power based on the information required by the registration message, such as the aforementioned order seed, number of repetitions, SN, or registration information.
  • the ONU MAC generates the information required for the registration message, such as the aforementioned order seed, number of repetitions, SN or registration information, and sends it to the ONU PHY chip.
  • the processor in the ONU PHY chip generates the FrFT sequence corresponding to the order after calculation, and controls the power output amplitude of the ONU PHY chip so that the laser in the ONU outputs the registration message at a lower power.
  • a registration method in an optical communication network comprising: first, a second network device sends a registration authorization instruction to a plurality of network devices. Secondly, the second network device receives a registration message sent by a first network device, the first network device being any one of the plurality of network devices. Afterwards, the second network device parses the fractional Fourier transform FrFT sequence corresponding to the registration message, and determines at least one order corresponding to the first network device, the at least one order being used to indicate the registration information carried by the registration message. Finally, the second network device registers the first network device according to the registration information.
  • the registration message will not affect the normal transmission of the service message, so that the second network device can execute the service associated with the service message during the registration process of the first network device.
  • the signal-to-noise ratio of the registration message is smaller than that of the service message.
  • the registration message is generated by the first network device according to the determined order, and the registration information included in the registration message is represented by the order corresponding to the FrFT sequence.
  • the FrFT sequence used by the second network device for each binary bit in the registration message has an energy maximum after performing an FrFT transformation of (1-order), thereby determining the binary bit indicated by the order.
  • the value can improve the signal-to-noise ratio of each binary bit in the registration message, which is beneficial for the second network device to parse the registration information of the first network device according to the FrFT sequence of this order.
  • different ONUs to be registered can use different orders, avoiding the collision of multiple ONUs to be registered at the same time without windowing, further improving the registration efficiency.
  • the second network device obtains the registration information by parsing the order, and the parsing process may include but is not limited to: fractional Fourier transform of (1-order), etc.; then, the second network device registers the first network device according to the registration information (such as going online and measuring the distance), thereby realizing zero-window registration of the first network device in the optical communication network, avoiding the business messages of other devices connected to the second network device from being affected, reducing the business delay and time jitter of the network device, and improving the business experience of the optical communication network.
  • the registration information such as going online and measuring the distance
  • the registration information is: a serial number of the first network device, or a registration identifier of the first network device.
  • the registration authorization instruction carries registration configuration information, and the registration configuration information is used to determine at least one order.
  • the registration configuration information includes: the leading order of the leading in the registration message, the first sequence length and the first number of repetitions of the leading, the order seed of the registration message, the second sequence length of the FrFT sequence, and the second number of repetitions of the FrFT sequence corresponding to the registration information.
  • the preamble is represented by an FrFT sequence using a preamble order
  • the length of the FrFT sequence corresponding to the preamble order in the preamble is a first sequence length
  • the number of repetitions of the FrFT sequence of the first sequence length is a first number of repetitions.
  • the registration information is represented by at least one order determined by the order seed
  • the length of the FrFT sequence corresponding to at least one order in the registration information is a second sequence length
  • the number of repetitions of the FrFT sequence of the second sequence length is a second number of repetitions.
  • the aforementioned at least one order includes: a first order and a second order, the first order is used to indicate a binary bit whose value is 0 in the registration information, and the second order is used to indicate a binary bit whose value is 1 in the registration information.
  • the aforementioned at least one order includes: a first order, a binary bit with a value of 0 in the registration information is determined by the first order and the first modulation information of bit 0, and a binary bit with a value of 1 in the registration information is determined by the first order and the second modulation information of bit 1.
  • the registration method provided in this embodiment also includes: first, the second network device receives other registration messages sent by the third network device, and the third network device is another device different from the first network device among the multiple network devices. Second, the second network device parses the FrFT sequence corresponding to the other registration messages, determines other orders corresponding to the third network device, and the other orders are used to indicate the registration information carried by the other registration messages. Third, the second network device registers the third network device according to the registration information carried by the other registration messages.
  • the second network device receives registration messages sent by multiple network devices, since the order adopted by each network device is different, and the FrFT sequences of different orders are orthogonal to each other in the Wigner domain of signal processing, the signal characteristics of the registration information corresponding to each network device are also different and can be distinguished from each other.
  • the second network device can perform (1-order) FrFT transformation on the registration message according to the order agreed upon by the network device to be registered and the second network device, thereby obtaining the registration information of the network device to be registered, which solves the problem that the OLT needs to open the silent window and can only register and measure the distance for a single ONU in the same time slot indicated by the silent window, improves the registration and ranging efficiency of multiple network devices in the optical communication network, and improves the service experience of the optical communication network.
  • a registration device in an optical communication network which is applied to a first network device in the optical communication network, and includes: a receiving module and a sending module.
  • the receiving module is used to receive a registration authorization instruction from a second network device, and determine at least one order corresponding to an FrFT sequence used to indicate registration information;
  • the sending module is used to respond to the registration authorization instruction and send a registration message to the second network device according to at least one order; wherein the registration message is used to instruct the second network device to register the first network device to the optical communication network, and the registration message carries the registration information indicated by the aforementioned at least one order.
  • the registration information includes: a serial number of the first network device, or a registration identifier of the first network device.
  • the registration authorization instruction carries registration configuration information, and the registration configuration information is used to determine at least one order.
  • the registration configuration information includes: the leading order of the leading in the registration message, the first sequence length and the first number of repetitions of the leading, the order seed of the registration message, the second sequence length of the FrFT sequence, and the second number of repetitions of the FrFT sequence corresponding to the registration information.
  • the preamble is represented by an FrFT sequence using a preamble order
  • the length of the FrFT sequence corresponding to the preamble order in the preamble is a first sequence length
  • the number of repetitions of the FrFT sequence of the first sequence length is a first number of repetitions.
  • the registration information is represented by at least one order determined by an order seed
  • the length of the FrFT sequence corresponding to at least one order in the registration information is a second sequence length
  • the number of repetitions of the FrFT sequence of the second sequence length is a second number of repetitions.
  • the aforementioned at least one order includes: a first order and a second order, the first order is used to indicate a binary bit whose value is 0 in the registration information, and the second order is used to indicate a binary bit whose value is 1 in the registration information.
  • the aforementioned at least one order includes: a first order, a binary bit with a value of 0 in the registration information is determined by the first order and the first modulation information of bit 0, and a binary bit with a value of 1 in the registration information is determined by the first order and the second modulation information of bit 1.
  • the aforementioned registration message is generated by a media control layer electrical chip or a physical layer electrical chip included in the first network device.
  • a registration device in an optical communication network is provided, and the registration device is applied to a second network device, and the registration device includes: a sending module, a receiving module, a parsing module and a registration module.
  • the sending module is used to send a registration authorization instruction to multiple network devices.
  • the receiving module is used to receive a registration message sent by a first network device, and the first network device is any one of multiple network devices.
  • the parsing module is used to parse the FrFT sequence corresponding to the registration message and determine at least one order corresponding to the first network device, and the at least one order is used to indicate the registration information carried by the registration message.
  • the registration module is used to register the first network device according to the registration information.
  • the receiving module is also used to: receive other registration messages sent by a third network device, where the third network device is another device among multiple network devices that is different from the first network device.
  • the parsing module is also used to: parse the FrFT sequence corresponding to the other registration messages, determine other orders corresponding to the third network device, and the other orders are used to indicate the registration information carried by other registration messages.
  • the registration module is also used to: register the third network device according to the registration information carried by other registration messages.
  • the registration device provided in the fourth aspect can also be used to implement the functions of any implementation method in the second aspect, which will not be repeated here.
  • a registration system which is applied to an optical communication network, and the registration system includes: a first network device and a second network device.
  • the first network device receives a registration authorization instruction sent by the second network device, and determines at least one order corresponding to the FrFT sequence used to indicate the registration information.
  • the first network device responds to the registration authorization instruction and sends a registration message to the second network device according to at least one order, and the registration message is used to instruct the second network device to register the first network device to the optical communication network, and the registration message carries the registration information indicated by the aforementioned at least one order.
  • the second network device parses the FrFT sequence included in the registration message according to at least one order, obtains the registration information of the first network device, and registers with the first network device according to the registration information.
  • the registration system can be used to implement the method included in any implementation of the first aspect or the second aspect, which will not be described in detail here.
  • a communication device comprising a processor and an interface circuit.
  • the interface circuit is used to receive a signal from another communication device other than the communication device and transmit it to the processor or send a signal from the processor to another communication device other than the communication device; the processor and the interface circuit are used to implement a method of any implementation in the first aspect or a method of any implementation in the second aspect through a logic circuit or executing code instructions.
  • the communication device is the aforementioned first network device or second network device.
  • a chip comprising: a control circuit and an interface circuit.
  • the interface circuit is used to receive signals from other chips outside the chip and transmit them to the control circuit or send signals from the control circuit to other chips outside the chip; the control circuit and the interface circuit are used to implement any method of the first aspect or any method of the second aspect through a logic circuit or execution code instructions. If the communication device is the aforementioned first network device or second network device.
  • a computer-readable storage medium wherein a computer program or instruction is stored in the storage medium, and when the computer program or instruction is executed by a communication device, the method of any one of the implementation modes in the first aspect or the method of any one of the implementation modes in the second aspect is implemented. If the communication device is the aforementioned first network device or second network device.
  • a computer program product which, when executed on a computer, enables the computer to execute the method of any one of the implementations in the first aspect, or the method of any one of the implementations in the second aspect. If the computer is the aforementioned communication device, the first network device, or the second network device.
  • FIG1 is a schematic diagram of the structure of an optical communication network provided by the present application.
  • FIG2 is a schematic diagram of the structure of a PON provided by the present application.
  • FIG3 is a schematic diagram of the structure of an ONU and an OLT provided in the present application.
  • FIG4A is a flowchart diagram 1 of the registration method provided by the present application.
  • FIG4B is a second flowchart of the registration method provided by the present application.
  • FIG5A is a schematic diagram 1 of a registration message provided by the present application.
  • FIG5B is a second schematic diagram of a registration message provided by the present application.
  • FIG6 is a flowchart diagram of the registration method provided by this application.
  • FIG7 is a structural schematic diagram 1 of a registration device provided by the present application.
  • FIG8 is a second structural diagram of the registration device provided by the present application.
  • FIG9 is a schematic diagram of the structure of the communication device provided in this application.
  • the present application provides a registration method in an optical communication network, comprising: first, a first network device receives a registration authorization instruction from a second network device, and determines at least one order corresponding to an FrFT sequence used to indicate registration information. Secondly, the first network device responds to the registration authorization instruction and sends a registration message to the second network device according to at least one order; wherein the registration message is used to instruct the second network device to register the first network device to the optical communication network, and the registration message carries registration information. Finally, the second network device parses the aforementioned registration message to extract the registration information of the first network device, and registers the first network device based on the registration information.
  • the registration message will not affect the normal transmission of the service message, so that the second network device can perform the service associated with the service message during the registration process of the first network device. Since the signal-to-noise ratio of the registration message is smaller than that of the service message when the transmission power has been lowered, in this embodiment, the first network device uses the order to indicate the registration information, such as each binary bit in the registration information.
  • the FrFT sequence used has an energy maximum after the (1-order) FrFT transformation, thereby determining the value of the binary bit indicated by the order, and is not interfered by the service message (corresponding to the order of 0) that has not undergone the fractional Fourier transform, improving the signal-to-noise ratio of each binary bit in the registration message, which is conducive to improving the accuracy and efficiency of the second network device in parsing the registration message, reducing the service delay and time jitter of the network device, and improving the service experience of the optical communication network.
  • different ONUs to be registered can use different orders, avoiding the collision of multiple ONUs to be registered at the same time without opening windows, and further improving the registration efficiency.
  • FrFT sequence Xp (u) is generated by performing fractional Fourier transform (FrFT) on a set of DC components (constant vectors, such as [1 1 1...1 1 1]):
  • x(t) is the DC component
  • Kp (u,t) is the kernel of the FrFT transform
  • Kp (u,t) is:
  • the Wigner domain is also called the fractional domain where the DC component x(t) is located after the FrFT transformation.
  • FrFT sequences of different orders will form different angles of rotation in the Wigner domain, and show energy concentration at their respective angles. This process is reflected in the signal processing of the optical receiving device of the optical signal, that is, the received optical signal is subjected to a (1-p) order FrFT transformation, where p is the order of the transmitted FrFT sequence.
  • p is the order of the transmitted FrFT sequence.
  • the maximum value of the received optical signal will be obtained in the FrFT sequence obtained after processing, and this maximum value is the energy concentration phenomenon presented by the FrFT sequence of this order. Therefore, during signal processing, the characteristics reflected in this energy concentration can be used to extract information (order).
  • FrFT sequences of different orders are orthogonal to each other in the fractional domain, so the optical receiving device can extract the registration message of the corresponding order in the service message (corresponding to order 0), and can distinguish the registration messages of multiple ONUs received at the same time.
  • Figure 1 is a structural diagram of the optical communication network provided in the present application.
  • the optical communication network can also be called an optical transmission network.
  • the optical communication network includes multiple network devices, one or more of which are used to connect to user terminals (such as terminals 111 to 116 shown in Figure 1).
  • Terminal can also be called terminal device, user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal may be a mobile phone (such as the terminal 111 and the terminal 116 shown in FIG. 1 ), a tablet computer (such as the terminal 112 shown in FIG. 1 ), a computer with wireless transceiver function (such as the terminal 113 shown in FIG. 1 ), a personal communication service (PCS) phone (such as the terminal 114 shown in FIG. 1 ), a desktop computer (such as the terminal 115 shown in FIG.
  • a mobile phone such as the terminal 111 and the terminal 116 shown in FIG. 1
  • a tablet computer such as the terminal 112 shown in FIG. 1
  • a computer with wireless transceiver function such as the terminal 113 shown in FIG. 1
  • PCS personal communication service
  • a virtual reality (VR) terminal device an augmented reality (AR) terminal device
  • a wireless terminal in industrial control a wireless terminal in self driving, a wireless terminal in remote medical surgery, a wireless terminal in a smart grid, a wireless terminal in transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the terminal may also be a home gateway.
  • the home gateway may be an optical network terminal (ONT).
  • the network device 121 shown in FIG1 may be an optical network terminal.
