WO2024077986A1 - 一种控制系统、传感器、控制器及终端设备 - Google Patents

一种控制系统、传感器、控制器及终端设备 Download PDF

Info

Publication number
WO2024077986A1
WO2024077986A1 PCT/CN2023/099668 CN2023099668W WO2024077986A1 WO 2024077986 A1 WO2024077986 A1 WO 2024077986A1 CN 2023099668 W CN2023099668 W CN 2023099668W WO 2024077986 A1 WO2024077986 A1 WO 2024077986A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
controller
power supply
sensor
switch
Prior art date
Application number
PCT/CN2023/099668
Other languages
English (en)
French (fr)
Inventor
李增山
骆鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024077986A1 publication Critical patent/WO2024077986A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used

Definitions

  • the present application relates to the field of control technology, and in particular to a control system, a sensor, a controller and a terminal device.
  • the accelerator pedal is directly related to the safety of the driver and passengers and is a key safety component. Therefore, high reliability control of the accelerator pedal is becoming increasingly important.
  • the system for controlling the accelerator pedal (which can be called an acceleration control system) is shown in FIG1.
  • the accelerator pedal position sensor can detect the opening information of the accelerator pedal (the opening information can also represent the angle information or position information of the pedal being stepped on), and convert the opening information of the accelerator pedal into an electrical signal, which is transmitted to the controller through a cable, etc.
  • the controller processes the received electrical signal and the signal transmitted by other related systems to obtain a control signal, and then sends the control signal to the actuator to control the actuator to perform corresponding processing.
  • the acceleration control system cannot output an accurate control signal, or the controller cannot control the drive motor, thereby causing a greater safety hazard to the vehicle's driving.
  • the present application provides a control system, a sensor, a controller and a terminal device for improving the reliability of the control system.
  • the present application provides a control system, the control system includes a first controller and a second controller, the first controller is connected to a sensor, the second controller is connected to a sensor, the sensor includes a first sensor module and a second sensor module, the second controller includes a sampling circuit (e.g., a multi-connection differential sampling circuit), the sampling circuit includes a first channel and a second channel, the first channel is connected to the first sensor module, and the second channel is connected to the second sensor module.
  • the second controller is used to obtain a first signal detected by the first sensor module through the first channel, obtain a second signal detected by the second sensor module through the second channel, and determine the second opening information of the pedal according to the first signal and the second signal.
  • the second controller can take over the first controller and continue to work, which can avoid single point failure, thereby helping to improve the reliability of the control system. Moreover, through the first channel and the second channel included in the second controller, single point failure can be avoided, and the accuracy of the opening information (such as the second opening information) obtained from the sensor can be improved.
  • the second controller is further configured to send a second control signal to the actuator, wherein the second control signal is obtained according to the second opening degree information.
  • the second controller sends a second control signal to the actuator, and the actuator can be controlled by the second controller. For example, if the first controller fails, the second controller can take over control, thereby helping to improve the reliability of the control system.
  • the first controller is used to obtain a first signal detected by a first sensor module and a second signal detected by a second sensor module, determine first opening information of the pedal based on the first signal and the second signal, and send a first control signal to the actuator, where the first control signal is obtained based on the first opening information.
  • the actuator can also be controlled by the first opening information of the pedal determined by the first controller.
  • the first channel includes a first analog to digital converter (ADC), and the second channel includes a second ADC.
  • ADC analog to digital converter
  • the first ADC includes a positive input terminal and a negative input terminal
  • the second ADC includes a positive input terminal and a negative input terminal
  • the positive input terminal of the first ADC is connected to the first signal output terminal of the first sensor module
  • the negative input terminal of the first ADC is connected to the first ground terminal of the first sensor module
  • the positive input terminal of the second ADC is connected to the second signal output terminal of the second sensor module
  • the negative input terminal of the second ADC is connected to the second ground terminal of the second sensor module.
  • the second controller further includes a first follower and a second follower.
  • the first ADC is connected to the first sensor module via the first follower
  • the second ADC is connected to the second sensor module via the second follower.
  • the voltage follower Since the voltage follower has the characteristics of high input impedance (such as several megohms) and low output impedance (such as several ohms), it can buffer and isolate the sensor, thereby helping to improve the sensor's load-carrying capacity, and further helping to improve the accuracy of the second opening information obtained by the second controller from the sensor.
  • the first controller includes a first power supply
  • the second controller includes a second power supply
  • the first power supply is used to supply power to the first follower and the second follower
  • the second power supply is used to supply power to the first follower and the second follower
  • the first controller includes a first power supply
  • the second controller includes a second power supply and a power supply detection module
  • the power supply detection module is used to detect a failure of the first power supply and switch the second power supply to power the first follower and the second follower.
  • the second power supply of the second controller can continue to supply power to the first follower and the second follower, so that the first follower and the second follower can work.
  • control system further includes a first combining module and a second combining module, the first controller includes a first power supply, and the second controller includes a second power supply.
  • the first combining module is used to control the first power supply or the second power supply to supply power to the first sensor module; the second combining module is used to control the first power supply or the second power supply to supply power to the second sensor module.
  • the first combining module can be used to provide redundant power to the first sensor module, and the second combining module can be used to provide redundant power to the second sensor module. If the first controller fails or the second controller is abnormal, the control system can also provide power to the sensor, thereby further improving the reliability of the control system.
  • the first combining module includes a first switch and a second switch, the first end of the first switch is connected to the first power supply, the second end of the first switch is connected to the power supply end of the first sensor module, the first end of the second switch is connected to the second power supply, and the second end of the second switch is connected to the power supply end of the first sensor module; and/or, the second combining module includes a third switch and a fourth switch, the first end of the third switch is connected to the first power supply, the second end of the third switch is connected to the power supply end of the second sensor module, the first end of the fourth switch is connected to the second power supply, and the second end of the fourth switch is connected to the power supply end of the second sensor module.
  • the first switch includes, for example, a first diode or a first chip; and/or the second switch includes, for example, a first diode or a first chip; The switch includes, for example, a second diode or a second chip.
  • the first chip has anti-reverse and circuit combining functions, and can provide two power supplies for the first sensor module.
  • the second chip also has anti-reverse and circuit combining functions, and can provide two power supplies for the second sensor module.
  • the first combining module, the second combining module and the second controller are integrated on the same printed circuit board; or, at least two of the first combining module, the second combining module and the second controller are integrated on different printed circuit boards; or, the first combining module, the second combining module and the first controller are integrated on the same printed circuit board; or, at least two of the first combining module, the second combining module and the first controller are integrated on different printed circuit boards.
  • the present application provides a controller, which includes a sampling circuit, the sampling circuit includes a first channel and a second channel, the first channel is connected to a first sensing module of the sensor, and the second channel is connected to a second sensing module of the sensor; the controller is used to obtain a first signal detected by the first sensing module through the first channel, and obtain a second signal detected by the second sensing module through the second channel, and determine the second opening information of the pedal detected by the sensor based on the first signal and the second signal.
  • the controller is further configured to send a second control signal to the actuator, where the second control signal is obtained according to the second opening degree information.
  • the first channel includes a first ADC
  • the second channel includes a second ADC
  • the first ADC includes a positive input terminal and a negative input terminal
  • the second ADC includes a positive input terminal and a negative input terminal
  • the positive input terminal of the first ADC is connected to the first signal output terminal of the first sensor module
  • the negative input terminal of the first ADC is connected to the first ground terminal of the first sensor module
  • the positive input terminal of the second ADC is connected to the second signal output terminal of the second sensor module
  • the negative input terminal of the second ADC is connected to the second ground terminal of the second sensor module.
  • the controller further includes a first follower and a second follower.
  • the first ADC is connected to the first sensor module via the first follower; and the second ADC is connected to the second sensor module via the second follower.
  • the present application provides a control system, which includes a third controller and a fourth controller, the third controller is connected to a sensor, the fourth controller is connected to the sensor, and the third controller, the fourth controller and the sensor are connected to ground.
  • the ground bias can be eliminated while being compatible with the structure of the existing controller, thereby improving the accuracy and reliability of the control system.
  • the third controller, the fourth controller and the sensor together and then grounding it helps to improve the flexibility of the layout of the vehicle components.
  • control system also includes a first combining module and a second combining module
  • the third controller includes a third power supply
  • the fourth controller includes a fourth power supply
  • the sensor includes a first sensing module and a second sensing module
  • the first combining module is used to control the third power supply or the fourth power supply to power the first sensing module
  • the second combining module is used to control the third power supply or the fourth power supply to power the second sensing module.
  • the first combining module includes a first switch and a second switch, the first end of the first switch is connected to the third power supply, the second end of the first switch is connected to the power supply terminal of the first sensor module, the first end of the second switch is connected to the fourth power supply, and the second end of the second switch is connected to the power supply terminal of the first sensor module; and/or, the second combining module includes a third switch and a fourth switch, the first end of the third switch is connected to the third power supply, the second end of the third switch is connected to the power supply terminal of the second sensor module, the first end of the fourth switch is connected to the fourth power supply, and the second end of the fourth switch is connected to the power supply terminal of the second sensor module.
  • the first switch includes a first diode or a first chip; and/or the second switch includes a second diode or a second chip.
  • the first chip has anti-reverse and circuit combining functions, and can provide two power supplies for the first sensor module.
  • the second chip also has anti-reverse and circuit combining functions, and can provide two power supplies for the second sensor module.
  • the first combining module, the second combining module and the third controller are integrated on the same printed circuit board; or, at least two of the first combining module, the second combining module and the third controller are integrated on different printed circuit boards; or, the first combining module, the second combining module and the fourth controller are integrated on the same printed circuit board; or, at least two of the first combining module, the second combining module and the fourth controller are integrated on different printed circuit boards.
  • the present application provides a sensor, which includes a first sensing module, a second sensing module and a processing module, wherein the first end of the processing module is connected to the first sensing module, the second end of the processing module is connected to the second sensing module, the third end and the fourth end of the processing module are connected to a third controller, and the first sensing module and the second sensing module are grounded; the processing module is used to process a first signal detected by the first sensing module into a first digital signal or a first input/output (I/O) bus signal, and send the first digital signal or the first I/O bus signal to the third controller through the third end of the processing module; and process a second signal detected by the second sensing module into a second digital signal or a second I/O bus signal, and send the second digital signal or the second I/O bus signal to the third controller through the fourth end of the processing module.
  • I/O input/output
  • the processing module can process the first signal detected by the first sensing module and can process the second signal detected by the second sensing module, thereby enhancing the anti-interference performance of the signal output by the sensor. Moreover, the processing module facilitates the connection of the sensor with different controllers, which helps to reduce the number of cables between the sensor and the controller.
  • the processing module includes a third ADC or a fifth MCU.
  • the third end and the fourth end of the processing module are further connected to a fourth controller.
  • the processing module By connecting the processing module to the third controller and the fourth controller respectively, the reliability of the signal transmitted to the control system can be improved.
  • the first sensor module is connected to the first switch and the second switch of the first combining module
  • the second sensor module is connected to the third switch and the fourth switch of the second combining module.
  • the first combining module can be used to provide redundant power to the first sensor module, and the second combining module can be used to provide redundant power to the second sensor module. If the first controller fails or the second controller is abnormal, the control system can also provide power to the sensor, thereby further improving the reliability of the control system.
  • the senor also includes a first combining module and/or a second combining module, the first combining module is used to control the third power supply of the third controller or the fourth power supply of the fourth controller to power the first sensing module; the second combining module is used to control the third power supply or the fourth power supply to power the second sensing module.
  • the first combining module includes a first switch and a second switch, the first end of the first switch is connected to the third power supply, the second end of the first switch is connected to the power supply terminal of the first sensor module, the first end of the second switch is connected to the fourth power supply, and the second end of the second switch is connected to the power supply terminal of the first sensor module; and/or, the second combining module includes a third switch and a fourth switch, the first end of the third switch is connected to the third power supply, the second end of the third switch is connected to the power supply terminal of the second sensor module, the first end of the fourth switch is connected to the fourth power supply, and the second end of the fourth switch is connected to the power supply terminal of the second sensor module.
  • the first switch includes a first diode or a first chip; and/or the second switch includes a second diode or a second chip.
  • the first chip has anti-reverse and circuit combining functions, and can provide two power supplies for the first sensor module.
  • the second chip also has anti-reverse and circuit combining functions, and can provide two power supplies for the second sensor module.
  • the present application provides a sensor, which includes a first sensor module, a second sensor module, a first combining module, and a second combining module.
  • the first combining module is connected to the first sensor module
  • the second combining module is connected to the second sensor module
  • the first combining module is also connected to the first controller and the second controller
  • the second combining module is also connected to the first controller and the second controller
  • the first combining module is used to control the first power supply of the first controller or the second power supply of the second controller to supply power to the first sensor module
  • the second combining module is used to control the first power supply or the second power supply to supply power to the second sensor module
  • the first combining module is also connected to the third controller and the fourth controller
  • the second combining module is also connected to the third controller and the fourth controller
  • the first combining module is used to control the third power supply of the third controller or the fourth power supply of the fourth controller to supply power to the first sensor module
  • the second combining module is used to control the third power supply or the
  • the first combining module can be used to provide redundant power to the first sensor module, and the second combining module can be used to provide redundant power to the second sensor module. If the first controller fails or the second controller is abnormal, the control system can also provide power to the sensor, thereby ensuring the reliability of power supply to the sensor.
  • the first combining module includes a first switch and a second switch, the first end of the first switch is connected to the first power supply, the second end of the first switch is connected to the power supply terminal of the first sensor module, the first end of the second switch is connected to the second power supply, and the second end of the second switch is connected to the power supply terminal of the first sensor module; and/or, the second combining module includes a third switch and a fourth switch, the first end of the third switch is connected to the first power supply, the second end of the third switch is connected to the power supply terminal of the second sensor module, the first end of the fourth switch is connected to the second power supply, and the second end of the fourth switch is connected to the power supply terminal of the second sensor module.
  • the first switch includes a first diode or a first chip; and/or the second switch includes a second diode or a second chip.
  • the first chip has anti-reverse and circuit combining functions, and can provide two power supplies for the first sensor module.
  • the second chip also has anti-reverse and circuit combining functions, and can provide two power supplies for the second sensor module.
  • the present application provides a control system, comprising a third controller, which is connected to the third end and the fourth end of the processing module of the sensor; the third controller is used to receive a first digital signal from the third end of the processing module, and a second digital signal from the fourth end of the processing module, and send a second control signal to the actuator, the second control signal is determined based on the first digital signal and the second digital signal; or, the third controller is used to receive a first I/O bus signal from the third end of the processing module, and a second I/O bus signal from the fourth end of the processing module, and send a third control signal to the actuator, the third control signal is determined based on the first I/O bus signal and the second I/O bus signal.
  • the control system further includes a fourth controller, which is connected to the third terminal and the fourth terminal of the processing module; if the third controller fails, the fourth controller is used to receive a first digital signal from the third terminal of the processing module, and a second digital signal from the fourth terminal of the processing module, and send a third control signal to the actuator, where the third control signal is determined based on the first digital signal and the second digital signal; or, the fourth controller is used to receive a first I/O bus signal from the third terminal of the processing module, and a second I/O bus signal from the fourth terminal of the processing module, and send a third control signal to the actuator, where the third control signal is determined based on the first I/O bus signal and the second I/O bus signal. Bus signal determined.
  • the present application provides a control system, which includes a first combining module and a second combining module, the first combining module is connected to the first sensing module of the sensor, and the second combining module is connected to the second sensing module of the sensor; the first combining module is also connected to the first controller and the second controller, and the second combining module is also connected to the first controller and the second controller, the first combining module is used to control the first power supply of the first controller or the second power supply of the second controller to power the first sensing module, and the second combining module is used to control the first power supply or the second power supply to power the second sensing module; or, the first combining module is also connected to the third controller and the fourth controller, the second combining module is also connected to the third controller and the fourth controller, the first combining module is used to control the third power supply of the third controller or the fourth power supply of the fourth controller to power the first sensing module, and the second combining module is used to control the third power supply or the fourth power supply to power the second sensing module;
  • redundant power supply for the first sensor module can be achieved through the first combining module, and redundant power supply for the second sensor module can be achieved through the second combining module. If the first controller fails or the second controller is abnormal, the control system can also power the sensor, thereby further improving the reliability of the control system.
  • the first combining module includes a first switch and a second switch, the first end of the first switch is connected to the first power supply, the second end of the first switch is connected to the power supply terminal of the first sensor module, the first end of the second switch is connected to the second power supply, and the second end of the second switch is connected to the power supply terminal of the first sensor module; and/or, the second combining module includes a third switch and a fourth switch, the first end of the third switch is connected to the first power supply, the second end of the third switch is connected to the power supply terminal of the second sensor module, the first end of the fourth switch is connected to the second power supply, and the second end of the fourth switch is connected to the power supply terminal of the second sensor module.
  • the first switch includes a first diode or a first chip; and/or the second switch includes a second diode or a second chip.
  • the first chip has anti-reverse and circuit combining functions, and can provide two power supplies for the first sensor module.
  • the second chip also has anti-reverse and circuit combining functions, and can provide two power supplies for the second sensor module.
  • the present application provides a sensing system, which includes a first sensor and a second sensor, the first sensor includes a first sensing module and a second sensing module, the second sensor includes a third sensing module and a fourth sensing module, the first sensing module and the second sensing module are both connected to a third controller, and the third sensing module and the fourth sensing module are both connected to a fourth controller;
  • the first sensing module is used to detect a pedal, obtain a first signal, and send a first signal to the third controller;
  • the second sensing module is used to detect a pedal, obtain a second signal, and send a second signal to the third controller;
  • the third sensing module is used to detect a pedal, obtain a third signal, and send a third signal to the fourth controller;
  • the fourth sensing module is used to detect a pedal, obtain a fourth signal, and send a fourth signal to the fourth controller.
  • two sets of independent sensors are integrated inside the sensing system, which can be independently connected to different controllers, that is, the first sensor is connected to the first controller, and the second sensor is connected to the second controller.
  • the double connection of the first controller (traditional vehicle control component) and the second controller (controller for high-level autonomous driving) forms a redundant mechanism, so that when the first controller is abnormal, the second controller can still have the control function (such as controlling acceleration).
  • the control system can integrate the human frame function with functional modules such as braking, and the sampling is not affected by ground deviation, and the layout of vehicle components is more flexible.
  • a control system includes a third controller and a fourth controller, wherein the third controller is connected to a first sensor module and a second sensor module of a first sensor, and the fourth controller is connected to a third sensor module and a fourth sensor module of a second sensor; the third controller is used to receive a first signal from the first sensor module and a second signal from the second sensor module, and send a third control signal to the actuator, wherein the third control signal is generated according to the first signal. or, a fourth controller is used to receive a third signal from the third sensing module and a fourth signal from the fourth sensing module, and send a fourth control signal to the actuator, wherein the fourth control signal is generated based on the third signal and the fourth signal.
  • the third controller includes a third power supply and a fifth power supply
  • the fourth controller includes a fourth power supply and a sixth power supply
  • the third power supply is used to power the first sensor module
  • the fifth power supply is used to power the second sensor module
  • the fourth power supply is used to power the third sensor module
  • the sixth power supply is used to power the fourth sensor module.
  • the present application provides a terminal device, which includes a frame and the control system of the first aspect or any one of the first aspects, or the third aspect or any one of the third aspects, or the sixth aspect or any one of the sixth aspects, or the seventh aspect or any one of the seventh aspects, and the control system is fixed to the frame.
  • the terminal device further includes the above-mentioned sensor, and the sensor includes a first sensing module and a second sensing module.
  • FIG1 is a schematic diagram of the structure of a system for controlling an accelerator pedal in the prior art
  • FIG2 exemplarily shows a schematic diagram of a specific application scenario of a control system
  • FIG3 is a circuit diagram of a control system provided by the present application.
  • FIG4 is a schematic diagram of the structure of a control system provided by the present application.
  • FIG5a is a schematic diagram of the structure of a second controller provided by the present application.
  • FIG5b is a schematic diagram of the structure of another second controller provided in the present application.
  • FIG5c is a schematic diagram of the structure of another second controller provided in the present application.
  • FIG5d is a schematic structural diagram of another second controller provided in the present application.
  • FIG6 is a schematic diagram of the structure of a first controller provided by the present application.
  • FIG7a is a schematic structural diagram of a first combining module provided in the present application.
  • FIG7b is a schematic structural diagram of another first combining module provided in the present application.
  • FIG8 is a schematic diagram of the structure of a sensor with redundant design provided by the present application.
  • FIG9a is a schematic diagram of the structure of a control system provided by the present application.
  • FIG9b is a schematic diagram of the structure of a control system provided by the present application.
  • FIG10 is a schematic diagram of the structure of a follower provided by the present application.
  • FIG11 is a schematic diagram of the structure of another control system provided by the present application.
  • FIG12 is a schematic diagram of the structure of another control system provided by the present application.
  • FIG13 is a schematic diagram of the structure of another sensor provided by the present application.
  • FIG14a is a schematic diagram of the structure of another control system provided by the present application.
  • FIG14b is a schematic diagram of the structure of another control system provided by the present application.
  • FIG15 is a schematic diagram of the structure of another control system provided by the present application.
  • FIG16a is a schematic diagram of the structure of another control system provided by the present application.
  • FIG16b is a schematic diagram of the structure of another control system provided by the present application.
  • FIG17 is a schematic diagram of the structure of a control system provided by the present application.
  • FIG18 is a schematic diagram of the structure of a sensor system provided by the present application.
  • FIG19 is a schematic diagram of the structure of another control system provided by the present application.
  • FIG20a is a schematic diagram of the structure of another control system provided by the present application.
  • FIG20b is a schematic diagram of the structure of another control system provided by the present application.
  • FIG21 is a schematic diagram of the structure of a sensor provided by the present application.
  • FIG. 22 is an exemplary functional block diagram of a vehicle provided in the present application.
  • the control system in the present application can be integrated into a vehicle.
  • vehicle includes but is not limited to a vehicle, which can be, for example, an unmanned vehicle, a smart car, an electric car, or a digital car.
  • the control system can be a pedal control system in the vehicle, etc.
  • the pedal control system can be used to control the speed of the vehicle.
  • the above application scenarios can be applied to the fields of unmanned driving, automatic driving, assisted driving, intelligent driving, or connected vehicles.
  • FIG2 exemplarily shows a schematic diagram of a specific application scenario of a control system.
  • the pedal sensor is connected to the first controller and the second controller respectively, and the first controller and the second controller are two different components.
  • the first controller is mainly used for manual driving
  • the second controller is mainly used for automatic driving.
  • the signal detected by the pedal sensor enters the first controller and the second controller synchronously, and the control rights of the first controller and the second controller can be negotiated and controlled in different scenarios. For example, if an abnormality occurs in the first controller, the second controller takes over.
  • the application scenarios given above are only examples, and the control system provided in the present application can also be applied in other possible scenarios, not limited to the scenarios exemplified above.
  • FIG2 The specific circuit diagram of the above-mentioned FIG2 can be referred to FIG3. Since there is a potential difference ⁇ V between the potential of the ground terminal (ground, GND) 1 of the first controller and the potential of the ground terminal GND2 of the second controller, it can be called ground bias, and the maximum is ⁇ 1 V. If the pedal sensor is directly connected to the first controller and the second controller, it is equivalent to directly shorting the ground terminal GND1 of the first controller and the ground terminal GND2 of the second controller together, resulting in a dynamic voltage difference ⁇ V between the ground terminal GND1 of the first controller and the ground terminal GND2 of the second controller.
  • the present application proposes a control system which can achieve higher reliability through a relatively simple circuit.
  • the control system may include a first controller and a second controller, the first controller is connected to a sensor, the second controller is connected to a sensor, the sensor includes a first sensor module and a second sensor module, the second controller includes a sampler (for example, a multi-connection differential sampling circuit), the sampling circuit includes a first channel and a second channel, the first channel is connected to the first sensor module, and the second channel is connected to the second sensor module.
  • the second controller is used to obtain a first signal detected by the first sensor module through the first channel, obtain a second signal detected by the second sensor module through the second channel, and determine the second opening information of the pedal according to the first signal and the second signal.
  • the second controller is further configured to send a second control signal to the actuator to control the actuator.
  • the actuator performs a corresponding operation, and the second control signal is obtained according to the second opening information.
  • the first controller is used to obtain a first signal detected by a first sensor module and a second signal detected by a second sensor module, determine first opening information of the pedal based on the first signal and the second signal, and send a first control signal to the actuator to control the actuator to perform a corresponding operation, and the first control signal is obtained based on the first opening information.
  • the second controller can take over the first controller and continue to work, which can avoid single point failure, thereby helping to improve the reliability of the control system. Moreover, through the first channel and the second channel included in the second controller, single point failure can be avoided, and the problem of inaccurate second opening information obtained from the sensor due to the deviation between the first controller and the second controller can also be solved.
  • FIG. 5a is a schematic diagram of the structure of a second controller provided in the present application.
  • the second controller includes a second control unit, and the second control unit includes a sampling circuit.
  • the sampling circuit is taken as a dual-connection differential sampling circuit.
  • the sampling circuit includes a first channel and a second channel, the first channel is used to connect to the first sensor module, and the second channel is used to connect to the second sensor module.
  • the second controller may also include a second power supply, and the second power supply is used to power the second control unit.
  • the first channel includes a first ADC
  • the second channel includes a second ADC.
  • the first ADC includes a positive input terminal and a negative input terminal
  • the second ADC includes a positive input terminal and a negative input terminal.
  • the second control unit may, for example, include but is not limited to a microcontroller unit (MCU) (or single-chip microcomputer), a field programmable gate array (FPGA), or a system on chip (SOC) with an integrated image signal processor (ISP).
  • MCU microcontroller unit
  • FPGA field programmable gate array
  • SOC system on chip
  • ISP integrated image signal processor
  • the second power supply may include, for example, but is not limited to, a low-dropout regulator (LDO).
  • LDO low-dropout regulator
  • the LDO can provide a stable DC voltage, and the LDO can operate under a smaller output-input voltage difference, which helps to improve the detection accuracy of the input signal.
  • the second controller includes a second control unit, a first follower and a second follower.
  • the second control unit includes a first ADC and a second ADC
  • the first ADC includes a positive input terminal and a negative input terminal
  • the second ADC includes a positive input terminal and a negative input terminal.
  • the two input terminals of the first follower are respectively used to connect to the first signal terminal and the first ground terminal of the first sensor module
  • the output terminal of the first follower is connected to the positive input terminal of the first ADC
  • the negative input terminal of the first ADC is used to connect to the first ground terminal of the first sensor module.
  • the two input terminals of the second follower are respectively connected to the second signal terminal and the second ground terminal of the second sensor module, the output terminal of the second follower is connected to the positive input terminal of the second ADC, and the negative input terminal of the second ADC is connected to the second ground terminal of the second sensor module.
  • FIG. 5c is a structural diagram of another second controller provided by the present application.
  • the second controller includes a second control unit, a first follower, a second follower, a first resistor network, a second resistor network, a third resistor network and a fourth resistor network.
  • the first resistor network includes three resistors connected in series and parallel (i.e., resistor R1, resistor R2 and resistor R3)
  • the second resistor network includes three resistors connected in series and parallel.
  • the first signal output terminal 1 of the first sensor module is connected to the positive input terminal of the first ADC via the first resistor network
  • the first ground terminal 5 of the first sensor module is connected to the negative input terminal of the first ADC via the third resistor network
  • the second signal output terminal 4 of the second sensor module is connected to the positive input terminal of the second ADC via the second resistor network
  • the second ground terminal 6 of the second sensor module is connected to the negative input terminal of the second ADC via the fourth resistor network.
  • the other connection relationships can be found in the introduction of FIG. 5b above, which will not be described here.
  • the first resistor network is used to lift the first signal from the first sensor module
  • the second resistor network is used to lift the second signal from the second sensor module
  • the third resistor network is used to lift the first ground signal from the first sensor module
  • the fourth resistor network is used to lift the second ground signal from the second sensor module.
  • first resistor network, the second resistor network, the third resistor network and the fourth resistor network can be four identical resistor networks.
  • the same resistor network includes the same structure of the resistor network and the same resistance value included in the resistor network. Specifically, the structure of the first resistor network, the structure of the second resistor network and the structure of the third resistor network are the same.
  • the resistor R1 included in the first resistor network, the resistor R1 included in the second resistor network, the resistor R1 included in the third resistor network and the resistor R1 included in the fourth resistor network are all the same
  • the resistor R2 included in the first resistor network, the resistor R2 included in the second resistor network, the resistor R2 included in the third resistor network and the resistor R2 included in the fourth resistor network are all the same
  • the resistor R3 included in the first resistor network, the resistor R3 included in the second resistor network, the resistor R3 included in the third resistor network and the resistor R3 included in the fourth resistor network are all the same.
  • the structure of the resistor network given above is only a possible example, and the structure of the resistor network can also be seen in Figure 5d. Specifically, the resistor R2 in Figure 5c above can be replaced with a current source.
  • FIG. 6 is a schematic diagram of the structure of a first controller provided in the present application.
  • the first controller includes a first control unit and a first power supply, and the first power supply is used to power the first control unit.
  • the first power supply may include, for example, but is not limited to LDO. It can be understood that the first controller may include two or more first power supplies, which is not limited in the present application.
  • control system may further include a combining module, for details please refer to the following introduction.
  • the control system further includes a first combining module and a second combining module.
  • the first combining module is used to control the first power supply or the second power supply to supply power to the first sensor module; the second combining module is used to control the first power supply or the second power supply to supply power to the second sensor module.
  • the power supply that supplies power to the first sensor module and the second sensor module at the same time belongs to the same controller.
  • the first controller includes two first power supplies, namely, a first power supply A and a first power supply B, the first power supply A supplies power to the first sensor module, the first power supply B supplies power to the second sensor module, and the first power supply A and the first power supply B are two independent power supplies for the first controller.
  • the second controller includes two second power supplies, namely, a second power supply A and a second power supply B, the second power supply A supplies power to the first sensor module, the second power supply B supplies power to the second sensor module, and the second power supply A and the second power supply B are two independent power supplies. Redundant power supply to the first sensor module can be achieved through the first combining module, and redundant power supply to the second sensor module can be achieved through the second combining module, thereby further improving the reliability of the control system.
  • the first power supply of the first controller is used to power the first sensor module and the second sensor module by default. If the first MCU in the first controller detects a failure of the first power supply, the first MCU sends an indication message to the second MCU of the second controller, and the second MCU in the second controller receives the indication message and controls the second power supply to power the first sensor module and the second sensor module.
  • the first power supply of the first controller is used to power the first sensor module and the second sensor module by default.
  • the second controller also includes a power supply detection module (see Figure 9b), which is used to detect whether the first power supply is faulty. If a failure of the first power supply is detected, the power supply detection module sends an indication message to the second MCU, and the second MCU switches to the second power supply to power the first sensor module and the second sensor module according to the indication message.
  • first power supply for supplying power to the first sensor module and the second sensor module may be two independent first power supplies in the first controller, or the second power supply for supplying power to the first sensor module and the second sensor module may be two independent first power supplies in the first controller. Two independent second power supplies in the controller.
  • the first combining module includes a first switch and a second switch
  • the first switch includes, for example, a first diode, a first metal-oxide-semiconductor field-effect transistor (MOSFET) (which may be referred to as a MOS tube) or a first chip.
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • the first chip may also be referred to as a first combining chip, and the first chip has anti-reverse and combining functions.
  • the combining function of the first chip means that the first chip can provide two power supplies for the first sensor module.
  • the anti-reverse function of the first chip means preventing the current from flowing from the sensor to the first controller.
  • the second switch includes a second diode, a second MOS tube or a second chip.
  • the second chip may also be referred to as a second combining chip, and the second chip has anti-reverse and combining functions.
  • the combining function of the second chip means that the second chip can provide two power supplies for the second sensor module.
  • the anti-reverse function of the second chip means preventing the current from flowing from the sensor to the second controller.
  • the second combining module includes a third switch and a fourth switch.
  • the third switch can refer to the introduction of the first switch mentioned above, and the fourth switch can refer to the introduction of the second switch mentioned above, which will not be repeated here. It should be understood that the structures of the first combining module and the second combining module may be the same or different.
  • FIG. 7a shows a schematic diagram of the structure of a first combining module, taking the first combining module including the first diode and the second diode as an example. If the first diode is controlled to be turned on, the first power supply of the first controller can be used to power the first sensor module; if the second diode is controlled to be turned on, the second power supply of the second controller can be used to power the first sensor module.
  • the first diode and the second diode can be the same or different, and this application does not limit this.
  • the first combining module including the first MOS tube and the second MOS as an example, if the first MOS tube is controlled to be turned on, the first power supply of the first controller can power the first sensor module; if the second MOS tube is controlled to be turned on, the second power supply of the second controller can power the first sensor module.
  • first combining module given in Figures 7a and 7b above is only an example.
  • the specific structure of the first combining module in the present application may also be other modules that may be implemented to supply power to the first sensor module and the second sensor module, and the present application does not limit this.
  • the first combining module, the second combining module and the second controller are integrated on the same printed circuit board.
  • the first combining module, the second combining module and the second controller are integrated on different printed circuit boards.
  • the first combining module and the second combining module may be integrated on the same printed circuit board, referred to as the first printed circuit board; the second controller is integrated on the second printed circuit board.
  • the first combining module and the second controller may be integrated on the same printed circuit board, referred to as the third printed circuit board, and the second combining module is formed on the fourth printed circuit board.
  • the second combining module and the second controller may be integrated on the same printed circuit board, referred to as the fifth printed circuit board, and the first combining module is formed on the sixth printed circuit board.
  • the first combining module, the second combining module and the second controller are respectively integrated on three different printed circuit boards.
  • the first combining module, the second combining module and the first controller are integrated on the same printed circuit board.
  • the first combining module, the second combining module and the first controller are integrated on different printed circuit boards.
  • the first combining module and the second combining module may be integrated on the same printed circuit board, referred to as the seventh printed circuit board; the first controller is integrated on the eighth printed circuit board.
  • the first combining module and the first controller may be integrated on the same printed circuit board, referred to as the ninth printed circuit board, and the second combining module is formed on the tenth printed circuit board.
  • the second combining module and the first controller may be integrated on the same printed circuit board, referred to as the eleventh printed circuit board, and the first combining module is formed on the twelfth printed circuit board.
  • the sensor is introduced first.
  • the sensor can adopt a redundant design. Redundant design refers to the repeated configuration of some key components or functions for safety and reliability considerations. When some of the components fail, the redundantly configured components can be used as backup, intervene in time and assume the functions of the failed components, thereby reducing the failure time.
  • the sensor includes a variable resistor sensor using a variable resistor potentiometer, or a Hall sensor using a Hall non-contact potentiometer.
  • the variable resistor pedal position sensor is usually used to detect the opening information of a contact pedal, and the Hall sensor is usually used to detect the opening information of a non-contact pedal.
  • FIG 8 is a schematic diagram of the structure of a redundantly designed sensor provided in the present application.
  • the sensor in this example uses a variable resistor potentiometer as an example.
  • the sensor includes a first sensor module and a second sensor module.
  • the circuits of the first sensor module and the second sensor module are independent.
  • the first sensor module includes a variable resistor potentiometer 1, and a power line, a signal line and a ground line connected to the variable resistor potentiometer 1. Grounding is to ensure that the first sensor module has a stable reference potential.
  • the first sensor module can provide three terminals, namely, a first signal output terminal 1, a first ground terminal 5 and a first power supply terminal 2.
  • the second sensor module includes a variable resistor potentiometer 2, a power line, a signal line and a ground line connected to the variable resistor potentiometer 2.
  • the second sensor module can provide three terminals, namely, a second signal output terminal 4, a second ground terminal 6 and a second power supply terminal 3. Among them, the resistance values of the variable resistor potentiometer 1 and the variable resistor potentiometer 2 are different.
  • the first sensor module can detect the first opening information of the pedal and convert the first opening information into a first electrical signal.
  • the second sensing module detects second opening information of the pedal and converts the second opening information into a second electrical signal.
  • the sensor for detecting the non-contact pedal can replace the variable resistor potentiometer in FIG. 8 with a non-contact potentiometer (see FIG. 11 below).
  • the sensor that detects whether the pedal is contact can be called a contact sensor, and the contact sensor means that the potentiometer included in the sensor is a contact potentiometer, for example, a variable resistor potentiometer.
  • the sensor that detects whether the pedal is non-contact can be called a non-contact sensor, and the non-contact sensor means that the potentiometer included in the sensor is a non-contact potentiometer, for example, a Hall-type non-contact potentiometer.
  • the first control unit is taken as an example as the first MCU
  • the second control unit is taken as an example as the second MCU.
  • first power supply in the first controller that supplies power to the first sensor module and the second sensor module can be two independent first power supplies
  • second power supply in the second controller that supplies power to the first sensor module and the second sensor module can be two independent second power supplies.
  • the power supplies in the first controller in the following embodiments can be collectively referred to as the first power supply
  • the power supplies in the second controller can be collectively referred to as the second power supply.
  • the sensor for detecting the pedal is of contact type.
  • the control system includes a first controller, a second controller, a first combining module and a second combining module.
  • the first controller includes a first power supply and a first MCU.
  • the second controller includes a second power supply, a second MCU, a first follower and a second follower.
  • the second MCU includes a first ADC and a second ADC, the first ADC includes a positive input terminal and a negative input terminal, and the second ADC includes a positive input terminal and a negative input terminal.
  • the first sensing module of the sensor in this example includes a first signal output terminal 1, a first ground terminal 5 and a first power supply terminal 2, and the second sensing module of the sensor includes a second signal output terminal 4, a second ground terminal 6 and a second power supply terminal 3.
  • the first combining module is used to control the first power supply or the second power supply to supply power to the first sensor module.
  • the first combining module includes a first switch and a second switch. The first end of the first switch is connected to the first power supply, and the second end of the first switch is connected to the first power supply terminal 2 of the first sensor module. The first end of the second switch is connected to the second power supply, and the second end of the second switch is connected to the first power supply terminal 2 of the first sensor module. The second end of the switch is connected to the first power supply terminal 2 of the first sensor module.
  • the second combining module is used to control the first power supply or the second power supply to power the second sensor module.
  • the second combining module includes a third switch and a fourth switch.
  • the first end of the third switch is connected to the first power supply, and the second end of the third switch is connected to the second power supply terminal 3 of the second sensor module.
  • the first end of the fourth switch is connected to the second power supply, and the second end of the fourth switch is connected to the second power supply terminal 3 of the second sensor module.
  • the first signal output terminal 1 of the first sensor module is connected to the first MCU, and the first ground terminal 5 of the first sensor module is connected to the first MCU.
  • the first signal output terminal 1 of the first sensor module is connected to the positive input terminal of the first ADC through the first input terminal of the first follower, the first ground terminal 5 of the first sensor module is connected to the second input terminal of the first follower, and the first ground terminal 5 of the first sensor module is connected to the negative input terminal of the first ADC.
  • the second signal output terminal 4 of the second sensor module is connected to the first MCU, and the second ground terminal 6 of the second sensor module is connected to the first MCU.
  • the second signal output terminal 4 of the second sensor module is connected to the positive input terminal of the second ADC through the first input terminal of the second follower, the second ground terminal 6 of the second sensor module is connected to the second input terminal of the second follower, and the second ground terminal 6 of the second sensor module is connected to the negative input terminal of the second ADC.
  • FIG 10 is a circuit diagram of a first follower provided in the present application.
  • the output voltage of the first follower is the same as the input voltage, and has the characteristics of high input impedance (such as several megohms) and low output impedance (such as several ohms). Therefore, the first follower can buffer and isolate the sensor, which helps to improve the load capacity of the sensor.
  • the first follower includes an output terminal, an operational amplifier U, a first resistor R11, a second resistor R12 and a first capacitor C11, and the first resistor R11 and the first capacitor C1 form an RC circuit.
  • the output terminal of the first follower is used to connect to the first channel of the second controller, the first resistor R11 is connected between the first signal output terminal 1 of the first sensing module of the sensor and the positive electrode of the operational amplifier U, the second resistor R12 is connected between the negative electrode and the output terminal of the operational amplifier U, and the first capacitor C1 is connected between the ground terminal 5 of the first sensing module and the positive electrode of the operational amplifier U.
  • the first follower provides at least two ports for the sensor, namely port J11 and port J12, port J11 of the first follower is used to connect the first signal output terminal 1 of the first sensor, and port J12 of the first follower is used to connect the ground terminal 5 of the sensor.
  • R11 20k ⁇
  • R12 10k ⁇
  • C11 10uF.
  • the structure of the second follower can be the same as that of the first follower, and the details can be referred to the introduction of the first follower, which will not be repeated here.
  • the first follower and the second follower may be powered by the first power supply in the first controller, or may also be powered by the second power supply in the second controller.
  • the operational amplifier U of the first follower further includes two pins, which may be represented as V+ and V-, the pin V+ being used to connect the power supply (such as the first power supply or the second power supply) for powering the first follower, and the pin V- being connected to the port J12 of the follower.
  • the second controller also includes a power supply detection module, refer to Figure 9b, the power supply detection module is used to detect whether the first power supply is faulty. If the first power supply failure is detected, the power supply detection module sends an indication message to the second MCU, and the second MCU switches to use the second power supply to power the first follower and the second follower according to the indication message.
  • a power supply detection module refer to Figure 9b, the power supply detection module is used to detect whether the first power supply is faulty. If the first power supply failure is detected, the power supply detection module sends an indication message to the second MCU, and the second MCU switches to use the second power supply to power the first follower and the second follower according to the indication message.
  • the first power supply of the first controller is used to power the first follower and the second follower by default.
  • the first MCU in the first controller detects the first power supply. If it is determined that the first power supply is faulty, the first MCU sends an indication message to the second MCU in the second controller.
  • the second MCU in the second controller receives the indication message and controls the second power supply to power the first follower and the second follower.
  • the second power supply of the second controller is used to power the first follower and the second follower by default, and the second MCU in the second controller detects the second power supply. If it is determined that the second power supply fails, the second MCU sends an indication message to the first MCU of the first controller, and the first MCU in the first controller receives the indication message. The first power supply is controlled to supply power to the first follower and the second follower.
  • the first power supply of the first controller and the second power supply of the second controller may simultaneously supply power to the first follower and the second follower.
  • FIG. 9a and FIG. 9b are both examples in which the first combining module and the second combining module are independently integrated into a printed circuit board.
  • the sensor for detecting the pedal is non-contact.
  • the control system includes a first controller, a second controller, a first combining module and a second combining module.
  • the first controller includes a first power supply and a first MCU.
  • the second controller includes a second power supply and a second MCU.
  • the second MCU includes a first ADC and a second ADC.
  • the first ADC includes a positive input terminal and a negative input terminal
  • the second ADC includes a positive input terminal and a negative input terminal.
  • the first sensing module of the sensor in this example includes a first signal output terminal 1, a first ground terminal 5 and a first power supply terminal 2; the second sensing module of the sensor includes a second signal output terminal 4, a second ground terminal 6 and a second power supply terminal 3.
  • the first combining module includes a first switch and a second switch, and the second combining module includes a third switch and a fourth switch.
  • the first signal output terminal 1 of the first sensor module is connected to the first MCU, and the first ground terminal 5 of the first sensor module is connected to the first MCU.
  • the first signal output terminal 1 of the first sensor module is connected to the positive input terminal of the first ADC via the first resistor network
  • the first signal output terminal 1 of the first sensor module is connected to the first input terminal of the first follower
  • the first ground terminal 5 of the first sensor module is connected to the negative input terminal of the first ADC via the third resistor network
  • the first ground terminal 5 of the first sensor module is connected to the second input terminal of the first follower.
  • the second signal output terminal 4 of the second sensor module is connected to the first MCU, and the second ground terminal 6 of the second sensor module is connected to the first MCU.
  • the second signal output terminal 4 of the second sensor module is connected to the positive input terminal of the second ADC via the second resistor network
  • the second signal output terminal 1 of the second sensor module is connected to the first input terminal of the second follower
  • the second ground terminal 6 of the second sensor module is connected to the negative input terminal of the second ADC via the fourth resistor network.
  • the first signal detected by the first sensor module is lifted and pressed through the first resistor network, and the first signal after lifting and pressing is input into the positive input end of the first ADC.
  • the first ground signal detected by the first sensor module is lifted and pressed through the third resistor network, and the first ground signal after lifting and pressing is input into the negative input end of the ADC.
  • the first signal after lifting and pressing and the first ground signal after lifting and pressing are subtracted to determine the first actual opening information of the pedal.