  • the optical network terminal can connect user devices such as PCs and mobile phones to the Internet.
  • the home gateway can transmit data for the following services: Internet access services (such as interactive network television services, which include home gateways supporting video broadcasting, live broadcast services and distance education, etc.), online game services (for example, game terminals conduct game services through home gateways), Internet protocol (Internet protocol, IP) telephones, videophones and video surveillance services, etc.
  • the home gateway can also implement home control and security service management on a remote network.
  • users with a home gateway can access automated lighting, heating and security systems in the area covered by the home gateway while at work or out.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • the network device may be a routing and forwarding device, for example, a router or a switch, etc., which may be a core router (CR), a provider edge (PE), etc.
  • the network device may also be a broadband network gateway (BNG) or a broadband remote access server (BRAS), etc.
  • BNG broadband network gateway
  • BRAS broadband remote access server
  • the terminal can access the server using the network device.
  • the first user can use the terminal 111 to establish a communication connection with the network device 121 using wireless broadband (wireless-fidelity, WIFI) technology, so that the terminal 111 sends a data packet to the server 130 .
  • wireless broadband wireless-fidelity, WIFI
  • the server 130 may be an application server or an authentication and authorization server.
  • the server 130 may provide video services, game services, message services, music services, authentication and authorization services, etc.
  • the functions of multiple services may be integrated on the server 130, for example, the game service and the music service may be deployed on the server 130.
  • the functions of some services may be integrated on the server 130, for example, some services of the game service and some services of the video service may be deployed on the server 130.
  • the server 130 may also provide multiple virtual machines using virtualization technology, and various services are provided by the virtual machines. The embodiments of the present application do not limit the deployment form of the services.
  • the network device is connected to the server 130 in a wireless or wired manner.
  • Figure 1 is only a schematic diagram, and the optical communication network may also include other devices, which are not shown in Figure 1.
  • the embodiments of the present application do not limit the number of terminal devices, network devices and servers included in the optical communication network.
  • the present application can be applied to scenarios such as PON, passive optical LAN (POL), industrial optical network, vehicle-mounted optical network, and Internet of Things.
  • the optical transmitting device such as network device 121
  • the optical receiving device such as network device 122
  • the optical transmitting device and the optical receiving device in the POL scenario can be located in a park (such as an enterprise, campus, etc.).
  • the optical transmitting device and the optical receiving device in the industrial optical network scenario can be located in an industrial manufacturing workshop.
  • the optical transmitting device and the optical receiving device in the vehicle-mounted optical network scenario can be set in a vehicle.
  • the network device 121 can be an optical network unit (ONU) or an ONT, and the network device 122 can be an OLT.
  • the optical transmitting device can be a vehicle interface unit (VIU)
  • the optical receiving device can be a mobile data center (MDC), vehicle dynamic control (VDC) or cockpit data center (CDC).
  • MDC mobile data center
  • VDC vehicle dynamic control
  • CDC cockpit data center
  • the technical solution proposed in this application can also be applied to optical backbone transmission networks, data center optical transmission, short-distance optical interconnection and wireless service fronthaul/backhaul, etc.
  • the technical solution proposed in this application can be used for optical transmitting devices and/or optical receiving devices corresponding to the above-mentioned different networks.
  • FIG2 is a schematic diagram of the structure of the PON provided by the present application.
  • a plurality of ONUs (such as ONU 211 to ONU 214 in FIG2 ) communicate with OLT 220 via an optical splitter 230 .
  • the signal frames transmitted upstream by ONU 211 to ONU 214 to OLT 220 are signal t1, signal t2, signal t3, and signal t4, respectively.
  • OLT 220 executes the service or operation indicated by the signal, such as registering and ranging the ONU.
  • FIG 3 is a structural diagram of the ONU and OLT provided in the present application, wherein ONU 310 can be any one of ONU 211 to ONU 214 shown in Figure 2, and OLT 320 can be OLT 220 shown in Figure 2.
  • ONU 310 includes: ONU media access control (MAC) 311, ONU physical layer (PHY) 312, laser 313 and photodetector 314.
  • ONU MAC 311 can control the on and off of laser 313 through the transmit enable port (Tx_En, also known as the switch pin). For example, if it is currently in the light-emitting time slot (or occupied time slot) of ONU 310, ONU MAC 311 controls the laser 313 to be turned on through the transmit enable port. If it is not in the light-emitting time slot of ONU 310, ONU MAC 311 controls the laser 313 to be turned off through the transmit enable port.
  • Tx_En also known as the switch pin
  • ONU PHY 312 can also adjust the physical parameters of laser 313, such as laser bias current and modulation current, through the transmit control port (Tx_Ctr).
  • ONU MAC 311 can send service messages to ONU PHY 312 through the data port (Data), and ONU PHY 312 processes the service messages, such as signal amplification and signal operation.
  • ONU PHY 312 is also called the driver of laser 313, which is used to drive the laser to generate optical signals according to the instructions of the transmission enable port and/or transmission control port of ONU MAC 311.
  • Laser 313 modulates the service message into the optical signal under the control of ONU PHY 312, and sends the upstream optical signal carrying the service message to OLT 320 through the optical fiber.
  • the photodetector 314 receives the downstream optical signal from OLT 320 and converts the downstream optical signal into an electrical signal.
  • ONU 310 can also include a wavelength division multiplexer 315, which is used to send the upstream optical signal generated by the laser 313 to the optical fiber, and send the downstream optical signal received from the optical fiber to the photodetector 314.
  • OLT 320 may include OLT MAC 321, OLT PHY 323, photodetector 324 and laser 325.
  • photodetector 324 receives the uplink optical signal from ONU 310 and converts the uplink optical signal into an electrical signal.
  • the electrical signal may be an analog electrical signal or a digital electrical signal.
  • OLT PHY 323 obtains the FrFT sequence after parsing the electrical signal, and determines the order after performing a fractional Fourier transform on the FrFT sequence, which indicates the binary bit information in the service message or registration message, and transmits the binary bit information to OLT MAC 321, which performs a registration process or performs a service according to the binary bit information.
  • OLT MAC 321 In the sending direction, OLT MAC 321 generates a service message or a registration authorization instruction, and OLT PHY 323 performs analog or digital related processing on the service message registration authorization instruction.
  • Laser 325 modulates the service message or registration authorization instruction into an optical signal under the control of OLT PHY 323, and sends the downstream optical signal carrying the service message or registration authorization instruction to ONU 310 through an optical fiber.
  • OLT 320 may also include a wavelength division multiplexer 326 for sending the downstream optical signal generated by laser 325 to the optical fiber, and sending the upstream optical signal received from the optical fiber to the photodetector 324.
  • FIG. 4A is a flow chart of the registration method provided by this application, in which the OLT can be called an optical receiving device, a second network device, etc.
  • the hardware implementation of the OLT can refer to the description of OLT 320, which will not be repeated here.
  • ONU 1 to ONU 4 are all network devices to be connected to the optical communication network, such as ONU 1 can be called an optical sending device, a first network device, etc.
  • the hardware implementation of the ONU can refer to the description of ONU 310, which will not be repeated here.
  • the registration method in the optical communication network provided by this embodiment includes the following steps S410 to S430 .
  • the OLT sends a registration authorization instruction to a plurality of network devices, and determines at least one order corresponding to at least one network device among the plurality of network devices.
  • the at least one network device receives a registration authorization instruction.
  • the at least one network device includes a first network device, and the first network device is any one of a plurality of network devices, such as ONU 1 in FIG. 4A . It is worth noting that the at least one network device may also include other network devices, such as ONU 3 in FIG. 4A .
  • the registration authorization instruction is a broadcast message broadcast by the OLT to multiple ONUs that are not online to the PON.
  • the registration authorization instruction can be used to trigger the ONU to start a registration process, and the registration process includes: an online process, a ranging process, etc.
  • the online process means that the OLT records the users who log in to the optical communication network using the ONU
  • the ranging process means that the OLT measures the logical distance between the ONU and the OLT, such as the logical distance is associated with the equalization delay between the ONU and the OLT.
  • the registration information includes a plurality of binary bits, a value of a binary bit corresponds to an order or a group of orders, and the group of orders includes a plurality of repeated orders.
  • the order refers to the fractional order corresponding to the FrFT sequence.
  • the FrFT sequence mentioned above indicates the order indicated by the FrFT sequence, and the value of the binary bit corresponding to the order can be extracted by the OLT, so that the OLT can identify the registration information of the registration message according to the order.
  • the second network device can obtain the value of each binary bit in the registration information according to the order determined by the energy maximum, and is not affected by the service message (corresponding to the order of 0) that has not undergone fractional Fourier transformation, thereby improving the signal-to-noise ratio of each binary bit in the registration message, which is beneficial to improving the accuracy and efficiency of the second network device in parsing the registration message.
  • ONU 1 responds to the registration authorization instruction and sends a registration message to OLT.
  • the registration message carries the registration information of ONU 1.
  • at least one order in the aforementioned S410 is used to indicate the registration information.
  • the registration message also carries a preamble before the registration information, and the preamble is used to indicate that the OLT has found the registration message of the ONU 1.
  • the order of the FrFT sequence can also be used to indicate the preamble.
  • FIG4B is a second flowchart of the registration method provided in this application.
  • the aforementioned S410 may include the following steps S420A to S420D.
  • the ONU MAC (abbreviated as: MAC) of ONU 1 will generate the leading order and registration information order required for the registration message and pass them to the electrical chip of ONU 1 through the inter-integrated circuit (I2C) interface.
  • the electrical chip here can refer to the processor included in the ONU MAC or the ONU PHY chip, etc.
  • the bias current of the optical device is reduced and the output power of the driver is reduced.
  • the output power refers to the transmission power used by ONU 1 to send the registration message.
  • the MAC of ONU 1 generates a registration message including an FrFT sequence of preamble and registration information according to the aforementioned preamble order, registration information order, etc.
  • ONU 1 sends the registration message generated in S420C to OLT.
  • this embodiment proposes to characterize the registration message with the order: a binary bit with a value of 0 and a binary bit with a value of 1.
  • This embodiment takes one binary bit corresponding to multiple FrFT sequences corresponding to one order as an example for explanation, and two possible registration message formats are given below.
  • the registration message includes: a preamble and registration information.
  • At least one order corresponding to the registration information includes: the first order (q order) and the second order (r order).
  • FIG5A is a schematic diagram of the registration message provided by the present application.
  • the preamble corresponds to: k groups of N-bit p-order FrFT sequences, k can be a value agreed upon by the OLT and ONU 1, and k is also called the first repetition number of the FrFT sequence of the first sequence length "N".
  • the p-order refers to the preamble order of the preamble, which can be carried by the registration authorization instruction sent by the OLT to ONU 1. In some cases, the preamble order is included in the registration configuration information sent by the OLT.
  • the registration information includes: a binary bit with a value of 0 (or: binary bit 0, bit 0) and a binary bit with a value of 1 (or: binary bit 1, bit 1).
  • the first order (q order) is used to indicate a binary bit with a value of 0, and the second order (r order) is used to indicate a binary bit with a value of 1.
  • the binary bit with a value of 0 corresponds to a FrFT sequence with a sequence length of M and an order of the first order (q order)
  • the binary bit with a value of 1 corresponds to a FrFT sequence with a sequence length of M and an order of the second order (r order).
  • the sequence length M is also called the second sequence length, indicating that the second repetition number of the M-bit FrFT sequence of a binary bit in the registration message is T.
  • the order (first order and second order) corresponding to the registration information is determined based on the order seed x, and the order seed x is included in the registration configuration information sent by the OLT to ONU 1.
  • the second order (rth order) may also be referred to as a higher order, a higher order number, etc.
  • the first order (qth order) may also be referred to as a lower order, a lower order number, etc.
  • first order and second order are only examples provided in this embodiment.
  • the first order may also be r order
  • the second order may also be q order. This application does not limit how the ONU determines the binary bits used to indicate the registration information based on the order seed x.
  • different orders are used to represent different binary bits in the registration information. Therefore, even if the OLT receives service messages from other network devices while receiving the registration message, the OLT can identify the registration information included in the registration message according to the binary bits indicated by the order, thereby completing the registration and avoiding the transmission delay and time jitter caused by opening the silent window.
  • FIG5B is a schematic diagram 2 of the registration message provided by the present application, and the preamble corresponds to: k groups of N-bit p-order FrFT sequences.
  • the preamble corresponds to: k groups of N-bit p-order FrFT sequences.
  • the registration information includes: a binary bit with a value of 0 and a binary bit with a value of 1, wherein the binary bit with a value of 0 is determined by the first modulation information of the first order (q order) and bit 0, and the binary bit with a value of 1 is determined by the second modulation information of the first order (q order) and bit 1.
  • the modulation information refers to the information generated by the OLT when parsing the registration message, and the parsing process may refer to the OLT receiving the registration message and identifying the preamble, and then identifying and parsing whether there is an M-bit FrFT sequence corresponding to the first order in the registration message: if there is an M-bit FrFT sequence corresponding to the first order in the registration message (such as the first modulation information is: yes), the OLT determines that the optical signal corresponding to the M-bit FrFT sequence indicates the binary bit with a value of 1 included in the registration information; if there is no M-bit FrFT sequence corresponding to the first order in the registration message (such as the second modulation information is: no), the OLT determines that the optical signal corresponding to the M-bit FrFT sequence indicates the binary bit with a value of 0 included in the registration information.
  • the OLT determines that the optical signal corresponding to the M-bit FrFT sequence indicates a binary bit with a value of 1 included in the registration information; if the registration message contains an M-bit FrFT sequence corresponding to the first order (such as the second modulation information is: yes), the OLT determines that the optical signal corresponding to the M-bit FrFT sequence indicates a binary bit with a value of 0 included in the registration information.
  • FIG. 5B is an example of a single order as the aforementioned first order. However, the single order may also be the aforementioned second order (r order), which is not limited in the present application.
  • the registration method provided in this embodiment further includes the following step S430 .
  • OLT registers ONU 1 according to the registration message.
  • the registration information refers to the serial number (SN) of ONU 1
  • the registration message sent by ONU 1 refers to a discovery response message.
  • ONU 1 is in the online stage (or discovery stage). After the OLT parses the registration message to obtain the SN of ONU 1, the OLT records the user who has logged in to the optical communication network of ONU 1 and allocates an ONU-ID to ONU 1 based on the SN.