  • the second signal detected by the second sensor module is lifted and pressed through the second resistor network, and the second signal after lifting and pressing is input into the positive input end of the second ADC.
  • the second ground signal detected by the second sensor module is lifted and pressed through the fourth resistor network, and the second ground signal after lifting and pressing is input into the negative input end of the ADC.
  • the second signal after lifting and pressing and the second ground signal after lifting and pressing are subtracted to determine the second actual opening information of the pedal.
  • the first resistor network, the second resistor network, the third resistor network and the fourth resistor network are the same as an example.
  • the first resistor network, the second resistor network, the third resistor network and the fourth resistor network please refer to the aforementioned related introduction, which will not be repeated here. It can be understood that the first ADC and the second ADC can be sampled at the same time. If the difference between the first actual opening information and the second actual opening information does not meet the standard, it means that the sensor is faulty, and the failure protection mode is activated, and control is performed according to "no pedal is pressed".
  • Vout_1 Vcc (R1//R3)/(R2+R1//R3)+Vs1 (R2//R3)/(R1+R2//R3)
  • Vout_2 Vcc (R1//R3)/(R2+R1//R3)+GND1 (R2//R3)/(R1+R2//R3)
  • Vcc represents the voltage of the power supply
  • R1, R2, and R3 represent the resistors in the first resistor network (and the second resistor network)
  • Vs1 represents the voltage of the first signal
  • GND1 represents the voltage of the ground signal.
  • Y represents Vout_1 or Vout_2 after being boosted by the resistor network
  • X represents the voltage of the input first signal or the voltage of the first ground signal.
  • the first ADC in the present application may also be an existing ADC, specifically, an existing ADC that performs subtraction operation based on software to obtain the first actual opening information
  • the second ADC may also be an existing ADC that performs subtraction operation based on the existing ADC to obtain the second opening information.
  • FIG. 13 it is a structural schematic diagram of another sensor provided by the present application.
  • the sensor includes a first sensor module, a second sensor module and a processing module, and the first sensor module and the second sensor module are grounded.
  • the first end of the processing module is connected to the first sensor module
  • the second end of the processing module is connected to the second sensor module
  • the third end of the processing module is connected to the third controller
  • the fourth end of the processing module is also connected to the third controller.
  • the third end of the processing module can be connected to the third controller through the first digital signal line or the first I/O bus
  • the fourth end of the processing module can be connected to the fourth controller through the second digital signal line or the second I/O bus.
  • the first sensor module includes a signal output terminal 1, a ground terminal 5 and a power supply terminal 2.
  • the second sensor module includes a signal output terminal 4, a ground terminal 6 and a power supply terminal 3.
  • the signal output terminal 1 of the first sensor module is connected to the first end of the processing module
  • the signal output terminal 4 of the second sensor module is connected to the second end of the processing module
  • the ground terminal 5 of the first sensor module and the ground terminal 6 of the second sensor module are directly grounded.
  • the power supply terminal 2 of the first sensor module and the power supply terminal 3 of the second sensor module are used to connect the power supply.
  • the potentiometer in this example may be a Hall-type non-contact potentiometer, or may be a variable resistor potentiometer.
  • the processing module is used to process the first signal detected by the first sensor module into a first digital signal or a first I/O bus signal, and send the first digital signal or the first I/O bus signal to the third controller; and process the second signal detected by the second sensor module into a second digital signal or a second I/O bus signal, and send the second digital signal or the second I/O bus signal to the third controller.
  • the processing module included in the sensor the two signals detected by the first sensing module and the second sensing module can be verified first, so that the ground bias can be eliminated in the sensor.
  • the processing module may include but is not limited to a third ADC or a fifth MCU.
  • the fifth MCU may be the same as the first MCU.
  • reference may be made to the introduction of the first MCU, which will not be repeated here.
  • FIG14a it is a structural diagram of another control system provided by the present application.
  • the control system includes a third controller.
  • the third controller includes a third power supply and a third control unit.
  • the third control unit includes a third MCU.
  • the sensor includes a first sensor module, a second sensor module and a processing module.
  • FIG13 For the introduction of the first sensor module and the second sensor module, please refer to FIG13 above, which will not be repeated here.
  • the first sensor module The signal output terminal 1 of the module is connected to the first terminal of the processing module, the signal output terminal 4 of the second sensing module is connected to the second terminal of the processing module, the third terminal of the processing module is connected to the third control unit of the third controller, and the fourth terminal of the processing module is connected to the third control unit of the third controller. It can also be understood that the processing module is double-connected to the third controller.
  • the third controller is used to receive the first digital signal from the third terminal of the processing module, and the second digital signal from the fourth terminal of the processing module, and send a second control signal to the actuator, and the second control signal is determined based on the first digital signal and the second digital signal.
  • the third controller is used to receive the first I/O bus signal from the third terminal of the processing module, and the second I/O bus signal from the fourth terminal of the processing module, and send a third control signal to the actuator to control the actuator to perform corresponding processing.
  • the third control signal is determined based on the first I/O bus signal and the second I/O bus signal.
  • FIG. 14a is an example of a dual connection between the processing module and the third controller, that is, the processing module can send a first digital signal or a first I/O bus signal through one channel, and send a second digital signal or a second I/O bus signal through another channel.
  • the first channel can be, for example, a first I/O bus or a first digital signal line
  • the second channel can be, for example, a second I/O bus or a second digital signal line.
  • the control system includes a third controller and a fourth controller.
  • the third controller includes a third power supply and a third control unit.
  • the fourth controller includes a fourth power supply and a fourth control unit.
  • the sensor includes a first sensor module, a second sensor module and a processing module.
  • the connection method between the third controller and the sensor can be referred to the introduction of the above Figure 14a, which will not be repeated here.
  • the connection method between the fourth controller and the sensor is the same as the connection method between the third controller and the sensor, which will not be repeated here.
  • the processing module is doubly connected to the third controller, and the processing module is also doubly connected to the fourth controller.
  • the third controller fails, and the fourth controller is used to receive the first digital signal from the third end of the processing module, and receive the second digital signal from the fourth end of the processing module, and send a third control signal to the actuator, where the third control signal is determined based on the first digital signal and the second digital signal.
  • the fourth controller is used to receive a first I/O bus signal from a third end of the processing module, and to receive a second I/O bus signal from a fourth end of the processing module, and to send a third control signal to the actuator, wherein the third control signal is determined based on the first I/O bus signal and the second I/O bus signal.
  • the power supply terminal 2 of the first sensor module and the power supply terminal 3 of the second sensor module are connected to the third power supply of the third controller, please refer to Figure 15. It can also be understood that the third power supply of the third controller supplies power to the first sensor module and the second sensor module.
  • the power supply terminal 2 of the first sensor module and the power supply terminal 3 of the second sensor module are connected to the fourth power supply of the fourth controller, see Figure 16a. It can also be understood that the fourth power supply of the fourth controller supplies power to the first sensor module and the second sensor module.
  • the control system further includes a first combining module and a second combining module, please refer to FIG. 16b.
  • the first combining module is used to control the first power supply or the second power supply to supply power to the first sensor module.
  • the first combining module includes a first switch and a second switch, the first end of the first switch is connected to the first power supply, and the second end of the first switch is connected to the first power supply terminal 2 of the first sensor module.
  • the first end of the second switch is connected to the second power supply, and the second end of the second switch is connected to the first power supply terminal 2 of the first sensor module.
  • the second combining module is used to control the first power supply or the second power supply to supply power to the second sensor module.
  • the second combining module includes a third switch and a fourth switch.
  • the first end of the third switch is connected to the first
  • the first and second power supply terminals of the first and second sensor modules are connected to the power supply
  • the second end of the third switch is connected to the second power supply terminal 3 of the second sensor module.
  • the first end of the fourth switch is connected to the second power supply
  • the second end of the fourth switch is connected to the second power supply terminal 3 of the second sensor module.
  • the first combining module, the second combining module and the third controller may be integrated into the same printed circuit board. Alternatively, at least two of the first combining module, the second combining module and the third controller are integrated into different printed circuit boards. Alternatively, the first combining module, the second combining module and the fourth controller are integrated into the same printed circuit board. Alternatively, at least two of the first combining module, the second combining module and the fourth controller are integrated into different printed circuit boards.
  • the control system may include a third controller and a fourth controller, the third controller is connected to the sensor, and the fourth controller is connected to the sensor.
  • the third controller is connected to the first sensor module and the second sensor module of the sensor, and the fourth controller is also connected to the first sensor module and the second sensor module of the sensor.
  • the third controller, the fourth controller and the sensor are connected together and then grounded. It can also be understood that the third controller, the fourth controller and the sensor are first connected by a cable and then grounded.
  • the ground bias can be effectively eliminated by connecting the third controller, the fourth controller and the sensor through cables and then grounding them.
  • the third controller includes a third power supply and a third control unit
  • the fourth controller includes a fourth power supply and a fourth control unit.
  • the third controller can be the same as the fourth controller
  • the third controller can be the same as the first controller
  • the fourth controller can also be the same as the first controller.
  • the third controller and the fourth controller can be compatible with the existing controller structure.
  • the third controller and the fourth controller please refer to the introduction of the first controller above, which will not be repeated here.
  • control system may also include a first combining module and a second combining module.
  • first combining module and the second combining module please refer to the above-mentioned related introduction, which will not be repeated here.
  • integration relationship between the first combining module, the second combining module, the third controller and the fourth controller can be referred to the related introduction in the above-mentioned embodiment 2, which will not be repeated here.
  • the sensor system includes a first sensor and a second sensor, the first sensor includes a first sensor module and a second sensor module, and the second sensor includes a third sensor module and a fourth sensor module.
  • the third sensor module includes a variable resistor potentiometer 3, a power line, a signal line and a ground line connected to the variable resistor potentiometer 3.
  • the third sensor module can provide three terminals, namely, a third signal output terminal 7, a third ground terminal 11 and a third power supply terminal 8.
  • the fourth sensor module includes a variable resistor potentiometer 4, a power line, a signal line and a ground line connected to the variable resistor potentiometer 4.
  • the third sensor module can provide three terminals, namely, a third signal output terminal 10, a third ground terminal 12 and a third power supply terminal 9.
  • a third signal output terminal 10 a third signal output terminal 10
  • a third ground terminal 12 a third power supply terminal 9.
  • the variable resistor potentiometers in Figure 18 can all be replaced with non-contact potentiometers, and Figure 18 is only a possible example.
  • the first sensor module is used to detect the pedal to obtain a first signal, and sends the first signal to the third controller; the second sensor module is used to detect the pedal to obtain a second signal, and sends the second signal to the third controller.
  • the third controller can receive both the first signal from the first sensor module and the second signal from the second sensor module.
  • the third sensor module is used to detect the pedal to obtain a third signal, and sends the third signal to the fourth controller;
  • the fourth sensor module is used to detect the pedal to obtain a fourth signal, and sends the fourth signal to the fourth controller.
  • the fourth controller can receive the third signal from the third sensor module and also receive the fourth signal from the fourth sensor module.
  • the first sensor may be the same as the second sensor.
  • the first sensor module is the same as the third sensor module, and the second sensor module is the same as the fourth sensor module.
  • the variable resistor potentiometer 3 is the same as the variable resistor potentiometer 1
  • the variable resistor potentiometer 4 is the same as the variable resistor potentiometer 2.
  • the control system can integrate the human frame function with functional modules such as braking, and the sampling is not affected by ground deviation, and the layout of vehicle components is more flexible.
  • FIG 19 is a structural diagram of another control system provided by the present application.
  • the control system includes a third controller and a fourth controller. Further, the control system also includes a sensing system.
  • the variable resistor potentiometers of each sensing module in the sensor can be replaced with non-contact potentiometers, and the sensing system of Figure 19 is only a possible example.
  • the third controller includes a third MCU and a third power supply.
  • the fourth controller includes a fourth power supply and a fourth MCU.
  • the third controller is connected to the first sensing module and the second sensing module of the first sensor.
  • the first signal output terminal 1 of the first sensing module is connected to the third MCU, and the first ground terminal 5 of the first sensing module is connected to the third MCU.
  • the second signal output terminal 4 of the second sensing module is connected to the third MCU, and the second ground terminal 6 of the second sensing module is connected to the third MCU.
  • the fourth controller is connected to the third sensing module and the fourth sensing module of the second sensor.
  • the third signal output terminal 7 of the third sensing module is connected to the fourth MCU, and the first ground terminal 11 of the third sensing module is connected to the fourth MCU.
  • the fourth signal output terminal 10 of the fourth sensing module is connected to the fourth MCU, and the fourth ground terminal 12 of the fourth sensing module is connected to the fourth MCU.
  • the third controller is used to receive the first signal from the first sensor module and the second signal from the second sensor module, and send a third control signal to the actuator, wherein the third control signal is generated according to the first signal and the second signal.
  • the fourth controller is used to receive the third signal from the third sensor module and the fourth signal from the fourth sensor module, and send a fourth control signal to the actuator, wherein the fourth control signal is generated according to the third signal and the fourth signal.
  • the third controller further includes a fifth power supply
  • the fourth controller further includes a sixth power supply.
  • the third power supply of the third controller is used to power the first sensor module
  • the fifth power supply of the third controller is used to power the second sensor module
  • the fourth power supply of the fourth controller is used to power the third sensor module
  • the sixth power supply of the fourth controller is used to power the fourth sensor module.
  • FIG 20a is a structural schematic diagram of another control system provided in the present application.
  • the control system includes a first combining module and a second combining module.
  • the first combining module is connected to the first sensing module of the sensor, and the second combining module is connected to the second sensing module of the sensor.
  • the first combining module is also connected to the first controller and the second controller, and the second combining module is also connected to the first controller and the second controller.
  • the first combining module is used to control the first power supply of the first controller or the second power supply of the second controller to supply power to the first sensing module
  • the second combining module is used to control the first power supply or the second power supply to supply power to the second sensing module.
  • first combining module and the second combining module For a more detailed introduction to the first combining module and the second combining module, please refer to the aforementioned related introduction, which will not be repeated here.
  • first combining module, the second combining module, the first controller, the second controller and the sensor please refer to the introduction of Figure 11 above, which will not be repeated here.
  • FIG. 20b is a schematic diagram of the structure of another control system provided by the present application.
  • the control system includes a first Combining module and second combining module.
  • the first combining module is connected to the first sensing module of the sensor, and the second combining module is connected to the second sensing module of the sensor.
  • the first combining module is also connected to the third controller and the fourth controller, and the second combining module is also connected to the third controller and the fourth controller.
  • the first combining module is used to control the third power supply of the third controller or the fourth power supply of the fourth controller to supply power to the first sensing module
  • the second combining module is used to control the third power supply or the fourth power supply to supply power to the second sensing module.
  • the connection relationship between the first combining module, the second combining module, the first controller, the second controller and the sensor please refer to the above-mentioned related introduction, which will not be repeated here.
  • FIG 21 is a schematic diagram of the structure of a sensor provided in the present application.
  • the sensor includes a first sensor module, a second sensor module, a first combining module, and a second combining module.
  • the connection relationship between the first combining module, the second combining module, the first sensor module, and the second sensor module can be found in the above-mentioned related introduction, which will not be repeated here.
  • the third controller or the fourth controller in the above embodiment may also include a follower.
  • the above embodiment is an example in which the third controller or the fourth controller does not include a follower, and the present application does not limit this.
  • the present application may also provide a terminal device.
  • the terminal device may include a frame and a control system in any of the above embodiments.
  • the frame is used to fix the control system in any of the above embodiments.
  • terminal device may also include other possible functional structures, such as pedals, etc., which is not limited in this application.
  • the terminal device can be, for example, a vehicle (such as an unmanned vehicle, a smart vehicle, an electric vehicle, or a digital car), a robot, a surveying and mapping equipment, a drone, a smart home device (such as a television, a sweeping robot, a smart desk lamp, an audio system, a smart lighting system, an electrical appliance control system, home background music, a home theater system, an intercom system, or video surveillance, etc.), smart manufacturing equipment (such as industrial equipment), smart transportation equipment (such as AGV, an unmanned transport vehicle, or a truck, etc.), or a smart terminal (a mobile phone, a computer, a tablet computer, a PDA, a desktop computer, headphones, audio, wearable devices, vehicle-mounted devices, virtual reality devices, augmented reality devices, etc.), etc.
  • a vehicle such as an unmanned vehicle, a smart vehicle, an electric vehicle, or a digital car
  • a robot a surveying and mapping equipment
  • a drone such as a television, a sweeping
  • FIG. 22 is an exemplary functional block diagram of a vehicle provided by the present application, taking the terminal device as a vehicle as an example.
  • Components coupled to or included in the vehicle 220 may include a sensor system 2201 and a control system 2202. It is understood that the vehicle functional framework given in FIG. 22 is only an example. In other examples, the vehicle 220 may include more, fewer or different systems, and each system may include more, fewer or different components. In addition, the systems and components shown may be combined or divided in any manner, and the present application does not specifically limit this.
  • the vehicle may also include a power supply 2203, a propulsion system 2204, a user interface 2205, and a peripheral device 2206.
  • the peripheral device 2206 provides a means for the user of the vehicle 220 to interact with the user interface 2205.
  • the touch screen may provide information to the user of the vehicle 220, such as displaying automatic driving and manual driving modes for the driver to select.
  • the user interface 2205 may also operate the touch screen to receive user input, such as inputting or selecting automatic driving or manual driving modes.
  • peripherals 2206 may provide a means for vehicle 220 to communicate with other devices located within the vehicle.
  • a microphone may receive audio (e.g., voice commands or other audio input) from a user of vehicle 220.
  • a speaker may output audio to a user of vehicle 220.
  • the components of vehicle 220 may be configured to interact with each other.
  • the control system 2202 may be configured to receive data from the sensor system 2201 and the peripheral device 2206 and to control them.
  • the sensor system 2201 may include several sensors for sensing information about the environment in which the vehicle 220 is located.
  • the sensors of the sensor system 2201 may include, but are not limited to, millimeter wave radars and/or laser radars and/or visual devices. The functions of the millimeter wave radars, laser radars, and visual devices can be found in the aforementioned related introductions, and will not be repeated here.
  • the sensor system 2201 may also include a global positioning system (GPS), an inertial measurement unit (IMU), and a brake for modifying the position and/or orientation of the sensor.
  • GPS may be any sensor for estimating the geographic location of the vehicle 220.
  • the GPS may include a transceiver to estimate the position of the vehicle 220 relative to the earth based on satellite positioning data.
  • the control system 2202 may use the GPS in combination with map data to estimate the road on which the vehicle 220 is traveling.
  • the IMU may be used to sense the position and orientation changes of the vehicle 220 based on inertial acceleration and any combination thereof.
  • the combination of sensors in the IMU may include, for example, an accelerometer and a gyroscope. In addition, other combinations of sensors in the IMU are also possible.
  • the sensor system 2201 may also include sensors of the internal systems of the monitored vehicle 220 (e.g., in-vehicle air quality monitor, fuel gauge, oil temperature gauge, pedal position sensor, etc.). Sensor data from one or more of these sensors can be used to detect objects and their corresponding characteristics (position, shape, direction, speed, etc.). This detection and identification is a key function for the safe operation of the vehicle 220.
  • the sensor system 2201 may also include other sensors. This application does not specifically limit this.
  • the control system 2202 may include at least one processor 22021, and further, the control system 2202 may include an interface circuit 22022.
  • the processor 22021 executes instructions stored in a non-transitory computer-readable medium such as a memory 22023.
  • the control system 2202 may also be a plurality of computing devices that control individual components or subsystems of the vehicle 220 in a distributed manner.
  • Processor 22021 may be a circuit with signal (or data) processing capability.
  • the processor may be a circuit with instruction reading and running capability, such as a central processing unit (CPU), a microprocessor, a graphics processing unit (GPU) (which may be understood as a microprocessor), or a digital signal processor (DSP); in another implementation, the processor may implement certain functions through the logical relationship of a hardware circuit, and the logical relationship of the hardware circuit may be fixed or reconfigurable, such as a hardware circuit implemented by a processor as an application-specific integrated circuit (ASIC) or a programmable logic device (PLD), such as a field programmable gate array (FPGA).
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the process of the processor loading a configuration document to implement the hardware circuit configuration may be understood as the process of the processor loading instructions to implement the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as a neural network processing unit (NPU), a tensor processing unit (TPU), a deep learning processing unit (DPU), etc.
  • ASIC application processor
  • ISP image signal processor
  • the propulsion system 2204 can provide power movement for the vehicle 220.
  • the propulsion system 2204 can include an engine/motor, an energy source, a transmission, and wheels/tires, etc. It can be understood that the propulsion system 2204 can additionally or alternatively include other possible components, and the present application does not specifically limit this.
  • FIG. 22 functionally illustrates the processor, memory, and other elements of the control system 2202 in the same block, one of ordinary skill in the art will appreciate that the processor and memory may not actually be stored in multiple processors or memories within the same physical housing.
  • the memory may be a hard drive or other storage medium located in a different housing than the control system 2202.
  • the processor may also be remote from the vehicle but may be in wireless communication with the vehicle.
  • the memory 22023 may include instructions (e.g., program logic) that can be read by the processor 22021 to perform various functions of the vehicle 220, including the functions described above.
  • the memory 22023 may also include additional instructions, including instructions for sending data to, receiving data from, interacting with, and/or controlling one or more of the sensor system 2201, the propulsion system 2204, and the peripheral device 2206.
  • the memory 22023 may also store data, such as road maps, route information, data detected by sensors, the location, direction, speed, and other such vehicle data of the vehicle, as well as other information. This information can be used by the vehicle 220 and the control system 2202 in the vehicle 220 in autonomous, semi-autonomous, and/or manual modes.
  • the memory may be, for example, a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable ROM (PROM), an erasable PROM (EPROM), an electrically erasable PROM (EEPROM), a register, a hard disk, a mobile hard disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to a processor so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and the storage medium may be located in an ASIC.
  • the ASIC may be located in a control system.
  • the processor and the storage medium may also exist in a control system as discrete components.
  • the control system 2202 may control functions of the vehicle 220 based on input received from various subsystems (e.g., sensor system 2201, etc.) and from the user interface 2205. For example, the control system 2202 may utilize input from the sensor system 2201 to control the vehicle to accelerate or decelerate to avoid an obstacle detected by the obstacle avoidance system. In some embodiments, the control system 2202 may be operable to provide control over many aspects of the vehicle 220 and its subsystems.
  • one or more of the above-mentioned components may be installed or associated separately from the vehicle 220.
  • the memory 22023 may exist partially or completely separately from the vehicle 220.
  • the above-mentioned components may be communicatively coupled together in a wired and/or wireless manner.
  • connection can be a direct connection. Alternatively, in other possible cases, it may not be a direct connection, but connected through some elements.
  • At least one means one or more, and “multiple” means two or more.
  • And/or describes the association relationship of associated objects, indicating that there may be three relationships. For example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • At least one of the following items (individuals) or similar expressions refer to any combination of these items, including any combination of single items (individuals) or plural items (individuals).
  • a, b or c can represent: a, b, c, "a and b", “a and c", “b and c", or "a and b and c", where a, b, c can be single or multiple.
  • the character “/” generally indicates that the front and back associated objects are in an “or” relationship.
  • the character “/” indicates that the front and back associated objects are in a "divided” relationship.
  • the word “exemplary” is used to mean an example, illustration or description. Any embodiment or design described as an “example” in this application should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Alternatively, it can be understood that the use of the word “example” is intended to present concepts in a specific way and does not constitute a limitation on this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control By Computers (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

一种控制系统(2202)、传感器、控制器及终端设备。控制系统(2202)包括第一控制器和第二控制器,第一控制器和第二控制器均连接传感器,传感器包括第一传感模块和第二传感模块,第二控制器包括采样电路,采样电路包括第一通道和第二通道,第一通道与第一传感模块连接,第二通道与第二传感模块连接;第二控制器用于通过第一通道获取第一传感模块检测到的第一信号,通过第二通道获取第二传感模块检测到的第二信号,根据第一信号和第二信号,确定踏板的第二开度信息。

Description

一种控制系统、传感器、控制器及终端设备
相关申请的交叉引用
本申请要求在2022年10月09日提交中国专利局、申请号为202211229683.9、申请名称为“一种控制系统、传感系统、传感器、控制器及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及控制技术领域,尤其涉及一种控制系统、传感器、控制器及终端设备。
背景技术
在汽车领域,油门踏板直接关系到驾驶员及乘客的安全,是关键的安全部件。因此,油门踏板的高可靠性控制显得越来越重要。
目前,控制油门踏板的系统(可称为加速控制系统)如图1所示,当驾驶员踩下油门踏板,油门踏板位置传感器可以检测到油门踏板的开度信息(开度信息也可以表征踏板被踩下的角度信息或位置信息),并将油门踏板的开度信息转换为电信号,通过电缆等传输给控制器,控制器对接收到的电信号以及其它关联系统传输来的信号进行处理,获得控制信号,之后向执行器发送该控制信号以控制执行器执行相应的处理。然而,若加速控制系统中的控制器在进行信号处理过程存在错误或者控制器失效(或称为故障)等,加速控制系统无法输出准确的控制信号,或者控制器无法控制驱动电机,从而对车辆的行驶造成较大的安全隐患。
综上,如何提高控制系统的可靠性,是当前亟需解决的技术问题。
发明内容
本申请提供一种控制系统、传感器、控制器及终端设备,用于提高控制系统的可靠性。
第一方面,本申请提供一种控制系统,该控制系统包括第一控制器和第二控制器,第一控制器连接传感器,第二控制器连接传感器,传感器包括第一传感模块和第二传感模块,第二控制器包括采样电路(例如多接差分采样电路),采样电路包括第一通道和第二通道,第一通道与第一传感模块连接,第二通道与第二传感模块连接。其中,第二控制器用于通过第一通道获取第一传感模块检测到的第一信号,通过第二通道获取第二传感模块检测到的第二信号,根据第一信号和第二信号,确定踏板的第二开度信息。
基于上述方案,当第一控制器故障,第二控制器可以接管第一控制器继续工作,可以避免单点失效,从而有助于提高控制系统的可靠性。而且,通过第二控制器包括的第一通道和第二通道,可以避免单点失效,以及提高从传感器获取的开度信息(如第二开度信息)的准确性。
在一种可能的实现方式中,第二控制器还用于向执行器发送第二控制信号,其中,第二控制信号是根据第二开度信息获得的。
通过第二控制器向执行器发送第二控制信号,可以通过第二控制器实现控制执行器。 例如,若第一控制器故障,可由第二控制器接管控制,从而有助于提高控制系统的可靠性。
在一种可能的实现方式中,第一控制器用于获取第一传感模块检测到的第一信号、以及第二传感模块检测到的第二信号,根据第一信号和第二信号确定踏板的第一开度信息,向执行器发送第一控制信号,第一控制信号是根据第一开度信息获得的。
通过第一控制器确定的踏板的第一开度信息,也可以实现对执行器的控制。
在一种可能的实现方式中,第一通道包括第一模数转换器(analog to digital converter,ADC),第二通道包括第二ADC。
具体的,第一ADC包括正输入端和负输入端,第二ADC包括正输入端和负输入端;第一ADC的正输入端与第一传感模块的第一信号输出端连接,第一ADC负输入端与第一传感模块的第一接地端连接;第二ADC的正输入端与第二传感模块的第二信号输出端连接,第二ADC负输入端与第二传感模块的第二接地端连接。
在一种可能的实现方式中,第二控制器还包括第一跟随器和第二跟随器。第一ADC通过第一跟随器与的第一传感模块连接,第二ADC通过第二跟随器与的第二传感模块连接。
由于电压跟随器具有输入阻抗高(如几兆欧姆),输出阻抗低(如几欧姆)的特点,因此可以对传感器起到缓冲和隔离作用,从而有助于提高传感器带负载的能力,进而有助于提高第二控制器向传感器获取的第二开度信息的精确度。
在一种可能的实现方式中,第一控制器包括第一电源,第二控制器包括第二电源;第一电源用于为第一跟随器和第二跟随器供电;或者,第二电源用于为第一跟随器和第二跟随器供电。
通过第一控制器的第一电源为第一跟随器和第二跟随器供电,可以保证第一跟随器和第二跟随器的接地端的电势与第一控制器的接地端的电势一致,不会带来额外的电势差。
在一种可能的实现方式中,第一控制器包括第一电源,第二控制器包括第二电源和电源检测模块;电源检测模块用于检测第一电源故障,切换第二电源为第一跟随器和第二跟随器供电。
通过电源检测模块,可以在第一控制器的第一电源故障后,由第二控制器的第二电源继续为第一跟随器和第二跟随器供电,从而可以使得第一跟随器和第二跟随器可以工作。
在一种可能的实现方式中,控制系统还包括第一合路模块和第二合路模块,第一控制器包括第一电源,第二控制器包括第二电源。第一合路模块用于控制第一电源或第二电源为第一传感模块供电;第二合路模块用于控制第一电源或第二电源为第二传感模块供电。
通过第一合路模块可以实现对第一传感模块的冗余供电,通过第二合路模块可以实现对第二传感模块的冗余供电,若第一控制器故障或第二控制器异常,控制系统还可以为传感器供电,从而可以进一步提高控制系统的可靠性。
具体的,第一合路模块包括第一开关和第二开关,第一开关的第一端与第一电源连接,第一开关的第二端与第一传感模块的接电源端连接,第二开关的第一端与第二电源连接,第二开关的第二端与第一传感模块的接电源端连接;和/或,第二合路模块包括第三开关和第四开关,第三开关的第一端与第一电源连接,第三开关的第二端与第二传感模块的接电源端连接,第四开关的第一端与第二电源连接,第四开关的第二端与第二传感模块的接电源端连接。
在一种可能的实现方式中,第一开关例如包括第一二极管或第一芯片;和/或,第二开 关例如包括第二二极管或第二芯片。
在一种可能的实现方式中,第一芯片具有防反及合路功能,可以为第一传感模块提供两个供电电源。第二芯片也具有防反及合路功能,可以为第二传感模块提供两个供电电源。
在一种可能的实现方式中,第一合路模块、第二合路模块及第二控制器集成于相同的印制电路板;或者,第一合路模块、第二合路模块及第二控制器中至少两个集成于不同的印制电路板;或者,第一合路模块、第二合路模块及第一控制器集成于相同的印制电路板;或者,第一合路模块、第二合路模块及第一控制器中至少两个集成于不同的印制电路板。
第二方面,本申请提供一种控制器,该控制器包括采样电路,采样电路包括第一通道和第二通道,第一通道与传感器的第一传感模块连接,第二通道与传感器的第二传感模块连接;控制器用于通过第一通道获取第一传感模块检测到的第一信号,通过第二通道获取第二传感模块检测到的第二信号,根据第一信号和第二信号,确定传感器检测的踏板的第二开度信息。
在一种可能的实现方式中,控制器还用于向执行器发送第二控制信号,第二控制信号是根据第二开度信息获得的。
在一种可能的实现方式中,第一通道包括第一ADC,第二通道包括第二ADC。
在一种可能的实现方式中,第一ADC包括正输入端和负输入端,第二ADC包括正输入端和负输入端;第一ADC的正输入端与第一传感模块的第一信号输出端连接,第一ADC负输入端与第一传感模块的第一接地端连接;第二ADC的正输入端与第二传感模块的第二信号输出端连接,第二ADC负输入端与第二传感模块第二接地端连接。
在一种可能的实现方式中,控制器还包括第一跟随器和第二跟随器。第一ADC通过第一跟随器与的第一传感模块连接;第二ADC通过第二跟随器与的第二传感模块连接。
上述二方面中任一方面可以达到的技术效果可以参照上述第一方面中有益效果的描述,此处不再重复赘述。
第三方面,本申请提供一种控制系统,该控制系统包括第三控制器和第四控制器,第三控制器与传感器连接,第四控制器与传感器连接,第三控制器、第四控制器以及传感器共接后接地。
基于上述方案,通过第三控制器、第四控制器以及传感器共接后接地,可以在兼容现有控制器的结构的情况下,消除地偏,从而可以提高控制系统控制的精确性和可靠性。而且,通过第三控制器、第四控制器以及传感器共接后接地,有助于提高整车部件的布局的灵活性。
在一种可能的实现方式中,控制系统还包括第一合路模块和第二合路模块,第三控制器包括第三电源,第四控制器包括第四电源,传感器包括第一传感模块和第二传感模块;第一合路模块用于控制第三电源或第四电源为第一传感模块供电;第二合路模块用于控制第三电源或第四电源为第二传感模块供电。
在一种可能的实现方式中,第一合路模块包括第一开关和第二开关,第一开关的第一端与第三电源连接,第一开关的第二端与第一传感模块的接电源端连接,第二开关的第一端与第四电源连接,第二开关的第二端与第一传感模块的接电源端连接;和/或,第二合路模块包括第三开关和第四开关,第三开关的第一端与第三电源连接,第三开关的第二端与第二传感模块的接电源端连接,第四开关的第一端与第四电源连接,第四开关的第二端与第二传感模块的接电源端连接。
在一种可能的实现方式中,第一开关包括第一二极管或第一芯片;和/或,第二开关包括第二二极管或第二芯片。
在一种可能的实现方式中,第一芯片具有防反及合路功能,可以为第一传感模块提供两个供电电源。第二芯片也具有防反及合路功能,可以为第二传感模块提供两个供电电源。
在一种可能的实现方式中,第一合路模块、第二合路模块及第三控制器集成于相同的印制电路板;或者,第一合路模块、第二合路模块及第三控制器中至少两个集成于不同的印制电路板;或者,第一合路模块、第二合路模块及第四控制器集成于相同的印制电路板;或者,第一合路模块、第二合路模块及第四控制器中至少两个集成于不同的印制电路板。
上述三方面中任一方面可以达到的技术效果可以参照上述第一方面中有益效果的描述,此处不再重复赘述。
第四方面,本申请提供一种传感器,该传感器包括第一传感模块、第二传感模块和处理模块,处理模块的第一端与第一传感模块连接,处理模块的第二端与第二传感模块连接,处理模块的第三端和第四端与第三控制器连接,第一传感模块和第二传感模块接地;处理模块用于将第一传感模块检测到的第一信号处理为第一数字信号或第一输入/输出(input/output,I/O)总线信号,并通过处理模块的第三端向第三控制器发送第一数字信号或第一I/O总线信号;以及将第二传感模块检测到的第二信号处理为第二数字信号或第二I/O总线信号,并通过处理模块的第四端向第三控制器发送第二数字信号或第二I/O总线信号。
基于上述方案,通过在传感器中集成处理模块,处理模块可以对第一传感模块检测到的第一信号进行处理、以及可以对第二传感模块检测到的第二信号进行处理,从而增强了传感器输出的信号的抗干扰性。而且,通过处理模块便于传感器与不同的控制器连接,有助于减小传感器与控制器的线缆的数量。
在一种可能的实现方式中,处理模块包括第三ADC或第五MCU。
在一种可能的实现方式中,处理模块的第三端和第四端还与第四控制器连接。
通过处理模块与第三控制器和第四控制器分别连接,可以提高传输至控制系统的信号的可靠性。
在一种可能的实现方式中,第一传感模块与第一合路模块的第一开关和第二开关连接,第二传感模块与第二合路模块的第三开关和第四开关连接。
通过第一合路模块可以实现对第一传感模块的冗余供电,通过第二合路模块可以实现对第二传感模块的冗余供电,若第一控制器故障或第二控制器异常,控制系统还可以为传感器供电,从而可以进一步提高控制系统的可靠性。
在一种可能的实现方式中,传感器还包括第一合路模块和/或第二合路模块,第一合路模块用于控制第三控制器的第三电源或第四控制器的第四电源为第一传感模块供电;第二合路模块用于控制第三电源或第四电源为第二传感模块供电。
具体的,第一合路模块包括第一开关和第二开关,第一开关的第一端与第三电源连接,第一开关的第二端与第一传感模块的接电源端连接,第二开关的第一端与第四电源连接,第二开关的第二端与第一传感模块的接电源端连接;和/或,第二合路模块包括第三开关和第四开关,第三开关的第一端与第三电源连接,第三开关的第二端与第二传感模块的接电源端连接,第四开关的第一端与第四电源连接,第四开关的第二端与第二传感模块的接电源端连接。
在一种可能的实现方式中,第一开关包括第一二极管或第一芯片;和/或,第二开关包括第二二极管或第二芯片。
在一种可能的实现方式中,第一芯片具有防反及合路功能,可以为第一传感模块提供两个供电电源。第二芯片也具有防反及合路功能,可以为第二传感模块提供两个供电电源。
第五方面,本申请提供一种传感器,该传感器包括第一传感模块、第二传感模块、第一合路模块和第二合路模块。第一合路模块与第一传感模块连接,第二合路模块与第二传感模块连接,第一合路模块还与第一控制器和第二控制器连接,第二合路模块还与第一控制器和第二控制器连接,第一合路模块用于控制第一控制器的第一电源或第二控制器的第二电源为第一传感模块供电,第二合路模块用于控制第一电源或第二电源为第二传感模块供电;或者,第一合路模块还与第三控制器和第四控制器连接,第二合路模块还与第三控制器和第四控制器连接,第一合路模块用于控制第三控制器的第三电源或第四控制器的第四电源为第一传感模块供电,第二合路模块用于控制第三电源或第四电源为第二传感模块供电。
通过第一合路模块可以实现对第一传感模块的冗余供电,通过第二合路模块可以实现对第二传感模块的冗余供电,若第一控制器故障或第二控制器异常,控制系统还可以为传感器供电,从而可以保证对传感器的供电的可靠性。
在一种可能的实现方式中,第一合路模块包括第一开关和第二开关,第一开关的第一端与第一电源连接,第一开关的第二端与第一传感模块的接电源端连接,第二开关的第一端与第二电源连接,第二开关的第二端与第一传感模块的接电源端连接;和/或,第二合路模块包括第三开关和第四开关,第三开关的第一端与第一电源连接,第三开关的第二端与第二传感模块的接电源端连接,第四开关的第一端与第二电源连接,第四开关的第二端与第二传感模块的接电源端连接。
在一种可能的实现方式中,第一开关包括第一二极管或第一芯片;和/或,第二开关包括第二二极管或第二芯片。
在一种可能的实现方式中,所述第一芯片具有防反及合路功能,可以为第一传感模块提供两个供电电源。第二芯片也具有防反及合路功能,可以为第二传感模块提供两个供电电源。
第六方面,本申请提供一种控制系统,该控制系统包括第三控制器,第三控制器与传感器的处理模块的第三端和第四端连接;第三控制器用于接收来自处理模块的第三端的第一数字信号、以及接收来自处理模块的第四端的第二数字信号,并向执行器发送第二控制信号,第二控制信号是基于第一数字信号和第二数字信号确定的;或者,第三控制器用于接收来自处理模块的第三端的第一I/O总线信号、以及接收来自处理模块的第四端的第二I/O总线信号,向执行器发送第三控制信号,第三控制信号是基于第一I/O总线信号和第二I/O总线信号确定的。
在一种可能的实现方式中,控制系统还包括第四控制器,第四控制器与处理模块的第三端和第四端连接;第三控制器故障,第四控制器用于接收来自处理模块的第三端的第一数字信号、以及接收来自处理模块的第四端的第二数字信号,并向执行器发送第三控制信号,第三控制信号是基于第一数字信号和第二数字信号确定的;或者,第四控制器用于接收来自处理模块的第三端的第一I/O总线信号、以及接收来自处理模块的第四端的第二I/O总线信号,向执行器发送第三控制信号,第三控制信号是基于第一I/O总线信号和第二I/O 总线信号确定的。
上述第六方面中任一方面可以达到的技术效果可以参照上述第五方面中有益效果的描述,此处不再重复赘述。
第七方面,本申请提供一种控制系统,该控制系统包括第一合路模块和第二合路模块,第一合路模块与传感器的第一传感模块连接,第二合路模块与传感器的第二传感模块连接;第一合路模块还与第一控制器和第二控制器连接,第二合路模块还与第一控制器和第二控制器连接,第一合路模块用于控制第一控制器的第一电源或第二控制器的第二电源为第一传感模块供电,第二合路模块用于控制第一电源或第二电源为第二传感模块供电;或者,第一合路模块还与第三控制器和第四控制器连接,第二合路模块还与第三控制器和第四控制器连接,第一合路模块用于控制第三控制器的第三电源或第四控制器的第四电源为第一传感模块供电,第二合路模块用于控制第三电源或第四电源为第二传感模块供电。
基于上述方案,通过第一合路模块可以实现对第一传感模块的冗余供电,通过第二合路模块可以实现对第二传感模块的冗余供电,若第一控制器故障或第二控制器异常,控制系统还可以为传感器供电,从而可以进一步提高控制系统的可靠性。
在一种可能的实现方式中,第一合路模块包括第一开关和第二开关,第一开关的第一端与第一电源连接,第一开关的第二端与第一传感模块的接电源端连接,第二开关的第一端与第二电源连接,第二开关的第二端与第一传感模块的接电源端连接;和/或,第二合路模块包括第三开关和第四开关,第三开关的第一端与第一电源连接,第三开关的第二端与第二传感模块的接电源端连接,第四开关的第一端与第二电源连接,第四开关的第二端与第二传感模块的接电源端连接。
在一种可能的实现方式中,第一开关包括第一二极管或第一芯片;和/或,第二开关包括第二二极管或第二芯片。
在一种可能的实现方式中,第一芯片具有防反及合路功能,可以为第一传感模块提供两个供电电源。第二芯片也具有防反及合路功能,可以为第二传感模块提供两个供电电源。
第八方面,本申请提供一种传感系统,该传感系统包括第一传感器和第二传感器,第一传感器包括第一传感模块和第二传感模块,第二传感器包括第三传感模块和第四传感模块,第一传感模块和第二传感模块均与第三控制器连接,第三传感模块和第四传感模块均与第四控制器连接;第一传感模块用于检测踏板,获得第一信号,并向第三控制器发送第一信号;第二传感模块用于检测踏板,获得第二信号,并向第三控制器发送第二信号;第三传感模块用于检测踏板获得第三信号,并向第四控制器发送第三信号;第四传感模块用于检测踏板,获得第四信号,并向第四控制器发送第四信号。
基于上述方案,传感系统内部集成两套独立的传感器,可以独立连接不同的控制器,即第一传感器与第一控制器连接,第二传感器与第二控制器连接,通过第一控制器(传统车控部件)和第二控制器(用于高阶自动驾驶的控制器)的双接形成冗余机制,从而可以在第一控制器异常情况下,第二控制器仍具备控制的功能(如控制加速)。该控制系统配合制动等功能模块可以集成人架功能,且采样不受地偏的影响,整车部件的布局更灵活。
第九方面,一种控制系统,该控制系统包括第三控制器和第四控制器,第三控制器与第一传感器的第一传感模块和第二传感模块连接,第四控制器与第二传感器的第三传感模块和第四传感模块连接;第三控制器用于接收来自第一传感模块的第一信号、以及接收来自第二传感模块的第二信号,并向执行器发送第三控制信号,第三控制信号是根据第一信 号和第二信号生成的;或者,第四控制器用于接收第三传感模块的第三信号以及来自第四传感模块的第四信号,并向执行器发送第四控制信号,第四控制信号是根据第三信号和第四信号生成的。
在一种可能的实现方式中,第三控制器包括第三电源和第五电源,第四控制器包括第四电源和第六电源;第三电源用于为第一传感模块供电;第五电源用于为第二传感模块供电;第四电源用于为第三传感模块供电;第六电源用于为第四传感模块供电。
上述九方面中任一方面可以达到的技术效果可以参照上述第八方面中有益效果的描述,此处不再重复赘述。
第十方面,本申请提供一种终端设备,该终端设备包括车架及上述第一方面或第一方面中的任意一种控制系统、或者上述第三方面或第三方面中的任意一种、或者上述第六方面或第六方面中的任意一种、或者上述第七方面或第七方面中的任意一种,控制系统固定于车架。
在一种可能的实现方式中,该终端设备还包括上述传感器,所述传感器包括第一传感模块和第二传感模块。
附图说明
图1为现有技术中的一种控制油门踏板的系统的结构示意图;
图2示例性的示出了一种控制系统的具体应用场景示意图;
图3为本申请提供的一种控制系统的电路图;
图4为本申请提供的一种控制系统的结构示意图;
图5a为本申请提供的一种第二控制器的结构示意图;
图5b为本申请提供的另一种第二控制器的结构示意图;
图5c为本申请提供的另一种第二控制器的结构示意图;
图5d为本申请提供的另一种第二控制器的结构示意图;
图6为本申请提供的一种第一控制器的结构示意图;
图7a为本申请提供的一种第一合路模块的结构示意图;
图7b为本申请提供的另一种第一合路模块的结构示意图;
图8为本申请提供的一种冗余设计的传感器的结构示意图;
图9a为本申请提供的一种控制系统的结构示意图;
图9b为本申请提供的一种控制系统的结构示意图;
图10为本申请提供的一种跟随器的结构示意图;
图11为本申请提供的又一种控制系统的结构示意图;
图12为本申请提供的又一种控制系统的结构示意图;
图13为本申请提供的又一种传感器的结构示意图;
图14a为本申请提供的又一种控制系统的结构示意图;
图14b为本申请提供的又一种控制系统的结构示意图;
图15为本申请提供的又一种控制系统的结构示意图;
图16a为本申请提供的又一种控制系统的结构示意图;
图16b为本申请提供的又一种控制系统的结构示意图;
图17为本申请提供的一种控制系统的结构示意图;
图18为本申请提供的一种传感系统的结构示意图;
图19为本申请提供的又一种控制系统的结构示意图;
图20a为本申请提供的又一种控制系统的结构示意图;
图20b为本申请提供的又一种控制系统的结构示意图;
图21为本申请提供的一种传感器的结构示意图;
图22为本申请提供的一种车辆的示例性功能框图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
下面介绍本申请可能的应用场景。
在一种可能的应用场景中,本申请中的控制系统可集成于交通工具。交通工具包括但不限于车辆,车辆例如可以是无人车、智能车、电动车、或数字汽车等。具体的,控制系统可以为车辆中的踏板控制系统等。其中,踏板控制系统可以用于控制车辆的速度。上述应用场景可应用于无人驾驶、自动驾驶、辅助驾驶、智能驾驶或网联车等领域。