  • the registration information refers to the registration identifier (registration ID, ONU-ID) of ONU 1
  • the registration message sent by ONU 1 refers to the ranging response message.
  • ONU 1 is in the ranging stage.
  • the OLT parses the registration message to obtain the ONU-ID of ONU 1, and measures the logical distance between the ONU and the OLT based on the ONU-ID.
  • the OLT since ONU 1 can generate a registration message according to a determined order, and the registration identifier included in the registration message is represented by the order, if the OLT receives both the service message and the registration message, the OLT can extract the registration information included in the registration message based on the order to implement ranging of the OLT to the ONU 1 according to the registration message.
  • the S430 may include the following steps S430A to S430C.
  • the OLT processes the registration message, such as performing a (1-order) FrFT transformation on the FrFT sequence used to represent the registration message.
  • the MAC in the OLT processes the service message and the registration message, obtains the characteristics of the registration message (such as the order used by ONU 1), and then extracts the registration information included in the registration message.
  • the OLT can parse the registration message (such as the aforementioned registration message) without affecting the service message.
  • the OLT does not need to open a silent window for the registration process of ONU 1, thereby avoiding the impact on the service message transmission of other network devices connected to the OLT, reducing the overall transmission delay and time jitter of the optical communication network, and improving the service experience in the PON.
  • the present application also provides a possible detailed implementation method, as shown in Figure 6, which is a flow chart of the registration method provided by the present application.
  • the registration method includes two stages: the OLT discovery stage for the ONU and the OLT ranging stage for the ONU.
  • ONU 1 needs to send a discovery response message, which includes the SN of ONU 1.
  • ONU 1 In the ranging phase, ONU 1 needs to send a ranging response message, which includes the registration identifier of ONU 1. If the ranging response message is the registration message shown in the above embodiment, the registration identifier is the ONU-ID of ONU 1.
  • the discovery phase and the ranging phase are described in detail below.
  • the discovery phase includes the following steps S610 to S640.
  • OLT sends a registration authorization instruction to multiple ONUs 1, and the registration authorization instruction carries registration configuration information.
  • the registration configuration information is used to determine the order to be used by ONU 1.
  • the registration configuration information includes: the preamble order of the preamble in the registration message, the first sequence length and the first repetition number of the preamble, the order seed of the registration message, the second sequence length of the FrFT sequence, and the second repetition number of the FrFT sequence corresponding to the registration information.
  • the role of each element included in the registration configuration information in the format of the registration message can be referred to the description of the aforementioned Figures 5A and 5B, and will not be repeated here.
  • the first network device determines the signal characteristics (such as the aforementioned order) to be included in the registration message based on the registration configuration information. Therefore, the second network device can identify the registration information corresponding to the signal characteristics from the service message without opening the silent window, thereby reducing the transmission delay and time jitter caused by the second network device opening the silent window during the registration process.
  • ONU 1 adjusts the working status of ONU 1 according to the registration configuration information.
  • ONU 1 adjusts its working status to: waiting for registration and online status.
  • ONU 1 sends a discovery response message to OLT, and the discovery response message includes the SN information of ONU 1.
  • the laser can be driven directly by the SerDes interface, or the laser can be driven by the ONU PHY chip (the registration message is generated by the MAC).
  • the output amplitude of the ONU MAC 311 is large, and the ONU MAC 311 sends the information required for the FrFT sequence corresponding to the registration message to the ONU PHY 312, and the ONU PHY 312 generates the FrFT sequence corresponding to the registration message to control the output amplitude of the ONU PHY 312, thereby making the laser of ONU 1 transmit the registration message at a lower power, avoiding the registration message affecting the transmission of the service message, and improving the registration accuracy of ONU 1 in the OLT.
  • the binary bits included in the registration information are represented by the order, so that after the OLT receives the FrFT sequence representing the registration message, the order used to indicate the registration information (such as SN) is restored based on the FrFT sequence, thereby determining the binary bit information of the registration information, and using the registration information to allocate balanced delay to ONU 1, perform normal bandwidth authorization for ONU 1, and complete the OLT registration process for ONU 1.
  • the OLT identifies the registration message from the service message according to the signal characteristics indicated by the order, avoiding the transmission delay and time jitter caused by the OLT opening the silent window during the registration process.
  • OLT parses and finds the SN information of ONU 1 included in the response message, and assigns ONU-ID to ONU 1.
  • the OLT records information such as the user who logged into the optical communication network (PON) by the ONU 1 according to the ONU-ID.
  • the OLT when the OLT receives the registration message (such as the discovery response message in S640) and the normal service message of the ONU 1 to be registered, on the one hand, it processes the service message normally, and on the other hand, performs a (1-p order) FrFT transformation on the message. For example, according to the order that the OLT can process, a (1-p order) FrFT transformation is performed on the message respectively.
  • a (1-p order) FrFT transformation is performed on the message respectively.
  • the OLT performs order scanning (or order sweeping) on other FrFT sequences following the p-order FrFT sequence, and when the other FrFT sequences have peak energy, determines that the order used by the other FrFT sequences is the order representing the value of the binary bit, such as the aforementioned q-order and r-order.
  • the order sweeping process includes: fractional Fourier transform, threshold judgment (when the peak energy is greater than or equal to the threshold, the order is determined to be valid).
  • the OLT identifies the value of each binary bit in the registration information according to the order determined by the order scanning. For example, when the registration information is SN (including 32 bits), the OLT determines the order arrangement corresponding to 32 groups of FrFT sequences according to the order, thereby obtaining the SN.
  • the ranging phase includes the following steps S650 to S670 .
  • OLT sends a registration authorization instruction to ONU 1.
  • the registration information carried by the registration authorization instruction is the ONU-ID determined in S640.
  • the OLT allocates an ONU-ID to the ONU with the SN information and sends a ranging request to it.
  • the ranging request message (such as the registration authorization instruction in S650) includes the FrFT sequence corresponding to the order of the leading of the ranging response message and the FrFT sequence corresponding to the p-order of the leading.
  • ONU 1 responds to the registration authorization instruction and sends a ranging response message to the OLT, where the ranging response message includes the ONU-ID.
  • the ONU 1 generates a message similar to that shown in FIG. 5A or FIG. 5B according to the binary bit information of the ONU-ID (e.g., 288 bits) in the same manner as described above.
  • the binary bit information of the ONU-ID e.g., 288 bits
  • OLT allocates balanced delay to ONU 1 based on the received ranging response message and performs normal service authorization with ONU 1.
  • the OLT processes it in the same way, obtains the ONU-ID, and then allocates balanced delay to ONU 1.
  • the ONU enters the operating state (operate state, O5), that is, resumes normal working state.
  • a normal authorization communication phase is established between the OLT and ONU 1.
  • the registration method provided in this embodiment is applied to the ONU and OLT shown in FIG. 3 .
  • the OLT and the ONU do not need to add hardware such as a transmitter, a receiver, and a filter, thereby reducing hardware costs.
  • the OLT can extract the registration information contained in the registration message based on the order to achieve the distance measurement of ONU 1 by the OLT based on the registration message. If ONU 1 lowers the transmission power of the optical signal and sends a registration message, the registration message will not affect the normal transmission of the service message. Therefore, the OLT can parse the registration message without affecting the service message.
  • the OLT does not need to open a silent window for the registration process of the ONU 1, which avoids the impact on the service message transmission of other network devices connected to the OLT, reduces the overall transmission delay and time jitter of the optical communication network, and improves the service experience.
  • the OLT does not need to add new hardware, and the OLT does not need to split the received registration message and service message. Instead, the registration information of ONU 1 is identified by analyzing the signal characteristics of the registration message (the aforementioned order) to register ONU 1, thereby avoiding the need to add a new SOA driver module required for a separate registration signal data channel. Moreover, since the registration method provided in this embodiment does not require new hardware, the registration method can be applied to more ONUs to achieve zero window registration of ONUs in PON, which is beneficial to improving the overall transmission efficiency between ONUs and OLTs in PON.
  • the aforementioned registration message (such as the discovery response message in S630 or the ranging response message in S660) can be generated by the ONU MAC or ONU PHY chip included in ONU 1.
  • ONU MAC 311 controls the laser in the ONU to output the registration message at a lower power according to the information required by the registration message, such as the aforementioned order seed, number of repetitions, SN or registration identifier (ONU-ID).
  • the ONU MAC generates the information required for the registration message, such as the aforementioned order seed, number of repetitions, SN or registration identifier (ONU-ID), and sends it to the ONU PHY chip.
  • the processor in the ONU PHY chip generates the FrFT sequence corresponding to the order after calculation, and controls the power output amplitude of the ONU PHY chip so that the laser in the ONU outputs the registration message at a lower power.
  • the OLT receives not only the registration message sent by ONU 1, but also the registration message sent by ONU 3.
  • the OLT determines that the order used by ONU 3 and ONU 1 is different, then the OLT can parse the registration message sent by ONU 3 according to the order used by ONU 3, and thus perform ranging on ONU 3 according to the registration information obtained by the parsing.
  • ONU 3 can be called a third network device, or other devices except the first network device among the multiple network devices corresponding to the OLT, etc.
  • each ONU to be registered will generate different orders through the order seed x of the registration configuration information through the random number generation method, thereby solving the problem of concurrent registration information of each ONU, and avoiding the problem that the OLT needs to open the silent window and can only register and measure the distance of a single ONU in the same time slot indicated by the silent window, thereby improving the registration and ranging efficiency of multiple network devices in the optical communication network.
  • the registration method provided by the present application can also be applied to other optical communication networks, such as the optical communication network is a fiber to the room (FTTR) network.
  • the access point (AP) of the edge ONT (Edge ONT) needs to transmit the air interface information to the master ONT (Master ONT) in a timely manner.
  • the master ONT performs time slot allocation and resource scheduling for each edge ONT and AP based on the air interface information.
  • the air interface information of the AP can be transmitted from the edge ONT to the master ONT.
  • the master ONT can actively allocate fixed order information to the edge ONT that is already online. In other words, the master ONT knows the order of the information transmitted by the edge ONT.
  • the air interface information generation method remains consistent. The difference is that the parameters required for the edge ONT to generate the air interface information are all deterministically allocated by the main ONT, and are also processed deterministically by the main ONT.
  • the network device includes hardware structures and/or software modules corresponding to the execution of each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application scenario and design constraints of the technical solution.
  • the registration method provided according to the present embodiment is described in detail above in conjunction with FIGS. 1 to 6 .
  • the registration device provided according to the present embodiment will be described below in conjunction with FIGS. 7 and 8 .
  • FIG7 is a schematic diagram of the structure of the registration device provided by the present application.
  • the registration device 700 can be used to implement the function of the first network device or ONU in the above method embodiment, so the beneficial effects of the above method embodiment can also be achieved.
  • the registration device 700 can be the network device 121 shown in FIG1, or the ONU shown in the subsequent figures, etc., or a module (such as a chip) applied to the ONU.
  • the registration device 700 includes: a sending module 710 and a receiving module 720.
  • the receiving module 720 is used to receive a registration authorization instruction from a second network device and determine at least one order of an FrFT sequence used to indicate registration information.
  • the sending module 710 is used to respond to the registration authorization instruction and send a registration message to the second network device according to at least one order.
  • the registration message is used to instruct the second network device to register the first network device to the optical communication network, and the registration message carries the registration information indicated by the aforementioned at least one order.
  • a more detailed description of the sending module 710 and the receiving module 720 can be directly obtained by referring to the relevant description of the ONU in the method embodiment shown in the above-mentioned figures, and will not be repeated here.
  • FIG8 is a second structural diagram of a registration device provided by the present application.
  • the registration device 800 can be used to implement the function of the second network device or OLT in the above method embodiment, and thus can also achieve the beneficial effects of the above method embodiment.
  • the registration device 800 can be the network device 121 shown in FIG1 , or the OLT shown in subsequent figures, etc., or a module (such as a chip) applied to the OLT.
  • the registration device 800 includes: a sending module 810, a receiving module 820, a parsing module 830 and a registration module 840.
  • the sending module 810 is used to send a registration authorization instruction to multiple network devices.
  • the receiving module 820 is used to receive a registration message sent by a first network device, where the first network device is any one of the multiple network devices.
  • the parsing module 830 is used to parse the FrFT sequence corresponding to the registration message and determine at least one order corresponding to the first network device, where the at least one order is used to indicate the registration information carried by the registration message.
  • the registration module 840 is used to register the first network device according to the registration information.
  • the receiving module 820 is further configured to: receive other registration messages sent by a third network device, the third network device The device is another device different from the first network device in the plurality of network devices.
  • the parsing module 830 is further used to parse the FrFT sequence corresponding to the other registration messages to determine other orders corresponding to the third network device, where the other orders are used to indicate the registration information carried by the other registration messages.
  • the registration module 840 is further used to register the third network device according to the registration information carried by the other registration messages.
  • a more detailed description of the sending module 810, the receiving module 820, the parsing module 830 and the registration module 840 can be directly obtained by referring to the relevant description of the OLT in the method embodiment shown in the above-mentioned figures, and will not be repeated here.
  • the registration device When the registration device implements the registration method shown in any of the above-mentioned figures through software, the registration device and its various units may also be software modules.
  • the above-mentioned registration method is implemented by calling the software module through a processor.
  • the processor may be a central processing unit (CPU), an application-specific integrated circuit (ASIC), or a programmable logic device (PLD), and the above-mentioned PLD may be a complex programmable logical device (CPLD), a field programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • CPLD complex programmable logical device
  • FPGA field programmable gate array
  • GAL generic array logic
  • the registration device shown in the above-mentioned figures is only an example provided by this embodiment. Depending on the ranging process or service, the registration device may include more or fewer units, and this application is not limited to this.
  • the hardware can be implemented by a processor or a chip.
  • the chip includes an interface circuit and a control circuit.
  • the interface circuit is used to receive data from other devices outside the processor and transmit it to the control circuit, or send data from the control circuit to other devices outside the processor.
  • control circuit and the interface circuit are used to implement any possible implementation method in the above embodiments through logic circuits or execution code instructions.
  • the beneficial effects can be found in the description of any aspect of the above embodiments, which will not be repeated here.