图2示例性的示出了一种控制系统的具体应用场景示意图。该场景中踏板传感器分别与第一控制器和第二控制器连接,第一控制器和第二控制器为两个不同的部件。第一控制器主要用于人工驾驶,第二控制器主要用于自动驾驶。踏板传感器检测到的信号同步进入第一控制器和第二控制器,第一控制器和第二控制器的控制权可以在不同的场景下可以进行协商控制。例如,第一控制器发生异常,第二控制器进行接管。可以理解的是,上述给出的应用场景仅是示例,本申请提供的控制系统还可以应用在其它可能的场景下,而不限于上述示例出的场景。
上述图2的具体电路图可参见图3,由于第一控制器的接地端(ground,GND)1的电势与第二控制器接地端GND2的电势之间存在电势差ΔV,可称为地偏,最大为±1V。若直接将踏板传感器与第一控制器和第二控制器连接,相当于直接将第一控制器的接地端GND1和第二控制器的接地端GND2短到一起,从而导致第一控制器的接地端GND1和第二控制器的接地端GND2之间存在动态电压差ΔV,压降会大部分落在阻抗低的地线上,导致V12、V34、V56之间的电压存在差异,从而会导致第一控制器和第二控制器无法准确获得踏板传感器检测到的信号。
鉴于上述问题,本申请提出一种控制系统。该控制系统可以通过较简单的电路,实现较高的可靠性。
基于上述内容,下面结合附图,对本申请提出的控制系统进行具体阐述。
实施例一
如图4所示,为本申请提供的一种控制系统的结构示意图。该控制系统可包括第一控制器和第二控制器,第一控制器连接传感器,第二控制器连接传感器,传感器包括第一传感模块和第二传感模块,第二控制器包括采样(例如多接差分采样电路),采样电路包括第一通道和第二通道,第一通道与第一传感模块连接,第二通道与第二传感模块连接。其中,第二控制器用于通过第一通道获取第一传感模块检测到的第一信号,通过第二通道获取第二传感模块检测到的第二信号,根据第一信号和第二信号,确定踏板的第二开度信息。
在一种可能的实现方式中,第二控制器还用于向执行器发送第二控制信号,以控制执 行器执行相应的操作,第二控制信号是根据第二开度信息获得的。
在一种可能的实现方式,第一控制器用于获取第一传感模块检测到的第一信号、以及第二传感模块检测到的第二信号,根据第一信号和第二信号确定踏板的第一开度信息,向执行器发送第一控制信号,以控制执行器执行相应的操作,第一控制信号是根据第一开度信息获得的。
基于上述控制系统,当第一控制器故障,第二控制器可以接管第一控制器继续工作,可以避免单点失效,从而有助于提高控制系统的可靠性。而且,通过第二控制器包括的第一通道和第二通道,可以避免单点失效,还可以解决第一控制器与第二控制器因地偏导致从传感器获取的第二开度信息不准确的问题。
下面对图4所示的各个功能结构分别进行介绍说明,以给出示例性的具体实现方案。
一、第二控制器
请参阅图5a,为本申请提供的一种第二控制器的结构示意图。第二控制器包括第二控制单元,第二控制单元包括采样电路。该示例中以采样电路为双接差分采样电路为例。具体的,采样电路包括第一通道和第二通道,第一通道用于与第一传感模块连接,第二通道用于与第二传感模块连接。进一步,可选的,第二控制器还可包括第二电源,第二电源用于为第二控制单元供电。其中,第一通道包括第一ADC,第二通道包括第二ADC。进一步,第一ADC包括正输入端和负输入端,第二ADC包括正输入端和负输入端。
在一种可能的实现方式中,第二控制单元例如可以包括但不限于微控制单元(microcontroller unit,MCU)(或称为单片机)、或现场可编程门阵列(field programmable gate array,FPGA)、或集成图像信号处理器(image signal processor,ISP)的系统级芯片(system on chip,SOC)等。
在一种可能的实现方式中,第二电源例如可以包括但不限于低压差稳压器(low-dropout regulator,LDO)。通过LDO,可以提供稳定的直流电压,而且,LDO可以在较小的输出输入电压差下工作,有助于提高输入信号的检测精度。
请参阅图5b,为本申请提供的另一种第二控制器的结构示意图。该第二控制器包括第二控制单元、第一跟随器和第二跟随器。第二控制单元包括第一ADC和第二ADC,第一ADC包括正输入端和负输入端,第二ADC包括正输入端和负输入端。第一跟随器的两个输入端分别用于与第一传感模块的第一信号端和第一接地端连接,第一跟随器的输出端与第一ADC的正输入端连接,第一ADC的负输入端用于与第一传感模块的第一接地端连接。第二跟随器的两个输入端分别与第二传感模块的第二信号端和第二接地端连接,第二跟随器的输出端与第二ADC的正输入端连接,第二ADC的负输入端与第二传感模块的第二接地端连接。
请参阅图5c,为本申请提供的又一种第二控制器的结构示意图。该第二控制器包括第二控制单元、第一跟随器、第二跟随器、第一电阻网络、第二电阻网络、第三电阻网络和第四电阻网络。其中,第一电阻网络包括三个串并联的电阻(即电阻R1、电阻R2和电阻R3),第二电阻网络包括三个串并联的电阻。第一传感模块的第一信号输出端1经第一电阻网络与第一ADC的正输入端连接,第一传感模块的第一接地端5经第三电阻网络与第一ADC的负输入端连接,第二传感模块的第二信号输出端4经第二电阻网络与第二ADC的正输入端连接,第二传感模块的第二接地端6经第四电阻网络与第二ADC的负输入端 连接,其余连接关系可参见上述图5b的介绍,此处不再赘述。第一电阻网络用于对来自第一传感模块的第一信号进行抬压,第二电阻网络用于对来自第二传感模块的第二信号进行抬压。第三电阻网络用于对来自第一传感模块的第一地信号进行抬压,第四电阻网络用于对来自第二传感模块的第二地信号进行抬压。
需要说明的是,第一电阻网络、第二电阻网络、第三电阻网络和第四电阻网络可以是四个相同的电阻网络。电阻网络相同包括电阻网络的结构以及电阻网络包括的阻值相同。具体的,第一电阻网络的结构、第二电阻网络的结构和第三电阻网络的结构相同。而且,第一电阻网络包括的电阻R1、第二电阻网络包括的电阻R1、第三电阻网络包括的电阻R1和第四电阻网络包括的电阻R1均相同,第一电阻网络包括的电阻R2、第二电阻网络包括的电阻R2、第三电阻网络包括的电阻R2和第四电阻网络包括的电阻R2均相同,第一电阻网络包括的电阻R3、第二电阻网络包括的电阻R3、第三电阻网络包括的电阻R3和第四电阻网络包括的电阻R3均相同。此外,上述给出的电阻网络的结构仅是一种可能的示例,电阻网络的结构也可以参见图5d,具体的,可将上述图5c中的电阻R2用电流源替换。
二、第一控制器
请参阅图6,为本申请提供的一种第一控制器的结构示意图。第一控制器包括第一控制单元和第一电源,第一电源用于为第一控制单元供电。其中,第一控制单元可以能的结构可参见上述对第二控制单元的介绍,此处不再赘述。第一电源例如可以包括但不限于LDO。可以理解的是,第一控制器包括的第一电源可以是两个或更多个,本申请对此不作限定。
本申请中,控制系统还可以包括合路模块,具体可参见下述介绍。
三、合路模块
在一种可能的实现方式中,控制系统还包括第一合路模块和第二合路模块。第一合路模块用于控制第一电源或第二电源为第一传感模块供电;第二合路模块用于控制第一电源或第二电源为第二传感模块供电。进一步,为第一传感模块和第二传感模块同时供电的电源属于同一个控制器。例如,第一控制器包括两个第一电源,分别为第一电源A和第一电源B,第一电源A为第一传感模块供电,第一电源B为第二传感模块供电,第一电源A和第一电源B为第一控制器的两个独立的电源。再比如,第二控制器包括两个第二电源,分别为第二电源A和第二电源B,第二电源A为第一传感模块供电,第二电源B为第二传感模块供电,第二电源A和第二电源B为两个独立的电源。通过第一合路模块可以实现对第一传感模块的冗余供电,通过第二合路模块可以实现对第二传感模块的冗余供电,从而可以进一步提高控制系统的可靠性。
具体的,默认由第一控制器的第一电源为第一传感模块和第二传感模块供电。若第一控制器中的第一MCU检测到第一电源故障,第一MCU向第二控制器的第二MCU发送指示信息,第二控制器中的第二MCU接收到该指示信息,控制第二电源为第一传感模块和第二传感模块供电。或者,默认由第一控制器的第一电源为第一传感模块和第二传感模块供电。第二控制器还包括电源检测模块(请参阅图9b),电源检测模块用于检测第一电源是否故障,若检测到第一电源故障,电源检测模块向第二MCU发送指示信息,第二MCU根据指示信息切换为由第二电源为第一传感模块和第二传感模块供电。
需要说明的是,为第一传感模块和第二传感模块供电的第一电源可以是第一控制器中两个独立的第一电源,或者为第一传感模块和第二传感模块供电的第二电源可以是第二控 制器中的两个独立的第二电源。
示例性地,第一合路模块包括第一开关和第二开关,第一开关例如包括第一二极管、第一金氧半场效晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)(可简称为MOS管)或第一芯片。其中,第一芯片也可称为第一合路芯片,第一芯片具有防反及合路功能,第一芯片的合路功能是指第一芯片可以为第一传感模块提供两个供电电源。第一芯片的防反功能是指防止电流从传感器流向第一控制器。第二开关包括第二二极管、第二MOS管或第二芯片。其中,第二芯片也可称为第二合路芯片,第二芯片具有防反及合路功能,第二芯片的合路功能是指第二芯片可以为第二传感模块提供两个供电电源。第二芯片的防反功能是指防止电流从传感器流向第二控制器。第二合路模块包括第三开关和第四开关。第三开关可参见前述第一开关的介绍,第四开关可参见前述第二开关的介绍,此处不再赘述。应理解,第一合路模块和第二合路模块的结构可以相同,也可以不同。
请参阅图7a,以第一合路模块包括第一二极管和第二二极管为例,示例性的示出了一种第一合路模块的结构示意图。若控制第一二极管导通,可以使得第一控制器的第一电源为第一传感模块供电;若控制第二二极管导通,可以使得第二控制器的第二电源为第一传感模块供电。其中,第一二极管和第二二极管可以相同也可以不同,本申请对此不作限定。
请参阅图7b,以第一合路模块包括第一MOS管和第二MOS为例,若控制第一MOS管导通,可以使得第一控制器的第一电源为第一传感模块供电;若控制第二MOS管导通,可以使得第二控制器的第二电源为第一传感模块供电。
可以理解的是,上述图7a和图7b给出的第一合路模块的结构仅是示例,本申请中第一合路模块的具体结构也可以是其它可能实现为第一传感模块和第二传感模块供电的模块,本申请对此不作限定。
在一种可能的实现方式中,第一合路模块、第二合路模块及第二控制器集成于相同的印制电路板。
或者,第一合路模块、第二合路模块及第二控制器中至少两个集成于不同的印制电路板。例如,第一合路模块和第二合路模块可以是集成在同一个印制电路板,称为第一印制电路板;第二控制器集成于第二印制电路板上。再比如,第一合路模块和第二控制器可以是集成在同一个印制电路板,称为第三印制电路板,第二合路模块成于第四印制电路板上。再比如,第二合路模块和第二控制器可以是集成在同一个印制电路板,称为第五印制电路板,第一合路模块成于第六印制电路板上。
或者,第一合路模块、第二合路模块及第二控制器分别集成于三个不同的印制电路板上。
或者,第一合路模块、第二合路模块及第一控制器集成于相同的印制电路板。
或者,第一合路模块、第二合路模块及第一控制器中至少两个集成于不同的印制电路板。例如,第一合路模块和第二合路模块可以是集成在同一个印制电路板,称为第七印制电路板;第一控制器集成于第八印制电路板上。再比如,第一合路模块和第一控制器可以是集成在同一个印制电路板,称为第九印制电路板,第二合路模块成于第十印制电路板上。再比如,第二合路模块和第一控制器可以是集成在同一个印制电路板,称为第十一印制电路板,第一合路模块成于第十二印制电路板上。
为了便于介绍控制系统与传感器的连接方式,下面先对传感器进行介绍。
为了防止传感器出现故障导致无法及时检测踏板的信号,故传感器可以采用冗余设计。 冗余设计是指出于安全和可靠性等方面的考虑,对一些关键部件或功能进行重复配置。当其中部分部件发生故障时,冗余配置的部件可以作为备用,及时介入并承担故障部件的功能,从而可以减少故障时间。在一种可能的实现方式中,传感器包括采用可变电阻式电位器的可变电阻式传感器,或者采用霍尔式非接触式电位器的霍尔式传感器。可变电阻式踏板位置感器通常用于检测接触式的踏板的开度信息,霍尔式传感器通常用于检测非接触式的踏板的开度信息。
请参阅图8,为本申请提供的一种冗余设计的传感器的结构示意图。该示例中的传感器以采用可变电阻式电位器为例。该传感器包括第一传感模块和第二传感模块。为了保证传感器输出的信号的可靠性,第一传感模块和第二传感模块的电路独立。具体的,第一传感模块包括可变电阻式电位器1,以及与可变电阻式电位器1连接的电源线、信号线和地线。接地是为了第一传感模块具有稳定的基准电位。第一传感模块可提供三个端,分别为第一信号输出端1、第一接地端5和第一接电源端2。第二传感模块包括可变电阻式电位器2、与可变电阻式电位器2连接的电源线、信号线和地线。第二传感模块可提供三个端,分别为第二信号输出端4、第二接地端6和第二接电源端3。其中,可变电阻式电位器1与可变电阻式电位器2的阻值不同。当踏板的位置发生变化,第一传感模块可以检测到踏板的第一开度信息,并将第一开度信息转换为第一电信号。第二传感模块检测到踏板的第二开度信息,并将第二开度信息转换为第二电信号。
需要说明的是,用于检测非接触式的踏板的传感器可以将上述图8中的可变电阻式电位器用非接触式电位器(可参见下述图11)替换。
基于上述内容,下面基于检测的踏板的传感器是接触式的或非接触式的分情形介绍。检测踏板是接触式的传感器可以称为接触式传感器,接触式传感器是指传感器包括的电位器是接触式电位器,例如,可变电阻式电位器。检测踏板是非接触式的传感器可以称为非接触式传感器,非接触式传感器是指传感器包括的电位器是非接触式电位器,例如,霍尔式非接触式电位器。在下文的介绍中,以第一控制单元为第一MCU为例,以第二控制单元为第二MCU为例。需要说明的是,为第一传感模块和第二传感模块供电的第一控制器中的第一电源可以是两个独立的第一电源,为第一传感模块和第二传感模块供电的第二控制器中的第二电源可以是两个独立的第二电源,为了便于说明,下面的实施例中的第一控制器中供电电源可以统称为第一电源,第二控制器中的供电电源可以统称为第二电源。
情形一,检测踏板的传感器是接触式的。
请参阅图9a,为本申请提供的一种控制系统的结构示意图。该示例中控制系统包括第一控制器、第二控制器、第一合路模块和第二合路模块。其中,第一控制器包括第一电源和第一MCU。第二控制器包括第二电源、第二MCU、第一跟随器和第二跟随器。第二MCU包括第一ADC和第二ADC,第一ADC包括正输入端和负输入端,第二ADC包括正输入端和负输入端。该示例中传感器的第一传感模块包括第一信号输出端1、第一接地端5和第一接电源端2,传感器的第二传感模块包括第二信号输出端4、第二接地端6和第二接电源端3。
其中,第一合路模块用于控制第一电源或第二电源为第一传感模块供电。具体的,第一合路模块包括第一开关和第二开关,第一开关的第一端与第一电源连接,第一开关的第二端与第一传感模块的第一接电源端2连接。第二开关的第一端与第二电源连接,第二开 关的第二端与第一传感模块的第一接电源端2连接。第二合路模块用于控制第一电源或第二电源为第二传感模块供电。具体的,第二合路模块包括第三开关和第四开关。第三开关的第一端与第一电源连接,第三开关的第二端与第二传感模块的第二接电源端3连接。第四开关的第一端与第二电源连接,第四开关的第二端与第二传感模块的第二接电源端3连接。
第一传感模块的第一信号输出端1与第一MCU连接,第一传感模块的第一接地端5与第一MCU连接。第一传感模块的第一信号输出端1通过第一跟随器的第一输入端与第一ADC的正输入端连接,第一传感模块的第一接地端5与第一跟随器的第二输入端连接,第一传感模块的第一接地端5与第一ADC的负输入端连接。第二传感模块的第二信号输出端4与第一MCU连接,第二传感模块的第二接地端6与第一MCU连接。第二传感模块的第二信号输出端4通过第二跟随器的第一输入端与第二ADC的正输入端连接,第二传感模块的第二接地端6与第二跟随器的第二输入端连接,第二传感模块的第二接地端6与第二ADC的负输入端连接。
请参阅图10,为本申请提供的一种第一跟随器的电路图。第一跟随器的输出电压与输入电压是相同的,具有输入阻抗高(如几兆欧姆)且输出阻抗低(如几欧姆)的特点,因此,第一跟随器可以对传感器起到缓冲和隔离作用,有助于提高传感器带负载的能力。第一跟随器包括输出端、运算放大器U、第一电阻R11、第二电阻R12和第一电容C11,第一电阻R11和第一电容C1组成RC电路。第一跟随器的输出端用于与第二控制器的第一通道连接,第一电阻R11连接于传感器的第一传感模块的第一信号输出端1与运算放大器U的正极之间,第二电阻R12跨接于运算放大器U的负极与输出端之间,第一电容C1连接于第一传感模块的接地端5与运算放大器的U正极之间。也可以理解为,第一跟随器对传感器提供至少两个端口,分别为端口J11和端口J12,第一跟随器的端口J11用于连接第一传感器的第一信号输出端1,第一跟随器的端口J12用于连接传感器的接地端5。示例性地,R11=20kΩ,R12=10kΩ,C11=10uF。第二跟随器的结构可以与第一跟随器的结构相同,具体可参见第一跟随器的介绍,此处不再赘述。
在一种可能的实现方式中,第一跟随器和第二跟随器可以由第一控制器中的第一电源供电,或者也可以由第二控制器中的第二电源供电。结合上述图10,第一跟随器的运算放大器U还包括两个引脚,可表示为V+和V-,引脚V+用于连接为第一跟随器供电的电源(如第一电源或第二电源),引脚V-与跟随器的端口J12连接。
在另一种可能的实现方式中,第二控制器还包括电源检测模块,请参阅图9b,电源检测模块用于检测第一电源是否故障,若检测到第一电源故障,电源检测模块向第二MCU发送指示信息,第二MCU根据指示信息切换为由第二电源为第一跟随器和第二跟随器供电。
在又一种可能的实现方式中,默认由第一控制器的第一电源为第一跟随器和第二跟随器供电,第一控制器中的第一MCU检测第一电源,若确定第一电源故障,第一MCU向第二控制器的第二MCU发送指示信息,第二控制器中的第二MCU接收到该指示信息,控制第二电源为第一跟随器和第二跟随器供电。
在又一种可能的实现方式中,默认由第二控制器的第二电源为第一跟随器和第二跟随器供电,第二控制器中的第二MCU检测第二电源,若确定第二电源故障,第二MCU向第一控制器的第一MCU发送指示信息,第一控制器中的第一MCU接收到该指示信息, 控制第一电源为第一跟随器和第二跟随器供电。
在又一种可能的实现方式,第一控制器的第一电源和第二控制器的第二电源可以同时为第一跟随器和第二跟随器供电。
需要说明的是,上述图9a和图9b均是以第一合路模块和第二合路模块独立集成于一个印制电路板示例的。
情形二,检测踏板的传感器是非接触式的。
请参阅图11,为本申请提供的又一种控制系统的结构示意图。该示例中控制系统包括第一控制器、第二控制器、第一合路模块和第二合路模块。其中,第一控制器包括第一电源和第一MCU。第二控制器包括第二电源和第二MCU。第二MCU包括第一ADC和第二ADC。第一ADC包括正输入端和负输入端,第二ADC包括正输入端和负输入端。该示例中的传感器的第一传感模块包括第一信号输出端1、第一接地端5和第一接电源端2;传感器的第二传感模块包括第二信号输出端4、第二接地端6和第二接电源端3。第一合路模块包括第一开关和第二开关,第二合路模块包括第三开关和第四开关。
其中,第一传感模块的第一信号输出端1与第一MCU连接,第一传感模块的第一接地端5与第一MCU连接。第一传感模块的第一信号输出端1经第一电阻网络与第一ADC的正输入端连接,第一传感模块的第一信号输出端1与第一跟随器的第一输入端连接,第一传感模块的第一接地端5经第三电阻网络与第一ADC的负输入端连接,第一传感模块的第一接地端5与第一跟随器的第二输入端连接。第二传感模块的第二信号输出端4与第一MCU连接,第二传感模块的第二接地端6与第一MCU连接。第二传感模块的第二信号输出端4经第二电阻网络与第二ADC的正输入端连接,第二传感模块的第二信号输出端1与第二跟随器的第一输入端连接,第二传感模块的第二接地端6经第四电阻网络与第二ADC的负输入端连接。关于第一合路模块和第二合路模块的功能可参见上述相关介绍,此处不再赘述。
如图12所示,基于该控制系统的结构,第一传感模块检测到的第一信号通过第一电阻网络进行抬压,抬压后的第一信号输入第一ADC的正输入端,第一传感模块检测到的第一地信号通过第三电阻网络进行抬压,抬压后的第一地信号输入ADC的负输入端,对抬压后的第一信号和抬压后的第一地信号做减法,确定出踏板的第一实际开度信息。第二传感模块检测到的第二信号通过第二电阻网络进行抬压,抬压后的第二信号输入第二ADC的正输入端,第二传感模块检测到的第二地信号通过第四电阻网络进行抬压,抬压后的第二地信号输入ADC的负输入端,对抬压后的第二信号和抬压后的第二地信号做减法,确定出踏板的第二实际开度信息。该示例中以第一电阻网络、第二电阻网络、第三电阻网络和第四电阻网络相同为例,关于第一电阻网络、第二电阻网络、第三电阻网络和第四电阻网络的具体描述可参见前述相关介绍,此处不再赘述。可以理解的是,第一ADC和第二ADC可以同时进行采样。若第一实际开度信息和第二实际开度信息的差值与标准不符,则说明该传感器有故障,启动失效保护模式,按“未踩踏板”来进行控制。
其中,经第一电阻网络抬压后的输出电压1(Vout_1)可用下述公式1表示,经第三电阻网络抬压后的输出电压2(Vout_2)可用下述公式2表示。
Vout_1=Vcc·(R1//R3)/(R2+R1//R3)+Vs1·(R2//R3)/(R1+R2//R3)  公式1
Vout_2=Vcc·(R1//R3)/(R2+R1//R3)+GND1·(R2//R3)/(R1+R2//R3)  公式2
其中,Vcc表示供电电源的电压,R1、R2、R3表示第一电阻网络(和第二电阻网络)中的电阻,Vs1表示第一信号的电压,GND1表示地信号的电压。
基于上述公式1和公式2,通过改变电阻R1、R2和R3的电阻值,可以改变输出电压(Vout_1和Vout_2),从而可以消除地偏。
示例性的,通过配置R1=20KΩ,R2=100KΩ,R3=100KΩ,可以获得输入输出的关系如公式3。
Y=0.714286X+0.142857×VCC  公式3
其中,Y表示经电阻网络抬压后的Vout_1或Vout_2,X表示输入的第一信号的电压或第一地信号的电压。