  • processors in the embodiments of the present application may be a CPU, a neural processing unit (NPU) or a graphic processing unit (GPU), or other general-purpose processors, digital signal processors (DSP), ASICs, FPGAs or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • FIG. 9 is a schematic diagram of the structure of a communication device provided in the present application, and the communication device 900 includes: a memory 910 and at least one processor 920, the processor 920 can implement the registration method provided in the above embodiment, and the memory 910 is used to store the software instructions corresponding to the above registration method.
  • the communication device 900 may refer to a chip or chip system encapsulated with one or more processors 920.
  • the communication device 900 when the communication device 900 is used to implement the method steps in the above embodiment, the processor 920 included in the communication device 900 executes the steps of the above method and its possible sub-steps.
  • the communication device 900 may also include a communication interface 930, which can be used to send and receive data.
  • the communication interface 930 is used to receive a registration message, or send a registration message, etc.; the communication interface 930 may be implemented by an interface circuit included in the communication device 900.
  • the communication interface 930, the processor 920 and the memory 910 can be connected via a bus 940, and the bus 940 can be divided into an address bus, a data bus, a control bus, etc.
  • the bus 940 can be a Peripheral Component Interconnect Express (PCIe) bus, an extended industry standard architecture (EISA) bus, a unified bus (Ubus or UB), a compute express link (CXL), a cache coherent interconnect protocol (CCE), or a 32-bit 4 ... for accelerators, CCIX) etc.
  • PCIe Peripheral Component Interconnect Express
  • EISA extended industry standard architecture
  • Ubus or UB unified bus
  • CXL compute express link
  • CCE cache coherent interconnect protocol
  • 32-bit 4 ... for accelerators, CCIX 32-bit 4 ... for accelerators, CCIX
  • the communication device 900 can also perform the functions of the registration device 700 shown in FIG. 7 or the registration device 800 shown in FIG. 8 , which will not be described in detail here.
  • the communication device 900 provided in this embodiment may be an OLT, an ONU, or other communication devices with data processing functions, which is not limited in this application.
  • the communication device 900 may be any one of the aforementioned network devices, such as ONU 310 and OLT 320.
  • the method steps in the embodiments of the present application can also be implemented by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), registers, hard disks, mobile hard disks, CD-ROMs, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium can also be present in a network device or a terminal device as discrete components.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user device or other programmable device.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instruction may be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server, data center, etc. that integrates one or more available media.
  • the available medium may be a magnetic medium, for example, a floppy disk, a hard disk, a tape; it may also be an optical medium, for example, a digital video disc (DVD); it may also be a semiconductor medium, for example, a solid state drive (SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种光通信网络中的注册方法、装置、通信设备以及系统,涉及光通信技术领域。第一网络设备在调低光信号的发射功率后,依据确定的阶次生成注册报文,且该注册报文包括的注册信息由该FrFT序列对应的阶次来表示,因此,若第二网络设备既接收到业务报文、又接收到注册报文,第二网络设备可基于该阶次提取注册报文包含的注册信息,以实现第二网络设备依据注册报文对第一网络设备的注册(如上线及测距)。由于注册报文是低功率下发出的,该注册报文不会影响业务报文的传输,第二网络设备无需为该第一网络设备的注册过程开启静默窗,避免了与第二网络设备连接的其他网络设备的业务报文传输受到影响,降低了光通信网络的整体传输时延及时间抖动。

Description

光通信网络中的注册方法、装置、通信设备以及系统
本申请要求于2022年10月14日提交中国国家知识产权局、申请号为202211260435.0、申请名称为“光通信网络中的注册方法、装置、通信设备以及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光通信网络中的注册方法、装置、通信设备以及系统。
背景技术
无源光网络(Passive Optical Network,PON)是基于光纤链路传输的接入网络,PON中的光线路终端(Optical Line Terminal,OLT)与光网络单元(Optical Network Unit,ONU)之间没有任何使用了电源的电子设备。在PON中,OLT到ONU的下行传输是广播方式,ONU到OLT的上行传输是时分复用多址接入(Time Division Multiple Access,TDMA)方式。因此,ONU到OLT的上行传输过程中,不同的ONU所占的时隙不能发生重叠,重叠部分的时隙所传输的信息无法被OLT正确的接收,因此需要通过ONU在注册阶段的测距来确定在正常业务授权时ONU所分配的时隙。
通常,OLT会开启静默窗,并在静默窗对应的时隙内完成新加入的ONU的注册,包括ONU的发现及测距。然而,在静默窗对应的时隙内,PON中与OLT连接的已在线的ONU无法与该OLT进行正常业务通信,使得PON中已在线ONU的业务时延增加,也会增加时延的抖动,从而影响业务体验。为了实现OLT对ONU的零开窗注册,ONU会调低光信号的发射功率来发射注册报文,而OLT仅能通过多次累加的低功率注册报文才能确定注册信息,注册效率较低且容易造成多个待注册ONU的注册报文冲突。因此,如何提供一种更为有效的光通信网络中的注册方法成为目前亟需解决的问题。
发明内容
本申请提供了一种光通信网络中的注册方法、装置、通信设备以及系统,可实现OLT对ONU的零开窗注册,降低了ONU业务的时延和时间抖动。
本申请采用如下技术方案。
第一方面,提供了一种光通信网络中的注册方法,该注册方法可应用于光通信网络,该注册方法包括:第一网络设备接收第二网络设备的注册授权指令,并确定用于指示注册信息的分数傅里叶变换(Fractional Fourier Transformation,FrFT)序列所对应的至少一个阶次;以及,第一网络设备响应注册授权指令,根据至少一个阶次向第二网络设备发送注册报文。其中,注册报文用于指示第二网络设备将第一网络设备注册到光通信网络,注册报文携带有由前述至少一个阶次指示的注册信息。
在第一网络设备调低光信号的发射功率的情况下,该注册报文不会影响业务报文的正常传输,使得第二网络设备可在对第一网络设备的注册过程中,执行业务报文关联的业务。本实施例中,第一网络设备利用阶次来指示注册信息,如注册信息中每个二进制比特所采用的FrFT序列在进行(1-阶次)的FrFT变换后具有能量极大值,从而确定由阶次指示的二进制比特的值,可以提高注册报文中每个二进制比特的信噪比,有利于第二网络设备根据该阶次解析第一网络设备的注册信息。而且不同的待注册ONU可以采用不同的阶次,避免了在不开窗条件下多个待注册ONU同时注册发生碰撞的情况,进一步提高了注册效率。
第二网络设备通过解析该阶次来获取注册信息,如解析的过程可包括但不限于:(1-阶次)的分数傅里叶变换等;进而,第二网络设备根据注册信息对第一网络设备进行注册(如上线及测距),实现了第一网络设备在光通信网络中的零开窗注册,避免了与第二网络设备连接的其他设备的业务报文受到影响,降低了网络设备的业务时延和时间抖动,提升了光通信网络的业务体验。
可选的,前述注册信息包括:第一网络设备的序列号(Serial Number,SN),或者,第一网络设备的注册标识符。
在一种可能的示例中,该注册信息是指第一网络设备的SN,则第一网络设备发送的注册报文是指发现响应报文,该第一网络设备处于上线阶段(或称发现阶段)。
在另一种可能的示例中,该注册信息是指第一网络设备的注册标识符(注册ID),则第一网络设备发送的注册报文是指测距响应报文,该第一网络设备处于测距阶段。
一种可选的实现方式中,第一网络设备确定至少一个阶次,包括:第一网络设备获取注册配置信息,并根据该注册配置信息确定至少一个阶次。该注册配置信息包括:注册报文中前导的前导阶次、前导的第一序列长度以及第一重复次数、注册报文的阶次种子、FrFT序列的第二序列长度、注册信息对应的FrFT序列的第二重复次数。
示例性的,前导由采用前导阶次的FrFT序列表示,前导中前导阶次对应的FrFT序列的长度为第一序列长度,第一序列长度的FrFT序列的重复次数为第一重复次数。注册信息由阶次种子确定的至少一个阶次来表示,注册信息中每个二进制比特采用的前述至少一个阶次对应的FrFT序列的长度为第二序列长度,第二序列长度的FrFT序列的重复次数为第二重复次数。
示例性的,前述的注册信息包括多个二进制比特,一个二进制比特对应一个FrFT序列或者由该FrFT序列重复一定次数组成的一组FrFT序列。由于注册信息中每个二进制比特所采用的FrFT序列在进行(1-阶次)的FrFT变换后具有能量极大值,从而第二网络设备可根据具有能量极大值所确定的阶次来获取注册信息中每个二进制比特的值,且不受未进行分数傅里叶变换的业务报文(对应阶次为0)的干扰,提高了注册报文中每个二进制比特的信噪比,有利于提升第二网络设备解析注册报文的准确性和效率。
例如,前述的至少一个阶次包括:第一阶次和第二阶次,第一阶次用于指示注册信息中值为0的二进制比特,第二阶次用于指示注册信息中值为1的二进制比特。在本实施例中,不同的阶次来指示注册信息中不同的二进制比特,由于第一阶次、第二阶次对应的FrFT序列的特征是确定的,且不受未进行分数傅里叶变换的业务报文(对应阶次为0)的干扰,因此,即使在第二网络设备在接收注册报文的同时还收到其他网络设备的业务报文,第二网络设备也可根据阶次指示的二进制比特识别注册报文包括的注册信息,从而完成注册,避免了开启 静默窗产生的传输时延和时间抖动。
又如,前述的至少一个阶次包括:第一阶次,注册信息中值为0的二进制比特由第一阶次和比特0的第一调制信息来确定,注册信息中值为1的二进制比特由第一阶次和比特1的第二调制信息来确定。第一网络设备无需产生多种类型的阶次对应的FrFT序列,即使在第二网络设备在接收注册报文的同时还收到其他网络设备的业务报文,第二网络设备也可根据阶次指示的二进制比特的值来识别出注册报文包括的注册信息,从而完成注册,避免了开启静默窗产生的传输时延和时间抖动,提高光通信网络的业务体验。
一种情形中:第二网络设备向第一网络设备发送注册配置报文,该注册配置报文携带有前述的注册配置信息。
另一种情形:第一网络设备从第一网络设备和第二网络设备之间的通信协议中查询,从而确定前述的注册配置信息。