基于上述公式3,若输入电压为-1V,输出电压为0;若输入电压为6V,输出电压值为5V,均满足±1V的地偏需求。
需要说明的是,本申请中的第一ADC也可以是现有的ADC,具体可以是现有的ADC基于软件做减法运算以获得第一实际开度信息,第二ADC也可以是现有的ADC,基于现有的ADC做减法运算以获得第二开度信息。
实施例二
如图13所示,为本申请提供的又一种传感器的结构示意图。该传感器包括第一传感模块、第二传感模块和处理模块,第一传感模块和第二传感模块接地。处理模块的第一端与第一传感模块连接,处理模块的第二端与第二传感模块连接,处理模块的第三端与第三控制器连接,处理模块的第四端也与第三控制器连接。具体的,处理模块的第三端可以通过第一数字信号线或第一I/O总线与第三控制器连接,处理模块的第四端可以通过第二数字信号线或第二I/O总线与第四控制器连接。第一传感模块包括信号输出端1、接地端5和接电源端2。第二传感模块包括信号输出端4、接地端6和接电源端3。第一传感模块的信号输出端1与处理模块的第一端连接,第二传感模块的信号输出端4与处理模块的第二端连接,第一传感模块的接地端5和第二传感模块的接地端6直接接地。第一传感模块的接电源端2和第二传感模块的接电源端3用于连接供电电源。该示例中的电位器可以是采用霍尔式非接触式电位器,或者也可以是采用可变电阻式电位器。
其中,处理模块用于将第一传感模块检测到第一信号处理为第一数字信号或第一I/O总线信号,并向第三控制器发送第一数字信号或第一I/O总线信号;以及将第二传感模块检测到的第二信号处理为第二数字信号或第二I/O总线信号,并向第三控制器发送第二数字信号或第二I/O总线信号。
通过传感器包括的处理模块,可以是先对第一传感模块和第二传感模块的检测到的两个信号进行了校验,从而可以在传感器中消除地偏。
在一种可能的实现方式中,处理模块可以包括但不限于第三ADC或者第五MCU,第五MCU可以与上述第一MCU相同,具体的实现可以参见上述第一MCU的介绍,此处不再赘述。
基于上述内容,如图14a所示,为本申请提供的又一种控制系统的结构示意图。该控制系统包括第三控制器。其中,第三控制器包括第三电源和第三控制单元,该示例中以第三控制单元包括第三MCU为例。传感器包括第一传感器模块、第二传感器模块和处理模块。关于第一传感模块和第二传感模块的介绍可参见上述图13,此处不再赘述。第一传感 模块的信号输出端1与处理模块的第一端连接,第二传感模块的信号输出端4与处理模块的第二端连接,处理模块的第三端与第三控制器的第三控制单元连接,处理模块的第四端与第三控制器的第三控制单元连接。也可以理解为,处理模块与第三控制器双接。第三控制器用于接收来自处理模块的第三端的第一数字信号、以及接收来自处理模块的第四端的第二数字信号,并向执行器发送第二控制信号,第二控制信号是基于第一数字信号和第二数字信号确定的。或者,第三控制器用于接收来自处理模块的第三端的第一I/O总线信号、以及接收来自处理模块的第四端的第二I/O总线信号,向执行器发送第三控制信号,以控制执行器执行相应的处理。第三控制信号是基于第一I/O总线信号和第二I/O总线信号确定的。
需要说明的是,上述图14a是以处理模块与第三控制器是以双接示例的,即处理模块可以通过一条通道发送第一数字信号或第一I/O总线信号,通过另一通道发送第二数字信号或第二I/O总线信号。第一通道例如可以是第一I/O总线或第一数字信号线,第二通道例如可以是第二I/O总线或第二数字信号线。应理解,处理模块与第三控制器之间也可以一条通路,即第一数字信号或第一I/O总线信号、与第二数字信号或第二I/O总线信号可以通过相同的通道传输至第三控制器,请参阅图14b。
如图15所示,为本申请提供的又一种控制系统的结构示意图。该控制系统包括第三控制器和第四控制器。其中,第三控制器包括第三电源和第三控制单元。第四控制器包括第四电源和第四控制单元。传感器包括第一传感器模块、第二传感器模块和处理模块。关于第一传感模块和第二传感模块的介绍可参见上述图13,此处不再赘述。第三控制器与传感器的连接方式可参见上述图14a的介绍,此处不再赘述。第四控制器和传感器的连接方式与第三控制器和传感器的连接方式相同,此处不再赘述。也可以理解位,处理模块与第三控制器双接,处理模块与第四控制器也双接。
在一种可能的实现方式中,第三控制器故障,第四控制器用于接收来自处理模块的第三端的第一数字信号、以及接收来自处理模块的第四端的第二数字信号,并向执行器发送第三控制信号,第三控制信号是基于第一数字信号和第二数字信号确定的。
或者,第四控制器用于接收来自处理模块的第三端的第一I/O总线信号、以及接收来自处理模块的第四端的第二I/O总线信号,向执行器发送第三控制信号,第三控制信号是基于第一I/O总线信号和第二I/O总线信号确定的。
在一种可能的实现方式中,第一传感模块的接电源端2和第二传感模块的接电源端3与第三控制器的第三电源连接,请参阅图上述图15。也可以理解为,第三控制器的第三电源为第一传感模块和第二传感模块供电。
或者,第一传感模块的接电源端2和第二传感模块的接电源端3与第四控制器的第四电源连接,请参阅图16a。也可以理解为,第四控制器的第四电源为第一传感模块和第二传感模块供电。
或者,该控制系统还包括第一合路模块和第二合路模块,请参阅图16b。其中,第一合路模块用于控制第一电源或第二电源为第一传感模块供电。具体的,第一合路模块包括第一开关和第二开关,第一开关的第一端与第一电源连接,第一开关的第二端与第一传感模块的第一接电源端2连接。第二开关的第一端与第二电源连接,第二开关的第二端与第一传感模块的第一接电源端2连接。第二合路模块用于控制第一电源或第二电源为第二传感模块供电。具体的,第二合路模块包括第三开关和第四开关。第三开关的第一端与第一 电源连接,第三开关的第二端与第二传感模块的第二接电源端3连接。第四开关的第一端与第二电源连接,第四开关的第二端与第二传感模块的第二接电源端3连接。关于第一合路模块和第二合路模块更详细的介绍可参见前述相关介绍,此处不再赘述。
进一步,可选的,第一合路模块、第二合路模块及第三控制器可以集成于相同的印制电路板。或者,第一合路模块、第二合路模块及第三控制器中至少两个集成于不同的印制电路板。或者,第一合路模块、第二合路模块及第四控制器集成于相同的印制电路板。或者,第一合路模块、第二合路模块及第四控制器中至少两个集成于不同的印制电路板。
可以理解的是,上述实施例二中均是以传感器用于检测非接触式的踏板为例介绍的。
实施例三
如图17所示,为本申请提供的一种控制系统的结构示意图。该控制系统可包括第三控制器和第四控制器,第三控制器与传感器连接,第四控制器与传感器连接。具体的,第三控制器与传感器的第一传感模块和第二传感模块连接,第四控制器也与传感器的第一传感模块和第二传感模块连接。第三控制器、第四控制器以及传感器共接后接地。也可以理解为,第三控制器、第四控制器和传感器先通过线缆连接后,再接地。
通过第三控制器、第四控制器和传感器先通过线缆连接后再接地,可以有效消除地偏。
其中,第三控制器包括第三电源和第三控制单元,第四控制器包括第四电源和第四控制单元。可以理解的是,第三控制器可以与第四控制器相同,第三控制器可以与上述第一控制器相同,第四控制器也可以与上述第一控制器相同。基于此,第三控制器和第四控制器可以兼容现有的控制器结构。关于第三控制器和第四控制器可参见上述第一控制器的介绍,此处不再赘述。
进一步,该控制系统还可包括第一合路模块和第二合路模块。关于第一合路模块和第二合路模块可参见前述相关介绍,此处不再赘述。进一步,第一合路模块、第二合路模块、第三控制器和第四控制器的集成关系可参见上述实施例二中的相关介绍,此处不再赘述。
实施例四
请参阅图18,为本申请提供的一种传感系统的结构示意图。该传感系统包括第一传感器和第二传感器,第一传感器包括第一传感模块和第二传感模块,第二传感器包括第三传感模块和第四传感模块。其中,第三传感模块包括可变电阻式电位器3、与可变电阻式电位器3连接的电源线、信号线和地线。第三传感模块可提供三个端,分别为第三信号输出端7、第三接地端11和第三接电源端8。第四传感模块包括可变电阻式电位器4、与可变电阻式电位器4连接的电源线、信号线和地线。第三传感模块可提供三个端,分别为第三信号输出端10、第三接地端12和第三接电源端9。关于第一传感模块和第二传感模块可参见前述相关介绍,此处不再赘述。可以理解的是,图18中的可变电阻式电位器均可以用非接触式电位器替换,图18仅是一种可能的示例。
当踏板的位置发生变化,第一传感模块用于检测踏板获得第一信号,并向第三控制器发送第一信号;第二传感模块用于检测踏板获得第二信号,并向第三控制器发送第二信号。也可以理解为,第三控制器既可以接收来自第一传感模块的第一信号,也可以接收来自第二传感模块的第二信号。第三传感模块用于检测踏板获得第三信号,并向第四控制器发送第三信号;第四传感模块用于检测踏板获得第四信号,并向第四控制器发送第四信号。也 可以理解为,第四控制器可以接收来自第三传感模块的第三信号,也接收来自第四传感模块的第四信号。
在一种可能的实现方式中,第一传感器可以与第二传感器相同。具体的,第一传感模块与第三传感模块相同,第二传感模块与第四传感模块相同。也可以理解为,可变电阻式电位器3与可变电阻式电位器1相同,可变电阻式电位器4与可变电阻式电位器2相同。
通过传感系统内部集成两套独立的传感器,可以独立连接不同的控制器,即第一传感器与第一控制器连接,第二传感器与第二控制器连接,通过第一控制器(传统车控部件)和第二控制器(用于高阶自动驾驶的控制器)的双接形成冗余机制,从而可以在第一控制器异常情况下,第二控制器仍具备控制的功能(如控制加速)。该控制系统配合制动等功能模块可以集成人架功能,且采样不受地偏的影响,整车部件的布局更灵活。
请参阅图19,为本申请提供的又一种控制系统的结构示意图。该控制系统包括第三控制器和第四控制器。进一步,该控制系统还包括传感系统。该传感器中的各个传感模块的可变电阻式电位器均可以用非接触式电位器替换,图19的传感系统仅是一种可能的示例。其中,第三控制器包括第三MCU和第三电源。第四控制器包括第四电源和第四MCU。第三控制器与第一传感器的第一传感模块和第二传感模块连接。具体的,第一传感模块的第一信号输出端1与第三MCU连接,第一传感模块的第一接地端5与第三MCU连接。第二传感模块的第二信号输出端4与第三MCU连接,第二传感模块的第二接地端6与第三MCU连接。第四控制器与第二传感器的第三传感模块和第四传感模块连接。具体的,第三传感模块的第三信号输出端7与第四MCU连接,第三传感模块的第一接地端11与第四MCU连接。第四传感模块的第四信号输出端10与第四MCU连接,第四传感模块的第四接地端12与第四MCU连接。第三控制器用于接收来自第一传感模块的第一信号、以及接收来自第二传感模块的第二信号,并向执行器发送第三控制信号,第三控制信号是根据第一信号和第二信号生成的。或者,第四控制器用于接收第三传感模块的第三信号以及来自第四传感模块的第四信号,并向执行器发送第四控制信号,第四控制信号是根据第三信号和第四信号生成的。
进一步,第三控制器还包括第五电源,第四控制器还包括第六电源。其中,第三控制器的第三电源用于为第一传感模块供电,第三控制器的第五电源用于为第二传感模块供电,第四控制器的第四电源用于为第三传感模块供电,第四控制器的第六电源用于为第四传感模块供电。
实施例五
请参阅图20a,为本申请提供的又一种控制系统的结构示意图。该控制系统包括第一合路模块和第二合路模块。第一合路模块与传感器的第一传感模块连接,第二合路模块与传感器的第二传感模块连接。第一合路模块还与第一控制器和第二控制器连接,第二合路模块还与第一控制器和第二控制器连接,第一合路模块用于控制第一控制器的第一电源或第二控制器的第二电源为第一传感模块供电,第二合路模块用于控制第一电源或第二电源为第二传感模块供电。关于第一合路模块和第二合路模块的更详细的介绍可参见前述相关介绍,此处不再赘述。关于第一合路模块、第二合路模块、第一控制器、第二控制器和传感器之间的连接关系可参见上述图11的介绍,此处不再赘述。
请参阅图20b,为本申请提供的又一种控制系统的结构示意图。该控制系统包括第一 合路模块和第二合路模块。第一合路模块与传感器的第一传感模块连接,第二合路模块与传感器的第二传感模块连接。第一合路模块还与第三控制器和第四控制器连接,第二合路模块还与第三控制器和第四控制器连接,第一合路模块用于控制第三控制器的第三电源或第四控制器的第四电源为第一传感模块供电,第二合路模块用于控制第三电源或第四电源为第二传感模块供电。关于第一合路模块、第二合路模块、第一控制器、第二控制器和传感器之间的连接关系可参见前述相关介绍,此处不再赘述。
实施例六
请参阅图21,为本申请提供的一种传感器的结构示意图。该传感器包括第一传感模块、第二传感模块、第一合路模块和第二合路模块。关于第一合路模块、第二合路模块、第一传感模块与第二传感模块之间的连接关系可参见前述相关介绍,此处不再赘述。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
需要说明的是,上述实施例中的第三控制器或第四控制器中也可以包括跟随器,上述实施例中是以第三控制器或第四控制器不包括跟随器示例的,本申请对此不作限定。
基于上述描述的控制系统的架构和功能原理,本申请还可以提供一种终端设备。该终端设备可包括车架和上述任一实施例中的控制系统。车架用于固定上述任一实施例中的控制系统。关于控制系统的具体的介绍可参见前述相关描述,此处不再赘述。
需要说明的是,终端设备还可以包括其它可能的功能结构,例如还可包括踏板等,本申请对此不作限定。
示例性地,该终端设备例如可以是车辆(例如无人车、智能车、电动车、或数字汽车等)、机器人、测绘设备、无人机、智能家居设备(例如电视、扫地机器人、智能台灯、音响系统、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、或视频监控等)、智能制造设备(例如工业设备)、智能运输设备(例如AGV、无人运输车、或货车等)、或智能终端(手机、计算机、平板电脑、掌上电脑、台式机、耳机、音响、穿戴设备、车载设备、虚拟现实设备、增强现实设备等)等。
请参阅图22,以终端设备为车辆为例,为本申请提供的一种车辆的示例性功能框图。耦合到车辆220或包括在车辆220中的组件可以包括传感器系统2201和控制系统2202。可以理解的是,图22给出的车辆功能框架只是一个示例,在其它示例中,车辆220可以包括更多、更少或不同的系统,并且每个系统可以包括更多、更少或不同的组件。此外,示出的系统和组件可以按任意种的方式进行组合或划分,本申请对此不做具体限定。例如,车辆还可以包括电源2203、推进系统2204、用户接口2205和外围设备2206等。在一些实施例中,外围设备2206提供车辆220的用户与用户接口2205交互的手段。例如,触摸屏可向车辆220的用户提供信息,例如可以显示自动驾驶和手动驾驶模式,以便驾驶员选择。用户接口2205还可操作触摸屏来接收用户的输入,例如输入或选择自动驾驶或手动驾驶模式等。在其他情况中,外围设备2206可提供用于车辆220与位于车内的其它设备通信的手段。例如,麦克风可从车辆220的用户接收音频(例如,语音命令或其他音频输入)。类似地,扬声器可向车辆220的用户输出音频。车辆220的组件可以被配置为以与彼此互 连和/或与耦合到各系统的其它组件互连的方式工作。例如,电源2203可以向车辆220的所有组件提供电力。控制系统2202可以被配置为从传感器系统2201和外围设备2206接收数据并对它们进行控制。
传感器系统2201可以包括用于感测关于车辆220所位于的环境的信息等的若干个传感器。示例性地,传感器系统2201的传感器可以包括但不限于毫米波雷达和/或激光雷达和/或视觉装置,毫米波雷达、激光雷达和视觉装置的功能可参见前述相关介绍,此处不再组赘述。进一步,传感器系统2201还可以包括全球定位系统(Global PositioningSystem,GPS)、惯性测量单元(Inertial Measurement Unit,IMU)、以及用于修改传感器的位置和/或朝向的制动器。在一些实施例中,GPS可以为用于估计车辆220的地理位置的任何传感器。为此,GPS可以包括收发器,基于卫星定位数据估计车辆220相对于地球的位置。在一些示例中,控制系统2202可以结合地图数据使用GPS来估计车辆220行驶的道路。IMU可以用于基于惯性加速度及其任意组合来感测车辆220的位置和朝向变化。在一些示例中,IMU中传感器的组合可包括例如加速度计和陀螺仪。另外,IMU中传感器的其它组合也是可能的。
可以理解的是,传感器系统2201还可包括被监视车辆220的内部系统的传感器(例如,车内空气质量监测器、燃油量表、机油温度表、踏板位置传感器等)。来自这些传感器中的一个或多个的传感器数据可用于检测对象及其相应特性(位置、形状、方向、速度等)。这种检测和识别是车辆220的安全操作的关键功能。传感器系统2201还可以包括其它传感器。本申请对此不做具体限定。
车辆220的部分或所有功能受控制系统2202控制。控制系统2202可包括至少一个处理器22021,进一步,该控制系统2202还可包括接口电路22022。处理器22021执行存储在例如存储器22023这样的非暂态计算机可读介质中的指令。控制系统2202还可以是采用分布式方式控制车辆220的个体组件或子系统的多个计算设备。
处理器22021可以是一种具有信号(或数据)的处理能力的电路。在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元(central processing unit,CPU)、微处理器、图形处理器(graphics processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital singnal processor,DSP)等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路(application-specific integrated circuit,ASIC)或可编程逻辑器件(programmable logic device,PLD)实现的硬件电路,例如现场可编程门阵列(field programmable gate array,FPGA)。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(neural network processing unit,NPU)张量处理单元(tensor processing unit,TPU)、深度学习处理单元(deep learning processing unit,DPU)等。例如还可以是应用处理器(application processor,AP)、图像信号处理器(image signal processor,ISP)、或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合等。
推进系统2204可以为车辆220提供动力运动。推进系统2204可以包括引擎/发动机、能量源、传动装置(transmission)和车轮/轮胎等。可以理解的是,推进系统2204可以额外地或可替换地包括除了其它可能组件,本申请对此不作具体限定。
尽管图22功能性地图示了处理器、存储器、和在相同块中的控制系统2202的其它元件,但是本领域的普通技术人员应该理解该处理器和存储器实际上可以不存储在相同的物理外壳内的多个处理器或存储器。例如,存储器可以是硬盘驱动器或位于不同于控制系统2202的外壳内的其它存储介质。再比如,处理器也可以远离该车辆但可以与该车辆进行无线通信。
在一些实施例中,存储器22023可包含指令(例如,程序逻辑),指令可被处理器22021读取来执行车辆220的各种功能,包括以上描述的功能。存储器22023也可包含额外的指令,包括向传感器系统2201、推进系统2204和外围设备2206中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。除了指令以外,存储器22023还可存储数据,例如道路地图,路线信息,传感器检测到的数据,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息。这种信息可在车辆220在自主、半自主和/或手动模式中被车辆220和控制系统2202使用。
存储器例如可以是随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。另一种示例中,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于控制系统中。当然,处理器和存储介质也可以作为分立组件存在于控制系统中。
控制系统2202可基于从各种子系统(例如,传感器系统2201等)以及从用户接口2205接收的输入来控制车辆220的功能。例如,控制系统2202可利用来自传感器系统2201的输入以便控制车辆加速或减速来避免由障碍物避免系统检测到的障碍物。在一些实施例中,控制系统2202可操作来对车辆220及其子系统的许多方面提供控制。
可选地,上述这些组件中的一个或多个可与车辆220分开安装或关联。例如,存储器22023可以部分或完全地与车辆220分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
需要说明的是,本申请实施例中的本申请实施例对此不做限定。
本申请中,“连接”,均可以为直接连接,可选地,在其他可能的情况下,也可以不为直接连接,而是通过一些元件进行连接。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。另外,在本申请中,“示例性的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。或者可理解为,使用示例的一词旨在以具体方式呈现概念,并不对本申请构成限定。
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。术语“第一”、“第二”等类似表述,是用于分区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (33)

  1. 一种控制系统,其特征在于,包括:第一控制器和第二控制器,所述第一控制器连接传感器,所述第二控制器连接所述传感器,所述传感器包括第一传感模块和第二传感模块,所述第二控制器包括采样电路,所述采样电路包括第一通道和第二通道,所述第一通道与所述第一传感模块连接,所述第二通道与所述第二传感模块连接;
    所述第二控制器,用于通过所述第一通道获取所述第一传感模块检测到的第一信号,通过所述第二通道获取所述第二传感模块检测到的第二信号,根据所述第一信号和所述第二信号,确定踏板的第二开度信息。
  2. 如权利要求1所述的系统,其特征在于,所述第二控制器,还用于向执行器发送第二控制信号,所述第二控制信号是根据所述第二开度信息获得的。
  3. 如权利要求1所述的系统,其特征在于,所述第一控制器用于:
    获取所述第一传感模块检测到的第一信号、以及所述第二传感模块检测到的第二信号,根据所述第一信号和所述第二信号确定所述踏板的第一开度信息,向所述执行器发送第一控制信号,所述第一控制信号是根据所述第一开度信息获得的。
  4. 如权利要求1~3任一项所述的系统,其特征在于,所述第一通道包括第一模数转换器ADC,所述第二通道包括第二ADC。
  5. 如权利要求4所述的系统,其特征在于,所述第一ADC包括正输入端和负输入端,所述第二ADC包括正输入端和负输入端;
    所述第一ADC的正输入端与所述第一传感模块的第一信号输出端连接,所述第一ADC负输入端与所述第一传感模块的第一接地端连接;
    所述第二ADC的正输入端与所述第二传感模块的第二信号输出端连接,所述第二ADC负输入端与所述第二传感模块的第二接地端连接。
  6. 如权利要求4或5所述的系统,其特征在于,所述第二控制器还包括第一跟随器和第二跟随器;
    所述第一ADC通过所述第一跟随器与所述的第一传感模块连接;
    所述第二ADC通过所述第二跟随器与所述的第二传感模块连接。
  7. 如权利要求6所述的系统,其特征在于,所述第一控制器包括第一电源,所述第二控制器包括第二电源;
    所述第一电源,用于为所述第一跟随器和所述第二跟随器供电;或者,
    所述第二电源,用于为所述第一跟随器和所述第二跟随器供电。
  8. 如权利要求6所述的系统,其特征在于,所述第一控制器包括第一电源,所述第二控制器包括第二电源和电源检测模块;
    所述电源检测模块,用于检测所述第一电源故障,切换所述第二电源为所述第一跟随器和所述第二跟随器供电。
  9. 如权利要求1~8任一项所述的系统,其特征在于,所述控制系统还包括第一合路模块和第二合路模块,所述第一控制器包括第一电源,所述第二控制器包括第二电源;
    所述第一合路模块,用于控制所述第一电源或所述第二电源为所述第一传感模块供电;
    所述第二合路模块,用于控制所述第一电源或所述第二电源为所述第二传感模块供电。
  10. 如权利要求9所述的系统,其特征在于,所述第一合路模块包括第一开关和第二开 关,所述第一开关的第一端与所述第一电源连接,所述第一开关的第二端与所述第一传感模块的接电源端连接,所述第二开关的第一端与所述第二电源连接,所述第二开关的第二端与所述第一传感模块的接电源端连接;和/或,
    所述第二合路模块包括第三开关和第四开关,所述第三开关的第一端与所述第一电源连接,所述第三开关的第二端与所述第二传感模块的接电源端连接,所述第四开关的第一端与所述第二电源连接,所述第四开关的第二端与所述第二传感模块的接电源端连接。
  11. 如权利要求10所述的系统,其特征在于,所述第一开关包括第一二极管或第一芯片;和/或,所述第二开关包括第二二极管或第二芯片。
  12. 如权利要求9~11任一项所述的系统,其特征在于,所述第一合路模块、所述第二合路模块及所述第二控制器集成于相同的印制电路板;或者,
    所述第一合路模块、所述第二合路模块及所述第二控制器中至少两个集成于不同的印制电路板;或者,
    所述第一合路模块、所述第二合路模块及所述第一控制器集成于相同的印制电路板;或者,
    所述第一合路模块、所述第二合路模块及所述第一控制器中至少两个集成于不同的印制电路板。
  13. 一种控制器,其特征在于,包括:采样电路,所述采样电路包括第一通道和第二通道,所述第一通道与传感器的第一传感模块连接,所述第二通道与所述传感器的第二传感模块连接;
    所述控制器,用于通过所述第一通道获取所述第一传感模块检测到的第一信号,通过所述第二通道获取所述第二传感模块检测到的第二信号,根据所述第一信号和所述第二信号,确定所述传感器检测的踏板的第二开度信息。
  14. 如权利要求13所述的控制器,其特征在于,所述控制器,还用于向执行器发送第二控制信号,所述第二控制信号是根据所述第二开度信息获得的。
  15. 如权利要求13或14所述的控制器,其特征在于,所述第一通道包括第一模数转换器ADC,所述第二通道包括第二ADC。
  16. 如权利要求15所述的控制器,其特征在于,所述第一ADC包括正输入端和负输入端,所述第二ADC包括正输入端和负输入端;
    所述第一ADC的正输入端与所述第一传感模块的第一信号输出端连接,所述第一ADC负输入端与所述第一传感模块的第一接地端连接;
    所述第二ADC的正输入端与所述第二传感模块的第二信号输出端连接,所述第二ADC负输入端与所述第二传感模块第二接地端连接。
  17. 如权利要求15~16任一项所述的控制器,其特征在于,所述控制器还包括第一跟随器和第二跟随器;
    所述第一ADC通过所述第一跟随器与所述的第一传感模块连接;
    所述第二ADC通过所述第二跟随器与所述的第二传感模块连接。
  18. 一种控制系统,其特征在于,包括:第三控制器和第四控制器,所述第三控制器与传感器连接,所述第四控制器与所述传感器连接,所述第三控制器、所述第四控制器以及所述传感器共接后接地。
  19. 如权利要求18所述的系统,其特征在于,所述控制系统还包括第一合路模块和第 二合路模块,所述第三控制器包括第三电源,所述第四控制器包括第四电源,所述传感器包括第一传感模块和第二传感模块;
    所述第一合路模块,用于控制所述第三电源或所述第四电源为所述第一传感模块供电;
    所述第二合路模块,用于控制所述第三电源或所述第四电源为所述第二传感模块供电。
  20. 如权利要求19所述的系统,其特征在于,所述第一合路模块包括第一开关和第二开关,所述第一开关的第一端与所述第三电源连接,所述第一开关的第二端与所述第一传感模块的接电源端连接,所述第二开关的第一端与所述第四电源连接,所述第二开关的第二端与所述第一传感模块的接电源端连接;和/或,
    所述第二合路模块包括第三开关和第四开关,所述第三开关的第一端与所述第三电源连接,所述第三开关的第二端与所述第二传感模块的接电源端连接,所述第四开关的第一端与所述第四电源连接,所述第四开关的第二端与所述第二传感模块的接电源端连接。
  21. 如权利要求20所述的系统,其特征在于,所述第一开关包括第一二极管或第一芯片;和/或,所述第二开关包括第二二极管或第二芯片。
  22. 如权利要求18~21任一项所述的系统,其特征在于,所述第一合路模块、所述第二合路模块及所述第三控制器集成于相同的印制电路板;或者,
    所述第一合路模块、所述第二合路模块及所述第三控制器中至少两个集成于不同的印制电路板;或者,
    所述第一合路模块、所述第二合路模块及所述第四控制器集成于相同的印制电路板;或者,
    所述第一合路模块、所述第二合路模块及所述第四控制器中至少两个集成于不同的印制电路板。
  23. 一种传感器,其特征在于,包括第一传感模块、第二传感模块和处理模块,所述处理模块的第一端与所述第一传感模块连接,所述处理模块的第二端与所述第二传感模块连接,所述处理模块的第三端和第四端与第三控制器连接,所述第一传感模块和所述第二传感模块接地;
    所述处理模块,用于将所述第一传感模块检测到的第一信号处理为第一数字信号或第一I/O总线信号,并通过所述处理模块的第三端向所述第三控制器发送所述第一数字信号或所述第一I/O总线信号;以及将所述第二传感模块检测到的第二信号处理为第二数字信号或第二I/O总线信号,并通过所述处理模块的第四端向所述第三控制器发送所述第二数字信号或所述第二I/O总线信号。
  24. 如权利要求23所述的传感器,其特征在于,所述处理模块包括第三模数转换器ADC或第五MCU。
  25. 如权利要求23或24所述的传感器,其特征在于,所述处理模块的第三端和第四端还与第四控制器连接。
  26. 如权利要求25所述的传感器,其特征在于,所述第一传感模块与第一合路模块的第一开关和第二开关连接,所述第二传感模块与第二合路模块的第三开关和第四开关连接。
  27. 一种控制系统,其特征在于,包括第三控制器,所述第三控制器与传感器的处理模块的第三端和第四端连接;
    所述第三控制器,用于接收来自所述处理模块的第三端的第一数字信号、以及接收来自所述处理模块的第四端的第二数字信号,并向执行器发送第二控制信号,所述第二控制 信号是基于所述第一数字信号和所述第二数字信号确定的;或者,
    所述第三控制器,用于接收来自所述处理模块的第三端的第一I/O总线信号、以及接收来自所述处理模块的第四端的第二I/O总线信号,向执行器发送第三控制信号,所述第三控制信号是基于所述第一I/O总线信号和所述第二I/O总线信号确定的。
  28. 如权利要求27所述的系统,其特征在于,所述系统还包括第四控制器,所述第四控制器与所述处理模块的第三端和第四端连接;
    所述第三控制器故障,所述第四控制器用于接收来自所述处理模块的第三端的第一数字信号、以及接收来自所述处理模块的第四端的第二数字信号,并向执行器发送第三控制信号,所述第三控制信号是基于所述第一数字信号和所述第二数字信号确定的;或者,
    所述第四控制器,用于接收来自所述处理模块的第三端的第一I/O总线信号、以及接收来自所述处理模块的第四端的第二I/O总线信号,向执行器发送第三控制信号,所述第三控制信号是基于所述第一I/O总线信号和所述第二I/O总线信号确定的。
  29. 一种控制系统,其特征在于,包括第一合路模块和第二合路模块,所述第一合路模块与传感器的第一传感模块连接,所述第二合路模块与所述传感器的第二传感模块连接;
    所述第一合路模块还与第一控制器和第二控制器连接,所述第二合路模块还与所述第一控制器和所述第二控制器连接,所述第一合路模块用于控制所述第一控制器的第一电源或所述第二控制器的第二电源为所述第一传感模块供电,所述第二合路模块用于控制所述第一电源或所述第二电源为所述第二传感模块供电;或者,
    所述第一合路模块还与第三控制器和第四控制器连接,所述第二合路模块还与所述第三控制器和所述第四控制器连接,所述第一合路模块用于控制所述第三控制器的第三电源或所述第四控制器的第四电源为所述第一传感模块供电,所述第二合路模块用于控制所述第三电源或所述第四电源为所述第二传感模块供电。
  30. 如权利要求29所述的系统,其特征在于,所述第一合路模块包括第一开关和第二开关,所述第一开关的第一端与所述第一电源连接,所述第一开关的第二端与所述第一传感模块的接电源端连接,所述第二开关的第一端与所述第二电源连接,所述第二开关的第二端与所述第一传感模块的接电源端连接;和/或,
    所述第二合路模块包括第三开关和第四开关,所述第三开关的第一端与所述第一电源连接,所述第三开关的第二端与所述第二传感模块的接电源端连接,所述第四开关的第一端与所述第二电源连接,所述第四开关的第二端与所述第二传感模块的接电源端连接。
  31. 如权利要求30所述的系统,其特征在于,所述第一开关包括第一二极管或第一芯片;和/或,所述第二开关包括第二二极管或第二芯片。
  32. 一种终端设备,其特征在于,包括车架及如权利要求1~12任一项或18~22任一项、27~28任一项或29~31任一项所述的控制系统,所述控制系统固定于所述车架。
  33. 如权利要求32所述的终端设备,其特征在于,所述终端设备还包括所述传感器,所述传感器包括第一传感模块和第二传感模块。
PCT/CN2023/099668 2022-10-09 2023-06-12 一种控制系统、传感器、控制器及终端设备 WO2024077986A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211229683.9A CN117847200A (zh) 2022-10-09 2022-10-09 一种控制系统、传感系统、传感器、控制器及终端设备
CN202211229683.9 2022-10-09