一种可选的实现方式中,在第一网络设备确定至少一个阶次之后,本实施例提供的注册方法还包括:第一网络设备向第二网络设备发送第一网络设备的序列号,序列号由注册配置信息确定的至少一个阶次表示。以及,第一网络设备接收第二网络设备根据序列号确定的注册信息。应理解,在第二网络设备向多个网络设备发送注册授权指令后,若该第二网络设备除了接收到第一网络设备的注册信息,还接收到其他网络设备的业务报文,则第二网络设备可根据该序列号确定第一网络设备处于测距阶段,并根据该序列号对第一网络设备进行注册,避免第二网络设备开启静默窗产生的传输时延。
一种可选的实现方式中,前述的注册报文是由第一网络设备包括的媒体控制层(Media Access Control,MAC)电芯片或者物理层(Physical Layer,PHY)电芯片生成的。以第一网络设备是ONU为例,该第一网络设备包括的MAC为ONU MAC,该第一网络设备包括的PHY电芯片为ONU信号处理芯片或激光器驱动芯片(或称:ONU PHY芯片)。
例如,ONU MAC依据注册报文所需的信息,如前述的阶次种子、重复次数、SN或者注册信息,控制ONU中的激光器以较低的功率输出注册报文。
又如,ONU MAC将产生注册报文所需的信息,如前述的阶次种子、重复次数、SN或者注册信息等发送到ONU PHY芯片,并由ONU PHY芯片中的处理器经过运算后产生阶次对应的FrFT序列,并通过控制ONU PHY芯片的功率输出幅度,使得ONU中的激光器以较低的功率输出注册报文。
第二方面,提供了一种光通信网络中的注册方法,该注册方法包括:首先,第二网络设备向多个网络设备发送注册授权指令。其次,第二网络设备接收第一网络设备发送的注册报文,第一网络设备为多个网络设备中任一个。之后,第二网络设备对注册报文对应的分数傅里叶变换FrFT序列进行解析,确定第一网络设备对应的至少一个阶次,至少一个阶次用于指示注册报文携带的注册信息。最后,第二网络设备根据注册信息对第一网络设备进行注册。
在第一网络设备调低光信号的发射功率的情况下,该注册报文不会影响业务报文的正常传输,使得第二网络设备可在对第一网络设备的注册过程中,执行业务报文关联的业务。
其次,在发射功率已经调低的情况下,注册报文相较于业务报文的信噪比较小,在本实施例中,注册报文是第一网络设备依据确定的阶次生成的,且该注册报文包括的注册信息由该FrFT序列对应的阶次来表示,第二网络设备在对注册报文中每个二进制比特所采用的FrFT序列在进行(1-阶次)的FrFT变换后具有能量极大值,从而确定由阶次指示的二进制比特的 值,可以提高注册报文中每个二进制比特的信噪比,有利于第二网络设备根据采用该阶次的FrFT序列解析第一网络设备的注册信息。而且不同的待注册ONU可以采用不同的阶次,避免了在不开窗条件下多个待注册ONU同时注册发生碰撞的情况,进一步提高了注册效率。
最后,第二网络设备通过解析该阶次来获取注册信息,如解析的过程可包括但不限于:(1-阶次)的分数傅里叶变换等;进而,第二网络设备根据注册信息对第一网络设备进行注册(如上线及测距),实现了第一网络设备在光通信网络中的零开窗注册,避免了与第二网络设备连接的其他设备的业务报文受到影响,降低了网络设备的业务时延和时间抖动,提升了光通信网络的业务体验。
可选的,注册信息为:第一网络设备的序列号,或者,第一网络设备的注册标识符。
可选的,注册授权指令携带有注册配置信息,注册配置信息用于确定至少一个阶次。注册配置信息包括:注册报文中前导的前导阶次、前导的第一序列长度以及第一重复次数、注册报文的阶次种子、FrFT序列的第二序列长度、注册信息对应的FrFT序列的第二重复次数。
示例性的,前导由采用前导阶次的FrFT序列表示,前导中前导阶次对应的FrFT序列的长度为第一序列长度,第一序列长度的FrFT序列的重复次数为第一重复次数。注册信息由阶次种子确定的至少一个阶次来表示,注册信息中至少一个阶次对应的FrFT序列的长度为第二序列长度,第二序列长度的FrFT序列的重复次数为第二重复次数。
可选的,前述的至少一个阶次包括:第一阶次和第二阶次,第一阶次用于指示注册信息中值为0的二进制比特,第二阶次用于指示注册信息中值为1的二进制比特。
可选的,前述的至少一个阶次包括:第一阶次,注册信息中值为0的二进制比特由第一阶次和比特0的第一调制信息来确定,注册信息中值为1的二进制比特由第一阶次和比特1的第二调制信息来确定。
可选的,本实施例提供的注册方法还包括:第一,第二网络设备接收第三网络设备发送的其他注册报文,第三网络设备为多个网络设备中与第一网络设备不同的其他设备。第二,第二网络设备对其他注册报文对应的FrFT序列进行解析,确定第三网络设备对应的其他阶次,其他阶次用于指示其他注册报文携带的注册信息。第三,第二网络设备根据其他注册报文携带的注册信息对第三网络设备进行注册。
在本实施例中,若第二网络设备接收到多个网络设备发送的注册报文,由于每个网络设备所采用的阶次是不同的,且不同阶次的FrFT序列在信号处理的Wigner域上彼此正交,因此,每个网络设备对应的注册信息的信号特征也不同,且能彼此区分,第二网络设备可根据待注册的网络设备与第二网络设备约定好的阶次来对注册报文进行(1-阶次)的FrFT变换,从而获取待注册的网络设备的注册信息,解决了OLT要开启静默窗,且在静默窗指示的同一时隙内仅能对单个ONU进行注册和测距的问题,提高了光通信网络中多个网络设备的注册和测距效率,提升了光通信网络的业务体验。
第三方面,提供了一种光通信网络中的注册装置,该注册装置应用于光通信网络中的第一网络设备,该注册装置包括:接收模块和发送模块。接收模块,用于接收第二网络设备的注册授权指令,并确定用于指示注册信息的FrFT序列所对应的至少一个阶次;发送模块,用于响应注册授权指令,根据至少一个阶次向第二网络设备发送注册报文;其中,注册报文用于指示第二网络设备将第一网络设备注册到光通信网络,注册报文携带有由前述至少一个阶次指示的注册信息。
可选的,注册信息包括:第一网络设备的序列号,或者,第一网络设备的注册标识符。
可选的,注册授权指令携带有注册配置信息,注册配置信息用于确定至少一个阶次。注册配置信息包括:注册报文中前导的前导阶次、前导的第一序列长度以及第一重复次数、注册报文的阶次种子、FrFT序列的第二序列长度、注册信息对应的FrFT序列的第二重复次数。
可选的,前导由采用前导阶次的FrFT序列表示,前导中前导阶次对应的FrFT序列的长度为第一序列长度,第一序列长度的FrFT序列的重复次数为第一重复次数。注册信息由阶次种子确定的至少一个阶次来表示,注册信息中至少一个阶次对应的FrFT序列的长度为第二序列长度,第二序列长度的FrFT序列的重复次数为第二重复次数。
可选的,前述的至少一个阶次包括:第一阶次和第二阶次,第一阶次用于指示注册信息中值为0的二进制比特,第二阶次用于指示注册信息中值为1的二进制比特。
可选的,前述的至少一个阶次包括:第一阶次,注册信息中值为0的二进制比特由第一阶次和比特0的第一调制信息来确定,注册信息中值为1的二进制比特由第一阶次和比特1的第二调制信息来确定。
可选的,前述的注册报文是由第一网络设备包括的媒体控制层电芯片或者物理层电芯片生成的。
第四方面,提供了一种光通信网络中的注册装置,该注册装置应用于第二网络设备,该注册装置包括:发送模块、接收模块、解析模块和注册模块。发送模块,用于向多个网络设备发送注册授权指令。接收模块,用于接收第一网络设备发送的注册报文,第一网络设备为多个网络设备中任一个。解析模块,用于对注册报文对应的FrFT序列进行解析,确定第一网络设备对应的至少一个阶次,至少一个阶次用于指示注册报文携带的注册信息。注册模块,用于根据注册信息对第一网络设备进行注册。
可选的,接收模块,还用于:接收第三网络设备发送的其他注册报文,第三网络设备为多个网络设备中与第一网络设备不同的其他设备。解析模块,还用于:对其他注册报文对应的FrFT序列进行解析,确定第三网络设备对应的其他阶次,其他阶次用于指示其他注册报文携带的注册信息。注册模块,还用于:根据其他注册报文携带的注册信息对第三网络设备进行注册。第四方面提供的注册装置还可用于实现第二方面中任一实现方式的功能,不予赘述。
第五方面,提供了一种注册系统,该注册系统应用于光通信网络,该注册系统包括:第一网络设备和第二网络设备。首先,第一网络设备接收第二网络设备发送的注册授权指令,并确定用于指示注册信息的FrFT序列所对应的至少一个阶次。其次,第一网络设备响应注册授权指令,根据至少一个阶次向第二网络设备发送注册报文,该注册报文用于指示第二网络设备将第一网络设备注册到光通信网络,注册报文携带有由前述至少一个阶次指示的注册信息。最后,第二网络设备根据至少一个阶次解析注册报文包括的FrFT序列,获取第一网络设备的注册信息,并根据注册信息第一网络设备进行注册。
该注册系统可用于实现第一方面或第二方面中任一实现方式包括的方法,在此不予赘述。
第六方面,提供了一种通信设备,包括处理器和接口电路。接口电路用于接收来自通信设备之外的其它通信设备的信号并传输至处理器或将来自处理器的信号发送给通信设备之外的其它通信设备;处理器和接口电路通过逻辑电路或执行代码指令用于实现第一方面中任一种实现方式的方法,或者第二方面中任一种实现方式的方法。
如该通信设备为前述的第一网络设备或第二网络设备。
第七方面,提供了一种芯片,包括:控制电路和接口电路。接口电路用于接收来自芯片之外的其它芯片的信号并传输至控制电路或将来自控制电路的信号发送给芯片之外的其它芯片;控制电路和接口电路通过逻辑电路或执行代码指令用于实现第一方面中任一种实现方式的方法,或者第二方面中任一种实现方式的方法。如该通信设备为前述的第一网络设备或第二网络设备。
第八方面,提供了一种计算机可读存储介质,存储介质中存储有计算机程序或指令,当计算机程序或指令被通信设备执行时,实现第一方面中任一种实现方式的方法,或者第二方面中任一种实现方式的方法。如该通信设备为前述的第一网络设备或第二网络设备。
第九方面,提供了一种计算机程序产品,计算机程序产品在计算机上运行时,使得计算机执行第一方面中任一种实现方式的方法,或者第二方面中任一种实现方式的方法。如该计算机为前述的通信设备、第一网络设备或第二网络设备。
以上第三方面至第九方面的有益效果可参照第一方面或第二方面中任一种实现方式的内容,在此不予赘述。本申请在上述各方面提供的实现方式的基础上,还可以进行进一步组合以提供更多实现方式。
附图说明
下面将参照所示附图对本申请实施例进行更详细的描述:
图1为本申请提供的光通信网络的结构示意图;
图2为本申请提供的PON的结构示意图;
图3为本申请提供的ONU和OLT的结构示意图;
图4A为本申请提供的注册方法的流程示意图一;
图4B为本申请提供的注册方法的流程示意图二;
图5A为本申请提供的注册报文的示意图一;
图5B为本申请提供的注册报文的示意图二;
图6为本申请提供的注册方法的流程示意图三;
图7为本申请提供的注册装置的结构示意图一;
图8为本申请提供的注册装置的结构示意图二;
图9为本申请提供的通信设备的结构示意图。
具体实施方式
本申请提供了一种光通信网络中的注册方法,包括:首先,第一网络设备接收第二网络设备的注册授权指令,并确定用于指示注册信息的FrFT序列所对应的至少一个阶次。其次,第一网络设备响应注册授权指令,根据至少一个阶次向第二网络设备发送注册报文;其中,注册报文用于指示第二网络设备将第一网络设备注册到光通信网络,注册报文携带有注册信息。最后,第二网络设备解析前述注册报文提取第一网络设备的注册信息,并依据该注册信息对第一网络设备进行注册。在第一网络设备调低光信号的发射功率的情况下,该注册报文不会影响业务报文的正常传输,使得第二网络设备可在对第一网络设备的注册过程中,执行业务报文关联的业务。由于在发射功率已经调低的情况下,注册报文相较于业务报文的信噪比较小,本实施例中,第一网络设备利用阶次来指示注册信息,如注册信息中每个二进制比 特所采用的FrFT序列在进行(1-阶次)的FrFT变换后具有能量极大值,从而确定由阶次指示的二进制比特的值,且不受未进行分数傅里叶变换的业务报文(对应阶次为0)的干扰,提高了注册报文中每个二进制比特的信噪比,有利于提升第二网络设备解析注册报文的准确性和效率,降低了网络设备的业务时延和时间抖动,提升了光通信网络的业务体验。而且不同的待注册ONU可以采用不同的阶次,避免了在不开窗条件下多个待注册ONU同时注册发生碰撞的情况,进一步提高了注册效率。
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍。
FrFT序列Xp(u)是指对一组直流分量(常数向量,比如[1 1 1…1 1 1])进行分数傅里叶变换(FrFT)后产生的:
其中,x(t)为直流分量,Kp(u,t)为该FrFT变换的核,Kp(u,t)为:
其中,α=pπ/2,p为变换的阶次(或:阶数),α为FrFT序列在Wigner域中的角度,j为复数运算中的虚数,e为自然数。一些情形中,Wigner域也称直流分量x(t)经过FrFT变换后所在的分数域。
不同阶次(或:阶数)的FrFT序列,在Wigner域上会形成不同角度的旋转,并在各自的角度上呈现出能量集中的现象。这一过程,反应在光信号的光接收装置的信号处理上,就是对接收到的光信号进行(1-p)阶的FrFT变换,其中p为发射的FrFT序列阶次,处理后得到的FrFT序列中会获得接收到的光信号的极大值,该极大值即为该阶次的FrFT序列呈现出的能量集中的现象。因此在信号处理时,该能量集中体现出的特征可以被用来提取信息(阶次)。而且,不同的阶次的FrFT序列的在分数域上彼此正交,因此光接收装置能够在业务报文中(对应阶次0)提取出对应阶次的注册报文,并且能够在同时接收的多个ONU的注册报文相互区分开。
图1为本申请提供的光通信网络的结构示意图,该光通信网络也可称为光传输网络,该光通信网络包括多个网络设备,其中的一个或多个网络设备用于连接用户的终端(如图1中所示出的终端111~116)。
终端(terminal)也可以称为终端设备、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。
在一些实施例中,终端可以是手机(如图1中所示出的终端111和终端116)、平板电脑(如图1中所示出的终端112)、带无线收发功能的电脑(如图1中所示出的终端113)、个人通信业务(personal communication service,PCS)电话(如图1中所示出的终端114)、台式计算机(如图1中所示出的终端115)、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
在另一些实施例中,终端还可以是家庭网关。家庭网关例如可以是光网络终端(optical network terminal,ONT)。示例的,如图1中所示的网络设备121可以是光网络终端。光网络终端可以将PC、手机等用户设备接入互联网。家庭网关可以传输以下业务的数据:上网业务(如交互式网络电视业务,其包括家庭网关支持视阶次播、直播业务及远程教育等),网上游戏业务(例如游戏终端通过家庭网关开展游戏业务),互联网协议(internet protocol,IP)电话,可视电话和视频监控业务等。又如,家庭网关还可以实现远程网络上的家庭控制和安全服务管理。示例的,拥有家庭网关的用户可以在工作或外出期间,访问家庭网关覆盖的区域的自动化照明、供热和安全系统等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
网络设备可以是路由转发设备,例如,路由转发设备可以是路由器或交换机等,其可以是核心路由器(core router,CR),边缘路由器(provider edge,PE)等。网络设备还可以是宽带网络网关(broadband network gateway,BNG)或宽带远程接入服务器(Broadband Remote Access Server,BRAS)等。
终端可以利用网络设备访问服务器。例如,如图1所示出的房间中,第一用户可以利用终端111,采用无线宽带(wireless-fidelity,WIFI)技术与网络设备121建立通信连接,以便终端111发送数据包至服务器130。
服务器130可以是应用服务器或认证授权服务器。服务器130可以提供视频服务、游戏服务、消息服务、音乐服务、认证授权服务等。在一种示例中,可以将多个服务的功能集成在服务器130上,例如,游戏服务和音乐服务可以部署在服务器130上。在另一种示例中,还可以是服务器130上集成了部分服务的功能,例如,服务器130上部署了游戏服务的部分服务和视频服务的部分服务。服务器130还可以利用虚拟化技术提供多个虚拟机,由虚拟机提供各项服务。本申请实施例对服务的部署形态不予限定。
网络设备通过无线或有线方式与服务器130连接。图1只是示意图,该光通信网络中还可以包括其它设备,在图1中未画出。本申请的实施例对该光通信网络中包括的终端设备、网络设备和服务器的数量不做限定。
本申请可应用于PON、无源光局域网(passive optical LAN,POL)、工业光网络、车载光网络、物联网等场景。示例性的,PON场景中光发射装置(如网络设备121)可以位于用户家中或用户楼道,光接收装置(如网络设备122)可以位于运营商的机房。POL场景中的光发射装置和光接收装置可以位于园区(如企业、校园等)中。工业光网场景中光发射装置和光接收装置可以位于工业制造车间中。车载光网场景中的光发射装置和光接收装置可以设置在车辆中。作为例子,在PON场景中,网络设备121可以为光网络单元(optical network unit,ONU)或ONT,网络设备122可以为OLT。在车载光网络场景中,光发射装置可以为车辆接口单元(vehicle interface unit,VIU),光接收装置为移动数据中心(MDC)、行车动态控制(vehicle dynamic control,VDC)或座舱数据中心(cockpit data center,CDC)。本申请提出的技术方案还可以适用于光骨干传输网络、数据中心光传输、短距离光互联和无线业务前传/回传等。具体地,本申请提出的技术方案可以用于上述不同网络对应的光发射装置和/或光接收装置。
以PON为例进行说明,本申请实施例可以应用于时分复用无源光网络(time division multiple-passive optical network,TDM-PON),也可以应用于波分复用无源光网络(WDM-PON)。 图2为本申请提供的PON的结构示意图。如图2所示,多个ONU(如图2中的ONU 211至ONU 214)通过分光器230和OLT 220进行通信。
如ONU 211至ONU 214分别向OLT 220上行传输的信号帧为信号t1、信号t2、信号t3、信号t4。OLT 220接收到ONU发送的信号后,执行该信号指示的业务或操作,如对ONU进行注册、测距等。
图3为本申请提供的ONU和OLT的结构示意图,其中的ONU 310可以为图2所示出的ONU 211至ONU 214中任一个,OLT 320可以为图2所示出的OLT 220。
如图3所示,ONU 310包括:ONU媒体接入控制(media access control,MAC)311,ONU物理层(physical layer,PHY)312,激光器313和光电探测器314。在发送方向,ONU MAC 311可以通过发射使能端口(Tx_En,又称为开关引脚)控制激光器313的开启和关闭。比如,如果当前处于ONU 310的发光时隙(或者称为占用时隙),ONU MAC 311通过发射使能端口控制激光器313开启,如果不处于ONU 310的发光时隙,ONU MAC 311通过发射使能端口控制激光器313关闭。ONU PHY 312还可以通过发射控制端口(Tx_Ctr)调节激光器313的物理参数,例如激光器偏置电流和调制电流等。ONU MAC 311可以通过数据端口(Data)向ONU PHY 312发送业务报文,ONU PHY 312对业务报文进行处理,如该信号放大、信号运算等。ONU PHY 312又称为激光器313的驱动器,用于根据ONU MAC 311发射使能端口和/或发射控制端口的指令驱动激光器产生光信号。激光器313在ONU PHY 312的控制下将业务报文调制到光信号中,并将携带业务报文的上行光信号通过光纤发送给OLT 320。在接收方向,光电探测器314接收到来自OLT 320的下行光信号,并将下行光信号转换为电信号。ONU 310还可以包括波分复用器315,用于将激光器313产生的上行光信号发送到光纤中,以及将从光纤中接收的下行光信号发送给光电探测器314。
OLT 320可以包括OLT MAC 321,OLT PHY 323,光电探测器324和激光器325。在接收方向,光电探测器324接收来自ONU 310的上行光信号,将上行光信号转换为电信号。该电信号可以为模拟电信号,或者数字电信号。如OLT PHY 323对该电信号进行解析后获取到FrFT序列,以及,对该FrFT序列进行分数傅里叶变换后确定阶次,该阶次指示了业务报文或注册报文中的二进制比特信息,并将该二进制比特信息传输到OLT MAC 321,该OLT MAC 321根据这些二进制比特信息执行注册过程或者执行业务等。
在发送方向,OLT MAC 321产生业务报文或注册授权指令,OLT PHY 323对业务报文注册授权指令进行模拟或数字相关处理。激光器325在OLT PHY 323的控制下将业务报文或注册授权指令调制到光信号中,并将携带业务报文或注册授权指令的下行光信号通过光纤发送给ONU 310。OLT 320还可以包括波分复用器326,用于将激光器325产生的下行光信号发送到光纤中,以及将从光纤中接收的上行光信号发送给光电探测器324。
OLT周期性地下发注册授权指令,用于指示未上线的ONU进行注册以及测距等。下面在图3示出的ONU和OLT的基础上,本实施例提供了一种注册方法,如图4A所示,图4A为本申请提供的注册方法的流程示意图一,其中的OLT可称为光接收装置、第二网络设备等,OLT的硬件实现可参照OLT 320的描述,在此不予赘述。ONU 1至ONU 4均为待接入光通信网络的网络设备,如ONU 1可称为光发送装置、第一网络设备等,ONU的硬件实现可参照ONU 310的描述,在此不予赘述。
如图4A所示,本实施例提供的光通信网络中的注册方法包括以下步骤S410至S430。
S410,OLT向多个网络设备发送注册授权指令,并确定该多个网络设备中至少一个网络设备对应的至少一个阶次。
和S410相应的:该至少一个网络设备接收注册授权指令。举例来说,该至少一个网络设备包括第一网络设备,该第一网络设备为多个网络设备中任一个,如图4A中的ONU 1。值得注意的是,该至少一个网络设备还可包括其他网络设备,如图4A中的ONU 3等。
示例性的,该注册授权指令为OLT广播到多个未上线到PON的ONU的广播消息。该注册授权指令可用于触发ONU启动注册流程,该注册流程包括:上线流程、测距流程等。例如,上线流程是指OLT将利用ONU登录光通信网络的用户进行记录,测距流程是指OLT对ONU和OLT之间的逻辑距离进行测量,如该逻辑距离与ONU和OLT之间的均衡时延相关联。
其中,该注册信息包括多个二进制比特,一个二进制比特的值对应一个阶次或一组阶次,该组阶次包括多个重复的阶次。举例来说,该阶次是指FrFT序列对应的分数阶。
上文提到的FrFT序列,其表示的信息即为该FrFT序列所指示的阶次是多少,而该阶次对应的二进制比特的值可被OLT提取出来,从而使得OLT能够根据该阶次识别到注册报文的注册信息。举例来说,由于注册信息中每个二进制比特所采用的FrFT序列在进行(1-阶次)的FrFT变换后具有能量极大值,从而第二网络设备可根据具有能量极大值所确定的阶次来获取注册信息中每个二进制比特的值,且不受未进行分数傅里叶变换的业务报文(对应阶次为0)的干扰,提高了注册报文中每个二进制比特的信噪比,有利于提升第二网络设备解析注册报文的准确性和效率。
S420,ONU 1响应注册授权指令,向OLT发送注册报文。
其中,该注册报文携带有ONU 1的注册信息。在本实施例中,前述S410中的至少一个阶次用于指示该注册信息。
可选的,注册报文还携带有在注册信息之前的前导,该前导用于指示OLT发现该ONU 1的注册报文等。示例性的,FrFT序列的阶次也可用于指示该前导。
针对于S420的具体实现方式,本示例提供了一种可能的情形,如图4B所示,图4B为本申请提供的注册方法的流程示意图二,前述的S410可包括以下步骤S420A至S420D。
S420A,ONU 1的ONU MAC(简称:MAC)将产生注册报文所需的前导阶次、注册信息阶次通过集成电路(inter-integrated circuit,I2C)接口传递给ONU 1的电芯片。这里的电芯片可以是指ONU MAC包括的处理器或者ONU PHY芯片等。
S420B,ONU 1中的将光器降低偏置电流、降低驱动器输出功率。该输出功率是指ONU 1发出注册报文所采用的发射功率等。
S420C,ONU 1的MAC根据前述的前导阶次、注册信息阶次等,产生包括前导和注册信息的FrFT序列的注册报文。
S420D,ONU 1向OLT发送S420C中所产生的注册报文。
以上S420A至S420D仅为本实施例提供的可能实现方式,不应理解为对本申请的限定。关于S430A至S430C的内容请参照以下关于S430的阐述,在此不予赘述。
为了承载注册报文的信息,本实施例提出以阶次表征注册报文中:值为0的二进制比特和值为1的二进制比特。本实施例以一个二进制比特对应一个阶次对应的多个FrFT序列为例进行说明,下面给出两种可能的注册报文格式,注册报文包括:前导和注册信息。
第一种可能的注册报文格式,注册信息对应的至少一个阶次包括:第一阶次(q阶)和第二阶次(r阶)。如图5A所示,图5A为本申请提供的注册报文的示意图一,前导对应:k组N比特p阶FrFT序列,k可以是OLT与ONU 1约定好的值,该k也称为第一序列长度“N”的FrFT序列的第一重复次数。p阶是指前导的前导阶次,该前导阶次可由OLT发送给ONU 1的注册授权指令所携带,一些情形中,该前导阶次包含在OLT下发的注册配置信息中。
注册信息包括:值为0的二进制比特(或称:二进制比特0、比特0)和值为1的二进制比特(或称:二进制比特1、比特1),第一阶次(q阶)用于指示值为0的二进制比特,第二阶次(r阶)用于指示值为1的二进制比特。其中,值为0的二进制比特对应序列长度为M、阶次为第一阶次(q阶)的FrFT序列,值为1的二进制比特对应序列长度为M、阶次为第二阶次(r阶)的FrFT序列。该序列长度M也称为第二序列长度,表示一个二进制比特的M比特FrFT序列在注册报文中的第二重复次数为T。
可选的,该注册信息对应的阶次(第一阶次和第二阶次)是根据阶次种子x确定的,该阶次种子x包含在OLT向ONU 1发送的注册配置信息中。
一些情形中,若r大于q,则第二阶次(r阶)也可称为高阶次、高阶数等,第一阶次(q阶)也可称为低阶次、低阶数等。
值得注意的是,以上第一阶次和第二阶次仅为本实施例提供的示例,在一些情形中,第一阶次也可以是r阶,第二阶次也可以是q阶,本申请对ONU如何根据阶次种子x来确定用于指示注册信息包括的二进制比特不做限定。
在本实施例中,不同的阶次来表示注册信息中不同的二进制比特,因此,即使在OLT在接收注册报文的同时还收到其他网络设备的业务报文,OLT也可根据阶次指示的二进制比特识别注册报文包括的注册信息,从而完成注册,避免了开启静默窗产生的传输时延和时间抖动。
第二种可能的注册报文格式,注册信息对应的至少一个阶次包括:第一阶次。如图5B所示,图5B为本申请提供的注册报文的示意图二,前导对应:k组N比特p阶FrFT序列,关于前导的具体内容可参照图5A的相关描述,不予赘述。
注册信息包括:值为0的二进制比特和值为1的二进制比特,值为0的二进制比特由第一阶次(q阶)和比特0的第一调制信息来确定,值为1的二进制比特由第一阶次(q阶)和比特1的第二调制信息来确定。该调制信息是指OLT在对注册报文进行解析所生成的信息,该解析的过程可以是指OLT接收到注册报文,并识别到前导后,对注册报文中是否存在第一阶次对应的M比特FrFT序列进行识别与解析:若注册报文中存在第一阶次对应的M比特FrFT序列(如第一调制信息为:有),则OLT确定该M比特FrFT序列对应的光信号指示的是注册信息包括的值为1的二进制比特;若注册报文不存在第一阶次对应的M比特FrFT序列(如第二调制信息为:无),则OLT确定该M比特FrFT序列对应的光信号指示的是注册信息包括的值为0的二进制比特。
此外,在一些可选的实现方式中,若注册报文中不存在第一阶次对应的M比特FrFT序列(如第一调制信息为:无),则OLT确定该M比特FrFT序列对应的光信号指示的是注册信息包括的值为1的二进制比特;若注册报文存在第一阶次对应的M比特FrFT序列(如第二调制信息为:有),则OLT确定该M比特FrFT序列对应的光信号指示的是注册信息包括的值为0的二进制比特。值得注意的是,图5B是以单个阶次为前述的第一阶次为例进行说 明的,但该单个阶次也可以是前述的第二阶次(r阶次),本申请对此不予限定。
以上图5A和图5B仅为本申请提供的注册报文的可能格式,不应理解为本申请提供的注册报文仅能为前述两种格式,如在一些情形中,第一阶次和第二阶次为其他数值等。
请继续参照图4A,本实施例提供的注册方法还包括以下步骤S430。
S430,OLT根据注册报文对ONU 1进行注册。
在一种可能的示例中,该注册信息是指ONU 1的序列号(SN),则ONU 1发送的注册报文是指发现响应报文,该ONU 1处于上线阶段(或称发现阶段),OLT解析注册报文获取到ONU 1的SN后,OLT记录该ONU 1在光通信网络中登录的用户,并依据该SN为ONU 1分配ONU-ID。
在另一种可能的示例中,该注册信息是指ONU 1的注册标识符(注册ID、ONU-ID),则ONU 1发送的注册报文是指测距响应报文,该ONU 1处于测距阶段,OLT解析注册报文获取到ONU 1的ONU-ID,并依据该ONU-ID对ONU和OLT之间的逻辑距离进行测量。
在本实施例中,由于ONU 1可依据确定的阶次生成注册报文,且该注册报文包括的注册标识符由该阶次来表示,因此,若OLT既接收到业务报文、又接收到注册报文,OLT可基于该阶次提取注册报文包含的注册信息,以实现OLT依据注册报文对ONU 1的测距。示例性的,如图4B所示,该S430可包括以下步骤S430A至S430C。
S430A,OLT对业务报文进行处理。
S430B,OLT对注册报文进行处理,如对用于表征注册报文的FrFT序列进行(1-阶次)的FrFT变换等。
S430C,OLT中的MAC(如前述的OLT MAC 321)对业务报文和注册报文进行处理,获取到注册报文的特征(如ONU 1所使用的阶次)后,从而提取到注册报文所包括的注册信息。
若在注册阶段,ONU 1调低了激光器的发射功率再发出注册报文,则OLT可在不影响业务报文的情况下,解析注册报文(如前述的注册报文),OLT无需为该ONU 1的注册过程开启静默窗,避免了与OLT连接的其他网络设备的业务报文传输受到影响,降低了光通信网络的整体传输时延和时间抖动,提升了PON中的业务体验。
下面在前述图4A至图5B所示出的注册方法的基础上,本申请还提供一种可能的详细实现方式,如图6所示,图6为本申请提供的注册方法的流程示意图三,该注册方法包括两个阶段:OLT对ONU的发现阶段,OLT对ONU的测距阶段。
在发现阶段中,ONU 1需发送发现响应报文,该发现响应报文包括ONU 1的SN。
在测距阶段中,ONU 1需发送测距响应报文,该测距响应报文包括ONU 1的注册标识符。如该测距响应报文为前述实施例所示的注册报文,该注册标识符为ONU 1的ONU-ID。
下面分别对发现阶段和测距阶段进行详细说明。
其中,发现阶段包括以下步骤S610至S640。
S610,OLT向多ONU 1发送注册授权指令,该注册授权指令携带有注册配置信息。
该注册配置信息用于确定ONU 1所要使用的阶次。该注册配置信息包括:注册报文中前导的前导阶次、前导的第一序列长度以及第一重复次数、注册报文的阶次种子、FrFT序列的第二序列长度、注册信息对应的FrFT序列的第二重复次数。注册配置信息包括的各元素的在注册报文的格式所起的作用可参照前述图5A和图5B的阐述,在此不予赘述。
在本实施例中,第一网络设备根据注册配置信息,确定注册报文所要包括的信号特征(如前述的阶次),从而,第二网络设备无需开启静默窗也可从业务报文中识别到该信号特征对应的注册信息,降低了第二网络设备在注册过程中开启静默窗所带来的传输时延和时间抖动。