Publications (1)

Publication Number Publication Date
WO2024077986A1 true WO2024077986A1 (zh) 2024-04-18

Family

ID=90534996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099668 WO2024077986A1 (zh) 2022-10-09 2023-06-12 一种控制系统、传感器、控制器及终端设备

Country Status (2)

Country Link
CN (1) CN117847200A (zh)
WO (1) WO2024077986A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104097586A (zh) * 2013-04-11 2014-10-15 陈言平 电动汽车整车控制器
US20150253152A1 (en) * 2012-10-08 2015-09-10 Robert Bosch Gmbh Parallel Reading of an Analog Sensor by Two Control Units
CN109831921A (zh) * 2016-09-20 2019-05-31 日立汽车系统株式会社 传感器装置
CN109849938A (zh) * 2018-12-12 2019-06-07 北京长城华冠汽车科技股份有限公司 车辆的油门踏板信号处理系统及其控制方法
CN113589045A (zh) * 2018-01-17 2021-11-02 珠海极海半导体有限公司 敏感电阻测量装置及测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150253152A1 (en) * 2012-10-08 2015-09-10 Robert Bosch Gmbh Parallel Reading of an Analog Sensor by Two Control Units
CN104097586A (zh) * 2013-04-11 2014-10-15 陈言平 电动汽车整车控制器
CN109831921A (zh) * 2016-09-20 2019-05-31 日立汽车系统株式会社 传感器装置
CN113589045A (zh) * 2018-01-17 2021-11-02 珠海极海半导体有限公司 敏感电阻测量装置及测量方法
CN109849938A (zh) * 2018-12-12 2019-06-07 北京长城华冠汽车科技股份有限公司 车辆的油门踏板信号处理系统及其控制方法

Also Published As

Publication number Publication date
CN117847200A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN113195329B (zh) 用于自主车辆的冗余硬件系统
CN109917765B (zh) 一种基于自动驾驶系统的网络架构的集散式域控制器系统
US9122621B2 (en) Configurable intelligent I/O expander system
CN209842367U (zh) 一种基于自动驾驶系统的网络架构的集散式域控制器系统
CN106814666A (zh) 一机多屏的智能座舱系统
KR20180050704A (ko) 전극을 이용한 인간 운전자의 자율 주행 차량 제어 인계 메커니즘
US9829886B2 (en) Flight control system, a circuit board assembly and a configuration method thereof
US20230106791A1 (en) Control device for vehicle and automatic driving system
US11884300B2 (en) Control system for autonomous vehicle
US20230382180A1 (en) Temperature regulation of automated driving system computer using vehicle air conditioning system
US8554420B2 (en) Vehicle unit
WO2024077986A1 (zh) 一种控制系统、传感器、控制器及终端设备
US11774968B2 (en) Power moding for reduction of vehicle power consumption
CN117002461A (zh) 一种单边epb冗余的制动控制系统及制动控制方法
WO2023245540A1 (zh) 一种控制系统及终端设备
CN111238512A (zh) 一种导航车道提醒方法、系统及电子设备
US20220204001A1 (en) Vehicle control system
CN210210408U (zh) 机器人本体控制系统以及机器人
US20220212683A1 (en) Vehicle control system
US20210293563A1 (en) Vehicular electronic device, operation method of vehicular electronic device, and system
US20240084750A1 (en) Systems and methods for providing redundant pulse-width modulation (pwm) throttle control
Omidokum Design and Implementation of an Autonomous Driving System with a Deep Learning Approach on a Scaled Vehicle Platform
US20230109517A1 (en) Dual-port sensor for vehicles
WO2024113265A1 (zh) 一种数据处理方法、装置和智能驾驶设备
CN114269619B (zh) 车辆控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876197

Country of ref document: EP

Kind code of ref document: A1