S620,ONU 1根据该注册配置信息调整ONU 1的工作状态。
如ONU 1将工作状态调整为:待注册上线状态。
S630,ONU 1向OLT发送发现响应报文,该发现响应报文包括ONU 1的SN信息。
ONU MAC产生完这些注册报文(如S630中的发现响应报文)后,可由SerDes接口直接驱动激光器,或经由ONU PHY芯片驱动激光器发出(注册报文是由MAC产生)。一些情形中,以图3为例进行说明,ONU MAC 311的输出幅度较大,ONU MAC 311将注册报文对应的FrFT序列所需的信息发送到ONU PHY 312,并由该ONU PHY 312生成注册报文对应的FrFT序列,以控制ONU PHY 312的输出幅度,进而使得ONU 1的激光器以较低功率发射注册报文,避免注册报文影响业务报文的传输,提高ONU 1在OLT的注册准确性。
如此,注册信息包括的二进制比特由阶次来表示,这样在OLT接收到表示注册报文的FrFT序列后,基于该FrFT序列恢复出用于指示注册信息(如SN)的阶次,从而确定注册信息的二进制比特信息,并利用该注册信息为ONU 1分配均衡时延,为ONU 1进行正常的带宽授权,完成OLT对ONU 1的注册过程。在本实施例中,OLT根据阶次指示的信号特征从业务报文中识别出注册报文,避免了OLT在注册过程中开启静默窗所带来的传输时延和时间抖动。
S640,OLT解析发现响应报文包括的ONU 1的SN信息,并为ONU 1分配ONU-ID。
如此,OLT根据该ONU-ID记录该ONU 1登录到光通信网络(PON)中的用户等信息。
示例性的,OLT收到待注册的ONU 1的注册报文(如S640中的发现响应报文)与正常业务报文时,一方面正常处理业务报文,另一方面对报文进行(1-p阶)的FrFT变换,如根据OLT能处理的阶次,分别与该报文进行(1-p阶)的FrFT变换,在该p阶的FrFT变换时产生了峰值能量,且该峰值能量超出了阈值,则确定该报文为注册报文。
进而,OLT对该p阶的FrFT序列后续的其他FrFT序列进行阶次扫描(或称:扫阶),在该其他FrFT序列具有峰值能量的情况下,确定该其他FrFT序列所采用的阶次为表征二进制比特的值的阶次,如前述的q阶、r阶。其中,扫阶的过程包括:分数傅里叶变化、阈值判断(当峰值能量大于或等于阈值,确定该阶次有效)。
最后,OLT根据扫阶确定的阶次识别出注册信息中每个二进制比特的值。举例来说,在该注册信息为SN(包括32比特)的情况下,OLT根据阶次确定32组FrFT序列对应的阶次排布,从而得到SN。
请继续参照图6,测距阶段包括以下步骤S650至S670。
S650,OLT向ONU 1发送注册授权指令,该注册授权指令携带的注册信息为S640中确定的ONU-ID。
也就是说,OLT收到SN信息后,为该SN信息的ONU分配ONU-ID,并对其进行测距请求,测距请求报文(如S650中的注册授权指令)中包含测距响应报文前导的阶次对应的FrFT序列、前导的p阶次对应的FrFT序列。
S660,ONU 1响应注册授权指令,向OLT发送测距响应报文,该测距响应报文包括ONU-ID。
该ONU 1按照上文同样的方法,根据ONU-ID(如288比特)的二进制比特信息,产生如图5A或图5B类似的报文。
S670,OLT根据接收到的测距响应报文,为ONU 1分配均衡时延,与ONU 1进行正常业务授权。
也就是说,OLT收到测距响应报文(注册报文)后按照同样的方法进行处理,获得ONU-ID,进而为ONU 1分配均衡时延,ONU进入运行状态(operate state,O5),即恢复正常工作状态。OLT与ONU 1之间建立正常的授权通信阶段。
首先,本实施例提供的注册方法应用在图3示出的ONU和OLT中,OLT和ONU都无需新增发射机、接收机和滤波片等硬件,降低了硬件成本。
其次,OLT可在既接收到业务报文、又接收到注册报文的情况下,OLT可基于该阶次提取注册报文包含的注册信息,以实现OLT依据注册报文对ONU 1的测距。若ONU 1调低了光信号的发射功率并发出注册报文,该注册报文不会影响业务报文的正常传输,因此,OLT可在不影响业务报文的情况下解析注册报文,OLT无需为该ONU 1的注册过程开启静默窗,避免了与OLT连接的其他网络设备的业务报文传输受到影响,降低了光通信网络的整体传输时延和时间抖动,提高了业务体验。
最后,本实施例提供的注册方法中,OLT在无需新增硬件的情况下,OLT也无需将接收到的注册报文和业务报文进行分光,而是通过解析注册报文的信号特征(前述的阶次),从而识别到ONU 1的注册信息,以对ONU 1进行注册,避免单独引出一路注册信号数据通道所需新增的SOA驱动模块。而且,由于本实施例提供的注册方法无需新增硬件,因此,该注册方法可应用在更多的ONU上,以实现ONU在PON中的零开窗注册,有利于提高PON中ONU和OLT之间的整体传输效率。
可选的,前述的注册报文(如S630的发现响应报文或者S660中的测距响应报文)可以是由ONU 1包括的ONU MAC或者ONU PHY芯片生成的。
例如,ONU MAC 311依据注册报文所需的信息,如前述的阶次种子、重复次数、SN或者注册标识符(ONU-ID),控制ONU中的激光器以较低的功率输出注册报文。
又如,ONU MAC将产生注册报文所需的信息,如前述的阶次种子、重复次数、SN或者注册标识符(ONU-ID)等发送到ONU PHY芯片,并由ONU PHY芯片中的处理器经过运算后产生阶次对应的FrFT序列,并通过控制ONU PHY芯片的功率输出幅度,使得ONU中的激光器以较低的功率输出注册报文。
在一种可能的实现方式中,以图3为例,在第一时隙内,OLT不仅接收到ONU 1发送的注册报文,还接收到ONU 3发送的注册报文,OLT确定该ONU 3和ONU 1所采用的阶次不用,则OLT可根据ONU 3所采用的阶次对ONU 3发送的注册报文进行解析,从而根据解析获取的注册信息对ONU 3进行测距。在一些示例中,ONU 3可称为第三网络设备,或者OLT对应的多个网络设备中除第一网络设备的其他设备等。
只要各个待注册ONU采用的阶次不同,那么即使各个待注册ONU的注册报文到达OLT处发生重叠,OLT也能通过(1-阶次)的FrFT变换相关将其区分出来。而各个待注册ONU通过注册配置信息的阶次种子x,通过随机数产生方法会产生不同的阶次,进而解决各个ONU注册信息并发的问题,也避免了OLT要开启静默窗、且在静默窗指示的同一时隙内仅能对单个ONU进行注册和测距的问题,提高了光通信网络中多个网络设备的注册和测距效率。
以上图2至图6的实施例是以光通信网络为PON为例进行说明的,但本申请提供的注册方法还可应用在其他光通信网络中,如该光通信网络为全屋光纤(Fiber to the Room,FTTR)网络,在FTTR场景中,边缘ONT(Edge ONT)的接入点(Access Point,AP)需要将空口信息及时传递到主ONT(Master ONT),主ONT根据这些空口信息,为各个边缘ONT及AP进行时隙分配和资源调度。利用本申请提供的注册方法,可以将AP的空口信息从边缘ONT传递到主ONT。和以上PON中注册方法的区别点在于,FTTR场景中,当边缘ONT上线后,主ONT可以主动为已在线的边缘ONT分配固定的阶次信息,换言之,主ONT是知道边缘ONT发射的信息采用的阶次的。对应地,相比以上实施例,空口信息的产生方式均相应保持一致,区别点在于,边缘ONT产生空口信息所需要的参数,均由主ONT确定性地分配,在处理时,也是主ONT确定性地处理。
可以理解的是,为了实现上述实施例中的功能,网络设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
上文中结合图1至图6,详细描述了根据本实施例所提供的注册方法,下面将结合图7和图8,描述根据本实施例所提供的注册装置。
图7为本申请提供的注册装置的结构示意图一,该注册装置700可用于实现上述方法实施例中第一网络设备或ONU的功能,因此也能实现上述方法实施例所具备的有益效果。在本实施例中,该注册装置700可以是如图1所示的网络设备121、或者后续附图所示的ONU等,还可以是应用于ONU的模块(如芯片)。
如图7所示,该注册装置700包括:发送模块710和接收模块720。接收模块720,用于接收第二网络设备的注册授权指令,并确定用于指示注册信息的FrFT序列的至少一个阶次。发送模块710,用于响应注册授权指令,根据至少一个阶次向第二网络设备发送注册报文。其中,注册报文用于指示第二网络设备将第一网络设备注册到光通信网络,注册报文携带有由前述至少一个阶次指示的注册信息。
有关上述发送模块710和接收模块720更详细的描述可以直接参考前述附图所示的方法实施例中ONU的相关描述直接得到,这里不加赘述。
图8为本申请提供的注册装置的结构示意图二,该注册装置800可用于实现上述方法实施例中第二网络设备或OLT的功能,因此也能实现上述方法实施例所具备的有益效果。在本实施例中,该注册装置800可以是如图1所示的网络设备121、或者后续附图所示的OLT等,还可以是应用于OLT的模块(如芯片)。
如图8所示,该注册装置800包括:发送模块810,接收模块820、解析模块830和注册模块840。发送模块810,用于向多个网络设备发送注册授权指令。接收模块820,用于接收第一网络设备发送的注册报文,第一网络设备为多个网络设备中任一个。解析模块830,用于对注册报文对应的FrFT序列进行解析,确定第一网络设备对应的至少一个阶次,至少一个阶次用于指示注册报文携带的注册信息。注册模块840,用于根据注册信息对第一网络设备进行注册。
可选的,接收模块820,还用于:接收第三网络设备发送的其他注册报文,第三网络设 备为多个网络设备中与第一网络设备不同的其他设备。解析模块830,还用于:对其他注册报文对应的FrFT序列进行解析,确定第三网络设备对应的其他阶次,其他阶次用于指示其他注册报文携带的注册信息。注册模块840,还用于:根据其他注册报文携带的注册信息对第三网络设备进行注册。
有关上述发送模块810,接收模块820、解析模块830和注册模块840更详细的描述可以直接参考前述附图所示的方法实施例中OLT的相关描述直接得到,这里不加赘述。
注册装置通过软件实现前述附图中任一所示的注册方法时,注册装置及其各个单元也可以为软件模块。通过处理器调用该软件模块实现上述的注册方法。该处理器可以是中央处理单元(central processing unit,CPU),特定应用集成电路(application-specific integrated circuit,ASIC)实现,或可编程逻辑器件(programmable logic device,PLD),上述PLD可以是复杂程序逻辑器件(complex programmable logical device,CPLD)、现场可编程门阵列(field programmable gate array,FPGA)、通用阵列逻辑(generic array logic,GAL)或其任意组合。
有关上述注册装置更详细的描述可以参考前述附图所示的实施例中相关描述,这里不加赘述。可以理解的,前述附图所示出的注册装置仅为本实施例提供的示例,根据测距过程或者业务的不同注册装置可包括更多或更少的单元,本申请对此不予限定。
当注册装置通过硬件实现时,该硬件可以通过处理器或芯片实现。芯片包括接口电路和控制电路。接口电路用于接收来自处理器之外的其它设备的数据并传输至控制电路,或将来自控制电路的数据发送给处理器之外的其它设备。
控制电路和接口电路通过逻辑电路或执行代码指令用于实现上述实施例中任一种可能实现方式的方法。有益效果可以参见上述实施例中任一方面的描述,此处不再赘述。
可以理解的是,本申请的实施例中的处理器可以是CPU、神经处理器(neural processing unit,NPU)或图形处理器(graphic processing unit,GPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、ASIC、FPGA或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
另外,图7所示出的注册装置700和图8所示出的注册装置800也可以通过通信设备来实现,如图9所示,图9为本申请提供的通信设备的结构示意图,该通信设备900包括:存储器910和至少一个处理器920,该处理器920可以实现上述实施例提供的注册方法,该存储器910用于存储上述注册方法对应的软件指令。作为一种可选的实现方式,在硬件实现上,通信设备900可以是指封装有一个或多个处理器920的芯片或芯片系统。示例的,当通信设备900用于实现上述实施例中方法步骤时,通信设备900包括的处理器920执行上述方法的步骤及其可能的子步骤。在一种可选的情形中,通信设备900还可以包括通信接口930,该通信接口930可以用于收发数据。例如,通信接口930用于接收注册报文、或者发送注册报文等;该通信接口930可通过通信设备900包括的接口电路来实现。
本申请的实施例中,通信接口930、处理器920以及存储器910之间可通过总线940连接,所述总线940可以分为地址总线、数据总线、控制总线等。总线940可以是快捷外围部件互连标准(Peripheral Component Interconnect Express,PCIe)总线,或扩展工业标准结构(extended industry standard architecture,EISA)总线、统一总线(unified bus,Ubus或UB)、计算机快速链接(compute express link,CXL)、缓存一致互联协议(cache coherent interconnect  for accelerators,CCIX)等。
值得注意的是,通信设备900还可以执行图7所示出的注册装置700或者图8所示出的注册装置800的功能,此处不予赘述。
本实施例提供的通信设备900可以是OLT、ONU,或者具有数据处理功能的其他通信设备,本申请对此不予限定。例如,该通信设备900可以是前述网络设备中任一个,如ONU 310和OLT 320等。
本申请的实施例中的方法步骤也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (28)

  1. 一种光通信网络中的注册方法,其特征在于,所述方法包括:
    第一网络设备接收第二网络设备的注册授权指令,并确定用于指示注册信息的分数傅里叶变换FrFT序列所对应的至少一个阶次;
    所述第一网络设备响应所述注册授权指令,根据所述至少一个阶次向所述第二网络设备发送注册报文;其中,所述注册报文用于指示所述第二网络设备将所述第一网络设备注册到所述光通信网络,所述注册报文携带有由所述至少一个阶次指示的注册信息。
  2. 根据权利要求1所述的方法,其特征在于,所述注册信息包括:所述第一网络设备的序列号,或者,所述第一网络设备的注册标识符。
  3. 根据权利要求1或2所述的方法,其特征在于,所述注册授权指令携带有注册配置信息,所述注册配置信息用于确定所述至少一个阶次;
    所述注册配置信息包括:所述注册报文中前导的前导阶次、所述前导的第一序列长度以及第一重复次数、所述注册报文的阶次种子、所述FrFT序列的第二序列长度、所述注册信息对应的FrFT序列的第二重复次数。
  4. 根据权利要求3所述的方法,其特征在于,所述前导由采用所述前导阶次的FrFT序列表示,所述前导中所述前导阶次对应的FrFT序列的长度为所述第一序列长度,所述第一序列长度的FrFT序列的重复次数为所述第一重复次数;
    所述注册信息由所述阶次种子确定的所述至少一个阶次来表示,所述注册信息中每个二进制比特采用的所述至少一个阶次对应的FrFT序列的长度为所述第二序列长度,所述第二序列长度的FrFT序列的重复次数为所述第二重复次数。
  5. 根据权利要求4所述的方法,其特征在于,所述至少一个阶次包括:第一阶次和第二阶次,所述第一阶次用于指示所述注册信息中值为0的二进制比特,所述第二阶次用于指示所述注册信息中值为1的二进制比特。
  6. 根据权利要求4所述的方法,其特征在于,所述至少一个阶次包括:第一阶次,所述注册信息中值为0的二进制比特由所述第一阶次和比特0的第一调制信息来确定,所述注册信息中值为1的二进制比特由所述第一阶次和比特1的第二调制信息来确定。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述注册报文是由所述第一网络设备包括的媒体控制层电芯片或者物理层电芯片生成的。
  8. 一种光通信网络中的注册方法,其特征在于,所述方法包括:
    第二网络设备向多个网络设备发送注册授权指令;
    所述第二网络设备接收第一网络设备发送的注册报文,所述第一网络设备为所述多个网络设备中任一个;
    所述第二网络设备对所述注册报文对应的分数傅里叶变换FrFT序列进行解析,确定所述第一网络设备对应的至少一个阶次,所述至少一个阶次用于指示所述注册报文携带的注册信息;
    所述第二网络设备根据所述注册信息对所述第一网络设备进行注册。
  9. 根据权利要求8所述的方法,其特征在于,所述注册信息包括:所述第一网络设备的序列号,或者,所述第一网络设备的注册标识符。
  10. 根据权利要求8或9所述的方法,其特征在于,所述注册授权指令携带有注册配置信息,所述注册配置信息用于确定所述至少一个阶次;
    所述注册配置信息包括:所述注册报文中前导的前导阶次、所述前导的第一序列长度以及第一重复次数、所述注册报文的阶次种子、所述FrFT序列的第二序列长度、所述注册信息对应的FrFT序列的第二重复次数。
  11. 根据权利要求10所述的方法,其特征在于,所述前导由采用所述前导阶次的FrFT序列表示,所述前导中所述前导阶次对应的FrFT序列的长度为所述第一序列长度,所述第一序列长度的FrFT序列的重复次数为所述第一重复次数;
    所述注册信息由所述阶次种子确定的所述至少一个阶次来表示,所述注册信息中每个二进制比特采用的所述至少一个阶次对应的FrFT序列的长度为所述第二序列长度,所述第二序列长度的FrFT序列的重复次数为所述第二重复次数。
  12. 根据权利要求11所述的方法,其特征在于,所述至少一个阶次包括:第一阶次和第二阶次,所述第一阶次用于指示所述注册信息中值为0的二进制比特,所述第二阶次用于指示所述注册信息中值为1的二进制比特。
  13. 根据权利要求11所述的方法,其特征在于,所述至少一个阶次包括:第一阶次,所述注册信息中值为0的二进制比特由所述第一阶次和比特0的第一调制信息来确定,所述注册信息中值为1的二进制比特由所述第一阶次和比特1的第二调制信息来确定。
  14. 根据权利要求8-13中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备接收第三网络设备发送的其他注册报文,所述第三网络设备为所述多个网络设备中与所述第一网络设备不同的其他设备;
    所述第二网络设备对所述其他注册报文对应的FrFT序列进行解析,确定所述第三网络设备对应的其他阶次,所述其他阶次用于指示所述其他注册报文携带的注册信息;
    所述第二网络设备根据所述其他注册报文携带的注册信息对所述第三网络设备进行注册。
  15. 一种光通信网络中的注册装置,其特征在于,所述装置包括:
    第一网络设备接收第二网络设备的注册授权指令,并确定用于指示注册信息的分数傅里叶变换FrFT序列所对应的至少一个阶次;
    所述第一网络设备响应所述注册授权指令,根据所述至少一个阶次向所述第二网络设备发送注册报文;其中,所述注册报文用于指示所述第二网络设备将所述第一网络设备注册到所述光通信网络,所述注册报文携带有由所述至少一个阶次指示的注册信息。
  16. 根据权利要求15所述的装置,其特征在于,所述注册信息包括:所述第一网络设备的序列号,或者,所述第一网络设备的注册标识符。
  17. 根据权利要求15或16所述的装置,其特征在于,所述注册授权指令携带有注册配置信息,所述注册配置信息用于确定所述至少一个阶次;
    所述注册配置信息包括:所述注册报文中前导的前导阶次、所述前导的第一序列长度以及第一重复次数、所述注册报文的阶次种子、所述FrFT序列的第二序列长度、所述注册信息对应的FrFT序列的第二重复次数。
  18. 根据权利要求17所述的装置,其特征在于,所述前导由采用所述前导阶次的FrFT序列表示,所述前导中所述前导阶次对应的FrFT序列的长度为所述第一序列长度,所述第一序列长度的FrFT序列的重复次数为所述第一重复次数;
    所述注册信息由所述阶次种子确定的所述至少一个阶次来表示,所述注册信息中每个二进制比特采用的所述至少一个阶次对应的FrFT序列的长度为所述第二序列长度,所述第二序列长度的FrFT序列的重复次数为所述第二重复次数。
  19. 根据权利要求18所述的装置,其特征在于,所述至少一个阶次包括:第一阶次和第二阶次,所述第一阶次用于指示所述注册信息中值为0的二进制比特,所述第二阶次用于指示所述注册信息中值为1的二进制比特。
  20. 根据权利要求18所述的装置,其特征在于,所述至少一个阶次包括:第一阶次,所述注册信息中值为0的二进制比特由所述第一阶次和比特0的第一调制信息来确定,所述注册信息中值为1的二进制比特由所述第一阶次和比特1的第二调制信息来确定。
  21. 根据权利要求15-20中任一项所述的装置,其特征在于,所述注册报文是由所述第一网络设备包括的媒体控制层电芯片或者物理层电芯片生成的。
  22. 一种光通信网络中的注册装置,其特征在于,所述装置应用于第二网络设备,所述装置包括:
    发送模块,用于向多个网络设备发送注册授权指令;
    接收模块,用于接收第一网络设备发送的注册报文,所述第一网络设备为所述多个网络设备中任一个;
    解析模块,用于对所述注册报文对应的分数傅里叶变换FrFT序列进行解析,确定所述第一网络设备对应的至少一个阶次,所述至少一个阶次用于指示所述注册报文携带的注册信息;
    注册模块,用于根据所述注册信息对所述第一网络设备进行注册。
  23. 根据权利要求22所述的装置,其特征在于,所述接收模块,还用于:接收第三网络设备发送的其他注册报文,所述第三网络设备为所述多个网络设备中与所述第一网络设备不同的其他设备;
    所述解析模块,还用于:对所述其他注册报文对应的FrFT序列进行解析,确定所述第三网络设备对应的其他阶次,所述其他阶次用于指示所述其他注册报文携带的注册信息;
    所述注册模块,还用于:根据所述其他注册报文携带的注册信息对所述第三网络设备进行注册。
  24. 一种注册系统,其特征在于,包括:第一网络设备和第二网络设备;
    所述第一网络设备接收所述第二网络设备发送的注册授权指令,并确定用于指示注册信息的分数傅里叶变换FrFT序列所对应的至少一个阶次;
    所述第一网络设备响应所述注册授权指令,根据所述至少一个阶次向所述第二网络设备发送注册报文;其中,所述注册报文用于指示所述第二网络设备将所述第一网络设备注册到所述光通信网络,所述注册报文携带有由所述至少一个阶次指示的注册信息;
    所述第二网络设备根据所述至少一个阶次解析所述注册报文包括的FrFT序列,获取所述第一网络设备的注册信息,并根据所述注册信息所述第一网络设备进行注册。
  25. 一种通信设备,其特征在于,包括处理器和接口电路;
    所述接口电路用于接收来自所述通信设备之外的其它通信设备的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信设备之外的其它通信设备;
    所述处理器和所述接口电路通过逻辑电路或执行代码指令用于实现权利要求1至7中任一项所述的方法,或者,权利要求8至14中任一项所述的方法。
  26. 一种芯片,其特征在于,包括:控制电路和接口电路;
    所述接口电路用于接收来自所述芯片之外的其它芯片的信号并传输至所述控制电路或将来自所述控制电路的信号发送给所述芯片之外的其它芯片;
    所述控制电路和所述接口电路通过逻辑电路或执行代码指令用于实现权利要求1至7中任一项所述的方法,或者,权利要求8至14中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信设备执行时,实现权利要求1至7中任一项所述的方法,或者,权利要求8至14中任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1至7中任一项所述的方法,或者,权利要求8至14中任一项所述的方法。
PCT/CN2023/105207 2022-10-14 2023-06-30 光通信网络中的注册方法、装置、通信设备以及系统 WO2024078057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211260435.0 2022-10-14
CN202211260435.0A CN117896641A (zh) 2022-10-14 2022-10-14 光通信网络中的注册方法、装置、通信设备以及系统

Publications (1)

Publication Number Publication Date
WO2024078057A1 true WO2024078057A1 (zh) 2024-04-18

Family

ID=90638296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105207 WO2024078057A1 (zh) 2022-10-14 2023-06-30 光通信网络中的注册方法、装置、通信设备以及系统

Country Status (2)

Country Link
CN (1) CN117896641A (zh)
WO (1) WO2024078057A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340476A (zh) * 2011-07-14 2012-02-01 哈尔滨工业大学 基于加权分数傅里叶变换扩展的ofdm通信系统
US20170237489A1 (en) * 2014-10-28 2017-08-17 Huawei Technologies Co., Ltd. Registration Method, Device and System
CN110944248A (zh) * 2018-09-25 2020-03-31 中兴通讯股份有限公司 光网络的注册方法、olt、oun、光网络系统
CN112995802A (zh) * 2019-12-12 2021-06-18 华为技术有限公司 一种光发射机、光网络单元及光发射方法
CN114666684A (zh) * 2020-12-23 2022-06-24 中国移动通信有限公司研究院 光网络单元上线注册方法、光网络单元和光线路终端
CN114727174A (zh) * 2021-01-05 2022-07-08 中国移动通信有限公司研究院 一种光网络单元注册上线方法、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340476A (zh) * 2011-07-14 2012-02-01 哈尔滨工业大学 基于加权分数傅里叶变换扩展的ofdm通信系统
US20170237489A1 (en) * 2014-10-28 2017-08-17 Huawei Technologies Co., Ltd. Registration Method, Device and System
CN110944248A (zh) * 2018-09-25 2020-03-31 中兴通讯股份有限公司 光网络的注册方法、olt、oun、光网络系统
CN112995802A (zh) * 2019-12-12 2021-06-18 华为技术有限公司 一种光发射机、光网络单元及光发射方法
CN114666684A (zh) * 2020-12-23 2022-06-24 中国移动通信有限公司研究院 光网络单元上线注册方法、光网络单元和光线路终端
CN114727174A (zh) * 2021-01-05 2022-07-08 中国移动通信有限公司研究院 一种光网络单元注册上线方法、设备及存储介质

Also Published As

Publication number Publication date
CN117896641A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
US9967186B2 (en) Selective deep packet inspection
US7428586B2 (en) System and method for discovering undiscovered nodes using a registry bit in a point-to-multipoint network
TW201145853A (en) Methods and apparatus for extending MAC control messages in EPON
WO2009135825A1 (en) Two and three-stroke discovery process for 10g-epons
WO2015135425A1 (zh) 一种消息处理方法、接入控制器及网络节点
JP2004112803A (ja) イーサネット(登録商標)受動型光加入者ネットワークにおけるoam機能ディスカバリー方法
US9900100B2 (en) Optical line terminal, communication control method, and communication control program
CN102594802B (zh) 低延迟联网的方法及系统
CN108696601A (zh) 检测计算机网络中的硬件地址冲突
WO2021098425A1 (zh) 配置业务的服务质量策略方法、装置和计算设备
WO2024078057A1 (zh) 光通信网络中的注册方法、装置、通信设备以及系统
WO2023173876A1 (zh) 数据通信方法、装置、设备和介质
US7783784B1 (en) Method and apparatus for adaptive selection of algorithms to load and spread traffic on an aggregation of network interface cards
US11425475B2 (en) Ranging method and registration method for optical network, OLT, ONU, and optical network system
CN109981462B (zh) 一种报文处理方法及装置
CN112351355B (zh) 一种基于gRPC的ONU通道的管理方法和系统
CN114024917B (zh) 互联网业务带宽保障的方法、装置、设备及存储介质
US11967985B2 (en) Optical communication device and communication system
KR20040027886A (ko) 다운스트림 모뎀을 탐지하고 폴링하는 방법
WO2023226809A1 (zh) 光通信网络中的测距方法及装置
WO2023005378A1 (zh) 一种级联ont的处理方法、装置和系统
WO2023201912A1 (zh) 设备的注册方法及装置
WO2024087728A1 (zh) 光通信网络中的载波分配方法及装置
CN117896640A (zh) 光通信网络中的注册方法、装置、通信设备以及系统
CN114070893B (zh) 数据报文的传输方法、装置和核心网设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876266

Country of ref document: EP

Kind code of ref document: A1